A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics
Rapid and specific quantitation of a variety of RNAs with low expression levels in early-stage cancer is highly desirable but remains a challenge. Here, we present a dual signal amplification strategy consisting of the CRISPR/Cas13a system and a catalytic hairpin DNA circuit (CHDC), integrated on a...
Saved in:
Published in | Biosensors & bioelectronics Vol. 178; p. 113027 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
15.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rapid and specific quantitation of a variety of RNAs with low expression levels in early-stage cancer is highly desirable but remains a challenge. Here, we present a dual signal amplification strategy consisting of the CRISPR/Cas13a system and a catalytic hairpin DNA circuit (CHDC), integrated on a reusable electrochemical biosensor for rapid and accurate detection of RNAs. Signal amplification is accomplished through the unique combination of the CRISPR/Cas13a system with CHDC, achieving a limit of detection of 50 aM within a readout time of 6 min and an overall process time of 36 min, using a measuring volume of 10 μL. Enzymatic regeneration of the sensor surface and ratiometric correction of background signal allow up to 37 sequential RNA quantifications by square-wave voltammetry on a single biosensor chip without loss of sensitivity. The reusable biosensor platform could selectively (specificity = 0.952) and sensitively (sensitivity = 0.900) identify low expression RNA targets in human serum, distinguishing early-stage patients (n = 20) suffering from non-small-cell lung carcinoma (NSCLC) from healthy subjects (n = 30) and patients with benign lung disease (n = 12). Measurement of six NSCLC-related RNAs (miR-17, miR-155, TTF-1 mRNA, miR-19b, miR-210 and EGFR mRNA) shows the ability of the electrochemical CRISPR/CHDC system to be a fast, low-cost and highly accurate tool for early cancer diagnostics.
[Display omitted]
•An electrochemical biosensor based on dual isothermal amplification is developed.•Program the CRISPR/Cas13a system with catalytic hairpin DNA circuit to detect RNAs.•Enzymatic surface regeneration and ratiometric background correction are achieved.•Early-stage lung cancer patients are distinguished from healthy ones. |
---|---|
AbstractList | Rapid and specific quantitation of a variety of RNAs with low expression levels in early-stage cancer is highly desirable but remains a challenge. Here, we present a dual signal amplification strategy consisting of the CRISPR/Cas13a system and a catalytic hairpin DNA circuit (CHDC), integrated on a reusable electrochemical biosensor for rapid and accurate detection of RNAs. Signal amplification is accomplished through the unique combination of the CRISPR/Cas13a system with CHDC, achieving a limit of detection of 50 aM within a readout time of 6 min and an overall process time of 36 min, using a measuring volume of 10 μL. Enzymatic regeneration of the sensor surface and ratiometric correction of background signal allow up to 37 sequential RNA quantifications by square-wave voltammetry on a single biosensor chip without loss of sensitivity. The reusable biosensor platform could selectively (specificity = 0.952) and sensitively (sensitivity = 0.900) identify low expression RNA targets in human serum, distinguishing early-stage patients (n = 20) suffering from non-small-cell lung carcinoma (NSCLC) from healthy subjects (n = 30) and patients with benign lung disease (n = 12). Measurement of six NSCLC-related RNAs (miR-17, miR-155, TTF-1 mRNA, miR-19b, miR-210 and EGFR mRNA) shows the ability of the electrochemical CRISPR/CHDC system to be a fast, low-cost and highly accurate tool for early cancer diagnostics.
[Display omitted]
•An electrochemical biosensor based on dual isothermal amplification is developed.•Program the CRISPR/Cas13a system with catalytic hairpin DNA circuit to detect RNAs.•Enzymatic surface regeneration and ratiometric background correction are achieved.•Early-stage lung cancer patients are distinguished from healthy ones. Rapid and specific quantitation of a variety of RNAs with low expression levels in early-stage cancer is highly desirable but remains a challenge. Here, we present a dual signal amplification strategy consisting of the CRISPR/Cas13a system and a catalytic hairpin DNA circuit (CHDC), integrated on a reusable electrochemical biosensor for rapid and accurate detection of RNAs. Signal amplification is accomplished through the unique combination of the CRISPR/Cas13a system with CHDC, achieving a limit of detection of 50 aM within a readout time of 6 min and an overall process time of 36 min, using a measuring volume of 10 μL. Enzymatic regeneration of the sensor surface and ratiometric correction of background signal allow up to 37 sequential RNA quantifications by square-wave voltammetry on a single biosensor chip without loss of sensitivity. The reusable biosensor platform could selectively (specificity = 0.952) and sensitively (sensitivity = 0.900) identify low expression RNA targets in human serum, distinguishing early-stage patients (n = 20) suffering from non-small-cell lung carcinoma (NSCLC) from healthy subjects (n = 30) and patients with benign lung disease (n = 12). Measurement of six NSCLC-related RNAs (miR-17, miR-155, TTF-1 mRNA, miR-19b, miR-210 and EGFR mRNA) shows the ability of the electrochemical CRISPR/CHDC system to be a fast, low-cost and highly accurate tool for early cancer diagnostics. Rapid and specific quantitation of a variety of RNAs with low expression levels in early-stage cancer is highly desirable but remains a challenge. Here, we present a dual signal amplification strategy consisting of the CRISPR/Cas13a system and a catalytic hairpin DNA circuit (CHDC), integrated on a reusable electrochemical biosensor for rapid and accurate detection of RNAs. Signal amplification is accomplished through the unique combination of the CRISPR/Cas13a system with CHDC, achieving a limit of detection of 50 aM within a readout time of 6 min and an overall process time of 36 min, using a measuring volume of 10 μL. Enzymatic regeneration of the sensor surface and ratiometric correction of background signal allow up to 37 sequential RNA quantifications by square-wave voltammetry on a single biosensor chip without loss of sensitivity. The reusable biosensor platform could selectively (specificity = 0.952) and sensitively (sensitivity = 0.900) identify low expression RNA targets in human serum, distinguishing early-stage patients (n = 20) suffering from non-small-cell lung carcinoma (NSCLC) from healthy subjects (n = 30) and patients with benign lung disease (n = 12). Measurement of six NSCLC-related RNAs (miR-17, miR-155, TTF-1 mRNA, miR-19b, miR-210 and EGFR mRNA) shows the ability of the electrochemical CRISPR/CHDC system to be a fast, low-cost and highly accurate tool for early cancer diagnostics. Rapid and specific quantitation of a variety of RNAs with low expression levels in early-stage cancer is highly desirable but remains a challenge. Here, we present a dual signal amplification strategy consisting of the CRISPR/Cas13a system and a catalytic hairpin DNA circuit (CHDC), integrated on a reusable electrochemical biosensor for rapid and accurate detection of RNAs. Signal amplification is accomplished through the unique combination of the CRISPR/Cas13a system with CHDC, achieving a limit of detection of 50 aM within a readout time of 6 min and an overall process time of 36 min, using a measuring volume of 10 μL. Enzymatic regeneration of the sensor surface and ratiometric correction of background signal allow up to 37 sequential RNA quantifications by square-wave voltammetry on a single biosensor chip without loss of sensitivity. The reusable biosensor platform could selectively (specificity = 0.952) and sensitively (sensitivity = 0.900) identify low expression RNA targets in human serum, distinguishing early-stage patients (n = 20) suffering from non-small-cell lung carcinoma (NSCLC) from healthy subjects (n = 30) and patients with benign lung disease (n = 12). Measurement of six NSCLC-related RNAs (miR-17, miR-155, TTF-1 mRNA, miR-19b, miR-210 and EGFR mRNA) shows the ability of the electrochemical CRISPR/CHDC system to be a fast, low-cost and highly accurate tool for early cancer diagnostics.Rapid and specific quantitation of a variety of RNAs with low expression levels in early-stage cancer is highly desirable but remains a challenge. Here, we present a dual signal amplification strategy consisting of the CRISPR/Cas13a system and a catalytic hairpin DNA circuit (CHDC), integrated on a reusable electrochemical biosensor for rapid and accurate detection of RNAs. Signal amplification is accomplished through the unique combination of the CRISPR/Cas13a system with CHDC, achieving a limit of detection of 50 aM within a readout time of 6 min and an overall process time of 36 min, using a measuring volume of 10 μL. Enzymatic regeneration of the sensor surface and ratiometric correction of background signal allow up to 37 sequential RNA quantifications by square-wave voltammetry on a single biosensor chip without loss of sensitivity. The reusable biosensor platform could selectively (specificity = 0.952) and sensitively (sensitivity = 0.900) identify low expression RNA targets in human serum, distinguishing early-stage patients (n = 20) suffering from non-small-cell lung carcinoma (NSCLC) from healthy subjects (n = 30) and patients with benign lung disease (n = 12). Measurement of six NSCLC-related RNAs (miR-17, miR-155, TTF-1 mRNA, miR-19b, miR-210 and EGFR mRNA) shows the ability of the electrochemical CRISPR/CHDC system to be a fast, low-cost and highly accurate tool for early cancer diagnostics. |
ArticleNumber | 113027 |
Author | Dincer, Can Johnston, Midori Liu, Tong Zhang, Shihong Zheng, Xiaohe Sheng, Yan Huang, Zena Zhang, Tenghua Shan, Yuanyue Qian, Feiyang Zhong, Hankang Ai, Yiru Hu, Jiaming Kuang, Tairong Xie, Zihui Urban, Gerald Anton |
Author_xml | – sequence: 1 givenname: Yan surname: Sheng fullname: Sheng, Yan organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, 510631, China – sequence: 2 givenname: Tenghua surname: Zhang fullname: Zhang, Tenghua organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, 510631, China – sequence: 3 givenname: Shihong surname: Zhang fullname: Zhang, Shihong organization: Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China – sequence: 4 givenname: Midori orcidid: 0000-0002-2513-0026 surname: Johnston fullname: Johnston, Midori organization: Freiburg Center for Interactive Materials and Bioinspired Technologies – FIT, University of Freiburg, Georges-Koehler Allee 105, 79110, Freiburg, Germany – sequence: 5 givenname: Xiaohe surname: Zheng fullname: Zheng, Xiaohe organization: Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China – sequence: 6 givenname: Yuanyue surname: Shan fullname: Shan, Yuanyue organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, 510631, China – sequence: 7 givenname: Tong surname: Liu fullname: Liu, Tong organization: College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China – sequence: 8 givenname: Zena surname: Huang fullname: Huang, Zena organization: Department of General Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China – sequence: 9 givenname: Feiyang surname: Qian fullname: Qian, Feiyang organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, 510631, China – sequence: 10 givenname: Zihui surname: Xie fullname: Xie, Zihui organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, 510631, China – sequence: 11 givenname: Yiru surname: Ai fullname: Ai, Yiru organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, 510631, China – sequence: 12 givenname: Hankang surname: Zhong fullname: Zhong, Hankang organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, 510631, China – sequence: 13 givenname: Tairong surname: Kuang fullname: Kuang, Tairong email: kuangtr@zjut.edu.cn organization: College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China – sequence: 14 givenname: Can surname: Dincer fullname: Dincer, Can email: dincer@imtek.de organization: Freiburg Center for Interactive Materials and Bioinspired Technologies – FIT, University of Freiburg, Georges-Koehler Allee 105, 79110, Freiburg, Germany – sequence: 15 givenname: Gerald Anton surname: Urban fullname: Urban, Gerald Anton organization: Department of Microsystems Engineering – IMTEK, Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany – sequence: 16 givenname: Jiaming surname: Hu fullname: Hu, Jiaming email: jmhu@m.scnu.edu.cn organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, 510631, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33529861$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1qGzEUhUVJaJy0L9BF0bKbcfQz0oygG2OaNhDa4KRrodFcxTLjkSvJKX77aHCyySJZXASX75wrzjlHJ2MYAaEvlMwpofJyM-98SHNGGJ1TyglrPqAZbRte1YyLEzQjSshKSMnP0HlKG0JIQxX5iM44F0y1ks5QWODl6vrudnW5NIlyU-3Cf4jQY2uyGQ7ZWwwD2ByDXcPWWzPg6SiMKUTsyqS9tZCSfwRsxh6v_cN6OOAJ8Hlarn4vcO_NwxhSMUuf0KkzQ4LPz-8F-nv14375q7r58_N6ubipbC1ErlQLIBunyt87JhSopu5oJ4VjlJUFoTVhhjhjFXPOcieVqSW1LRe0bkgP_AJ9O_ruYvi3h5T11icLw2BGCPukmWhqzhkl5H20LkkJ1rasoF-f0X23hV7vot-aeNAveRagPQI2hpQiOG19NtmHMUfjB02JnqrTGz2lqKfq9LG6ImWvpC_ub4q-H0VQsnz0EHWyHkYLvY-lNd0H_5b8CX1hsRM |
CitedBy_id | crossref_primary_10_1039_D2SD00235C crossref_primary_10_1002_admt_202400981 crossref_primary_10_1039_D2CS00594H crossref_primary_10_1039_D4SD00081A crossref_primary_10_1016_j_talanta_2024_126467 crossref_primary_10_1016_j_tibtech_2023_07_004 crossref_primary_10_3390_genes13112007 crossref_primary_10_3390_bios13060597 crossref_primary_10_1016_j_snb_2023_133784 crossref_primary_10_1016_j_snb_2021_130551 crossref_primary_10_1021_acsptsci_3c00346 crossref_primary_10_1039_D1NR02409D crossref_primary_10_1016_j_coelec_2021_100829 crossref_primary_10_1039_D3AY01927F crossref_primary_10_3390_ijms23031757 crossref_primary_10_1016_j_xcrp_2024_101801 crossref_primary_10_1002_admt_202300357 crossref_primary_10_1016_j_aca_2022_340027 crossref_primary_10_1016_j_aca_2023_341112 crossref_primary_10_1080_10408347_2021_1927669 crossref_primary_10_3389_fcell_2023_1295084 crossref_primary_10_1016_j_aca_2023_341470 crossref_primary_10_1021_acs_analchem_3c03554 crossref_primary_10_20517_evcna_2023_72 crossref_primary_10_1021_acssensors_2c00516 crossref_primary_10_3390_cells10071655 crossref_primary_10_1016_j_cca_2025_120179 crossref_primary_10_1016_j_bios_2024_116671 crossref_primary_10_1016_j_snb_2022_132792 crossref_primary_10_1021_acs_iecr_2c04097 crossref_primary_10_1021_acs_jpclett_3c00495 crossref_primary_10_3389_fbioe_2024_1462293 crossref_primary_10_3390_bios11110456 crossref_primary_10_1021_acs_biomac_4c00415 crossref_primary_10_3390_bios14100460 crossref_primary_10_1007_s12033_022_00638_2 crossref_primary_10_1021_acs_chemrev_1c01063 crossref_primary_10_1016_j_bios_2022_114033 crossref_primary_10_1039_D4AY01446D crossref_primary_10_1016_j_bios_2022_114671 crossref_primary_10_1002_wnan_1851 crossref_primary_10_1016_j_snb_2024_135296 crossref_primary_10_1007_s40097_022_00472_7 crossref_primary_10_2139_ssrn_4120058 crossref_primary_10_3390_bios11100394 crossref_primary_10_1016_j_bios_2022_114437 crossref_primary_10_1016_j_bios_2022_114712 crossref_primary_10_1002_anse_202200052 crossref_primary_10_3390_foods11030487 crossref_primary_10_1002_admt_202200310 crossref_primary_10_3390_bios11090336 crossref_primary_10_1021_jacsau_4c00989 crossref_primary_10_1039_D1AN00313E crossref_primary_10_1002_elan_202100309 crossref_primary_10_1002_mco2_155 crossref_primary_10_1002_smtd_202200794 crossref_primary_10_1007_s10008_023_05637_0 crossref_primary_10_1016_j_aca_2023_341769 crossref_primary_10_1016_j_aca_2022_340120 crossref_primary_10_1016_j_ymeth_2021_04_007 crossref_primary_10_1002_bit_27813 crossref_primary_10_1016_j_bios_2022_114424 crossref_primary_10_1016_j_trac_2024_117856 crossref_primary_10_1016_j_heliyon_2024_e26179 crossref_primary_10_1183_13993003_02610_2021 crossref_primary_10_1016_j_biotechadv_2022_108047 crossref_primary_10_3389_fmicb_2021_751408 crossref_primary_10_3389_fbioe_2022_851712 crossref_primary_10_1016_j_cej_2023_148212 crossref_primary_10_1016_j_cca_2025_120191 crossref_primary_10_1021_acs_analchem_1c03354 crossref_primary_10_1039_D3AN01600E crossref_primary_10_1149_1945_7111_ac5cec crossref_primary_10_1016_j_bios_2022_114497 crossref_primary_10_1021_acsnano_4c05312 crossref_primary_10_1002_anie_202411705 crossref_primary_10_1186_s12575_022_00166_y crossref_primary_10_1021_acssensors_1c00530 crossref_primary_10_3390_bios14080367 crossref_primary_10_2139_ssrn_3984245 crossref_primary_10_1039_D3AY00903C crossref_primary_10_1016_j_bioelechem_2023_108409 crossref_primary_10_3389_fmedt_2024_1360510 crossref_primary_10_1016_j_bios_2022_114007 crossref_primary_10_1186_s12943_024_02222_5 crossref_primary_10_1002_admi_202101874 crossref_primary_10_1016_j_biosx_2023_100367 crossref_primary_10_1186_s11658_023_00483_4 crossref_primary_10_1007_s00604_024_06778_3 crossref_primary_10_1016_j_snb_2024_137048 crossref_primary_10_1016_j_biosx_2022_100283 crossref_primary_10_1016_j_talanta_2023_125125 crossref_primary_10_1021_acssensors_3c01463 crossref_primary_10_1021_acsomega_2c01033 crossref_primary_10_1016_j_snb_2022_131807 crossref_primary_10_1021_acs_analchem_2c02283 crossref_primary_10_1002_ange_202411705 crossref_primary_10_1016_j_cclet_2024_110507 crossref_primary_10_1016_j_semcancer_2023_10_002 crossref_primary_10_1021_acssynbio_1c00107 crossref_primary_10_3389_fmicb_2022_1060947 crossref_primary_10_1016_j_cej_2023_143494 crossref_primary_10_1039_D3AN01788E |
Cites_doi | 10.1038/nature19802 10.1063/1.5137784 10.1007/s12032-012-0353-2 10.1373/clinchem.2010.147405 10.1038/nature09267 10.1021/ac5025254 10.1126/science.1132493 10.1038/s41467-017-01942-1 10.1038/nbt.2908 10.1016/j.tibtech.2019.04.005 10.1038/nrg3037 10.1126/science.aaq0179 10.1038/s41551-018-0343-6 10.1021/acs.analchem.9b05043 10.1038/nrd1985 10.1021/ja503679q 10.1038/s41467-019-14135-9 10.1021/cr068069y 10.1038/nature25739 10.1038/s41421-018-0028-z 10.1038/nature14136 10.1016/j.biomaterials.2018.08.038 10.1126/science.1148532 10.1038/srep04169 10.1016/j.cell.2017.06.050 10.1021/ja3000485 10.1016/j.tibtech.2017.03.013 10.1021/ac2030199 10.1016/j.ccr.2006.01.025 10.1038/nbt0408-400 10.1164/rccm.201511-2129LE 10.1016/S0092-8674(04)00045-5 10.1126/science.1258096 10.1126/science.aav4294 10.1038/s41551-019-0413-4 10.1038/nrg3765 10.18632/oncotarget.13022 10.1126/scitranslmed.3007095 10.1038/s41598-018-24769-2 10.1016/j.cell.2016.02.054 10.1038/nrc2771 10.1021/jacs.6b08671 10.1016/j.bios.2020.112887 10.1073/pnas.1201551109 10.1038/nnano.2010.114 10.1002/adma.201905311 10.1126/science.aam9321 10.1038/nrm4010 10.1016/S0092-8674(02)00617-7 10.1126/science.aar6245 10.1016/j.ab.2019.04.016 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bios.2021.113027 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
ExternalDocumentID | 33529861 10_1016_j_bios_2021_113027 S0956566321000634 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM .HR 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ R2- RIG SBG SCB SCH SEW SSH WUQ CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c455t-98ee67f9663b259e974b1b65f212b2501402a0fac92ffc3f69a461c8351470de3 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Thu Aug 07 15:07:55 EDT 2025 Fri Jul 11 14:16:42 EDT 2025 Thu Apr 03 06:53:01 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Tue Jul 01 01:42:55 EDT 2025 Fri Feb 23 02:40:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DNA circuit Electrochemical analysis On-site testing Catalytic hairpin Nucleic acid diagnostics CRISPR/Cas technology |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-98ee67f9663b259e974b1b65f212b2501402a0fac92ffc3f69a461c8351470de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2513-0026 |
PMID | 33529861 |
PQID | 2486152882 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2574332100 proquest_miscellaneous_2486152882 pubmed_primary_33529861 crossref_citationtrail_10_1016_j_bios_2021_113027 crossref_primary_10_1016_j_bios_2021_113027 elsevier_sciencedirect_doi_10_1016_j_bios_2021_113027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-15 |
PublicationDateYYYYMMDD | 2021-04-15 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Vanlandewijck, He, Mäe, Andrae, Ando, Del Gaudio, Nahar, Lebouvier, Laviña, Gouveia, Sun, Raschperger, Räsänen, Zarb, Mochizuki, Keller, Lendahl, Betsholtz (bib45) 2018; 554 Li, Cheng, Wang, Li, Zhang, Gao, Cao, Zhao, Wang (bib33) 2018; 4 Wickramasinghe, Laskey (bib47) 2015; 16 Hu, Wang, Kim, Shannon, Easley (bib26) 2012; 134 Pheeney, Guerra, Barton (bib38) 2012; 109 Zhang, Turberfield, Yurke, Winfree (bib51) 2007; 318 Dincer, Bruch, Kling, Dittrich, Urban (bib9) 2017; 35 Bruch, Urban, Dincer (bib5) 2019; 3 Zaporozhchenko, Morozkin, Ponomaryova, Rykova, Cherdyntseva, Zheravin, Pashkovskaya, Pokushalov, Vlassov, Laktionov (bib50) 2018; 8 Seelig, Soloveichik, Zhang, Winfree (bib41) 2006; 314 Lee, Yang, Rahman, Ma, Kwak, McElroy, Shilo, Goparaju, Yu, Rom, Kim, Wu, He, Wang, Pass, Nana-Sinkam (bib31) 2016; 193 Gubala, Harris, Ricco, Tan, Williams (bib18) 2012; 84 Hausser, Zavolan (bib21) 2014; 15 Tsai, Wyvekens, Khayter, Foden, Thapar, Reyon, Goodwin, Aryee, Joung (bib44) 2014; 32 Guo, Ingolia, Weissman, Bartel (bib19) 2010; 466 Chen, Ma, Harrington, Da Costa, Tian, Palefsky, Doudna (bib7) 2018; 360 Shen, Zhou, Shan, Yue, Huang, Hu, Xing (bib42) 2020; 11 Bruch, Baaske, Chatelle, Meirich, Madlener, Weber, Dincer, Urban (bib2) 2019; 31 Lee, Lee, Lee, Doyle (bib30) 2020; 92 Nelles, Fang, O'Connell, Xu, Markmiller, Doudna, Yeo (bib37) 2016; 165 Hu, Kwak, Shi, Yu, Sheng, Lee (bib24) 2018; 183 Zhu, Feng, Ye, Chen, Li (bib52) 2014; 4 Doudna, Charpentier (bib11) 2014; 346 Harrington, Burstein, Chen, Paez-Espino, Ma, Witte, Cofsky, Kyrpides, Banfield, Doudna (bib20) 2018; 362 Hu, Yu, Brooks, Godwin, Somasundaram, Torabinejad, Kim, Shannon, Easley (bib27) 2014; 136 Bartel (bib1) 2004; 116 Treerattrakoon, Jiemsakul, Tansarawiput, Pinpradup, Iempridee, Luksirikul, Khoothiam, Dharakul, Japrung (bib43) 2019; 577 Jeffrey (bib28) 2008; 26 Gootenberg, Abudayyeh, Lee, Essletzbichler, Dy, Joung, Verdine, Donghia, Daringer, Freije, Myhrvold, Bhattacharyya, Livny, Regev, Koonin, Hung, Sabeti, Collins, Zhang (bib17) 2017; 356 Liu, Li, Ma, Li, You, Wang, Wang, Zhang, Wang (bib35) 2017; 170 Hu, Kuang (bib23) 2018; 4 Xue, Liu, Wang, Meng, Wang, Zang, Zhao, Sun, Cui, Pan, Liu (bib48) 2016; 7 Li, Arroyo-Currás, Kang, Ricci, Plaxco (bib32) 2016; 138 Liu, Zhao, Tian, Cai, Zhang, Feng, Chang, Wan, Yang, Dai, Cong, Ding, Sun, Tan (bib34) 2019; 3 Proudfoot, Furger, Dye (bib39) 2002; 108 Bruch, Urban, Dincer (bib4) 2019; 37 Yanaihara, Caplen, Bowman, Seike, Kumamoto, Yi, Stephens, Okamoto, Yokota, Tanaka, Calin, Liu, Croce, Harris (bib49) 2006; 9 East-Seletsky, O'Connell, Knight, Burstein, Cate, Tjian, Doudna (bib13) 2016; 538 Muers (bib36) 2011; 12 Du, Lim, Li, Jiang, Sessler, Ellington (bib12) 2014; 86 Santarius, Shipley, Brewer, Stratton, Cooper (bib40) 2010; 10 Gao, Qiang, Chu, Han, Zhang, Han (bib15) 2020; 10 Dittrich, Manz (bib10) 2006; 5 Cai, Ren, Zhao, Xu, Zhang, Yu, Wang, Lan, Roberts, Chuang, Naughton, Ren, Chiles (bib6) 2010; 5 Weber, Baxter, Zhang, Huang, Huang, Lee, Galas, Wang (bib46) 2010; 56 Ferguson, Hoggarth, Maliniak, Ploense, White, Woodward, Hsieh, Bonham, Eisenstein, Kippin, Plaxco, Soh (bib14) 2013; 5 Bruch, Johnston, Kling, Mattmüller, Baaske, Partel, Madlener, Weber, Urban, Dincer (bib3) 2021 Konermann, Brigham, Trevino, Joung, Abudayyeh, Barcena, Hsu, Habib, Gootenberg, Nishimasu, Nureki, Zhang (bib29) 2015; 517 Chen, Si, Xiao, Xie, Lin, Wang, Chen, Chen, Wang (bib8) 2012; 30 Gootenberg, Abudayyeh, Kellner, Joung, Collins, Zhang (bib16) 2018; 360 Heller, Feldman (bib22) 2008; 108 Hu, Sheng, Kwak, Shi, Yu, Lee (bib25) 2017; 8 Chen (10.1016/j.bios.2021.113027_bib7) 2018; 360 Doudna (10.1016/j.bios.2021.113027_bib11) 2014; 346 Shen (10.1016/j.bios.2021.113027_bib42) 2020; 11 Hu (10.1016/j.bios.2021.113027_bib23) 2018; 4 Li (10.1016/j.bios.2021.113027_bib33) 2018; 4 Muers (10.1016/j.bios.2021.113027_bib36) 2011; 12 Treerattrakoon (10.1016/j.bios.2021.113027_bib43) 2019; 577 Li (10.1016/j.bios.2021.113027_bib32) 2016; 138 Chen (10.1016/j.bios.2021.113027_bib8) 2012; 30 Hu (10.1016/j.bios.2021.113027_bib24) 2018; 183 Wickramasinghe (10.1016/j.bios.2021.113027_bib47) 2015; 16 Bruch (10.1016/j.bios.2021.113027_bib4) 2019; 37 Gubala (10.1016/j.bios.2021.113027_bib18) 2012; 84 Vanlandewijck (10.1016/j.bios.2021.113027_bib45) 2018; 554 Seelig (10.1016/j.bios.2021.113027_bib41) 2006; 314 Du (10.1016/j.bios.2021.113027_bib12) 2014; 86 Konermann (10.1016/j.bios.2021.113027_bib29) 2015; 517 Nelles (10.1016/j.bios.2021.113027_bib37) 2016; 165 Zaporozhchenko (10.1016/j.bios.2021.113027_bib50) 2018; 8 Hausser (10.1016/j.bios.2021.113027_bib21) 2014; 15 Tsai (10.1016/j.bios.2021.113027_bib44) 2014; 32 Zhang (10.1016/j.bios.2021.113027_bib51) 2007; 318 Dittrich (10.1016/j.bios.2021.113027_bib10) 2006; 5 Cai (10.1016/j.bios.2021.113027_bib6) 2010; 5 Yanaihara (10.1016/j.bios.2021.113027_bib49) 2006; 9 Guo (10.1016/j.bios.2021.113027_bib19) 2010; 466 Proudfoot (10.1016/j.bios.2021.113027_bib39) 2002; 108 Liu (10.1016/j.bios.2021.113027_bib35) 2017; 170 Bruch (10.1016/j.bios.2021.113027_bib3) 2021 Bruch (10.1016/j.bios.2021.113027_bib5) 2019; 3 Dincer (10.1016/j.bios.2021.113027_bib9) 2017; 35 Gootenberg (10.1016/j.bios.2021.113027_bib17) 2017; 356 Hu (10.1016/j.bios.2021.113027_bib27) 2014; 136 Liu (10.1016/j.bios.2021.113027_bib34) 2019; 3 Santarius (10.1016/j.bios.2021.113027_bib40) 2010; 10 Bartel (10.1016/j.bios.2021.113027_bib1) 2004; 116 Heller (10.1016/j.bios.2021.113027_bib22) 2008; 108 Hu (10.1016/j.bios.2021.113027_bib25) 2017; 8 Hu (10.1016/j.bios.2021.113027_bib26) 2012; 134 Ferguson (10.1016/j.bios.2021.113027_bib14) 2013; 5 Weber (10.1016/j.bios.2021.113027_bib46) 2010; 56 Zhu (10.1016/j.bios.2021.113027_bib52) 2014; 4 Harrington (10.1016/j.bios.2021.113027_bib20) 2018; 362 Bruch (10.1016/j.bios.2021.113027_bib2) 2019; 31 Jeffrey (10.1016/j.bios.2021.113027_bib28) 2008; 26 Gao (10.1016/j.bios.2021.113027_bib15) 2020; 10 Gootenberg (10.1016/j.bios.2021.113027_bib16) 2018; 360 East-Seletsky (10.1016/j.bios.2021.113027_bib13) 2016; 538 Lee (10.1016/j.bios.2021.113027_bib30) 2020; 92 Pheeney (10.1016/j.bios.2021.113027_bib38) 2012; 109 Xue (10.1016/j.bios.2021.113027_bib48) 2016; 7 Lee (10.1016/j.bios.2021.113027_bib31) 2016; 193 |
References_xml | – volume: 314 start-page: 1585 year: 2006 end-page: 1588 ident: bib41 article-title: Enzyme-free nucleic acid logic circuits publication-title: Science – volume: 31 start-page: 1905311 year: 2019 ident: bib2 article-title: CRISPR/Cas13a-Powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics publication-title: Adv. Mater. – volume: 9 start-page: 189 year: 2006 end-page: 198 ident: bib49 article-title: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis publication-title: Canc. Cell – volume: 183 start-page: 20 year: 2018 end-page: 29 ident: bib24 article-title: Overhang molecular beacons encapsulated in tethered cationic lipoplex nanoparticles for detection of single-point mutation in extracellular vesicle-associated RNAs publication-title: Biomaterials – volume: 84 start-page: 487 year: 2012 end-page: 515 ident: bib18 article-title: Point of care diagnostics: status and future publication-title: Anal. Chem. – volume: 11 start-page: 267 year: 2020 ident: bib42 article-title: Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction publication-title: Nat. Commun. – volume: 56 start-page: 1733 year: 2010 end-page: 1741 ident: bib46 article-title: The microRNA spectrum in 12 body fluids publication-title: Clin. Chem. – volume: 16 start-page: 431 year: 2015 end-page: 442 ident: bib47 article-title: Control of mammalian gene expression by selective mRNA export publication-title: Nat. Rev. Mol. Cell Biol. – volume: 134 start-page: 7066 year: 2012 end-page: 7072 ident: bib26 article-title: Quantitation of femtomolar protein levels via direct readout with the electrochemical proximity assay publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4169 year: 2014 ident: bib52 article-title: Fabrication of magneto-controlled moveable architecture to develop reusable electrochemical biosensors publication-title: Sci. Rep. – volume: 10 year: 2020 ident: bib15 article-title: Microfluidic chip for multiple detection of miRNA biomarkers in breast cancer based on three-segment hybridization publication-title: AIP Adv. – volume: 138 start-page: 15809 year: 2016 end-page: 15812 ident: bib32 article-title: Dual-reporter drift correction to enhance the performance of electrochemical aptamer-based sensors in whole blood publication-title: J. Am. Chem. Soc. – volume: 362 start-page: 839 year: 2018 end-page: 842 ident: bib20 article-title: Programmed DNA destruction by miniature CRISPR-Cas14 enzymes publication-title: Science – volume: 356 start-page: 438 year: 2017 end-page: 442 ident: bib17 article-title: Nucleic acid detection with CRISPR-Cas13a/C2c2 publication-title: Science – volume: 360 start-page: 436 year: 2018 end-page: 439 ident: bib7 article-title: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity publication-title: Science – volume: 346 start-page: 1258096 year: 2014 ident: bib11 article-title: The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science – volume: 165 start-page: 488 year: 2016 end-page: 496 ident: bib37 article-title: Programmable RNA tracking in live cells with CRISPR/Cas9 publication-title: Cell – volume: 4 start-page: 20 year: 2018 ident: bib33 article-title: CRISPR-Cas12a-assisted nucleic acid detection publication-title: Cell Discov. – volume: 193 start-page: 1431 year: 2016 end-page: 1433 ident: bib31 article-title: Extracellular mRNA detected by tethered lipoplex nanoparticle biochip for lung adenocarcinoma detection publication-title: Am. J. Respir. Crit. Care Med. – volume: 8 start-page: 1683 year: 2017 ident: bib25 article-title: A signal-amplifiable biochip quantifies extracellular vesicle-associated RNAs for early cancer detection publication-title: Nat. Commun. – volume: 32 start-page: 569 year: 2014 end-page: 576 ident: bib44 article-title: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing publication-title: Nat. Biotechnol. – volume: 35 start-page: 728 year: 2017 end-page: 742 ident: bib9 article-title: Multiplexed point-of-care testing-xPOCT publication-title: Trends Biotechnol. – volume: 538 start-page: 270 year: 2016 end-page: 273 ident: bib13 article-title: Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection publication-title: Nature – start-page: 112887 year: 2021 ident: bib3 article-title: Crispr-powered electrochemical microfluidic multiplexed biosensor for target amplification-free mirna diagnostics publication-title: Biosens. Bioelectron. – volume: 8 start-page: 6348 year: 2018 ident: bib50 article-title: Profiling of 179 miRNA expression in blood plasma of lung cancer patients and cancer-free individuals publication-title: Sci. Rep. – volume: 360 start-page: 439 year: 2018 end-page: 444 ident: bib16 article-title: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 publication-title: Science – volume: 517 start-page: 583 year: 2015 end-page: 588 ident: bib29 article-title: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex publication-title: Nature – volume: 466 start-page: 835 year: 2010 end-page: 840 ident: bib19 article-title: Mammalian microRNAs predominantly act to decrease target mRNA levels publication-title: Nature – volume: 4 start-page: 1194 year: 2018 end-page: 1196 ident: bib23 article-title: DNA-coded fluorescence for color painting RNAs publication-title: Inside Chem. – volume: 5 start-page: 597 year: 2010 end-page: 601 ident: bib6 article-title: A molecular-imprint nanosensor for ultrasensitive detection of proteins publication-title: Nat. Nanotechnol. – volume: 10 start-page: 59 year: 2010 end-page: 64 ident: bib40 article-title: A census of amplified and overexpressed human cancer genes publication-title: Nat. Rev. Canc. – volume: 5 year: 2013 ident: bib14 article-title: Real-time, aptamer-based tracking of circulating therapeutic agents in living animals publication-title: Sci. Transl. Med. – volume: 170 start-page: 714 year: 2017 end-page: 726 ident: bib35 article-title: The molecular architecture for RNA-guided RNA cleavage by Cas13a publication-title: Cell – volume: 318 start-page: 1121 year: 2007 end-page: 1125 ident: bib51 article-title: Engineering entropy-driven reactions and networks catalyzed by DNA publication-title: Science – volume: 109 start-page: 11528 year: 2012 end-page: 11533 ident: bib38 article-title: DNA sensing by electrocatalysis with hemoglobin publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 577 start-page: 89 year: 2019 end-page: 97 ident: bib43 article-title: Rolling circle amplification and graphene-based sensor-on-a-chip for sensitive detection of serum circulating miRNAs publication-title: Anal. Biochem. – volume: 116 start-page: 281 year: 2004 end-page: 297 ident: bib1 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell – volume: 26 start-page: 400 year: 2008 end-page: 401 ident: bib28 article-title: Cancer biomarker profiling with microRNAs publication-title: Nat. Biotechnol. – volume: 108 start-page: 2482 year: 2008 end-page: 2505 ident: bib22 article-title: Electrochemical glucose sensors and their applications in diabetes management publication-title: Chem. Rev. – volume: 86 start-page: 8010 year: 2014 end-page: 8016 ident: bib12 article-title: Reagentless, ratiometric electrochemical DNA sensors with improved robustness and reproducibility publication-title: Anal. Chem. – volume: 30 start-page: 353 year: 2012 ident: bib8 article-title: Prognostic significance of serum miR-17-5p in lung cancer publication-title: Med. Oncol. – volume: 136 start-page: 8467 year: 2014 end-page: 8474 ident: bib27 article-title: A reusable electrochemical proximity assay for highly selective, real-time protein quantitation in biological matrices publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 599 year: 2014 end-page: 612 ident: bib21 article-title: Identification and consequences of miRNA-target interactions--beyond repression of gene expression publication-title: Nat. Rev. Genet. – volume: 3 start-page: 419 year: 2019 end-page: 420 ident: bib5 article-title: Unamplified gene sensing via Cas9 on graphene publication-title: Nat. Biomed. Eng. – volume: 554 start-page: 475 year: 2018 end-page: 480 ident: bib45 article-title: A molecular atlas of cell types and zonation in the brain vasculature publication-title: Nature – volume: 108 start-page: 501 year: 2002 end-page: 512 ident: bib39 article-title: Integrating mRNA processing with transcription publication-title: Cell – volume: 5 start-page: 210 year: 2006 end-page: 218 ident: bib10 article-title: Lab-on-a-chip: microfluidics in drug discovery publication-title: Nat. Rev. Drug Discov. – volume: 12 year: 2011 ident: bib36 article-title: Transcriptome to proteome and back to genome publication-title: Nat. Rev. Genet. – volume: 37 start-page: 791 year: 2019 end-page: 792 ident: bib4 article-title: CRISPR/Cas powered multiplexed biosensing publication-title: Trends Biotechnol. – volume: 7 start-page: 84508 year: 2016 end-page: 84519 ident: bib48 article-title: MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN publication-title: Oncotarget – volume: 92 start-page: 5750 year: 2020 end-page: 5755 ident: bib30 article-title: Hydrogel-based colorimetric assay for multiplexed MicroRNA detection in a microfluidic device publication-title: Anal. Chem. – volume: 3 start-page: 183 year: 2019 end-page: 193 ident: bib34 article-title: Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers publication-title: Nat. Biomed. Eng. – volume: 538 start-page: 270 issue: 7624 year: 2016 ident: 10.1016/j.bios.2021.113027_bib13 article-title: Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection publication-title: Nature doi: 10.1038/nature19802 – volume: 10 issue: 4 year: 2020 ident: 10.1016/j.bios.2021.113027_bib15 article-title: Microfluidic chip for multiple detection of miRNA biomarkers in breast cancer based on three-segment hybridization publication-title: AIP Adv. doi: 10.1063/1.5137784 – volume: 30 start-page: 353 issue: 1 year: 2012 ident: 10.1016/j.bios.2021.113027_bib8 article-title: Prognostic significance of serum miR-17-5p in lung cancer publication-title: Med. Oncol. doi: 10.1007/s12032-012-0353-2 – volume: 56 start-page: 1733 issue: 11 year: 2010 ident: 10.1016/j.bios.2021.113027_bib46 article-title: The microRNA spectrum in 12 body fluids publication-title: Clin. Chem. doi: 10.1373/clinchem.2010.147405 – volume: 466 start-page: 835 issue: 7308 year: 2010 ident: 10.1016/j.bios.2021.113027_bib19 article-title: Mammalian microRNAs predominantly act to decrease target mRNA levels publication-title: Nature doi: 10.1038/nature09267 – volume: 86 start-page: 8010 issue: 15 year: 2014 ident: 10.1016/j.bios.2021.113027_bib12 article-title: Reagentless, ratiometric electrochemical DNA sensors with improved robustness and reproducibility publication-title: Anal. Chem. doi: 10.1021/ac5025254 – volume: 314 start-page: 1585 issue: 5805 year: 2006 ident: 10.1016/j.bios.2021.113027_bib41 article-title: Enzyme-free nucleic acid logic circuits publication-title: Science doi: 10.1126/science.1132493 – volume: 8 start-page: 1683 issue: 1 year: 2017 ident: 10.1016/j.bios.2021.113027_bib25 article-title: A signal-amplifiable biochip quantifies extracellular vesicle-associated RNAs for early cancer detection publication-title: Nat. Commun. doi: 10.1038/s41467-017-01942-1 – volume: 32 start-page: 569 issue: 6 year: 2014 ident: 10.1016/j.bios.2021.113027_bib44 article-title: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2908 – volume: 37 start-page: 791 issue: 8 year: 2019 ident: 10.1016/j.bios.2021.113027_bib4 article-title: CRISPR/Cas powered multiplexed biosensing publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2019.04.005 – volume: 12 issue: 8 year: 2011 ident: 10.1016/j.bios.2021.113027_bib36 article-title: Transcriptome to proteome and back to genome publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3037 – volume: 360 start-page: 439 issue: 6387 year: 2018 ident: 10.1016/j.bios.2021.113027_bib16 article-title: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 publication-title: Science doi: 10.1126/science.aaq0179 – volume: 3 start-page: 183 issue: 3 year: 2019 ident: 10.1016/j.bios.2021.113027_bib34 article-title: Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0343-6 – volume: 92 start-page: 5750 issue: 8 year: 2020 ident: 10.1016/j.bios.2021.113027_bib30 article-title: Hydrogel-based colorimetric assay for multiplexed MicroRNA detection in a microfluidic device publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05043 – volume: 5 start-page: 210 issue: 3 year: 2006 ident: 10.1016/j.bios.2021.113027_bib10 article-title: Lab-on-a-chip: microfluidics in drug discovery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1985 – volume: 136 start-page: 8467 issue: 23 year: 2014 ident: 10.1016/j.bios.2021.113027_bib27 article-title: A reusable electrochemical proximity assay for highly selective, real-time protein quantitation in biological matrices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503679q – volume: 11 start-page: 267 issue: 1 year: 2020 ident: 10.1016/j.bios.2021.113027_bib42 article-title: Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-14135-9 – volume: 108 start-page: 2482 issue: 7 year: 2008 ident: 10.1016/j.bios.2021.113027_bib22 article-title: Electrochemical glucose sensors and their applications in diabetes management publication-title: Chem. Rev. doi: 10.1021/cr068069y – volume: 554 start-page: 475 issue: 7693 year: 2018 ident: 10.1016/j.bios.2021.113027_bib45 article-title: A molecular atlas of cell types and zonation in the brain vasculature publication-title: Nature doi: 10.1038/nature25739 – volume: 4 start-page: 20 issue: 1 year: 2018 ident: 10.1016/j.bios.2021.113027_bib33 article-title: CRISPR-Cas12a-assisted nucleic acid detection publication-title: Cell Discov. doi: 10.1038/s41421-018-0028-z – volume: 4 start-page: 1194 issue: 6 year: 2018 ident: 10.1016/j.bios.2021.113027_bib23 article-title: DNA-coded fluorescence for color painting RNAs publication-title: Inside Chem. – volume: 517 start-page: 583 issue: 7536 year: 2015 ident: 10.1016/j.bios.2021.113027_bib29 article-title: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex publication-title: Nature doi: 10.1038/nature14136 – volume: 183 start-page: 20 year: 2018 ident: 10.1016/j.bios.2021.113027_bib24 article-title: Overhang molecular beacons encapsulated in tethered cationic lipoplex nanoparticles for detection of single-point mutation in extracellular vesicle-associated RNAs publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.08.038 – volume: 318 start-page: 1121 issue: 5853 year: 2007 ident: 10.1016/j.bios.2021.113027_bib51 article-title: Engineering entropy-driven reactions and networks catalyzed by DNA publication-title: Science doi: 10.1126/science.1148532 – volume: 4 start-page: 4169 issue: 1 year: 2014 ident: 10.1016/j.bios.2021.113027_bib52 article-title: Fabrication of magneto-controlled moveable architecture to develop reusable electrochemical biosensors publication-title: Sci. Rep. doi: 10.1038/srep04169 – volume: 170 start-page: 714 issue: 4 year: 2017 ident: 10.1016/j.bios.2021.113027_bib35 article-title: The molecular architecture for RNA-guided RNA cleavage by Cas13a publication-title: Cell doi: 10.1016/j.cell.2017.06.050 – volume: 134 start-page: 7066 issue: 16 year: 2012 ident: 10.1016/j.bios.2021.113027_bib26 article-title: Quantitation of femtomolar protein levels via direct readout with the electrochemical proximity assay publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3000485 – volume: 35 start-page: 728 issue: 8 year: 2017 ident: 10.1016/j.bios.2021.113027_bib9 article-title: Multiplexed point-of-care testing-xPOCT publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2017.03.013 – volume: 84 start-page: 487 issue: 2 year: 2012 ident: 10.1016/j.bios.2021.113027_bib18 article-title: Point of care diagnostics: status and future publication-title: Anal. Chem. doi: 10.1021/ac2030199 – volume: 9 start-page: 189 issue: 3 year: 2006 ident: 10.1016/j.bios.2021.113027_bib49 article-title: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis publication-title: Canc. Cell doi: 10.1016/j.ccr.2006.01.025 – volume: 26 start-page: 400 issue: 4 year: 2008 ident: 10.1016/j.bios.2021.113027_bib28 article-title: Cancer biomarker profiling with microRNAs publication-title: Nat. Biotechnol. doi: 10.1038/nbt0408-400 – volume: 193 start-page: 1431 issue: 12 year: 2016 ident: 10.1016/j.bios.2021.113027_bib31 article-title: Extracellular mRNA detected by tethered lipoplex nanoparticle biochip for lung adenocarcinoma detection publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201511-2129LE – volume: 116 start-page: 281 issue: 2 year: 2004 ident: 10.1016/j.bios.2021.113027_bib1 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 346 start-page: 1258096 issue: 6213 year: 2014 ident: 10.1016/j.bios.2021.113027_bib11 article-title: The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science doi: 10.1126/science.1258096 – volume: 362 start-page: 839 issue: 6416 year: 2018 ident: 10.1016/j.bios.2021.113027_bib20 article-title: Programmed DNA destruction by miniature CRISPR-Cas14 enzymes publication-title: Science doi: 10.1126/science.aav4294 – volume: 3 start-page: 419 issue: 6 year: 2019 ident: 10.1016/j.bios.2021.113027_bib5 article-title: Unamplified gene sensing via Cas9 on graphene publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0413-4 – volume: 15 start-page: 599 issue: 9 year: 2014 ident: 10.1016/j.bios.2021.113027_bib21 article-title: Identification and consequences of miRNA-target interactions--beyond repression of gene expression publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3765 – volume: 7 start-page: 84508 issue: 51 year: 2016 ident: 10.1016/j.bios.2021.113027_bib48 article-title: MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN publication-title: Oncotarget doi: 10.18632/oncotarget.13022 – volume: 5 issue: 213 year: 2013 ident: 10.1016/j.bios.2021.113027_bib14 article-title: Real-time, aptamer-based tracking of circulating therapeutic agents in living animals publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007095 – volume: 8 start-page: 6348 issue: 1 year: 2018 ident: 10.1016/j.bios.2021.113027_bib50 article-title: Profiling of 179 miRNA expression in blood plasma of lung cancer patients and cancer-free individuals publication-title: Sci. Rep. doi: 10.1038/s41598-018-24769-2 – volume: 165 start-page: 488 issue: 2 year: 2016 ident: 10.1016/j.bios.2021.113027_bib37 article-title: Programmable RNA tracking in live cells with CRISPR/Cas9 publication-title: Cell doi: 10.1016/j.cell.2016.02.054 – volume: 10 start-page: 59 issue: 1 year: 2010 ident: 10.1016/j.bios.2021.113027_bib40 article-title: A census of amplified and overexpressed human cancer genes publication-title: Nat. Rev. Canc. doi: 10.1038/nrc2771 – volume: 138 start-page: 15809 issue: 49 year: 2016 ident: 10.1016/j.bios.2021.113027_bib32 article-title: Dual-reporter drift correction to enhance the performance of electrochemical aptamer-based sensors in whole blood publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08671 – start-page: 112887 year: 2021 ident: 10.1016/j.bios.2021.113027_bib3 article-title: Crispr-powered electrochemical microfluidic multiplexed biosensor for target amplification-free mirna diagnostics publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112887 – volume: 109 start-page: 11528 issue: 29 year: 2012 ident: 10.1016/j.bios.2021.113027_bib38 article-title: DNA sensing by electrocatalysis with hemoglobin publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1201551109 – volume: 5 start-page: 597 issue: 8 year: 2010 ident: 10.1016/j.bios.2021.113027_bib6 article-title: A molecular-imprint nanosensor for ultrasensitive detection of proteins publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.114 – volume: 31 start-page: 1905311 issue: 51 year: 2019 ident: 10.1016/j.bios.2021.113027_bib2 article-title: CRISPR/Cas13a-Powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics publication-title: Adv. Mater. doi: 10.1002/adma.201905311 – volume: 356 start-page: 438 issue: 6336 year: 2017 ident: 10.1016/j.bios.2021.113027_bib17 article-title: Nucleic acid detection with CRISPR-Cas13a/C2c2 publication-title: Science doi: 10.1126/science.aam9321 – volume: 16 start-page: 431 issue: 7 year: 2015 ident: 10.1016/j.bios.2021.113027_bib47 article-title: Control of mammalian gene expression by selective mRNA export publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4010 – volume: 108 start-page: 501 issue: 4 year: 2002 ident: 10.1016/j.bios.2021.113027_bib39 article-title: Integrating mRNA processing with transcription publication-title: Cell doi: 10.1016/S0092-8674(02)00617-7 – volume: 360 start-page: 436 issue: 6387 year: 2018 ident: 10.1016/j.bios.2021.113027_bib7 article-title: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity publication-title: Science doi: 10.1126/science.aar6245 – volume: 577 start-page: 89 year: 2019 ident: 10.1016/j.bios.2021.113027_bib43 article-title: Rolling circle amplification and graphene-based sensor-on-a-chip for sensitive detection of serum circulating miRNAs publication-title: Anal. Biochem. doi: 10.1016/j.ab.2019.04.016 |
SSID | ssj0007190 |
Score | 2.6300921 |
Snippet | Rapid and specific quantitation of a variety of RNAs with low expression levels in early-stage cancer is highly desirable but remains a challenge. Here, we... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113027 |
SubjectTerms | Biosensing Techniques biosensors blood serum Carcinoma, Non-Small-Cell Lung Catalytic hairpin Clustered Regularly Interspaced Short Palindromic Repeats CRISPR/Cas technology detection limit diagnostic techniques DNA DNA circuit DNA, Catalytic Electrochemical analysis electrochemistry Humans lung neoplasms Lung Neoplasms - diagnosis Lung Neoplasms - genetics Nucleic acid diagnostics On-site testing processing time voltammetry |
Title | A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics |
URI | https://dx.doi.org/10.1016/j.bios.2021.113027 https://www.ncbi.nlm.nih.gov/pubmed/33529861 https://www.proquest.com/docview/2486152882 https://www.proquest.com/docview/2574332100 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5CQiA9lLzaOg-jQm9la8uS9nE0psFJqClOA7ktWq0EDmHXxPbBl_z2zKy0SQqtDznuMhJaaVYzI818H8C3skwzVAsbSVGqSBoMdwjFPDLGorWXUqcND9mvSTy-lVd36m4LRm0tDKVVhr3f7-nNbh3e9MJs9uazWe-GIPTQGaEiFDK0hAkqZUJa_uPpNc0j4f6chfD2SDoUzvgcr2JWE2T3gBO1SZ-YZf5tnP7nfDZG6GIfPgbvkQ39AA9gy1aHsOv5JNeH8OENuuAR1EM2ml7e_J72RnrBhY7mxIhmS9Yc2ayxCxZIcExADWA0Uoxr60eGvixbrBo2RdwPma5KRsjGD2tGAk3CEZtOhqz0qXoE9nwMtxc__4zGUeBXiIxUahllqbVx4jDgEQVGQRZDi4IXsXJozvAFxV4D3XfaZAPnjHBxpmXMTUrJ_0m_tOITbFd1Zb8Ak4XQ2hmjnEikxJCuSI3mQmqeOGG46QBvJzY3AXycODAe8jbL7D6nT8xpMXK_GB34_tJm7qE3Nkqrdr3yvxQoR9uwsd3XdnFz_LPoukRXtl6hkEzR3RtgCLJBRiUEAIca2IHPXjNexkrVbBl2cfLOkZ3CHj3R1RVXZ7C9fFzZc_SAlkW3UfEu7Awvr8eTZ0WzAw0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB2Vogo4IFpoCVAwUm9oSRzb-3GMIqoU2qhKW6k3y-u1pVTVbtQmh1z47cysvQUkyKFX79jy2mPPjD1-D-CoqvIC1cIlUlQqkRbDHUIxT6x1aO2lNHnLQ3Y2TSdX8vu1ut6CcfcWhtIq494f9vR2t44l_Tia_cV83r8gCD10RugRChla-QSeSly-RGPw9efvPI-Mh4MWAtwj8fhyJiR5lfOGMLuHnLhNBkQt82_r9D_vs7VCx6_gZXQf2Sj0cBe2XL0HO4FQcr0HL_6AF3wNzYiNZycX57P-2NxzYZIFUaK5irVnNmtsgkUWHBthAxj1FAPb5o6hM8vuVy2dIm6IzNQVI2jj2zUjgTbjiM2mI1aFXD1Ce34DV8ffLseTJBIsJFYqtUyK3Lk08xjxiBLDIIexRcnLVHm0Z1hAwdfQDLyxxdB7K3xaGJlym1P2fzaonNiH7bqp3VtgshTGeGuVF5mUGNOVuTVcSMMzLyy3PeDdwGob0ceJBONWd2lmN5p-UdNk6DAZPfjyUGcRsDc2SqtuvvRfGqTROGys97mbXI1Li-5LTO2aFQrJHP29IcYgG2RURghwqII9OAia8dBXes5WYBPvHtmzT_Bscnl2qk9Ppj_ew3P6QvdYXH2A7eXdyh2iO7QsP7bq_gse5gSb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CRISPR%2FCas13a-powered+catalytic+electrochemical+biosensor+for+successive+and+highly+sensitive+RNA+diagnostics&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Sheng%2C+Yan&rft.au=Zhang%2C+Tenghua&rft.au=Zhang%2C+Shihong&rft.au=Johnston%2C+Midori&rft.date=2021-04-15&rft.pub=Elsevier+B.V&rft.issn=0956-5663&rft.eissn=1873-4235&rft.volume=178&rft_id=info:doi/10.1016%2Fj.bios.2021.113027&rft.externalDocID=S0956566321000634 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |