Superradiance and stability of the regularized 4D charged Einstein-Gauss-Bonnet black hole

A bstract We investigated the superradiance and stability of the regularized 4D charged Einstein-Gauss-Bonnet black hole which is recently inspired by Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)]. We found that the positive Gauss-Bonnet coupling constant α enhances the superradiance, while t...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 8; pp. 1 - 19
Main Authors Zhang, Cheng-Yong, Zhang, Shao-Jun, Li, Peng-Cheng, Guo, Minyong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2020
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We investigated the superradiance and stability of the regularized 4D charged Einstein-Gauss-Bonnet black hole which is recently inspired by Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)]. We found that the positive Gauss-Bonnet coupling constant α enhances the superradiance, while the negative α suppresses it. The condition for superradiant instability is proved. We also worked out the quasinormal modes (QNMs) of the charged Einstein-Gauss-Bonnet black hole and found that the real part of all the QNMs does not satisfy the superradiance condition and the imaginary parts are all negative. Therefore this black hole is stable. When α makes the black hole extremal, there are normal modes.
AbstractList A bstract We investigated the superradiance and stability of the regularized 4D charged Einstein-Gauss-Bonnet black hole which is recently inspired by Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)]. We found that the positive Gauss-Bonnet coupling constant α enhances the superradiance, while the negative α suppresses it. The condition for superradiant instability is proved. We also worked out the quasinormal modes (QNMs) of the charged Einstein-Gauss-Bonnet black hole and found that the real part of all the QNMs does not satisfy the superradiance condition and the imaginary parts are all negative. Therefore this black hole is stable. When α makes the black hole extremal, there are normal modes.
We investigated the superradiance and stability of the regularized 4D charged Einstein-Gauss-Bonnet black hole which is recently inspired by Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)]. We found that the positive Gauss-Bonnet coupling constant α enhances the superradiance, while the negative α suppresses it. The condition for superradiant instability is proved. We also worked out the quasinormal modes (QNMs) of the charged Einstein-Gauss-Bonnet black hole and found that the real part of all the QNMs does not satisfy the superradiance condition and the imaginary parts are all negative. Therefore this black hole is stable. When α makes the black hole extremal, there are normal modes.
Abstract We investigated the superradiance and stability of the regularized 4D charged Einstein-Gauss-Bonnet black hole which is recently inspired by Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)]. We found that the positive Gauss-Bonnet coupling constant α enhances the superradiance, while the negative α suppresses it. The condition for superradiant instability is proved. We also worked out the quasinormal modes (QNMs) of the charged Einstein-Gauss-Bonnet black hole and found that the real part of all the QNMs does not satisfy the superradiance condition and the imaginary parts are all negative. Therefore this black hole is stable. When α makes the black hole extremal, there are normal modes.
ArticleNumber 105
Author Zhang, Cheng-Yong
Guo, Minyong
Zhang, Shao-Jun
Li, Peng-Cheng
Author_xml – sequence: 1
  givenname: Cheng-Yong
  surname: Zhang
  fullname: Zhang, Cheng-Yong
  organization: Department of Physics and Siyuan Laboratory, Jinan University
– sequence: 2
  givenname: Shao-Jun
  surname: Zhang
  fullname: Zhang, Shao-Jun
  organization: Institute for Theoretical Physics and Cosmology, Zhejiang University of Technology, United Center for Gravitational Wave Physics, Zhejiang University of Technology
– sequence: 3
  givenname: Peng-Cheng
  surname: Li
  fullname: Li, Peng-Cheng
  organization: Center for High Energy Physics, Peking University, Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University
– sequence: 4
  givenname: Minyong
  surname: Guo
  fullname: Guo, Minyong
  email: minyongguo@pku.edu.cn
  organization: Center for High Energy Physics, Peking University
BookMark eNp9kDtvFDEUhS2USORBTesSiiH2jB8zJYTNS5GIFGhorDt3rne9DHZke4vw65mwCEVIUN2jK33nSN8xO4gpEmOvpXgnhbBnN1erO9G_aUUr3kqhX7AjKdqh6ZUdDp7ll-y4lK0QUstBHLGv97sHyhmmABGJQ5x4qTCGOdRHnjyvG-KZ1rsZcvhBE1cfOW4gr5e4CrFUCrG5hF0pzYcUI1U-zoDf-CbNdMoOPcyFXv2-J-zLxerz-VVz--ny-vz9bYNK69oM_agQtO9Adoi6s9aisUNnjdcSjWjR0Ah-QCUN2Ak71IrISJQweeV9d8Ku971Tgq17yOE75EeXILhfj5TXDnINOJOTbWuNski9J-XHvh-XnXZQI_aTEWZcus72XZhTKZn8nz4p3JNmt9fsnjQvD70Q-i8CQ4UaUqwZwvwfTuy5sizENWW3TbscF1H_RH4CWJCS4g
CitedBy_id crossref_primary_10_1016_j_aop_2021_168449
crossref_primary_10_1016_j_dark_2021_100877
crossref_primary_10_1140_epjc_s10052_022_10873_1
crossref_primary_10_1140_epjc_s10052_022_10307_y
crossref_primary_10_1140_epjc_s10052_020_08511_9
crossref_primary_10_1140_epjc_s10052_021_09400_5
crossref_primary_10_3390_universe8030182
crossref_primary_10_1016_j_dark_2021_100798
crossref_primary_10_1140_epjp_s13360_023_04853_x
crossref_primary_10_1088_1475_7516_2021_04_008
crossref_primary_10_1007_s11433_023_2231_5
crossref_primary_10_1140_epjc_s10052_022_10075_9
crossref_primary_10_1103_PhysRevLett_131_111601
crossref_primary_10_1016_j_nuclphysb_2024_116753
crossref_primary_10_1103_PhysRevD_107_084016
crossref_primary_10_1140_epjc_s10052_022_10766_3
crossref_primary_10_1140_epjp_s13360_021_02333_8
crossref_primary_10_1007_s10773_023_05440_7
crossref_primary_10_1103_PhysRevD_103_064002
crossref_primary_10_1103_PhysRevD_105_083002
crossref_primary_10_1088_1361_6382_acfa5c
crossref_primary_10_1016_j_dark_2020_100769
crossref_primary_10_1016_j_dark_2023_101238
crossref_primary_10_1088_1475_7516_2020_09_014
crossref_primary_10_1103_PhysRevD_104_044029
crossref_primary_10_1007_s40065_022_00369_x
crossref_primary_10_1103_PhysRevD_110_043504
crossref_primary_10_1103_PhysRevD_102_084005
crossref_primary_10_1140_epjc_s10052_023_11800_8
crossref_primary_10_1140_epjc_s10052_021_09585_9
crossref_primary_10_1103_PhysRevD_106_084047
crossref_primary_10_1140_epjc_s10052_021_09140_6
crossref_primary_10_3390_universe8100549
crossref_primary_10_1140_epjc_s10052_022_10123_4
crossref_primary_10_3390_sym13020204
crossref_primary_10_1140_epjc_s10052_022_11024_2
crossref_primary_10_1140_epjp_s13360_024_05524_1
crossref_primary_10_1007_s11433_024_2607_1
crossref_primary_10_1016_j_cjph_2023_04_016
crossref_primary_10_1016_j_dark_2022_101100
crossref_primary_10_1088_1572_9494_ad9c41
crossref_primary_10_1088_1674_1137_abd01d
crossref_primary_10_3390_universe7070249
crossref_primary_10_1140_epjc_s10052_021_09510_0
crossref_primary_10_3847_1538_4357_abc87f
crossref_primary_10_1088_1475_7516_2021_08_045
crossref_primary_10_1209_0295_5075_133_69001
crossref_primary_10_1140_epjc_s10052_021_09266_7
crossref_primary_10_1142_S0219887824500117
crossref_primary_10_1016_j_dark_2024_101757
crossref_primary_10_1088_1674_1137_abcd2d
crossref_primary_10_3847_1538_4357_abd094
crossref_primary_10_1002_andp_202100308
crossref_primary_10_3390_sym14030545
crossref_primary_10_1007_s11433_023_2357_4
crossref_primary_10_1103_PhysRevD_103_064051
crossref_primary_10_3390_sym13060944
Cites_doi 10.1103/PhysRevLett.124.081301
10.1016/j.nuclphysb.2015.07.030
10.1140/epjc/s10052-020-8164-7
10.1103/PhysRevD.84.104021
10.1007/JHEP09(2013)101
10.1088/0264-9381/27/15/155004
10.1103/PhysRevD.7.949
10.1088/1475-7516/2020/07/013
10.1142/S0218271820500650
10.1016/j.physleta.2005.04.030
10.1007/JHEP04(2010)082
10.1007/s10714-013-1598-6
10.1103/PhysRevD.88.063003
10.1103/PhysRevD.99.024030
10.1103/PhysRevD.88.104017
10.1103/PhysRevLett.116.141101
10.1016/j.physletb.2020.135658
10.1088/1475-7516/2018/12/021
10.1016/j.dark.2020.100687
10.1103/PhysRevD.72.104016
10.1103/PhysRevD.97.044013
10.1016/j.physletb.2012.06.043
10.1088/0264-9381/32/14/145013
10.1016/j.physrep.2012.01.001
10.3390/universe6080103
10.1140/epjc/s10052-018-5800-6
10.1103/PhysRevD.88.024006
10.1103/PhysRevD.61.024014
10.1088/1361-6382/aa7d1f
10.1016/j.physletb.2020.135468
10.1038/238211a0
10.1103/PhysRevD.101.084038
10.1016/j.dark.2020.100697
10.1103/PhysRevD.94.024035
10.1103/PhysRevD.90.044042
10.1103/PhysRevD.90.064048
10.1088/0305-4470/36/47/008
10.4310/ATMP.2010.v14.n3.a1
10.1007/978-3-319-19000-6
10.1103/PhysRevD.90.064004
10.1103/PhysRevD.89.063005
10.1103/PhysRevD.84.024048
10.1088/1572-9494/aba242
10.1209/0295-5075/130/10004
10.1088/1475-7516/2020/07/053
10.1103/PhysRevD.101.104018
10.1103/RevModPhys.83.793
10.1007/JHEP08(2014)011
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/JHEP08(2020)105
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 19
ExternalDocumentID oai_doaj_org_article_1227647ce8fe4fb88b937294bc8d606b
10_1007_JHEP08_2020_105
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
PQGLB
PUEGO
ID FETCH-LOGICAL-c455t-98b4ca5f3a13cc53777c679376f51c602c6ebaf9c416a7dc3c54ee61c1adf4ff3
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Wed Aug 27 01:31:50 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Tue Jul 01 03:55:35 EDT 2025
Fri Feb 21 02:31:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Black Holes
Models of Quantum Gravity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-98b4ca5f3a13cc53777c679376f51c602c6ebaf9c416a7dc3c54ee61c1adf4ff3
OpenAccessLink https://doaj.org/article/1227647ce8fe4fb88b937294bc8d606b
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_1227647ce8fe4fb88b937294bc8d606b
crossref_primary_10_1007_JHEP08_2020_105
crossref_citationtrail_10_1007_JHEP08_2020_105
springer_journals_10_1007_JHEP08_2020_105
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: SpringerOpen
References D.D. Doneva and S.S. Yazadjiev, Relativistic stars in 4D Einstein-Gauss-Bonnet gravity, arXiv:2003.10284 [INSPIRE].
CognolaGMyrzakulovRSebastianiLZerbiniSEinstein gravity with Gauss-Bonnet entropic correctionsPhys. Rev. D2013880240062013PhRvD..88b4006C[arXiv:1304.1878] [INSPIRE]
MyungYSInstability of rotating black hole in a limited form of f (R) gravityPhys. Rev. D2011840240482011PhRvD..84b4048M[arXiv:1104.3180] [INSPIRE]
M. Heydari-Fard, M. Heydari-Fard and H.R. Sepangi, Bending of light in novel 4D Gauss-Bonnet-de Sitter black holes by Rindler-Ishak method, arXiv:2004.02140 [INSPIRE].
PressWHTeukolskySAFloating Orbits, Superradiant Scattering and the Black-hole BombNature19722382111972Natur.238..211P[INSPIRE]
Z. Zhu, S.-J. Zhang, C.E. Pellicer, B. Wang and E. Abdalla, Stability of Reissner-Nordström black hole in de Sitter background under charged scalar perturbation, Phys. Rev. D90 (2014) 044042 [Addendum ibid.90 (2014) 049904] [arXiv:1405.4931] [INSPIRE].
ZhangC-YLiP-CChenBGreybody factors for a spherically symmetric Einstein-Gauss-Bonnet-de Sitter black holePhys. Rev. D2018970440132018PhRvD..97d4013Z[arXiv:1712.00620] [INSPIRE]
LiP-CZhangC-YHawking radiation for scalar fields by Einstein-Gauss-Bonnet-de Sitter black holesPhys. Rev. D2019990240302019PhRvD..99b4030L3981497[arXiv:1901.05749] [INSPIRE]
GuoMLiP-CInnermost stable circular orbit and shadow of the 4D Einstein-Gauss-Bonnet black holeEur. Phys. J. C2020805882020EPJC...80..588G[arXiv:2003.02523] [INSPIRE]
A. Casalino, A. Colleaux, M. Rinaldi and S. Vicentini, Regularized Lovelock gravity, arXiv:2003.07068 [INSPIRE].
Sanchis-GualNDegolladoJCFontJAHerdeiroCRaduEDynamical formation of a hairy black hole in a cavity from the decay of unstable solitonsClass. Quant. Grav.2017341650012017CQGra..34p5001S36823631371.83114[arXiv:1611.02441] [INSPIRE]
S.-W. Wei and Y.-X. Liu, Testing the nature of Gauss-Bonnet gravity by four-dimensional rotating black hole shadow, arXiv:2003.07769 [INSPIRE].
KonoplyaRAZhidenkoA(In)stability of black holes in the 4D Einstein-Gauss-Bonnet and Einstein-Lovelock gravitiesPhys. Dark Univ.202030100697[arXiv:2003.12492] [INSPIRE]
AiW-YA note on the novel 4D Einstein-Gauss-Bonnet gravityCommun. Theor. Phys.2020720954022020CoTPh..72i5402A4140893[arXiv:2004.02858] [INSPIRE]
R.A. Konoplya and A.F. Zinhailo, Quasinormal modes, stability and shadows of a black hole in the novel 4D Einstein-Gauss-Bonnet gravity, arXiv:2003.01188 [INSPIRE].
A.A. Starobinsky, Amplification of waves reflected from a rotating “black hole”, Sov. Phys. JETP37 (1973) 28 Zh. Eksp. Teor. Fiz.64 (1973) 48 [INSPIRE].
R.A. Konoplya and A.F. Zinhailo, Grey-body factors and Hawking radiation of black holes in 4D Einstein-Gauss-Bonnet gravity, arXiv:2004.02248 [INSPIRE].
PappasTKantiPPappasNHawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black holePhys. Rev. D2016940240352016PhRvD..94b4035P3663265[arXiv:1604.08617] [INSPIRE]
SinghDVSiwachSThermodynamics and P-v criticality of Bardeen-AdS Black Hole in 4-D Einstein-Gauss-Bonnet GravityPhys. Lett. B20208081356584131898[arXiv:2003.11754] [INSPIRE]
R.A. Konoplya and A. Zhidenko, BTZ black holes with higher curvature corrections in the 3D Einstein-Lovelock theory, arXiv:2003.12171 [INSPIRE].
M. Khodadi, A. Talebian and H. Firouzjahi, Black Hole Superradiance in f(R) Gravities, arXiv:2002.10496 [INSPIRE].
S.U. Islam, R. Kumar and S.G. Ghosh, Gravitational lensing by black holes in 4D Einstein-Gauss-Bonnet gravity, arXiv:2004.01038 [INSPIRE].
D.V. Singh, S.G. Ghosh and S.D. Maharaj, Clouds of string in the novel 4D Einstein-Gauss-Bonnet black holes, arXiv:2003.14136 [INSPIRE].
AhmedJSaifullahKGreybody factor of a scalar field from Reissner-Nordström-de Sitter black holeEur. Phys. J. C2018783162018EPJC...78..316A[arXiv:1610.06104] [INSPIRE]
ZhangY-PWeiS-WLiuY-XSpinning test particle in four-dimensional Einstein-Gauss-Bonnet Black HoleUniverse202061032020Univ....6..103Z[arXiv:2003.10960] [INSPIRE]
P. Liu, C. Niu and C.-Y. Zhang, Instability of the novel 4D charged Einstein-Gauss-Bonnet de-Sitter black hole, arXiv:2004.10620 [INSPIRE].
S.W. Hawking and H.S. Reall, Charged and rotating AdS black holes and their CFT duals, Phys. Rev. D61 (2000) 024014 [hep-th/9908109] [INSPIRE].
WeiS-WLiuY-XExtended thermodynamics and microstructures of four-dimensional charged Gauss-Bonnet black hole in AdS spacePhys. Rev. D20201011040182020PhRvD.101j4018W4111456[arXiv:2003.14275] [INSPIRE]
GhoshSGMaharajSDRadiating black holes in the novel 4D Einstein-Gauss-Bonnet gravityPhys. Dark Univ.202030100687[arXiv:2003.09841] [INSPIRE]
H. Ciftci, R.L. Hall and N. Saad, Perturbation theory in a framework of iteration methods, Phys. Lett. A340 (2005) 388 [math-ph/0504056] [INSPIRE].
Di MenzaLNicolasJ-PSuperradiance on the Reissner-Nordstrøm metricClass. Quant. Grav.2015321450132015CQGra..32n5013D1327.83148[arXiv:1411.3988] [INSPIRE]
ZhangC-YZhangS-JWangBCharged scalar perturbations around Garfinkle-Horowitz-Strominger black holesNucl. Phys. B2015899372015NuPhB.899...37Z33989051331.83055[arXiv:1501.03260] [INSPIRE]
ChoHTCornellASDoukasJNaylorWBlack hole quasinormal modes using the asymptotic iteration methodClass. Quant. Grav.2010271550042010CQGra..27o5004C26592391197.83065[arXiv:0912.2740] [INSPIRE]
CaiR-GCaoL-MOhtaNBlack Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole EntropyJHEP2010040822010JHEP...04..082C26730731272.83042[arXiv:0911.4379] [INSPIRE]
Y. Tomozawa, Quantum corrections to gravity, arXiv:1107.1424 [INSPIRE].
MyungYSInstability of a Kerr black hole in f (R) gravityPhys. Rev. D2013881040172013PhRvD..88j4017M[arXiv:1309.3346] [INSPIRE]
PenroseRFloydRMExtraction of rotational energy from a black holeNature19712291771971Natur.229..177P[INSPIRE]
BekensteinJDExtraction of energy and charge from a black holePhys. Rev. D197379491973PhRvD...7..949B366343[INSPIRE]
GlavanDLinCEinstein-Gauss-Bonnet Gravity in Four-Dimensional SpacetimePhys. Rev. Lett.20201240813012020PhRvL.124h1301G4071777[arXiv:1905.03601] [INSPIRE]
KonoplyaRAZhidenkoABlack holes in the four-dimensional Einstein-Lovelock gravityPhys. Rev. D20201010840382020PhRvD.101h4038K4103132[arXiv:2003.07788] [INSPIRE]
ChoHTCornellASDoukasJHuangTRNaylorWA New Approach to Black Hole Quasinormal Modes: A Review of the Asymptotic Iteration MethodAdv. Math. Phys.2012201228170529286711251.83030[arXiv:1111.5024] [INSPIRE]
HerdeiroCARDegolladoJCRúnarssonHFRapid growth of superradiant instabilities for charged black holes in a cavityPhys. Rev. D2013880630032013PhRvD..88f3003D[arXiv:1305.5513] [INSPIRE]
ZhangC-YZhangS-JWangBSuperradiant instability of Kerr-de Sitter black holes in scalar-tensor theoryJHEP2014080112014JHEP...08..011Z32566471333.83116[arXiv:1405.3811] [INSPIRE]
GrainJBarrauAKantiPExact results for evaporating black holes in curvature-squared lovelock gravity: Gauss-Bonnet greybody factorsPhys. Rev. D2005721040162005PhRvD..72j4016G2188192[hep-th/0509128] [INSPIRE]
H. Lü and Y. Pang, Horndeski Gravity as D → 4 Limit of Gauss-Bonnet, arXiv:2003.11552 [INSPIRE].
S.G. Ghosh and R. Kumar, Generating black holes in the novel 4D Einstein-Gauss-Bonnet gravity, arXiv:2003.12291 [INSPIRE].
RichartzMSaaAChallenging the weak cosmic censorship conjecture with charged quantum particlesPhys. Rev. D2011841040212011PhRvD..84j4021R[arXiv:1109.3364] [INSPIRE]
DegolladoJCHerdeiroCARTime evolution of superradiant instabilities for charged black holes in a cavityPhys. Rev. D2014890630052014PhRvD..89f3005D[arXiv:1312.4579] [INSPIRE]
C.-Y. Zhang, P.-C. Li and M. Guo, Greybody factor and power spectra of the Hawking radiation in the novel 4D Einstein-Gauss-Bonnet de-Sitter gravity, arXiv:2003.13068 [INSPIRE].
DegolladoJCHerdeiroCARStationary scalar configurations around extremal charged black holesGen. Rel. Grav.20134524832013GReGr..45.2483D31249591283.83024[arXiv:1303.2392] [INSPIRE]
A.K. Mishra, Quasinormal modes and Strong Cosmic Censorship in the novel 4D Einstein-Gauss-Bonnet gravity, arXiv:2004.01243 [INSPIRE].
NojiriSOdintsovSDNovel cosmological and black hole solutions in Einstein and higher-derivative gravity in two dimensionsEPL2020130100042020EL....13010004N[arXiv:2004.01404] [INSPIRE]
K. Aoki, M.A. Gorji and S. Mukohyama, Cosmology and gravitational waves in consistent D → 4 Einstein-Gauss-Bonnet gravity, arXiv:2005.08428 [INSPIRE].
K. Hegde, A. Naveena Kumara, C.L.A. Rizwan, A.K.M. and M.S. Ali, Thermodynamics, Phase Transition and Joule Thomson Expansion of novel 4-D Gauss Bonnet AdS Black Hole, arXiv:2003.08778 [INSPIRE].
S.-L. Li, P. Wu and H. Yu, Stability of the Einstein Static Universe in 4D Gauss-Bonnet Gravity, arXiv:2004.02080 [INSPIRE].
JinX-HGaoY-XLiuD-JStrong gravitational lensing of a 4-dimensional Einstein-Gauss-Bonnet black hole in homogeneous plasmaInt. J. Mod. Phys. D20202920500652020IJMPD..2950065J4130262[arXiv:2004.02261] [INSPIRE]
A. Kumar and R. Kumar, Bardeen black holes in the novel 4D Einstein-Gauss-Bonnet gravity, arXiv:2003.13104 [INSPIRE].
KonoplyaRAZhidenkoACharged scalar field instability between the event and cosmological horizonsPhys. Rev. D2014900640482014PhRvD..90f4048K[arXiv:1406.0019] [INSPIRE]
FernandesPGSCharged Black Holes in AdS Spaces in 4D Einstein Gauss-Bonnet GravityPhys. Lett. B202080513546840973031436.83060[arXiv:2003.05491] [INSPIRE]
KobayashiTEffective scalar-tensor description of regularized Lovelock gravity in four dimensionsJCAP2020070132020JCAP...07..013K[arXiv:2003.12771] [INSPIRE]
A. Kumar and S.G. Ghosh, Hayward black holes in the novel 4D Einstein-Gauss-Bonnet gravity, arXiv:2004.01131 [INSPIRE].
ZhangS-JPanQWangBAbdallaEHorizon instability of massless scalar perturbations of an extreme Reissner-Nordström-AdS black holeJHEP2013091012013JHEP...09..101Z1342.83214[arXiv:1308.0635] [INSPIRE]
CliftonTFerreiraPGPadillaASkordisCModified Gravity and CosmologyPhys. Rept.201251312012PhR...513....1C2900619[arXiv:1106.2476] [INSPIRE]
C. Liu, T. Zhu and Q. Wu, Thin Accretion Disk around a four-dimensional Einstein-Gauss-Bonnet Black Hole, arXiv:2004.01662 [I
RA Konoplya (13636_CR64) 2011; 83
S-J Zhang (13636_CR69) 2013; 09
YS Myung (13636_CR10) 2011; 84
C-Y Zhang (13636_CR60) 2018; 97
L Di Menza (13636_CR8) 2015; 32
C-Y Zhang (13636_CR13) 2015; 899
MOP Sampaio (13636_CR68) 2014; 90
13636_CR7
13636_CR38
13636_CR37
13636_CR78
13636_CR35
13636_CR79
C-Y Zhang (13636_CR12) 2014; 08
13636_CR32
13636_CR76
13636_CR30
J Grain (13636_CR62) 2005; 72
CAR Herdeiro (13636_CR72) 2013; 88
HT Cho (13636_CR56) 2010; 27
JD Bekenstein (13636_CR5) 1973; 7
T Harmark (13636_CR63) 2010; 14
DV Singh (13636_CR36) 2020; 808
S Hod (13636_CR71) 2012; 713
T Kobayashi (13636_CR31) 2020; 07
W-Y Ai (13636_CR53) 2020; 72
13636_CR6
13636_CR3
G Cognola (13636_CR20) 2013; 88
YB Zel (13636_CR2) 1972; 35
13636_CR49
T Clifton (13636_CR16) 2012; 513
13636_CR48
13636_CR45
WH Press (13636_CR4) 1972; 238
13636_CR46
M Richartz (13636_CR9) 2011; 84
13636_CR43
13636_CR44
13636_CR41
S Hod (13636_CR70) 2012; 713
13636_CR42
R Kumar (13636_CR39) 2020; 20
N Sanchis-Gual (13636_CR74) 2016; 116
YS Myung (13636_CR11) 2013; 88
S-W Wei (13636_CR34) 2020; 101
D Glavan (13636_CR17) 2020; 124
Y-P Zhang (13636_CR33) 2020; 6
13636_CR19
13636_CR14
13636_CR15
13636_CR54
13636_CR55
RA Konoplya (13636_CR77) 2014; 90
RA Konoplya (13636_CR22) 2020; 101
M Guo (13636_CR26) 2020; 80
13636_CR50
13636_CR51
T Pappas (13636_CR58) 2016; 94
JC Degollado (13636_CR73) 2014; 89
HT Cho (13636_CR57) 2012; 2012
P-C Li (13636_CR61) 2019; 99
J Ahmed (13636_CR59) 2018; 78
N Sanchis-Gual (13636_CR75) 2017; 34
13636_CR29
13636_CR27
R Penrose (13636_CR1) 1971; 229
JC Degollado (13636_CR67) 2013; 45
13636_CR25
13636_CR23
X-H Jin (13636_CR52) 2020; 29
SG Ghosh (13636_CR40) 2020; 30
13636_CR21
S Nojiri (13636_CR47) 2020; 130
13636_CR65
13636_CR66
RA Konoplya (13636_CR24) 2020; 30
R-G Cai (13636_CR18) 2010; 04
PGS Fernandes (13636_CR28) 2020; 805
References_xml – reference: AiW-YA note on the novel 4D Einstein-Gauss-Bonnet gravityCommun. Theor. Phys.2020720954022020CoTPh..72i5402A4140893[arXiv:2004.02858] [INSPIRE]
– reference: A. Casalino, A. Colleaux, M. Rinaldi and S. Vicentini, Regularized Lovelock gravity, arXiv:2003.07068 [INSPIRE].
– reference: ChoHTCornellASDoukasJHuangTRNaylorWA New Approach to Black Hole Quasinormal Modes: A Review of the Asymptotic Iteration MethodAdv. Math. Phys.2012201228170529286711251.83030[arXiv:1111.5024] [INSPIRE]
– reference: MyungYSInstability of rotating black hole in a limited form of f (R) gravityPhys. Rev. D2011840240482011PhRvD..84b4048M[arXiv:1104.3180] [INSPIRE]
– reference: Sanchis-GualNDegolladoJCFontJAHerdeiroCRaduEDynamical formation of a hairy black hole in a cavity from the decay of unstable solitonsClass. Quant. Grav.2017341650012017CQGra..34p5001S36823631371.83114[arXiv:1611.02441] [INSPIRE]
– reference: R.A. Konoplya and A.F. Zinhailo, Grey-body factors and Hawking radiation of black holes in 4D Einstein-Gauss-Bonnet gravity, arXiv:2004.02248 [INSPIRE].
– reference: LiP-CZhangC-YHawking radiation for scalar fields by Einstein-Gauss-Bonnet-de Sitter black holesPhys. Rev. D2019990240302019PhRvD..99b4030L3981497[arXiv:1901.05749] [INSPIRE]
– reference: GrainJBarrauAKantiPExact results for evaporating black holes in curvature-squared lovelock gravity: Gauss-Bonnet greybody factorsPhys. Rev. D2005721040162005PhRvD..72j4016G2188192[hep-th/0509128] [INSPIRE]
– reference: S.G. Ghosh and R. Kumar, Generating black holes in the novel 4D Einstein-Gauss-Bonnet gravity, arXiv:2003.12291 [INSPIRE].
– reference: ZhangC-YLiP-CChenBGreybody factors for a spherically symmetric Einstein-Gauss-Bonnet-de Sitter black holePhys. Rev. D2018970440132018PhRvD..97d4013Z[arXiv:1712.00620] [INSPIRE]
– reference: A.A. Starobinsky, Amplification of waves reflected from a rotating “black hole”, Sov. Phys. JETP37 (1973) 28 Zh. Eksp. Teor. Fiz.64 (1973) 48 [INSPIRE].
– reference: Z. Zhu, S.-J. Zhang, C.E. Pellicer, B. Wang and E. Abdalla, Stability of Reissner-Nordström black hole in de Sitter background under charged scalar perturbation, Phys. Rev. D90 (2014) 044042 [Addendum ibid.90 (2014) 049904] [arXiv:1405.4931] [INSPIRE].
– reference: A. Kumar and R. Kumar, Bardeen black holes in the novel 4D Einstein-Gauss-Bonnet gravity, arXiv:2003.13104 [INSPIRE].
– reference: KonoplyaRAZhidenkoAQuasinormal modes of black holes: From astrophysics to string theoryRev. Mod. Phys.2011837932011RvMP...83..793K[arXiv:1102.4014] [INSPIRE]
– reference: ZhangS-JPanQWangBAbdallaEHorizon instability of massless scalar perturbations of an extreme Reissner-Nordström-AdS black holeJHEP2013091012013JHEP...09..101Z1342.83214[arXiv:1308.0635] [INSPIRE]
– reference: K. Aoki, M.A. Gorji and S. Mukohyama, Cosmology and gravitational waves in consistent D → 4 Einstein-Gauss-Bonnet gravity, arXiv:2005.08428 [INSPIRE].
– reference: C. Liu, T. Zhu and Q. Wu, Thin Accretion Disk around a four-dimensional Einstein-Gauss-Bonnet Black Hole, arXiv:2004.01662 [INSPIRE].
– reference: KumarRGhoshSGRotating black holes in 4D Einstein-Gauss-Bonnet gravity and its shadowJCAP202020053[arXiv:2003.08927] [INSPIRE]
– reference: S.W. Hawking and H.S. Reall, Charged and rotating AdS black holes and their CFT duals, Phys. Rev. D61 (2000) 024014 [hep-th/9908109] [INSPIRE].
– reference: MyungYSInstability of a Kerr black hole in f (R) gravityPhys. Rev. D2013881040172013PhRvD..88j4017M[arXiv:1309.3346] [INSPIRE]
– reference: KobayashiTEffective scalar-tensor description of regularized Lovelock gravity in four dimensionsJCAP2020070132020JCAP...07..013K[arXiv:2003.12771] [INSPIRE]
– reference: M.F. Wondrak, P. Nicolini and J.W. Moffat, Superradiance in Modified Gravity (MOG), JCAP12 (2018) 021 [arXiv:1809.07509] [INSPIRE].
– reference: ChoHTCornellASDoukasJNaylorWBlack hole quasinormal modes using the asymptotic iteration methodClass. Quant. Grav.2010271550042010CQGra..27o5004C26592391197.83065[arXiv:0912.2740] [INSPIRE]
– reference: R. Brito, V. Cardoso and P. Pani, Superradiance: Energy Extraction, Black-Hole Bombs and Implications for Astrophysics and Particle Physics, vol. 906, Springer (2015), DOI [arXiv:1501.06570] [INSPIRE].
– reference: KonoplyaRAZhidenkoABlack holes in the four-dimensional Einstein-Lovelock gravityPhys. Rev. D20201010840382020PhRvD.101h4038K4103132[arXiv:2003.07788] [INSPIRE]
– reference: GhoshSGMaharajSDRadiating black holes in the novel 4D Einstein-Gauss-Bonnet gravityPhys. Dark Univ.202030100687[arXiv:2003.09841] [INSPIRE]
– reference: AhmedJSaifullahKGreybody factor of a scalar field from Reissner-Nordström-de Sitter black holeEur. Phys. J. C2018783162018EPJC...78..316A[arXiv:1610.06104] [INSPIRE]
– reference: GlavanDLinCEinstein-Gauss-Bonnet Gravity in Four-Dimensional SpacetimePhys. Rev. Lett.20201240813012020PhRvL.124h1301G4071777[arXiv:1905.03601] [INSPIRE]
– reference: GuoMLiP-CInnermost stable circular orbit and shadow of the 4D Einstein-Gauss-Bonnet black holeEur. Phys. J. C2020805882020EPJC...80..588G[arXiv:2003.02523] [INSPIRE]
– reference: S.U. Islam, R. Kumar and S.G. Ghosh, Gravitational lensing by black holes in 4D Einstein-Gauss-Bonnet gravity, arXiv:2004.01038 [INSPIRE].
– reference: R.L.H.H. Ciftci and N. Saad, Asymptotic iteration method for eigenvalue problems, J. Phys. A36 (2003) 11807 [math-ph/0309066].
– reference: ZhangY-PWeiS-WLiuY-XSpinning test particle in four-dimensional Einstein-Gauss-Bonnet Black HoleUniverse202061032020Univ....6..103Z[arXiv:2003.10960] [INSPIRE]
– reference: K. Aoki, M.A. Gorji and S. Mukohyama, A consistent theory of D → 4 Einstein-Gauss-Bonnet gravity, arXiv:2005.03859 [INSPIRE].
– reference: Y. Tomozawa, Quantum corrections to gravity, arXiv:1107.1424 [INSPIRE].
– reference: HerdeiroCARDegolladoJCRúnarssonHFRapid growth of superradiant instabilities for charged black holes in a cavityPhys. Rev. D2013880630032013PhRvD..88f3003D[arXiv:1305.5513] [INSPIRE]
– reference: PenroseRFloydRMExtraction of rotational energy from a black holeNature19712291771971Natur.229..177P[INSPIRE]
– reference: D.V. Singh, S.G. Ghosh and S.D. Maharaj, Clouds of string in the novel 4D Einstein-Gauss-Bonnet black holes, arXiv:2003.14136 [INSPIRE].
– reference: M.S. Churilova, Quasinormal modes of the Dirac field in the novel 4D Einstein-Gauss-Bonnet gravity, arXiv:2004.00513 [INSPIRE].
– reference: CliftonTFerreiraPGPadillaASkordisCModified Gravity and CosmologyPhys. Rept.201251312012PhR...513....1C2900619[arXiv:1106.2476] [INSPIRE]
– reference: PressWHTeukolskySAFloating Orbits, Superradiant Scattering and the Black-hole BombNature19722382111972Natur.238..211P[INSPIRE]
– reference: K. Hegde, A. Naveena Kumara, C.L.A. Rizwan, A.K.M. and M.S. Ali, Thermodynamics, Phase Transition and Joule Thomson Expansion of novel 4-D Gauss Bonnet AdS Black Hole, arXiv:2003.08778 [INSPIRE].
– reference: PappasTKantiPPappasNHawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black holePhys. Rev. D2016940240352016PhRvD..94b4035P3663265[arXiv:1604.08617] [INSPIRE]
– reference: P. Liu, C. Niu and C.-Y. Zhang, Instability of the novel 4D charged Einstein-Gauss-Bonnet de-Sitter black hole, arXiv:2004.10620 [INSPIRE].
– reference: ZelYBdovich, Amplification of Cylindrical Electromagnetic Waves Reflected from a Rotating BodySov. Phys. JETP19723510851972JETP...35.1085Z
– reference: M. Heydari-Fard, M. Heydari-Fard and H.R. Sepangi, Bending of light in novel 4D Gauss-Bonnet-de Sitter black holes by Rindler-Ishak method, arXiv:2004.02140 [INSPIRE].
– reference: Sanchis-GualNDegolladoJCMonteroPJFontJAHerdeiroCExplosion and Final State of an Unstable Reissner-Nordström Black HolePhys. Rev. Lett.20161161411012016PhRvL.116n1101S[arXiv:1512.05358] [INSPIRE]
– reference: CognolaGMyrzakulovRSebastianiLZerbiniSEinstein gravity with Gauss-Bonnet entropic correctionsPhys. Rev. D2013880240062013PhRvD..88b4006C[arXiv:1304.1878] [INSPIRE]
– reference: FernandesPGSCharged Black Holes in AdS Spaces in 4D Einstein Gauss-Bonnet GravityPhys. Lett. B202080513546840973031436.83060[arXiv:2003.05491] [INSPIRE]
– reference: ZhangC-YZhangS-JWangBCharged scalar perturbations around Garfinkle-Horowitz-Strominger black holesNucl. Phys. B2015899372015NuPhB.899...37Z33989051331.83055[arXiv:1501.03260] [INSPIRE]
– reference: DegolladoJCHerdeiroCARStationary scalar configurations around extremal charged black holesGen. Rel. Grav.20134524832013GReGr..45.2483D31249591283.83024[arXiv:1303.2392] [INSPIRE]
– reference: R.A. Konoplya and A. Zhidenko, BTZ black holes with higher curvature corrections in the 3D Einstein-Lovelock theory, arXiv:2003.12171 [INSPIRE].
– reference: S.-L. Li, P. Wu and H. Yu, Stability of the Einstein Static Universe in 4D Gauss-Bonnet Gravity, arXiv:2004.02080 [INSPIRE].
– reference: A.K. Mishra, Quasinormal modes and Strong Cosmic Censorship in the novel 4D Einstein-Gauss-Bonnet gravity, arXiv:2004.01243 [INSPIRE].
– reference: A. Kumar and S.G. Ghosh, Hayward black holes in the novel 4D Einstein-Gauss-Bonnet gravity, arXiv:2004.01131 [INSPIRE].
– reference: RichartzMSaaAChallenging the weak cosmic censorship conjecture with charged quantum particlesPhys. Rev. D2011841040212011PhRvD..84j4021R[arXiv:1109.3364] [INSPIRE]
– reference: DegolladoJCHerdeiroCARTime evolution of superradiant instabilities for charged black holes in a cavityPhys. Rev. D2014890630052014PhRvD..89f3005D[arXiv:1312.4579] [INSPIRE]
– reference: ZhangC-YZhangS-JWangBSuperradiant instability of Kerr-de Sitter black holes in scalar-tensor theoryJHEP2014080112014JHEP...08..011Z32566471333.83116[arXiv:1405.3811] [INSPIRE]
– reference: CaiR-GCaoL-MOhtaNBlack Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole EntropyJHEP2010040822010JHEP...04..082C26730731272.83042[arXiv:0911.4379] [INSPIRE]
– reference: R.A. Konoplya and A.F. Zinhailo, Quasinormal modes, stability and shadows of a black hole in the novel 4D Einstein-Gauss-Bonnet gravity, arXiv:2003.01188 [INSPIRE].
– reference: WeiS-WLiuY-XExtended thermodynamics and microstructures of four-dimensional charged Gauss-Bonnet black hole in AdS spacePhys. Rev. D20201011040182020PhRvD.101j4018W4111456[arXiv:2003.14275] [INSPIRE]
– reference: SinghDVSiwachSThermodynamics and P-v criticality of Bardeen-AdS Black Hole in 4-D Einstein-Gauss-Bonnet GravityPhys. Lett. B20208081356584131898[arXiv:2003.11754] [INSPIRE]
– reference: BekensteinJDExtraction of energy and charge from a black holePhys. Rev. D197379491973PhRvD...7..949B366343[INSPIRE]
– reference: KonoplyaRAZhidenkoACharged scalar field instability between the event and cosmological horizonsPhys. Rev. D2014900640482014PhRvD..90f4048K[arXiv:1406.0019] [INSPIRE]
– reference: S.A. Hosseini Mansoori, Thermodynamic geometry of the novel 4-D Gauss Bonnet AdS Black Hole, arXiv:2003.13382 [INSPIRE].
– reference: D.D. Doneva and S.S. Yazadjiev, Relativistic stars in 4D Einstein-Gauss-Bonnet gravity, arXiv:2003.10284 [INSPIRE].
– reference: HarmarkTNatarioJSchiappaRGreybody Factors for d-Dimensional Black HolesAdv. Theor. Math. Phys.20101472728014101229.83050[arXiv:0708.0017] [INSPIRE]
– reference: SampaioMOPHerdeiroCWangMMarginal scalar and Proca clouds around Reissner-Nordström black holesPhys. Rev. D2014900640042014PhRvD..90f4004S[arXiv:1406.3536] [INSPIRE]
– reference: KonoplyaRAZhidenkoA(In)stability of black holes in the 4D Einstein-Gauss-Bonnet and Einstein-Lovelock gravitiesPhys. Dark Univ.202030100697[arXiv:2003.12492] [INSPIRE]
– reference: NojiriSOdintsovSDNovel cosmological and black hole solutions in Einstein and higher-derivative gravity in two dimensionsEPL2020130100042020EL....13010004N[arXiv:2004.01404] [INSPIRE]
– reference: HodSStability of the extremal Reissner-Nordström black hole to charged scalar perturbationsPhys. Lett. B20127135052012PhLB..713..505H2949077[arXiv:1304.6474] [INSPIRE]
– reference: M. Khodadi, A. Talebian and H. Firouzjahi, Black Hole Superradiance in f(R) Gravities, arXiv:2002.10496 [INSPIRE].
– reference: H. Lü and Y. Pang, Horndeski Gravity as D → 4 Limit of Gauss-Bonnet, arXiv:2003.11552 [INSPIRE].
– reference: C.-Y. Zhang, P.-C. Li and M. Guo, Greybody factor and power spectra of the Hawking radiation in the novel 4D Einstein-Gauss-Bonnet de-Sitter gravity, arXiv:2003.13068 [INSPIRE].
– reference: S.-W. Wei and Y.-X. Liu, Testing the nature of Gauss-Bonnet gravity by four-dimensional rotating black hole shadow, arXiv:2003.07769 [INSPIRE].
– reference: Di MenzaLNicolasJ-PSuperradiance on the Reissner-Nordstrøm metricClass. Quant. Grav.2015321450132015CQGra..32n5013D1327.83148[arXiv:1411.3988] [INSPIRE]
– reference: H. Ciftci, R.L. Hall and N. Saad, Perturbation theory in a framework of iteration methods, Phys. Lett. A340 (2005) 388 [math-ph/0504056] [INSPIRE].
– reference: JinX-HGaoY-XLiuD-JStrong gravitational lensing of a 4-dimensional Einstein-Gauss-Bonnet black hole in homogeneous plasmaInt. J. Mod. Phys. D20202920500652020IJMPD..2950065J4130262[arXiv:2004.02261] [INSPIRE]
– volume: 124
  start-page: 081301
  year: 2020
  ident: 13636_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.081301
– volume: 899
  start-page: 37
  year: 2015
  ident: 13636_CR13
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2015.07.030
– volume: 80
  start-page: 588
  year: 2020
  ident: 13636_CR26
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8164-7
– volume: 84
  start-page: 104021
  year: 2011
  ident: 13636_CR9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.104021
– ident: 13636_CR48
– volume: 35
  start-page: 1085
  year: 1972
  ident: 13636_CR2
  publication-title: Sov. Phys. JETP
– ident: 13636_CR21
– ident: 13636_CR44
– ident: 13636_CR25
– ident: 13636_CR29
– ident: 13636_CR30
– volume: 09
  start-page: 101
  year: 2013
  ident: 13636_CR69
  publication-title: JHEP
  doi: 10.1007/JHEP09(2013)101
– volume: 27
  start-page: 155004
  year: 2010
  ident: 13636_CR56
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/27/15/155004
– volume: 7
  start-page: 949
  year: 1973
  ident: 13636_CR5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.7.949
– volume: 07
  start-page: 013
  year: 2020
  ident: 13636_CR31
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/07/013
– volume: 29
  start-page: 2050065
  year: 2020
  ident: 13636_CR52
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271820500650
– ident: 13636_CR38
– volume: 2012
  start-page: 281705
  year: 2012
  ident: 13636_CR57
  publication-title: Adv. Math. Phys.
– ident: 13636_CR66
  doi: 10.1016/j.physleta.2005.04.030
– ident: 13636_CR15
– volume: 04
  start-page: 082
  year: 2010
  ident: 13636_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP04(2010)082
– ident: 13636_CR19
– ident: 13636_CR43
– volume: 45
  start-page: 2483
  year: 2013
  ident: 13636_CR67
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/s10714-013-1598-6
– volume: 88
  start-page: 063003
  year: 2013
  ident: 13636_CR72
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.063003
– volume: 229
  start-page: 177
  year: 1971
  ident: 13636_CR1
  publication-title: Nature
– volume: 99
  start-page: 024030
  year: 2019
  ident: 13636_CR61
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.024030
– volume: 88
  start-page: 104017
  year: 2013
  ident: 13636_CR11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.104017
– volume: 116
  start-page: 141101
  year: 2016
  ident: 13636_CR74
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.141101
– volume: 808
  start-page: 135658
  year: 2020
  ident: 13636_CR36
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135658
– ident: 13636_CR14
  doi: 10.1088/1475-7516/2018/12/021
– volume: 30
  start-page: 100687
  year: 2020
  ident: 13636_CR40
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2020.100687
– volume: 72
  start-page: 104016
  year: 2005
  ident: 13636_CR62
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.104016
– volume: 97
  start-page: 044013
  year: 2018
  ident: 13636_CR60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.044013
– volume: 713
  start-page: 505
  year: 2012
  ident: 13636_CR70
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.06.043
– ident: 13636_CR79
– ident: 13636_CR54
– volume: 713
  start-page: 505
  year: 2012
  ident: 13636_CR71
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.06.043
– volume: 32
  start-page: 145013
  year: 2015
  ident: 13636_CR8
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/32/14/145013
– ident: 13636_CR37
– ident: 13636_CR50
– volume: 513
  start-page: 1
  year: 2012
  ident: 13636_CR16
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2012.01.001
– volume: 6
  start-page: 103
  year: 2020
  ident: 13636_CR33
  publication-title: Universe
  doi: 10.3390/universe6080103
– volume: 78
  start-page: 316
  year: 2018
  ident: 13636_CR59
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-5800-6
– volume: 88
  start-page: 024006
  year: 2013
  ident: 13636_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.024006
– ident: 13636_CR6
  doi: 10.1103/PhysRevD.61.024014
– ident: 13636_CR27
– ident: 13636_CR3
– ident: 13636_CR46
– ident: 13636_CR23
– ident: 13636_CR42
– ident: 13636_CR55
– volume: 34
  start-page: 165001
  year: 2017
  ident: 13636_CR75
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aa7d1f
– ident: 13636_CR78
– volume: 805
  start-page: 135468
  year: 2020
  ident: 13636_CR28
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135468
– volume: 238
  start-page: 211
  year: 1972
  ident: 13636_CR4
  publication-title: Nature
  doi: 10.1038/238211a0
– volume: 101
  start-page: 084038
  year: 2020
  ident: 13636_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.084038
– volume: 30
  start-page: 100697
  year: 2020
  ident: 13636_CR24
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2020.100697
– ident: 13636_CR32
– ident: 13636_CR51
– volume: 94
  start-page: 024035
  year: 2016
  ident: 13636_CR58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.024035
– ident: 13636_CR76
  doi: 10.1103/PhysRevD.90.044042
– volume: 90
  start-page: 064048
  year: 2014
  ident: 13636_CR77
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.064048
– ident: 13636_CR65
  doi: 10.1088/0305-4470/36/47/008
– volume: 14
  start-page: 727
  year: 2010
  ident: 13636_CR63
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2010.v14.n3.a1
– ident: 13636_CR49
– ident: 13636_CR7
  doi: 10.1007/978-3-319-19000-6
– ident: 13636_CR45
– ident: 13636_CR41
– volume: 90
  start-page: 064004
  year: 2014
  ident: 13636_CR68
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.064004
– volume: 89
  start-page: 063005
  year: 2014
  ident: 13636_CR73
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.063005
– volume: 84
  start-page: 024048
  year: 2011
  ident: 13636_CR10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.024048
– volume: 72
  start-page: 095402
  year: 2020
  ident: 13636_CR53
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/aba242
– volume: 130
  start-page: 10004
  year: 2020
  ident: 13636_CR47
  publication-title: EPL
  doi: 10.1209/0295-5075/130/10004
– volume: 20
  start-page: 053
  year: 2020
  ident: 13636_CR39
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/07/053
– volume: 101
  start-page: 104018
  year: 2020
  ident: 13636_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.104018
– volume: 83
  start-page: 793
  year: 2011
  ident: 13636_CR64
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.793
– volume: 08
  start-page: 011
  year: 2014
  ident: 13636_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP08(2014)011
– ident: 13636_CR35
SSID ssj0015190
Score 2.5486665
Snippet A bstract We investigated the superradiance and stability of the regularized 4D charged Einstein-Gauss-Bonnet black hole which is recently inspired by Glavan...
We investigated the superradiance and stability of the regularized 4D charged Einstein-Gauss-Bonnet black hole which is recently inspired by Glavan and Lin...
Abstract We investigated the superradiance and stability of the regularized 4D charged Einstein-Gauss-Bonnet black hole which is recently inspired by Glavan...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Black Holes
Classical and Quantum Gravitation
Elementary Particles
Models of Quantum Gravity
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
SummonAdditionalLinks – databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iCF7EJ64vcvCgh0jbPNoefawuHkRQQbyUZDqRBdldursH_fVOsq0g4sHbEBJaJknnm87MN4ydSFt4gvkobOZRqNylwtVaCiAPKKlDo3KMCbL3ZvCs7l70yxJLu1qYmO3ehSTjl7ordrsb9B-S4pSc9eQsDaylK5rkcKivQoFDGzggQJJ0DD6_F_0wPpGj_1cANNqVmw223gJCfrHYwU22hKMtthoTM2G6zV4f5xNsmsggAMjJ7-eE52JG6wcfe074jTexn3wz_MSaq2seyY9I7A8J-uFwJG7tfDoVlyGlZcZd-GPHQ1fcHfZ803-6Goi2H4IApfVMlIVTYLWXNpUAWuZ5Dibw2xmvUzBJBgad9SUQyLJ5DRK0QjQppLb2ynu5y5ZH4xHuMU5GGpLEOfShD3hRulJKNLYs68w4Qn09dt4pqoKWLDz0rHivOprjhWaroFka0D12-r1gsuDJ-HvqZdD897RAcB0Hxs1b1d6XKs2y3KgcsPCovCsKekPyA5SDoiafy_XYWbdvVXvrpn89cP8fcw_YWhAXKX6HbHnWzPGIYMfMHceD9gXPq9Ar
  priority: 102
  providerName: Springer Nature
Title Superradiance and stability of the regularized 4D charged Einstein-Gauss-Bonnet black hole
URI https://link.springer.com/article/10.1007/JHEP08(2020)105
https://doaj.org/article/1227647ce8fe4fb88b937294bc8d606b
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBZrYdBL6bqWpt2KDj00B63-IcnyMcmShh7GYA2UXYz0_ASBkhYnObR__Z5kuwRG2WUXYYRsmfdsv-_5Pb6PsavcGk8wH4XNPApZuFS4WuUCKANK6iBUjrFB9oeeL-Tdg3rYkfoKPWEtPXBruJs0ywotC0DjUXpnjCtDpUk6MDWBbxe-vhTz-mSqqx8QLkl6Ip-kuLmbT38m5poS_WSYBqW6nRgUqfr_qoPG8DI7YocdLuSj9n4-sQ-4OmYfY38mrD-z37-2z9g0kUgAkFP6zwnWxcbWF_7kOcE43kRZ-Wb5ijWX33nkQKLD6ZIQIC5X4tZu12sxDp0tG-7CjzsexHFP2GI2vZ_MRSeLIEAqtRGlcRKs8rlNcwCVF0UBOtDcaa9S0EkGGp31JRDWskUNOSiJqFNIbe2l9_kp2189rfCMcYrVkCTOoQ9y4KYk2-aobVnWmXYE_gbsW2-oCjrO8CBd8Vj1bMetZatgWZpQA3b9dsJzS5fx_tJxsPzbssBzHSfI-1Xn_epf3h-wYe-3qnv51u9teP4_NrxgB-F6bQvgF7a_abb4lWDJxl2yPTO7pXGSyTDqyWV8JmlcZKM_xpHgoQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEF0hEGovCGhRU7720AMcttjeD9tHCIGQUlSpIKFerN3xrBSpSpCTHODXM7txIrUoB27WaFe2ZryaN57nN4x9k7bwBPNR2MyjULlLhau1FEAVUFKHQeUYCbJ3pv-gBo_6sRVJCv_C_Ne_Pxv0e7-S4oRK9OQ0DVqlG4rK5MDd65rusl1AMCRZ6Pa83fRPyonK_G_anjGbXG2zrRYG8vN53HbYGo522WakY8LkE_vze_aETRN1AwA5VfucUFzksT7zseeE2ngTp8g3wxesubrkUfKILntDAnw4HIlrO5tMxEUgsky5C9_peJiF-5k9XPXuu33RTkEQoLSeirJwCqz20qYSQMs8z8EEVTvjdQomycCgs74EglY2r0GCVogmhdTWXnkv99j6aDzCL4xTaoYkcQ59mP5dlK6UEo0tyzozjrBeh31fOKqCViI8TKr4Wy3EjeeerYJnyaA77GS54WmujrF66UXw_HJZkLWOBop21Z6SKs2y3KgcsPCovCsKekJC_8pBUVOl5TrsdBG3qj1rk1U3_PqOtcfsQ__-5211e3P3Y599DOY5ye-ArU-bGR4S8Ji6o_jSvQKsGs88
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBUloaWX0E-6SdPo0ENyUGNbH7aPyWa327SEQBsIvRhpJJWF4l1s7yH99R3J9kIIOeRmhhE2I4t543l-Q8hnrguPMN8xnXnHRG5SZqzkDLACSmwYVO4iQfZKLW7E5a28Hbg57ch2H1uS_T8NQaWp7k7X1o9d_dPLxew6KY6xcE9O0qBguotlSuzSTtV020RAcJKMaj4PF91LRFGv_0EzNOaY-SuyN4BDetbv5mvyzNVvyPNI0oT2Lfn9c7N2TRPVBMBRXVuK2C6yW-_oylPEcrSJs-Wb5T9nqbigUQgJL2dLhIFuWbOvetO27DzQWzpqwtc7GibkviM389mv6YINsxEYCCk7VhZGgJae65QDSJ7nOaigdae8TEElGShntC8BAZfOLXCQwjmVQqqtF97z92SnXtXuA6GYsCFJjHE-zAQvSlNy7pQuS5spgwhwQr6MgapgEA4P8yv-VqPkcR_ZKkQWDXJCjrcL1r1mxuOu5yHyW7cgdh0Nq-ZPNZydKs2yXIkcXOGd8KYo8AmxJhAGCov1l5mQk3HfquEEto_dcP8JvkfkxfXFvPrx7er7AXkZrD3z7yPZ6ZqNO0Q00plP8Z37D0bs14M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superradiance+and+stability+of+the+regularized+4D+charged+Einstein-Gauss-Bonnet+black+hole&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Zhang%2C+Cheng-Yong&rft.au=Zhang%2C+Shao-Jun&rft.au=Li%2C+Peng-Cheng&rft.au=Guo%2C+Minyong&rft.date=2020-08-01&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2020&rft.issue=8&rft_id=info:doi/10.1007%2FJHEP08%282020%29105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP08_2020_105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon