How can virtual water trade reshape water stress pattern? A global evaluation based on the metacoupling perspective
[Display omitted] •This is the first case study to apply metacoupling framework to virtual water trade.•Different coupling types and processes in global virtual water trade were identified.•Intensity and linking relations of intra-, peri-, and tele-coupling were quantified.•Scenarios of with-trade,...
Saved in:
Published in | Ecological indicators Vol. 145; p. 109712 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•This is the first case study to apply metacoupling framework to virtual water trade.•Different coupling types and processes in global virtual water trade were identified.•Intensity and linking relations of intra-, peri-, and tele-coupling were quantified.•Scenarios of with-trade, no-trade, only-distant-trade, only-adjacent-trade were set.•Impacts of various types of trade on global water stress pattern were distinguished.
With water scarcity increasingly becoming a growing global risk, it is prevalent to explore water supply-demand interaction within and beyond national borders driven by global virtual water trade and its effects on water sustainability. However, there is little study on system integration of differential environmental impacts of various types of trade. Based on metacoupling framework highlighting human-nature interactions across space- within a place (intracoupling), between adjacent places (pericoupling), and between distant places (telecoupling), this study quantified the linkages and intensities of three kinds of coupling processes during global virtual water trade for the first time. Correspondingly, water stress changes under a set of trade scenarios were evaluated based on the indicator of UN SDG 6.4.2 to distinguish the influence of trade taking place on different spatial scales. Results show that during 2005–2015, local water resources supported 80% of global water consumption. Distant virtual water import was about 5 times in volume as large as adjacent virtual water import, alleviating 99.8% of global average water stress. Virtual water trade reduced water stress in 86% of developed countries and increased that in 71% of developing countries in 2005. Owing to trade, water stress in many countries with poor water resources endowment declined while that of many with relatively good endowment went up from 2005 to 2015. Our findings can help to systematically understand the influence of virtual water trade on water stress change and provide scientific guidance for sustainable water management and regional regulations. |
---|---|
AbstractList | [Display omitted]
•This is the first case study to apply metacoupling framework to virtual water trade.•Different coupling types and processes in global virtual water trade were identified.•Intensity and linking relations of intra-, peri-, and tele-coupling were quantified.•Scenarios of with-trade, no-trade, only-distant-trade, only-adjacent-trade were set.•Impacts of various types of trade on global water stress pattern were distinguished.
With water scarcity increasingly becoming a growing global risk, it is prevalent to explore water supply-demand interaction within and beyond national borders driven by global virtual water trade and its effects on water sustainability. However, there is little study on system integration of differential environmental impacts of various types of trade. Based on metacoupling framework highlighting human-nature interactions across space- within a place (intracoupling), between adjacent places (pericoupling), and between distant places (telecoupling), this study quantified the linkages and intensities of three kinds of coupling processes during global virtual water trade for the first time. Correspondingly, water stress changes under a set of trade scenarios were evaluated based on the indicator of UN SDG 6.4.2 to distinguish the influence of trade taking place on different spatial scales. Results show that during 2005–2015, local water resources supported 80% of global water consumption. Distant virtual water import was about 5 times in volume as large as adjacent virtual water import, alleviating 99.8% of global average water stress. Virtual water trade reduced water stress in 86% of developed countries and increased that in 71% of developing countries in 2005. Owing to trade, water stress in many countries with poor water resources endowment declined while that of many with relatively good endowment went up from 2005 to 2015. Our findings can help to systematically understand the influence of virtual water trade on water stress change and provide scientific guidance for sustainable water management and regional regulations. With water scarcity increasingly becoming a growing global risk, it is prevalent to explore water supply-demand interaction within and beyond national borders driven by global virtual water trade and its effects on water sustainability. However, there is little study on system integration of differential environmental impacts of various types of trade. Based on metacoupling framework highlighting human-nature interactions across space- within a place (intracoupling), between adjacent places (pericoupling), and between distant places (telecoupling), this study quantified the linkages and intensities of three kinds of coupling processes during global virtual water trade for the first time. Correspondingly, water stress changes under a set of trade scenarios were evaluated based on the indicator of UN SDG 6.4.2 to distinguish the influence of trade taking place on different spatial scales. Results show that during 2005-2015, local water resources supported 80% of global water consumption. Distant virtual water import was about 5 times in volume as large as adjacent virtual water import, alleviating 99.8% of global average water stress. Virtual water trade reduced water stress in 86% of developed countries and increased that in 71% of developing countries in 2005. Owing to trade, water stress in many countries with poor water resources endowment declined while that of many with relatively good endowment went up from 2005 to 2015. Our findings can help to systematically understand the influence of virtual water trade on water stress change and provide scientific guidance for sustainable water management and regional regulations. |
ArticleNumber | 109712 |
Author | Zhou, Feng Zhao, Dandan Du, Yueyue Qiu, Sijing Peng, Jian |
Author_xml | – sequence: 1 givenname: Yueyue surname: Du fullname: Du, Yueyue organization: Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China – sequence: 2 givenname: Dandan surname: Zhao fullname: Zhao, Dandan organization: Water & Development Research Group, Department of Built Environment, Aalto University, PO Box 15200, 00076 Espoo, Finland – sequence: 3 givenname: Sijing surname: Qiu fullname: Qiu, Sijing organization: Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China – sequence: 4 givenname: Feng surname: Zhou fullname: Zhou, Feng organization: Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China – sequence: 5 givenname: Jian surname: Peng fullname: Peng, Jian email: jianpeng@urban.pku.edu.cn organization: Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China |
BookMark | eNqFUU1r3DAQNSWF5usnBHTsxVtJliWbHkIIbRMI9NJAb2IszW60aC1Xkjfk31dZLznkkpNmHvPejN47q07GMGJVXTG6YpTJb9sVmuDdaFeccl6wXjH-qTplneK1oo04KbVQtGaS_v1SnaW0pYXX9_K0SnfhmRgYyd7FPIMnz5AxkhzBIomYnmDCI5Zy6ROZIJduvCY3ZOPDUCi4Bz9DdmEkAyS0pBT5CckOM5gwT-W0DZkwpglNdnu8qD6vwSe8PL7n1ePPH39u7-qH37_ub28eaiPaNtd9Y6gdbCuNxU5Z2XHginUSqBCAvLHcDrzlHReWlyGBBRSCgxRyoIqp5ry6X3RtgK2eottBfNEBnD4AIW40xOyMRy3XraUgVccME2LA3hjOKYPeFj1gULS-LlpTDP9mTFnvXDLoPYwY5qR51wguenpY2y6jJoaUIq7fVjOqXwPTW30MTL8GppfACu_7O55x-WBrScP5D9nXCxuLo3uHUSfjcDRoXSy2ly-7DxT-A2o_uC4 |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2023_110893 crossref_primary_10_3390_rs16101654 crossref_primary_10_3390_w17030288 crossref_primary_10_1016_j_geosus_2024_07_011 crossref_primary_10_1016_j_scitotenv_2024_174244 crossref_primary_10_1038_s44221_024_00257_y crossref_primary_10_3390_w16192808 crossref_primary_10_1016_j_energy_2024_134041 crossref_primary_10_1038_s41598_025_90606_y |
Cites_doi | 10.1007/s13280-017-0912-z 10.1016/j.ecolind.2015.10.056 10.1073/pnas.1109936109 10.3390/su11041033 10.1016/j.scitotenv.2017.02.105 10.1579/0044-7447(2007)36[639:CHANS]2.0.CO;2 10.1021/es203657t 10.1038/s41893-020-0572-z 10.1016/j.resconrec.2021.105834 10.1073/pnas.1909902117 10.1016/j.wre.2016.04.002 10.5194/hess-8-861-2004 10.5751/ES-09923-230135 10.1073/pnas.1203176109 10.1016/j.jenvman.2022.114940 10.1073/pnas.1404130112 10.1007/s11442-018-1539-0 10.1073/pnas.1718153115 10.1111/j.1477-8947.1989.tb00348.x 10.1073/pnas.1316036110 10.1016/j.scitotenv.2022.154493 10.1016/j.jclepro.2019.119936 10.1016/j.jclepro.2021.128509 10.1126/science.1258832 10.3390/w9060438 10.5751/ES-05873-180226 10.1016/j.jclepro.2015.11.009 10.1126/sciadv.1500323 10.1016/j.jclepro.2017.06.005 10.1021/acs.est.0c00256 10.1021/es500502q 10.1016/j.ecolind.2012.10.021 10.1002/rra.1511 10.5751/ES-09830-220429 10.1016/j.ecolecon.2017.06.019 10.1016/j.watres.2021.116986 10.1016/j.ecoinf.2014.05.012 10.1038/nclimate2214 10.1016/j.jclepro.2021.128829 10.3390/resources2040489 10.1016/j.ecolecon.2013.06.018 10.1038/s41467-020-19520-3 10.3390/w13202906 10.1016/j.apenergy.2017.02.026 10.1088/1748-9326/ab05f4 10.1016/j.resconrec.2020.105068 10.1016/j.resconrec.2018.11.018 10.1016/j.jclepro.2019.118242 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ecolind.2022.109712 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1872-7034 |
ExternalDocumentID | oai_doaj_org_article_6f5d0a6781c144be9cc2201a9d2a6a1a 10_1016_j_ecolind_2022_109712 S1470160X22011852 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c455t-93c0dbd56cde87d682a27186a044ae23d2db252824d256c4eae2442a646b07173 |
IEDL.DBID | .~1 |
ISSN | 1470-160X |
IngestDate | Wed Aug 27 01:32:01 EDT 2025 Fri Jul 11 07:27:34 EDT 2025 Thu Apr 24 22:54:45 EDT 2025 Tue Jul 01 04:27:00 EDT 2025 Fri Feb 23 02:39:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Environmental impacts Metacoupling Trade scenarios Telecoupling Water stress Virtual water trade |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-93c0dbd56cde87d682a27186a044ae23d2db252824d256c4eae2442a646b07173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1470160X22011852 |
PQID | 2834249017 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6f5d0a6781c144be9cc2201a9d2a6a1a proquest_miscellaneous_2834249017 crossref_primary_10_1016_j_ecolind_2022_109712 crossref_citationtrail_10_1016_j_ecolind_2022_109712 elsevier_sciencedirect_doi_10_1016_j_ecolind_2022_109712 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Ecological indicators |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Hoekstra, Mekonnen (b0135) 2012; 109 Arto, Andreoni, Ruedacantuche (b0015) 2016; 15 Liu (b0160) 2017; 22 Wang, Davies, Liu (b0225) 2019; 240 Dalin, Konar, Hanasaki, Rinaldo, Rodriguez-Iturbe (b0060) 2012; 109 Liu, Dietz, Carpenter, Folke, Alberti, Redman, Schneider, Ostrom, Pell, Lubchenco, Taylor, Ouyang, Deadman, Kratz, Provencher (b0170) 2007; 36 D’Odorico, Carr, Dalin, Dell’Angelo, Konar, Laio, Ridolfi, Rosa, Suweis, Taema, Tuninetti (b0055) 2019; 14 WEF (b0235) 2020 Deines, Liu, Liu (b0070) 2015 Falkenmark, Lundqvist, Widstrand (b0100) 1989; 13 Yang, Mao, Zhao, Chen (b0255) 2012; 46 Cai, Hubacek, Feng, Zhang, Wang, Liu (b0030) 2020; 54 Vanham, Bidoglio (b0215) 2013; 26 Lenschow, Newig, Challies (b0150) 2016; 25 Hoekstra (b0120) 2014; 4 Du, Zhao, Jiang, Bo, Wu, Varis, Peng, Zhou (b0090) 2022; 312 Kapsar, Hovis, da Silva, Buchholtz, Carlson, Dou, Du, Furumo, Li, Torres, Yang, Wan, Zaehringer, Liu (b0140) 2019; 11 Luetkemeier, R., Frick-Trzebitzky, F., Hodžić, D., Jäger, A., Kuhn, D., Söller, L., 2021. Telecoupled groundwaters: new ways to investigate increasingly de-localized resources, 2021. Water, 13(20), 2906; https://doi.org/10.3390/w13202906. Liu, J., Yang, W., 2013. Integrated assessments of payments for ecosystem services programs. Proc. Natl. Acad. Sci. U.S.A., 110(41): 16297–16298. Liu, Mooney, Hull, Davis, Gaskell, Hertel, Lubchenco, Seto, Gleick, Kremen, Li (b0180) 2015; 347 Xu, Chen, Liu, Zhang, Chau, Bhattarai, Wang, Li (b0245) 2020; 11 Zhao, Liu, Sun, Ye, Hubacek, Feng, Varis (b0280) 2021; 195 Liu, Hull, Batistella, DeFries, Dietz, Fu, Zhu (b0175) 2013; 18 Mekonnen, Hoekstra (b0190) 2016; 2 Sun, Mooney, Wu, Tang, Tong, Xu, Huang, Cheng, Yang, Wei, Zhang, Liu (b0205) 2018; 115 Damkjaer, Taylor (b0065) 2017; 46 Duarte, Pinilla, Serrano (b0095) 2016; 61 Feng, Hubacek, Pfister, Yu, Sun (b0115) 2014; 48 Zhang, Zhang, Chang, Xu, Hao, Liang, Liu, Yang, Wang (b0265) 2019; 142 Zhou, Bo, Ciais, Dumas, Tang, Wang, Liu, Zheng, Polcher, Yin, Guimberteau, Peng, Ottle, Zhao, Zhao, Tan, Chen, Shen, Yang, Piao, Wang, Wada (b0285) 2020; 117 Hoekstra, Chapagain, van Oel (b0130) 2017; 9 Brindha (b0025) 2017; 161 Zhao, Liu, Liu, Tillotson, Guan, Hubacek (b0270) 2015; 112 UN-Water, 2021. Summary Progress Update 2021- SDG 6- water and sanitation for all. Version: July 2021. Geneva, Switzerland. Yao, Sun, Tian, Zheng, Liu (b0260) 2020; 741 Lenzen, Moran, Bhaduri, Kanemoto, Bekchanov, Geschke, Foran (b0155) 2013; 94 Clark, Sarlin, Sharma, Sisson (b0050) 2015; 26 Wu, Zeng, Chen, Zhao (b0240) 2016; 112 Acreman, Dunbar (b0005) 2004; 8 Xu, Li, Chau, Dietz, Li, Wan, Zhang, Zhang, Li, Chung, Liu (b0250) 2020; 3 Distefano, Kelly (b0075) 2017; 142 Fang, Wang, He, Song, Fang, Jiao (b0105) 2021; 164 Wang, Zou, Liang, Xu (b0230) 2020; 253 Schlör, Venghaus, Hake (b0200) 2018; 210 Cai, Zhao, Varis (b0035) 2021; 318 Chen, Han, Peng, Zhou, Shao, Wu, Wei, Liu, Li, Li, Chen (b0045) 2018; 613 Bo, Zhou, Zhao, Liu, Liu, Ciais, Chang, Chen (b0020) 2021; 320 Du, Fang, Zhao, Liu, Xu, Peng (b0085) 2022; 828 Carlson, Taylor, Liu, Orlic (b0040) 2018; 23 Dou, da Silva, Yang, Liu (b0080) 2018; 28 Richter, Davis, Apse, Konrad (b0195) 2012; 28 Kitzes (b0145) 2013; 2 Vanham, Hoekstra, Wada, Bouraoui, de Roo, Mekonnen, van de Bund, Batelaan, Pavelic, Bastiaanssen, Kummu, Rockström, Liu, Bisselink, Ronco, Pistocchi, Bidoglio (b0220) 2018; 613–614 Hoekstra, Chapagain, Aldaya, Mekonnen (b0125) 2011 Zhao, Liu, Yang, Sun, Varis (b0275) 2021; 175 Antonelli, Tamea, Yang (b0010) 2017; 587–588 Kapsar (10.1016/j.ecolind.2022.109712_b0140) 2019; 11 Zhao (10.1016/j.ecolind.2022.109712_b0275) 2021; 175 Cai (10.1016/j.ecolind.2022.109712_b0035) 2021; 318 Liu (10.1016/j.ecolind.2022.109712_b0170) 2007; 36 Carlson (10.1016/j.ecolind.2022.109712_b0040) 2018; 23 Fang (10.1016/j.ecolind.2022.109712_b0105) 2021; 164 Mekonnen (10.1016/j.ecolind.2022.109712_b0190) 2016; 2 10.1016/j.ecolind.2022.109712_b0185 Zhou (10.1016/j.ecolind.2022.109712_b0285) 2020; 117 Lenzen (10.1016/j.ecolind.2022.109712_b0155) 2013; 94 Acreman (10.1016/j.ecolind.2022.109712_b0005) 2004; 8 Chen (10.1016/j.ecolind.2022.109712_b0045) 2018; 613 D’Odorico (10.1016/j.ecolind.2022.109712_b0055) 2019; 14 Yao (10.1016/j.ecolind.2022.109712_b0260) 2020; 741 Clark (10.1016/j.ecolind.2022.109712_b0050) 2015; 26 Dou (10.1016/j.ecolind.2022.109712_b0080) 2018; 28 Du (10.1016/j.ecolind.2022.109712_b0090) 2022; 312 Xu (10.1016/j.ecolind.2022.109712_b0245) 2020; 11 Hoekstra (10.1016/j.ecolind.2022.109712_b0120) 2014; 4 Liu (10.1016/j.ecolind.2022.109712_b0175) 2013; 18 Zhao (10.1016/j.ecolind.2022.109712_b0280) 2021; 195 Wang (10.1016/j.ecolind.2022.109712_b0230) 2020; 253 Liu (10.1016/j.ecolind.2022.109712_b0160) 2017; 22 Kitzes (10.1016/j.ecolind.2022.109712_b0145) 2013; 2 Schlör (10.1016/j.ecolind.2022.109712_b0200) 2018; 210 Wu (10.1016/j.ecolind.2022.109712_b0240) 2016; 112 Zhang (10.1016/j.ecolind.2022.109712_b0265) 2019; 142 Wang (10.1016/j.ecolind.2022.109712_b0225) 2019; 240 10.1016/j.ecolind.2022.109712_b0210 Richter (10.1016/j.ecolind.2022.109712_b0195) 2012; 28 Hoekstra (10.1016/j.ecolind.2022.109712_b0135) 2012; 109 Antonelli (10.1016/j.ecolind.2022.109712_b0010) 2017; 587–588 Dalin (10.1016/j.ecolind.2022.109712_b0060) 2012; 109 Duarte (10.1016/j.ecolind.2022.109712_b0095) 2016; 61 Xu (10.1016/j.ecolind.2022.109712_b0250) 2020; 3 Yang (10.1016/j.ecolind.2022.109712_b0255) 2012; 46 Vanham (10.1016/j.ecolind.2022.109712_b0220) 2018; 613–614 Bo (10.1016/j.ecolind.2022.109712_b0020) 2021; 320 Lenschow (10.1016/j.ecolind.2022.109712_b0150) 2016; 25 10.1016/j.ecolind.2022.109712_b0165 Hoekstra (10.1016/j.ecolind.2022.109712_b0125) 2011 Deines (10.1016/j.ecolind.2022.109712_b0070) 2015 Brindha (10.1016/j.ecolind.2022.109712_b0025) 2017; 161 Vanham (10.1016/j.ecolind.2022.109712_b0215) 2013; 26 Liu (10.1016/j.ecolind.2022.109712_b0180) 2015; 347 Cai (10.1016/j.ecolind.2022.109712_b0030) 2020; 54 Hoekstra (10.1016/j.ecolind.2022.109712_b0130) 2017; 9 Falkenmark (10.1016/j.ecolind.2022.109712_b0100) 1989; 13 Distefano (10.1016/j.ecolind.2022.109712_b0075) 2017; 142 WEF (10.1016/j.ecolind.2022.109712_b0235) 2020 Zhao (10.1016/j.ecolind.2022.109712_b0270) 2015; 112 Arto (10.1016/j.ecolind.2022.109712_b0015) 2016; 15 Sun (10.1016/j.ecolind.2022.109712_b0205) 2018; 115 Feng (10.1016/j.ecolind.2022.109712_b0115) 2014; 48 Damkjaer (10.1016/j.ecolind.2022.109712_b0065) 2017; 46 Du (10.1016/j.ecolind.2022.109712_b0085) 2022; 828 |
References_xml | – volume: 320 year: 2021 ident: b0020 article-title: Additional surface-water deficit to meet global universal water accessibility by 2030 publication-title: J. Clean. Prod. – volume: 109 start-page: 3232 year: 2012 end-page: 3237 ident: b0135 article-title: The water footprint of humanity publication-title: PNAS – volume: 25 start-page: 136 year: 2016 end-page: 159 ident: b0150 article-title: Globalization’s limits to the environmental state? Integrating telecoupling into global environmental governance. Environmental Politics: Issue 1 Greening Leviathan? publication-title: Emergence Environ. State – volume: 11 start-page: 5837 year: 2020 ident: b0245 article-title: Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems publication-title: Nat. Commun. – volume: 117 start-page: 7702 year: 2020 end-page: 7711 ident: b0285 article-title: Deceleration of China’s human water use and its key drivers publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 195 year: 2021 ident: b0280 article-title: Quantifying economic-social-environmental trade-offs and synergies of water-supply constraints: An application to the capital region of China publication-title: Water Res. – volume: 22 start-page: 29 year: 2017 ident: b0160 article-title: Integration across a metacoupled world publication-title: Ecol. Soc. – volume: 312 year: 2022 ident: b0090 article-title: Local and non-local drivers of consumption-based water use in China during 2007–2015: Perspective of metacoupling publication-title: J. Environ. Manage. – volume: 8 start-page: 861 year: 2004 end-page: 876 ident: b0005 article-title: Defining environmental river flow requirements – a review publication-title: Hydrol. Earth Syst. Sci. – volume: 13 start-page: 258 year: 1989 end-page: 267 ident: b0100 article-title: Macro-scale water scarcity requires micro-scale approaches publication-title: Nat. Resour. Forum – volume: 2 start-page: e1500323 year: 2016 ident: b0190 article-title: Four billion people facing severe water scarcity publication-title: Sci. Adv. – volume: 18 start-page: 26 year: 2013 ident: b0175 article-title: Framing sustainability in a telecoupled world publication-title: Ecol. Soc. – year: 2011 ident: b0125 article-title: The Water Footprint Assessment Manual: Setting the Global Standard – volume: 210 start-page: 382 year: 2018 end-page: 392 ident: b0200 article-title: The FEW-Nexus city index–Measuring urban resilience publication-title: Appl. Energy – volume: 741 year: 2020 ident: b0260 article-title: Alleviating water scarcity and poverty in drylands through telecouplings: vegetable trade and tourism in northwest China publication-title: Sci. Total Environ. – volume: 2 start-page: 489 year: 2013 end-page: 503 ident: b0145 article-title: An introduction to environmentally-extended input-output analysis publication-title: Resources – volume: 112 start-page: 1031 year: 2015 end-page: 1035 ident: b0270 article-title: Physical and virtual water transfers for regional water stress alleviation in China publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 240 year: 2019 ident: b0225 article-title: Integrated water resources management and modeling: A case study of Bow river basin, Canada publication-title: J. Clean. Prod. – volume: 14 year: 2019 ident: b0055 article-title: Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts publication-title: Environ. Res. Lett. – volume: 26 start-page: 192 year: 2015 end-page: 202 ident: b0050 article-title: Increasing dependence on foreign water resources? An assessment of trends in global virtual water flows using a self-organizing time map publication-title: Eco. Inform. – volume: 828 year: 2022 ident: b0085 article-title: How far are we from possible ideal virtual water transfer? evidence from assessing vulnerability of global virtual water trade publication-title: Sci. Total Environ. – volume: 613–614 start-page: 2018 year: 2018 end-page: 2232 ident: b0220 article-title: Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress” publication-title: Sci. Total Environ. – volume: 3 start-page: 964 year: 2020 end-page: 971 ident: b0250 article-title: Impact of international trade on global sustainable development publication-title: Nat. Sustainability – volume: 115 start-page: 5415 year: 2018 end-page: 5419 ident: b0205 article-title: Importing food damages domestic environment: evidence from global soybean trade publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 28 start-page: 1715 year: 2018 end-page: 1732 ident: b0080 article-title: Spillover effect offsets the conservation effort in the Amazon publication-title: J. Geog. Sci. – volume: 142 start-page: 215 year: 2019 end-page: 224 ident: b0265 article-title: Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review publication-title: Resour. Conserv. Recycl. – year: 2015 ident: b0070 article-title: Telecoupling in urban water systems: an examination of Beijing’s imported water supply publication-title: Water Int. – reference: UN-Water, 2021. Summary Progress Update 2021- SDG 6- water and sanitation for all. Version: July 2021. Geneva, Switzerland. – volume: 587–588 start-page: 439 year: 2017 end-page: 448 ident: b0010 article-title: Intra-EU agricultural trade, virtual water flows and policy implications publication-title: Sci. Total Environ. – volume: 161 start-page: 922 year: 2017 end-page: 930 ident: b0025 article-title: International virtual water flows from agricultural and livestock products of India publication-title: J. Clean. Prod. – reference: Liu, J., Yang, W., 2013. Integrated assessments of payments for ecosystem services programs. Proc. Natl. Acad. Sci. U.S.A., 110(41): 16297–16298. – volume: 112 start-page: 3138 year: 2016 end-page: 3151 ident: b0240 article-title: Grey water footprint combined with ecological network analysis for assessing regional water quality metabolism publication-title: J. Clean. Prod. – volume: 253 year: 2020 ident: b0230 article-title: Virtual scarce water flows and economic benefits of the Belt and Road Initiative publication-title: J. Clean. Prod. – volume: 11 start-page: 1033 year: 2019 ident: b0140 article-title: Telecoupling research: the first five years publication-title: Sustainability – volume: 54 start-page: 5365 year: 2020 end-page: 5375 ident: b0030 article-title: Tension of agricultural land and water use in China’s trade: Tele-connections, hidden drivers and potential solutions publication-title: Environ. Sci. Tech. – volume: 4 start-page: 318 year: 2014 end-page: 320 ident: b0120 article-title: Water scarcity challenges to business publication-title: Nat. Clim. Chang. – reference: Luetkemeier, R., Frick-Trzebitzky, F., Hodžić, D., Jäger, A., Kuhn, D., Söller, L., 2021. Telecoupled groundwaters: new ways to investigate increasingly de-localized resources, 2021. Water, 13(20), 2906; https://doi.org/10.3390/w13202906. – volume: 61 start-page: 980 year: 2016 end-page: 990 ident: b0095 article-title: Understanding agricultural virtual water flows in the world from an economic perspective: A long term study publication-title: Ecol. Ind. – volume: 15 start-page: 1 year: 2016 end-page: 14 ident: b0015 article-title: Global use of water resources: A multiregional analysis of water use, water footprint and water trade balance publication-title: Water Resour. Econ. – volume: 23 start-page: 35 year: 2018 ident: b0040 article-title: Peruvian anchoveta as a telecoupled fisheries system publication-title: Ecol. Soc. – volume: 109 start-page: 5989 year: 2012 end-page: 5994 ident: b0060 article-title: Evolution of the global virtual water trade network publication-title: Proc. Natl. Acad. Sci. – volume: 28 start-page: 1312 year: 2012 end-page: 1321 ident: b0195 article-title: A presumptive standard for environmental flow protection publication-title: River Res. Appl. – volume: 46 start-page: 513 year: 2017 end-page: 531 ident: b0065 article-title: The measurement of water scarcity: defining a meaningful indicator publication-title: Ambio – volume: 347 start-page: 1258832 year: 2015 ident: b0180 article-title: Systems integration for global sustainability publication-title: Science – year: 2020 ident: b0235 article-title: The Global Risks Report 2020 – volume: 613 start-page: 931 year: 2018 end-page: 943 ident: b0045 article-title: Global land-water nexus: agricultural land and freshwater use embodied in worldwide supply chains publication-title: Sci. Total Environ. – volume: 142 start-page: 130 year: 2017 end-page: 147 ident: b0075 article-title: Are we in deep water? Water scarcity and its limits to economic growth publication-title: Ecol. Econ. – volume: 48 start-page: 7704 year: 2014 end-page: 7713 ident: b0115 article-title: Virtual scarce water in China publication-title: Environ. Sci. Tech. – volume: 94 start-page: 78 year: 2013 end-page: 85 ident: b0155 article-title: International trade of scarce water publication-title: Ecol. Econ. – volume: 36 start-page: 639 year: 2007 end-page: 649 ident: b0170 article-title: Coupled human and natural systems publication-title: Ambio – volume: 26 start-page: 61 year: 2013 end-page: 75 ident: b0215 article-title: A review on the indicator water footprint for the EU28 publication-title: Ecol. Ind. – volume: 164 year: 2021 ident: b0105 article-title: Mapping the environmental footprints of nations partnering the Belt and Road Initiative publication-title: Resour. Conserv. Recycl. – volume: 9 start-page: 438 year: 2017 ident: b0130 article-title: Advancing water footprint assessment research: challenges in monitoring progress towards Sustainable Development Goal 6 publication-title: Water – volume: 46 start-page: 1796 year: 2012 end-page: 1803 ident: b0255 article-title: Ecological network analysis on global virtual water trade publication-title: Environ. Sci. Tech. – volume: 318 year: 2021 ident: b0035 article-title: Match words with deeds: curbing water risk with the Sustainable Development Goal 6 index publication-title: J. Clean. Prod. – volume: 175 year: 2021 ident: b0275 article-title: Socioeconomic drivers of provincial-level changes in the blue and green water footprints in China publication-title: Resour. Conserv. Recycl. – volume: 46 start-page: 513 year: 2017 ident: 10.1016/j.ecolind.2022.109712_b0065 article-title: The measurement of water scarcity: defining a meaningful indicator publication-title: Ambio doi: 10.1007/s13280-017-0912-z – volume: 61 start-page: 980 year: 2016 ident: 10.1016/j.ecolind.2022.109712_b0095 article-title: Understanding agricultural virtual water flows in the world from an economic perspective: A long term study publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2015.10.056 – volume: 109 start-page: 3232 issue: 9 year: 2012 ident: 10.1016/j.ecolind.2022.109712_b0135 article-title: The water footprint of humanity publication-title: PNAS doi: 10.1073/pnas.1109936109 – volume: 11 start-page: 1033 issue: 4 year: 2019 ident: 10.1016/j.ecolind.2022.109712_b0140 article-title: Telecoupling research: the first five years publication-title: Sustainability doi: 10.3390/su11041033 – volume: 587–588 start-page: 439 year: 2017 ident: 10.1016/j.ecolind.2022.109712_b0010 article-title: Intra-EU agricultural trade, virtual water flows and policy implications publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.02.105 – volume: 36 start-page: 639 issue: 8 year: 2007 ident: 10.1016/j.ecolind.2022.109712_b0170 article-title: Coupled human and natural systems publication-title: Ambio doi: 10.1579/0044-7447(2007)36[639:CHANS]2.0.CO;2 – volume: 46 start-page: 1796 year: 2012 ident: 10.1016/j.ecolind.2022.109712_b0255 article-title: Ecological network analysis on global virtual water trade publication-title: Environ. Sci. Tech. doi: 10.1021/es203657t – volume: 3 start-page: 964 year: 2020 ident: 10.1016/j.ecolind.2022.109712_b0250 article-title: Impact of international trade on global sustainable development publication-title: Nat. Sustainability doi: 10.1038/s41893-020-0572-z – volume: 175 year: 2021 ident: 10.1016/j.ecolind.2022.109712_b0275 article-title: Socioeconomic drivers of provincial-level changes in the blue and green water footprints in China publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2021.105834 – volume: 117 start-page: 7702 year: 2020 ident: 10.1016/j.ecolind.2022.109712_b0285 article-title: Deceleration of China’s human water use and its key drivers publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1909902117 – volume: 741 issue: 11 year: 2020 ident: 10.1016/j.ecolind.2022.109712_b0260 article-title: Alleviating water scarcity and poverty in drylands through telecouplings: vegetable trade and tourism in northwest China publication-title: Sci. Total Environ. – volume: 15 start-page: 1 year: 2016 ident: 10.1016/j.ecolind.2022.109712_b0015 article-title: Global use of water resources: A multiregional analysis of water use, water footprint and water trade balance publication-title: Water Resour. Econ. doi: 10.1016/j.wre.2016.04.002 – volume: 8 start-page: 861 issue: 5 year: 2004 ident: 10.1016/j.ecolind.2022.109712_b0005 article-title: Defining environmental river flow requirements – a review publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-8-861-2004 – volume: 23 start-page: 35 issue: 1 year: 2018 ident: 10.1016/j.ecolind.2022.109712_b0040 article-title: Peruvian anchoveta as a telecoupled fisheries system publication-title: Ecol. Soc. doi: 10.5751/ES-09923-230135 – volume: 109 start-page: 5989 issue: 16 year: 2012 ident: 10.1016/j.ecolind.2022.109712_b0060 article-title: Evolution of the global virtual water trade network publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1203176109 – volume: 312 year: 2022 ident: 10.1016/j.ecolind.2022.109712_b0090 article-title: Local and non-local drivers of consumption-based water use in China during 2007–2015: Perspective of metacoupling publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2022.114940 – volume: 112 start-page: 1031 issue: 4 year: 2015 ident: 10.1016/j.ecolind.2022.109712_b0270 article-title: Physical and virtual water transfers for regional water stress alleviation in China publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1404130112 – year: 2020 ident: 10.1016/j.ecolind.2022.109712_b0235 – volume: 28 start-page: 1715 issue: 11 year: 2018 ident: 10.1016/j.ecolind.2022.109712_b0080 article-title: Spillover effect offsets the conservation effort in the Amazon publication-title: J. Geog. Sci. doi: 10.1007/s11442-018-1539-0 – volume: 613 start-page: 931 year: 2018 ident: 10.1016/j.ecolind.2022.109712_b0045 article-title: Global land-water nexus: agricultural land and freshwater use embodied in worldwide supply chains publication-title: Sci. Total Environ. – volume: 115 start-page: 5415 issue: 21 year: 2018 ident: 10.1016/j.ecolind.2022.109712_b0205 article-title: Importing food damages domestic environment: evidence from global soybean trade publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1718153115 – volume: 13 start-page: 258 year: 1989 ident: 10.1016/j.ecolind.2022.109712_b0100 article-title: Macro-scale water scarcity requires micro-scale approaches publication-title: Nat. Resour. Forum doi: 10.1111/j.1477-8947.1989.tb00348.x – ident: 10.1016/j.ecolind.2022.109712_b0165 doi: 10.1073/pnas.1316036110 – volume: 828 year: 2022 ident: 10.1016/j.ecolind.2022.109712_b0085 article-title: How far are we from possible ideal virtual water transfer? evidence from assessing vulnerability of global virtual water trade publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.154493 – year: 2015 ident: 10.1016/j.ecolind.2022.109712_b0070 article-title: Telecoupling in urban water systems: an examination of Beijing’s imported water supply publication-title: Water Int. – volume: 253 year: 2020 ident: 10.1016/j.ecolind.2022.109712_b0230 article-title: Virtual scarce water flows and economic benefits of the Belt and Road Initiative publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119936 – volume: 318 year: 2021 ident: 10.1016/j.ecolind.2022.109712_b0035 article-title: Match words with deeds: curbing water risk with the Sustainable Development Goal 6 index publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128509 – volume: 25 start-page: 136 issue: 1 year: 2016 ident: 10.1016/j.ecolind.2022.109712_b0150 article-title: Globalization’s limits to the environmental state? Integrating telecoupling into global environmental governance. Environmental Politics: Issue 1 Greening Leviathan? publication-title: Emergence Environ. State – volume: 347 start-page: 1258832 year: 2015 ident: 10.1016/j.ecolind.2022.109712_b0180 article-title: Systems integration for global sustainability publication-title: Science doi: 10.1126/science.1258832 – volume: 9 start-page: 438 issue: 6 year: 2017 ident: 10.1016/j.ecolind.2022.109712_b0130 article-title: Advancing water footprint assessment research: challenges in monitoring progress towards Sustainable Development Goal 6 publication-title: Water doi: 10.3390/w9060438 – volume: 18 start-page: 26 issue: 2 year: 2013 ident: 10.1016/j.ecolind.2022.109712_b0175 article-title: Framing sustainability in a telecoupled world publication-title: Ecol. Soc. doi: 10.5751/ES-05873-180226 – ident: 10.1016/j.ecolind.2022.109712_b0210 – volume: 613–614 start-page: 2018 issue: 2 year: 2018 ident: 10.1016/j.ecolind.2022.109712_b0220 article-title: Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress” publication-title: Sci. Total Environ. – volume: 112 start-page: 3138 year: 2016 ident: 10.1016/j.ecolind.2022.109712_b0240 article-title: Grey water footprint combined with ecological network analysis for assessing regional water quality metabolism publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.11.009 – volume: 2 start-page: e1500323 year: 2016 ident: 10.1016/j.ecolind.2022.109712_b0190 article-title: Four billion people facing severe water scarcity publication-title: Sci. Adv. doi: 10.1126/sciadv.1500323 – volume: 161 start-page: 922 year: 2017 ident: 10.1016/j.ecolind.2022.109712_b0025 article-title: International virtual water flows from agricultural and livestock products of India publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.06.005 – volume: 54 start-page: 5365 issue: 9 year: 2020 ident: 10.1016/j.ecolind.2022.109712_b0030 article-title: Tension of agricultural land and water use in China’s trade: Tele-connections, hidden drivers and potential solutions publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.0c00256 – volume: 48 start-page: 7704 issue: 14 year: 2014 ident: 10.1016/j.ecolind.2022.109712_b0115 article-title: Virtual scarce water in China publication-title: Environ. Sci. Tech. doi: 10.1021/es500502q – volume: 26 start-page: 61 year: 2013 ident: 10.1016/j.ecolind.2022.109712_b0215 article-title: A review on the indicator water footprint for the EU28 publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2012.10.021 – volume: 28 start-page: 1312 issue: 8 year: 2012 ident: 10.1016/j.ecolind.2022.109712_b0195 article-title: A presumptive standard for environmental flow protection publication-title: River Res. Appl. doi: 10.1002/rra.1511 – year: 2011 ident: 10.1016/j.ecolind.2022.109712_b0125 – volume: 22 start-page: 29 issue: 4 year: 2017 ident: 10.1016/j.ecolind.2022.109712_b0160 article-title: Integration across a metacoupled world publication-title: Ecol. Soc. doi: 10.5751/ES-09830-220429 – volume: 142 start-page: 130 year: 2017 ident: 10.1016/j.ecolind.2022.109712_b0075 article-title: Are we in deep water? Water scarcity and its limits to economic growth publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2017.06.019 – volume: 195 year: 2021 ident: 10.1016/j.ecolind.2022.109712_b0280 article-title: Quantifying economic-social-environmental trade-offs and synergies of water-supply constraints: An application to the capital region of China publication-title: Water Res. doi: 10.1016/j.watres.2021.116986 – volume: 26 start-page: 192 issue: 2 year: 2015 ident: 10.1016/j.ecolind.2022.109712_b0050 article-title: Increasing dependence on foreign water resources? An assessment of trends in global virtual water flows using a self-organizing time map publication-title: Eco. Inform. doi: 10.1016/j.ecoinf.2014.05.012 – volume: 4 start-page: 318 year: 2014 ident: 10.1016/j.ecolind.2022.109712_b0120 article-title: Water scarcity challenges to business publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2214 – volume: 320 year: 2021 ident: 10.1016/j.ecolind.2022.109712_b0020 article-title: Additional surface-water deficit to meet global universal water accessibility by 2030 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128829 – volume: 2 start-page: 489 issue: 4 year: 2013 ident: 10.1016/j.ecolind.2022.109712_b0145 article-title: An introduction to environmentally-extended input-output analysis publication-title: Resources doi: 10.3390/resources2040489 – volume: 94 start-page: 78 issue: 4 year: 2013 ident: 10.1016/j.ecolind.2022.109712_b0155 article-title: International trade of scarce water publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2013.06.018 – volume: 11 start-page: 5837 year: 2020 ident: 10.1016/j.ecolind.2022.109712_b0245 article-title: Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems publication-title: Nat. Commun. doi: 10.1038/s41467-020-19520-3 – ident: 10.1016/j.ecolind.2022.109712_b0185 doi: 10.3390/w13202906 – volume: 210 start-page: 382 year: 2018 ident: 10.1016/j.ecolind.2022.109712_b0200 article-title: The FEW-Nexus city index–Measuring urban resilience publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.02.026 – volume: 14 issue: 5 year: 2019 ident: 10.1016/j.ecolind.2022.109712_b0055 article-title: Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab05f4 – volume: 164 year: 2021 ident: 10.1016/j.ecolind.2022.109712_b0105 article-title: Mapping the environmental footprints of nations partnering the Belt and Road Initiative publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2020.105068 – volume: 142 start-page: 215 year: 2019 ident: 10.1016/j.ecolind.2022.109712_b0265 article-title: Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2018.11.018 – volume: 240 year: 2019 ident: 10.1016/j.ecolind.2022.109712_b0225 article-title: Integrated water resources management and modeling: A case study of Bow river basin, Canada publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118242 |
SSID | ssj0016996 |
Score | 2.4306579 |
Snippet | [Display omitted]
•This is the first case study to apply metacoupling framework to virtual water trade.•Different coupling types and processes in global... With water scarcity increasingly becoming a growing global risk, it is prevalent to explore water supply-demand interaction within and beyond national borders... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109712 |
SubjectTerms | Environmental impacts imports Metacoupling risk Telecoupling Trade scenarios virtual water Virtual water trade water management water shortages Water stress |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYv4xPoigte1u9kk25ykSqUIelLoLeRVUXRb2i39-04ea62XXrwtyWY3zEwy3zCZLwhdi0orXZUiU7qwEKBUZSYILzNPXWdFJcZFqHJ9eubDV_o4YqNfV335M2GRHjgKrsvHzOYKttTCAPbXThhDwGkpYYniqgjQCHxeG0yl_AEXItYVVXlW8Hy0qt3pftxAXAcQztOEEhIoHAuy5pUCef-ac_qzTQff87CHdhNoxP042X205eoDdDxY1ahBZ1qk80M0H06WGCSGodtXh-Al4MkZbmbKOjzzKZ6pS22xUgRPA8lmfYv7OBKE4BUJOPZ-zmJ4AKiIv1wDW-jCl_G-4emqUPMIvT4MXu6HWbpbITOUsSYTpcmttowb63qV5T2iCLgprnJKlSOlJVYTBvEYtQCKDHXQSCmInHIdMvfHaLue1O4EYQ0YgROjlVAF1aCZkjA95orbiokxZx1EW9lKk4jH_f0Xn7I9YfYhk0qkV4mMKumgm59h08i8sWnAnVfcz8ueODs0gDnJZE5ykzl1UK9Vu0wYJGIL-NT7pv9ftWYiYY36xIuq3WQxlwDhKIS5sPmd_sccz9CO_208VHOOtpvZwl0ANGr0ZVgF37XdDDE priority: 102 providerName: Directory of Open Access Journals |
Title | How can virtual water trade reshape water stress pattern? A global evaluation based on the metacoupling perspective |
URI | https://dx.doi.org/10.1016/j.ecolind.2022.109712 https://www.proquest.com/docview/2834249017 https://doaj.org/article/6f5d0a6781c144be9cc2201a9d2a6a1a |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECWCdOlStGmDumkMFugq26L4YU6BEyRwWjRLG8AbQYp04KCVBVlGtv723lGUDXcJkE2ivnmnu3ci3xMhX7Vy1qlCZ9blHgoUVWSaySJD6TqvlV7mkeX6407O7_m3hVgckaueC4PTKlPs72J6jNapZZx6c1yvVuOfOVcoj7ZgmMOmAuMw5wq9fPR3N80jl1p3DCM1yXDvPYtn_DiCCg_AHAqGMhbFHHN2kJ-ijP9BmvovYMcsdPOWvEnwkc66O3xHjkJ1Qk6v92w12Jhe1817spmvnyj0HYXNyBOhT4AsG9o21gfa4GBPHVJbxxmhdZTbrC7ojHZSIXQvB04x43kKCwAa6Z_QQjDdIqH3gdZ7yuYHcn9z_etqnqW_LGQlF6LNdFFOvPNClj5MlZdTZhkkLGknnNvACs-8YwIqM-4BHpU8QCPnzEouXRzDPyXH1boKHwl1gBYkK53VNucut4ANhVtKK70SeinFgPC-b02ZJMjxTxi_TT_X7NEkkxg0ielMMiCj3WF1p8Hx3AGXaLjdziihHRvWzYNJPmTkUviJhVydl1BUuqDLEj3Jag_PZnM7INPe7ObAI-FUq-eu_6V3EwNvKw7B2CqstxsDYI5DwQth8NPLT39GXuNaN6nmMzlum204B2jUumH0_SF5Nbv9Pr8bxg8M_wBvQA_n |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLam7gAXxAYTBcaMxDVr49hOfUJl2pSxrRc2qTfLvzp1gjRKU-3f573EaVUuk7hFdpwffvZ735P9fSbkm8qtsXmmEmNTDwlKniWKySxB6TqvcrVIW5br3UwWD_znXMwPyEXPhcFtldH3dz699daxZBR7c1Qtl6NfKc9RHm3OMIZNBPjhQ1SnEgNyOL2-KWbbxQSpVEcyyscJNtgReUZP55DkAZ5DzVDGWj3HlO2FqFbJfy9S_eOz20B09Za8iQiSTruPPCIHoTwmJ5c7whpUxhm7fkfWxeqZQvdRqEaqCH0GcFnTpjY-0BrXe6oQyzraCK1axc3yO53STi2E7hTBKQY9T-ECcCP9Exrwpxvk9D7SasfafE8eri7vL4okHrSQOC5Ek6jMjb31QjofJrmXE2YYxCxpxpybwDLPvGUCkjPuASE5HqCQc2Ykl7Zdxj8hg3JVhg-EWgAMkjlrlEm5TQ3AQ2EX0kifC7WQYkh437faRRVyPAzjt-63mz3paBKNJtGdSYbkfNus6mQ4XmrwAw23vRlVtNuCVf2o4zDSciH82EC4Th3klTYo53AwGeXh30xqhmTSm13vDUp41PKl93_th4mGCYurMKYMq81aA57jkPOCJ_z4_48_I6-K-7tbfXs9u_lEXmNNt8fmMxk09SacAlJq7Jc4E_4CS4ERow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+can+virtual+water+trade+reshape+water+stress+pattern%3F+A+global+evaluation+based+on+the+metacoupling+perspective&rft.jtitle=Ecological+indicators&rft.au=Du%2C+Yueyue&rft.au=Zhao%2C+Dandan&rft.au=Qiu%2C+Sijing&rft.au=Zhou%2C+Feng&rft.date=2022-12-01&rft.issn=1470-160X&rft.volume=145+p.109712-&rft_id=info:doi/10.1016%2Fj.ecolind.2022.109712&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |