How can virtual water trade reshape water stress pattern? A global evaluation based on the metacoupling perspective

[Display omitted] •This is the first case study to apply metacoupling framework to virtual water trade.•Different coupling types and processes in global virtual water trade were identified.•Intensity and linking relations of intra-, peri-, and tele-coupling were quantified.•Scenarios of with-trade,...

Full description

Saved in:
Bibliographic Details
Published inEcological indicators Vol. 145; p. 109712
Main Authors Du, Yueyue, Zhao, Dandan, Qiu, Sijing, Zhou, Feng, Peng, Jian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •This is the first case study to apply metacoupling framework to virtual water trade.•Different coupling types and processes in global virtual water trade were identified.•Intensity and linking relations of intra-, peri-, and tele-coupling were quantified.•Scenarios of with-trade, no-trade, only-distant-trade, only-adjacent-trade were set.•Impacts of various types of trade on global water stress pattern were distinguished. With water scarcity increasingly becoming a growing global risk, it is prevalent to explore water supply-demand interaction within and beyond national borders driven by global virtual water trade and its effects on water sustainability. However, there is little study on system integration of differential environmental impacts of various types of trade. Based on metacoupling framework highlighting human-nature interactions across space- within a place (intracoupling), between adjacent places (pericoupling), and between distant places (telecoupling), this study quantified the linkages and intensities of three kinds of coupling processes during global virtual water trade for the first time. Correspondingly, water stress changes under a set of trade scenarios were evaluated based on the indicator of UN SDG 6.4.2 to distinguish the influence of trade taking place on different spatial scales. Results show that during 2005–2015, local water resources supported 80% of global water consumption. Distant virtual water import was about 5 times in volume as large as adjacent virtual water import, alleviating 99.8% of global average water stress. Virtual water trade reduced water stress in 86% of developed countries and increased that in 71% of developing countries in 2005. Owing to trade, water stress in many countries with poor water resources endowment declined while that of many with relatively good endowment went up from 2005 to 2015. Our findings can help to systematically understand the influence of virtual water trade on water stress change and provide scientific guidance for sustainable water management and regional regulations.
AbstractList [Display omitted] •This is the first case study to apply metacoupling framework to virtual water trade.•Different coupling types and processes in global virtual water trade were identified.•Intensity and linking relations of intra-, peri-, and tele-coupling were quantified.•Scenarios of with-trade, no-trade, only-distant-trade, only-adjacent-trade were set.•Impacts of various types of trade on global water stress pattern were distinguished. With water scarcity increasingly becoming a growing global risk, it is prevalent to explore water supply-demand interaction within and beyond national borders driven by global virtual water trade and its effects on water sustainability. However, there is little study on system integration of differential environmental impacts of various types of trade. Based on metacoupling framework highlighting human-nature interactions across space- within a place (intracoupling), between adjacent places (pericoupling), and between distant places (telecoupling), this study quantified the linkages and intensities of three kinds of coupling processes during global virtual water trade for the first time. Correspondingly, water stress changes under a set of trade scenarios were evaluated based on the indicator of UN SDG 6.4.2 to distinguish the influence of trade taking place on different spatial scales. Results show that during 2005–2015, local water resources supported 80% of global water consumption. Distant virtual water import was about 5 times in volume as large as adjacent virtual water import, alleviating 99.8% of global average water stress. Virtual water trade reduced water stress in 86% of developed countries and increased that in 71% of developing countries in 2005. Owing to trade, water stress in many countries with poor water resources endowment declined while that of many with relatively good endowment went up from 2005 to 2015. Our findings can help to systematically understand the influence of virtual water trade on water stress change and provide scientific guidance for sustainable water management and regional regulations.
With water scarcity increasingly becoming a growing global risk, it is prevalent to explore water supply-demand interaction within and beyond national borders driven by global virtual water trade and its effects on water sustainability. However, there is little study on system integration of differential environmental impacts of various types of trade. Based on metacoupling framework highlighting human-nature interactions across space- within a place (intracoupling), between adjacent places (pericoupling), and between distant places (telecoupling), this study quantified the linkages and intensities of three kinds of coupling processes during global virtual water trade for the first time. Correspondingly, water stress changes under a set of trade scenarios were evaluated based on the indicator of UN SDG 6.4.2 to distinguish the influence of trade taking place on different spatial scales. Results show that during 2005-2015, local water resources supported 80% of global water consumption. Distant virtual water import was about 5 times in volume as large as adjacent virtual water import, alleviating 99.8% of global average water stress. Virtual water trade reduced water stress in 86% of developed countries and increased that in 71% of developing countries in 2005. Owing to trade, water stress in many countries with poor water resources endowment declined while that of many with relatively good endowment went up from 2005 to 2015. Our findings can help to systematically understand the influence of virtual water trade on water stress change and provide scientific guidance for sustainable water management and regional regulations.
ArticleNumber 109712
Author Zhou, Feng
Zhao, Dandan
Du, Yueyue
Qiu, Sijing
Peng, Jian
Author_xml – sequence: 1
  givenname: Yueyue
  surname: Du
  fullname: Du, Yueyue
  organization: Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
– sequence: 2
  givenname: Dandan
  surname: Zhao
  fullname: Zhao, Dandan
  organization: Water & Development Research Group, Department of Built Environment, Aalto University, PO Box 15200, 00076 Espoo, Finland
– sequence: 3
  givenname: Sijing
  surname: Qiu
  fullname: Qiu, Sijing
  organization: Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
– sequence: 4
  givenname: Feng
  surname: Zhou
  fullname: Zhou, Feng
  organization: Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
– sequence: 5
  givenname: Jian
  surname: Peng
  fullname: Peng, Jian
  email: jianpeng@urban.pku.edu.cn
  organization: Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
BookMark eNqFUU1r3DAQNSWF5usnBHTsxVtJliWbHkIIbRMI9NJAb2IszW60aC1Xkjfk31dZLznkkpNmHvPejN47q07GMGJVXTG6YpTJb9sVmuDdaFeccl6wXjH-qTplneK1oo04KbVQtGaS_v1SnaW0pYXX9_K0SnfhmRgYyd7FPIMnz5AxkhzBIomYnmDCI5Zy6ROZIJduvCY3ZOPDUCi4Bz9DdmEkAyS0pBT5CckOM5gwT-W0DZkwpglNdnu8qD6vwSe8PL7n1ePPH39u7-qH37_ub28eaiPaNtd9Y6gdbCuNxU5Z2XHginUSqBCAvLHcDrzlHReWlyGBBRSCgxRyoIqp5ry6X3RtgK2eottBfNEBnD4AIW40xOyMRy3XraUgVccME2LA3hjOKYPeFj1gULS-LlpTDP9mTFnvXDLoPYwY5qR51wguenpY2y6jJoaUIq7fVjOqXwPTW30MTL8GppfACu_7O55x-WBrScP5D9nXCxuLo3uHUSfjcDRoXSy2ly-7DxT-A2o_uC4
CitedBy_id crossref_primary_10_1016_j_ecolind_2023_110893
crossref_primary_10_3390_rs16101654
crossref_primary_10_3390_w17030288
crossref_primary_10_1016_j_geosus_2024_07_011
crossref_primary_10_1016_j_scitotenv_2024_174244
crossref_primary_10_1038_s44221_024_00257_y
crossref_primary_10_3390_w16192808
crossref_primary_10_1016_j_energy_2024_134041
crossref_primary_10_1038_s41598_025_90606_y
Cites_doi 10.1007/s13280-017-0912-z
10.1016/j.ecolind.2015.10.056
10.1073/pnas.1109936109
10.3390/su11041033
10.1016/j.scitotenv.2017.02.105
10.1579/0044-7447(2007)36[639:CHANS]2.0.CO;2
10.1021/es203657t
10.1038/s41893-020-0572-z
10.1016/j.resconrec.2021.105834
10.1073/pnas.1909902117
10.1016/j.wre.2016.04.002
10.5194/hess-8-861-2004
10.5751/ES-09923-230135
10.1073/pnas.1203176109
10.1016/j.jenvman.2022.114940
10.1073/pnas.1404130112
10.1007/s11442-018-1539-0
10.1073/pnas.1718153115
10.1111/j.1477-8947.1989.tb00348.x
10.1073/pnas.1316036110
10.1016/j.scitotenv.2022.154493
10.1016/j.jclepro.2019.119936
10.1016/j.jclepro.2021.128509
10.1126/science.1258832
10.3390/w9060438
10.5751/ES-05873-180226
10.1016/j.jclepro.2015.11.009
10.1126/sciadv.1500323
10.1016/j.jclepro.2017.06.005
10.1021/acs.est.0c00256
10.1021/es500502q
10.1016/j.ecolind.2012.10.021
10.1002/rra.1511
10.5751/ES-09830-220429
10.1016/j.ecolecon.2017.06.019
10.1016/j.watres.2021.116986
10.1016/j.ecoinf.2014.05.012
10.1038/nclimate2214
10.1016/j.jclepro.2021.128829
10.3390/resources2040489
10.1016/j.ecolecon.2013.06.018
10.1038/s41467-020-19520-3
10.3390/w13202906
10.1016/j.apenergy.2017.02.026
10.1088/1748-9326/ab05f4
10.1016/j.resconrec.2020.105068
10.1016/j.resconrec.2018.11.018
10.1016/j.jclepro.2019.118242
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.ecolind.2022.109712
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1872-7034
ExternalDocumentID oai_doaj_org_article_6f5d0a6781c144be9cc2201a9d2a6a1a
10_1016_j_ecolind_2022_109712
S1470160X22011852
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c455t-93c0dbd56cde87d682a27186a044ae23d2db252824d256c4eae2442a646b07173
IEDL.DBID .~1
ISSN 1470-160X
IngestDate Wed Aug 27 01:32:01 EDT 2025
Fri Jul 11 07:27:34 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Tue Jul 01 04:27:00 EDT 2025
Fri Feb 23 02:39:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Environmental impacts
Metacoupling
Trade scenarios
Telecoupling
Water stress
Virtual water trade
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-93c0dbd56cde87d682a27186a044ae23d2db252824d256c4eae2442a646b07173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1470160X22011852
PQID 2834249017
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_6f5d0a6781c144be9cc2201a9d2a6a1a
proquest_miscellaneous_2834249017
crossref_primary_10_1016_j_ecolind_2022_109712
crossref_citationtrail_10_1016_j_ecolind_2022_109712
elsevier_sciencedirect_doi_10_1016_j_ecolind_2022_109712
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Ecological indicators
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hoekstra, Mekonnen (b0135) 2012; 109
Arto, Andreoni, Ruedacantuche (b0015) 2016; 15
Liu (b0160) 2017; 22
Wang, Davies, Liu (b0225) 2019; 240
Dalin, Konar, Hanasaki, Rinaldo, Rodriguez-Iturbe (b0060) 2012; 109
Liu, Dietz, Carpenter, Folke, Alberti, Redman, Schneider, Ostrom, Pell, Lubchenco, Taylor, Ouyang, Deadman, Kratz, Provencher (b0170) 2007; 36
D’Odorico, Carr, Dalin, Dell’Angelo, Konar, Laio, Ridolfi, Rosa, Suweis, Taema, Tuninetti (b0055) 2019; 14
WEF (b0235) 2020
Deines, Liu, Liu (b0070) 2015
Falkenmark, Lundqvist, Widstrand (b0100) 1989; 13
Yang, Mao, Zhao, Chen (b0255) 2012; 46
Cai, Hubacek, Feng, Zhang, Wang, Liu (b0030) 2020; 54
Vanham, Bidoglio (b0215) 2013; 26
Lenschow, Newig, Challies (b0150) 2016; 25
Hoekstra (b0120) 2014; 4
Du, Zhao, Jiang, Bo, Wu, Varis, Peng, Zhou (b0090) 2022; 312
Kapsar, Hovis, da Silva, Buchholtz, Carlson, Dou, Du, Furumo, Li, Torres, Yang, Wan, Zaehringer, Liu (b0140) 2019; 11
Luetkemeier, R., Frick-Trzebitzky, F., Hodžić, D., Jäger, A., Kuhn, D., Söller, L., 2021. Telecoupled groundwaters: new ways to investigate increasingly de-localized resources, 2021. Water, 13(20), 2906; https://doi.org/10.3390/w13202906.
Liu, J., Yang, W., 2013. Integrated assessments of payments for ecosystem services programs. Proc. Natl. Acad. Sci. U.S.A., 110(41): 16297–16298.
Liu, Mooney, Hull, Davis, Gaskell, Hertel, Lubchenco, Seto, Gleick, Kremen, Li (b0180) 2015; 347
Xu, Chen, Liu, Zhang, Chau, Bhattarai, Wang, Li (b0245) 2020; 11
Zhao, Liu, Sun, Ye, Hubacek, Feng, Varis (b0280) 2021; 195
Liu, Hull, Batistella, DeFries, Dietz, Fu, Zhu (b0175) 2013; 18
Mekonnen, Hoekstra (b0190) 2016; 2
Sun, Mooney, Wu, Tang, Tong, Xu, Huang, Cheng, Yang, Wei, Zhang, Liu (b0205) 2018; 115
Damkjaer, Taylor (b0065) 2017; 46
Duarte, Pinilla, Serrano (b0095) 2016; 61
Feng, Hubacek, Pfister, Yu, Sun (b0115) 2014; 48
Zhang, Zhang, Chang, Xu, Hao, Liang, Liu, Yang, Wang (b0265) 2019; 142
Zhou, Bo, Ciais, Dumas, Tang, Wang, Liu, Zheng, Polcher, Yin, Guimberteau, Peng, Ottle, Zhao, Zhao, Tan, Chen, Shen, Yang, Piao, Wang, Wada (b0285) 2020; 117
Hoekstra, Chapagain, van Oel (b0130) 2017; 9
Brindha (b0025) 2017; 161
Zhao, Liu, Liu, Tillotson, Guan, Hubacek (b0270) 2015; 112
UN-Water, 2021. Summary Progress Update 2021- SDG 6- water and sanitation for all. Version: July 2021. Geneva, Switzerland.
Yao, Sun, Tian, Zheng, Liu (b0260) 2020; 741
Lenzen, Moran, Bhaduri, Kanemoto, Bekchanov, Geschke, Foran (b0155) 2013; 94
Clark, Sarlin, Sharma, Sisson (b0050) 2015; 26
Wu, Zeng, Chen, Zhao (b0240) 2016; 112
Acreman, Dunbar (b0005) 2004; 8
Xu, Li, Chau, Dietz, Li, Wan, Zhang, Zhang, Li, Chung, Liu (b0250) 2020; 3
Distefano, Kelly (b0075) 2017; 142
Fang, Wang, He, Song, Fang, Jiao (b0105) 2021; 164
Wang, Zou, Liang, Xu (b0230) 2020; 253
Schlör, Venghaus, Hake (b0200) 2018; 210
Cai, Zhao, Varis (b0035) 2021; 318
Chen, Han, Peng, Zhou, Shao, Wu, Wei, Liu, Li, Li, Chen (b0045) 2018; 613
Bo, Zhou, Zhao, Liu, Liu, Ciais, Chang, Chen (b0020) 2021; 320
Du, Fang, Zhao, Liu, Xu, Peng (b0085) 2022; 828
Carlson, Taylor, Liu, Orlic (b0040) 2018; 23
Dou, da Silva, Yang, Liu (b0080) 2018; 28
Richter, Davis, Apse, Konrad (b0195) 2012; 28
Kitzes (b0145) 2013; 2
Vanham, Hoekstra, Wada, Bouraoui, de Roo, Mekonnen, van de Bund, Batelaan, Pavelic, Bastiaanssen, Kummu, Rockström, Liu, Bisselink, Ronco, Pistocchi, Bidoglio (b0220) 2018; 613–614
Hoekstra, Chapagain, Aldaya, Mekonnen (b0125) 2011
Zhao, Liu, Yang, Sun, Varis (b0275) 2021; 175
Antonelli, Tamea, Yang (b0010) 2017; 587–588
Kapsar (10.1016/j.ecolind.2022.109712_b0140) 2019; 11
Zhao (10.1016/j.ecolind.2022.109712_b0275) 2021; 175
Cai (10.1016/j.ecolind.2022.109712_b0035) 2021; 318
Liu (10.1016/j.ecolind.2022.109712_b0170) 2007; 36
Carlson (10.1016/j.ecolind.2022.109712_b0040) 2018; 23
Fang (10.1016/j.ecolind.2022.109712_b0105) 2021; 164
Mekonnen (10.1016/j.ecolind.2022.109712_b0190) 2016; 2
10.1016/j.ecolind.2022.109712_b0185
Zhou (10.1016/j.ecolind.2022.109712_b0285) 2020; 117
Lenzen (10.1016/j.ecolind.2022.109712_b0155) 2013; 94
Acreman (10.1016/j.ecolind.2022.109712_b0005) 2004; 8
Chen (10.1016/j.ecolind.2022.109712_b0045) 2018; 613
D’Odorico (10.1016/j.ecolind.2022.109712_b0055) 2019; 14
Yao (10.1016/j.ecolind.2022.109712_b0260) 2020; 741
Clark (10.1016/j.ecolind.2022.109712_b0050) 2015; 26
Dou (10.1016/j.ecolind.2022.109712_b0080) 2018; 28
Du (10.1016/j.ecolind.2022.109712_b0090) 2022; 312
Xu (10.1016/j.ecolind.2022.109712_b0245) 2020; 11
Hoekstra (10.1016/j.ecolind.2022.109712_b0120) 2014; 4
Liu (10.1016/j.ecolind.2022.109712_b0175) 2013; 18
Zhao (10.1016/j.ecolind.2022.109712_b0280) 2021; 195
Wang (10.1016/j.ecolind.2022.109712_b0230) 2020; 253
Liu (10.1016/j.ecolind.2022.109712_b0160) 2017; 22
Kitzes (10.1016/j.ecolind.2022.109712_b0145) 2013; 2
Schlör (10.1016/j.ecolind.2022.109712_b0200) 2018; 210
Wu (10.1016/j.ecolind.2022.109712_b0240) 2016; 112
Zhang (10.1016/j.ecolind.2022.109712_b0265) 2019; 142
Wang (10.1016/j.ecolind.2022.109712_b0225) 2019; 240
10.1016/j.ecolind.2022.109712_b0210
Richter (10.1016/j.ecolind.2022.109712_b0195) 2012; 28
Hoekstra (10.1016/j.ecolind.2022.109712_b0135) 2012; 109
Antonelli (10.1016/j.ecolind.2022.109712_b0010) 2017; 587–588
Dalin (10.1016/j.ecolind.2022.109712_b0060) 2012; 109
Duarte (10.1016/j.ecolind.2022.109712_b0095) 2016; 61
Xu (10.1016/j.ecolind.2022.109712_b0250) 2020; 3
Yang (10.1016/j.ecolind.2022.109712_b0255) 2012; 46
Vanham (10.1016/j.ecolind.2022.109712_b0220) 2018; 613–614
Bo (10.1016/j.ecolind.2022.109712_b0020) 2021; 320
Lenschow (10.1016/j.ecolind.2022.109712_b0150) 2016; 25
10.1016/j.ecolind.2022.109712_b0165
Hoekstra (10.1016/j.ecolind.2022.109712_b0125) 2011
Deines (10.1016/j.ecolind.2022.109712_b0070) 2015
Brindha (10.1016/j.ecolind.2022.109712_b0025) 2017; 161
Vanham (10.1016/j.ecolind.2022.109712_b0215) 2013; 26
Liu (10.1016/j.ecolind.2022.109712_b0180) 2015; 347
Cai (10.1016/j.ecolind.2022.109712_b0030) 2020; 54
Hoekstra (10.1016/j.ecolind.2022.109712_b0130) 2017; 9
Falkenmark (10.1016/j.ecolind.2022.109712_b0100) 1989; 13
Distefano (10.1016/j.ecolind.2022.109712_b0075) 2017; 142
WEF (10.1016/j.ecolind.2022.109712_b0235) 2020
Zhao (10.1016/j.ecolind.2022.109712_b0270) 2015; 112
Arto (10.1016/j.ecolind.2022.109712_b0015) 2016; 15
Sun (10.1016/j.ecolind.2022.109712_b0205) 2018; 115
Feng (10.1016/j.ecolind.2022.109712_b0115) 2014; 48
Damkjaer (10.1016/j.ecolind.2022.109712_b0065) 2017; 46
Du (10.1016/j.ecolind.2022.109712_b0085) 2022; 828
References_xml – volume: 320
  year: 2021
  ident: b0020
  article-title: Additional surface-water deficit to meet global universal water accessibility by 2030
  publication-title: J. Clean. Prod.
– volume: 109
  start-page: 3232
  year: 2012
  end-page: 3237
  ident: b0135
  article-title: The water footprint of humanity
  publication-title: PNAS
– volume: 25
  start-page: 136
  year: 2016
  end-page: 159
  ident: b0150
  article-title: Globalization’s limits to the environmental state? Integrating telecoupling into global environmental governance. Environmental Politics: Issue 1 Greening Leviathan?
  publication-title: Emergence Environ. State
– volume: 11
  start-page: 5837
  year: 2020
  ident: b0245
  article-title: Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems
  publication-title: Nat. Commun.
– volume: 117
  start-page: 7702
  year: 2020
  end-page: 7711
  ident: b0285
  article-title: Deceleration of China’s human water use and its key drivers
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 195
  year: 2021
  ident: b0280
  article-title: Quantifying economic-social-environmental trade-offs and synergies of water-supply constraints: An application to the capital region of China
  publication-title: Water Res.
– volume: 22
  start-page: 29
  year: 2017
  ident: b0160
  article-title: Integration across a metacoupled world
  publication-title: Ecol. Soc.
– volume: 312
  year: 2022
  ident: b0090
  article-title: Local and non-local drivers of consumption-based water use in China during 2007–2015: Perspective of metacoupling
  publication-title: J. Environ. Manage.
– volume: 8
  start-page: 861
  year: 2004
  end-page: 876
  ident: b0005
  article-title: Defining environmental river flow requirements – a review
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 13
  start-page: 258
  year: 1989
  end-page: 267
  ident: b0100
  article-title: Macro-scale water scarcity requires micro-scale approaches
  publication-title: Nat. Resour. Forum
– volume: 2
  start-page: e1500323
  year: 2016
  ident: b0190
  article-title: Four billion people facing severe water scarcity
  publication-title: Sci. Adv.
– volume: 18
  start-page: 26
  year: 2013
  ident: b0175
  article-title: Framing sustainability in a telecoupled world
  publication-title: Ecol. Soc.
– year: 2011
  ident: b0125
  article-title: The Water Footprint Assessment Manual: Setting the Global Standard
– volume: 210
  start-page: 382
  year: 2018
  end-page: 392
  ident: b0200
  article-title: The FEW-Nexus city index–Measuring urban resilience
  publication-title: Appl. Energy
– volume: 741
  year: 2020
  ident: b0260
  article-title: Alleviating water scarcity and poverty in drylands through telecouplings: vegetable trade and tourism in northwest China
  publication-title: Sci. Total Environ.
– volume: 2
  start-page: 489
  year: 2013
  end-page: 503
  ident: b0145
  article-title: An introduction to environmentally-extended input-output analysis
  publication-title: Resources
– volume: 112
  start-page: 1031
  year: 2015
  end-page: 1035
  ident: b0270
  article-title: Physical and virtual water transfers for regional water stress alleviation in China
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 240
  year: 2019
  ident: b0225
  article-title: Integrated water resources management and modeling: A case study of Bow river basin, Canada
  publication-title: J. Clean. Prod.
– volume: 14
  year: 2019
  ident: b0055
  article-title: Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts
  publication-title: Environ. Res. Lett.
– volume: 26
  start-page: 192
  year: 2015
  end-page: 202
  ident: b0050
  article-title: Increasing dependence on foreign water resources? An assessment of trends in global virtual water flows using a self-organizing time map
  publication-title: Eco. Inform.
– volume: 828
  year: 2022
  ident: b0085
  article-title: How far are we from possible ideal virtual water transfer? evidence from assessing vulnerability of global virtual water trade
  publication-title: Sci. Total Environ.
– volume: 613–614
  start-page: 2018
  year: 2018
  end-page: 2232
  ident: b0220
  article-title: Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress”
  publication-title: Sci. Total Environ.
– volume: 3
  start-page: 964
  year: 2020
  end-page: 971
  ident: b0250
  article-title: Impact of international trade on global sustainable development
  publication-title: Nat. Sustainability
– volume: 115
  start-page: 5415
  year: 2018
  end-page: 5419
  ident: b0205
  article-title: Importing food damages domestic environment: evidence from global soybean trade
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 28
  start-page: 1715
  year: 2018
  end-page: 1732
  ident: b0080
  article-title: Spillover effect offsets the conservation effort in the Amazon
  publication-title: J. Geog. Sci.
– volume: 142
  start-page: 215
  year: 2019
  end-page: 224
  ident: b0265
  article-title: Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review
  publication-title: Resour. Conserv. Recycl.
– year: 2015
  ident: b0070
  article-title: Telecoupling in urban water systems: an examination of Beijing’s imported water supply
  publication-title: Water Int.
– reference: UN-Water, 2021. Summary Progress Update 2021- SDG 6- water and sanitation for all. Version: July 2021. Geneva, Switzerland.
– volume: 587–588
  start-page: 439
  year: 2017
  end-page: 448
  ident: b0010
  article-title: Intra-EU agricultural trade, virtual water flows and policy implications
  publication-title: Sci. Total Environ.
– volume: 161
  start-page: 922
  year: 2017
  end-page: 930
  ident: b0025
  article-title: International virtual water flows from agricultural and livestock products of India
  publication-title: J. Clean. Prod.
– reference: Liu, J., Yang, W., 2013. Integrated assessments of payments for ecosystem services programs. Proc. Natl. Acad. Sci. U.S.A., 110(41): 16297–16298.
– volume: 112
  start-page: 3138
  year: 2016
  end-page: 3151
  ident: b0240
  article-title: Grey water footprint combined with ecological network analysis for assessing regional water quality metabolism
  publication-title: J. Clean. Prod.
– volume: 253
  year: 2020
  ident: b0230
  article-title: Virtual scarce water flows and economic benefits of the Belt and Road Initiative
  publication-title: J. Clean. Prod.
– volume: 11
  start-page: 1033
  year: 2019
  ident: b0140
  article-title: Telecoupling research: the first five years
  publication-title: Sustainability
– volume: 54
  start-page: 5365
  year: 2020
  end-page: 5375
  ident: b0030
  article-title: Tension of agricultural land and water use in China’s trade: Tele-connections, hidden drivers and potential solutions
  publication-title: Environ. Sci. Tech.
– volume: 4
  start-page: 318
  year: 2014
  end-page: 320
  ident: b0120
  article-title: Water scarcity challenges to business
  publication-title: Nat. Clim. Chang.
– reference: Luetkemeier, R., Frick-Trzebitzky, F., Hodžić, D., Jäger, A., Kuhn, D., Söller, L., 2021. Telecoupled groundwaters: new ways to investigate increasingly de-localized resources, 2021. Water, 13(20), 2906; https://doi.org/10.3390/w13202906.
– volume: 61
  start-page: 980
  year: 2016
  end-page: 990
  ident: b0095
  article-title: Understanding agricultural virtual water flows in the world from an economic perspective: A long term study
  publication-title: Ecol. Ind.
– volume: 15
  start-page: 1
  year: 2016
  end-page: 14
  ident: b0015
  article-title: Global use of water resources: A multiregional analysis of water use, water footprint and water trade balance
  publication-title: Water Resour. Econ.
– volume: 23
  start-page: 35
  year: 2018
  ident: b0040
  article-title: Peruvian anchoveta as a telecoupled fisheries system
  publication-title: Ecol. Soc.
– volume: 109
  start-page: 5989
  year: 2012
  end-page: 5994
  ident: b0060
  article-title: Evolution of the global virtual water trade network
  publication-title: Proc. Natl. Acad. Sci.
– volume: 28
  start-page: 1312
  year: 2012
  end-page: 1321
  ident: b0195
  article-title: A presumptive standard for environmental flow protection
  publication-title: River Res. Appl.
– volume: 46
  start-page: 513
  year: 2017
  end-page: 531
  ident: b0065
  article-title: The measurement of water scarcity: defining a meaningful indicator
  publication-title: Ambio
– volume: 347
  start-page: 1258832
  year: 2015
  ident: b0180
  article-title: Systems integration for global sustainability
  publication-title: Science
– year: 2020
  ident: b0235
  article-title: The Global Risks Report 2020
– volume: 613
  start-page: 931
  year: 2018
  end-page: 943
  ident: b0045
  article-title: Global land-water nexus: agricultural land and freshwater use embodied in worldwide supply chains
  publication-title: Sci. Total Environ.
– volume: 142
  start-page: 130
  year: 2017
  end-page: 147
  ident: b0075
  article-title: Are we in deep water? Water scarcity and its limits to economic growth
  publication-title: Ecol. Econ.
– volume: 48
  start-page: 7704
  year: 2014
  end-page: 7713
  ident: b0115
  article-title: Virtual scarce water in China
  publication-title: Environ. Sci. Tech.
– volume: 94
  start-page: 78
  year: 2013
  end-page: 85
  ident: b0155
  article-title: International trade of scarce water
  publication-title: Ecol. Econ.
– volume: 36
  start-page: 639
  year: 2007
  end-page: 649
  ident: b0170
  article-title: Coupled human and natural systems
  publication-title: Ambio
– volume: 26
  start-page: 61
  year: 2013
  end-page: 75
  ident: b0215
  article-title: A review on the indicator water footprint for the EU28
  publication-title: Ecol. Ind.
– volume: 164
  year: 2021
  ident: b0105
  article-title: Mapping the environmental footprints of nations partnering the Belt and Road Initiative
  publication-title: Resour. Conserv. Recycl.
– volume: 9
  start-page: 438
  year: 2017
  ident: b0130
  article-title: Advancing water footprint assessment research: challenges in monitoring progress towards Sustainable Development Goal 6
  publication-title: Water
– volume: 46
  start-page: 1796
  year: 2012
  end-page: 1803
  ident: b0255
  article-title: Ecological network analysis on global virtual water trade
  publication-title: Environ. Sci. Tech.
– volume: 318
  year: 2021
  ident: b0035
  article-title: Match words with deeds: curbing water risk with the Sustainable Development Goal 6 index
  publication-title: J. Clean. Prod.
– volume: 175
  year: 2021
  ident: b0275
  article-title: Socioeconomic drivers of provincial-level changes in the blue and green water footprints in China
  publication-title: Resour. Conserv. Recycl.
– volume: 46
  start-page: 513
  year: 2017
  ident: 10.1016/j.ecolind.2022.109712_b0065
  article-title: The measurement of water scarcity: defining a meaningful indicator
  publication-title: Ambio
  doi: 10.1007/s13280-017-0912-z
– volume: 61
  start-page: 980
  year: 2016
  ident: 10.1016/j.ecolind.2022.109712_b0095
  article-title: Understanding agricultural virtual water flows in the world from an economic perspective: A long term study
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2015.10.056
– volume: 109
  start-page: 3232
  issue: 9
  year: 2012
  ident: 10.1016/j.ecolind.2022.109712_b0135
  article-title: The water footprint of humanity
  publication-title: PNAS
  doi: 10.1073/pnas.1109936109
– volume: 11
  start-page: 1033
  issue: 4
  year: 2019
  ident: 10.1016/j.ecolind.2022.109712_b0140
  article-title: Telecoupling research: the first five years
  publication-title: Sustainability
  doi: 10.3390/su11041033
– volume: 587–588
  start-page: 439
  year: 2017
  ident: 10.1016/j.ecolind.2022.109712_b0010
  article-title: Intra-EU agricultural trade, virtual water flows and policy implications
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.02.105
– volume: 36
  start-page: 639
  issue: 8
  year: 2007
  ident: 10.1016/j.ecolind.2022.109712_b0170
  article-title: Coupled human and natural systems
  publication-title: Ambio
  doi: 10.1579/0044-7447(2007)36[639:CHANS]2.0.CO;2
– volume: 46
  start-page: 1796
  year: 2012
  ident: 10.1016/j.ecolind.2022.109712_b0255
  article-title: Ecological network analysis on global virtual water trade
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/es203657t
– volume: 3
  start-page: 964
  year: 2020
  ident: 10.1016/j.ecolind.2022.109712_b0250
  article-title: Impact of international trade on global sustainable development
  publication-title: Nat. Sustainability
  doi: 10.1038/s41893-020-0572-z
– volume: 175
  year: 2021
  ident: 10.1016/j.ecolind.2022.109712_b0275
  article-title: Socioeconomic drivers of provincial-level changes in the blue and green water footprints in China
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2021.105834
– volume: 117
  start-page: 7702
  year: 2020
  ident: 10.1016/j.ecolind.2022.109712_b0285
  article-title: Deceleration of China’s human water use and its key drivers
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1909902117
– volume: 741
  issue: 11
  year: 2020
  ident: 10.1016/j.ecolind.2022.109712_b0260
  article-title: Alleviating water scarcity and poverty in drylands through telecouplings: vegetable trade and tourism in northwest China
  publication-title: Sci. Total Environ.
– volume: 15
  start-page: 1
  year: 2016
  ident: 10.1016/j.ecolind.2022.109712_b0015
  article-title: Global use of water resources: A multiregional analysis of water use, water footprint and water trade balance
  publication-title: Water Resour. Econ.
  doi: 10.1016/j.wre.2016.04.002
– volume: 8
  start-page: 861
  issue: 5
  year: 2004
  ident: 10.1016/j.ecolind.2022.109712_b0005
  article-title: Defining environmental river flow requirements – a review
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-8-861-2004
– volume: 23
  start-page: 35
  issue: 1
  year: 2018
  ident: 10.1016/j.ecolind.2022.109712_b0040
  article-title: Peruvian anchoveta as a telecoupled fisheries system
  publication-title: Ecol. Soc.
  doi: 10.5751/ES-09923-230135
– volume: 109
  start-page: 5989
  issue: 16
  year: 2012
  ident: 10.1016/j.ecolind.2022.109712_b0060
  article-title: Evolution of the global virtual water trade network
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1203176109
– volume: 312
  year: 2022
  ident: 10.1016/j.ecolind.2022.109712_b0090
  article-title: Local and non-local drivers of consumption-based water use in China during 2007–2015: Perspective of metacoupling
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2022.114940
– volume: 112
  start-page: 1031
  issue: 4
  year: 2015
  ident: 10.1016/j.ecolind.2022.109712_b0270
  article-title: Physical and virtual water transfers for regional water stress alleviation in China
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1404130112
– year: 2020
  ident: 10.1016/j.ecolind.2022.109712_b0235
– volume: 28
  start-page: 1715
  issue: 11
  year: 2018
  ident: 10.1016/j.ecolind.2022.109712_b0080
  article-title: Spillover effect offsets the conservation effort in the Amazon
  publication-title: J. Geog. Sci.
  doi: 10.1007/s11442-018-1539-0
– volume: 613
  start-page: 931
  year: 2018
  ident: 10.1016/j.ecolind.2022.109712_b0045
  article-title: Global land-water nexus: agricultural land and freshwater use embodied in worldwide supply chains
  publication-title: Sci. Total Environ.
– volume: 115
  start-page: 5415
  issue: 21
  year: 2018
  ident: 10.1016/j.ecolind.2022.109712_b0205
  article-title: Importing food damages domestic environment: evidence from global soybean trade
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1718153115
– volume: 13
  start-page: 258
  year: 1989
  ident: 10.1016/j.ecolind.2022.109712_b0100
  article-title: Macro-scale water scarcity requires micro-scale approaches
  publication-title: Nat. Resour. Forum
  doi: 10.1111/j.1477-8947.1989.tb00348.x
– ident: 10.1016/j.ecolind.2022.109712_b0165
  doi: 10.1073/pnas.1316036110
– volume: 828
  year: 2022
  ident: 10.1016/j.ecolind.2022.109712_b0085
  article-title: How far are we from possible ideal virtual water transfer? evidence from assessing vulnerability of global virtual water trade
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.154493
– year: 2015
  ident: 10.1016/j.ecolind.2022.109712_b0070
  article-title: Telecoupling in urban water systems: an examination of Beijing’s imported water supply
  publication-title: Water Int.
– volume: 253
  year: 2020
  ident: 10.1016/j.ecolind.2022.109712_b0230
  article-title: Virtual scarce water flows and economic benefits of the Belt and Road Initiative
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119936
– volume: 318
  year: 2021
  ident: 10.1016/j.ecolind.2022.109712_b0035
  article-title: Match words with deeds: curbing water risk with the Sustainable Development Goal 6 index
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128509
– volume: 25
  start-page: 136
  issue: 1
  year: 2016
  ident: 10.1016/j.ecolind.2022.109712_b0150
  article-title: Globalization’s limits to the environmental state? Integrating telecoupling into global environmental governance. Environmental Politics: Issue 1 Greening Leviathan?
  publication-title: Emergence Environ. State
– volume: 347
  start-page: 1258832
  year: 2015
  ident: 10.1016/j.ecolind.2022.109712_b0180
  article-title: Systems integration for global sustainability
  publication-title: Science
  doi: 10.1126/science.1258832
– volume: 9
  start-page: 438
  issue: 6
  year: 2017
  ident: 10.1016/j.ecolind.2022.109712_b0130
  article-title: Advancing water footprint assessment research: challenges in monitoring progress towards Sustainable Development Goal 6
  publication-title: Water
  doi: 10.3390/w9060438
– volume: 18
  start-page: 26
  issue: 2
  year: 2013
  ident: 10.1016/j.ecolind.2022.109712_b0175
  article-title: Framing sustainability in a telecoupled world
  publication-title: Ecol. Soc.
  doi: 10.5751/ES-05873-180226
– ident: 10.1016/j.ecolind.2022.109712_b0210
– volume: 613–614
  start-page: 2018
  issue: 2
  year: 2018
  ident: 10.1016/j.ecolind.2022.109712_b0220
  article-title: Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress”
  publication-title: Sci. Total Environ.
– volume: 112
  start-page: 3138
  year: 2016
  ident: 10.1016/j.ecolind.2022.109712_b0240
  article-title: Grey water footprint combined with ecological network analysis for assessing regional water quality metabolism
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.11.009
– volume: 2
  start-page: e1500323
  year: 2016
  ident: 10.1016/j.ecolind.2022.109712_b0190
  article-title: Four billion people facing severe water scarcity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500323
– volume: 161
  start-page: 922
  year: 2017
  ident: 10.1016/j.ecolind.2022.109712_b0025
  article-title: International virtual water flows from agricultural and livestock products of India
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.06.005
– volume: 54
  start-page: 5365
  issue: 9
  year: 2020
  ident: 10.1016/j.ecolind.2022.109712_b0030
  article-title: Tension of agricultural land and water use in China’s trade: Tele-connections, hidden drivers and potential solutions
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.0c00256
– volume: 48
  start-page: 7704
  issue: 14
  year: 2014
  ident: 10.1016/j.ecolind.2022.109712_b0115
  article-title: Virtual scarce water in China
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/es500502q
– volume: 26
  start-page: 61
  year: 2013
  ident: 10.1016/j.ecolind.2022.109712_b0215
  article-title: A review on the indicator water footprint for the EU28
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2012.10.021
– volume: 28
  start-page: 1312
  issue: 8
  year: 2012
  ident: 10.1016/j.ecolind.2022.109712_b0195
  article-title: A presumptive standard for environmental flow protection
  publication-title: River Res. Appl.
  doi: 10.1002/rra.1511
– year: 2011
  ident: 10.1016/j.ecolind.2022.109712_b0125
– volume: 22
  start-page: 29
  issue: 4
  year: 2017
  ident: 10.1016/j.ecolind.2022.109712_b0160
  article-title: Integration across a metacoupled world
  publication-title: Ecol. Soc.
  doi: 10.5751/ES-09830-220429
– volume: 142
  start-page: 130
  year: 2017
  ident: 10.1016/j.ecolind.2022.109712_b0075
  article-title: Are we in deep water? Water scarcity and its limits to economic growth
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2017.06.019
– volume: 195
  year: 2021
  ident: 10.1016/j.ecolind.2022.109712_b0280
  article-title: Quantifying economic-social-environmental trade-offs and synergies of water-supply constraints: An application to the capital region of China
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.116986
– volume: 26
  start-page: 192
  issue: 2
  year: 2015
  ident: 10.1016/j.ecolind.2022.109712_b0050
  article-title: Increasing dependence on foreign water resources? An assessment of trends in global virtual water flows using a self-organizing time map
  publication-title: Eco. Inform.
  doi: 10.1016/j.ecoinf.2014.05.012
– volume: 4
  start-page: 318
  year: 2014
  ident: 10.1016/j.ecolind.2022.109712_b0120
  article-title: Water scarcity challenges to business
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2214
– volume: 320
  year: 2021
  ident: 10.1016/j.ecolind.2022.109712_b0020
  article-title: Additional surface-water deficit to meet global universal water accessibility by 2030
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128829
– volume: 2
  start-page: 489
  issue: 4
  year: 2013
  ident: 10.1016/j.ecolind.2022.109712_b0145
  article-title: An introduction to environmentally-extended input-output analysis
  publication-title: Resources
  doi: 10.3390/resources2040489
– volume: 94
  start-page: 78
  issue: 4
  year: 2013
  ident: 10.1016/j.ecolind.2022.109712_b0155
  article-title: International trade of scarce water
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2013.06.018
– volume: 11
  start-page: 5837
  year: 2020
  ident: 10.1016/j.ecolind.2022.109712_b0245
  article-title: Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19520-3
– ident: 10.1016/j.ecolind.2022.109712_b0185
  doi: 10.3390/w13202906
– volume: 210
  start-page: 382
  year: 2018
  ident: 10.1016/j.ecolind.2022.109712_b0200
  article-title: The FEW-Nexus city index–Measuring urban resilience
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.02.026
– volume: 14
  issue: 5
  year: 2019
  ident: 10.1016/j.ecolind.2022.109712_b0055
  article-title: Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab05f4
– volume: 164
  year: 2021
  ident: 10.1016/j.ecolind.2022.109712_b0105
  article-title: Mapping the environmental footprints of nations partnering the Belt and Road Initiative
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2020.105068
– volume: 142
  start-page: 215
  year: 2019
  ident: 10.1016/j.ecolind.2022.109712_b0265
  article-title: Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2018.11.018
– volume: 240
  year: 2019
  ident: 10.1016/j.ecolind.2022.109712_b0225
  article-title: Integrated water resources management and modeling: A case study of Bow river basin, Canada
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118242
SSID ssj0016996
Score 2.4306579
Snippet [Display omitted] •This is the first case study to apply metacoupling framework to virtual water trade.•Different coupling types and processes in global...
With water scarcity increasingly becoming a growing global risk, it is prevalent to explore water supply-demand interaction within and beyond national borders...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109712
SubjectTerms Environmental impacts
imports
Metacoupling
risk
Telecoupling
Trade scenarios
virtual water
Virtual water trade
water management
water shortages
Water stress
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYv4xPoigte1u9kk25ykSqUIelLoLeRVUXRb2i39-04ea62XXrwtyWY3zEwy3zCZLwhdi0orXZUiU7qwEKBUZSYILzNPXWdFJcZFqHJ9eubDV_o4YqNfV335M2GRHjgKrsvHzOYKttTCAPbXThhDwGkpYYniqgjQCHxeG0yl_AEXItYVVXlW8Hy0qt3pftxAXAcQztOEEhIoHAuy5pUCef-ac_qzTQff87CHdhNoxP042X205eoDdDxY1ahBZ1qk80M0H06WGCSGodtXh-Al4MkZbmbKOjzzKZ6pS22xUgRPA8lmfYv7OBKE4BUJOPZ-zmJ4AKiIv1wDW-jCl_G-4emqUPMIvT4MXu6HWbpbITOUsSYTpcmttowb63qV5T2iCLgprnJKlSOlJVYTBvEYtQCKDHXQSCmInHIdMvfHaLue1O4EYQ0YgROjlVAF1aCZkjA95orbiokxZx1EW9lKk4jH_f0Xn7I9YfYhk0qkV4mMKumgm59h08i8sWnAnVfcz8ueODs0gDnJZE5ykzl1UK9Vu0wYJGIL-NT7pv9ftWYiYY36xIuq3WQxlwDhKIS5sPmd_sccz9CO_208VHOOtpvZwl0ANGr0ZVgF37XdDDE
  priority: 102
  providerName: Directory of Open Access Journals
Title How can virtual water trade reshape water stress pattern? A global evaluation based on the metacoupling perspective
URI https://dx.doi.org/10.1016/j.ecolind.2022.109712
https://www.proquest.com/docview/2834249017
https://doaj.org/article/6f5d0a6781c144be9cc2201a9d2a6a1a
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECWCdOlStGmDumkMFugq26L4YU6BEyRwWjRLG8AbQYp04KCVBVlGtv723lGUDXcJkE2ivnmnu3ci3xMhX7Vy1qlCZ9blHgoUVWSaySJD6TqvlV7mkeX6407O7_m3hVgckaueC4PTKlPs72J6jNapZZx6c1yvVuOfOVcoj7ZgmMOmAuMw5wq9fPR3N80jl1p3DCM1yXDvPYtn_DiCCg_AHAqGMhbFHHN2kJ-ijP9BmvovYMcsdPOWvEnwkc66O3xHjkJ1Qk6v92w12Jhe1817spmvnyj0HYXNyBOhT4AsG9o21gfa4GBPHVJbxxmhdZTbrC7ojHZSIXQvB04x43kKCwAa6Z_QQjDdIqH3gdZ7yuYHcn9z_etqnqW_LGQlF6LNdFFOvPNClj5MlZdTZhkkLGknnNvACs-8YwIqM-4BHpU8QCPnzEouXRzDPyXH1boKHwl1gBYkK53VNucut4ANhVtKK70SeinFgPC-b02ZJMjxTxi_TT_X7NEkkxg0ielMMiCj3WF1p8Hx3AGXaLjdziihHRvWzYNJPmTkUviJhVydl1BUuqDLEj3Jag_PZnM7INPe7ObAI-FUq-eu_6V3EwNvKw7B2CqstxsDYI5DwQth8NPLT39GXuNaN6nmMzlum204B2jUumH0_SF5Nbv9Pr8bxg8M_wBvQA_n
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLam7gAXxAYTBcaMxDVr49hOfUJl2pSxrRc2qTfLvzp1gjRKU-3f573EaVUuk7hFdpwffvZ735P9fSbkm8qtsXmmEmNTDwlKniWKySxB6TqvcrVIW5br3UwWD_znXMwPyEXPhcFtldH3dz699daxZBR7c1Qtl6NfKc9RHm3OMIZNBPjhQ1SnEgNyOL2-KWbbxQSpVEcyyscJNtgReUZP55DkAZ5DzVDGWj3HlO2FqFbJfy9S_eOz20B09Za8iQiSTruPPCIHoTwmJ5c7whpUxhm7fkfWxeqZQvdRqEaqCH0GcFnTpjY-0BrXe6oQyzraCK1axc3yO53STi2E7hTBKQY9T-ECcCP9Exrwpxvk9D7SasfafE8eri7vL4okHrSQOC5Ek6jMjb31QjofJrmXE2YYxCxpxpybwDLPvGUCkjPuASE5HqCQc2Ykl7Zdxj8hg3JVhg-EWgAMkjlrlEm5TQ3AQ2EX0kifC7WQYkh437faRRVyPAzjt-63mz3paBKNJtGdSYbkfNus6mQ4XmrwAw23vRlVtNuCVf2o4zDSciH82EC4Th3klTYo53AwGeXh30xqhmTSm13vDUp41PKl93_th4mGCYurMKYMq81aA57jkPOCJ_z4_48_I6-K-7tbfXs9u_lEXmNNt8fmMxk09SacAlJq7Jc4E_4CS4ERow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+can+virtual+water+trade+reshape+water+stress+pattern%3F+A+global+evaluation+based+on+the+metacoupling+perspective&rft.jtitle=Ecological+indicators&rft.au=Du%2C+Yueyue&rft.au=Zhao%2C+Dandan&rft.au=Qiu%2C+Sijing&rft.au=Zhou%2C+Feng&rft.date=2022-12-01&rft.issn=1470-160X&rft.volume=145+p.109712-&rft_id=info:doi/10.1016%2Fj.ecolind.2022.109712&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon