Federated learning for COVID-19 screening from Chest X-ray images

Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 106; p. 107330
Main Authors Feki, Ines, Ammar, Sourour, Kessentini, Yousri, Muhammad, Khan
Format Journal Article
LanguageEnglish
Published United States Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially have a substantial role in streamlining and accelerating the diagnosis of COVID-19. Such techniques involve large datasets for training and all such data must be centralized in order to be processed. Due to medical data privacy regulations, it is often not possible to collect and share patient data in a centralized data server. In this work, we present a collaborative federated learning framework allowing multiple medical institutions screening COVID-19 from Chest X-ray images using deep learning without sharing patient data. We investigate several key properties and specificities of federated learning setting including the not independent and identically distributed (non-IID) and unbalanced data distributions that naturally arise. We experimentally demonstrate that the proposed federated learning framework provides competitive results to that of models trained by sharing data, considering two different model architectures. These findings would encourage medical institutions to adopt collaborative process and reap benefits of the rich private data in order to rapidly build a powerful model for COVID-19 screening.
AbstractList Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially have a substantial role in streamlining and accelerating the diagnosis of COVID-19. Such techniques involve large datasets for training and all such data must be centralized in order to be processed. Due to medical data privacy regulations, it is often not possible to collect and share patient data in a centralized data server. In this work, we present a collaborative federated learning framework allowing multiple medical institutions screening COVID-19 from Chest X-ray images using deep learning without sharing patient data. We investigate several key properties and specificities of federated learning setting including the not independent and identically distributed (non-IID) and unbalanced data distributions that naturally arise. We experimentally demonstrate that the proposed federated learning framework provides competitive results to that of models trained by sharing data, considering two different model architectures. These findings would encourage medical institutions to adopt collaborative process and reap benefits of the rich private data in order to rapidly build a powerful model for COVID-19 screening.
Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially have a substantial role in streamlining and accelerating the diagnosis of COVID-19. Such techniques involve large datasets for training and all such data must be centralized in order to be processed. Due to medical data privacy regulations, it is often not possible to collect and share patient data in a centralized data server. In this work, we present a collaborative federated learning framework allowing multiple medical institutions screening COVID-19 from Chest X-ray images using deep learning without sharing patient data. We investigate several key properties and specificities of federated learning setting including the not independent and identically distributed (non-IID) and unbalanced data distributions that naturally arise. We experimentally demonstrate that the proposed federated learning framework provides competitive results to that of models trained by sharing data, considering two different model architectures. These findings would encourage medical institutions to adopt collaborative process and reap benefits of the rich private data in order to rapidly build a powerful model for COVID-19 screening.Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially have a substantial role in streamlining and accelerating the diagnosis of COVID-19. Such techniques involve large datasets for training and all such data must be centralized in order to be processed. Due to medical data privacy regulations, it is often not possible to collect and share patient data in a centralized data server. In this work, we present a collaborative federated learning framework allowing multiple medical institutions screening COVID-19 from Chest X-ray images using deep learning without sharing patient data. We investigate several key properties and specificities of federated learning setting including the not independent and identically distributed (non-IID) and unbalanced data distributions that naturally arise. We experimentally demonstrate that the proposed federated learning framework provides competitive results to that of models trained by sharing data, considering two different model architectures. These findings would encourage medical institutions to adopt collaborative process and reap benefits of the rich private data in order to rapidly build a powerful model for COVID-19 screening.
ArticleNumber 107330
Author Kessentini, Yousri
Ammar, Sourour
Muhammad, Khan
Feki, Ines
Author_xml – sequence: 1
  givenname: Ines
  surname: Feki
  fullname: Feki, Ines
  organization: Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia
– sequence: 2
  givenname: Sourour
  surname: Ammar
  fullname: Ammar, Sourour
  email: sourour.ammar@crns.rnrt.tn
  organization: Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia
– sequence: 3
  givenname: Yousri
  surname: Kessentini
  fullname: Kessentini, Yousri
  email: yousri.kessentini@crns.rnrt.tn
  organization: Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia
– sequence: 4
  givenname: Khan
  surname: Muhammad
  fullname: Muhammad, Khan
  email: khanmuhammad@sju.ac.kr
  organization: Visual Analytics for Knowledge Laboratory (VIS2KNOW Lab), School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul 03063, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33776607$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYMo1lb_gAuZpZupSWYmDxBB6hMK3ai4C5nMnTZlOtFkWui_N2VU1IWrhJvz3XtyzxDtt64FhE4JHhNM2MVyrIMzY4opiQWeZXgPHRHBaSqZIPvxXjCR5jJnAzQMYYkjJKk4RIMs45wxzI_Q9R1U4HUHVdKA9q1t50ntfDKZvTzepEQmwXiAvuzdKpksIHTJa-r1NrErPYdwjA5q3QQ4-TxH6Pnu9mnykE5n94-T62lq8qLoUgGATV1xJrIiN5yIqhai1FQAzWopTcmEyIEUwCrNZVkYAC4wwSKPTkuRZyN01fd9W5crqAy0ndeNevPRht8qp636_dLahZq7jeKSSxq3M0Lnnw28e1_Hb6iVDQaaRrfg1kHRArOCUJrTKD37Oet7yNfeooD2AuNdCB7qbwnBaheOWqpdOGoXjurDiZD4Axnb6c66nV_b_I9e9ijEDW8seBWMhdZAZT2YTlXO_od_ABQZqPs
CitedBy_id crossref_primary_10_1016_j_knosys_2023_110658
crossref_primary_10_1038_s41467_024_51172_5
crossref_primary_10_1177_20552076231203604
crossref_primary_10_1002_spy2_403
crossref_primary_10_1109_TETCI_2024_3371222
crossref_primary_10_1109_JBHI_2023_3282955
crossref_primary_10_1109_ACCESS_2024_3395997
crossref_primary_10_1093_bib_bbab498
crossref_primary_10_1016_j_cmpb_2023_107821
crossref_primary_10_1259_bjr_20220890
crossref_primary_10_3389_frcmn_2022_907388
crossref_primary_10_1016_j_compbiomed_2023_106877
crossref_primary_10_1051_bioconf_20248601003
crossref_primary_10_1097_RLU_0000000000004194
crossref_primary_10_1007_s11432_023_4011_4
crossref_primary_10_3233_JIFS_236354
crossref_primary_10_1016_j_engappai_2023_106371
crossref_primary_10_1007_s11042_024_19358_7
crossref_primary_10_1109_TNNLS_2024_3370297
crossref_primary_10_1016_j_patcog_2024_110424
crossref_primary_10_3390_app12147317
crossref_primary_10_1007_s11227_024_06476_0
crossref_primary_10_1016_j_asoc_2022_108867
crossref_primary_10_1038_s41598_024_77196_x
crossref_primary_10_1109_JIOT_2021_3120998
crossref_primary_10_1016_j_csbj_2024_03_028
crossref_primary_10_3390_diagnostics12112835
crossref_primary_10_3390_diagnostics12123171
crossref_primary_10_1016_j_future_2024_107674
crossref_primary_10_3390_s22020450
crossref_primary_10_1109_ACCESS_2023_3237554
crossref_primary_10_54097_hset_v39i_6628
crossref_primary_10_28979_jarnas_952700
crossref_primary_10_1016_j_asoc_2025_112747
crossref_primary_10_3390_math11143093
crossref_primary_10_3390_bdcc9010011
crossref_primary_10_1016_j_im_2024_103922
crossref_primary_10_3390_math11102385
crossref_primary_10_3390_app112311191
crossref_primary_10_1109_ACCESS_2023_3281832
crossref_primary_10_3390_electronics11203316
crossref_primary_10_1145_3501296
crossref_primary_10_1016_j_artmed_2024_103024
crossref_primary_10_1016_j_asoc_2022_109906
crossref_primary_10_1109_ACCESS_2024_3435910
crossref_primary_10_1109_TRPMS_2022_3194408
crossref_primary_10_31436_iiumej_v26i1_3186
crossref_primary_10_3390_biomedinformatics3030045
crossref_primary_10_1016_j_seta_2022_102987
crossref_primary_10_1016_j_cmpb_2024_108104
crossref_primary_10_1016_j_asoc_2023_110453
crossref_primary_10_1007_s13721_023_00423_4
crossref_primary_10_1016_j_csbj_2024_05_014
crossref_primary_10_1016_j_future_2023_02_021
crossref_primary_10_1109_ACCESS_2025_3536639
crossref_primary_10_1016_j_health_2023_100135
crossref_primary_10_1109_ACCESS_2022_3202922
crossref_primary_10_1089_big_2022_0050
crossref_primary_10_1080_23311916_2023_2301150
crossref_primary_10_1142_S021962202250050X
crossref_primary_10_1038_s41598_023_28974_6
crossref_primary_10_3390_bdcc7010018
crossref_primary_10_3390_electronics13010047
crossref_primary_10_1109_ACCESS_2022_3212550
crossref_primary_10_1002_mp_16964
crossref_primary_10_1016_j_engappai_2023_107448
crossref_primary_10_21032_jhis_2025_50_1_31
crossref_primary_10_1016_j_asoc_2021_108190
crossref_primary_10_3389_fonc_2021_811355
crossref_primary_10_1016_j_asoc_2023_110500
crossref_primary_10_1109_JBHI_2022_3185673
crossref_primary_10_1007_s11042_023_18065_z
crossref_primary_10_1016_j_neunet_2024_106409
crossref_primary_10_1007_s10462_024_10766_7
crossref_primary_10_1109_TMI_2022_3233405
crossref_primary_10_1109_ACCESS_2023_3267964
crossref_primary_10_1007_s00500_021_06514_6
crossref_primary_10_1007_s10586_023_04245_x
crossref_primary_10_1109_TETCI_2023_3245103
crossref_primary_10_3390_life12070958
crossref_primary_10_1016_j_procs_2021_09_145
crossref_primary_10_1007_s41666_023_00132_7
crossref_primary_10_1016_j_dss_2022_113910
crossref_primary_10_1111_exsy_13173
crossref_primary_10_1109_ACCESS_2023_3260027
crossref_primary_10_1007_s11042_023_16810_y
crossref_primary_10_4258_hir_2024_30_1_3
crossref_primary_10_3390_sym16070870
crossref_primary_10_1007_s10661_024_12745_5
crossref_primary_10_3390_covid4120140
crossref_primary_10_1007_s13755_024_00276_9
crossref_primary_10_1016_j_comcom_2023_04_026
crossref_primary_10_1109_JIOT_2023_3329061
crossref_primary_10_1016_j_aej_2023_01_017
crossref_primary_10_1109_TNSM_2024_3414417
crossref_primary_10_1016_j_cviu_2023_103882
crossref_primary_10_1016_j_patter_2024_100928
crossref_primary_10_1016_j_measen_2024_101410
crossref_primary_10_1016_j_im_2023_103908
crossref_primary_10_1109_TBDATA_2022_3224392
crossref_primary_10_1016_j_asoc_2021_107522
crossref_primary_10_1097_ICU_0000000000000846
crossref_primary_10_23919_cje_2021_00_370
crossref_primary_10_3390_diagnostics13010159
crossref_primary_10_1016_j_artmed_2023_102691
crossref_primary_10_1109_ACCESS_2023_3333229
crossref_primary_10_1109_COMST_2023_3282264
crossref_primary_10_1007_s00259_022_06053_8
crossref_primary_10_1016_j_eswa_2024_123799
crossref_primary_10_3390_diagnostics13091532
crossref_primary_10_3390_s22145195
crossref_primary_10_1002_cpe_8379
crossref_primary_10_1002_cpe_7040
crossref_primary_10_1117_1_JMI_10_5_054504
crossref_primary_10_3390_covid3010006
crossref_primary_10_20517_rdodj_2023_16
crossref_primary_10_1109_ACCESS_2021_3093633
crossref_primary_10_1007_s11227_023_05633_1
crossref_primary_10_3390_s24165095
crossref_primary_10_32604_cmc_2023_035720
crossref_primary_10_3390_s23020743
crossref_primary_10_1109_TITS_2023_3273167
crossref_primary_10_1002_cpe_8084
crossref_primary_10_1016_j_knosys_2022_109553
crossref_primary_10_1186_s12879_024_10230_5
crossref_primary_10_3390_electronics12194074
crossref_primary_10_1007_s40747_023_00972_1
crossref_primary_10_1093_bioadv_vbad036
crossref_primary_10_1016_j_compbiomed_2023_107153
crossref_primary_10_3390_diagnostics13193140
crossref_primary_10_1016_j_eswa_2023_121463
Cites_doi 10.1148/radiol.2020200343
10.1016/j.jbi.2019.103291
10.1007/s11263-015-0816-y
10.1016/j.ijmedinf.2018.01.007
10.1109/ACCESS.2018.2885997
10.2196/medinform.7744
10.1016/S1473-3099(20)30086-4
10.1148/radiol.2020200490
10.1016/j.compbiomed.2020.103792
10.1109/ACCESS.2020.3010287
10.1016/j.media.2020.101664
10.3390/a13100249
10.1148/radiol.2020200905
10.1016/j.asoc.2020.106580
10.5220/0009144704450451
10.2196/21439
10.1016/j.media.2020.101634
10.1016/j.asoc.2021.107160
ContentType Journal Article
Copyright 2021 Elsevier B.V.
2021 Elsevier B.V. All rights reserved.
2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: 2021 Elsevier B.V. All rights reserved.
– notice: 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.asoc.2021.107330
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 107330
ExternalDocumentID PMC7979273
33776607
10_1016_j_asoc_2021_107330
S1568494621002532
Genre Journal Article
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c455t-8ee0cfd768354c718df88ba28e23f99cb6884e15e6da79b5cee7801084766b843
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Aug 21 14:06:45 EDT 2025
Mon Jul 21 10:22:46 EDT 2025
Thu Apr 03 07:06:38 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 01:50:09 EDT 2025
Fri Feb 23 02:41:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
CNN
Decentralized training
COVID-19 screening
Federated learning
X-ray images
Language English
License 2021 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-8ee0cfd768354c718df88ba28e23f99cb6884e15e6da79b5cee7801084766b843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7979273
PMID 33776607
PQID 2506512242
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7979273
proquest_miscellaneous_2506512242
pubmed_primary_33776607
crossref_primary_10_1016_j_asoc_2021_107330
crossref_citationtrail_10_1016_j_asoc_2021_107330
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107330
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied soft computing
PublicationTitleAlternate Appl Soft Comput
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kanne, Little, Chung, Elicker, Ketai (b3) 2020
Ma, Smal, Daemen, van Walsum (b10) 2020; 61
Zhang, Miao, Mansi, Liao (b11) 2020; 62
Ardabili, Mosavi, Ghamisi, Ferdinand, Varkonyi-Koczy, Reuter, Rabczuk, Atkinson (b7) 2020; 13
Lee, Sun, Wang, Wang, Jun, Jiang (b30) 2018; 6
Nour, Cömert (b17) 2020; 97
Zhao, Lai, Civin, Li, Chandra (b32) 2018
McMahan, Moore, Ramage, Hampson, Arcas (b1) 2017
Narin, Kaya, Pamuk (b21) 2020
Shi, Han, Jiang, Cao, Alwalid, Gu, Fan, Zheng (b14) 2020; 20
Huang, Shea, Qian, Masurkar, Deng, Liu (b29) 2019; 99
Simonyan, Zisserman (b33) 2014
P. Baheti, M. Sikka, K.V. Arya, R. Rajesh, Federated learning on distributed medical records for detection of lung nodules, in: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2020, pp. 445–451.
Li, Ma, Shende, Castaneda, Chakladar, Tsai, Apostol, Honda, Xu, Wong, Zhang, Lee, Gnanasekar, Honda, Kuo, Yu, Chang, Rajasekaran, Ongkeko (b9) 2020; 1
Schwab, DuMon Schütte, Dietz, Bauer (b8) 2020; 22
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b36) 2015; 115
Zhang, Xie, Li3, Shen, Xi (b19) 2020
Gozes, Frid-Adar, Greenspan, Browning, Zhang, Ji, Bernheim, Siegel (b25) 2020
Zu, Jiang, Xu, Chen, Ni, Lu, Zhang (b5) 2020
Chowdhury, Rahman, Khandakar, Mazhar, Kadir, Mahbub, Islam, Khan, Iqbal, Emadi (b22) 2020; 8
Li, Qin, Xu, Yin, Wang, Kong, Bai, Lu, Fang, Song, Cao, Liu, Wang, Xu, Fang, Zhang, Xia, Xia (b26) 2020
He, Zhang, Ren, Sun (b34) 2016
Kairon, Bhattacharyya (b6) 2021; 11
Demir (b23) 2021; 103
Wang, Wong (b16) 2020
Xu, Wu, Bie (b13) 2019; 7
Xie, Zhong, Zhao, Zheng, Wang, Liu (b4) 2020
Gupta, Anjum, Gupta, Kataryat (b18) 2020; 97
Ozturk, Talo, Yildirim, Baloglu, Yildirim, Acharya (b20) 2020
McMahan, Moore, Ramage, Arcas (b31) 2016
Leroy, Coucke, Lavril, Gisselbrecht, Dureau (b38) 2019
Devashish, Sharma, Yadav, Sharma (b37) 2009; 2
Hemdan, Shouman, Karar (b15) 2020
Jaeger, Candemir, Antani, Wáng, Lu, Thoma (b35) 2014; 47
Shan, Gao, Wang, Shi, Shi, Han, Xue, Shen, Shi (b24) 2020
Brisimi, Chen, Mela, Olshevsky, Paschalidis, Shi (b28) 2018; 112
Hui, Azhar, Madani, Ntoumi, Kock, Dar, Ippolito, Mchugh, Memish, Drosten, Zumla, Petersen (b2) 2020; 91
Rajpurkar, Irvin, Zhu, Yang, Mehta, Duan, Ding, Bagul, Ball, Langlotz, Shpanskaya, Lungren, Ng (b12) 2017
Ma (10.1016/j.asoc.2021.107330_b10) 2020; 61
Shi (10.1016/j.asoc.2021.107330_b14) 2020; 20
He (10.1016/j.asoc.2021.107330_b34) 2016
McMahan (10.1016/j.asoc.2021.107330_b1) 2017
Zhang (10.1016/j.asoc.2021.107330_b11) 2020; 62
Chowdhury (10.1016/j.asoc.2021.107330_b22) 2020; 8
Kairon (10.1016/j.asoc.2021.107330_b6) 2021; 11
Ozturk (10.1016/j.asoc.2021.107330_b20) 2020
10.1016/j.asoc.2021.107330_b27
Gupta (10.1016/j.asoc.2021.107330_b18) 2020; 97
Simonyan (10.1016/j.asoc.2021.107330_b33) 2014
Gozes (10.1016/j.asoc.2021.107330_b25) 2020
Jaeger (10.1016/j.asoc.2021.107330_b35) 2014; 47
Rajpurkar (10.1016/j.asoc.2021.107330_b12) 2017
Lee (10.1016/j.asoc.2021.107330_b30) 2018; 6
Brisimi (10.1016/j.asoc.2021.107330_b28) 2018; 112
Li (10.1016/j.asoc.2021.107330_b9) 2020; 1
Huang (10.1016/j.asoc.2021.107330_b29) 2019; 99
Li (10.1016/j.asoc.2021.107330_b26) 2020
Xu (10.1016/j.asoc.2021.107330_b13) 2019; 7
Devashish (10.1016/j.asoc.2021.107330_b37) 2009; 2
Zhang (10.1016/j.asoc.2021.107330_b19) 2020
McMahan (10.1016/j.asoc.2021.107330_b31) 2016
Demir (10.1016/j.asoc.2021.107330_b23) 2021; 103
Kanne (10.1016/j.asoc.2021.107330_b3) 2020
Narin (10.1016/j.asoc.2021.107330_b21) 2020
Schwab (10.1016/j.asoc.2021.107330_b8) 2020; 22
Zu (10.1016/j.asoc.2021.107330_b5) 2020
Zhao (10.1016/j.asoc.2021.107330_b32) 2018
Hui (10.1016/j.asoc.2021.107330_b2) 2020; 91
Hemdan (10.1016/j.asoc.2021.107330_b15) 2020
Wang (10.1016/j.asoc.2021.107330_b16) 2020
Shan (10.1016/j.asoc.2021.107330_b24) 2020
Nour (10.1016/j.asoc.2021.107330_b17) 2020; 97
Xie (10.1016/j.asoc.2021.107330_b4) 2020
Russakovsky (10.1016/j.asoc.2021.107330_b36) 2015; 115
Leroy (10.1016/j.asoc.2021.107330_b38) 2019
Ardabili (10.1016/j.asoc.2021.107330_b7) 2020; 13
References_xml – year: 2020
  ident: b24
  article-title: Abnormal lung quantification in chest ct images of covid-19 patients with deep learning and its application to severity prediction
  publication-title: Med. Phys.
– year: 2020
  ident: b16
  article-title: Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images
– reference: P. Baheti, M. Sikka, K.V. Arya, R. Rajesh, Federated learning on distributed medical records for detection of lung nodules, in: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2020, pp. 445–451.
– start-page: 770
  year: 2016
  end-page: 778
  ident: b34
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 2
  start-page: 53
  year: 2009
  end-page: 58
  ident: b37
  article-title: The concept of sensitivity and specificity in relation to two types of errors and its application in medical reasearch
  publication-title: J. Reliab. Stat. Stud.
– year: 2016
  ident: b31
  article-title: Federated learning of deep networks using model averaging
– year: 2020
  ident: b25
  article-title: Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis
– volume: 103
  year: 2021
  ident: b23
  article-title: Deepcoronet: A deep lstm approach for automated detection of covid-19 cases from chest x-ray images
  publication-title: Appl. Soft Comput.
– volume: 97
  year: 2020
  ident: b18
  article-title: Instacovnet-19: A deep learning classification model for the detection of covid-19 patients using chest x-ray
  publication-title: Appl. Soft Comput.
– year: 2014
  ident: b33
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b36
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 20
  start-page: 425
  year: 2020
  end-page: 434
  ident: b14
  article-title: Radiological findings from 81 patients with covid-19 pneumonia in wuhan, china: a descriptive study
  publication-title: Lancet. Infect. Dis. 2020
– year: 2020
  ident: b19
  article-title: Covid-19 screening on chest x-ray images using deep learning based anomaly detection
– volume: 112
  start-page: 59
  year: 2018
  end-page: 67
  ident: b28
  article-title: Federated learning of predictive models from federated electronic health records
  publication-title: Int. J. Med. Inform.
– year: 2020
  ident: b20
  article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images
  publication-title: Comput. Biol. Med.
– year: 2020
  ident: b15
  article-title: Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images
– volume: 47
  start-page: 5
  year: 2014
  end-page: 477
  ident: b35
  article-title: Two public chest x-ray datasets for computer-aided screening of pulmonary diseases
  publication-title: Quant. Imaging Med. Surg.
– year: 2020
  ident: b26
  article-title: Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct
  publication-title: Radiology
– volume: 11
  start-page: 3
  year: 2021
  end-page: 123
  ident: b6
  article-title: COVID-19 outbreak prediction using quantum neural networks
  publication-title: Intel. Enabled Res.
– volume: 8
  start-page: 132665
  year: 2020
  end-page: 132676
  ident: b22
  article-title: Can ai help in screening viral and covid-19 pneumonia?
  publication-title: IEEE Access
– start-page: 6341
  year: 2019
  end-page: 6345
  ident: b38
  article-title: Federated learning for keyword spotting
  publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– year: 2020
  ident: b3
  article-title: Essentials for radiologists on covid-19: an update—radiology scientific expert panel
– year: 2017
  ident: b12
  article-title: Chexnet : Radiologist-level pneumonia detection on chest x-rays with deep learning
– volume: 22
  year: 2020
  ident: b8
  article-title: Clinical predictive models for covid-19: Systematic study
  publication-title: J. Med. Internet. Res.
– volume: 91
  start-page: 264
  year: 2020
  end-page: 266
  ident: b2
  article-title: The continuing covid-19 epidemic threat of novel coronaviruses to global health-the latest 2019 novel coronavirus outbreak in wuhan, china
  publication-title: Int. J. Infec. Dis.: IJID: Off. Publ. Int. Soc. Infect. Dis.
– year: 2020
  ident: b4
  article-title: Chest ct for typical 2019-ncov pneumonia: relationship to negative rt-pcr testing
  publication-title: Radiology
– volume: 99
  year: 2019
  ident: b29
  article-title: Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records
  publication-title: J. Biomed. Inform.
– volume: 62
  year: 2020
  ident: b11
  article-title: Unsupervised x-ray image segmentation with task driven generative adversarial networks
  publication-title: Med. Image Anal.
– volume: 6
  year: 2018
  ident: b30
  article-title: Privacy-preserving patient similarity learning in a federated environment: Development and analysis
  publication-title: JMIR Med. Inform.
– year: 2018
  ident: b32
  article-title: Federated learning with non-iid data
– volume: 1
  year: 2020
  ident: b9
  article-title: Using machine learning of clinical data to diagnose covid-19: a systematic review and meta-analysis
  publication-title: BMC Med. Inform. Decis. Mak.
– year: 2020
  ident: b21
  article-title: Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks
– start-page: 54
  year: 2017
  ident: b1
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: AISTATS
– volume: 7
  start-page: 4466
  year: 2019
  end-page: 4477
  ident: b13
  article-title: Cxnet-m1: Anomaly detection on chest x-rays with image-based deep learning
  publication-title: IEEE Access
– year: 2020
  ident: b5
  article-title: Coronavirus disease 2019 (covid-19): a perspective from china
  publication-title: Radiology
– volume: 13
  year: 2020
  ident: b7
  article-title: Covid-19 outbreak prediction with machine learning
  publication-title: Algorithms
– volume: 61
  year: 2020
  ident: b10
  article-title: Dynamic coronary roadmapping via catheter tip tracking in x-ray fluoroscopy with deep learning based bayesian filtering
  publication-title: Med. Image Anal.
– volume: 97
  year: 2020
  ident: b17
  article-title: A novel medical diagnosis model for covid-19 infection detection based on deep features and bayesian optimization
  publication-title: Appl. Soft Comput.
– volume: 91
  start-page: 264
  year: 2020
  ident: 10.1016/j.asoc.2021.107330_b2
  article-title: The continuing covid-19 epidemic threat of novel coronaviruses to global health-the latest 2019 novel coronavirus outbreak in wuhan, china
  publication-title: Int. J. Infec. Dis.: IJID: Off. Publ. Int. Soc. Infect. Dis.
– year: 2020
  ident: 10.1016/j.asoc.2021.107330_b4
  article-title: Chest ct for typical 2019-ncov pneumonia: relationship to negative rt-pcr testing
  publication-title: Radiology
  doi: 10.1148/radiol.2020200343
– volume: 99
  year: 2019
  ident: 10.1016/j.asoc.2021.107330_b29
  article-title: Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103291
– year: 2017
  ident: 10.1016/j.asoc.2021.107330_b12
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.asoc.2021.107330_b36
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107330_b9
  article-title: Using machine learning of clinical data to diagnose covid-19: a systematic review and meta-analysis
  publication-title: BMC Med. Inform. Decis. Mak.
– year: 2020
  ident: 10.1016/j.asoc.2021.107330_b16
– volume: 112
  start-page: 59
  year: 2018
  ident: 10.1016/j.asoc.2021.107330_b28
  article-title: Federated learning of predictive models from federated electronic health records
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2018.01.007
– volume: 7
  start-page: 4466
  year: 2019
  ident: 10.1016/j.asoc.2021.107330_b13
  article-title: Cxnet-m1: Anomaly detection on chest x-rays with image-based deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2885997
– volume: 6
  year: 2018
  ident: 10.1016/j.asoc.2021.107330_b30
  article-title: Privacy-preserving patient similarity learning in a federated environment: Development and analysis
  publication-title: JMIR Med. Inform.
  doi: 10.2196/medinform.7744
– start-page: 54
  year: 2017
  ident: 10.1016/j.asoc.2021.107330_b1
  article-title: Communication-efficient learning of deep networks from decentralized data
– year: 2020
  ident: 10.1016/j.asoc.2021.107330_b25
– year: 2020
  ident: 10.1016/j.asoc.2021.107330_b3
– volume: 20
  start-page: 425
  year: 2020
  ident: 10.1016/j.asoc.2021.107330_b14
  article-title: Radiological findings from 81 patients with covid-19 pneumonia in wuhan, china: a descriptive study
  publication-title: Lancet. Infect. Dis. 2020
  doi: 10.1016/S1473-3099(20)30086-4
– year: 2020
  ident: 10.1016/j.asoc.2021.107330_b5
  article-title: Coronavirus disease 2019 (covid-19): a perspective from china
  publication-title: Radiology
  doi: 10.1148/radiol.2020200490
– year: 2020
  ident: 10.1016/j.asoc.2021.107330_b20
  article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103792
– year: 2020
  ident: 10.1016/j.asoc.2021.107330_b21
– volume: 2
  start-page: 53
  year: 2009
  ident: 10.1016/j.asoc.2021.107330_b37
  article-title: The concept of sensitivity and specificity in relation to two types of errors and its application in medical reasearch
  publication-title: J. Reliab. Stat. Stud.
– volume: 8
  start-page: 132665
  year: 2020
  ident: 10.1016/j.asoc.2021.107330_b22
  article-title: Can ai help in screening viral and covid-19 pneumonia?
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010287
– year: 2014
  ident: 10.1016/j.asoc.2021.107330_b33
– volume: 62
  year: 2020
  ident: 10.1016/j.asoc.2021.107330_b11
  article-title: Unsupervised x-ray image segmentation with task driven generative adversarial networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101664
– volume: 13
  year: 2020
  ident: 10.1016/j.asoc.2021.107330_b7
  article-title: Covid-19 outbreak prediction with machine learning
  publication-title: Algorithms
  doi: 10.3390/a13100249
– volume: 47
  start-page: 5
  year: 2014
  ident: 10.1016/j.asoc.2021.107330_b35
  article-title: Two public chest x-ray datasets for computer-aided screening of pulmonary diseases
  publication-title: Quant. Imaging Med. Surg.
– year: 2020
  ident: 10.1016/j.asoc.2021.107330_b15
– start-page: 770
  year: 2016
  ident: 10.1016/j.asoc.2021.107330_b34
  publication-title: Deep residual learning for image recognition
– year: 2020
  ident: 10.1016/j.asoc.2021.107330_b24
  article-title: Abnormal lung quantification in chest ct images of covid-19 patients with deep learning and its application to severity prediction
  publication-title: Med. Phys.
– year: 2020
  ident: 10.1016/j.asoc.2021.107330_b26
  article-title: Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct
  publication-title: Radiology
  doi: 10.1148/radiol.2020200905
– volume: 97
  year: 2020
  ident: 10.1016/j.asoc.2021.107330_b17
  article-title: A novel medical diagnosis model for covid-19 infection detection based on deep features and bayesian optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106580
– volume: 97
  year: 2020
  ident: 10.1016/j.asoc.2021.107330_b18
  article-title: Instacovnet-19: A deep learning classification model for the detection of covid-19 patients using chest x-ray
  publication-title: Appl. Soft Comput.
– year: 2016
  ident: 10.1016/j.asoc.2021.107330_b31
– ident: 10.1016/j.asoc.2021.107330_b27
  doi: 10.5220/0009144704450451
– start-page: 6341
  year: 2019
  ident: 10.1016/j.asoc.2021.107330_b38
  article-title: Federated learning for keyword spotting
– year: 2020
  ident: 10.1016/j.asoc.2021.107330_b19
– year: 2018
  ident: 10.1016/j.asoc.2021.107330_b32
– volume: 22
  year: 2020
  ident: 10.1016/j.asoc.2021.107330_b8
  article-title: Clinical predictive models for covid-19: Systematic study
  publication-title: J. Med. Internet. Res.
  doi: 10.2196/21439
– volume: 61
  year: 2020
  ident: 10.1016/j.asoc.2021.107330_b10
  article-title: Dynamic coronary roadmapping via catheter tip tracking in x-ray fluoroscopy with deep learning based bayesian filtering
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101634
– volume: 103
  year: 2021
  ident: 10.1016/j.asoc.2021.107330_b23
  article-title: Deepcoronet: A deep lstm approach for automated detection of covid-19 cases from chest x-ray images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107160
– volume: 11
  start-page: 3
  year: 2021
  ident: 10.1016/j.asoc.2021.107330_b6
  article-title: COVID-19 outbreak prediction using quantum neural networks
  publication-title: Intel. Enabled Res.
SSID ssj0016928
Score 2.6330543
Snippet Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107330
SubjectTerms CNN
COVID-19 screening
Decentralized training
Deep learning
Federated learning
X-ray images
Title Federated learning for COVID-19 screening from Chest X-ray images
URI https://dx.doi.org/10.1016/j.asoc.2021.107330
https://www.ncbi.nlm.nih.gov/pubmed/33776607
https://www.proquest.com/docview/2506512242
https://pubmed.ncbi.nlm.nih.gov/PMC7979273
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcukFSltgC1SuxA2ZTeL3cRVYbWkpFVC0NyuJHdiqzVbb7YELv52ZxFl1AfXQUxRnHI1m7Jlv5PEMIW9q4b1NsJ42BEBMSFuxAjwTU15mRS2DkB7vDn86VZNz8XEqpxsk7-_CYFpltP2dTW-tdRwZRmkOr2ez4VeIPIywQmVYRVRytMNCaFzl736v0jxSZdv-qkjMkDpenOlyvAqQAMSIWQoDmmMm9P-d07_g8-8cyjtOabxNHkc0SUcdw0_JRmh2yJO-UwONG3eXjMZYMwJgpaexTcQPCmiV5p-_H71nqaVgPCCgbYcX8yuaYxctOmWL4hedXYHJudkj5-MP3_IJi80TWCWkXDITQlLVHqIJLkUFHsjXxpRFZkLGa2urUhkjQiqD8oW2pQRnqcFbJeCtlCqN4M_IZjNvwgtCveehDlpbKQvEL6VW8EvrK1NzLkMyIGkvNVfFyuLY4OLS9SlkFw4l7VDSrpP0gLxdzbnu6mrcSy17Zbi11eHA8N8777DXnINtg2chRRPmtzcOkJ-SeKqYDcjzTpMrPjjXIINED4he0_GKAEtyr39pZj_b0tzaaguAcP-B_L4kW_jWpQO_IpvLxW14DaBnWR60q_qAPBrlX07O8Hl0PDn9A06NAOk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8ryKEaCEwqb-O0Dh2rb1S59cKBFezNJ7MAimq12t0K98Kf4g4wTZ8UC6gGpVzuxrG-cb75RxjMALyvunElDPW0MgBIuTJnk6JkS6QTNK-G5cOHu8OGRHJ3wdxMx2YCf3V2YkFYZub_l9Iat40g_otk_m077HzDy0NxwSUMVUcFozKzc9xffMW5bvB3vopFfUTrcOx6MkthaICm5EMtEe5-WlUOtzQQvkZ9dpXWRU-0pq4wpC6k195nw0uXKFAJdiUIuT5HLpSw0Z7juNbjOkS5C24Q3P1Z5JZk0TUPXsLskbC_e1GmTynKEHINSmuGAYiH1-t_e8G-1-2fS5m9ecHgHbkX5SnZahO7Chq_vwe2uNQSJTHEfdoahSAXqWEdiX4rPBOUxGbz_ON5NMkOQrTCCbobns1MyCG27yCSZ5xdkeooct3gAJ1cC6UPYrGe1fwTEOeYrr5QRIg-CqVASlzSu1BVjwqc9yDrUbBlLmYeOGt9sl7P21QakbUDatkj34PXqnbO2kMelT4vOGHbtOFr0NJe-96KznMXvNPx8yWs_O19YlJpShN-YtAdbrSVX-2BMIQap6oFas_HqgVADfH2mnn5paoErowwq0Mf_ud_ncGN0fHhgD8ZH-0_gZphpc5GfwuZyfu6foeJaFtvNCSfw6ao_qV8HHDrC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+learning+for+COVID-19+screening+from+Chest+X-ray+images&rft.jtitle=Applied+soft+computing&rft.au=Feki%2C+Ines&rft.au=Ammar%2C+Sourour&rft.au=Kessentini%2C+Yousri&rft.au=Muhammad%2C+Khan&rft.date=2021-07-01&rft.issn=1568-4946&rft.volume=106&rft.spage=107330&rft_id=info:doi/10.1016%2Fj.asoc.2021.107330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon