Federated learning for COVID-19 screening from Chest X-ray images
Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially...
Saved in:
Published in | Applied soft computing Vol. 106; p. 107330 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially have a substantial role in streamlining and accelerating the diagnosis of COVID-19. Such techniques involve large datasets for training and all such data must be centralized in order to be processed. Due to medical data privacy regulations, it is often not possible to collect and share patient data in a centralized data server. In this work, we present a collaborative federated learning framework allowing multiple medical institutions screening COVID-19 from Chest X-ray images using deep learning without sharing patient data. We investigate several key properties and specificities of federated learning setting including the not independent and identically distributed (non-IID) and unbalanced data distributions that naturally arise. We experimentally demonstrate that the proposed federated learning framework provides competitive results to that of models trained by sharing data, considering two different model architectures. These findings would encourage medical institutions to adopt collaborative process and reap benefits of the rich private data in order to rapidly build a powerful model for COVID-19 screening. |
---|---|
AbstractList | Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially have a substantial role in streamlining and accelerating the diagnosis of COVID-19. Such techniques involve large datasets for training and all such data must be centralized in order to be processed. Due to medical data privacy regulations, it is often not possible to collect and share patient data in a centralized data server. In this work, we present a collaborative federated learning framework allowing multiple medical institutions screening COVID-19 from Chest X-ray images using deep learning without sharing patient data. We investigate several key properties and specificities of federated learning setting including the not independent and identically distributed (non-IID) and unbalanced data distributions that naturally arise. We experimentally demonstrate that the proposed federated learning framework provides competitive results to that of models trained by sharing data, considering two different model architectures. These findings would encourage medical institutions to adopt collaborative process and reap benefits of the rich private data in order to rapidly build a powerful model for COVID-19 screening. Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially have a substantial role in streamlining and accelerating the diagnosis of COVID-19. Such techniques involve large datasets for training and all such data must be centralized in order to be processed. Due to medical data privacy regulations, it is often not possible to collect and share patient data in a centralized data server. In this work, we present a collaborative federated learning framework allowing multiple medical institutions screening COVID-19 from Chest X-ray images using deep learning without sharing patient data. We investigate several key properties and specificities of federated learning setting including the not independent and identically distributed (non-IID) and unbalanced data distributions that naturally arise. We experimentally demonstrate that the proposed federated learning framework provides competitive results to that of models trained by sharing data, considering two different model architectures. These findings would encourage medical institutions to adopt collaborative process and reap benefits of the rich private data in order to rapidly build a powerful model for COVID-19 screening.Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially have a substantial role in streamlining and accelerating the diagnosis of COVID-19. Such techniques involve large datasets for training and all such data must be centralized in order to be processed. Due to medical data privacy regulations, it is often not possible to collect and share patient data in a centralized data server. In this work, we present a collaborative federated learning framework allowing multiple medical institutions screening COVID-19 from Chest X-ray images using deep learning without sharing patient data. We investigate several key properties and specificities of federated learning setting including the not independent and identically distributed (non-IID) and unbalanced data distributions that naturally arise. We experimentally demonstrate that the proposed federated learning framework provides competitive results to that of models trained by sharing data, considering two different model architectures. These findings would encourage medical institutions to adopt collaborative process and reap benefits of the rich private data in order to rapidly build a powerful model for COVID-19 screening. |
ArticleNumber | 107330 |
Author | Kessentini, Yousri Ammar, Sourour Muhammad, Khan Feki, Ines |
Author_xml | – sequence: 1 givenname: Ines surname: Feki fullname: Feki, Ines organization: Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia – sequence: 2 givenname: Sourour surname: Ammar fullname: Ammar, Sourour email: sourour.ammar@crns.rnrt.tn organization: Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia – sequence: 3 givenname: Yousri surname: Kessentini fullname: Kessentini, Yousri email: yousri.kessentini@crns.rnrt.tn organization: Digital Research Center of Sfax, B.P. 275, Sakiet Ezzit, 3021 Sfax, Tunisia – sequence: 4 givenname: Khan surname: Muhammad fullname: Muhammad, Khan email: khanmuhammad@sju.ac.kr organization: Visual Analytics for Knowledge Laboratory (VIS2KNOW Lab), School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul 03063, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33776607$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLAzEUhYMo1lb_gAuZpZupSWYmDxBB6hMK3ai4C5nMnTZlOtFkWui_N2VU1IWrhJvz3XtyzxDtt64FhE4JHhNM2MVyrIMzY4opiQWeZXgPHRHBaSqZIPvxXjCR5jJnAzQMYYkjJKk4RIMs45wxzI_Q9R1U4HUHVdKA9q1t50ntfDKZvTzepEQmwXiAvuzdKpksIHTJa-r1NrErPYdwjA5q3QQ4-TxH6Pnu9mnykE5n94-T62lq8qLoUgGATV1xJrIiN5yIqhai1FQAzWopTcmEyIEUwCrNZVkYAC4wwSKPTkuRZyN01fd9W5crqAy0ndeNevPRht8qp636_dLahZq7jeKSSxq3M0Lnnw28e1_Hb6iVDQaaRrfg1kHRArOCUJrTKD37Oet7yNfeooD2AuNdCB7qbwnBaheOWqpdOGoXjurDiZD4Axnb6c66nV_b_I9e9ijEDW8seBWMhdZAZT2YTlXO_od_ABQZqPs |
CitedBy_id | crossref_primary_10_1016_j_knosys_2023_110658 crossref_primary_10_1038_s41467_024_51172_5 crossref_primary_10_1177_20552076231203604 crossref_primary_10_1002_spy2_403 crossref_primary_10_1109_TETCI_2024_3371222 crossref_primary_10_1109_JBHI_2023_3282955 crossref_primary_10_1109_ACCESS_2024_3395997 crossref_primary_10_1093_bib_bbab498 crossref_primary_10_1016_j_cmpb_2023_107821 crossref_primary_10_1259_bjr_20220890 crossref_primary_10_3389_frcmn_2022_907388 crossref_primary_10_1016_j_compbiomed_2023_106877 crossref_primary_10_1051_bioconf_20248601003 crossref_primary_10_1097_RLU_0000000000004194 crossref_primary_10_1007_s11432_023_4011_4 crossref_primary_10_3233_JIFS_236354 crossref_primary_10_1016_j_engappai_2023_106371 crossref_primary_10_1007_s11042_024_19358_7 crossref_primary_10_1109_TNNLS_2024_3370297 crossref_primary_10_1016_j_patcog_2024_110424 crossref_primary_10_3390_app12147317 crossref_primary_10_1007_s11227_024_06476_0 crossref_primary_10_1016_j_asoc_2022_108867 crossref_primary_10_1038_s41598_024_77196_x crossref_primary_10_1109_JIOT_2021_3120998 crossref_primary_10_1016_j_csbj_2024_03_028 crossref_primary_10_3390_diagnostics12112835 crossref_primary_10_3390_diagnostics12123171 crossref_primary_10_1016_j_future_2024_107674 crossref_primary_10_3390_s22020450 crossref_primary_10_1109_ACCESS_2023_3237554 crossref_primary_10_54097_hset_v39i_6628 crossref_primary_10_28979_jarnas_952700 crossref_primary_10_1016_j_asoc_2025_112747 crossref_primary_10_3390_math11143093 crossref_primary_10_3390_bdcc9010011 crossref_primary_10_1016_j_im_2024_103922 crossref_primary_10_3390_math11102385 crossref_primary_10_3390_app112311191 crossref_primary_10_1109_ACCESS_2023_3281832 crossref_primary_10_3390_electronics11203316 crossref_primary_10_1145_3501296 crossref_primary_10_1016_j_artmed_2024_103024 crossref_primary_10_1016_j_asoc_2022_109906 crossref_primary_10_1109_ACCESS_2024_3435910 crossref_primary_10_1109_TRPMS_2022_3194408 crossref_primary_10_31436_iiumej_v26i1_3186 crossref_primary_10_3390_biomedinformatics3030045 crossref_primary_10_1016_j_seta_2022_102987 crossref_primary_10_1016_j_cmpb_2024_108104 crossref_primary_10_1016_j_asoc_2023_110453 crossref_primary_10_1007_s13721_023_00423_4 crossref_primary_10_1016_j_csbj_2024_05_014 crossref_primary_10_1016_j_future_2023_02_021 crossref_primary_10_1109_ACCESS_2025_3536639 crossref_primary_10_1016_j_health_2023_100135 crossref_primary_10_1109_ACCESS_2022_3202922 crossref_primary_10_1089_big_2022_0050 crossref_primary_10_1080_23311916_2023_2301150 crossref_primary_10_1142_S021962202250050X crossref_primary_10_1038_s41598_023_28974_6 crossref_primary_10_3390_bdcc7010018 crossref_primary_10_3390_electronics13010047 crossref_primary_10_1109_ACCESS_2022_3212550 crossref_primary_10_1002_mp_16964 crossref_primary_10_1016_j_engappai_2023_107448 crossref_primary_10_21032_jhis_2025_50_1_31 crossref_primary_10_1016_j_asoc_2021_108190 crossref_primary_10_3389_fonc_2021_811355 crossref_primary_10_1016_j_asoc_2023_110500 crossref_primary_10_1109_JBHI_2022_3185673 crossref_primary_10_1007_s11042_023_18065_z crossref_primary_10_1016_j_neunet_2024_106409 crossref_primary_10_1007_s10462_024_10766_7 crossref_primary_10_1109_TMI_2022_3233405 crossref_primary_10_1109_ACCESS_2023_3267964 crossref_primary_10_1007_s00500_021_06514_6 crossref_primary_10_1007_s10586_023_04245_x crossref_primary_10_1109_TETCI_2023_3245103 crossref_primary_10_3390_life12070958 crossref_primary_10_1016_j_procs_2021_09_145 crossref_primary_10_1007_s41666_023_00132_7 crossref_primary_10_1016_j_dss_2022_113910 crossref_primary_10_1111_exsy_13173 crossref_primary_10_1109_ACCESS_2023_3260027 crossref_primary_10_1007_s11042_023_16810_y crossref_primary_10_4258_hir_2024_30_1_3 crossref_primary_10_3390_sym16070870 crossref_primary_10_1007_s10661_024_12745_5 crossref_primary_10_3390_covid4120140 crossref_primary_10_1007_s13755_024_00276_9 crossref_primary_10_1016_j_comcom_2023_04_026 crossref_primary_10_1109_JIOT_2023_3329061 crossref_primary_10_1016_j_aej_2023_01_017 crossref_primary_10_1109_TNSM_2024_3414417 crossref_primary_10_1016_j_cviu_2023_103882 crossref_primary_10_1016_j_patter_2024_100928 crossref_primary_10_1016_j_measen_2024_101410 crossref_primary_10_1016_j_im_2023_103908 crossref_primary_10_1109_TBDATA_2022_3224392 crossref_primary_10_1016_j_asoc_2021_107522 crossref_primary_10_1097_ICU_0000000000000846 crossref_primary_10_23919_cje_2021_00_370 crossref_primary_10_3390_diagnostics13010159 crossref_primary_10_1016_j_artmed_2023_102691 crossref_primary_10_1109_ACCESS_2023_3333229 crossref_primary_10_1109_COMST_2023_3282264 crossref_primary_10_1007_s00259_022_06053_8 crossref_primary_10_1016_j_eswa_2024_123799 crossref_primary_10_3390_diagnostics13091532 crossref_primary_10_3390_s22145195 crossref_primary_10_1002_cpe_8379 crossref_primary_10_1002_cpe_7040 crossref_primary_10_1117_1_JMI_10_5_054504 crossref_primary_10_3390_covid3010006 crossref_primary_10_20517_rdodj_2023_16 crossref_primary_10_1109_ACCESS_2021_3093633 crossref_primary_10_1007_s11227_023_05633_1 crossref_primary_10_3390_s24165095 crossref_primary_10_32604_cmc_2023_035720 crossref_primary_10_3390_s23020743 crossref_primary_10_1109_TITS_2023_3273167 crossref_primary_10_1002_cpe_8084 crossref_primary_10_1016_j_knosys_2022_109553 crossref_primary_10_1186_s12879_024_10230_5 crossref_primary_10_3390_electronics12194074 crossref_primary_10_1007_s40747_023_00972_1 crossref_primary_10_1093_bioadv_vbad036 crossref_primary_10_1016_j_compbiomed_2023_107153 crossref_primary_10_3390_diagnostics13193140 crossref_primary_10_1016_j_eswa_2023_121463 |
Cites_doi | 10.1148/radiol.2020200343 10.1016/j.jbi.2019.103291 10.1007/s11263-015-0816-y 10.1016/j.ijmedinf.2018.01.007 10.1109/ACCESS.2018.2885997 10.2196/medinform.7744 10.1016/S1473-3099(20)30086-4 10.1148/radiol.2020200490 10.1016/j.compbiomed.2020.103792 10.1109/ACCESS.2020.3010287 10.1016/j.media.2020.101664 10.3390/a13100249 10.1148/radiol.2020200905 10.1016/j.asoc.2020.106580 10.5220/0009144704450451 10.2196/21439 10.1016/j.media.2020.101634 10.1016/j.asoc.2021.107160 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: 2021 Elsevier B.V. All rights reserved. – notice: 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.asoc.2021.107330 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 107330 |
ExternalDocumentID | PMC7979273 33776607 10_1016_j_asoc_2021_107330 S1568494621002532 |
Genre | Journal Article |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c455t-8ee0cfd768354c718df88ba28e23f99cb6884e15e6da79b5cee7801084766b843 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Aug 21 14:06:45 EDT 2025 Mon Jul 21 10:22:46 EDT 2025 Thu Apr 03 07:06:38 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 01:50:09 EDT 2025 Fri Feb 23 02:41:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning CNN Decentralized training COVID-19 screening Federated learning X-ray images |
Language | English |
License | 2021 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-8ee0cfd768354c718df88ba28e23f99cb6884e15e6da79b5cee7801084766b843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7979273 |
PMID | 33776607 |
PQID | 2506512242 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7979273 proquest_miscellaneous_2506512242 pubmed_primary_33776607 crossref_primary_10_1016_j_asoc_2021_107330 crossref_citationtrail_10_1016_j_asoc_2021_107330 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107330 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Applied soft computing |
PublicationTitleAlternate | Appl Soft Comput |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kanne, Little, Chung, Elicker, Ketai (b3) 2020 Ma, Smal, Daemen, van Walsum (b10) 2020; 61 Zhang, Miao, Mansi, Liao (b11) 2020; 62 Ardabili, Mosavi, Ghamisi, Ferdinand, Varkonyi-Koczy, Reuter, Rabczuk, Atkinson (b7) 2020; 13 Lee, Sun, Wang, Wang, Jun, Jiang (b30) 2018; 6 Nour, Cömert (b17) 2020; 97 Zhao, Lai, Civin, Li, Chandra (b32) 2018 McMahan, Moore, Ramage, Hampson, Arcas (b1) 2017 Narin, Kaya, Pamuk (b21) 2020 Shi, Han, Jiang, Cao, Alwalid, Gu, Fan, Zheng (b14) 2020; 20 Huang, Shea, Qian, Masurkar, Deng, Liu (b29) 2019; 99 Simonyan, Zisserman (b33) 2014 P. Baheti, M. Sikka, K.V. Arya, R. Rajesh, Federated learning on distributed medical records for detection of lung nodules, in: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2020, pp. 445–451. Li, Ma, Shende, Castaneda, Chakladar, Tsai, Apostol, Honda, Xu, Wong, Zhang, Lee, Gnanasekar, Honda, Kuo, Yu, Chang, Rajasekaran, Ongkeko (b9) 2020; 1 Schwab, DuMon Schütte, Dietz, Bauer (b8) 2020; 22 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b36) 2015; 115 Zhang, Xie, Li3, Shen, Xi (b19) 2020 Gozes, Frid-Adar, Greenspan, Browning, Zhang, Ji, Bernheim, Siegel (b25) 2020 Zu, Jiang, Xu, Chen, Ni, Lu, Zhang (b5) 2020 Chowdhury, Rahman, Khandakar, Mazhar, Kadir, Mahbub, Islam, Khan, Iqbal, Emadi (b22) 2020; 8 Li, Qin, Xu, Yin, Wang, Kong, Bai, Lu, Fang, Song, Cao, Liu, Wang, Xu, Fang, Zhang, Xia, Xia (b26) 2020 He, Zhang, Ren, Sun (b34) 2016 Kairon, Bhattacharyya (b6) 2021; 11 Demir (b23) 2021; 103 Wang, Wong (b16) 2020 Xu, Wu, Bie (b13) 2019; 7 Xie, Zhong, Zhao, Zheng, Wang, Liu (b4) 2020 Gupta, Anjum, Gupta, Kataryat (b18) 2020; 97 Ozturk, Talo, Yildirim, Baloglu, Yildirim, Acharya (b20) 2020 McMahan, Moore, Ramage, Arcas (b31) 2016 Leroy, Coucke, Lavril, Gisselbrecht, Dureau (b38) 2019 Devashish, Sharma, Yadav, Sharma (b37) 2009; 2 Hemdan, Shouman, Karar (b15) 2020 Jaeger, Candemir, Antani, Wáng, Lu, Thoma (b35) 2014; 47 Shan, Gao, Wang, Shi, Shi, Han, Xue, Shen, Shi (b24) 2020 Brisimi, Chen, Mela, Olshevsky, Paschalidis, Shi (b28) 2018; 112 Hui, Azhar, Madani, Ntoumi, Kock, Dar, Ippolito, Mchugh, Memish, Drosten, Zumla, Petersen (b2) 2020; 91 Rajpurkar, Irvin, Zhu, Yang, Mehta, Duan, Ding, Bagul, Ball, Langlotz, Shpanskaya, Lungren, Ng (b12) 2017 Ma (10.1016/j.asoc.2021.107330_b10) 2020; 61 Shi (10.1016/j.asoc.2021.107330_b14) 2020; 20 He (10.1016/j.asoc.2021.107330_b34) 2016 McMahan (10.1016/j.asoc.2021.107330_b1) 2017 Zhang (10.1016/j.asoc.2021.107330_b11) 2020; 62 Chowdhury (10.1016/j.asoc.2021.107330_b22) 2020; 8 Kairon (10.1016/j.asoc.2021.107330_b6) 2021; 11 Ozturk (10.1016/j.asoc.2021.107330_b20) 2020 10.1016/j.asoc.2021.107330_b27 Gupta (10.1016/j.asoc.2021.107330_b18) 2020; 97 Simonyan (10.1016/j.asoc.2021.107330_b33) 2014 Gozes (10.1016/j.asoc.2021.107330_b25) 2020 Jaeger (10.1016/j.asoc.2021.107330_b35) 2014; 47 Rajpurkar (10.1016/j.asoc.2021.107330_b12) 2017 Lee (10.1016/j.asoc.2021.107330_b30) 2018; 6 Brisimi (10.1016/j.asoc.2021.107330_b28) 2018; 112 Li (10.1016/j.asoc.2021.107330_b9) 2020; 1 Huang (10.1016/j.asoc.2021.107330_b29) 2019; 99 Li (10.1016/j.asoc.2021.107330_b26) 2020 Xu (10.1016/j.asoc.2021.107330_b13) 2019; 7 Devashish (10.1016/j.asoc.2021.107330_b37) 2009; 2 Zhang (10.1016/j.asoc.2021.107330_b19) 2020 McMahan (10.1016/j.asoc.2021.107330_b31) 2016 Demir (10.1016/j.asoc.2021.107330_b23) 2021; 103 Kanne (10.1016/j.asoc.2021.107330_b3) 2020 Narin (10.1016/j.asoc.2021.107330_b21) 2020 Schwab (10.1016/j.asoc.2021.107330_b8) 2020; 22 Zu (10.1016/j.asoc.2021.107330_b5) 2020 Zhao (10.1016/j.asoc.2021.107330_b32) 2018 Hui (10.1016/j.asoc.2021.107330_b2) 2020; 91 Hemdan (10.1016/j.asoc.2021.107330_b15) 2020 Wang (10.1016/j.asoc.2021.107330_b16) 2020 Shan (10.1016/j.asoc.2021.107330_b24) 2020 Nour (10.1016/j.asoc.2021.107330_b17) 2020; 97 Xie (10.1016/j.asoc.2021.107330_b4) 2020 Russakovsky (10.1016/j.asoc.2021.107330_b36) 2015; 115 Leroy (10.1016/j.asoc.2021.107330_b38) 2019 Ardabili (10.1016/j.asoc.2021.107330_b7) 2020; 13 |
References_xml | – year: 2020 ident: b24 article-title: Abnormal lung quantification in chest ct images of covid-19 patients with deep learning and its application to severity prediction publication-title: Med. Phys. – year: 2020 ident: b16 article-title: Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images – reference: P. Baheti, M. Sikka, K.V. Arya, R. Rajesh, Federated learning on distributed medical records for detection of lung nodules, in: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2020, pp. 445–451. – start-page: 770 year: 2016 end-page: 778 ident: b34 publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 2 start-page: 53 year: 2009 end-page: 58 ident: b37 article-title: The concept of sensitivity and specificity in relation to two types of errors and its application in medical reasearch publication-title: J. Reliab. Stat. Stud. – year: 2016 ident: b31 article-title: Federated learning of deep networks using model averaging – year: 2020 ident: b25 article-title: Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis – volume: 103 year: 2021 ident: b23 article-title: Deepcoronet: A deep lstm approach for automated detection of covid-19 cases from chest x-ray images publication-title: Appl. Soft Comput. – volume: 97 year: 2020 ident: b18 article-title: Instacovnet-19: A deep learning classification model for the detection of covid-19 patients using chest x-ray publication-title: Appl. Soft Comput. – year: 2014 ident: b33 article-title: Very deep convolutional networks for large-scale image recognition – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b36 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 20 start-page: 425 year: 2020 end-page: 434 ident: b14 article-title: Radiological findings from 81 patients with covid-19 pneumonia in wuhan, china: a descriptive study publication-title: Lancet. Infect. Dis. 2020 – year: 2020 ident: b19 article-title: Covid-19 screening on chest x-ray images using deep learning based anomaly detection – volume: 112 start-page: 59 year: 2018 end-page: 67 ident: b28 article-title: Federated learning of predictive models from federated electronic health records publication-title: Int. J. Med. Inform. – year: 2020 ident: b20 article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images publication-title: Comput. Biol. Med. – year: 2020 ident: b15 article-title: Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images – volume: 47 start-page: 5 year: 2014 end-page: 477 ident: b35 article-title: Two public chest x-ray datasets for computer-aided screening of pulmonary diseases publication-title: Quant. Imaging Med. Surg. – year: 2020 ident: b26 article-title: Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct publication-title: Radiology – volume: 11 start-page: 3 year: 2021 end-page: 123 ident: b6 article-title: COVID-19 outbreak prediction using quantum neural networks publication-title: Intel. Enabled Res. – volume: 8 start-page: 132665 year: 2020 end-page: 132676 ident: b22 article-title: Can ai help in screening viral and covid-19 pneumonia? publication-title: IEEE Access – start-page: 6341 year: 2019 end-page: 6345 ident: b38 article-title: Federated learning for keyword spotting publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – year: 2020 ident: b3 article-title: Essentials for radiologists on covid-19: an update—radiology scientific expert panel – year: 2017 ident: b12 article-title: Chexnet : Radiologist-level pneumonia detection on chest x-rays with deep learning – volume: 22 year: 2020 ident: b8 article-title: Clinical predictive models for covid-19: Systematic study publication-title: J. Med. Internet. Res. – volume: 91 start-page: 264 year: 2020 end-page: 266 ident: b2 article-title: The continuing covid-19 epidemic threat of novel coronaviruses to global health-the latest 2019 novel coronavirus outbreak in wuhan, china publication-title: Int. J. Infec. Dis.: IJID: Off. Publ. Int. Soc. Infect. Dis. – year: 2020 ident: b4 article-title: Chest ct for typical 2019-ncov pneumonia: relationship to negative rt-pcr testing publication-title: Radiology – volume: 99 year: 2019 ident: b29 article-title: Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records publication-title: J. Biomed. Inform. – volume: 62 year: 2020 ident: b11 article-title: Unsupervised x-ray image segmentation with task driven generative adversarial networks publication-title: Med. Image Anal. – volume: 6 year: 2018 ident: b30 article-title: Privacy-preserving patient similarity learning in a federated environment: Development and analysis publication-title: JMIR Med. Inform. – year: 2018 ident: b32 article-title: Federated learning with non-iid data – volume: 1 year: 2020 ident: b9 article-title: Using machine learning of clinical data to diagnose covid-19: a systematic review and meta-analysis publication-title: BMC Med. Inform. Decis. Mak. – year: 2020 ident: b21 article-title: Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks – start-page: 54 year: 2017 ident: b1 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: AISTATS – volume: 7 start-page: 4466 year: 2019 end-page: 4477 ident: b13 article-title: Cxnet-m1: Anomaly detection on chest x-rays with image-based deep learning publication-title: IEEE Access – year: 2020 ident: b5 article-title: Coronavirus disease 2019 (covid-19): a perspective from china publication-title: Radiology – volume: 13 year: 2020 ident: b7 article-title: Covid-19 outbreak prediction with machine learning publication-title: Algorithms – volume: 61 year: 2020 ident: b10 article-title: Dynamic coronary roadmapping via catheter tip tracking in x-ray fluoroscopy with deep learning based bayesian filtering publication-title: Med. Image Anal. – volume: 97 year: 2020 ident: b17 article-title: A novel medical diagnosis model for covid-19 infection detection based on deep features and bayesian optimization publication-title: Appl. Soft Comput. – volume: 91 start-page: 264 year: 2020 ident: 10.1016/j.asoc.2021.107330_b2 article-title: The continuing covid-19 epidemic threat of novel coronaviruses to global health-the latest 2019 novel coronavirus outbreak in wuhan, china publication-title: Int. J. Infec. Dis.: IJID: Off. Publ. Int. Soc. Infect. Dis. – year: 2020 ident: 10.1016/j.asoc.2021.107330_b4 article-title: Chest ct for typical 2019-ncov pneumonia: relationship to negative rt-pcr testing publication-title: Radiology doi: 10.1148/radiol.2020200343 – volume: 99 year: 2019 ident: 10.1016/j.asoc.2021.107330_b29 article-title: Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2019.103291 – year: 2017 ident: 10.1016/j.asoc.2021.107330_b12 – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.asoc.2021.107330_b36 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 1 year: 2020 ident: 10.1016/j.asoc.2021.107330_b9 article-title: Using machine learning of clinical data to diagnose covid-19: a systematic review and meta-analysis publication-title: BMC Med. Inform. Decis. Mak. – year: 2020 ident: 10.1016/j.asoc.2021.107330_b16 – volume: 112 start-page: 59 year: 2018 ident: 10.1016/j.asoc.2021.107330_b28 article-title: Federated learning of predictive models from federated electronic health records publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2018.01.007 – volume: 7 start-page: 4466 year: 2019 ident: 10.1016/j.asoc.2021.107330_b13 article-title: Cxnet-m1: Anomaly detection on chest x-rays with image-based deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2885997 – volume: 6 year: 2018 ident: 10.1016/j.asoc.2021.107330_b30 article-title: Privacy-preserving patient similarity learning in a federated environment: Development and analysis publication-title: JMIR Med. Inform. doi: 10.2196/medinform.7744 – start-page: 54 year: 2017 ident: 10.1016/j.asoc.2021.107330_b1 article-title: Communication-efficient learning of deep networks from decentralized data – year: 2020 ident: 10.1016/j.asoc.2021.107330_b25 – year: 2020 ident: 10.1016/j.asoc.2021.107330_b3 – volume: 20 start-page: 425 year: 2020 ident: 10.1016/j.asoc.2021.107330_b14 article-title: Radiological findings from 81 patients with covid-19 pneumonia in wuhan, china: a descriptive study publication-title: Lancet. Infect. Dis. 2020 doi: 10.1016/S1473-3099(20)30086-4 – year: 2020 ident: 10.1016/j.asoc.2021.107330_b5 article-title: Coronavirus disease 2019 (covid-19): a perspective from china publication-title: Radiology doi: 10.1148/radiol.2020200490 – year: 2020 ident: 10.1016/j.asoc.2021.107330_b20 article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103792 – year: 2020 ident: 10.1016/j.asoc.2021.107330_b21 – volume: 2 start-page: 53 year: 2009 ident: 10.1016/j.asoc.2021.107330_b37 article-title: The concept of sensitivity and specificity in relation to two types of errors and its application in medical reasearch publication-title: J. Reliab. Stat. Stud. – volume: 8 start-page: 132665 year: 2020 ident: 10.1016/j.asoc.2021.107330_b22 article-title: Can ai help in screening viral and covid-19 pneumonia? publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010287 – year: 2014 ident: 10.1016/j.asoc.2021.107330_b33 – volume: 62 year: 2020 ident: 10.1016/j.asoc.2021.107330_b11 article-title: Unsupervised x-ray image segmentation with task driven generative adversarial networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101664 – volume: 13 year: 2020 ident: 10.1016/j.asoc.2021.107330_b7 article-title: Covid-19 outbreak prediction with machine learning publication-title: Algorithms doi: 10.3390/a13100249 – volume: 47 start-page: 5 year: 2014 ident: 10.1016/j.asoc.2021.107330_b35 article-title: Two public chest x-ray datasets for computer-aided screening of pulmonary diseases publication-title: Quant. Imaging Med. Surg. – year: 2020 ident: 10.1016/j.asoc.2021.107330_b15 – start-page: 770 year: 2016 ident: 10.1016/j.asoc.2021.107330_b34 publication-title: Deep residual learning for image recognition – year: 2020 ident: 10.1016/j.asoc.2021.107330_b24 article-title: Abnormal lung quantification in chest ct images of covid-19 patients with deep learning and its application to severity prediction publication-title: Med. Phys. – year: 2020 ident: 10.1016/j.asoc.2021.107330_b26 article-title: Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct publication-title: Radiology doi: 10.1148/radiol.2020200905 – volume: 97 year: 2020 ident: 10.1016/j.asoc.2021.107330_b17 article-title: A novel medical diagnosis model for covid-19 infection detection based on deep features and bayesian optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106580 – volume: 97 year: 2020 ident: 10.1016/j.asoc.2021.107330_b18 article-title: Instacovnet-19: A deep learning classification model for the detection of covid-19 patients using chest x-ray publication-title: Appl. Soft Comput. – year: 2016 ident: 10.1016/j.asoc.2021.107330_b31 – ident: 10.1016/j.asoc.2021.107330_b27 doi: 10.5220/0009144704450451 – start-page: 6341 year: 2019 ident: 10.1016/j.asoc.2021.107330_b38 article-title: Federated learning for keyword spotting – year: 2020 ident: 10.1016/j.asoc.2021.107330_b19 – year: 2018 ident: 10.1016/j.asoc.2021.107330_b32 – volume: 22 year: 2020 ident: 10.1016/j.asoc.2021.107330_b8 article-title: Clinical predictive models for covid-19: Systematic study publication-title: J. Med. Internet. Res. doi: 10.2196/21439 – volume: 61 year: 2020 ident: 10.1016/j.asoc.2021.107330_b10 article-title: Dynamic coronary roadmapping via catheter tip tracking in x-ray fluoroscopy with deep learning based bayesian filtering publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101634 – volume: 103 year: 2021 ident: 10.1016/j.asoc.2021.107330_b23 article-title: Deepcoronet: A deep lstm approach for automated detection of covid-19 cases from chest x-ray images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107160 – volume: 11 start-page: 3 year: 2021 ident: 10.1016/j.asoc.2021.107330_b6 article-title: COVID-19 outbreak prediction using quantum neural networks publication-title: Intel. Enabled Res. |
SSID | ssj0016928 |
Score | 2.6330543 |
Snippet | Today, the whole world is facing a great medical disaster that affects the health and lives of the people: the COVID-19 disease, colloquially known as the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107330 |
SubjectTerms | CNN COVID-19 screening Decentralized training Deep learning Federated learning X-ray images |
Title | Federated learning for COVID-19 screening from Chest X-ray images |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107330 https://www.ncbi.nlm.nih.gov/pubmed/33776607 https://www.proquest.com/docview/2506512242 https://pubmed.ncbi.nlm.nih.gov/PMC7979273 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcukFSltgC1SuxA2ZTeL3cRVYbWkpFVC0NyuJHdiqzVbb7YELv52ZxFl1AfXQUxRnHI1m7Jlv5PEMIW9q4b1NsJ42BEBMSFuxAjwTU15mRS2DkB7vDn86VZNz8XEqpxsk7-_CYFpltP2dTW-tdRwZRmkOr2ez4VeIPIywQmVYRVRytMNCaFzl736v0jxSZdv-qkjMkDpenOlyvAqQAMSIWQoDmmMm9P-d07_g8-8cyjtOabxNHkc0SUcdw0_JRmh2yJO-UwONG3eXjMZYMwJgpaexTcQPCmiV5p-_H71nqaVgPCCgbYcX8yuaYxctOmWL4hedXYHJudkj5-MP3_IJi80TWCWkXDITQlLVHqIJLkUFHsjXxpRFZkLGa2urUhkjQiqD8oW2pQRnqcFbJeCtlCqN4M_IZjNvwgtCveehDlpbKQvEL6VW8EvrK1NzLkMyIGkvNVfFyuLY4OLS9SlkFw4l7VDSrpP0gLxdzbnu6mrcSy17Zbi11eHA8N8777DXnINtg2chRRPmtzcOkJ-SeKqYDcjzTpMrPjjXIINED4he0_GKAEtyr39pZj_b0tzaaguAcP-B_L4kW_jWpQO_IpvLxW14DaBnWR60q_qAPBrlX07O8Hl0PDn9A06NAOk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb8ryKEaCEwqb-O0Dh2rb1S59cKBFezNJ7MAimq12t0K98Kf4g4wTZ8UC6gGpVzuxrG-cb75RxjMALyvunElDPW0MgBIuTJnk6JkS6QTNK-G5cOHu8OGRHJ3wdxMx2YCf3V2YkFYZub_l9Iat40g_otk_m077HzDy0NxwSUMVUcFozKzc9xffMW5bvB3vopFfUTrcOx6MkthaICm5EMtEe5-WlUOtzQQvkZ9dpXWRU-0pq4wpC6k195nw0uXKFAJdiUIuT5HLpSw0Z7juNbjOkS5C24Q3P1Z5JZk0TUPXsLskbC_e1GmTynKEHINSmuGAYiH1-t_e8G-1-2fS5m9ecHgHbkX5SnZahO7Chq_vwe2uNQSJTHEfdoahSAXqWEdiX4rPBOUxGbz_ON5NMkOQrTCCbobns1MyCG27yCSZ5xdkeooct3gAJ1cC6UPYrGe1fwTEOeYrr5QRIg-CqVASlzSu1BVjwqc9yDrUbBlLmYeOGt9sl7P21QakbUDatkj34PXqnbO2kMelT4vOGHbtOFr0NJe-96KznMXvNPx8yWs_O19YlJpShN-YtAdbrSVX-2BMIQap6oFas_HqgVADfH2mnn5paoErowwq0Mf_ud_ncGN0fHhgD8ZH-0_gZphpc5GfwuZyfu6foeJaFtvNCSfw6ao_qV8HHDrC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+learning+for+COVID-19+screening+from+Chest+X-ray+images&rft.jtitle=Applied+soft+computing&rft.au=Feki%2C+Ines&rft.au=Ammar%2C+Sourour&rft.au=Kessentini%2C+Yousri&rft.au=Muhammad%2C+Khan&rft.date=2021-07-01&rft.issn=1568-4946&rft.volume=106&rft.spage=107330&rft_id=info:doi/10.1016%2Fj.asoc.2021.107330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |