12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake

Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 27; no. 5; pp. 1111 - 1120.e3
Main Authors Stanford, Kristin I., Lynes, Matthew D., Takahashi, Hirokazu, Baer, Lisa A., Arts, Peter J., May, Francis J., Lehnig, Adam C., Middelbeek, Roeland J.W., Richard, Jeffrey J., So, Kawai, Chen, Emily Y., Gao, Fei, Narain, Niven R., Distefano, Giovanna, Shettigar, Vikram K., Hirshman, Michael F., Ziolo, Mark T., Kiebish, Michael A., Tseng, Yu-Hua, Coen, Paul M., Goodyear, Laurie J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2018
Subjects
Online AccessGet full text
ISSN1550-4131
1932-7420
1932-7420
DOI10.1016/j.cmet.2018.03.020

Cover

Loading…
Abstract Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. [Display omitted] •Exercise increases circulating levels of the lipokine 12,13-diHOME in humans and mice•iBAT is the tissue source for the exercise-stimulated increase in 12,13-diHOME in mice•12,13-diHOME increases fatty acid uptake and oxidation in skeletal muscle of mice Using an MS/MSALL lipidomics platform, Stanford et al. identify 12,13-diHOME as an exercised-induced lipokine in male, female, young, and old human subjects. Murine experiments show that BAT is the tissue source of exercise-induced increases in circulating 12,13-diHOME, and that this lipokine increases fatty acid uptake in skeletal muscle in vivo.
AbstractList Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise.
Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise.Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise.
Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. Using an MS/MS ALL lipidomics platform, Stanford et al identify 12,13-diHOME as an exercised-induced lipokine in male, female, young and old human subjects. Murine experiments show that BAT is the tissue source of exercise-induced increases in circulating 12,13-diHOME, and that this lipokine increases fatty acid uptake in skeletal muscle in vivo.
Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. [Display omitted] •Exercise increases circulating levels of the lipokine 12,13-diHOME in humans and mice•iBAT is the tissue source for the exercise-stimulated increase in 12,13-diHOME in mice•12,13-diHOME increases fatty acid uptake and oxidation in skeletal muscle of mice Using an MS/MSALL lipidomics platform, Stanford et al. identify 12,13-diHOME as an exercised-induced lipokine in male, female, young, and old human subjects. Murine experiments show that BAT is the tissue source of exercise-induced increases in circulating 12,13-diHOME, and that this lipokine increases fatty acid uptake in skeletal muscle in vivo.
Author Takahashi, Hirokazu
Ziolo, Mark T.
Arts, Peter J.
May, Francis J.
Lynes, Matthew D.
Narain, Niven R.
Shettigar, Vikram K.
Richard, Jeffrey J.
Tseng, Yu-Hua
Coen, Paul M.
Stanford, Kristin I.
Distefano, Giovanna
Middelbeek, Roeland J.W.
Hirshman, Michael F.
Lehnig, Adam C.
Baer, Lisa A.
Chen, Emily Y.
Gao, Fei
So, Kawai
Goodyear, Laurie J.
Kiebish, Michael A.
AuthorAffiliation 4 Translational Research Institute for Metabolism and Diabetes, Florida Hospital; Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, USA
3 BERG, Framingham, Massachusetts 01701, USA
1 Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
2 Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
AuthorAffiliation_xml – name: 3 BERG, Framingham, Massachusetts 01701, USA
– name: 4 Translational Research Institute for Metabolism and Diabetes, Florida Hospital; Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, USA
– name: 2 Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
– name: 1 Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210
Author_xml – sequence: 1
  givenname: Kristin I.
  surname: Stanford
  fullname: Stanford, Kristin I.
  email: kristin.stanford@osumc.edu
  organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA
– sequence: 2
  givenname: Matthew D.
  surname: Lynes
  fullname: Lynes, Matthew D.
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
– sequence: 3
  givenname: Hirokazu
  surname: Takahashi
  fullname: Takahashi, Hirokazu
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
– sequence: 4
  givenname: Lisa A.
  surname: Baer
  fullname: Baer, Lisa A.
  organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA
– sequence: 5
  givenname: Peter J.
  surname: Arts
  fullname: Arts, Peter J.
  organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA
– sequence: 6
  givenname: Francis J.
  surname: May
  fullname: May, Francis J.
  organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA
– sequence: 7
  givenname: Adam C.
  surname: Lehnig
  fullname: Lehnig, Adam C.
  organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA
– sequence: 8
  givenname: Roeland J.W.
  surname: Middelbeek
  fullname: Middelbeek, Roeland J.W.
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
– sequence: 9
  givenname: Jeffrey J.
  surname: Richard
  fullname: Richard, Jeffrey J.
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
– sequence: 10
  givenname: Kawai
  surname: So
  fullname: So, Kawai
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
– sequence: 11
  givenname: Emily Y.
  surname: Chen
  fullname: Chen, Emily Y.
  organization: BERG, Framingham, MA 01701, USA
– sequence: 12
  givenname: Fei
  surname: Gao
  fullname: Gao, Fei
  organization: BERG, Framingham, MA 01701, USA
– sequence: 13
  givenname: Niven R.
  surname: Narain
  fullname: Narain, Niven R.
  organization: BERG, Framingham, MA 01701, USA
– sequence: 14
  givenname: Giovanna
  surname: Distefano
  fullname: Distefano, Giovanna
  organization: Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
– sequence: 15
  givenname: Vikram K.
  surname: Shettigar
  fullname: Shettigar, Vikram K.
  organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA
– sequence: 16
  givenname: Michael F.
  surname: Hirshman
  fullname: Hirshman, Michael F.
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
– sequence: 17
  givenname: Mark T.
  surname: Ziolo
  fullname: Ziolo, Mark T.
  organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA
– sequence: 18
  givenname: Michael A.
  surname: Kiebish
  fullname: Kiebish, Michael A.
  organization: BERG, Framingham, MA 01701, USA
– sequence: 19
  givenname: Yu-Hua
  surname: Tseng
  fullname: Tseng, Yu-Hua
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
– sequence: 20
  givenname: Paul M.
  surname: Coen
  fullname: Coen, Paul M.
  organization: Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
– sequence: 21
  givenname: Laurie J.
  surname: Goodyear
  fullname: Goodyear, Laurie J.
  email: laurie.goodyear@joslin.harvard.edu
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29719226$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P2zAcxq2JaUC3L7DD5OMOS_BrE0_TpAoVqFTEgXHawXLtf4bb1Cm2g8a3X6ICYhw42ZKfF_n5HaOD0AVA6DMlJSV0erIu7RZyyQitS8JLwsg7dEQVZ0UlGDkY7lKSQlBOD9FxSmtC-JQr_gEdMlVRxdj0CP2m7BvlhfMXV5fz73gW8PwvROsTFIvgegsOL_2u2_gAON-ajBfBRjAJEr7eQAvZtPiyT7YFfGZyfsAz6x2-2WWzgY_ofWPaBJ8ezwm6OZv_Or0ollfni9PZsrBCylzUjkDNKqGkqYa_VJVolFzZppFqSpwVhgA0lggjnOJV5YTjvLGGrBQlIKjhE_Rzn7vrV1twFkKOptW76LcmPujOeP3_S_C3-k93r6Xikg6bTNDXx4DY3fWQst76ZKFtTYCuT5oRLlgthRilX152PZc8LToI6r3Axi6lCI22Ppvsu7Hat5oSPcLTaz3C0yM8Tbge4A1W9sr6lP6m6cfeBMPC9x6iTtZDGMD5CDZr1_m37P8Afi6yMw
CitedBy_id crossref_primary_10_1016_j_coemr_2024_100525
crossref_primary_10_1007_s00125_021_05641_x
crossref_primary_10_3168_jds_2024_25178
crossref_primary_10_1016_j_metabol_2022_155379
crossref_primary_10_1016_j_jnutbio_2020_108484
crossref_primary_10_1016_j_lfs_2021_120229
crossref_primary_10_14218_JCTH_2020_00065
crossref_primary_10_1016_j_prostaglandins_2022_106662
crossref_primary_10_1016_j_molmet_2019_12_014
crossref_primary_10_1080_10408398_2020_1815644
crossref_primary_10_1161_CIRCULATIONAHA_120_051981
crossref_primary_10_1016_j_bbadis_2022_166373
crossref_primary_10_3390_diagnostics11061095
crossref_primary_10_3390_metabo12080743
crossref_primary_10_1161_CIRCEP_123_012486
crossref_primary_10_3390_biomedicines13030710
crossref_primary_10_3390_ani14162323
crossref_primary_10_1038_s41564_019_0498_2
crossref_primary_10_3390_biomedicines10030674
crossref_primary_10_3390_nu12020280
crossref_primary_10_3390_ijms24097745
crossref_primary_10_2174_1389203723666220629163524
crossref_primary_10_1038_s41413_021_00142_4
crossref_primary_10_1039_D2AY00272H
crossref_primary_10_3390_metabo12030210
crossref_primary_10_1111_joim_12830
crossref_primary_10_1096_fj_202301640RR
crossref_primary_10_20517_jca_2024_01
crossref_primary_10_1007_s11095_022_03377_w
crossref_primary_10_1002_oby_23282
crossref_primary_10_1038_s42255_023_00786_y
crossref_primary_10_1111_bph_15321
crossref_primary_10_1016_j_cmet_2023_12_025
crossref_primary_10_1016_j_eng_2023_09_006
crossref_primary_10_1161_JAHA_123_029542
crossref_primary_10_1016_j_lfs_2022_121284
crossref_primary_10_3389_fphys_2020_602748
crossref_primary_10_1096_fj_202200982R
crossref_primary_10_3389_fcvm_2022_967659
crossref_primary_10_1194_jlr_R094060
crossref_primary_10_1016_j_scib_2024_09_022
crossref_primary_10_3920_BM2022_0081
crossref_primary_10_1111_cen_14914
crossref_primary_10_3390_ijms232113142
crossref_primary_10_1016_j_bcp_2023_116012
crossref_primary_10_1016_j_foodchem_2022_133749
crossref_primary_10_1038_s41574_018_0032_2
crossref_primary_10_1002_ajhb_23723
crossref_primary_10_1113_JP276488
crossref_primary_10_1038_s42255_020_0258_x
crossref_primary_10_3389_fendo_2018_00447
crossref_primary_10_1093_jmcb_mjab038
crossref_primary_10_1016_j_cmet_2019_07_001
crossref_primary_10_1124_molpharm_121_000328
crossref_primary_10_1172_JCI175282
crossref_primary_10_3390_ijms25074089
crossref_primary_10_1007_s11427_022_2272_3
crossref_primary_10_3390_nu16121823
crossref_primary_10_1002_rcm_9999
crossref_primary_10_1016_j_foodres_2024_114230
crossref_primary_10_1038_s41591_024_03039_x
crossref_primary_10_1016_j_jff_2024_106047
crossref_primary_10_1016_j_jlr_2022_100302
crossref_primary_10_1093_cdn_nzaa136
crossref_primary_10_3390_nu10101383
crossref_primary_10_1016_j_bbalip_2019_158576
crossref_primary_10_1016_j_gde_2023_102058
crossref_primary_10_1007_s11154_021_09640_6
crossref_primary_10_3389_fpls_2024_1395543
crossref_primary_10_1139_apnm_2019_0067
crossref_primary_10_1016_j_bcp_2025_116871
crossref_primary_10_1016_j_cmet_2019_07_011
crossref_primary_10_3390_ijerph20166591
crossref_primary_10_23736_S0031_0808_24_05112_7
crossref_primary_10_1016_j_jot_2024_06_012
crossref_primary_10_3390_biom11111705
crossref_primary_10_1038_s41467_023_43402_z
crossref_primary_10_3389_fendo_2023_1198984
crossref_primary_10_1016_j_plefa_2018_06_005
crossref_primary_10_1021_acs_analchem_2c02601
crossref_primary_10_1038_s41580_021_00350_0
crossref_primary_10_61186_jspac_37453_2_4_1
crossref_primary_10_1152_ajpendo_00310_2020
crossref_primary_10_1016_j_mam_2019_07_001
crossref_primary_10_1038_s41574_019_0230_6
crossref_primary_10_1186_s40001_024_02176_w
crossref_primary_10_1016_j_gde_2023_102089
crossref_primary_10_3390_metabo13030422
crossref_primary_10_1016_j_mam_2019_07_006
crossref_primary_10_1097_CRD_0000000000000417
crossref_primary_10_1016_j_prenap_2024_100077
crossref_primary_10_1038_s44161_023_00270_6
crossref_primary_10_1038_s42255_019_0145_5
crossref_primary_10_2337_dbi20_0012
crossref_primary_10_1016_j_celrep_2019_12_074
crossref_primary_10_31665_JFB_2021_16293
crossref_primary_10_3389_fphar_2019_00739
crossref_primary_10_3390_ijms231710008
crossref_primary_10_1038_s41467_023_43363_3
crossref_primary_10_3389_fnut_2022_1042719
crossref_primary_10_1016_j_cmet_2025_02_007
crossref_primary_10_1042_CS20180421
crossref_primary_10_3389_fphys_2021_712372
crossref_primary_10_1016_j_tcb_2022_07_009
crossref_primary_10_1186_s13098_023_01115_9
crossref_primary_10_3390_nu12113523
crossref_primary_10_3389_fphys_2022_924649
crossref_primary_10_1111_bph_17328
crossref_primary_10_3390_ijms22115906
crossref_primary_10_1007_s11357_019_00076_0
crossref_primary_10_1016_j_jbc_2023_104917
crossref_primary_10_3390_nu11102422
crossref_primary_10_3390_jcm8060854
crossref_primary_10_1016_j_clnu_2024_07_024
crossref_primary_10_1161_CIRCRESAHA_122_320952
crossref_primary_10_1016_j_coph_2020_04_003
crossref_primary_10_1038_s41574_021_00471_8
crossref_primary_10_3390_metabo15010059
crossref_primary_10_1172_JCI129187
crossref_primary_10_3390_obesities2040032
crossref_primary_10_1038_s41392_022_01178_6
crossref_primary_10_1152_physiol_00024_2024
crossref_primary_10_1016_j_bbalip_2020_158611
crossref_primary_10_3390_ijms232012411
crossref_primary_10_1007_s13679_021_00465_7
crossref_primary_10_1038_s41586_022_04828_5
crossref_primary_10_3390_nu13061748
crossref_primary_10_1016_j_isci_2018_12_033
crossref_primary_10_1002_mnfr_202300634
crossref_primary_10_3389_fendo_2023_1350462
crossref_primary_10_1111_jfbc_13940
crossref_primary_10_1038_s41467_022_32502_x
crossref_primary_10_3390_biology10060512
crossref_primary_10_1161_CIRCULATIONAHA_120_049813
crossref_primary_10_3390_cells10113030
crossref_primary_10_1016_j_cbpb_2023_110834
crossref_primary_10_1016_j_celrep_2020_108554
crossref_primary_10_1016_j_metabol_2021_154709
crossref_primary_10_1210_clinem_dgaa910
crossref_primary_10_1210_en_2019_00337
crossref_primary_10_1016_j_metabol_2023_155709
crossref_primary_10_3389_fendo_2023_1155202
crossref_primary_10_7554_eLife_96535_3
crossref_primary_10_1152_ajpendo_00120_2024
crossref_primary_10_1016_j_cophys_2022_100626
crossref_primary_10_4093_dmj_2023_0011
crossref_primary_10_3389_fendo_2024_1445475
crossref_primary_10_1007_s40279_021_01590_y
crossref_primary_10_3390_biology10070658
crossref_primary_10_1016_j_bone_2022_116501
crossref_primary_10_2337_dc24_0859
crossref_primary_10_1038_s42003_024_06646_z
crossref_primary_10_3389_fcell_2022_955612
crossref_primary_10_1016_j_biochi_2024_11_007
crossref_primary_10_2337_db20_0303
crossref_primary_10_1002_fft2_456
crossref_primary_10_1007_s00125_019_4866_5
crossref_primary_10_1038_s12276_023_01071_4
crossref_primary_10_3390_ijms21062056
crossref_primary_10_1016_j_freeradbiomed_2023_08_019
crossref_primary_10_1002_evan_21930
crossref_primary_10_1152_ajpendo_00160_2023
crossref_primary_10_3390_biology12010009
crossref_primary_10_1002_osp4_330
crossref_primary_10_26599_FSHW_2022_9250042
crossref_primary_10_1038_s41392_024_01841_0
crossref_primary_10_1113_JP280910
crossref_primary_10_3389_fphys_2018_01217
crossref_primary_10_3390_ijms25094659
crossref_primary_10_1080_17461391_2022_2040597
crossref_primary_10_3390_nu14214693
crossref_primary_10_1042_BST20210644
crossref_primary_10_3390_biology8010009
crossref_primary_10_1007_s12020_024_03702_w
crossref_primary_10_1016_j_tem_2023_09_006
crossref_primary_10_1016_j_celrep_2024_114491
crossref_primary_10_7554_eLife_96535
crossref_primary_10_1016_j_devcel_2021_04_018
crossref_primary_10_1002_biof_2156
crossref_primary_10_1016_j_xcrm_2023_101387
crossref_primary_10_1016_j_jlr_2023_100437
crossref_primary_10_1128_AEM_01681_21
crossref_primary_10_1002_mco2_70030
crossref_primary_10_1016_j_cyto_2021_155553
crossref_primary_10_1021_acs_chemrev_3c00520
crossref_primary_10_1007_s13105_023_00964_2
crossref_primary_10_1016_j_cmet_2024_08_006
crossref_primary_10_1186_s13098_022_00944_4
crossref_primary_10_3390_diagnostics15030327
crossref_primary_10_3389_fphys_2023_1132830
crossref_primary_10_1016_j_cmet_2024_08_001
crossref_primary_10_3389_fendo_2023_1215772
crossref_primary_10_1113_EP092008
crossref_primary_10_5534_wjmh_220224
crossref_primary_10_1007_s11892_020_01319_7
crossref_primary_10_1016_j_jalz_2019_03_004
crossref_primary_10_3390_metabo11030151
crossref_primary_10_1016_j_mmm_2022_09_008
crossref_primary_10_1016_j_bjao_2022_100114
crossref_primary_10_1016_j_tem_2019_07_020
crossref_primary_10_1210_clinem_dgaa799
crossref_primary_10_3390_cells12010082
crossref_primary_10_1038_s41575_023_00867_z
crossref_primary_10_3390_metabo11020124
crossref_primary_10_1139_apnm_2021_0161
crossref_primary_10_2337_dbi23_0004
Cites_doi 10.2337/db15-0227
10.1146/annurev.med.49.1.235
10.1194/jlr.M054429
10.1080/21623945.2016.1191307
10.1016/j.cell.2014.09.035
10.1016/j.cmet.2012.12.012
10.1152/physrev.90100.2007
10.1152/ajpendo.00459.2003
10.2337/db15-0809
10.1038/nature12710
10.1111/dom.12947
10.1021/cb300194b
10.1038/ijo.2015.130
10.1089/ars.2012.4536
10.1016/j.cmet.2012.10.016
10.1152/ajpregu.00092.2014
10.1006/abbi.2001.2434
10.2337/db14-0704
10.1152/ajpendo.00194.2006
10.1016/j.cell.2008.07.048
10.1038/nm.4297
10.1194/jlr.D400023-JLR200
10.1093/gerona/gls196
10.1074/jbc.M114.591008
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2018.03.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 1120.e3
ExternalDocumentID PMC5935136
29719226
10_1016_j_cmet_2018_03_020
S1550413118302419
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK112283
– fundername: NIDDK NIH HHS
  grantid: P30 DK036836
– fundername: NIA NIH HHS
  grantid: K01 AG044437
– fundername: NIDDK NIH HHS
  grantid: R01 DK099511
– fundername: NHLBI NIH HHS
  grantid: R01 HL138738
– fundername: NIDDK NIH HHS
  grantid: K01 DK105109
– fundername: NIDDK NIH HHS
  grantid: K23 DK114550
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c455t-8d0e827495a7201774f95bcff5960dc4a0eefc04a4d9377d4d33fca0b910e41a3
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 18:19:45 EDT 2025
Fri Sep 05 14:52:17 EDT 2025
Thu Apr 03 07:07:58 EDT 2025
Tue Jul 01 03:58:17 EDT 2025
Thu Apr 24 23:06:34 EDT 2025
Fri Feb 23 02:27:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords lipokines
exercise
metabolism
brown adipose tissue
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-8d0e827495a7201774f95bcff5960dc4a0eefc04a4d9377d4d33fca0b910e41a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413118302419
PMID 29719226
PQID 2034285446
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5935136
proquest_miscellaneous_2034285446
pubmed_primary_29719226
crossref_citationtrail_10_1016_j_cmet_2018_03_020
crossref_primary_10_1016_j_cmet_2018_03_020
elsevier_sciencedirect_doi_10_1016_j_cmet_2018_03_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
2018-05-00
2018-May-01
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Henkin, Cohen, Dubikovskaya, Park, Nikitin, Auzias, Kazantzis, Bertozzi, Stahl (bib11) 2012; 7
Pruchnic, Katsiaras, He, Kelley, Winters, Goodpaster (bib20) 2004; 287
Liu, Brown, Stanya, Homan, Leidl, Inouye, Bhargava, Gangl, Dai, Hatano (bib13) 2013; 502
Stanford, Goodyear (bib22) 2016; 5
Nedachi, Kanzaki (bib16) 2006; 291
Goodyear, Kahn (bib9) 1998; 49
Beltz, Gibson, Janot, Kravitz, Mermier, Dalleck (bib1) 2016; 2016
Carnero, Dubis, Hames, Jakicic, Houmard, Coen, Goodpaster (bib5) 2017
Nieman, Shanely, Luo, Meaney, Dew, Pappan (bib17) 2014; 307
Townsend, An, Lynes, Huang, Zhang, Goodyear, Tseng (bib25) 2013; 19
Powell (bib19) 1999; 120
Coen, Jubrias, Distefano, Amati, Mackey, Glynn, Manini, Wohlgemuth, Leeuwenburgh, Cummings (bib6) 2013; 68
Vernochet, Mourier, Bezy, Macotela, Boucher, Rardin, An, Lee, Ilkayeva, Zingaretti (bib26) 2012; 16
Yore, Syed, Moraes-Vieira, Zhang, Herman, Homan, Patel, Lee, Chen, Peroni (bib29) 2014; 159
Egan, Zierath (bib8) 2013; 17
Pedersen, Febbraio (bib18) 2008; 88
Hayashi, Hirshman, Kurth, Winder, Goodyear (bib10) 1998; 47
Bruce (bib2) 1971; 3
Burhans, Flowers, Harrington, Bond, Guo, Anderson, Ntambi (bib3) 2015; 56
Coen, Menshikova, Distefano, Zheng, Tanner, Standley, Helbling, Dubis, Ritov, Xie (bib7) 2015; 64
Wu, Bikopoulos, Hung, Ceddia (bib28) 2014; 289
Liao, Sportsman, Harris, Stahl (bib12) 2005; 46
Vosselman, Hoeks, Brans, Pallubinsky, Nascimento, van der Lans, Broeders, Mottaghy, Schrauwen, van Marken Lichtenbelt (bib27) 2015; 39
Lynes, Leiria, Lundh, Bartelt, Shamsi, Huang, Takahashi, Hirshman, Schlein, Lee (bib14) 2017; 23
Motiani, Virtanen, Motiani, Eskelinen, Middelbeek, Goodyear, Savolainen, Kemppainen, Jensen, Din (bib15) 2017; 19
Cao, Gerhold, Mayers, Wiest, Watkins, Hotamisligil (bib4) 2008; 134
Sisemore, Zheng, Yang, Thompson, Plopper, Cortopassi, Hammock (bib21) 2001; 392
Stanford, Middelbeek, Townsend, Lee, Takahashi, So, Hitchcox, Markan, Hellbach, Hirshman (bib24) 2015; 64
Stanford, Middelbeek, Goodyear (bib23) 2015; 64
Townsend (10.1016/j.cmet.2018.03.020_bib25) 2013; 19
Powell (10.1016/j.cmet.2018.03.020_bib19) 1999; 120
Beltz (10.1016/j.cmet.2018.03.020_bib1) 2016; 2016
Goodyear (10.1016/j.cmet.2018.03.020_bib9) 1998; 49
Nieman (10.1016/j.cmet.2018.03.020_bib17) 2014; 307
Nedachi (10.1016/j.cmet.2018.03.020_bib16) 2006; 291
Stanford (10.1016/j.cmet.2018.03.020_bib24) 2015; 64
Lynes (10.1016/j.cmet.2018.03.020_bib14) 2017; 23
Henkin (10.1016/j.cmet.2018.03.020_bib11) 2012; 7
Yore (10.1016/j.cmet.2018.03.020_bib29) 2014; 159
Egan (10.1016/j.cmet.2018.03.020_bib8) 2013; 17
Hayashi (10.1016/j.cmet.2018.03.020_bib10) 1998; 47
Wu (10.1016/j.cmet.2018.03.020_bib28) 2014; 289
Motiani (10.1016/j.cmet.2018.03.020_bib15) 2017; 19
Burhans (10.1016/j.cmet.2018.03.020_bib3) 2015; 56
Cao (10.1016/j.cmet.2018.03.020_bib4) 2008; 134
Vosselman (10.1016/j.cmet.2018.03.020_bib27) 2015; 39
Pedersen (10.1016/j.cmet.2018.03.020_bib18) 2008; 88
Coen (10.1016/j.cmet.2018.03.020_bib6) 2013; 68
Liao (10.1016/j.cmet.2018.03.020_bib12) 2005; 46
Sisemore (10.1016/j.cmet.2018.03.020_bib21) 2001; 392
Vernochet (10.1016/j.cmet.2018.03.020_bib26) 2012; 16
Coen (10.1016/j.cmet.2018.03.020_bib7) 2015; 64
Carnero (10.1016/j.cmet.2018.03.020_bib5) 2017
Pruchnic (10.1016/j.cmet.2018.03.020_bib20) 2004; 287
Stanford (10.1016/j.cmet.2018.03.020_bib23) 2015; 64
Bruce (10.1016/j.cmet.2018.03.020_bib2) 1971; 3
Liu (10.1016/j.cmet.2018.03.020_bib13) 2013; 502
Stanford (10.1016/j.cmet.2018.03.020_bib22) 2016; 5
29765133 - Nat Rev Endocrinol. 2018 Jul;14(7):381
29874569 - Cell Metab. 2018 Jun 5;27(6):1357
References_xml – year: 2017
  ident: bib5
  article-title: Randomized Trial Reveals that Physical Activity and Energy Expenditure Are Associated with Weight and Body Composition after RYGB
– volume: 47
  start-page: 1369
  year: 1998
  end-page: 1373
  ident: bib10
  article-title: Evidence for 5’ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport
  publication-title: Diabetes
– volume: 49
  start-page: 235
  year: 1998
  end-page: 261
  ident: bib9
  article-title: Exercise, glucose transport, and insulin sensitivity
  publication-title: Annu. Rev. Med.
– volume: 39
  start-page: 1696
  year: 2015
  end-page: 1702
  ident: bib27
  article-title: Low brown adipose tissue activity in endurance-trained compared with lean sedentary men
  publication-title: Int. J. Obes. (Lond)
– volume: 3
  start-page: 323
  year: 1971
  end-page: 332
  ident: bib2
  article-title: Exercise testing of patients with coronary heart disease. Principles and normal standards for evaluation
  publication-title: Ann. Clin. Res.
– volume: 289
  start-page: 34129
  year: 2014
  end-page: 34140
  ident: bib28
  article-title: Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure
  publication-title: J. Biol. Chem.
– volume: 2016
  start-page: 3968393
  year: 2016
  ident: bib1
  article-title: Graded exercise testing protocols for the determination of VO2max: historical perspectives, progress, and future considerations
  publication-title: J. Sports Med.
– volume: 68
  start-page: 447
  year: 2013
  end-page: 455
  ident: bib6
  article-title: Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults
  publication-title: J. Gerontol. A. Biol. Sci. Med. Sci.
– volume: 502
  start-page: 550
  year: 2013
  end-page: 554
  ident: bib13
  article-title: A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use
  publication-title: Nature
– volume: 19
  start-page: 243
  year: 2013
  end-page: 257
  ident: bib25
  article-title: Increased mitochondrial activity in BMP7-treated brown adipocytes, due to increased CPT1- and CD36-mediated fatty acid uptake
  publication-title: Antioxid. Redox Signal.
– volume: 5
  start-page: 153
  year: 2016
  end-page: 162
  ident: bib22
  article-title: Exercise regulation of adipose tissue
  publication-title: Adipocyte
– volume: 17
  start-page: 162
  year: 2013
  end-page: 184
  ident: bib8
  article-title: Exercise metabolism and the molecular regulation of skeletal muscle adaptation
  publication-title: Cell Metab.
– volume: 46
  start-page: 597
  year: 2005
  end-page: 602
  ident: bib12
  article-title: Real-time quantification of fatty acid uptake using a novel fluorescence assay
  publication-title: J. Lipid. Res.
– volume: 23
  start-page: 631
  year: 2017
  end-page: 637
  ident: bib14
  article-title: The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue
  publication-title: Nat. Med.
– volume: 64
  start-page: 2361
  year: 2015
  end-page: 2368
  ident: bib23
  article-title: Exercise effects on white adipose tissue: beiging and metabolic adaptations
  publication-title: Diabetes
– volume: 16
  start-page: 765
  year: 2012
  end-page: 776
  ident: bib26
  article-title: Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance
  publication-title: Cell Metab.
– volume: 120
  start-page: 11
  year: 1999
  end-page: 24
  ident: bib19
  article-title: Extraction of eicosanoids from biological fluids, cells, and tissues
  publication-title: Methods Mol. Biol.
– volume: 56
  start-page: 304
  year: 2015
  end-page: 318
  ident: bib3
  article-title: Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation
  publication-title: J. Lipid Res.
– volume: 392
  start-page: 32
  year: 2001
  end-page: 37
  ident: bib21
  article-title: Cellular characterization of leukotoxin diol-induced mitochondrial dysfunction
  publication-title: Arch. Biochem. Biophys.
– volume: 291
  start-page: E817
  year: 2006
  end-page: E828
  ident: bib16
  article-title: Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 19
  start-page: 1379
  year: 2017
  end-page: 1388
  ident: bib15
  article-title: Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men
  publication-title: Diabetes Obes. Metab.
– volume: 134
  start-page: 933
  year: 2008
  end-page: 944
  ident: bib4
  article-title: Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism
  publication-title: Cell
– volume: 88
  start-page: 1379
  year: 2008
  end-page: 1406
  ident: bib18
  article-title: Muscle as an endocrine organ: focus on muscle-derived interleukin-6
  publication-title: Physiol. Rev.
– volume: 159
  start-page: 318
  year: 2014
  end-page: 332
  ident: bib29
  article-title: Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects
  publication-title: Cell
– volume: 7
  start-page: 1884
  year: 2012
  end-page: 1891
  ident: bib11
  article-title: Real-time noninvasive imaging of fatty acid uptake in vivo
  publication-title: ACS Chem. Biol.
– volume: 287
  start-page: E857
  year: 2004
  end-page: E862
  ident: bib20
  article-title: Exercise training increases intramyocellular lipid and oxidative capacity in older adults
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 64
  start-page: 2002
  year: 2015
  end-page: 2014
  ident: bib24
  article-title: A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis
  publication-title: Diabetes
– volume: 307
  start-page: R68
  year: 2014
  end-page: R74
  ident: bib17
  article-title: Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 64
  start-page: 3737
  year: 2015
  end-page: 3750
  ident: bib7
  article-title: Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning and insulin sensitivity following gastric bypass surgery
  publication-title: Diabetes
– volume: 64
  start-page: 2361
  year: 2015
  ident: 10.1016/j.cmet.2018.03.020_bib23
  article-title: Exercise effects on white adipose tissue: beiging and metabolic adaptations
  publication-title: Diabetes
  doi: 10.2337/db15-0227
– volume: 49
  start-page: 235
  year: 1998
  ident: 10.1016/j.cmet.2018.03.020_bib9
  article-title: Exercise, glucose transport, and insulin sensitivity
  publication-title: Annu. Rev. Med.
  doi: 10.1146/annurev.med.49.1.235
– volume: 56
  start-page: 304
  year: 2015
  ident: 10.1016/j.cmet.2018.03.020_bib3
  article-title: Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M054429
– volume: 47
  start-page: 1369
  year: 1998
  ident: 10.1016/j.cmet.2018.03.020_bib10
  article-title: Evidence for 5’ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport
  publication-title: Diabetes
– volume: 5
  start-page: 153
  year: 2016
  ident: 10.1016/j.cmet.2018.03.020_bib22
  article-title: Exercise regulation of adipose tissue
  publication-title: Adipocyte
  doi: 10.1080/21623945.2016.1191307
– volume: 159
  start-page: 318
  year: 2014
  ident: 10.1016/j.cmet.2018.03.020_bib29
  article-title: Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.035
– volume: 2016
  start-page: 3968393
  year: 2016
  ident: 10.1016/j.cmet.2018.03.020_bib1
  article-title: Graded exercise testing protocols for the determination of VO2max: historical perspectives, progress, and future considerations
  publication-title: J. Sports Med.
– volume: 3
  start-page: 323
  year: 1971
  ident: 10.1016/j.cmet.2018.03.020_bib2
  article-title: Exercise testing of patients with coronary heart disease. Principles and normal standards for evaluation
  publication-title: Ann. Clin. Res.
– year: 2017
  ident: 10.1016/j.cmet.2018.03.020_bib5
– volume: 17
  start-page: 162
  year: 2013
  ident: 10.1016/j.cmet.2018.03.020_bib8
  article-title: Exercise metabolism and the molecular regulation of skeletal muscle adaptation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.12.012
– volume: 88
  start-page: 1379
  year: 2008
  ident: 10.1016/j.cmet.2018.03.020_bib18
  article-title: Muscle as an endocrine organ: focus on muscle-derived interleukin-6
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.90100.2007
– volume: 287
  start-page: E857
  year: 2004
  ident: 10.1016/j.cmet.2018.03.020_bib20
  article-title: Exercise training increases intramyocellular lipid and oxidative capacity in older adults
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00459.2003
– volume: 64
  start-page: 3737
  year: 2015
  ident: 10.1016/j.cmet.2018.03.020_bib7
  article-title: Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning and insulin sensitivity following gastric bypass surgery
  publication-title: Diabetes
  doi: 10.2337/db15-0809
– volume: 502
  start-page: 550
  year: 2013
  ident: 10.1016/j.cmet.2018.03.020_bib13
  article-title: A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use
  publication-title: Nature
  doi: 10.1038/nature12710
– volume: 19
  start-page: 1379
  year: 2017
  ident: 10.1016/j.cmet.2018.03.020_bib15
  article-title: Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12947
– volume: 7
  start-page: 1884
  year: 2012
  ident: 10.1016/j.cmet.2018.03.020_bib11
  article-title: Real-time noninvasive imaging of fatty acid uptake in vivo
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb300194b
– volume: 39
  start-page: 1696
  year: 2015
  ident: 10.1016/j.cmet.2018.03.020_bib27
  article-title: Low brown adipose tissue activity in endurance-trained compared with lean sedentary men
  publication-title: Int. J. Obes. (Lond)
  doi: 10.1038/ijo.2015.130
– volume: 19
  start-page: 243
  year: 2013
  ident: 10.1016/j.cmet.2018.03.020_bib25
  article-title: Increased mitochondrial activity in BMP7-treated brown adipocytes, due to increased CPT1- and CD36-mediated fatty acid uptake
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.4536
– volume: 16
  start-page: 765
  year: 2012
  ident: 10.1016/j.cmet.2018.03.020_bib26
  article-title: Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.10.016
– volume: 120
  start-page: 11
  year: 1999
  ident: 10.1016/j.cmet.2018.03.020_bib19
  article-title: Extraction of eicosanoids from biological fluids, cells, and tissues
  publication-title: Methods Mol. Biol.
– volume: 307
  start-page: R68
  year: 2014
  ident: 10.1016/j.cmet.2018.03.020_bib17
  article-title: Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00092.2014
– volume: 392
  start-page: 32
  year: 2001
  ident: 10.1016/j.cmet.2018.03.020_bib21
  article-title: Cellular characterization of leukotoxin diol-induced mitochondrial dysfunction
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.2001.2434
– volume: 64
  start-page: 2002
  year: 2015
  ident: 10.1016/j.cmet.2018.03.020_bib24
  article-title: A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis
  publication-title: Diabetes
  doi: 10.2337/db14-0704
– volume: 291
  start-page: E817
  year: 2006
  ident: 10.1016/j.cmet.2018.03.020_bib16
  article-title: Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00194.2006
– volume: 134
  start-page: 933
  year: 2008
  ident: 10.1016/j.cmet.2018.03.020_bib4
  article-title: Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2008.07.048
– volume: 23
  start-page: 631
  year: 2017
  ident: 10.1016/j.cmet.2018.03.020_bib14
  article-title: The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue
  publication-title: Nat. Med.
  doi: 10.1038/nm.4297
– volume: 46
  start-page: 597
  year: 2005
  ident: 10.1016/j.cmet.2018.03.020_bib12
  article-title: Real-time quantification of fatty acid uptake using a novel fluorescence assay
  publication-title: J. Lipid. Res.
  doi: 10.1194/jlr.D400023-JLR200
– volume: 68
  start-page: 447
  year: 2013
  ident: 10.1016/j.cmet.2018.03.020_bib6
  article-title: Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults
  publication-title: J. Gerontol. A. Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/gls196
– volume: 289
  start-page: 34129
  year: 2014
  ident: 10.1016/j.cmet.2018.03.020_bib28
  article-title: Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.591008
– reference: 29765133 - Nat Rev Endocrinol. 2018 Jul;14(7):381
– reference: 29874569 - Cell Metab. 2018 Jun 5;27(6):1357
SSID ssj0036393
Score 2.637964
Snippet Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1111
SubjectTerms Adipose Tissue, Brown - metabolism
Adult
Aged
Aged, 80 and over
Animals
brown adipose tissue
Cell Line
Cohort Studies
Cold Temperature
Exercise
Female
Healthy Volunteers
Humans
Lipid Metabolism - drug effects
lipokines
Male
metabolism
Mice
Mice, Inbred C57BL
Middle Aged
Muscle, Skeletal - metabolism
Oleic Acids - metabolism
Oxygen - metabolism
Oxygen Consumption - drug effects
Physical Conditioning, Animal
Title 12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake
URI https://dx.doi.org/10.1016/j.cmet.2018.03.020
https://www.ncbi.nlm.nih.gov/pubmed/29719226
https://www.proquest.com/docview/2034285446
https://pubmed.ncbi.nlm.nih.gov/PMC5935136
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBahY9CXsW5tl7UNGvRtFbEjKbL7lpaEsC4dtA0L9EHIkky8bE5YnIf-97vzj7Bsow97tH0y0p189wnffUfIeaS8V8pGzIRJwGCHSBYlUcqkCU3PGBOZko5hctsfT8WnmZy1yHVTC4NplbXvr3x66a3rO91am91VlnXvEVwLZItBCitRUn8iUwsW8c2uGm_MIQKXSfYgzFC6LpypcrzsD4_5lGFUEp1iz-9_B6e_weefOZS_BaXRa_KqRpN0UE34gLR8_oa8rPpLPr0lj2HvIuTMZeMvk-ElHeR0WHdYYtiyAxZPP2er5QKQJi3mpqDgLTBJ3a_p_QLiEQBzOtms4dV0ZIriiQ5s5uh0VZiFPyTT0fDheszqbgrMCikLFrnAR3AGjaVRsGSAfWksE5umEg4xzgoTeJ_aQBjhALIoJxznqTVBAoDCi9DwI7KXL3P_jlBfFqAmALWcEwlgGJVywEkI5wKVxkGbhI0ata2pxrHjxXfd5JR906h6jarXAdeg-jb5uB2zqog2npWWjXX0znbREAmeHfehMaWG7wh_jpjcLzdrEOICq0lFv02OK9Nu59GLFQDhHjxRO0bfCiBH9-6TPJuXXN0y5jLk_ff_Od8Tso9XVYblKdkrfm78GaCgIumQF4Obu683nXK7_wKBbQTb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9owELZWVFV7WfW9bF9eqbfWIsE2TnqjCMR2YXsAJKQeLMd2REo3oCUc9t93Jg9U2moPvcbjyB47M5-Vz98Q8iFS3itlI2bCJGCwQySLkihl0oSma4yJTCnHML3ujRfi61IuT8iguQuDtMo69lcxvYzW9ZNO7c3ONss6MwTXAtViUMJKoPTnA0ADPeR1XS6_NOGYQwouWfZgzdC8vjlTkbzsjUdCZRiVSqdY9Pvf2elv9PknifK3rDR6Qk5rOEn71YifkhOfPyMPqwKTd8_J97D7KeTMZeNv0-Fn2s_psC6xxLBmB8yeTrLtZg1QkxYrU1AIF8hS9zs6W0NCAmROp_sdvJqOTFHc0b7NHF1sC7P2L8hiNJwPxqwup8CskLJgkQt8BIfQWBoFUwbcl8YysWkq4RTjrDCB96kNhBEOMItywnGeWhMkgCi8CA1_SVr5JvdnhPryBmoCWMs5kQCIUSkHoIR4LlBpHLRJ2LhR21prHEte_NQNqeyHRtdrdL0OuAbXt8nHQ59tpbRxr7VsVkcf7RcNqeDefhfNUmr4kPDviMn9Zr8DIy7wOqnotcmramkP4-jGCpBwF1rU0aIfDFCk-7glz1alWLeMuQx57_w_x_uePBrPpxM9uby-ek0eY0tFt3xDWsXt3r8FSFQk78ot_wuBdwZf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=12%2C13-diHOME%3A+An+Exercise-Induced+Lipokine+that+Increases+Skeletal+Muscle+Fatty+Acid+Uptake&rft.jtitle=Cell+metabolism&rft.au=Stanford%2C+Kristin+I.&rft.au=Lynes%2C+Matthew+D.&rft.au=Takahashi%2C+Hirokazu&rft.au=Baer%2C+Lisa+A.&rft.date=2018-05-01&rft.issn=1550-4131&rft.volume=27&rft.issue=5&rft.spage=1111&rft.epage=1120.e3&rft_id=info:doi/10.1016%2Fj.cmet.2018.03.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmet_2018_03_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon