12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake
Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed...
Saved in:
Published in | Cell metabolism Vol. 27; no. 5; pp. 1111 - 1120.e3 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1550-4131 1932-7420 1932-7420 |
DOI | 10.1016/j.cmet.2018.03.020 |
Cover
Loading…
Abstract | Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise.
[Display omitted]
•Exercise increases circulating levels of the lipokine 12,13-diHOME in humans and mice•iBAT is the tissue source for the exercise-stimulated increase in 12,13-diHOME in mice•12,13-diHOME increases fatty acid uptake and oxidation in skeletal muscle of mice
Using an MS/MSALL lipidomics platform, Stanford et al. identify 12,13-diHOME as an exercised-induced lipokine in male, female, young, and old human subjects. Murine experiments show that BAT is the tissue source of exercise-induced increases in circulating 12,13-diHOME, and that this lipokine increases fatty acid uptake in skeletal muscle in vivo. |
---|---|
AbstractList | Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise.Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. Using an MS/MS ALL lipidomics platform, Stanford et al identify 12,13-diHOME as an exercised-induced lipokine in male, female, young and old human subjects. Murine experiments show that BAT is the tissue source of exercise-induced increases in circulating 12,13-diHOME, and that this lipokine increases fatty acid uptake in skeletal muscle in vivo. Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines are circulating lipid species that have recently been reported to affect metabolism in response to cold. Here, lipidomics analysis revealed that a bout of moderate-intensity exercise causes a pronounced increase in the circulating lipid 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) in male, female, young, old, sedentary, and active human subjects. In mice, both a single bout of exercise and exercise training increased circulating 12,13-diHOME and surgical removal of brown adipose tissue (BAT) negated the increase in 12,13-diHOME, suggesting that BAT is the tissue source for exercise-stimulated 12,13-diHOME. Acute 12,13-diHOME treatment of mice in vivo increased skeletal muscle fatty acid uptake and oxidation, but not glucose uptake. These data reveal that lipokines are novel exercise-stimulated circulating factors that may contribute to the metabolic changes that occur with physical exercise. [Display omitted] •Exercise increases circulating levels of the lipokine 12,13-diHOME in humans and mice•iBAT is the tissue source for the exercise-stimulated increase in 12,13-diHOME in mice•12,13-diHOME increases fatty acid uptake and oxidation in skeletal muscle of mice Using an MS/MSALL lipidomics platform, Stanford et al. identify 12,13-diHOME as an exercised-induced lipokine in male, female, young, and old human subjects. Murine experiments show that BAT is the tissue source of exercise-induced increases in circulating 12,13-diHOME, and that this lipokine increases fatty acid uptake in skeletal muscle in vivo. |
Author | Takahashi, Hirokazu Ziolo, Mark T. Arts, Peter J. May, Francis J. Lynes, Matthew D. Narain, Niven R. Shettigar, Vikram K. Richard, Jeffrey J. Tseng, Yu-Hua Coen, Paul M. Stanford, Kristin I. Distefano, Giovanna Middelbeek, Roeland J.W. Hirshman, Michael F. Lehnig, Adam C. Baer, Lisa A. Chen, Emily Y. Gao, Fei So, Kawai Goodyear, Laurie J. Kiebish, Michael A. |
AuthorAffiliation | 4 Translational Research Institute for Metabolism and Diabetes, Florida Hospital; Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, USA 3 BERG, Framingham, Massachusetts 01701, USA 1 Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210 2 Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA |
AuthorAffiliation_xml | – name: 3 BERG, Framingham, Massachusetts 01701, USA – name: 4 Translational Research Institute for Metabolism and Diabetes, Florida Hospital; Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, USA – name: 2 Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA – name: 1 Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210 |
Author_xml | – sequence: 1 givenname: Kristin I. surname: Stanford fullname: Stanford, Kristin I. email: kristin.stanford@osumc.edu organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA – sequence: 2 givenname: Matthew D. surname: Lynes fullname: Lynes, Matthew D. organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA – sequence: 3 givenname: Hirokazu surname: Takahashi fullname: Takahashi, Hirokazu organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA – sequence: 4 givenname: Lisa A. surname: Baer fullname: Baer, Lisa A. organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA – sequence: 5 givenname: Peter J. surname: Arts fullname: Arts, Peter J. organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA – sequence: 6 givenname: Francis J. surname: May fullname: May, Francis J. organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA – sequence: 7 givenname: Adam C. surname: Lehnig fullname: Lehnig, Adam C. organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA – sequence: 8 givenname: Roeland J.W. surname: Middelbeek fullname: Middelbeek, Roeland J.W. organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA – sequence: 9 givenname: Jeffrey J. surname: Richard fullname: Richard, Jeffrey J. organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA – sequence: 10 givenname: Kawai surname: So fullname: So, Kawai organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA – sequence: 11 givenname: Emily Y. surname: Chen fullname: Chen, Emily Y. organization: BERG, Framingham, MA 01701, USA – sequence: 12 givenname: Fei surname: Gao fullname: Gao, Fei organization: BERG, Framingham, MA 01701, USA – sequence: 13 givenname: Niven R. surname: Narain fullname: Narain, Niven R. organization: BERG, Framingham, MA 01701, USA – sequence: 14 givenname: Giovanna surname: Distefano fullname: Distefano, Giovanna organization: Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA – sequence: 15 givenname: Vikram K. surname: Shettigar fullname: Shettigar, Vikram K. organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA – sequence: 16 givenname: Michael F. surname: Hirshman fullname: Hirshman, Michael F. organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA – sequence: 17 givenname: Mark T. surname: Ziolo fullname: Ziolo, Mark T. organization: Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Avenue, Columbus, OH 43210, USA – sequence: 18 givenname: Michael A. surname: Kiebish fullname: Kiebish, Michael A. organization: BERG, Framingham, MA 01701, USA – sequence: 19 givenname: Yu-Hua surname: Tseng fullname: Tseng, Yu-Hua organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA – sequence: 20 givenname: Paul M. surname: Coen fullname: Coen, Paul M. organization: Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA – sequence: 21 givenname: Laurie J. surname: Goodyear fullname: Goodyear, Laurie J. email: laurie.goodyear@joslin.harvard.edu organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29719226$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1P2zAcxq2JaUC3L7DD5OMOS_BrE0_TpAoVqFTEgXHawXLtf4bb1Cm2g8a3X6ICYhw42ZKfF_n5HaOD0AVA6DMlJSV0erIu7RZyyQitS8JLwsg7dEQVZ0UlGDkY7lKSQlBOD9FxSmtC-JQr_gEdMlVRxdj0CP2m7BvlhfMXV5fz73gW8PwvROsTFIvgegsOL_2u2_gAON-ajBfBRjAJEr7eQAvZtPiyT7YFfGZyfsAz6x2-2WWzgY_ofWPaBJ8ezwm6OZv_Or0ollfni9PZsrBCylzUjkDNKqGkqYa_VJVolFzZppFqSpwVhgA0lggjnOJV5YTjvLGGrBQlIKjhE_Rzn7vrV1twFkKOptW76LcmPujOeP3_S_C3-k93r6Xikg6bTNDXx4DY3fWQst76ZKFtTYCuT5oRLlgthRilX152PZc8LToI6r3Axi6lCI22Ppvsu7Hat5oSPcLTaz3C0yM8Tbge4A1W9sr6lP6m6cfeBMPC9x6iTtZDGMD5CDZr1_m37P8Afi6yMw |
CitedBy_id | crossref_primary_10_1016_j_coemr_2024_100525 crossref_primary_10_1007_s00125_021_05641_x crossref_primary_10_3168_jds_2024_25178 crossref_primary_10_1016_j_metabol_2022_155379 crossref_primary_10_1016_j_jnutbio_2020_108484 crossref_primary_10_1016_j_lfs_2021_120229 crossref_primary_10_14218_JCTH_2020_00065 crossref_primary_10_1016_j_prostaglandins_2022_106662 crossref_primary_10_1016_j_molmet_2019_12_014 crossref_primary_10_1080_10408398_2020_1815644 crossref_primary_10_1161_CIRCULATIONAHA_120_051981 crossref_primary_10_1016_j_bbadis_2022_166373 crossref_primary_10_3390_diagnostics11061095 crossref_primary_10_3390_metabo12080743 crossref_primary_10_1161_CIRCEP_123_012486 crossref_primary_10_3390_biomedicines13030710 crossref_primary_10_3390_ani14162323 crossref_primary_10_1038_s41564_019_0498_2 crossref_primary_10_3390_biomedicines10030674 crossref_primary_10_3390_nu12020280 crossref_primary_10_3390_ijms24097745 crossref_primary_10_2174_1389203723666220629163524 crossref_primary_10_1038_s41413_021_00142_4 crossref_primary_10_1039_D2AY00272H crossref_primary_10_3390_metabo12030210 crossref_primary_10_1111_joim_12830 crossref_primary_10_1096_fj_202301640RR crossref_primary_10_20517_jca_2024_01 crossref_primary_10_1007_s11095_022_03377_w crossref_primary_10_1002_oby_23282 crossref_primary_10_1038_s42255_023_00786_y crossref_primary_10_1111_bph_15321 crossref_primary_10_1016_j_cmet_2023_12_025 crossref_primary_10_1016_j_eng_2023_09_006 crossref_primary_10_1161_JAHA_123_029542 crossref_primary_10_1016_j_lfs_2022_121284 crossref_primary_10_3389_fphys_2020_602748 crossref_primary_10_1096_fj_202200982R crossref_primary_10_3389_fcvm_2022_967659 crossref_primary_10_1194_jlr_R094060 crossref_primary_10_1016_j_scib_2024_09_022 crossref_primary_10_3920_BM2022_0081 crossref_primary_10_1111_cen_14914 crossref_primary_10_3390_ijms232113142 crossref_primary_10_1016_j_bcp_2023_116012 crossref_primary_10_1016_j_foodchem_2022_133749 crossref_primary_10_1038_s41574_018_0032_2 crossref_primary_10_1002_ajhb_23723 crossref_primary_10_1113_JP276488 crossref_primary_10_1038_s42255_020_0258_x crossref_primary_10_3389_fendo_2018_00447 crossref_primary_10_1093_jmcb_mjab038 crossref_primary_10_1016_j_cmet_2019_07_001 crossref_primary_10_1124_molpharm_121_000328 crossref_primary_10_1172_JCI175282 crossref_primary_10_3390_ijms25074089 crossref_primary_10_1007_s11427_022_2272_3 crossref_primary_10_3390_nu16121823 crossref_primary_10_1002_rcm_9999 crossref_primary_10_1016_j_foodres_2024_114230 crossref_primary_10_1038_s41591_024_03039_x crossref_primary_10_1016_j_jff_2024_106047 crossref_primary_10_1016_j_jlr_2022_100302 crossref_primary_10_1093_cdn_nzaa136 crossref_primary_10_3390_nu10101383 crossref_primary_10_1016_j_bbalip_2019_158576 crossref_primary_10_1016_j_gde_2023_102058 crossref_primary_10_1007_s11154_021_09640_6 crossref_primary_10_3389_fpls_2024_1395543 crossref_primary_10_1139_apnm_2019_0067 crossref_primary_10_1016_j_bcp_2025_116871 crossref_primary_10_1016_j_cmet_2019_07_011 crossref_primary_10_3390_ijerph20166591 crossref_primary_10_23736_S0031_0808_24_05112_7 crossref_primary_10_1016_j_jot_2024_06_012 crossref_primary_10_3390_biom11111705 crossref_primary_10_1038_s41467_023_43402_z crossref_primary_10_3389_fendo_2023_1198984 crossref_primary_10_1016_j_plefa_2018_06_005 crossref_primary_10_1021_acs_analchem_2c02601 crossref_primary_10_1038_s41580_021_00350_0 crossref_primary_10_61186_jspac_37453_2_4_1 crossref_primary_10_1152_ajpendo_00310_2020 crossref_primary_10_1016_j_mam_2019_07_001 crossref_primary_10_1038_s41574_019_0230_6 crossref_primary_10_1186_s40001_024_02176_w crossref_primary_10_1016_j_gde_2023_102089 crossref_primary_10_3390_metabo13030422 crossref_primary_10_1016_j_mam_2019_07_006 crossref_primary_10_1097_CRD_0000000000000417 crossref_primary_10_1016_j_prenap_2024_100077 crossref_primary_10_1038_s44161_023_00270_6 crossref_primary_10_1038_s42255_019_0145_5 crossref_primary_10_2337_dbi20_0012 crossref_primary_10_1016_j_celrep_2019_12_074 crossref_primary_10_31665_JFB_2021_16293 crossref_primary_10_3389_fphar_2019_00739 crossref_primary_10_3390_ijms231710008 crossref_primary_10_1038_s41467_023_43363_3 crossref_primary_10_3389_fnut_2022_1042719 crossref_primary_10_1016_j_cmet_2025_02_007 crossref_primary_10_1042_CS20180421 crossref_primary_10_3389_fphys_2021_712372 crossref_primary_10_1016_j_tcb_2022_07_009 crossref_primary_10_1186_s13098_023_01115_9 crossref_primary_10_3390_nu12113523 crossref_primary_10_3389_fphys_2022_924649 crossref_primary_10_1111_bph_17328 crossref_primary_10_3390_ijms22115906 crossref_primary_10_1007_s11357_019_00076_0 crossref_primary_10_1016_j_jbc_2023_104917 crossref_primary_10_3390_nu11102422 crossref_primary_10_3390_jcm8060854 crossref_primary_10_1016_j_clnu_2024_07_024 crossref_primary_10_1161_CIRCRESAHA_122_320952 crossref_primary_10_1016_j_coph_2020_04_003 crossref_primary_10_1038_s41574_021_00471_8 crossref_primary_10_3390_metabo15010059 crossref_primary_10_1172_JCI129187 crossref_primary_10_3390_obesities2040032 crossref_primary_10_1038_s41392_022_01178_6 crossref_primary_10_1152_physiol_00024_2024 crossref_primary_10_1016_j_bbalip_2020_158611 crossref_primary_10_3390_ijms232012411 crossref_primary_10_1007_s13679_021_00465_7 crossref_primary_10_1038_s41586_022_04828_5 crossref_primary_10_3390_nu13061748 crossref_primary_10_1016_j_isci_2018_12_033 crossref_primary_10_1002_mnfr_202300634 crossref_primary_10_3389_fendo_2023_1350462 crossref_primary_10_1111_jfbc_13940 crossref_primary_10_1038_s41467_022_32502_x crossref_primary_10_3390_biology10060512 crossref_primary_10_1161_CIRCULATIONAHA_120_049813 crossref_primary_10_3390_cells10113030 crossref_primary_10_1016_j_cbpb_2023_110834 crossref_primary_10_1016_j_celrep_2020_108554 crossref_primary_10_1016_j_metabol_2021_154709 crossref_primary_10_1210_clinem_dgaa910 crossref_primary_10_1210_en_2019_00337 crossref_primary_10_1016_j_metabol_2023_155709 crossref_primary_10_3389_fendo_2023_1155202 crossref_primary_10_7554_eLife_96535_3 crossref_primary_10_1152_ajpendo_00120_2024 crossref_primary_10_1016_j_cophys_2022_100626 crossref_primary_10_4093_dmj_2023_0011 crossref_primary_10_3389_fendo_2024_1445475 crossref_primary_10_1007_s40279_021_01590_y crossref_primary_10_3390_biology10070658 crossref_primary_10_1016_j_bone_2022_116501 crossref_primary_10_2337_dc24_0859 crossref_primary_10_1038_s42003_024_06646_z crossref_primary_10_3389_fcell_2022_955612 crossref_primary_10_1016_j_biochi_2024_11_007 crossref_primary_10_2337_db20_0303 crossref_primary_10_1002_fft2_456 crossref_primary_10_1007_s00125_019_4866_5 crossref_primary_10_1038_s12276_023_01071_4 crossref_primary_10_3390_ijms21062056 crossref_primary_10_1016_j_freeradbiomed_2023_08_019 crossref_primary_10_1002_evan_21930 crossref_primary_10_1152_ajpendo_00160_2023 crossref_primary_10_3390_biology12010009 crossref_primary_10_1002_osp4_330 crossref_primary_10_26599_FSHW_2022_9250042 crossref_primary_10_1038_s41392_024_01841_0 crossref_primary_10_1113_JP280910 crossref_primary_10_3389_fphys_2018_01217 crossref_primary_10_3390_ijms25094659 crossref_primary_10_1080_17461391_2022_2040597 crossref_primary_10_3390_nu14214693 crossref_primary_10_1042_BST20210644 crossref_primary_10_3390_biology8010009 crossref_primary_10_1007_s12020_024_03702_w crossref_primary_10_1016_j_tem_2023_09_006 crossref_primary_10_1016_j_celrep_2024_114491 crossref_primary_10_7554_eLife_96535 crossref_primary_10_1016_j_devcel_2021_04_018 crossref_primary_10_1002_biof_2156 crossref_primary_10_1016_j_xcrm_2023_101387 crossref_primary_10_1016_j_jlr_2023_100437 crossref_primary_10_1128_AEM_01681_21 crossref_primary_10_1002_mco2_70030 crossref_primary_10_1016_j_cyto_2021_155553 crossref_primary_10_1021_acs_chemrev_3c00520 crossref_primary_10_1007_s13105_023_00964_2 crossref_primary_10_1016_j_cmet_2024_08_006 crossref_primary_10_1186_s13098_022_00944_4 crossref_primary_10_3390_diagnostics15030327 crossref_primary_10_3389_fphys_2023_1132830 crossref_primary_10_1016_j_cmet_2024_08_001 crossref_primary_10_3389_fendo_2023_1215772 crossref_primary_10_1113_EP092008 crossref_primary_10_5534_wjmh_220224 crossref_primary_10_1007_s11892_020_01319_7 crossref_primary_10_1016_j_jalz_2019_03_004 crossref_primary_10_3390_metabo11030151 crossref_primary_10_1016_j_mmm_2022_09_008 crossref_primary_10_1016_j_bjao_2022_100114 crossref_primary_10_1016_j_tem_2019_07_020 crossref_primary_10_1210_clinem_dgaa799 crossref_primary_10_3390_cells12010082 crossref_primary_10_1038_s41575_023_00867_z crossref_primary_10_3390_metabo11020124 crossref_primary_10_1139_apnm_2021_0161 crossref_primary_10_2337_dbi23_0004 |
Cites_doi | 10.2337/db15-0227 10.1146/annurev.med.49.1.235 10.1194/jlr.M054429 10.1080/21623945.2016.1191307 10.1016/j.cell.2014.09.035 10.1016/j.cmet.2012.12.012 10.1152/physrev.90100.2007 10.1152/ajpendo.00459.2003 10.2337/db15-0809 10.1038/nature12710 10.1111/dom.12947 10.1021/cb300194b 10.1038/ijo.2015.130 10.1089/ars.2012.4536 10.1016/j.cmet.2012.10.016 10.1152/ajpregu.00092.2014 10.1006/abbi.2001.2434 10.2337/db14-0704 10.1152/ajpendo.00194.2006 10.1016/j.cell.2008.07.048 10.1038/nm.4297 10.1194/jlr.D400023-JLR200 10.1093/gerona/gls196 10.1074/jbc.M114.591008 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2018.03.020 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 1120.e3 |
ExternalDocumentID | PMC5935136 29719226 10_1016_j_cmet_2018_03_020 S1550413118302419 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK112283 – fundername: NIDDK NIH HHS grantid: P30 DK036836 – fundername: NIA NIH HHS grantid: K01 AG044437 – fundername: NIDDK NIH HHS grantid: R01 DK099511 – fundername: NHLBI NIH HHS grantid: R01 HL138738 – fundername: NIDDK NIH HHS grantid: K01 DK105109 – fundername: NIDDK NIH HHS grantid: K23 DK114550 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c455t-8d0e827495a7201774f95bcff5960dc4a0eefc04a4d9377d4d33fca0b910e41a3 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 18:19:45 EDT 2025 Fri Sep 05 14:52:17 EDT 2025 Thu Apr 03 07:07:58 EDT 2025 Tue Jul 01 03:58:17 EDT 2025 Thu Apr 24 23:06:34 EDT 2025 Fri Feb 23 02:27:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | lipokines exercise metabolism brown adipose tissue |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-8d0e827495a7201774f95bcff5960dc4a0eefc04a4d9377d4d33fca0b910e41a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1550413118302419 |
PMID | 29719226 |
PQID | 2034285446 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5935136 proquest_miscellaneous_2034285446 pubmed_primary_29719226 crossref_citationtrail_10_1016_j_cmet_2018_03_020 crossref_primary_10_1016_j_cmet_2018_03_020 elsevier_sciencedirect_doi_10_1016_j_cmet_2018_03_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 2018-05-00 2018-May-01 20180501 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Henkin, Cohen, Dubikovskaya, Park, Nikitin, Auzias, Kazantzis, Bertozzi, Stahl (bib11) 2012; 7 Pruchnic, Katsiaras, He, Kelley, Winters, Goodpaster (bib20) 2004; 287 Liu, Brown, Stanya, Homan, Leidl, Inouye, Bhargava, Gangl, Dai, Hatano (bib13) 2013; 502 Stanford, Goodyear (bib22) 2016; 5 Nedachi, Kanzaki (bib16) 2006; 291 Goodyear, Kahn (bib9) 1998; 49 Beltz, Gibson, Janot, Kravitz, Mermier, Dalleck (bib1) 2016; 2016 Carnero, Dubis, Hames, Jakicic, Houmard, Coen, Goodpaster (bib5) 2017 Nieman, Shanely, Luo, Meaney, Dew, Pappan (bib17) 2014; 307 Townsend, An, Lynes, Huang, Zhang, Goodyear, Tseng (bib25) 2013; 19 Powell (bib19) 1999; 120 Coen, Jubrias, Distefano, Amati, Mackey, Glynn, Manini, Wohlgemuth, Leeuwenburgh, Cummings (bib6) 2013; 68 Vernochet, Mourier, Bezy, Macotela, Boucher, Rardin, An, Lee, Ilkayeva, Zingaretti (bib26) 2012; 16 Yore, Syed, Moraes-Vieira, Zhang, Herman, Homan, Patel, Lee, Chen, Peroni (bib29) 2014; 159 Egan, Zierath (bib8) 2013; 17 Pedersen, Febbraio (bib18) 2008; 88 Hayashi, Hirshman, Kurth, Winder, Goodyear (bib10) 1998; 47 Bruce (bib2) 1971; 3 Burhans, Flowers, Harrington, Bond, Guo, Anderson, Ntambi (bib3) 2015; 56 Coen, Menshikova, Distefano, Zheng, Tanner, Standley, Helbling, Dubis, Ritov, Xie (bib7) 2015; 64 Wu, Bikopoulos, Hung, Ceddia (bib28) 2014; 289 Liao, Sportsman, Harris, Stahl (bib12) 2005; 46 Vosselman, Hoeks, Brans, Pallubinsky, Nascimento, van der Lans, Broeders, Mottaghy, Schrauwen, van Marken Lichtenbelt (bib27) 2015; 39 Lynes, Leiria, Lundh, Bartelt, Shamsi, Huang, Takahashi, Hirshman, Schlein, Lee (bib14) 2017; 23 Motiani, Virtanen, Motiani, Eskelinen, Middelbeek, Goodyear, Savolainen, Kemppainen, Jensen, Din (bib15) 2017; 19 Cao, Gerhold, Mayers, Wiest, Watkins, Hotamisligil (bib4) 2008; 134 Sisemore, Zheng, Yang, Thompson, Plopper, Cortopassi, Hammock (bib21) 2001; 392 Stanford, Middelbeek, Townsend, Lee, Takahashi, So, Hitchcox, Markan, Hellbach, Hirshman (bib24) 2015; 64 Stanford, Middelbeek, Goodyear (bib23) 2015; 64 Townsend (10.1016/j.cmet.2018.03.020_bib25) 2013; 19 Powell (10.1016/j.cmet.2018.03.020_bib19) 1999; 120 Beltz (10.1016/j.cmet.2018.03.020_bib1) 2016; 2016 Goodyear (10.1016/j.cmet.2018.03.020_bib9) 1998; 49 Nieman (10.1016/j.cmet.2018.03.020_bib17) 2014; 307 Nedachi (10.1016/j.cmet.2018.03.020_bib16) 2006; 291 Stanford (10.1016/j.cmet.2018.03.020_bib24) 2015; 64 Lynes (10.1016/j.cmet.2018.03.020_bib14) 2017; 23 Henkin (10.1016/j.cmet.2018.03.020_bib11) 2012; 7 Yore (10.1016/j.cmet.2018.03.020_bib29) 2014; 159 Egan (10.1016/j.cmet.2018.03.020_bib8) 2013; 17 Hayashi (10.1016/j.cmet.2018.03.020_bib10) 1998; 47 Wu (10.1016/j.cmet.2018.03.020_bib28) 2014; 289 Motiani (10.1016/j.cmet.2018.03.020_bib15) 2017; 19 Burhans (10.1016/j.cmet.2018.03.020_bib3) 2015; 56 Cao (10.1016/j.cmet.2018.03.020_bib4) 2008; 134 Vosselman (10.1016/j.cmet.2018.03.020_bib27) 2015; 39 Pedersen (10.1016/j.cmet.2018.03.020_bib18) 2008; 88 Coen (10.1016/j.cmet.2018.03.020_bib6) 2013; 68 Liao (10.1016/j.cmet.2018.03.020_bib12) 2005; 46 Sisemore (10.1016/j.cmet.2018.03.020_bib21) 2001; 392 Vernochet (10.1016/j.cmet.2018.03.020_bib26) 2012; 16 Coen (10.1016/j.cmet.2018.03.020_bib7) 2015; 64 Carnero (10.1016/j.cmet.2018.03.020_bib5) 2017 Pruchnic (10.1016/j.cmet.2018.03.020_bib20) 2004; 287 Stanford (10.1016/j.cmet.2018.03.020_bib23) 2015; 64 Bruce (10.1016/j.cmet.2018.03.020_bib2) 1971; 3 Liu (10.1016/j.cmet.2018.03.020_bib13) 2013; 502 Stanford (10.1016/j.cmet.2018.03.020_bib22) 2016; 5 29765133 - Nat Rev Endocrinol. 2018 Jul;14(7):381 29874569 - Cell Metab. 2018 Jun 5;27(6):1357 |
References_xml | – year: 2017 ident: bib5 article-title: Randomized Trial Reveals that Physical Activity and Energy Expenditure Are Associated with Weight and Body Composition after RYGB – volume: 47 start-page: 1369 year: 1998 end-page: 1373 ident: bib10 article-title: Evidence for 5’ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport publication-title: Diabetes – volume: 49 start-page: 235 year: 1998 end-page: 261 ident: bib9 article-title: Exercise, glucose transport, and insulin sensitivity publication-title: Annu. Rev. Med. – volume: 39 start-page: 1696 year: 2015 end-page: 1702 ident: bib27 article-title: Low brown adipose tissue activity in endurance-trained compared with lean sedentary men publication-title: Int. J. Obes. (Lond) – volume: 3 start-page: 323 year: 1971 end-page: 332 ident: bib2 article-title: Exercise testing of patients with coronary heart disease. Principles and normal standards for evaluation publication-title: Ann. Clin. Res. – volume: 289 start-page: 34129 year: 2014 end-page: 34140 ident: bib28 article-title: Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure publication-title: J. Biol. Chem. – volume: 2016 start-page: 3968393 year: 2016 ident: bib1 article-title: Graded exercise testing protocols for the determination of VO2max: historical perspectives, progress, and future considerations publication-title: J. Sports Med. – volume: 68 start-page: 447 year: 2013 end-page: 455 ident: bib6 article-title: Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults publication-title: J. Gerontol. A. Biol. Sci. Med. Sci. – volume: 502 start-page: 550 year: 2013 end-page: 554 ident: bib13 article-title: A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use publication-title: Nature – volume: 19 start-page: 243 year: 2013 end-page: 257 ident: bib25 article-title: Increased mitochondrial activity in BMP7-treated brown adipocytes, due to increased CPT1- and CD36-mediated fatty acid uptake publication-title: Antioxid. Redox Signal. – volume: 5 start-page: 153 year: 2016 end-page: 162 ident: bib22 article-title: Exercise regulation of adipose tissue publication-title: Adipocyte – volume: 17 start-page: 162 year: 2013 end-page: 184 ident: bib8 article-title: Exercise metabolism and the molecular regulation of skeletal muscle adaptation publication-title: Cell Metab. – volume: 46 start-page: 597 year: 2005 end-page: 602 ident: bib12 article-title: Real-time quantification of fatty acid uptake using a novel fluorescence assay publication-title: J. Lipid. Res. – volume: 23 start-page: 631 year: 2017 end-page: 637 ident: bib14 article-title: The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue publication-title: Nat. Med. – volume: 64 start-page: 2361 year: 2015 end-page: 2368 ident: bib23 article-title: Exercise effects on white adipose tissue: beiging and metabolic adaptations publication-title: Diabetes – volume: 16 start-page: 765 year: 2012 end-page: 776 ident: bib26 article-title: Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance publication-title: Cell Metab. – volume: 120 start-page: 11 year: 1999 end-page: 24 ident: bib19 article-title: Extraction of eicosanoids from biological fluids, cells, and tissues publication-title: Methods Mol. Biol. – volume: 56 start-page: 304 year: 2015 end-page: 318 ident: bib3 article-title: Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation publication-title: J. Lipid Res. – volume: 392 start-page: 32 year: 2001 end-page: 37 ident: bib21 article-title: Cellular characterization of leukotoxin diol-induced mitochondrial dysfunction publication-title: Arch. Biochem. Biophys. – volume: 291 start-page: E817 year: 2006 end-page: E828 ident: bib16 article-title: Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 19 start-page: 1379 year: 2017 end-page: 1388 ident: bib15 article-title: Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men publication-title: Diabetes Obes. Metab. – volume: 134 start-page: 933 year: 2008 end-page: 944 ident: bib4 article-title: Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism publication-title: Cell – volume: 88 start-page: 1379 year: 2008 end-page: 1406 ident: bib18 article-title: Muscle as an endocrine organ: focus on muscle-derived interleukin-6 publication-title: Physiol. Rev. – volume: 159 start-page: 318 year: 2014 end-page: 332 ident: bib29 article-title: Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects publication-title: Cell – volume: 7 start-page: 1884 year: 2012 end-page: 1891 ident: bib11 article-title: Real-time noninvasive imaging of fatty acid uptake in vivo publication-title: ACS Chem. Biol. – volume: 287 start-page: E857 year: 2004 end-page: E862 ident: bib20 article-title: Exercise training increases intramyocellular lipid and oxidative capacity in older adults publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 64 start-page: 2002 year: 2015 end-page: 2014 ident: bib24 article-title: A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis publication-title: Diabetes – volume: 307 start-page: R68 year: 2014 end-page: R74 ident: bib17 article-title: Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 64 start-page: 3737 year: 2015 end-page: 3750 ident: bib7 article-title: Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning and insulin sensitivity following gastric bypass surgery publication-title: Diabetes – volume: 64 start-page: 2361 year: 2015 ident: 10.1016/j.cmet.2018.03.020_bib23 article-title: Exercise effects on white adipose tissue: beiging and metabolic adaptations publication-title: Diabetes doi: 10.2337/db15-0227 – volume: 49 start-page: 235 year: 1998 ident: 10.1016/j.cmet.2018.03.020_bib9 article-title: Exercise, glucose transport, and insulin sensitivity publication-title: Annu. Rev. Med. doi: 10.1146/annurev.med.49.1.235 – volume: 56 start-page: 304 year: 2015 ident: 10.1016/j.cmet.2018.03.020_bib3 article-title: Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation publication-title: J. Lipid Res. doi: 10.1194/jlr.M054429 – volume: 47 start-page: 1369 year: 1998 ident: 10.1016/j.cmet.2018.03.020_bib10 article-title: Evidence for 5’ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport publication-title: Diabetes – volume: 5 start-page: 153 year: 2016 ident: 10.1016/j.cmet.2018.03.020_bib22 article-title: Exercise regulation of adipose tissue publication-title: Adipocyte doi: 10.1080/21623945.2016.1191307 – volume: 159 start-page: 318 year: 2014 ident: 10.1016/j.cmet.2018.03.020_bib29 article-title: Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects publication-title: Cell doi: 10.1016/j.cell.2014.09.035 – volume: 2016 start-page: 3968393 year: 2016 ident: 10.1016/j.cmet.2018.03.020_bib1 article-title: Graded exercise testing protocols for the determination of VO2max: historical perspectives, progress, and future considerations publication-title: J. Sports Med. – volume: 3 start-page: 323 year: 1971 ident: 10.1016/j.cmet.2018.03.020_bib2 article-title: Exercise testing of patients with coronary heart disease. Principles and normal standards for evaluation publication-title: Ann. Clin. Res. – year: 2017 ident: 10.1016/j.cmet.2018.03.020_bib5 – volume: 17 start-page: 162 year: 2013 ident: 10.1016/j.cmet.2018.03.020_bib8 article-title: Exercise metabolism and the molecular regulation of skeletal muscle adaptation publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.12.012 – volume: 88 start-page: 1379 year: 2008 ident: 10.1016/j.cmet.2018.03.020_bib18 article-title: Muscle as an endocrine organ: focus on muscle-derived interleukin-6 publication-title: Physiol. Rev. doi: 10.1152/physrev.90100.2007 – volume: 287 start-page: E857 year: 2004 ident: 10.1016/j.cmet.2018.03.020_bib20 article-title: Exercise training increases intramyocellular lipid and oxidative capacity in older adults publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00459.2003 – volume: 64 start-page: 3737 year: 2015 ident: 10.1016/j.cmet.2018.03.020_bib7 article-title: Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning and insulin sensitivity following gastric bypass surgery publication-title: Diabetes doi: 10.2337/db15-0809 – volume: 502 start-page: 550 year: 2013 ident: 10.1016/j.cmet.2018.03.020_bib13 article-title: A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use publication-title: Nature doi: 10.1038/nature12710 – volume: 19 start-page: 1379 year: 2017 ident: 10.1016/j.cmet.2018.03.020_bib15 article-title: Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12947 – volume: 7 start-page: 1884 year: 2012 ident: 10.1016/j.cmet.2018.03.020_bib11 article-title: Real-time noninvasive imaging of fatty acid uptake in vivo publication-title: ACS Chem. Biol. doi: 10.1021/cb300194b – volume: 39 start-page: 1696 year: 2015 ident: 10.1016/j.cmet.2018.03.020_bib27 article-title: Low brown adipose tissue activity in endurance-trained compared with lean sedentary men publication-title: Int. J. Obes. (Lond) doi: 10.1038/ijo.2015.130 – volume: 19 start-page: 243 year: 2013 ident: 10.1016/j.cmet.2018.03.020_bib25 article-title: Increased mitochondrial activity in BMP7-treated brown adipocytes, due to increased CPT1- and CD36-mediated fatty acid uptake publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4536 – volume: 16 start-page: 765 year: 2012 ident: 10.1016/j.cmet.2018.03.020_bib26 article-title: Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.10.016 – volume: 120 start-page: 11 year: 1999 ident: 10.1016/j.cmet.2018.03.020_bib19 article-title: Extraction of eicosanoids from biological fluids, cells, and tissues publication-title: Methods Mol. Biol. – volume: 307 start-page: R68 year: 2014 ident: 10.1016/j.cmet.2018.03.020_bib17 article-title: Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00092.2014 – volume: 392 start-page: 32 year: 2001 ident: 10.1016/j.cmet.2018.03.020_bib21 article-title: Cellular characterization of leukotoxin diol-induced mitochondrial dysfunction publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.2001.2434 – volume: 64 start-page: 2002 year: 2015 ident: 10.1016/j.cmet.2018.03.020_bib24 article-title: A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis publication-title: Diabetes doi: 10.2337/db14-0704 – volume: 291 start-page: E817 year: 2006 ident: 10.1016/j.cmet.2018.03.020_bib16 article-title: Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00194.2006 – volume: 134 start-page: 933 year: 2008 ident: 10.1016/j.cmet.2018.03.020_bib4 article-title: Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism publication-title: Cell doi: 10.1016/j.cell.2008.07.048 – volume: 23 start-page: 631 year: 2017 ident: 10.1016/j.cmet.2018.03.020_bib14 article-title: The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue publication-title: Nat. Med. doi: 10.1038/nm.4297 – volume: 46 start-page: 597 year: 2005 ident: 10.1016/j.cmet.2018.03.020_bib12 article-title: Real-time quantification of fatty acid uptake using a novel fluorescence assay publication-title: J. Lipid. Res. doi: 10.1194/jlr.D400023-JLR200 – volume: 68 start-page: 447 year: 2013 ident: 10.1016/j.cmet.2018.03.020_bib6 article-title: Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults publication-title: J. Gerontol. A. Biol. Sci. Med. Sci. doi: 10.1093/gerona/gls196 – volume: 289 start-page: 34129 year: 2014 ident: 10.1016/j.cmet.2018.03.020_bib28 article-title: Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.591008 – reference: 29765133 - Nat Rev Endocrinol. 2018 Jul;14(7):381 – reference: 29874569 - Cell Metab. 2018 Jun 5;27(6):1357 |
SSID | ssj0036393 |
Score | 2.637964 |
Snippet | Circulating factors released from tissues during exercise have been hypothesized to mediate some of the health benefits of regular physical activity. Lipokines... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1111 |
SubjectTerms | Adipose Tissue, Brown - metabolism Adult Aged Aged, 80 and over Animals brown adipose tissue Cell Line Cohort Studies Cold Temperature Exercise Female Healthy Volunteers Humans Lipid Metabolism - drug effects lipokines Male metabolism Mice Mice, Inbred C57BL Middle Aged Muscle, Skeletal - metabolism Oleic Acids - metabolism Oxygen - metabolism Oxygen Consumption - drug effects Physical Conditioning, Animal |
Title | 12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake |
URI | https://dx.doi.org/10.1016/j.cmet.2018.03.020 https://www.ncbi.nlm.nih.gov/pubmed/29719226 https://www.proquest.com/docview/2034285446 https://pubmed.ncbi.nlm.nih.gov/PMC5935136 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBahY9CXsW5tl7UNGvRtFbEjKbL7lpaEsC4dtA0L9EHIkky8bE5YnIf-97vzj7Bsow97tH0y0p189wnffUfIeaS8V8pGzIRJwGCHSBYlUcqkCU3PGBOZko5hctsfT8WnmZy1yHVTC4NplbXvr3x66a3rO91am91VlnXvEVwLZItBCitRUn8iUwsW8c2uGm_MIQKXSfYgzFC6LpypcrzsD4_5lGFUEp1iz-9_B6e_weefOZS_BaXRa_KqRpN0UE34gLR8_oa8rPpLPr0lj2HvIuTMZeMvk-ElHeR0WHdYYtiyAxZPP2er5QKQJi3mpqDgLTBJ3a_p_QLiEQBzOtms4dV0ZIriiQ5s5uh0VZiFPyTT0fDheszqbgrMCikLFrnAR3AGjaVRsGSAfWksE5umEg4xzgoTeJ_aQBjhALIoJxznqTVBAoDCi9DwI7KXL3P_jlBfFqAmALWcEwlgGJVywEkI5wKVxkGbhI0ata2pxrHjxXfd5JR906h6jarXAdeg-jb5uB2zqog2npWWjXX0znbREAmeHfehMaWG7wh_jpjcLzdrEOICq0lFv02OK9Nu59GLFQDhHjxRO0bfCiBH9-6TPJuXXN0y5jLk_ff_Od8Tso9XVYblKdkrfm78GaCgIumQF4Obu683nXK7_wKBbQTb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9owELZWVFV7WfW9bF9eqbfWIsE2TnqjCMR2YXsAJKQeLMd2REo3oCUc9t93Jg9U2moPvcbjyB47M5-Vz98Q8iFS3itlI2bCJGCwQySLkihl0oSma4yJTCnHML3ujRfi61IuT8iguQuDtMo69lcxvYzW9ZNO7c3ONss6MwTXAtViUMJKoPTnA0ADPeR1XS6_NOGYQwouWfZgzdC8vjlTkbzsjUdCZRiVSqdY9Pvf2elv9PknifK3rDR6Qk5rOEn71YifkhOfPyMPqwKTd8_J97D7KeTMZeNv0-Fn2s_psC6xxLBmB8yeTrLtZg1QkxYrU1AIF8hS9zs6W0NCAmROp_sdvJqOTFHc0b7NHF1sC7P2L8hiNJwPxqwup8CskLJgkQt8BIfQWBoFUwbcl8YysWkq4RTjrDCB96kNhBEOMItywnGeWhMkgCi8CA1_SVr5JvdnhPryBmoCWMs5kQCIUSkHoIR4LlBpHLRJ2LhR21prHEte_NQNqeyHRtdrdL0OuAbXt8nHQ59tpbRxr7VsVkcf7RcNqeDefhfNUmr4kPDviMn9Zr8DIy7wOqnotcmramkP4-jGCpBwF1rU0aIfDFCk-7glz1alWLeMuQx57_w_x_uePBrPpxM9uby-ek0eY0tFt3xDWsXt3r8FSFQk78ot_wuBdwZf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=12%2C13-diHOME%3A+An+Exercise-Induced+Lipokine+that+Increases+Skeletal+Muscle+Fatty+Acid+Uptake&rft.jtitle=Cell+metabolism&rft.au=Stanford%2C+Kristin+I.&rft.au=Lynes%2C+Matthew+D.&rft.au=Takahashi%2C+Hirokazu&rft.au=Baer%2C+Lisa+A.&rft.date=2018-05-01&rft.issn=1550-4131&rft.volume=27&rft.issue=5&rft.spage=1111&rft.epage=1120.e3&rft_id=info:doi/10.1016%2Fj.cmet.2018.03.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmet_2018_03_020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |