Instance space analysis for a personnel scheduling problem
This paper considers the Rotating Workforce Scheduling Problem, and shows how the strengths and weaknesses of various solution methods can be understood by the in-depth evaluation offered by a recently developed methodology known as Instance Space Analysis. We first present a set of features aiming...
Saved in:
Published in | Annals of mathematics and artificial intelligence Vol. 89; no. 7; pp. 617 - 637 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1012-2443 1573-7470 |
DOI | 10.1007/s10472-020-09695-2 |
Cover
Loading…
Abstract | This paper considers the Rotating Workforce Scheduling Problem, and shows how the strengths and weaknesses of various solution methods can be understood by the in-depth evaluation offered by a recently developed methodology known as Instance Space Analysis. We first present a set of features aiming to describe hardness of test instances. We create a new, more diverse set of instances based on an initial instance space analysis that reveals gaps in the instance space, and offers the opportunity to generate additional instances to add diversity to the test suite. The results of three algorithms on our extended instance set reveal insights based on this visual methodology. We observe different regions of strength and weakness in the instance space for each algorithm, as well as a phase transition from feasible to infeasible instances with more challenging instances at the phase transition boundary. This rigorous and insightful approach to analyzing algorithm performance highlights the critical role played by the choice of test instances, and the importance of ensuring diversity and unbiasedness of test instances to support valid conclusions. |
---|---|
AbstractList | This paper considers the Rotating Workforce Scheduling Problem, and shows how the strengths and weaknesses of various solution methods can be understood by the in-depth evaluation offered by a recently developed methodology known as Instance Space Analysis. We first present a set of features aiming to describe hardness of test instances. We create a new, more diverse set of instances based on an initial instance space analysis that reveals gaps in the instance space, and offers the opportunity to generate additional instances to add diversity to the test suite. The results of three algorithms on our extended instance set reveal insights based on this visual methodology. We observe different regions of strength and weakness in the instance space for each algorithm, as well as a phase transition from feasible to infeasible instances with more challenging instances at the phase transition boundary. This rigorous and insightful approach to analyzing algorithm performance highlights the critical role played by the choice of test instances, and the importance of ensuring diversity and unbiasedness of test instances to support valid conclusions. Keywords Personnel scheduling * Combinatorial optimization * Algorithm selection * Instance space Mathematics Subject Classification (2010) 68T05 * 68T20 * 68W40 This paper considers the Rotating Workforce Scheduling Problem, and shows how the strengths and weaknesses of various solution methods can be understood by the in-depth evaluation offered by a recently developed methodology known as Instance Space Analysis. We first present a set of features aiming to describe hardness of test instances. We create a new, more diverse set of instances based on an initial instance space analysis that reveals gaps in the instance space, and offers the opportunity to generate additional instances to add diversity to the test suite. The results of three algorithms on our extended instance set reveal insights based on this visual methodology. We observe different regions of strength and weakness in the instance space for each algorithm, as well as a phase transition from feasible to infeasible instances with more challenging instances at the phase transition boundary. This rigorous and insightful approach to analyzing algorithm performance highlights the critical role played by the choice of test instances, and the importance of ensuring diversity and unbiasedness of test instances to support valid conclusions. |
Audience | Academic |
Author | Musliu, Nysret Kletzander, Lucas Smith-Miles, Kate |
Author_xml | – sequence: 1 givenname: Lucas surname: Kletzander fullname: Kletzander, Lucas email: lkletzan@dbai.tuwien.ac.at organization: Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, DBAI, TU Wien – sequence: 2 givenname: Nysret surname: Musliu fullname: Musliu, Nysret organization: Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, DBAI, TU Wien – sequence: 3 givenname: Kate surname: Smith-Miles fullname: Smith-Miles, Kate organization: School of Mathematics and Statistics, University of Melbourne |
BookMark | eNp9kMtqAyEYRqWk0CTtC3Q10LXt7y063YXQSyDQTbsWx2hqmDipThZ5-5pOodBFEFTkOx79JmgUu-gQuiVwTwDkQybAJcVAAUM9qwWmF2hMhGRYcgmjsgdCMeWcXaFJzluAElOzMXpcxtybaF2V96bMJpr2mEOufJcqU-1dyl2Mrq2y_XTrQxviptqnrmnd7hpdetNmd_O7TtHH89P74hWv3l6Wi_kKWy5Ej1XTGCLBiBn30jheF7U1tfUN87yRlHvBmBIE5NpY4KqxzBsQtWgUow2zbIruhnuL9-vgcq-33SGVd2ZNa6IoUE5pSd0PqY1pnQ7Rd30ytoy12wVb2vKhnM8lEbXioEQB6ADY1OWcnNf7FHYmHTUBfSpVD6XqUqr-KVWfLOofZENv-tDFYgvteZQNaC6euHHp7xtnqG_sg4yU |
CitedBy_id | crossref_primary_10_1016_j_cor_2021_105661 crossref_primary_10_1016_j_ejor_2022_11_046 crossref_primary_10_1007_s10994_022_06205_9 crossref_primary_10_1016_j_ejor_2024_06_005 crossref_primary_10_1016_j_knosys_2024_112378 crossref_primary_10_1016_j_ejor_2023_12_008 crossref_primary_10_1016_j_eswa_2022_116871 crossref_primary_10_1080_21650020_2023_2264353 |
Cites_doi | 10.1057/jors.1976.30 10.1016/j.cor.2011.07.006 10.1057/palgrave.jors.2601789 10.1016/0305-0548(94)00094-O 10.1002/net.3230200103 10.1109/TR.2018.2832072 10.1007/s10994-017-5629-5 10.1287/ijoc.2015.0683 10.1016/S0166-218X(01)00258-X 10.1016/j.matcom.2014.12.002 10.1057/palgrave.jors.2600803 10.5019/j.ijcir.2006.69 10.1016/0377-2217(80)90036-3 10.1023/A:1010933404324 10.1016/j.cor.2015.04.022 10.1162/EVCO_a_00194 10.1016/j.cor.2013.11.015 10.1145/1456650.1456656 10.1016/j.ijforecast.2016.09.004 10.1007/978-3-319-93031-2_31 10.1007/978-3-642-21332-8_12 10.1016/S0065-2458(08)60520-3 10.24963/ijcai.2017/86 10.1609/icaps.v29i1.3518 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2021 Springer The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2021 Springer – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s10472-020-09695-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1573-7470 |
EndPage | 637 |
ExternalDocumentID | A715984085 10_1007_s10472_020_09695_2 |
GrantInformation_xml | – fundername: Christian Doppler Forschungsgesellschaft grantid: CD laboratory funderid: https://doi.org/10.13039/501100006012 – fundername: Australian Research Council (AU) grantid: FL140100012 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c455t-8bba170a564f7ae49009ca9cfb3f4b724f53385107dac048bc3fa0595b832b3c3 |
IEDL.DBID | 8FG |
ISSN | 1012-2443 |
IngestDate | Fri Jul 25 11:08:35 EDT 2025 Tue Jun 10 20:27:15 EDT 2025 Thu Apr 24 22:51:18 EDT 2025 Tue Jul 01 03:19:43 EDT 2025 Fri Feb 21 02:49:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | 68W40 68T20 68T05 Algorithm selection Instance space Combinatorial optimization Personnel scheduling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-8bba170a564f7ae49009ca9cfb3f4b724f53385107dac048bc3fa0595b832b3c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s10472-020-09695-2 |
PQID | 2918202422 |
PQPubID | 2043872 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2918202422 gale_infotracacademiconefile_A715984085 crossref_primary_10_1007_s10472_020_09695_2 crossref_citationtrail_10_1007_s10472_020_09695_2 springer_journals_10_1007_s10472_020_09695_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationTitle | Annals of mathematics and artificial intelligence |
PublicationTitleAbbrev | Ann Math Artif Intell |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Smith-Miles, Baatar, Wreford, Lewis (CR21) 2014; 45 Falcón, Barrena, Canca, Laporte (CR6) 2016; 125 Laporte (CR9) 1999; 50 CR17 Breiman (CR3) 2001; 45 CR14 Smith-Miles, Bowly (CR22) 2015; 63 Musliu, Gärtner, Slany (CR16) 2002; 118 Restrepo, Gendron, Rousseau (CR19) 2016; 28 Chuin Lau (CR4) 1996; 23 CR5 Smith-Miles (CR24) 2009; 41 CR8 Laporte, Pesant (CR11) 2004; 55 Baker (CR1) 1976; 27 Smith-Miles, Lopes (CR23) 2012; 39 CR25 Kang, Hyndman, Smith-Miles (CR7) 2017; 33 CR20 Musliu (CR15) 2006; 2 Laporte, Nobert, Biron (CR10) 1980; 4 Muñoz, Smith-Miles (CR12) 2017; 25 Muñoz, Villanova, Baatar, Smith-Miles (CR13) 2018; 107 Balakrishnan, Wong (CR2) 1990; 20 Oliveira, Aleti, Grunske, Smith-Miles (CR18) 2018; 67 C Oliveira (9695_CR18) 2018; 67 R Falcón (9695_CR6) 2016; 125 MA Muñoz (9695_CR13) 2018; 107 N Balakrishnan (9695_CR2) 1990; 20 9695_CR17 9695_CR14 KR Baker (9695_CR1) 1976; 27 MI Restrepo (9695_CR19) 2016; 28 K Smith-Miles (9695_CR22) 2015; 63 G Laporte (9695_CR9) 1999; 50 H Chuin Lau (9695_CR4) 1996; 23 G Laporte (9695_CR11) 2004; 55 G Laporte (9695_CR10) 1980; 4 K Smith-Miles (9695_CR21) 2014; 45 N Musliu (9695_CR16) 2002; 118 Y Kang (9695_CR7) 2017; 33 K Smith-Miles (9695_CR23) 2012; 39 KA Smith-Miles (9695_CR24) 2009; 41 N Musliu (9695_CR15) 2006; 2 M Muñoz (9695_CR12) 2017; 25 9695_CR8 9695_CR5 9695_CR25 9695_CR20 L Breiman (9695_CR3) 2001; 45 |
References_xml | – volume: 27 start-page: 155 issue: 1 year: 1976 end-page: 167 ident: CR1 article-title: Workforce allocation in cyclical scheduling problems: a survey publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1976.30 – volume: 39 start-page: 875 issue: 5 year: 2012 end-page: 889 ident: CR23 article-title: Measuring instance difficulty for combinatorial optimization problems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.07.006 – volume: 55 start-page: 1208 issue: 11 year: 2004 end-page: 1217 ident: CR11 article-title: A general multi-shift scheduling system publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601789 – volume: 23 start-page: 93 issue: 1 year: 1996 end-page: 102 ident: CR4 article-title: On the complexity of manpower shift scheduling publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(94)00094-O – ident: CR14 – volume: 20 start-page: 25 issue: 1 year: 1990 end-page: 42 ident: CR2 article-title: A network model for the rotating workforce scheduling problem publication-title: Networks doi: 10.1002/net.3230200103 – volume: 67 start-page: 771 issue: 3 year: 2018 end-page: 785 ident: CR18 article-title: Mapping the effectiveness of automated test suite generation techniques publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2018.2832072 – volume: 107 start-page: 109 issue: 1 year: 2018 end-page: 147 ident: CR13 article-title: Instance spaces for machine learning classification publication-title: Mach. Learn. doi: 10.1007/s10994-017-5629-5 – ident: CR8 – volume: 28 start-page: 334 issue: 2 year: 2016 end-page: 350 ident: CR19 article-title: Branch-and-price for personalized multiactivity tour scheduling publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2015.0683 – ident: CR25 – volume: 118 start-page: 85 issue: 1-2 year: 2002 end-page: 98 ident: CR16 article-title: Efficient generation of rotating workforce schedules publication-title: Discret. Appl. Math. doi: 10.1016/S0166-218X(01)00258-X – volume: 125 start-page: 139 year: 2016 end-page: 151 ident: CR6 article-title: Counting and enumerating feasible rotating schedules by means of gröbner bases publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2014.12.002 – ident: CR17 – volume: 50 start-page: 1011 year: 1999 end-page: 1017 ident: CR9 article-title: The art and science of designing rotating schedules publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2600803 – volume: 2 start-page: 309 issue: 4 year: 2006 end-page: 326 ident: CR15 article-title: Heuristic methods for automatic rotating workforce scheduling publication-title: Int. J. Comput. Intell. Res. doi: 10.5019/j.ijcir.2006.69 – volume: 4 start-page: 24 issue: 1 year: 1980 end-page: 30 ident: CR10 article-title: Rotating schedules publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(80)90036-3 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR3 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: CR5 – volume: 63 start-page: 102 year: 2015 end-page: 113 ident: CR22 article-title: Generating new test instances by evolving in instance space publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2015.04.022 – volume: 25 start-page: 529 issue: 4 year: 2017 end-page: 554 ident: CR12 article-title: Performance analysis of continuous black-box optimization algorithms via footprints in instance space publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00194 – volume: 45 start-page: 12 year: 2014 end-page: 24 ident: CR21 article-title: Towards objective measures of algorithm performance across instance space publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.11.015 – volume: 41 start-page: 6 issue: 1 year: 2009 ident: CR24 article-title: Cross-disciplinary perspectives on meta-learning for algorithm selection publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/1456650.1456656 – ident: CR20 – volume: 33 start-page: 345 issue: 2 year: 2017 end-page: 358 ident: CR7 article-title: Visualising forecasting algorithm performance using time series instance spaces publication-title: Int. J. Forecast doi: 10.1016/j.ijforecast.2016.09.004 – ident: 9695_CR17 doi: 10.1007/978-3-319-93031-2_31 – volume: 63 start-page: 102 year: 2015 ident: 9695_CR22 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2015.04.022 – volume: 27 start-page: 155 issue: 1 year: 1976 ident: 9695_CR1 publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1976.30 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 9695_CR3 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: 9695_CR14 – volume: 2 start-page: 309 issue: 4 year: 2006 ident: 9695_CR15 publication-title: Int. J. Comput. Intell. Res. doi: 10.5019/j.ijcir.2006.69 – volume: 118 start-page: 85 issue: 1-2 year: 2002 ident: 9695_CR16 publication-title: Discret. Appl. Math. doi: 10.1016/S0166-218X(01)00258-X – ident: 9695_CR25 doi: 10.1007/978-3-642-21332-8_12 – volume: 41 start-page: 6 issue: 1 year: 2009 ident: 9695_CR24 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/1456650.1456656 – ident: 9695_CR20 doi: 10.1016/S0065-2458(08)60520-3 – volume: 55 start-page: 1208 issue: 11 year: 2004 ident: 9695_CR11 publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2601789 – volume: 107 start-page: 109 issue: 1 year: 2018 ident: 9695_CR13 publication-title: Mach. Learn. doi: 10.1007/s10994-017-5629-5 – volume: 23 start-page: 93 issue: 1 year: 1996 ident: 9695_CR4 publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(94)00094-O – volume: 20 start-page: 25 issue: 1 year: 1990 ident: 9695_CR2 publication-title: Networks doi: 10.1002/net.3230200103 – volume: 50 start-page: 1011 year: 1999 ident: 9695_CR9 publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2600803 – volume: 125 start-page: 139 year: 2016 ident: 9695_CR6 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2014.12.002 – volume: 33 start-page: 345 issue: 2 year: 2017 ident: 9695_CR7 publication-title: Int. J. Forecast doi: 10.1016/j.ijforecast.2016.09.004 – volume: 4 start-page: 24 issue: 1 year: 1980 ident: 9695_CR10 publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(80)90036-3 – ident: 9695_CR5 doi: 10.24963/ijcai.2017/86 – volume: 45 start-page: 12 year: 2014 ident: 9695_CR21 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.11.015 – volume: 28 start-page: 334 issue: 2 year: 2016 ident: 9695_CR19 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2015.0683 – volume: 39 start-page: 875 issue: 5 year: 2012 ident: 9695_CR23 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.07.006 – volume: 67 start-page: 771 issue: 3 year: 2018 ident: 9695_CR18 publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2018.2832072 – ident: 9695_CR8 doi: 10.1609/icaps.v29i1.3518 – volume: 25 start-page: 529 issue: 4 year: 2017 ident: 9695_CR12 publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00194 |
SSID | ssj0009686 |
Score | 2.3193858 |
Snippet | This paper considers the Rotating Workforce Scheduling Problem, and shows how the strengths and weaknesses of various solution methods can be understood by the... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 617 |
SubjectTerms | Algorithms Analysis Artificial Intelligence Complex Systems Computer Science Forecasts and trends Hardness Mathematics Mechanical properties Phase transitions Scheduling Visual observation |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iFz34qIrVKjkIHjTQ5rEPb0UsVagnC72FZJI9lbXY-v-dpNnWN3jZyyazuzM7k29I5htCLsFyKDMHzDqhMEHJClY4xzFL8TZ3UAkRy8VGT9lwLB8napKKwubNafdmSzJG6g_FbjLnLKQ7CLtLxTDwbinM3cN_Peb9NdVuFvs7BuIqhouXSKUyP8v4tBx9DcrfdkfjojPYJ7sJLdL-0rwHZMPXLbLXdGKgyTFbZGe0Yl-dH5Lbh4j5wFMMF3g1iXiEIkClhs4iyK79lGJmiytNKEinqbHMERkP7p_vhiz1SGAglVqwwlrTy7tGZbLKjZclfj-YEiorKmlzLivEc4iqurkzgN5qQVQGIZWy6MpWgDgmm_VL7U8ItaUDjHyuLACkL7zFMRXPuUFZOBnapNeoSkMiEA99LKZ6TX0c1KtRvTqqV_M2uV7NmS3pM_4cfRUsoINvoWQwqUQA3y-wVOl-juCrCJxsbdJpjKST0801LwMbPWIOFHTTGG59-_fnnv5v-BnZ5uFkSzy02yGbi9c3f47QZGEv4p_4Dn8Y2Ng priority: 102 providerName: Springer Nature |
Title | Instance space analysis for a personnel scheduling problem |
URI | https://link.springer.com/article/10.1007/s10472-020-09695-2 https://www.proquest.com/docview/2918202422 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TgMxEB1xNFBwI8IlF0gUYEG8Nw1KoiQcIkKISFBZ9thbRUkg4f8ZO14iQNCsCx-7a3tmno95A3CCWmCRGuTaRAktUNKc58YIWqVYnRkso8i7iz300pt-fPeSvIQNt0m4VlnpRK-ozQjdHvmFKBzVOBkUcT1-4y5qlDtdDSE0FmG5TpbGzfC8052T7qY-0qOjsOJkxqLgNBNc5-JMcLd4omJFwsU3w_RTPf86J_Xmp7MBawE3ssZsoDdhwQ63YL2KycCCiG7B6sMXD-tkG65uPfpDy0hx0FMFChJGUJUpNvZwe2gHjNa4ZHOcazoLIWZ2oN9pP7dueIiWwDFOkinPtVb17FIlaVxmysYF_T-qAksdlbHORFwSsiN8dZkZhSS3GqNSEbhKNAm1jjDahaXhaGj3gOnCIOlAU-SIsc2tpjKlyISitqgy1qBedZXEQCXuIloM5JwE2XWvpO6VvnulqMHZV53xjEjj39KnbgSkkzJqGVVwFqDvc3xVspERDMsdO1sNDqtBkkH8JnI-WWpwXg3cPPvv9-7_39oBrAh3p8Vf1z2Epen7hz0iUDLVx37mHcNyo9Ns9lzafb1vU9ps9x6fKLeVtujZF41PGYbiRQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BPQAH2vIQobT4UMQBLMD2viohhFrSpBBOIHEz9th7QiGQIMSf4jd27HiJoCo3LntZ27uamZ35Zu35BuA7WoFV7pBbJzNKUPKSl84JylK8LRzWUsZysd5Z3rlQfy6zyyl4amphwrHKxidGR-1uMPwj3xVVoBqngCIOB7c8dI0Ku6tNC42xWZz4xwdK2YYH3V-k300h2sfnPzs8dRXgqLJsxEtrzX6xZ7Jc1YXxqiKUgabC2spa2UKomhAQ4ZC9whkk-7Yoa0MgJLNk_FaipHWn4YOSsgpHCMv27wnJbx47SwbKLE5hU6YinVSqpwrBQ7JGw6qMixeB8HU4-GdfNoa79idYSDiVHY0N6zNM-f4ifGx6QLDkEhZhvvfM-zpcgh_diDbRM3JUdDWJ8oQRNGaGDSK87_trRjk1xbhQCs9SS5tluHgXOa7ATP-m71eB2coh-VxXlYjKl97SmFoUwtBaNBlbsN-ISmOiLg8dNK71hHQ5iFeTeHUUrxYt2H6eMxgTd7w5eitoQIevmlZGk4oT6P0CP5Y-Kgj2lYENrgXrjZJ0-tyHemKcLdhpFDe5_f_nrr292gbMds57p_q0e3byBeZEOE8Tjwqvw8zo7t5_JUA0st-iFTK4em-z_wuCqhjU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6MJkYPPlAjitqDiQfdAN23N4ISUCEeJOHWtNP2RFYi-P-dli7gM_Gyl21ndzs7M9-knW8IuQTJIE8UBFKFMSYoSRZkSjHMUrRMFZgwdOVi_UHSHUYPo3i0UsXvTruXW5LzmgbL0lTM6hNl6iuFb1HKApv6IATP4wCd8AZmKk17qK-dtJe0u4nr9WhJrAIMZKEvm_lZxqfQ9NVBf9spdQGos0d2PHKkrbmq98maLipkt-zKQL2RVsh2f8HEOj0gtz2H_0BTdB14FZ6EhCJYpYJOHOAu9JhilotRxxanU99k5pAMO_cv7W7g-yUEEMXxLMikFM20IeIkMqnQUY7fDyIHI0MTyZRFBrEdIqxGqgSg5UoIjUB4FUs0axlCeETWi9dCHxMqcwXoBVWeAUQ60xLHGJYygbJwMlRJs1wqDp5M3Pa0GPMlDbJdXo7Ly93yclYl14s5kzmVxp-jr6wGuLUzlAzClwvg-1nGKt5KEYhllp-tSmqlkrg3wClnuWWmR_yBgm5KxS1v__7ck_8NvyCbz3cd_tQbPJ6SLWYPvLizvDWyPnt712eIWGby3P2UH6-m3_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Instance+space+analysis+for+a+personnel+scheduling+problem&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Kletzander%2C+Lucas&rft.au=Musliu%2C+Nysret&rft.au=Smith-Miles%2C+Kate&rft.date=2021-07-01&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=89&rft.issue=7&rft.spage=617&rft.epage=637&rft_id=info:doi/10.1007%2Fs10472-020-09695-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10472_020_09695_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon |