Instance space analysis for a personnel scheduling problem

This paper considers the Rotating Workforce Scheduling Problem, and shows how the strengths and weaknesses of various solution methods can be understood by the in-depth evaluation offered by a recently developed methodology known as Instance Space Analysis. We first present a set of features aiming...

Full description

Saved in:
Bibliographic Details
Published inAnnals of mathematics and artificial intelligence Vol. 89; no. 7; pp. 617 - 637
Main Authors Kletzander, Lucas, Musliu, Nysret, Smith-Miles, Kate
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1012-2443
1573-7470
DOI10.1007/s10472-020-09695-2

Cover

Loading…
Abstract This paper considers the Rotating Workforce Scheduling Problem, and shows how the strengths and weaknesses of various solution methods can be understood by the in-depth evaluation offered by a recently developed methodology known as Instance Space Analysis. We first present a set of features aiming to describe hardness of test instances. We create a new, more diverse set of instances based on an initial instance space analysis that reveals gaps in the instance space, and offers the opportunity to generate additional instances to add diversity to the test suite. The results of three algorithms on our extended instance set reveal insights based on this visual methodology. We observe different regions of strength and weakness in the instance space for each algorithm, as well as a phase transition from feasible to infeasible instances with more challenging instances at the phase transition boundary. This rigorous and insightful approach to analyzing algorithm performance highlights the critical role played by the choice of test instances, and the importance of ensuring diversity and unbiasedness of test instances to support valid conclusions.
AbstractList This paper considers the Rotating Workforce Scheduling Problem, and shows how the strengths and weaknesses of various solution methods can be understood by the in-depth evaluation offered by a recently developed methodology known as Instance Space Analysis. We first present a set of features aiming to describe hardness of test instances. We create a new, more diverse set of instances based on an initial instance space analysis that reveals gaps in the instance space, and offers the opportunity to generate additional instances to add diversity to the test suite. The results of three algorithms on our extended instance set reveal insights based on this visual methodology. We observe different regions of strength and weakness in the instance space for each algorithm, as well as a phase transition from feasible to infeasible instances with more challenging instances at the phase transition boundary. This rigorous and insightful approach to analyzing algorithm performance highlights the critical role played by the choice of test instances, and the importance of ensuring diversity and unbiasedness of test instances to support valid conclusions. Keywords Personnel scheduling * Combinatorial optimization * Algorithm selection * Instance space Mathematics Subject Classification (2010) 68T05 * 68T20 * 68W40
This paper considers the Rotating Workforce Scheduling Problem, and shows how the strengths and weaknesses of various solution methods can be understood by the in-depth evaluation offered by a recently developed methodology known as Instance Space Analysis. We first present a set of features aiming to describe hardness of test instances. We create a new, more diverse set of instances based on an initial instance space analysis that reveals gaps in the instance space, and offers the opportunity to generate additional instances to add diversity to the test suite. The results of three algorithms on our extended instance set reveal insights based on this visual methodology. We observe different regions of strength and weakness in the instance space for each algorithm, as well as a phase transition from feasible to infeasible instances with more challenging instances at the phase transition boundary. This rigorous and insightful approach to analyzing algorithm performance highlights the critical role played by the choice of test instances, and the importance of ensuring diversity and unbiasedness of test instances to support valid conclusions.
Audience Academic
Author Musliu, Nysret
Kletzander, Lucas
Smith-Miles, Kate
Author_xml – sequence: 1
  givenname: Lucas
  surname: Kletzander
  fullname: Kletzander, Lucas
  email: lkletzan@dbai.tuwien.ac.at
  organization: Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, DBAI, TU Wien
– sequence: 2
  givenname: Nysret
  surname: Musliu
  fullname: Musliu, Nysret
  organization: Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, DBAI, TU Wien
– sequence: 3
  givenname: Kate
  surname: Smith-Miles
  fullname: Smith-Miles, Kate
  organization: School of Mathematics and Statistics, University of Melbourne
BookMark eNp9kMtqAyEYRqWk0CTtC3Q10LXt7y063YXQSyDQTbsWx2hqmDipThZ5-5pOodBFEFTkOx79JmgUu-gQuiVwTwDkQybAJcVAAUM9qwWmF2hMhGRYcgmjsgdCMeWcXaFJzluAElOzMXpcxtybaF2V96bMJpr2mEOufJcqU-1dyl2Mrq2y_XTrQxviptqnrmnd7hpdetNmd_O7TtHH89P74hWv3l6Wi_kKWy5Ej1XTGCLBiBn30jheF7U1tfUN87yRlHvBmBIE5NpY4KqxzBsQtWgUow2zbIruhnuL9-vgcq-33SGVd2ZNa6IoUE5pSd0PqY1pnQ7Rd30ytoy12wVb2vKhnM8lEbXioEQB6ADY1OWcnNf7FHYmHTUBfSpVD6XqUqr-KVWfLOofZENv-tDFYgvteZQNaC6euHHp7xtnqG_sg4yU
CitedBy_id crossref_primary_10_1016_j_cor_2021_105661
crossref_primary_10_1016_j_ejor_2022_11_046
crossref_primary_10_1007_s10994_022_06205_9
crossref_primary_10_1016_j_ejor_2024_06_005
crossref_primary_10_1016_j_knosys_2024_112378
crossref_primary_10_1016_j_ejor_2023_12_008
crossref_primary_10_1016_j_eswa_2022_116871
crossref_primary_10_1080_21650020_2023_2264353
Cites_doi 10.1057/jors.1976.30
10.1016/j.cor.2011.07.006
10.1057/palgrave.jors.2601789
10.1016/0305-0548(94)00094-O
10.1002/net.3230200103
10.1109/TR.2018.2832072
10.1007/s10994-017-5629-5
10.1287/ijoc.2015.0683
10.1016/S0166-218X(01)00258-X
10.1016/j.matcom.2014.12.002
10.1057/palgrave.jors.2600803
10.5019/j.ijcir.2006.69
10.1016/0377-2217(80)90036-3
10.1023/A:1010933404324
10.1016/j.cor.2015.04.022
10.1162/EVCO_a_00194
10.1016/j.cor.2013.11.015
10.1145/1456650.1456656
10.1016/j.ijforecast.2016.09.004
10.1007/978-3-319-93031-2_31
10.1007/978-3-642-21332-8_12
10.1016/S0065-2458(08)60520-3
10.24963/ijcai.2017/86
10.1609/icaps.v29i1.3518
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2021 Springer
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10472-020-09695-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 637
ExternalDocumentID A715984085
10_1007_s10472_020_09695_2
GrantInformation_xml – fundername: Christian Doppler Forschungsgesellschaft
  grantid: CD laboratory
  funderid: https://doi.org/10.13039/501100006012
– fundername: Australian Research Council (AU)
  grantid: FL140100012
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c455t-8bba170a564f7ae49009ca9cfb3f4b724f53385107dac048bc3fa0595b832b3c3
IEDL.DBID 8FG
ISSN 1012-2443
IngestDate Fri Jul 25 11:08:35 EDT 2025
Tue Jun 10 20:27:15 EDT 2025
Thu Apr 24 22:51:18 EDT 2025
Tue Jul 01 03:19:43 EDT 2025
Fri Feb 21 02:49:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords 68W40
68T20
68T05
Algorithm selection
Instance space
Combinatorial optimization
Personnel scheduling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-8bba170a564f7ae49009ca9cfb3f4b724f53385107dac048bc3fa0595b832b3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10472-020-09695-2
PQID 2918202422
PQPubID 2043872
PageCount 21
ParticipantIDs proquest_journals_2918202422
gale_infotracacademiconefile_A715984085
crossref_primary_10_1007_s10472_020_09695_2
crossref_citationtrail_10_1007_s10472_020_09695_2
springer_journals_10_1007_s10472_020_09695_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2021
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Smith-Miles, Baatar, Wreford, Lewis (CR21) 2014; 45
Falcón, Barrena, Canca, Laporte (CR6) 2016; 125
Laporte (CR9) 1999; 50
CR17
Breiman (CR3) 2001; 45
CR14
Smith-Miles, Bowly (CR22) 2015; 63
Musliu, Gärtner, Slany (CR16) 2002; 118
Restrepo, Gendron, Rousseau (CR19) 2016; 28
Chuin Lau (CR4) 1996; 23
CR5
Smith-Miles (CR24) 2009; 41
CR8
Laporte, Pesant (CR11) 2004; 55
Baker (CR1) 1976; 27
Smith-Miles, Lopes (CR23) 2012; 39
CR25
Kang, Hyndman, Smith-Miles (CR7) 2017; 33
CR20
Musliu (CR15) 2006; 2
Laporte, Nobert, Biron (CR10) 1980; 4
Muñoz, Smith-Miles (CR12) 2017; 25
Muñoz, Villanova, Baatar, Smith-Miles (CR13) 2018; 107
Balakrishnan, Wong (CR2) 1990; 20
Oliveira, Aleti, Grunske, Smith-Miles (CR18) 2018; 67
C Oliveira (9695_CR18) 2018; 67
R Falcón (9695_CR6) 2016; 125
MA Muñoz (9695_CR13) 2018; 107
N Balakrishnan (9695_CR2) 1990; 20
9695_CR17
9695_CR14
KR Baker (9695_CR1) 1976; 27
MI Restrepo (9695_CR19) 2016; 28
K Smith-Miles (9695_CR22) 2015; 63
G Laporte (9695_CR9) 1999; 50
H Chuin Lau (9695_CR4) 1996; 23
G Laporte (9695_CR11) 2004; 55
G Laporte (9695_CR10) 1980; 4
K Smith-Miles (9695_CR21) 2014; 45
N Musliu (9695_CR16) 2002; 118
Y Kang (9695_CR7) 2017; 33
K Smith-Miles (9695_CR23) 2012; 39
KA Smith-Miles (9695_CR24) 2009; 41
N Musliu (9695_CR15) 2006; 2
M Muñoz (9695_CR12) 2017; 25
9695_CR8
9695_CR5
9695_CR25
9695_CR20
L Breiman (9695_CR3) 2001; 45
References_xml – volume: 27
  start-page: 155
  issue: 1
  year: 1976
  end-page: 167
  ident: CR1
  article-title: Workforce allocation in cyclical scheduling problems: a survey
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1976.30
– volume: 39
  start-page: 875
  issue: 5
  year: 2012
  end-page: 889
  ident: CR23
  article-title: Measuring instance difficulty for combinatorial optimization problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.07.006
– volume: 55
  start-page: 1208
  issue: 11
  year: 2004
  end-page: 1217
  ident: CR11
  article-title: A general multi-shift scheduling system
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601789
– volume: 23
  start-page: 93
  issue: 1
  year: 1996
  end-page: 102
  ident: CR4
  article-title: On the complexity of manpower shift scheduling
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(94)00094-O
– ident: CR14
– volume: 20
  start-page: 25
  issue: 1
  year: 1990
  end-page: 42
  ident: CR2
  article-title: A network model for the rotating workforce scheduling problem
  publication-title: Networks
  doi: 10.1002/net.3230200103
– volume: 67
  start-page: 771
  issue: 3
  year: 2018
  end-page: 785
  ident: CR18
  article-title: Mapping the effectiveness of automated test suite generation techniques
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2018.2832072
– volume: 107
  start-page: 109
  issue: 1
  year: 2018
  end-page: 147
  ident: CR13
  article-title: Instance spaces for machine learning classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-017-5629-5
– ident: CR8
– volume: 28
  start-page: 334
  issue: 2
  year: 2016
  end-page: 350
  ident: CR19
  article-title: Branch-and-price for personalized multiactivity tour scheduling
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2015.0683
– ident: CR25
– volume: 118
  start-page: 85
  issue: 1-2
  year: 2002
  end-page: 98
  ident: CR16
  article-title: Efficient generation of rotating workforce schedules
  publication-title: Discret. Appl. Math.
  doi: 10.1016/S0166-218X(01)00258-X
– volume: 125
  start-page: 139
  year: 2016
  end-page: 151
  ident: CR6
  article-title: Counting and enumerating feasible rotating schedules by means of gröbner bases
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2014.12.002
– ident: CR17
– volume: 50
  start-page: 1011
  year: 1999
  end-page: 1017
  ident: CR9
  article-title: The art and science of designing rotating schedules
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2600803
– volume: 2
  start-page: 309
  issue: 4
  year: 2006
  end-page: 326
  ident: CR15
  article-title: Heuristic methods for automatic rotating workforce scheduling
  publication-title: Int. J. Comput. Intell. Res.
  doi: 10.5019/j.ijcir.2006.69
– volume: 4
  start-page: 24
  issue: 1
  year: 1980
  end-page: 30
  ident: CR10
  article-title: Rotating schedules
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(80)90036-3
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR3
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: CR5
– volume: 63
  start-page: 102
  year: 2015
  end-page: 113
  ident: CR22
  article-title: Generating new test instances by evolving in instance space
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.04.022
– volume: 25
  start-page: 529
  issue: 4
  year: 2017
  end-page: 554
  ident: CR12
  article-title: Performance analysis of continuous black-box optimization algorithms via footprints in instance space
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00194
– volume: 45
  start-page: 12
  year: 2014
  end-page: 24
  ident: CR21
  article-title: Towards objective measures of algorithm performance across instance space
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.11.015
– volume: 41
  start-page: 6
  issue: 1
  year: 2009
  ident: CR24
  article-title: Cross-disciplinary perspectives on meta-learning for algorithm selection
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/1456650.1456656
– ident: CR20
– volume: 33
  start-page: 345
  issue: 2
  year: 2017
  end-page: 358
  ident: CR7
  article-title: Visualising forecasting algorithm performance using time series instance spaces
  publication-title: Int. J. Forecast
  doi: 10.1016/j.ijforecast.2016.09.004
– ident: 9695_CR17
  doi: 10.1007/978-3-319-93031-2_31
– volume: 63
  start-page: 102
  year: 2015
  ident: 9695_CR22
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.04.022
– volume: 27
  start-page: 155
  issue: 1
  year: 1976
  ident: 9695_CR1
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1976.30
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 9695_CR3
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: 9695_CR14
– volume: 2
  start-page: 309
  issue: 4
  year: 2006
  ident: 9695_CR15
  publication-title: Int. J. Comput. Intell. Res.
  doi: 10.5019/j.ijcir.2006.69
– volume: 118
  start-page: 85
  issue: 1-2
  year: 2002
  ident: 9695_CR16
  publication-title: Discret. Appl. Math.
  doi: 10.1016/S0166-218X(01)00258-X
– ident: 9695_CR25
  doi: 10.1007/978-3-642-21332-8_12
– volume: 41
  start-page: 6
  issue: 1
  year: 2009
  ident: 9695_CR24
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/1456650.1456656
– ident: 9695_CR20
  doi: 10.1016/S0065-2458(08)60520-3
– volume: 55
  start-page: 1208
  issue: 11
  year: 2004
  ident: 9695_CR11
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601789
– volume: 107
  start-page: 109
  issue: 1
  year: 2018
  ident: 9695_CR13
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-017-5629-5
– volume: 23
  start-page: 93
  issue: 1
  year: 1996
  ident: 9695_CR4
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(94)00094-O
– volume: 20
  start-page: 25
  issue: 1
  year: 1990
  ident: 9695_CR2
  publication-title: Networks
  doi: 10.1002/net.3230200103
– volume: 50
  start-page: 1011
  year: 1999
  ident: 9695_CR9
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2600803
– volume: 125
  start-page: 139
  year: 2016
  ident: 9695_CR6
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2014.12.002
– volume: 33
  start-page: 345
  issue: 2
  year: 2017
  ident: 9695_CR7
  publication-title: Int. J. Forecast
  doi: 10.1016/j.ijforecast.2016.09.004
– volume: 4
  start-page: 24
  issue: 1
  year: 1980
  ident: 9695_CR10
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(80)90036-3
– ident: 9695_CR5
  doi: 10.24963/ijcai.2017/86
– volume: 45
  start-page: 12
  year: 2014
  ident: 9695_CR21
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.11.015
– volume: 28
  start-page: 334
  issue: 2
  year: 2016
  ident: 9695_CR19
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2015.0683
– volume: 39
  start-page: 875
  issue: 5
  year: 2012
  ident: 9695_CR23
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.07.006
– volume: 67
  start-page: 771
  issue: 3
  year: 2018
  ident: 9695_CR18
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2018.2832072
– ident: 9695_CR8
  doi: 10.1609/icaps.v29i1.3518
– volume: 25
  start-page: 529
  issue: 4
  year: 2017
  ident: 9695_CR12
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00194
SSID ssj0009686
Score 2.3193858
Snippet This paper considers the Rotating Workforce Scheduling Problem, and shows how the strengths and weaknesses of various solution methods can be understood by the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 617
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Complex Systems
Computer Science
Forecasts and trends
Hardness
Mathematics
Mechanical properties
Phase transitions
Scheduling
Visual observation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iFz34qIrVKjkIHjTQ5rEPb0UsVagnC72FZJI9lbXY-v-dpNnWN3jZyyazuzM7k29I5htCLsFyKDMHzDqhMEHJClY4xzFL8TZ3UAkRy8VGT9lwLB8napKKwubNafdmSzJG6g_FbjLnLKQ7CLtLxTDwbinM3cN_Peb9NdVuFvs7BuIqhouXSKUyP8v4tBx9DcrfdkfjojPYJ7sJLdL-0rwHZMPXLbLXdGKgyTFbZGe0Yl-dH5Lbh4j5wFMMF3g1iXiEIkClhs4iyK79lGJmiytNKEinqbHMERkP7p_vhiz1SGAglVqwwlrTy7tGZbLKjZclfj-YEiorKmlzLivEc4iqurkzgN5qQVQGIZWy6MpWgDgmm_VL7U8ItaUDjHyuLACkL7zFMRXPuUFZOBnapNeoSkMiEA99LKZ6TX0c1KtRvTqqV_M2uV7NmS3pM_4cfRUsoINvoWQwqUQA3y-wVOl-juCrCJxsbdJpjKST0801LwMbPWIOFHTTGG59-_fnnv5v-BnZ5uFkSzy02yGbi9c3f47QZGEv4p_4Dn8Y2Ng
  priority: 102
  providerName: Springer Nature
Title Instance space analysis for a personnel scheduling problem
URI https://link.springer.com/article/10.1007/s10472-020-09695-2
https://www.proquest.com/docview/2918202422
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TgMxEB1xNFBwI8IlF0gUYEG8Nw1KoiQcIkKISFBZ9thbRUkg4f8ZO14iQNCsCx-7a3tmno95A3CCWmCRGuTaRAktUNKc58YIWqVYnRkso8i7iz300pt-fPeSvIQNt0m4VlnpRK-ozQjdHvmFKBzVOBkUcT1-4y5qlDtdDSE0FmG5TpbGzfC8052T7qY-0qOjsOJkxqLgNBNc5-JMcLd4omJFwsU3w_RTPf86J_Xmp7MBawE3ssZsoDdhwQ63YL2KycCCiG7B6sMXD-tkG65uPfpDy0hx0FMFChJGUJUpNvZwe2gHjNa4ZHOcazoLIWZ2oN9pP7dueIiWwDFOkinPtVb17FIlaVxmysYF_T-qAksdlbHORFwSsiN8dZkZhSS3GqNSEbhKNAm1jjDahaXhaGj3gOnCIOlAU-SIsc2tpjKlyISitqgy1qBedZXEQCXuIloM5JwE2XWvpO6VvnulqMHZV53xjEjj39KnbgSkkzJqGVVwFqDvc3xVspERDMsdO1sNDqtBkkH8JnI-WWpwXg3cPPvv9-7_39oBrAh3p8Vf1z2Epen7hz0iUDLVx37mHcNyo9Ns9lzafb1vU9ps9x6fKLeVtujZF41PGYbiRQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BPQAH2vIQobT4UMQBLMD2viohhFrSpBBOIHEz9th7QiGQIMSf4jd27HiJoCo3LntZ27uamZ35Zu35BuA7WoFV7pBbJzNKUPKSl84JylK8LRzWUsZysd5Z3rlQfy6zyyl4amphwrHKxidGR-1uMPwj3xVVoBqngCIOB7c8dI0Ku6tNC42xWZz4xwdK2YYH3V-k300h2sfnPzs8dRXgqLJsxEtrzX6xZ7Jc1YXxqiKUgabC2spa2UKomhAQ4ZC9whkk-7Yoa0MgJLNk_FaipHWn4YOSsgpHCMv27wnJbx47SwbKLE5hU6YinVSqpwrBQ7JGw6qMixeB8HU4-GdfNoa79idYSDiVHY0N6zNM-f4ifGx6QLDkEhZhvvfM-zpcgh_diDbRM3JUdDWJ8oQRNGaGDSK87_trRjk1xbhQCs9SS5tluHgXOa7ATP-m71eB2coh-VxXlYjKl97SmFoUwtBaNBlbsN-ISmOiLg8dNK71hHQ5iFeTeHUUrxYt2H6eMxgTd7w5eitoQIevmlZGk4oT6P0CP5Y-Kgj2lYENrgXrjZJ0-tyHemKcLdhpFDe5_f_nrr292gbMds57p_q0e3byBeZEOE8Tjwqvw8zo7t5_JUA0st-iFTK4em-z_wuCqhjU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6MJkYPPlAjitqDiQfdAN23N4ISUCEeJOHWtNP2RFYi-P-dli7gM_Gyl21ndzs7M9-knW8IuQTJIE8UBFKFMSYoSRZkSjHMUrRMFZgwdOVi_UHSHUYPo3i0UsXvTruXW5LzmgbL0lTM6hNl6iuFb1HKApv6IATP4wCd8AZmKk17qK-dtJe0u4nr9WhJrAIMZKEvm_lZxqfQ9NVBf9spdQGos0d2PHKkrbmq98maLipkt-zKQL2RVsh2f8HEOj0gtz2H_0BTdB14FZ6EhCJYpYJOHOAu9JhilotRxxanU99k5pAMO_cv7W7g-yUEEMXxLMikFM20IeIkMqnQUY7fDyIHI0MTyZRFBrEdIqxGqgSg5UoIjUB4FUs0axlCeETWi9dCHxMqcwXoBVWeAUQ60xLHGJYygbJwMlRJs1wqDp5M3Pa0GPMlDbJdXo7Ly93yclYl14s5kzmVxp-jr6wGuLUzlAzClwvg-1nGKt5KEYhllp-tSmqlkrg3wClnuWWmR_yBgm5KxS1v__7ck_8NvyCbz3cd_tQbPJ6SLWYPvLizvDWyPnt712eIWGby3P2UH6-m3_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Instance+space+analysis+for+a+personnel+scheduling+problem&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Kletzander%2C+Lucas&rft.au=Musliu%2C+Nysret&rft.au=Smith-Miles%2C+Kate&rft.date=2021-07-01&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=89&rft.issue=7&rft.spage=617&rft.epage=637&rft_id=info:doi/10.1007%2Fs10472-020-09695-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10472_020_09695_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon