Exquisite growth control and magnetic properties of yttrium iron garnet thin films

A layer-by-layer epitaxial growth up to 227 atomic layers of ferrimagnetic insulator yttrium iron garnet (YIG) thin films is achieved on (110)-oriented gadolinium gallium garnet substrates using pulsed laser deposition. Atomically smooth terraces are observed on YIG films up to 100 nm in thickness....

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 108; no. 10
Main Authors Tang, Chi, Aldosary, Mohammed, Jiang, Zilong, Chang, Houchen, Madon, Benjamin, Chan, Kyle, Wu, Mingzhong, Garay, Javier E., Shi, Jing
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A layer-by-layer epitaxial growth up to 227 atomic layers of ferrimagnetic insulator yttrium iron garnet (YIG) thin films is achieved on (110)-oriented gadolinium gallium garnet substrates using pulsed laser deposition. Atomically smooth terraces are observed on YIG films up to 100 nm in thickness. The root-mean-square roughness is as low as 0.067 nm. The easy-axis lies in the film plane, indicating the dominance of shape anisotropy. For (110)-YIG films, there is well-defined two-fold in-plane anisotropy, with the easiest axis directed along [001]. The Gilbert damping constant is determined to be 1.0 × 10−4 for 100 nm thick films.
AbstractList A layer-by-layer epitaxial growth up to 227 atomic layers of ferrimagnetic insulator yttrium iron garnet (YIG) thin films is achieved on (110)-oriented gadolinium gallium garnet substrates using pulsed laser deposition. Atomically smooth terraces are observed on YIG films up to 100 nm in thickness. The root-mean-square roughness is as low as 0.067 nm. The easy-axis lies in the film plane, indicating the dominance of shape anisotropy. For (110)-YIG films, there is well-defined two-fold in-plane anisotropy, with the easiest axis directed along [001]. The Gilbert damping constant is determined to be 1.0 × 10−4 for 100 nm thick films.
Author Garay, Javier E.
Aldosary, Mohammed
Shi, Jing
Tang, Chi
Madon, Benjamin
Chang, Houchen
Chan, Kyle
Wu, Mingzhong
Jiang, Zilong
Author_xml – sequence: 1
  givenname: Chi
  surname: Tang
  fullname: Tang, Chi
  organization: University of California
– sequence: 2
  givenname: Mohammed
  surname: Aldosary
  fullname: Aldosary, Mohammed
  organization: University of California
– sequence: 3
  givenname: Zilong
  surname: Jiang
  fullname: Jiang, Zilong
  organization: University of California
– sequence: 4
  givenname: Houchen
  surname: Chang
  fullname: Chang, Houchen
  organization: Colorado State University
– sequence: 5
  givenname: Benjamin
  surname: Madon
  fullname: Madon, Benjamin
  organization: Université Paris-Saclay
– sequence: 6
  givenname: Kyle
  surname: Chan
  fullname: Chan, Kyle
  organization: University of California
– sequence: 7
  givenname: Mingzhong
  surname: Wu
  fullname: Wu, Mingzhong
  organization: Colorado State University
– sequence: 8
  givenname: Javier E.
  surname: Garay
  fullname: Garay, Javier E.
  organization: University of California
– sequence: 9
  givenname: Jing
  surname: Shi
  fullname: Shi, Jing
  organization: University of California
BackLink https://www.osti.gov/biblio/1240761$$D View this record in Osti.gov
BookMark eNqd0MtKAzEUBuAgFWzVhW8QdKUwmjPJTGaWUryBIIiuQ5pLG2mTNkm9vL0pVQRx5SoEvvNzzj9CAx-8QegIyDmQll7AOesZrYHsoCEQzisK0A3QkBBCq7ZvYA-NUnop36amdIger95Xa5dcNngaw1ueYRV8jmGOpdd4IafeZKfwMoalidmZhIPFHzlHt15gF4PHUxmLwXnmPLZuvkgHaNfKeTKHX-8-er6-ehrfVvcPN3fjy_tKsabJVddoTgj0TKuWdoxbVne2JUpyYApo3VuiQWmtO2CtBt1MOiInE9srsBY4o_voeJsbUnYiqXKDmpXtvVFZQM0Ib6Ggky0qF6zWJmXxEtbRl71EDTV0LefdRl1slYohpWisKGkyu00V0s0FELFpV4D4ardMnP6aWEa3kPHjT3u2tek79X_4NcQfKJba0k8qt5ct
CODEN APPLAB
CitedBy_id crossref_primary_10_1002_smll_202407381
crossref_primary_10_1038_s41598_019_52889_w
crossref_primary_10_1016_j_jallcom_2022_168169
crossref_primary_10_1103_PhysRevB_99_064438
crossref_primary_10_1002_adfm_201800462
crossref_primary_10_1103_PhysRevMaterials_5_074401
crossref_primary_10_1021_acs_nanolett_8b01261
crossref_primary_10_1103_PhysRevApplied_12_054044
crossref_primary_10_1063_1_5031198
crossref_primary_10_1016_j_physb_2024_416542
crossref_primary_10_1016_j_vacuum_2022_111644
crossref_primary_10_1063_5_0054528
crossref_primary_10_1088_1361_648X_acf35b
crossref_primary_10_1007_s00723_021_01347_w
crossref_primary_10_1021_acsami_7b06876
crossref_primary_10_1109_TMAG_2021_3087822
crossref_primary_10_1103_PhysRevB_95_174411
crossref_primary_10_1016_j_jallcom_2016_11_089
crossref_primary_10_1063_1_5124832
crossref_primary_10_1088_2040_8986_aaf2c1
crossref_primary_10_1063_5_0067122
crossref_primary_10_1038_s41598_018_19606_5
crossref_primary_10_1080_21663831_2016_1195779
crossref_primary_10_1063_1_5002004
crossref_primary_10_1109_TMAG_2020_3021646
crossref_primary_10_1103_PhysRevMaterials_5_124414
crossref_primary_10_1063_5_0033259
crossref_primary_10_1063_1_4967695
crossref_primary_10_1016_j_jmmm_2018_08_018
crossref_primary_10_1103_PhysRevLett_124_157201
crossref_primary_10_1364_JOSAB_419818
crossref_primary_10_1063_1_5001318
crossref_primary_10_1021_acsami_2c00058
crossref_primary_10_3390_ijms24032689
crossref_primary_10_1002_pssb_201900644
crossref_primary_10_1109_TQE_2021_3057799
crossref_primary_10_1088_1402_4896_acf34f
crossref_primary_10_1126_sciadv_aas8660
crossref_primary_10_1063_1_4953454
crossref_primary_10_1063_1_5046977
crossref_primary_10_1088_1361_6463_ac89fb
crossref_primary_10_1016_j_ceramint_2018_03_249
crossref_primary_10_1103_PhysRevApplied_18_034005
crossref_primary_10_1126_sciadv_1601614
crossref_primary_10_1016_j_jmmm_2021_168130
crossref_primary_10_1016_j_jmmm_2023_170639
crossref_primary_10_1063_1_4978310
crossref_primary_10_1063_5_0157520
crossref_primary_10_1038_s41598_019_53255_6
crossref_primary_10_1107_S2052520623000483
crossref_primary_10_1007_s00339_021_04573_y
crossref_primary_10_1063_5_0035690
crossref_primary_10_1016_j_jallcom_2020_158235
crossref_primary_10_3390_app13021218
crossref_primary_10_1109_LMAG_2020_2989687
Cites_doi 10.1103/PhysRevB.62.5331
10.1103/PhysRevLett.112.197201
10.1063/1.3528207
10.1109/LMAG.2014.2350958
10.1103/PhysRevB.86.134419
10.1063/1.3266004
10.1038/nmat3053
10.1103/PhysRevB.79.174424
10.1038/nmat2856
10.1038/ncomms10858
10.1103/PhysRevLett.113.037203
10.1209/0295-5075/96/17005
10.1063/1.2834714
10.1063/1.3631683
10.1109/JPHOT.2013.2293618
10.1103/PhysRevLett.26.775
10.1103/PhysRevLett.107.066604
10.1063/1.4861343
10.1103/PhysRevB.60.7395
10.1038/nphys3465
10.1063/1.4759039
10.1088/0022-3727/48/33/335005
10.1021/acs.nanolett.5b01905
10.1146/annurev-matsci-070909-104433
10.1103/PhysRevLett.109.107204
10.1103/PhysRevB.91.134407
10.1063/1.4822267
10.1103/PhysRevLett.114.016603
10.1063/1.4896936
10.1103/PhysRevLett.110.206601
10.1109/50.62880
10.1063/1.4926922
ContentType Journal Article
Copyright AIP Publishing LLC
2016 AIP Publishing LLC.
Copyright_xml – notice: AIP Publishing LLC
– notice: 2016 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
OTOTI
DOI 10.1063/1.4943210
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 1240761
10_1063_1_4943210
apl
GrantInformation_xml – fundername: U.S. Department of Energy (DOE)
  grantid: SC0012670
  funderid: http://dx.doi.org/10.13039/100000015
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
EJD
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
0ZJ
ABPTK
AGIHO
OTOTI
UE8
ID FETCH-LOGICAL-c455t-85d700194dc63847f428f60ca714c1329f0d1cddd8146d1d5b80abbf9c1ff1743
ISSN 0003-6951
IngestDate Fri May 19 01:41:37 EDT 2023
Mon Jun 30 02:40:50 EDT 2025
Tue Jul 01 01:15:11 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Fri Jun 21 00:19:37 EDT 2024
Sun Jul 14 11:31:38 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 0003-6951/2016/108(10)/102403/4/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-85d700194dc63847f428f60ca714c1329f0d1cddd8146d1d5b80abbf9c1ff1743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
SC0012670
ORCID 0000-0001-5289-6281
0000000152896281
OpenAccessLink https://www.osti.gov/biblio/1240761
PQID 2121867781
PQPubID 2050678
PageCount 4
ParticipantIDs crossref_citationtrail_10_1063_1_4943210
crossref_primary_10_1063_1_4943210
osti_scitechconnect_1240761
scitation_primary_10_1063_1_4943210
proquest_journals_2121867781
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-07
PublicationDateYYYYMMDD 2016-03-07
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-07
  day: 07
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Applied physics letters
PublicationYear 2016
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Garay (c20) 2010; 40
Grattan, Meggitt (c2) 1999; 2
Lin, Tang, Alyahayaei, Shi (c15) 2014; 113
Stadler, Mizumoto (c4) 2014; 6
Jiang, Chang, Tang, Wei, Moodera, Shi (c17) 2015; 15
Sun, Song, Chang, Kabatek, Jantz, Schneider, Wu, Schultheiss, Hoffmann (c33) 2012; 101
Schneider, Serga, Leven, Hillebrands, Stamps, Kostylev (c37) 2008; 92
Rosencwaig, Tabor, Hagedorn, Van Uitert (c27) 1971; 26
Vilela-Leão, Salvador, Azevedo, Rezende (c8) 2011; 99
Sandweg, Kajiwara, Ando, Saitoh, Hillebrands (c7) 2010; 97
Ma, Liu, Lin, Gao, Zhang, Wu, Li, Shi (c23) 2009; 79
Chang, Li, Zhang, Liu, Hoffmann, Deng, Wu (c25) 2014; 5
Nakayama, Althammer, Chen, Uchida, Kajiwara, Kikuchi, Ohtani, Geprägs, Opel, Takahashi, Gross, Bauer, Goennenwein, Saitoh (c13) 2013; 110
Arias, Mills (c31) 1999; 60
Krockenberger, Yun, Hatano, Arisawa, Kawasaki, Tokura (c21) 2009; 106
Deeter, Rose, Day (c3) 1990; 8
Heinrich, Burrowes, Montoya, Kardasz, Girt, Song, Sun, Wu (c9) 2011; 107
Li, Xu, Aldosary, Tang, Lin, Zhang, Lake, Shi (c19) 2016; 7
Jia, Liu, Xia, Bauer (c5) 2011; 96
Wang, Du, Pu, Adur, Hammer, Yang (c10) 2014; 112
Huang, Fan, Qu, Chen, Wang, Wu, Chen, Xiao, Chien (c12) 2012; 109
Wang, Tang, Shi (c16) 2015; 114
Wei, Chin, Svedlindh (c29) 2015; 48
Jungfleisch, Chumak, Kehlberger, Lauer, Kim, Onbasli, Ross, Kläui, Hillebrands (c34) 2015; 91
Kurebayashi, Dzyapko, Demidov, Fang, Ferguson, Demokritov (c30) 2011; 10
Pirro, Brächer, Chumak, Lägel, Dubs, Surzhenko, Görnert, Leven, Hillebrands (c35) 2014; 104
Yuan, Zhao, Tang, Su, Song, Shi, Han (c24) 2015; 107
Castel, Vlietstra, van Wees, Youssef (c11) 2012; 86
Uchida, Xiao, Adachi, Ohe, Takahashi, Ieda, Ota, Kajiwara, Umezawa, Kawai, Bauer, Maekawa, Saitoh (c6) 2010; 9
Cornelissen, Liu, Duine, Youssef, van Wees (c18) 2015; 11
Onbasli, Kehlberger, Kim, Jakob, Kläui, Chumak, Hillebrands, Ross (c26) 2014; 2
Lin, Tang, Shi (c14) 2013; 103
Azevedo, Oliveira, de Aguiar, Rezende (c32) 2000; 62
(2023061722594808400_c10) 2014; 112
(2023061722594808400_c16) 2015; 114
(2023061722594808400_c23) 2009; 79
(2023061722594808400_c25) 2014; 5
(2023061722594808400_c31) 1999; 60
(2023061722594808400_c4) 2014; 6
(2023061722594808400_c5) 2011; 96
(2023061722594808400_c26) 2014; 2
(2023061722594808400_c7) 2010; 97
(2023061722594808400_c12) 2012; 109
(2023061722594808400_c14) 2013; 103
(2023061722594808400_c9) 2011; 107
(2023061722594808400_c22) 2004
(2023061722594808400_c27) 1971; 26
(2023061722594808400_c28) 1972
(2023061722594808400_c8) 2011; 99
(2023061722594808400_c11) 2012; 86
(2023061722594808400_c13) 2013; 110
(2023061722594808400_c17) 2015; 15
(2023061722594808400_c37) 2008; 92
(2023061722594808400_c15) 2014; 113
(2023061722594808400_c32) 2000; 62
2023061722594808400_c36
(2023061722594808400_c29) 2015; 48
(2023061722594808400_c30) 2011; 10
(2023061722594808400_c20) 2010; 40
(2023061722594808400_c1) 1964
(2023061722594808400_c19) 2016; 7
(2023061722594808400_c33) 2012; 101
(2023061722594808400_c3) 1990; 8
(2023061722594808400_c21) 2009; 106
(2023061722594808400_c2) 1999; 2
(2023061722594808400_c18) 2015; 11
(2023061722594808400_c24) 2015; 107
(2023061722594808400_c34) 2015; 91
(2023061722594808400_c6) 2010; 9
(2023061722594808400_c35) 2014; 104
References_xml – volume: 107
  start-page: 022404
  year: 2015
  ident: c24
  publication-title: Appl. Phys. Lett.
– volume: 110
  start-page: 206601
  year: 2013
  ident: c13
  publication-title: Phys. Rev. Lett.
– volume: 106
  start-page: 123911
  year: 2009
  ident: c21
  publication-title: J. Appl. Phys.
– volume: 109
  start-page: 107204
  year: 2012
  ident: c12
  publication-title: Phys. Rev. Lett.
– volume: 99
  start-page: 102505
  year: 2011
  ident: c8
  publication-title: Appl. Phys. Lett.
– volume: 62
  start-page: 5331
  year: 2000
  ident: c32
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 1
  year: 2014
  ident: c4
  publication-title: IEEE Photonics J.
– volume: 26
  start-page: 775
  year: 1971
  ident: c27
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 5835
  year: 2015
  ident: c17
  publication-title: Nano. Lett.
– volume: 86
  start-page: 134419
  year: 2012
  ident: c11
  publication-title: Phys. Rev. B
– volume: 79
  start-page: 174424
  year: 2009
  ident: c23
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 894
  year: 2010
  ident: c6
  publication-title: Nat. Mater.
– volume: 112
  start-page: 197201
  year: 2014
  ident: c10
  publication-title: Phys. Rev. Lett.
– volume: 48
  start-page: 335005
  year: 2015
  ident: c29
  publication-title: J. Phys. D: Appl. Phys.
– volume: 8
  start-page: 1838
  year: 1990
  ident: c3
  publication-title: J. Lightwave Technol.
– volume: 97
  start-page: 252504
  year: 2010
  ident: c7
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 1022
  year: 2015
  ident: c18
  publication-title: Nat. Phys.
– volume: 10
  start-page: 660
  year: 2011
  ident: c30
  publication-title: Nat. Mater.
– volume: 114
  start-page: 016603
  year: 2015
  ident: c16
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 214
  year: 1999
  ident: c2
  publication-title: Opt. Fiber Sens. Technol.
– volume: 96
  start-page: 17005
  year: 2011
  ident: c5
  publication-title: Eur. Phys. Lett.
– volume: 92
  start-page: 022505
  year: 2008
  ident: c37
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 106102
  year: 2014
  ident: c26
  publication-title: APL Mater.
– volume: 101
  start-page: 152405
  year: 2012
  ident: c33
  publication-title: Appl. Phys. Lett.
– volume: 103
  start-page: 132407
  year: 2013
  ident: c14
  publication-title: Appl. Phys. Lett.
– volume: 40
  start-page: 445
  year: 2010
  ident: c20
  publication-title: Annu. Rev. Mater. Res.
– volume: 113
  start-page: 037203
  year: 2014
  ident: c15
  publication-title: Phys. Rev. Lett.
– volume: 91
  start-page: 134407
  year: 2015
  ident: c34
  publication-title: Phys. Rev. B
– volume: 107
  start-page: 066604
  year: 2011
  ident: c9
  publication-title: Phys. Rev. Lett.
– volume: 60
  start-page: 7395
  year: 1999
  ident: c31
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 10858
  year: 2016
  ident: c19
  publication-title: Nat. Commun.
– volume: 5
  start-page: 6700104
  year: 2014
  ident: c25
  publication-title: IEEE Magn. Lett.
– volume: 104
  start-page: 012402
  year: 2014
  ident: c35
  publication-title: Appl. Rev. Lett.
– volume-title: J. Appl. Phys.
  ident: 2023061722594808400_c36
  article-title: Complementary Methods of Characterizing Magnetic Damping in Yttrium Iron Garnet Thin Films Based on Brillouin Light Scattering
– volume-title: Reflection High-Energy Electron Diffraction
  year: 2004
  ident: 2023061722594808400_c22
– volume: 62
  start-page: 5331
  year: 2000
  ident: 2023061722594808400_c32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.5331
– volume: 2
  start-page: 214
  year: 1999
  ident: 2023061722594808400_c2
  publication-title: Opt. Fiber Sens. Technol.
– volume: 112
  start-page: 197201
  year: 2014
  ident: 2023061722594808400_c10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.197201
– volume: 97
  start-page: 252504
  year: 2010
  ident: 2023061722594808400_c7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3528207
– volume: 5
  start-page: 6700104
  year: 2014
  ident: 2023061722594808400_c25
  publication-title: IEEE Magn. Lett.
  doi: 10.1109/LMAG.2014.2350958
– volume: 86
  start-page: 134419
  year: 2012
  ident: 2023061722594808400_c11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.134419
– volume-title: Introduction to Magnetic Materials
  year: 1972
  ident: 2023061722594808400_c28
– volume: 106
  start-page: 123911
  year: 2009
  ident: 2023061722594808400_c21
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3266004
– volume: 10
  start-page: 660
  year: 2011
  ident: 2023061722594808400_c30
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3053
– volume: 79
  start-page: 174424
  year: 2009
  ident: 2023061722594808400_c23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.174424
– volume: 9
  start-page: 894
  year: 2010
  ident: 2023061722594808400_c6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2856
– volume: 7
  start-page: 10858
  year: 2016
  ident: 2023061722594808400_c19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10858
– volume: 113
  start-page: 037203
  year: 2014
  ident: 2023061722594808400_c15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.037203
– volume: 96
  start-page: 17005
  year: 2011
  ident: 2023061722594808400_c5
  publication-title: Eur. Phys. Lett.
  doi: 10.1209/0295-5075/96/17005
– volume: 92
  start-page: 022505
  year: 2008
  ident: 2023061722594808400_c37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2834714
– volume: 99
  start-page: 102505
  year: 2011
  ident: 2023061722594808400_c8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3631683
– volume: 6
  start-page: 1
  year: 2014
  ident: 2023061722594808400_c4
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2013.2293618
– volume: 26
  start-page: 775
  year: 1971
  ident: 2023061722594808400_c27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.26.775
– volume: 107
  start-page: 066604
  year: 2011
  ident: 2023061722594808400_c9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.066604
– volume: 104
  start-page: 012402
  year: 2014
  ident: 2023061722594808400_c35
  publication-title: Appl. Rev. Lett.
  doi: 10.1063/1.4861343
– volume: 60
  start-page: 7395
  year: 1999
  ident: 2023061722594808400_c31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.7395
– volume: 11
  start-page: 1022
  year: 2015
  ident: 2023061722594808400_c18
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3465
– volume-title: Ferromagnetic-Relaxation Theory
  year: 1964
  ident: 2023061722594808400_c1
– volume: 101
  start-page: 152405
  year: 2012
  ident: 2023061722594808400_c33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4759039
– volume: 48
  start-page: 335005
  year: 2015
  ident: 2023061722594808400_c29
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/33/335005
– volume: 15
  start-page: 5835
  year: 2015
  ident: 2023061722594808400_c17
  publication-title: Nano. Lett.
  doi: 10.1021/acs.nanolett.5b01905
– volume: 40
  start-page: 445
  year: 2010
  ident: 2023061722594808400_c20
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070909-104433
– volume: 109
  start-page: 107204
  year: 2012
  ident: 2023061722594808400_c12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.107204
– volume: 91
  start-page: 134407
  year: 2015
  ident: 2023061722594808400_c34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.134407
– volume: 103
  start-page: 132407
  year: 2013
  ident: 2023061722594808400_c14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4822267
– volume: 114
  start-page: 016603
  year: 2015
  ident: 2023061722594808400_c16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.016603
– volume: 2
  start-page: 106102
  year: 2014
  ident: 2023061722594808400_c26
  publication-title: APL Mater.
  doi: 10.1063/1.4896936
– volume: 110
  start-page: 206601
  year: 2013
  ident: 2023061722594808400_c13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.206601
– volume: 8
  start-page: 1838
  year: 1990
  ident: 2023061722594808400_c3
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.62880
– volume: 107
  start-page: 022404
  year: 2015
  ident: 2023061722594808400_c24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4926922
SSID ssj0005233
Score 2.4578185
Snippet A layer-by-layer epitaxial growth up to 227 atomic layers of ferrimagnetic insulator yttrium iron garnet (YIG) thin films is achieved on (110)-oriented...
SourceID osti
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anisotropy
Applied physics
Damping
Epitaxial growth
Ferrimagnetism
Gadolinium
Gadolinium-gallium garnet
Iron
Magnetic properties
Magnetism
Pulsed laser deposition
Pulsed lasers
Substrates
Thick films
Thin films
Yttrium
Yttrium-iron garnet
Title Exquisite growth control and magnetic properties of yttrium iron garnet thin films
URI http://dx.doi.org/10.1063/1.4943210
https://www.proquest.com/docview/2121867781
https://www.osti.gov/biblio/1240761
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9NAEF60h6gPoqdivVMW9UEouctms_nxeJwnRayI9uDwJSS72TaQS2qbivrXO5PdpC0UOX0JYTtsys63k5nJN7OEvPE4j5kUvhNyrhyfRdLBQwqdKFPa01keixSrkSefgvGl_-FKXHVnttvqkiY7kb_31pX8j1ZhDPSKVbL_oNl-UhiAe9AvXEHDcL2Rji9-fl8X-Pl3NINo2nDIW-I5ZsOv01mFFYpIwVoge9q0l_3VNMtifT3C8rbRLF2CDDifRYUdmmzn8q4prXVQTfJjNSrbyp_eB5_aTPP5vOhRU6p6lZoP85N6jklx1VN0Civ_rShr-7o0tAIzPK7XgJ9qOwvBgpaGFe5YVu4EsW0emxtj6oaYA7X2tbO2brQNK3evGQe_CTMKJ37sY43R5l3VMwjTRXmbHHgQG3gDcnD2bvLx6xazh_PuoET8S11DqYCf9lPuuCGDGszpTohxF_wPQ4XY8jamD8kDGybQM6PzR-RWXh2S-1vNIw_Jnc9GL4_Jlx4H1OCAWhxQwAHtcEA3OKC1phYHFHFADQ4o4oC2OHhCLt9fTM_Hjj0rw5G-EI0TCYUMgthXEiyqH2oIK3XgyjRkvmTci7WrmFRKYcpXMSWyyE2zTMeSaY1R6VMyqOoqf0aop6VQUZ4H2OwvgA0rRJ75CnsFgnPN0yF52y1d0q0SnmdSJi2hIeAJS-wqD8mrXnRhuqfsEzrC9U9wyXM5l0jwkk3CMNcQsCE57tSS2K23SsDfahsxRvDz615Vf3vEHqkf9XIjkSyUfn6juY7Ivc0GOCaDZrnOX4Bj2mQvLRD_AH03jxc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exquisite+growth+control+and+magnetic+properties+of+yttrium+iron+garnet+thin+films&rft.jtitle=Applied+physics+letters&rft.au=Tang%2C+Chi&rft.au=Aldosary%2C+Mohammed&rft.au=Jiang%2C+Zilong&rft.au=Chang%2C+Houchen&rft.date=2016-03-07&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=108&rft.issue=10&rft_id=info:doi/10.1063%2F1.4943210&rft.externalDocID=apl
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon