Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment
Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol co...
Saved in:
Published in | Cell metabolism Vol. 30; no. 1; pp. 143 - 156.e5 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8+ T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8+ T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8+ T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8+ T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy.
[Display omitted]
•CD8+ T cell exhaustion is correlated with a high cholesterol level•Tumor microenvironment is enriched with cholesterol•Cholesterol in the tumor microenvironment induces CD8+ T cell exhaustion•ER stress-XBP1 pathway is required for cholesterol-induced CD8+ T cell exhaustion
Tumor-infiltrating T cells often lose their effector function. Ma et al. show that cholesterol in the tumor microenvironment induces CD8+ T cell exhaustion in an ER-stress-XBP1-dependent manner. Reducing cholesterol or ER stress enhanced CD8+ T cell antitumor function, highlighting therapeutic avenues to improve T cell-based immunotherapy in the clinic. |
---|---|
AbstractList | Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8
T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8
T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8
T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8
T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8
T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy. Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8+ T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8+ T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8+ T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8+ T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy. [Display omitted] •CD8+ T cell exhaustion is correlated with a high cholesterol level•Tumor microenvironment is enriched with cholesterol•Cholesterol in the tumor microenvironment induces CD8+ T cell exhaustion•ER stress-XBP1 pathway is required for cholesterol-induced CD8+ T cell exhaustion Tumor-infiltrating T cells often lose their effector function. Ma et al. show that cholesterol in the tumor microenvironment induces CD8+ T cell exhaustion in an ER-stress-XBP1-dependent manner. Reducing cholesterol or ER stress enhanced CD8+ T cell antitumor function, highlighting therapeutic avenues to improve T cell-based immunotherapy in the clinic. Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8 + T-cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8 + T cells was positively and progressively associated with upregulated T-cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8 + T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering tumor. Tumor-culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8 + T cells. Consequently, the ER-stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8 + T cells effectively restored antitumor activity. This study reveals a novel mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T-cell based immunotherapy. Tumor-infiltrating T cells often lose their effector function. Ma et al. show that cholesterol in the tumor microenvironment induces CD8 + T-cell exhaustion in an ER-stress-XBP1 dependent manner. Reducing cholesterol or ER stress enhanced CD8 + T-cell anti-tumor function, highlighting therapeutic avenues to improve T-cell based immunotherapy in the clinic. Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8+ T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8+ T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8+ T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8+ T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy.Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8+ T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8+ T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8+ T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8+ T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy. |
Author | Yi, Qing Kalady, Matthew F. Wang, Qiang Bi, Enguang Yang, Maojie Su, Pan Liu, Lintao Qian, Jianfei Ma, Xingzhe Huang, Chunjian Lu, Yong Zhang, Aijun Zheng, Chengyun Hamilton, Dale J. Gupte, Anisha A. |
AuthorAffiliation | 1 Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA 5 Department of Hematology, Second Hospital of Shandong University, Jinan 250033, China 2 Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27109, USA 4 Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA 6 Lead Contact 3 Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA |
AuthorAffiliation_xml | – name: 5 Department of Hematology, Second Hospital of Shandong University, Jinan 250033, China – name: 6 Lead Contact – name: 2 Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27109, USA – name: 4 Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA – name: 3 Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA – name: 1 Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA |
Author_xml | – sequence: 1 givenname: Xingzhe surname: Ma fullname: Ma, Xingzhe organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 2 givenname: Enguang surname: Bi fullname: Bi, Enguang organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 3 givenname: Yong surname: Lu fullname: Lu, Yong organization: Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27109, USA – sequence: 4 givenname: Pan surname: Su fullname: Su, Pan organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 5 givenname: Chunjian surname: Huang fullname: Huang, Chunjian organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 6 givenname: Lintao surname: Liu fullname: Liu, Lintao organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 7 givenname: Qiang surname: Wang fullname: Wang, Qiang organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 8 givenname: Maojie surname: Yang fullname: Yang, Maojie organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 9 givenname: Matthew F. surname: Kalady fullname: Kalady, Matthew F. organization: Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA – sequence: 10 givenname: Jianfei surname: Qian fullname: Qian, Jianfei organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 11 givenname: Aijun surname: Zhang fullname: Zhang, Aijun organization: Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 12 givenname: Anisha A. surname: Gupte fullname: Gupte, Anisha A. organization: Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 13 givenname: Dale J. surname: Hamilton fullname: Hamilton, Dale J. organization: Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA – sequence: 14 givenname: Chengyun surname: Zheng fullname: Zheng, Chengyun organization: Department of Hematology, Second Hospital of Shandong University, Jinan 250033, China – sequence: 15 givenname: Qing surname: Yi fullname: Yi, Qing email: qyi@houstonmethodist.org organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31031094$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UV1rFDEUDVKxH_oHfJA8CjJjbj5mJiCCjLUtVHxZn0M2c9fNMpPUZGbRf2-WrcX6UAgk3HvOubnnnJOTEAMS8hpYDQya97vaTTjXnIGumawZ48_IGWjBq1ZydlLeSrFKgoBTcp7zjjHRCC1ekFMBrBwtz8h1v40j5hlTHOlNGBaHmfafu3d0RXscR3r5a2uXPPsYqA903iJdLVNM9Kt3KWLY-xTDhGF-SZ5v7Jjx1f19Qb5_uVz119Xtt6ub_tNt5aRSc9VJi4O2g0Sn1VpAx7vGCr62m0Y3m0GVTukqYEOn26bUkbUdcwqxtQ4UiAvy8ah7t6wnHFwZnexo7pKfbPptovXmcSf4rfkR96ZlDUhoi8Dbe4EUfy5ldTP57MqqNmBcsuEcmrZVwHWBvvl31sOQv_YVAD8Cihc5J9w8QICZQ0ZmZw4ZmUNGhklTMiqk7j-S87M9OFz-68enqR-OVCwO7z0mk53H4HDwCd1shuifov8BKZmtNQ |
CitedBy_id | crossref_primary_10_1016_j_autrev_2024_103579 crossref_primary_10_3389_fimmu_2023_1204363 crossref_primary_10_1136_jitc_2019_000501 crossref_primary_10_1186_s40364_023_00507_3 crossref_primary_10_1007_s11906_024_01300_9 crossref_primary_10_1016_j_cmet_2022_02_003 crossref_primary_10_3390_genes14101953 crossref_primary_10_70322_immune_2025_10005 crossref_primary_10_1016_j_canlet_2025_217613 crossref_primary_10_1371_journal_pbio_3002621 crossref_primary_10_3389_fonc_2023_1107484 crossref_primary_10_1016_j_cmet_2023_04_015 crossref_primary_10_1158_1078_0432_CCR_20_1967 crossref_primary_10_1111_cas_15331 crossref_primary_10_1007_s12672_024_01658_x crossref_primary_10_1186_s40364_024_00646_1 crossref_primary_10_3389_fonc_2023_1187279 crossref_primary_10_1016_j_biomaterials_2024_122609 crossref_primary_10_4049_jimmunol_2200037 crossref_primary_10_1002_iid3_379 crossref_primary_10_1093_oxfimm_iqaa001 crossref_primary_10_3390_cancers13030474 crossref_primary_10_1186_s12943_021_01420_9 crossref_primary_10_1038_s41392_022_01125_5 crossref_primary_10_1016_j_apsb_2021_03_027 crossref_primary_10_3389_fimmu_2022_1020422 crossref_primary_10_1016_j_intimp_2023_111168 crossref_primary_10_3389_fimmu_2023_1322746 crossref_primary_10_3389_fonc_2024_1448966 crossref_primary_10_1136_jitc_2020_002137 crossref_primary_10_2147_CMAR_S305719 crossref_primary_10_1007_s00262_025_03989_2 crossref_primary_10_1371_journal_pbio_3002974 crossref_primary_10_3389_fimmu_2022_869061 crossref_primary_10_1182_blood_2022019333 crossref_primary_10_3389_fcell_2023_1187989 crossref_primary_10_1002_smtd_202200898 crossref_primary_10_1111_1541_4337_13055 crossref_primary_10_1186_s13287_021_02377_8 crossref_primary_10_2174_1871530323666230413112614 crossref_primary_10_3389_fphar_2022_840440 crossref_primary_10_1016_j_copbio_2021_02_003 crossref_primary_10_1016_j_immuni_2024_08_003 crossref_primary_10_1016_j_jsbmb_2019_105443 crossref_primary_10_1016_j_ymthe_2021_05_012 crossref_primary_10_1016_j_immuni_2022_12_008 crossref_primary_10_1007_s12672_023_00806_z crossref_primary_10_1016_j_trecan_2024_03_010 crossref_primary_10_1016_j_it_2022_04_010 crossref_primary_10_3389_fonc_2023_1080910 crossref_primary_10_3389_fimmu_2021_645242 crossref_primary_10_1007_s00277_024_06117_9 crossref_primary_10_3389_fphar_2024_1304502 crossref_primary_10_1084_jem_20221140 crossref_primary_10_3390_cancers14010183 crossref_primary_10_1007_s10238_024_01479_w crossref_primary_10_1186_s13046_024_03011_0 crossref_primary_10_1002_lt_26381 crossref_primary_10_1016_j_cell_2024_04_023 crossref_primary_10_1186_s12935_024_03481_4 crossref_primary_10_1038_s41467_024_49495_4 crossref_primary_10_1111_imr_12845 crossref_primary_10_1016_j_ejphar_2024_176519 crossref_primary_10_1007_s11427_019_1735_4 crossref_primary_10_3389_fonc_2021_759015 crossref_primary_10_1016_j_cmet_2021_07_004 crossref_primary_10_1016_j_omto_2021_01_011 crossref_primary_10_3390_cells11193103 crossref_primary_10_1016_j_cmet_2019_10_013 crossref_primary_10_1016_j_cmet_2022_10_010 crossref_primary_10_1038_s41573_021_00320_3 crossref_primary_10_3389_fonc_2024_1395192 crossref_primary_10_1016_j_scib_2023_12_035 crossref_primary_10_3390_ijms22168755 crossref_primary_10_3389_fimmu_2023_1151632 crossref_primary_10_1089_hum_2020_271 crossref_primary_10_18632_aging_203879 crossref_primary_10_1038_s41391_022_00557_y crossref_primary_10_1155_2021_6640384 crossref_primary_10_3390_genes14051008 crossref_primary_10_1016_j_celrep_2024_114156 crossref_primary_10_1016_j_chembiol_2024_04_005 crossref_primary_10_1186_s12944_024_02024_0 crossref_primary_10_3390_ijms232012236 crossref_primary_10_1016_j_celrep_2024_115128 crossref_primary_10_1097_JN9_0000000000000008 crossref_primary_10_3390_cancers13133327 crossref_primary_10_1111_febs_16181 crossref_primary_10_3389_fimmu_2023_1149622 crossref_primary_10_1038_s41571_020_00459_9 crossref_primary_10_1186_s12951_023_01841_2 crossref_primary_10_1016_j_prp_2019_152780 crossref_primary_10_1038_s41598_023_45096_1 crossref_primary_10_1016_j_lfs_2023_122329 crossref_primary_10_3390_cancers12061410 crossref_primary_10_1016_j_isci_2023_106916 crossref_primary_10_1016_j_trecan_2022_06_006 crossref_primary_10_1038_s41591_022_01799_y crossref_primary_10_1186_s13578_023_01138_9 crossref_primary_10_1152_ajpcell_00551_2024 crossref_primary_10_1038_s41568_020_00312_2 crossref_primary_10_1016_j_bbcan_2024_189183 crossref_primary_10_1002_adma_202307752 crossref_primary_10_3389_fphar_2024_1440869 crossref_primary_10_1089_ars_2023_0340 crossref_primary_10_3389_fimmu_2024_1451103 crossref_primary_10_1128_spectrum_02198_22 crossref_primary_10_1016_j_chembiol_2024_02_001 crossref_primary_10_1016_j_exppara_2023_108623 crossref_primary_10_1016_j_heliyon_2024_e35338 crossref_primary_10_1038_s41423_021_00709_5 crossref_primary_10_1136_gutjnl_2023_331117 crossref_primary_10_1136_jitc_2020_001361 crossref_primary_10_1002_JLB_5MR0921_011R crossref_primary_10_1016_j_trecan_2024_10_002 crossref_primary_10_1146_annurev_cancerbio_061421_042605 crossref_primary_10_1186_s13020_023_00785_x crossref_primary_10_1016_j_biopha_2022_113665 crossref_primary_10_1016_j_crphar_2022_100146 crossref_primary_10_1016_j_biopha_2021_112277 crossref_primary_10_3389_fonc_2021_772263 crossref_primary_10_1016_j_celrep_2024_115064 crossref_primary_10_1016_j_ccell_2023_01_009 crossref_primary_10_1038_s42255_020_00280_9 crossref_primary_10_1126_sciimmunol_adg3868 crossref_primary_10_1016_j_cellimm_2023_104773 crossref_primary_10_3389_fimmu_2024_1490845 crossref_primary_10_1186_s12944_023_01830_2 crossref_primary_10_1016_j_cell_2023_03_013 crossref_primary_10_3389_fimmu_2024_1427859 crossref_primary_10_3389_fimmu_2024_1476427 crossref_primary_10_1016_j_apsb_2024_07_021 crossref_primary_10_3389_fimmu_2023_1170321 crossref_primary_10_1007_s00262_023_03555_8 crossref_primary_10_1038_s41586_023_06733_x crossref_primary_10_3390_ijms25031725 crossref_primary_10_3390_pharmaceutics14081685 crossref_primary_10_1002_mco2_27 crossref_primary_10_1007_s11010_024_05106_w crossref_primary_10_3389_fonc_2021_761107 crossref_primary_10_1016_j_immuni_2021_12_012 crossref_primary_10_1186_s12943_022_01704_8 crossref_primary_10_1016_j_bbcan_2024_189162 crossref_primary_10_1007_s12032_022_01842_5 crossref_primary_10_32604_or_2023_027112 crossref_primary_10_1016_j_trecan_2024_09_011 crossref_primary_10_1038_s41388_024_03255_2 crossref_primary_10_1186_s12967_023_04758_4 crossref_primary_10_1097_CJI_0000000000000534 crossref_primary_10_1002_advs_202306827 crossref_primary_10_1126_scitranslmed_aaz6314 crossref_primary_10_1016_j_critrevonc_2022_103731 crossref_primary_10_1016_j_canlet_2020_05_033 crossref_primary_10_1016_j_jbc_2022_101617 crossref_primary_10_3390_ijms21165845 crossref_primary_10_1007_s00395_024_01068_8 crossref_primary_10_1002_advs_202400702 crossref_primary_10_1016_j_heliyon_2024_e33144 crossref_primary_10_1038_s41422_020_0374_x crossref_primary_10_3389_fonc_2022_1024789 crossref_primary_10_1038_s41590_020_00850_9 crossref_primary_10_3389_fcell_2021_803132 crossref_primary_10_1016_j_ccell_2022_02_003 crossref_primary_10_1016_j_intimp_2024_112367 crossref_primary_10_1016_j_stem_2023_05_006 crossref_primary_10_1038_s41467_023_38360_5 crossref_primary_10_1007_s12072_023_10595_w crossref_primary_10_1186_s13045_021_01200_4 crossref_primary_10_1016_j_envpol_2024_123565 crossref_primary_10_3390_metabo11010012 crossref_primary_10_3389_fimmu_2023_1198551 crossref_primary_10_1002_JLB_1A0521_251R crossref_primary_10_1007_s00281_025_01043_y crossref_primary_10_1038_s41389_022_00420_8 crossref_primary_10_1152_ajpcell_00588_2022 crossref_primary_10_3390_cancers17010155 crossref_primary_10_1016_j_jacc_2021_11_048 crossref_primary_10_1016_j_biopha_2023_116030 crossref_primary_10_3389_fimmu_2022_1046755 crossref_primary_10_1016_j_compbiomed_2024_108396 crossref_primary_10_1186_s12887_024_04700_7 crossref_primary_10_3389_fnut_2022_883308 crossref_primary_10_3390_cancers15194787 crossref_primary_10_3390_ijms252212403 crossref_primary_10_1002_ctm2_1320 crossref_primary_10_1158_0008_5472_CAN_21_1392 crossref_primary_10_7554_eLife_55185 crossref_primary_10_3389_fimmu_2022_884030 crossref_primary_10_1016_j_biopha_2022_113741 crossref_primary_10_1016_j_semcancer_2024_07_001 crossref_primary_10_1016_j_cmet_2023_02_013 crossref_primary_10_1016_j_immuni_2024_03_021 crossref_primary_10_1158_2326_6066_CIR_20_0358 crossref_primary_10_1002_cam4_70684 crossref_primary_10_1002_adhm_202300018 crossref_primary_10_1016_j_medntd_2024_100295 crossref_primary_10_1038_s41401_024_01304_w crossref_primary_10_1371_journal_pone_0315980 crossref_primary_10_1002_advs_202411053 crossref_primary_10_1016_j_tem_2024_11_014 crossref_primary_10_1002_path_5907 crossref_primary_10_1007_s12026_024_09483_8 crossref_primary_10_1021_acs_orglett_2c02978 crossref_primary_10_1016_j_molcel_2019_09_008 crossref_primary_10_1016_j_canlet_2023_216267 crossref_primary_10_3390_ani14020225 crossref_primary_10_1097_CM9_0000000000002989 crossref_primary_10_1016_j_cmet_2022_08_007 crossref_primary_10_1136_jitc_2021_003217 crossref_primary_10_1186_s12916_022_02436_8 crossref_primary_10_1007_s11684_023_1012_z crossref_primary_10_1016_j_molmet_2024_102044 crossref_primary_10_1016_j_canlet_2023_216396 crossref_primary_10_1002_med_21727 crossref_primary_10_3389_fgene_2021_646362 crossref_primary_10_1172_jci_insight_165544 crossref_primary_10_3389_fonc_2022_1024985 crossref_primary_10_1016_j_it_2021_12_004 crossref_primary_10_3389_fimmu_2024_1507501 crossref_primary_10_1136_jitc_2022_005940 crossref_primary_10_20517_cdr_2023_60 crossref_primary_10_1002_advs_202406975 crossref_primary_10_1002_ctm2_1429 crossref_primary_10_3390_cancers14071825 crossref_primary_10_1136_jitc_2022_004616 crossref_primary_10_3389_fimmu_2024_1468957 crossref_primary_10_1016_j_trecan_2023_06_003 crossref_primary_10_1038_s41419_024_06897_y crossref_primary_10_1080_21645515_2020_1852872 crossref_primary_10_1016_j_intimp_2024_112571 crossref_primary_10_3390_cancers15153898 crossref_primary_10_1186_s12964_023_01438_0 crossref_primary_10_1177_17588359221079123 crossref_primary_10_1186_s12893_023_01988_7 crossref_primary_10_3389_fcell_2021_764125 crossref_primary_10_1002_advs_202414100 crossref_primary_10_1016_j_plipres_2024_101288 crossref_primary_10_1038_s41467_023_39683_z crossref_primary_10_3389_fimmu_2022_1057546 crossref_primary_10_1016_j_xcrm_2023_101144 crossref_primary_10_1016_j_canlet_2023_216208 crossref_primary_10_1158_2159_8290_CD_21_0211 crossref_primary_10_1152_ajpcell_00148_2022 crossref_primary_10_3390_cancers16152630 crossref_primary_10_1016_j_ccell_2024_11_003 crossref_primary_10_3389_fendo_2024_1396022 crossref_primary_10_1158_2326_6066_CIR_20_0791 crossref_primary_10_3389_fonc_2025_1549237 crossref_primary_10_4103_glioma_glioma_16_22 crossref_primary_10_1016_j_ccell_2023_03_002 crossref_primary_10_3389_fimmu_2022_977394 crossref_primary_10_1038_s41467_024_50077_7 crossref_primary_10_1038_s41388_023_02836_x crossref_primary_10_1158_1055_9965_EPI_21_0443 crossref_primary_10_2174_1381612826666200130091318 crossref_primary_10_1186_s12943_024_01981_5 crossref_primary_10_1172_jci_insight_175320 crossref_primary_10_3389_fonc_2022_957966 crossref_primary_10_1111_cas_15999 crossref_primary_10_1016_j_intimp_2024_113244 crossref_primary_10_1515_med_2023_0701 crossref_primary_10_3390_cancers14010250 crossref_primary_10_1016_j_canlet_2023_216336 crossref_primary_10_1080_1120009X_2023_2290348 crossref_primary_10_1016_j_drudis_2022_103347 crossref_primary_10_1186_s12885_023_10836_z crossref_primary_10_1089_ars_2022_0040 crossref_primary_10_1016_j_cytogfr_2023_08_004 crossref_primary_10_1002_smll_202305708 crossref_primary_10_1172_JCI171874 crossref_primary_10_1136_jitc_2024_010824 crossref_primary_10_1186_s13046_023_02634_z crossref_primary_10_1016_j_devcel_2021_04_013 crossref_primary_10_1016_j_trsl_2024_10_003 crossref_primary_10_3390_cancers12071755 crossref_primary_10_1038_s41392_024_01765_9 crossref_primary_10_1038_s41423_019_0344_8 crossref_primary_10_1016_j_cmet_2019_11_010 crossref_primary_10_1038_s41467_024_52617_7 crossref_primary_10_1016_j_jmb_2021_167328 crossref_primary_10_1002_ijc_33781 crossref_primary_10_1038_s12276_023_01079_w crossref_primary_10_1038_s41467_023_38316_9 crossref_primary_10_4251_wjgo_v14_i1_110 crossref_primary_10_37349_etat_2025_1002297 crossref_primary_10_2174_1573394718666220428120818 crossref_primary_10_3389_fonc_2022_902974 crossref_primary_10_1016_j_molcel_2021_04_009 crossref_primary_10_1155_2023_9708282 crossref_primary_10_1158_0008_5472_CAN_23_0356 crossref_primary_10_1007_s12094_023_03134_4 crossref_primary_10_3389_fimmu_2023_1255443 crossref_primary_10_1016_j_xcrm_2024_101592 crossref_primary_10_3389_fphar_2023_1192777 crossref_primary_10_3390_ijms22189878 crossref_primary_10_1007_s11883_023_01125_y crossref_primary_10_1016_j_molmet_2022_101529 crossref_primary_10_1007_s11684_023_1025_7 crossref_primary_10_1016_j_ebiom_2024_105092 crossref_primary_10_1016_j_it_2021_11_007 crossref_primary_10_1158_2767_9764_CRC_24_0191 crossref_primary_10_3389_fimmu_2023_1325360 crossref_primary_10_1038_s41467_024_47835_y crossref_primary_10_1073_pnas_2415042122 crossref_primary_10_3389_fimmu_2023_1225948 crossref_primary_10_1016_j_ccell_2023_04_016 crossref_primary_10_1039_D4CS00679H crossref_primary_10_1007_s00262_020_02668_8 crossref_primary_10_1038_s41586_023_06483_w crossref_primary_10_2174_1568009623666230712095021 crossref_primary_10_1126_sciadv_abq4722 crossref_primary_10_1016_j_biomaterials_2024_123022 crossref_primary_10_1016_j_ebiom_2022_104216 crossref_primary_10_1016_j_cmet_2024_02_009 crossref_primary_10_1038_s41423_022_00872_3 crossref_primary_10_1101_cshperspect_a037044 crossref_primary_10_1126_science_adl4100 crossref_primary_10_1016_j_cmet_2019_06_007 crossref_primary_10_3390_ijms24119182 crossref_primary_10_3390_cancers15153948 crossref_primary_10_1182_blood_2020005795 crossref_primary_10_1245_s10434_021_10928_9 crossref_primary_10_1002_ange_202412844 crossref_primary_10_3389_fimmu_2021_613185 crossref_primary_10_1016_j_bbalip_2021_158964 crossref_primary_10_1084_jem_20240559 crossref_primary_10_3390_curroncol29110642 crossref_primary_10_3390_cimb45120609 crossref_primary_10_1016_j_canlet_2021_02_013 crossref_primary_10_1097_HEP_0000000000000025 crossref_primary_10_1186_s12944_024_02401_9 crossref_primary_10_15252_embj_2022111494 crossref_primary_10_1007_s10495_024_01997_8 crossref_primary_10_1186_s12885_022_09385_8 crossref_primary_10_1038_s41419_024_07122_6 crossref_primary_10_1002_ijc_34668 crossref_primary_10_1016_j_molimm_2021_06_001 crossref_primary_10_1155_2021_9398661 crossref_primary_10_1016_j_ijbiomac_2024_134660 crossref_primary_10_1080_2162402X_2024_2411070 crossref_primary_10_3390_antibiotics12091468 crossref_primary_10_1002_jgm_3496 crossref_primary_10_1186_s13046_019_1409_3 crossref_primary_10_1038_s41568_024_00743_1 crossref_primary_10_1146_annurev_immunol_070621_030155 crossref_primary_10_1093_brain_awac222 crossref_primary_10_1093_jleuko_qiad114 crossref_primary_10_3389_fendo_2024_1411706 crossref_primary_10_1021_jacs_3c08622 crossref_primary_10_1186_s13046_021_02041_2 crossref_primary_10_1007_s12032_024_02435_0 crossref_primary_10_1136_jitc_2022_004584 crossref_primary_10_1038_s42255_025_01233_w crossref_primary_10_3389_fcell_2022_867341 crossref_primary_10_3390_cancers14081905 crossref_primary_10_1038_s41568_020_0273_y crossref_primary_10_1038_s41698_022_00300_9 crossref_primary_10_3389_fmolb_2020_00217 crossref_primary_10_3389_fimmu_2023_1186383 crossref_primary_10_1038_s41423_024_01206_1 crossref_primary_10_3389_fimmu_2021_716084 crossref_primary_10_37349_edd_2022_00003 crossref_primary_10_1016_j_compbiomed_2024_107926 crossref_primary_10_1016_j_smim_2021_101485 crossref_primary_10_1038_s41420_024_01865_z crossref_primary_10_1172_JCI153247 crossref_primary_10_3389_fimmu_2022_937406 crossref_primary_10_1016_j_ijbiomac_2024_136810 crossref_primary_10_3389_fgene_2021_723802 crossref_primary_10_1016_j_nantod_2021_101332 crossref_primary_10_1038_s41423_021_00735_3 crossref_primary_10_3389_fonc_2021_751086 crossref_primary_10_1111_imm_13588 crossref_primary_10_1186_s12967_023_03896_z crossref_primary_10_1186_s12885_023_11182_w crossref_primary_10_1186_s12935_021_02042_3 crossref_primary_10_3389_fimmu_2023_1166440 crossref_primary_10_3390_biom12091182 crossref_primary_10_1136_jitc_2022_005611 crossref_primary_10_3390_cancers16213671 crossref_primary_10_4049_jimmunol_2100186 crossref_primary_10_1038_s41598_024_52647_7 crossref_primary_10_1002_advs_202101672 crossref_primary_10_1038_s41420_024_02092_2 crossref_primary_10_1186_s13045_022_01349_6 crossref_primary_10_3390_ijms22136779 crossref_primary_10_1038_s41392_021_00784_0 crossref_primary_10_1016_j_trecan_2022_12_008 crossref_primary_10_3390_cancers13061229 crossref_primary_10_1002_adma_202311109 crossref_primary_10_1084_jem_20221839 crossref_primary_10_1002_advs_202403629 crossref_primary_10_3389_fphar_2023_1126916 crossref_primary_10_1172_JCI144318 crossref_primary_10_1186_s12903_023_02822_5 crossref_primary_10_1002_advs_202405826 crossref_primary_10_12677_acm_2024_1451499 crossref_primary_10_3389_fimmu_2023_1212215 crossref_primary_10_1007_s11882_025_01199_5 crossref_primary_10_1016_j_immuni_2021_05_003 crossref_primary_10_3389_fimmu_2022_909580 crossref_primary_10_1002_cnr2_2078 crossref_primary_10_1007_s10753_021_01609_6 crossref_primary_10_1007_s00210_022_02200_y crossref_primary_10_1186_s12920_023_01543_6 crossref_primary_10_1016_j_cmet_2024_01_005 crossref_primary_10_1016_j_apsb_2022_10_027 crossref_primary_10_3390_cancers17030498 crossref_primary_10_3389_fimmu_2022_843242 crossref_primary_10_3389_fmolb_2024_1403021 crossref_primary_10_2147_CMAR_S304022 crossref_primary_10_1172_JCI179874 crossref_primary_10_1186_s12920_022_01411_9 crossref_primary_10_1186_s13046_024_03195_5 crossref_primary_10_1038_s41392_024_02120_8 crossref_primary_10_1007_s12272_023_01473_y crossref_primary_10_4049_jimmunol_2300616 crossref_primary_10_1016_j_biopha_2023_115131 crossref_primary_10_1002_anie_202412844 crossref_primary_10_1016_j_lungcan_2024_108023 crossref_primary_10_2147_IJN_S439828 crossref_primary_10_3390_ijms25052502 crossref_primary_10_1158_2159_8290_CD_20_1243 crossref_primary_10_1016_j_jconrel_2025_01_046 crossref_primary_10_1016_j_apsb_2023_04_002 crossref_primary_10_1016_j_ejphar_2022_175410 crossref_primary_10_1186_s13046_022_02457_4 crossref_primary_10_1111_imcb_12647 crossref_primary_10_54457_DR_202301006 crossref_primary_10_3389_fonc_2023_1251355 crossref_primary_10_1007_s00281_022_00932_w crossref_primary_10_1038_s41423_022_00939_1 crossref_primary_10_3390_cancers13235912 crossref_primary_10_3390_ijms232214122 crossref_primary_10_1016_j_canlet_2023_216511 crossref_primary_10_1016_j_bbadis_2024_167646 crossref_primary_10_1038_s41392_020_00280_x crossref_primary_10_1186_s40364_021_00321_9 crossref_primary_10_1016_j_heliyon_2023_e22885 crossref_primary_10_1038_s41435_024_00307_1 crossref_primary_10_1016_j_ejphar_2023_175721 crossref_primary_10_1186_s13046_021_01959_x crossref_primary_10_1016_j_jconrel_2022_04_017 crossref_primary_10_3389_fonc_2020_01100 crossref_primary_10_1038_s42255_020_0174_0 crossref_primary_10_1016_j_cej_2023_142160 crossref_primary_10_1007_s11094_024_03262_3 crossref_primary_10_3389_fimmu_2023_1127071 crossref_primary_10_12997_jla_2021_10_2_184 crossref_primary_10_1007_s12672_025_01890_z crossref_primary_10_1093_lifemeta_loac038 crossref_primary_10_1016_j_intimp_2025_114024 crossref_primary_10_2147_OTT_S315998 crossref_primary_10_1016_j_pharmthera_2021_107923 crossref_primary_10_3390_ijms25010323 crossref_primary_10_3389_fendo_2023_1217579 crossref_primary_10_3390_ijms25031396 crossref_primary_10_1002_adtp_202100025 crossref_primary_10_1097_MD_0000000000031691 crossref_primary_10_3389_fendo_2022_988295 crossref_primary_10_3390_ijms241813854 crossref_primary_10_1016_j_tranon_2021_101043 crossref_primary_10_1158_2326_6066_CIR_22_0595 crossref_primary_10_1038_s41419_024_07082_x crossref_primary_10_1038_s41590_024_01896_9 crossref_primary_10_1038_s41467_021_23864_9 crossref_primary_10_1016_j_cmet_2021_02_015 crossref_primary_10_1093_intimm_dxad035 crossref_primary_10_1016_j_heliyon_2024_e30807 crossref_primary_10_1038_s42255_025_01240_x crossref_primary_10_18632_aging_102305 crossref_primary_10_1016_j_addr_2023_115122 crossref_primary_10_34133_research_0488 crossref_primary_10_1038_s41590_021_01047_4 crossref_primary_10_1007_s11427_021_1999_2 crossref_primary_10_1186_s12885_023_11015_w crossref_primary_10_1007_s00262_023_03530_3 crossref_primary_10_3390_biom12050716 crossref_primary_10_7717_peerj_16825 crossref_primary_10_1038_s41598_025_94669_9 crossref_primary_10_3389_fimmu_2024_1440830 crossref_primary_10_1016_j_adcanc_2022_100065 crossref_primary_10_1097_MD_0000000000031307 crossref_primary_10_1146_annurev_immunol_101819_024752 crossref_primary_10_3390_cancers12123529 crossref_primary_10_1038_s41423_021_00781_x crossref_primary_10_1136_jitc_2021_002916 crossref_primary_10_3389_fcell_2020_600350 crossref_primary_10_1016_j_jaccao_2022_11_011 crossref_primary_10_1158_2326_6066_CIR_23_0506 crossref_primary_10_3390_cancers14215442 crossref_primary_10_1093_jleuko_qiad081 crossref_primary_10_3390_cancers14174293 crossref_primary_10_1097_CM9_0000000000003046 crossref_primary_10_1016_j_bbcan_2020_188394 crossref_primary_10_1002_cam4_6080 crossref_primary_10_1007_s12672_022_00592_0 crossref_primary_10_1038_s41392_024_01771_x crossref_primary_10_37349_edd_2024_00048 crossref_primary_10_1007_s13668_024_00542_y crossref_primary_10_3389_fimmu_2023_1166052 crossref_primary_10_1016_j_bbalip_2021_159066 crossref_primary_10_1007_s44178_024_00096_7 crossref_primary_10_1002_smll_202305440 crossref_primary_10_3389_fimmu_2024_1439231 crossref_primary_10_1186_s12967_025_06126_w crossref_primary_10_1101_cshperspect_a037770 crossref_primary_10_3389_fonc_2021_738177 crossref_primary_10_1038_s41577_023_00838_0 crossref_primary_10_1016_j_adcanc_2023_100110 crossref_primary_10_1016_j_aquaculture_2021_736631 crossref_primary_10_1016_j_biochi_2022_01_017 crossref_primary_10_1186_s13046_024_03235_0 crossref_primary_10_1016_j_csbj_2022_07_030 crossref_primary_10_1038_s41467_020_14332_x crossref_primary_10_3390_cells9112352 crossref_primary_10_1159_000531943 crossref_primary_10_1016_j_tcb_2021_08_002 crossref_primary_10_1038_s41577_021_00537_8 crossref_primary_10_1186_s12943_023_01893_w crossref_primary_10_1080_08830185_2024_2401352 crossref_primary_10_1002_1878_0261_13691 crossref_primary_10_3389_fimmu_2019_02293 crossref_primary_10_1136_jitc_2019_000422 crossref_primary_10_1186_s12964_024_01470_8 crossref_primary_10_1128_mbio_02346_23 crossref_primary_10_3389_fbioe_2023_1065773 crossref_primary_10_1002_ctm2_37 crossref_primary_10_4049_immunohorizons_2200064 crossref_primary_10_1158_1078_0432_CCR_22_2181 crossref_primary_10_1002_adfm_202405265 crossref_primary_10_1158_1078_0432_CCR_21_1535 crossref_primary_10_3390_biom13010147 crossref_primary_10_1111_cpr_13654 crossref_primary_10_3390_cells11223554 crossref_primary_10_1038_s41556_022_01002_x crossref_primary_10_18632_aging_205083 crossref_primary_10_1002_adma_202303567 crossref_primary_10_2174_0115680096273730231206054104 crossref_primary_10_1007_s10337_022_04222_3 crossref_primary_10_2147_IJN_S392998 crossref_primary_10_1038_s41467_021_22967_7 crossref_primary_10_1097_MD_0000000000031416 crossref_primary_10_1038_s41467_022_31135_4 crossref_primary_10_1146_annurev_cancerbio_030518_055817 crossref_primary_10_1016_j_cels_2024_11_010 crossref_primary_10_1016_j_it_2024_05_006 crossref_primary_10_1002_cam4_7241 crossref_primary_10_3389_fimmu_2024_1418527 crossref_primary_10_3389_fimmu_2023_1172931 crossref_primary_10_1016_j_heliyon_2024_e39425 crossref_primary_10_1038_s41598_024_72578_7 crossref_primary_10_1016_j_phrs_2021_105654 crossref_primary_10_1002_cam4_70718 crossref_primary_10_1016_j_prp_2024_155534 crossref_primary_10_1080_2162402X_2022_2116844 crossref_primary_10_1186_s13045_023_01498_2 crossref_primary_10_1038_s41589_022_01017_3 crossref_primary_10_1073_pnas_2412120121 crossref_primary_10_1021_acs_analchem_4c04179 crossref_primary_10_1111_crj_13717 crossref_primary_10_3389_fimmu_2021_641883 crossref_primary_10_3390_ijms252413413 crossref_primary_10_3389_fonc_2024_1518010 crossref_primary_10_1002_cnr2_2146 crossref_primary_10_1186_s12957_021_02471_4 crossref_primary_10_1016_j_xcrm_2024_101913 crossref_primary_10_1186_s12944_022_01766_z crossref_primary_10_1007_s00262_020_02770_x crossref_primary_10_1016_j_bcp_2025_116802 crossref_primary_10_1186_s12920_022_01295_9 crossref_primary_10_1038_s41423_024_01224_z crossref_primary_10_1159_000538659 crossref_primary_10_1016_j_bbalip_2019_158518 crossref_primary_10_1016_j_phrs_2020_105131 crossref_primary_10_3389_fimmu_2019_03154 crossref_primary_10_1186_s12885_023_10897_0 crossref_primary_10_1002_eji_202149486 crossref_primary_10_1038_s41467_020_19672_2 crossref_primary_10_1007_s00262_021_02979_4 crossref_primary_10_1111_febs_16665 crossref_primary_10_1038_s41420_024_02110_3 crossref_primary_10_1093_oxfimm_iqad006 crossref_primary_10_1186_s12943_025_02258_1 crossref_primary_10_1038_s41392_023_01708_w crossref_primary_10_1038_s41573_024_01098_w crossref_primary_10_1007_s00384_024_04735_3 crossref_primary_10_1016_j_cellsig_2023_110983 crossref_primary_10_1186_s13045_023_01430_8 crossref_primary_10_3389_fendo_2024_1336357 crossref_primary_10_3389_fcell_2021_740653 |
Cites_doi | 10.1038/nature17412 10.4049/jimmunol.1302750 10.1056/NEJMra1514296 10.1016/j.amjcard.2005.12.010 10.1016/j.cmet.2016.12.018 10.1016/j.cell.2015.05.025 10.1016/j.ccell.2018.02.005 10.1126/science.aar4060 10.4049/jimmunol.181.8.5433 10.1016/j.immuni.2016.04.011 10.1038/ni.2035 10.18632/oncotarget.21003 10.1002/1097-0142(19940115)73:2<253::AID-CNCR2820730204>3.0.CO;2-F 10.1158/0008-5472.CAN-12-4100 10.1038/ncb1035 10.4049/jimmunol.1502643 10.1097/COC.0000000000000239 10.1016/j.immuni.2016.04.023 10.1056/NEJMoa1201735 10.1038/ni.2046 10.1083/jcb.200502078 10.1084/jem.20171576 10.1182/blood-2010-08-303099 10.1016/j.immuni.2016.12.015 10.1002/eji.200939842 10.3109/07357907.2011.616252 10.1038/s41598-017-00462-8 10.1084/jem.20140559 10.1084/jem.20100643 10.1038/s41586-018-0597-x 10.1158/0008-5472.CAN-11-1620 10.1172/JCI73448 10.1016/j.molimm.2016.05.014 10.1038/ni.3462 10.1038/s41467-017-00910-z 10.1158/2159-8290.CD-15-1347 10.1126/scisignal.aak9741 10.1002/eji.201646875 10.1084/jem.20130208 10.1097/QAD.0000000000000917 10.1073/pnas.1317431111 10.1038/s41590-018-0045-y |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2019.04.002 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 156.e5 |
ExternalDocumentID | PMC7061417 31031094 10_1016_j_cmet_2019_04_002 S155041311930186X |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA163881 – fundername: NCI NIH HHS grantid: R01 CA200539 – fundername: NCI NIH HHS grantid: R01 CA214811 – fundername: NCI NIH HHS grantid: R01 CA211073 |
GroupedDBID | --- --K 0R~ 0SF 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AAKUH AAVLU AAXUO ABJNI ABMAC ABVKL ACGFO ACGFS ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH AAIKJ AALRI AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI AEUPX AFPUW AGCQF AGHFR AIGII AKBMS AKYEP APXCP CITATION HZ~ OZT NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c455t-84aed9ad4ec95b318286a32baf696fd5ad49ad510d89762bae0780c5ee7ac1513 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 14:35:03 EDT 2025 Fri Jul 11 06:50:25 EDT 2025 Thu Apr 03 06:56:28 EDT 2025 Tue Jul 01 03:58:18 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Fri Aug 02 08:58:28 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | exhaustion CD8+ T cells cholesterol tumor microenvironment immune checkpoints |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-84aed9ad4ec95b318286a32baf696fd5ad49ad510d89762bae0780c5ee7ac1513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS These authors contributed equally to this work. Q.Y. and X.M initiated the study, designed the experiments, and wrote the paper; X.M. performed most of the experiments and statistical analyses; E.B. edited the paper and provided critical suggestions. Y.L., P.S., C.H., L.L., Q.W., M.Y., M.F. K., J.Q. and C.Z. provided important suggestions or patient samples. A.Z., A.G., D.H. helped with Seahorse Assay. |
OpenAccessLink | http://www.cell.com/article/S155041311930186X/pdf |
PMID | 31031094 |
PQID | 2216775129 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7061417 proquest_miscellaneous_2216775129 pubmed_primary_31031094 crossref_primary_10_1016_j_cmet_2019_04_002 crossref_citationtrail_10_1016_j_cmet_2019_04_002 elsevier_sciencedirect_doi_10_1016_j_cmet_2019_04_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-02 |
PublicationDateYYYYMMDD | 2019-07-02 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Rupp, Schumann, Roybal, Gate, Ye, Lim, Marson (bib32) 2017; 7 Yang, Bai, Xiong, Zhang, Chen, Zheng, Meng, Li, Wang, Xu (bib42) 2016; 531 Kao, Oestreich, Paley, Crawford, Angelosanto, Ali, Intlekofer, Boss, Reiner, Weinmann (bib19) 2011; 12 Bi, Ma, Lu, Yang, Wang, Xue, Qian, Wang, Yi (bib6) 2017; 10 Callahan, Postow, Wolchok (bib9) 2016; 44 Lee, Ahn, Kissick, Ahmed (bib21) 2015; 6 Song, Sandoval, Chae, Chopra, Tan, Rutkowski, Raundhal, Chaurio, Payne, Konrad (bib34) 2018; 562 Ribas, Wolchok (bib31) 2018; 359 Swamy, Beck-Garcia, Beck-Garcia, Hartl, Morath, Yousefi, Dopfer, Molnár, Schulze, Blanco (bib36) 2016; 44 Dessì, Batetta, Pulisci, Spano, Anchisi, Tessitore, Costelli, Baccino, Aroasio, Pani (bib12) 1994; 73 Liu, Liang, Dong, Fang, Lv, Zhang, Fiskesund, Xie, Liu, Yin (bib22) 2018; 33 Boussiotis (bib7) 2016; 375 Austin, Lu, Majumder, Ahmed, Boss (bib3) 2014; 192 Nielsen, Nordestgaard, Bojesen (bib27) 2012; 367 Lu, Hong, Li, Zheng, Zhang, Wang, Qian, Yi (bib24) 2014; 111 Bally, Austin, Boss (bib5) 2016; 196 Lu, Youngblood, Austin, Mohammed, Butler, Ahmed, Boss (bib23) 2014; 211 Chae, Valsecchi, Kim, Bianchi, Khemasuwan, Desai, Tester (bib10) 2011; 29 Okoye, Namdar, Xu, Crux, Elahi (bib28) 2017; 8 Buchbinder, Desai (bib8) 2016; 39 Stephen, Payne, Chaurio, Allegrezza, Zhu, Perez-Sanz, Perales-Puchalt, Nguyen, Vara-Ailor, Eruslanov (bib35) 2017; 46 Woo, Turnis, Goldberg, Bankoti, Selby, Nirschl, Bettini, Gravano, Vogel, Liu (bib41) 2012; 72 Papandreou, Denko, Olson, Van Melckebeke, Lust, Tam, Solow-Cordero, Bouley, Offner, Niwa (bib29) 2011; 117 Wang, Beck-García, Zorzin, Schamel, Davis (bib39) 2016; 17 Park, Freeman, Ghasemzadeh, Chattergoon, Rutebemberwa, Steigner, Winter, Huynh, Sebald, Lee (bib30) 2016; 6 Voron, Colussi, Marcheteau, Pernot, Nizard, Pointet, Latreche, Bergaya, Benhamouda, Tanchot (bib38) 2015; 212 Feng, Yao, Li, Devlin, Zhang, Harding, Sweeney, Rong, Kuriakose, Fisher (bib17) 2003; 5 Devries-Seimon, Li, Yao, Stone, Wang, Davis, Flavell, Tabas (bib13) 2005; 171 Elahi, Weiss, Merani (bib16) 2016; 30 Yun, Jun, Komori, Lee, Kwon, Chwae, Kim, Shin, Park (bib43) 2016; 75 Wherry (bib40) 2011; 12 Kamimura, Bevan (bib18) 2008; 181 Dyck, Mills (bib15) 2017; 47 Law, Rudnicka (bib20) 2006; 97 Baek, Yu, He, Wardell, Chang, Kwon, Pillai, McDowell, Thompson, Dubois (bib4) 2017; 8 Tang, Ranatunga, Kriss, Cubitt, Tao, Pinilla-Ibarz, Del Valle, Hu (bib37) 2014; 124 Duraiswamy, Kaluza, Freeman, Coukos (bib14) 2013; 73 Anderson, Lord, Dardalhon, Lee, Sabatos-Peyton, Glimcher, Kuchroo (bib1) 2010; 40 McKinney, Smith (bib26) 2018; 19 Ma, Bi, Huang, Lu, Xue, Guo, Wang, Yang, Qian, Dong (bib25) 2018; 215 Cubillos-Ruiz, Silberman, Rutkowski, Chopra, Perales-Puchalt, Song, Zhang, Bettigole, Gupta, Holcomb (bib11) 2015; 161 Angelin, Gil-de-Gómez, Dahiya, Jiao, Guo, Levine, Wang, Quinn, Kopinski, Wang (bib2) 2017; 25 Sakuishi, Apetoh, Sullivan, Blazar, Kuchroo, Anderson (bib33) 2010; 207 Duraiswamy (10.1016/j.cmet.2019.04.002_bib14) 2013; 73 Voron (10.1016/j.cmet.2019.04.002_bib38) 2015; 212 Lu (10.1016/j.cmet.2019.04.002_bib24) 2014; 111 Ribas (10.1016/j.cmet.2019.04.002_bib31) 2018; 359 Dyck (10.1016/j.cmet.2019.04.002_bib15) 2017; 47 Baek (10.1016/j.cmet.2019.04.002_bib4) 2017; 8 Elahi (10.1016/j.cmet.2019.04.002_bib16) 2016; 30 Wang (10.1016/j.cmet.2019.04.002_bib39) 2016; 17 Callahan (10.1016/j.cmet.2019.04.002_bib9) 2016; 44 Wherry (10.1016/j.cmet.2019.04.002_bib40) 2011; 12 Rupp (10.1016/j.cmet.2019.04.002_bib32) 2017; 7 Ma (10.1016/j.cmet.2019.04.002_bib25) 2018; 215 Park (10.1016/j.cmet.2019.04.002_bib30) 2016; 6 Kamimura (10.1016/j.cmet.2019.04.002_bib18) 2008; 181 Anderson (10.1016/j.cmet.2019.04.002_bib1) 2010; 40 Chae (10.1016/j.cmet.2019.04.002_bib10) 2011; 29 Nielsen (10.1016/j.cmet.2019.04.002_bib27) 2012; 367 Swamy (10.1016/j.cmet.2019.04.002_bib36) 2016; 44 Woo (10.1016/j.cmet.2019.04.002_bib41) 2012; 72 Lee (10.1016/j.cmet.2019.04.002_bib21) 2015; 6 Song (10.1016/j.cmet.2019.04.002_bib34) 2018; 562 Austin (10.1016/j.cmet.2019.04.002_bib3) 2014; 192 Okoye (10.1016/j.cmet.2019.04.002_bib28) 2017; 8 Buchbinder (10.1016/j.cmet.2019.04.002_bib8) 2016; 39 Kao (10.1016/j.cmet.2019.04.002_bib19) 2011; 12 Bi (10.1016/j.cmet.2019.04.002_bib6) 2017; 10 McKinney (10.1016/j.cmet.2019.04.002_bib26) 2018; 19 Devries-Seimon (10.1016/j.cmet.2019.04.002_bib13) 2005; 171 Tang (10.1016/j.cmet.2019.04.002_bib37) 2014; 124 Dessì (10.1016/j.cmet.2019.04.002_bib12) 1994; 73 Bally (10.1016/j.cmet.2019.04.002_bib5) 2016; 196 Angelin (10.1016/j.cmet.2019.04.002_bib2) 2017; 25 Feng (10.1016/j.cmet.2019.04.002_bib17) 2003; 5 Law (10.1016/j.cmet.2019.04.002_bib20) 2006; 97 Yang (10.1016/j.cmet.2019.04.002_bib42) 2016; 531 Liu (10.1016/j.cmet.2019.04.002_bib22) 2018; 33 Papandreou (10.1016/j.cmet.2019.04.002_bib29) 2011; 117 Sakuishi (10.1016/j.cmet.2019.04.002_bib33) 2010; 207 Yun (10.1016/j.cmet.2019.04.002_bib43) 2016; 75 Boussiotis (10.1016/j.cmet.2019.04.002_bib7) 2016; 375 Lu (10.1016/j.cmet.2019.04.002_bib23) 2014; 211 Cubillos-Ruiz (10.1016/j.cmet.2019.04.002_bib11) 2015; 161 Stephen (10.1016/j.cmet.2019.04.002_bib35) 2017; 46 31269422 - Cell Metab. 2019 Jul 2;30(1):12-13 |
References_xml | – volume: 39 start-page: 98 year: 2016 end-page: 106 ident: bib8 article-title: CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition publication-title: Am. J. Clin. Oncol. – volume: 73 start-page: 3591 year: 2013 end-page: 3603 ident: bib14 article-title: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors publication-title: Cancer Res. – volume: 211 start-page: 515 year: 2014 end-page: 527 ident: bib23 article-title: Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection publication-title: J. Exp. Med. – volume: 171 start-page: 61 year: 2005 end-page: 73 ident: bib13 article-title: Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor publication-title: J. Cell Biol. – volume: 33 start-page: 480 year: 2018 end-page: 494.e7 ident: bib22 article-title: Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation publication-title: Cancer Cell – volume: 124 start-page: 2585 year: 2014 end-page: 2598 ident: bib37 article-title: Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival publication-title: J. Clin. Invest. – volume: 17 start-page: 844 year: 2016 end-page: 850 ident: bib39 article-title: Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol publication-title: Nat. Immunol. – volume: 161 start-page: 1527 year: 2015 end-page: 1538 ident: bib11 article-title: ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis publication-title: Cell – volume: 19 start-page: 213 year: 2018 end-page: 221 ident: bib26 article-title: Metabolic exhaustion in infection, cancer and autoimmunity publication-title: Nat. Immunol. – volume: 6 start-page: 1366 year: 2016 end-page: 1381 ident: bib30 article-title: TGFbeta1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer publication-title: Cancer Discov. – volume: 72 start-page: 917 year: 2012 end-page: 927 ident: bib41 article-title: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape publication-title: Cancer Res. – volume: 531 start-page: 651 year: 2016 end-page: 655 ident: bib42 article-title: Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism publication-title: Nature – volume: 367 start-page: 1792 year: 2012 end-page: 1802 ident: bib27 article-title: Statin use and reduced cancer-related mortality publication-title: N. Engl. J. Med. – volume: 73 start-page: 253 year: 1994 end-page: 258 ident: bib12 article-title: Cholesterol content in tumor tissues is inversely associated with high-density lipoprotein cholesterol in serum in patients with gastrointestinal cancer publication-title: Cancer – volume: 47 start-page: 765 year: 2017 end-page: 779 ident: bib15 article-title: Immune checkpoints and their inhibition in cancer and infectious diseases publication-title: Eur. J. Immunol. – volume: 562 start-page: 423 year: 2018 end-page: 428 ident: bib34 article-title: IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity publication-title: Nature – volume: 97 start-page: 52C year: 2006 end-page: 60C ident: bib20 article-title: Statin safety: a systematic review publication-title: Am. J. Cardiol. – volume: 375 start-page: 1767 year: 2016 end-page: 1778 ident: bib7 article-title: Molecular and biochemical aspects of the PD-1 checkpoint pathway publication-title: N. Engl. J. Med. – volume: 6 start-page: 7 year: 2015 end-page: 17 ident: bib21 article-title: Reinvigorating exhausted T cells by blockade of the PD-1 pathway publication-title: For Immunopathol. dis. Therap. – volume: 215 start-page: 1555 year: 2018 end-page: 1569 ident: bib25 article-title: Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity publication-title: J. Exp. Med. – volume: 359 start-page: 1350 year: 2018 end-page: 1355 ident: bib31 article-title: Cancer immunotherapy using checkpoint blockade publication-title: Science – volume: 181 start-page: 5433 year: 2008 end-page: 5441 ident: bib18 article-title: Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection publication-title: J. Immunol. – volume: 29 start-page: 585 year: 2011 end-page: 593 ident: bib10 article-title: Reduced risk of breast cancer recurrence in patients using ACE inhibitors, ARBs, and/or statins publication-title: Cancer Invest. – volume: 25 start-page: 1282 year: 2017 end-page: 1293.e7 ident: bib2 article-title: Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments publication-title: Cell Metab. – volume: 8 start-page: 864 year: 2017 ident: bib4 article-title: The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells publication-title: Nat. Commun. – volume: 75 start-page: 60 year: 2016 end-page: 68 ident: bib43 article-title: The regulation of TIM-3 transcription in T cells involves c-Jun binding but not CpG methylation at the TIM-3 promoter publication-title: Mol. Immunol. – volume: 5 start-page: 781 year: 2003 end-page: 792 ident: bib17 article-title: The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages publication-title: Nat. Cell Biol. – volume: 8 start-page: 98215 year: 2017 end-page: 98232 ident: bib28 article-title: Atorvastatin downregulates co-inhibitory receptor expression by targeting Ras-activated mTOR signalling publication-title: Oncotarget – volume: 46 start-page: 51 year: 2017 end-page: 64 ident: bib35 article-title: SATB1 expression governs epigenetic repression of PD-1 in tumor-reactive T cells publication-title: Immunity – volume: 10 start-page: eaak9741 year: 2017 ident: bib6 article-title: FoxO1 and Foxp1 play opposing roles in regulating the differentiation and antitumor activity of TH9 cells programmed by IL-7 publication-title: Sci. Signal. – volume: 207 start-page: 2187 year: 2010 end-page: 2194 ident: bib33 article-title: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity publication-title: J. Exp. Med. – volume: 192 start-page: 4876 year: 2014 end-page: 4886 ident: bib3 article-title: STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells publication-title: J. Immunol. – volume: 12 start-page: 663 year: 2011 end-page: 671 ident: bib19 article-title: Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection publication-title: Nat. Immunol. – volume: 44 start-page: 1069 year: 2016 end-page: 1078 ident: bib9 article-title: Targeting T cell co-receptors for cancer therapy publication-title: Immunity – volume: 30 start-page: 171 year: 2016 end-page: 183 ident: bib16 article-title: Atorvastatin restricts HIV replication in CD4+ T cells by upregulation of p21 publication-title: AIDS – volume: 111 start-page: 2265 year: 2014 end-page: 2270 ident: bib24 article-title: Tumor-specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers publication-title: Proc. Natl. Acad. Sci. USA – volume: 212 start-page: 139 year: 2015 end-page: 148 ident: bib38 article-title: VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors publication-title: J. Exp. Med. – volume: 7 start-page: 737 year: 2017 ident: bib32 article-title: CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells publication-title: Sci. Rep. – volume: 44 start-page: 1091 year: 2016 end-page: 1101 ident: bib36 article-title: A cholesterol-based allostery model of T cell receptor phosphorylation publication-title: Immunity – volume: 12 start-page: 492 year: 2011 end-page: 499 ident: bib40 article-title: T cell exhaustion publication-title: Nat. Immunol. – volume: 196 start-page: 2431 year: 2016 end-page: 2437 ident: bib5 article-title: Genetic and epigenetic regulation of PD-1 expression publication-title: J. Immunol. – volume: 40 start-page: 859 year: 2010 end-page: 866 ident: bib1 article-title: T-bet, a Th1 transcription factor regulates the expression of Tim-3 publication-title: Eur. J. Immunol. – volume: 117 start-page: 1311 year: 2011 end-page: 1314 ident: bib29 article-title: Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma publication-title: Blood – volume: 531 start-page: 651 year: 2016 ident: 10.1016/j.cmet.2019.04.002_bib42 article-title: Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism publication-title: Nature doi: 10.1038/nature17412 – volume: 192 start-page: 4876 year: 2014 ident: 10.1016/j.cmet.2019.04.002_bib3 article-title: STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1302750 – volume: 375 start-page: 1767 year: 2016 ident: 10.1016/j.cmet.2019.04.002_bib7 article-title: Molecular and biochemical aspects of the PD-1 checkpoint pathway publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1514296 – volume: 97 start-page: 52C year: 2006 ident: 10.1016/j.cmet.2019.04.002_bib20 article-title: Statin safety: a systematic review publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2005.12.010 – volume: 25 start-page: 1282 year: 2017 ident: 10.1016/j.cmet.2019.04.002_bib2 article-title: Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.12.018 – volume: 161 start-page: 1527 year: 2015 ident: 10.1016/j.cmet.2019.04.002_bib11 article-title: ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis publication-title: Cell doi: 10.1016/j.cell.2015.05.025 – volume: 33 start-page: 480 year: 2018 ident: 10.1016/j.cmet.2019.04.002_bib22 article-title: Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.02.005 – volume: 359 start-page: 1350 year: 2018 ident: 10.1016/j.cmet.2019.04.002_bib31 article-title: Cancer immunotherapy using checkpoint blockade publication-title: Science doi: 10.1126/science.aar4060 – volume: 181 start-page: 5433 year: 2008 ident: 10.1016/j.cmet.2019.04.002_bib18 article-title: Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection publication-title: J. Immunol. doi: 10.4049/jimmunol.181.8.5433 – volume: 44 start-page: 1091 year: 2016 ident: 10.1016/j.cmet.2019.04.002_bib36 article-title: A cholesterol-based allostery model of T cell receptor phosphorylation publication-title: Immunity doi: 10.1016/j.immuni.2016.04.011 – volume: 12 start-page: 492 year: 2011 ident: 10.1016/j.cmet.2019.04.002_bib40 article-title: T cell exhaustion publication-title: Nat. Immunol. doi: 10.1038/ni.2035 – volume: 8 start-page: 98215 year: 2017 ident: 10.1016/j.cmet.2019.04.002_bib28 article-title: Atorvastatin downregulates co-inhibitory receptor expression by targeting Ras-activated mTOR signalling publication-title: Oncotarget doi: 10.18632/oncotarget.21003 – volume: 73 start-page: 253 year: 1994 ident: 10.1016/j.cmet.2019.04.002_bib12 article-title: Cholesterol content in tumor tissues is inversely associated with high-density lipoprotein cholesterol in serum in patients with gastrointestinal cancer publication-title: Cancer doi: 10.1002/1097-0142(19940115)73:2<253::AID-CNCR2820730204>3.0.CO;2-F – volume: 73 start-page: 3591 year: 2013 ident: 10.1016/j.cmet.2019.04.002_bib14 article-title: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-4100 – volume: 5 start-page: 781 year: 2003 ident: 10.1016/j.cmet.2019.04.002_bib17 article-title: The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages publication-title: Nat. Cell Biol. doi: 10.1038/ncb1035 – volume: 196 start-page: 2431 year: 2016 ident: 10.1016/j.cmet.2019.04.002_bib5 article-title: Genetic and epigenetic regulation of PD-1 expression publication-title: J. Immunol. doi: 10.4049/jimmunol.1502643 – volume: 39 start-page: 98 year: 2016 ident: 10.1016/j.cmet.2019.04.002_bib8 article-title: CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition publication-title: Am. J. Clin. Oncol. doi: 10.1097/COC.0000000000000239 – volume: 44 start-page: 1069 year: 2016 ident: 10.1016/j.cmet.2019.04.002_bib9 article-title: Targeting T cell co-receptors for cancer therapy publication-title: Immunity doi: 10.1016/j.immuni.2016.04.023 – volume: 367 start-page: 1792 year: 2012 ident: 10.1016/j.cmet.2019.04.002_bib27 article-title: Statin use and reduced cancer-related mortality publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1201735 – volume: 12 start-page: 663 year: 2011 ident: 10.1016/j.cmet.2019.04.002_bib19 article-title: Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection publication-title: Nat. Immunol. doi: 10.1038/ni.2046 – volume: 171 start-page: 61 year: 2005 ident: 10.1016/j.cmet.2019.04.002_bib13 article-title: Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor publication-title: J. Cell Biol. doi: 10.1083/jcb.200502078 – volume: 215 start-page: 1555 year: 2018 ident: 10.1016/j.cmet.2019.04.002_bib25 article-title: Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity publication-title: J. Exp. Med. doi: 10.1084/jem.20171576 – volume: 117 start-page: 1311 year: 2011 ident: 10.1016/j.cmet.2019.04.002_bib29 article-title: Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma publication-title: Blood doi: 10.1182/blood-2010-08-303099 – volume: 46 start-page: 51 year: 2017 ident: 10.1016/j.cmet.2019.04.002_bib35 article-title: SATB1 expression governs epigenetic repression of PD-1 in tumor-reactive T cells publication-title: Immunity doi: 10.1016/j.immuni.2016.12.015 – volume: 40 start-page: 859 year: 2010 ident: 10.1016/j.cmet.2019.04.002_bib1 article-title: T-bet, a Th1 transcription factor regulates the expression of Tim-3 publication-title: Eur. J. Immunol. doi: 10.1002/eji.200939842 – volume: 29 start-page: 585 year: 2011 ident: 10.1016/j.cmet.2019.04.002_bib10 article-title: Reduced risk of breast cancer recurrence in patients using ACE inhibitors, ARBs, and/or statins publication-title: Cancer Invest. doi: 10.3109/07357907.2011.616252 – volume: 7 start-page: 737 year: 2017 ident: 10.1016/j.cmet.2019.04.002_bib32 article-title: CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells publication-title: Sci. Rep. doi: 10.1038/s41598-017-00462-8 – volume: 212 start-page: 139 year: 2015 ident: 10.1016/j.cmet.2019.04.002_bib38 article-title: VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors publication-title: J. Exp. Med. doi: 10.1084/jem.20140559 – volume: 207 start-page: 2187 year: 2010 ident: 10.1016/j.cmet.2019.04.002_bib33 article-title: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity publication-title: J. Exp. Med. doi: 10.1084/jem.20100643 – volume: 562 start-page: 423 year: 2018 ident: 10.1016/j.cmet.2019.04.002_bib34 article-title: IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity publication-title: Nature doi: 10.1038/s41586-018-0597-x – volume: 72 start-page: 917 year: 2012 ident: 10.1016/j.cmet.2019.04.002_bib41 article-title: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-1620 – volume: 124 start-page: 2585 year: 2014 ident: 10.1016/j.cmet.2019.04.002_bib37 article-title: Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival publication-title: J. Clin. Invest. doi: 10.1172/JCI73448 – volume: 75 start-page: 60 year: 2016 ident: 10.1016/j.cmet.2019.04.002_bib43 article-title: The regulation of TIM-3 transcription in T cells involves c-Jun binding but not CpG methylation at the TIM-3 promoter publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2016.05.014 – volume: 17 start-page: 844 year: 2016 ident: 10.1016/j.cmet.2019.04.002_bib39 article-title: Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol publication-title: Nat. Immunol. doi: 10.1038/ni.3462 – volume: 8 start-page: 864 year: 2017 ident: 10.1016/j.cmet.2019.04.002_bib4 article-title: The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-00910-z – volume: 6 start-page: 1366 year: 2016 ident: 10.1016/j.cmet.2019.04.002_bib30 article-title: TGFbeta1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-1347 – volume: 10 start-page: eaak9741 year: 2017 ident: 10.1016/j.cmet.2019.04.002_bib6 article-title: FoxO1 and Foxp1 play opposing roles in regulating the differentiation and antitumor activity of TH9 cells programmed by IL-7 publication-title: Sci. Signal. doi: 10.1126/scisignal.aak9741 – volume: 47 start-page: 765 year: 2017 ident: 10.1016/j.cmet.2019.04.002_bib15 article-title: Immune checkpoints and their inhibition in cancer and infectious diseases publication-title: Eur. J. Immunol. doi: 10.1002/eji.201646875 – volume: 211 start-page: 515 year: 2014 ident: 10.1016/j.cmet.2019.04.002_bib23 article-title: Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection publication-title: J. Exp. Med. doi: 10.1084/jem.20130208 – volume: 30 start-page: 171 year: 2016 ident: 10.1016/j.cmet.2019.04.002_bib16 article-title: Atorvastatin restricts HIV replication in CD4+ T cells by upregulation of p21 publication-title: AIDS doi: 10.1097/QAD.0000000000000917 – volume: 6 start-page: 7 year: 2015 ident: 10.1016/j.cmet.2019.04.002_bib21 article-title: Reinvigorating exhausted T cells by blockade of the PD-1 pathway publication-title: For Immunopathol. dis. Therap. – volume: 111 start-page: 2265 year: 2014 ident: 10.1016/j.cmet.2019.04.002_bib24 article-title: Tumor-specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1317431111 – volume: 19 start-page: 213 year: 2018 ident: 10.1016/j.cmet.2019.04.002_bib26 article-title: Metabolic exhaustion in infection, cancer and autoimmunity publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0045-y – reference: 31269422 - Cell Metab. 2019 Jul 2;30(1):12-13 |
SSID | ssj0036393 |
Score | 2.7021863 |
Snippet | Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor... Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 143 |
SubjectTerms | CD8+ T cells cholesterol exhaustion immune checkpoints tumor microenvironment |
Title | Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment |
URI | https://dx.doi.org/10.1016/j.cmet.2019.04.002 https://www.ncbi.nlm.nih.gov/pubmed/31031094 https://www.proquest.com/docview/2216775129 https://pubmed.ncbi.nlm.nih.gov/PMC7061417 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da8IwEA8iDPYy9j33RQZ7k6Jpk7R93DqHDNzLFHwLaZqiQ6s4he2_310_RLfhwx6bXEq4Sy6_tHe_I-Se28AwuPw4bhpLh8tYO7FlsPG41kwazYTGROHeq-wO-MtQDGskqnJhMKyy9P2FT8-9ddnSKrXZmo_HrTcE1xzZYkJYpIEcgh_2eJAn8Q0fK2_swQmcB9mDsIPSZeJMEeNlphbjKVmY052Wn1b-OJx-g8-fMZQbh9LzITko0SR9KCZ8RGo2OyZ7RX3JrxPSjbD6LVIhzCYUi3SAU6DRU9CkfRrZyYR2PkfI-wO2oeOMAhak_dV0tqA9DNPbyIE7JYPnTj_qOmXpBMdwIZaoapuEOuHWhCKGfesGUnturFMZyjQR0AO9sB-TAPAItFuACm0jrPW1ARDgnZF6NsvsBaHCIMU8T6TXTrmbetqDd2iBirciZmGDsEpnypS84ljeYqKqALJ3hXpWqGfV5gr03CDN9Zh5waqxU1pUplBba0OB29857q6ym4JNg39CdGZnqw_lukz6PmKdBjkv7LieBxZeY3DpbRB_y8JrASTk3u7JxqOcmNvH6zXzL_853yuyj095MLB7TerLxcreAORZxrf5mv4GrmT-2w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIQQviN8UGBgJnqaotWM7ycMeoNvUsnUvdFLfjOM4WlGXTlsr2N_FP7i7xKnWgfaAtFfbiU5357tz8vk7gE_Sp47j4ScSZa4jqXMb5Z7jxpPWcu0sV5YuCo-O9OBYfpuoyQb8ae_CEKwyxP4mptfROox0gza7Z9Np9zsV15LYYjJ00lRPArLywF_-wnPbxc5wF438WYj9vXF_EIXWApGTSi1IFF9ktpDeZSpHvxaptrHIbakzXRYKZ3AW_bVIMV_juMdU2nPK-8Q6TJIxvvce3MfqI6FoMJx8bcN_jCm_RvWjdBGJF27qNKAyd-oJwMmzml81fMv5Rzb8u9q9Cdq8lgX3n8DjUL6yL42GnsKGr57Bg6ah5eVzGPSp3S5xL8xnjLqCYBRi_d10m41Z389mbO_3CRENoTOwacWw-GTj5en8nI0IF3jt0t0LOL4Thb6EzWpe-dfAlCNOe1nouFdKUcY2xndYRZb2KudZB3irM-MCkTn105iZFrH205CeDenZ9KRBPXdge_XMWUPjcetq1ZrCrDmjwTxz63MfW7sZ3KX068VWfr68MEJwnSRUXHXgVWPHlRzU6Y3jKbsDyZqFVwuIAXx9ppqe1EzgCZ3nefLmP-X9AA8H49GhORweHbyFRzRTI5HFO9hcnC_9FtZbi_x97d8Mftz1hroC7E49Eg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholesterol+Induces+CD8+%2B+T+Cell+Exhaustion+in+the+Tumor+Microenvironment&rft.jtitle=Cell+metabolism&rft.au=Ma%2C+Xingzhe&rft.au=Bi%2C+Enguang&rft.au=Lu%2C+Yong&rft.au=Su%2C+Pan&rft.date=2019-07-02&rft.eissn=1932-7420&rft.volume=30&rft.issue=1&rft.spage=143&rft_id=info:doi/10.1016%2Fj.cmet.2019.04.002&rft_id=info%3Apmid%2F31031094&rft.externalDocID=31031094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |