Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment

Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol co...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 30; no. 1; pp. 143 - 156.e5
Main Authors Ma, Xingzhe, Bi, Enguang, Lu, Yong, Su, Pan, Huang, Chunjian, Liu, Lintao, Wang, Qiang, Yang, Maojie, Kalady, Matthew F., Qian, Jianfei, Zhang, Aijun, Gupte, Anisha A., Hamilton, Dale J., Zheng, Chengyun, Yi, Qing
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8+ T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8+ T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8+ T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8+ T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy. [Display omitted] •CD8+ T cell exhaustion is correlated with a high cholesterol level•Tumor microenvironment is enriched with cholesterol•Cholesterol in the tumor microenvironment induces CD8+ T cell exhaustion•ER stress-XBP1 pathway is required for cholesterol-induced CD8+ T cell exhaustion Tumor-infiltrating T cells often lose their effector function. Ma et al. show that cholesterol in the tumor microenvironment induces CD8+ T cell exhaustion in an ER-stress-XBP1-dependent manner. Reducing cholesterol or ER stress enhanced CD8+ T cell antitumor function, highlighting therapeutic avenues to improve T cell-based immunotherapy in the clinic.
AbstractList Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8 T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8 T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8 T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8 T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8 T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy.
Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8+ T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8+ T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8+ T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8+ T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy. [Display omitted] •CD8+ T cell exhaustion is correlated with a high cholesterol level•Tumor microenvironment is enriched with cholesterol•Cholesterol in the tumor microenvironment induces CD8+ T cell exhaustion•ER stress-XBP1 pathway is required for cholesterol-induced CD8+ T cell exhaustion Tumor-infiltrating T cells often lose their effector function. Ma et al. show that cholesterol in the tumor microenvironment induces CD8+ T cell exhaustion in an ER-stress-XBP1-dependent manner. Reducing cholesterol or ER stress enhanced CD8+ T cell antitumor function, highlighting therapeutic avenues to improve T cell-based immunotherapy in the clinic.
Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8 + T-cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8 + T cells was positively and progressively associated with upregulated T-cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8 + T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering tumor. Tumor-culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8 + T cells. Consequently, the ER-stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8 + T cells effectively restored antitumor activity. This study reveals a novel mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T-cell based immunotherapy. Tumor-infiltrating T cells often lose their effector function. Ma et al. show that cholesterol in the tumor microenvironment induces CD8 + T-cell exhaustion in an ER-stress-XBP1 dependent manner. Reducing cholesterol or ER stress enhanced CD8 + T-cell anti-tumor function, highlighting therapeutic avenues to improve T-cell based immunotherapy in the clinic.
Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8+ T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8+ T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8+ T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8+ T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy.Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor microenvironment induces CD8+ T cell expression of immune checkpoints and exhaustion. Tumor tissues enriched with cholesterol and cholesterol content in tumor-infiltrating CD8+ T cells were positively and progressively associated with upregulated T cell expression of PD-1, 2B4, TIM-3, and LAG-3. Adoptively transferred CD8+ T cells acquired cholesterol, expressed high levels of immune checkpoints, and became exhausted upon entering a tumor. Tumor culture supernatant or cholesterol induced immune checkpoint expression by increasing endoplasmic reticulum (ER) stress in CD8+ T cells. Consequently, the ER stress sensor XBP1 was activated and regulated PD-1 and 2B4 transcription. Inhibiting XBP1 or reducing cholesterol in CD8+ T cells effectively restored antitumor activity. This study reveals a mechanism underlying T cell exhaustion and suggests a new strategy for restoring T cell function by reducing cholesterol to enhance T cell-based immunotherapy.
Author Yi, Qing
Kalady, Matthew F.
Wang, Qiang
Bi, Enguang
Yang, Maojie
Su, Pan
Liu, Lintao
Qian, Jianfei
Ma, Xingzhe
Huang, Chunjian
Lu, Yong
Zhang, Aijun
Zheng, Chengyun
Hamilton, Dale J.
Gupte, Anisha A.
AuthorAffiliation 1 Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
5 Department of Hematology, Second Hospital of Shandong University, Jinan 250033, China
2 Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27109, USA
4 Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA
6 Lead Contact
3 Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
AuthorAffiliation_xml – name: 5 Department of Hematology, Second Hospital of Shandong University, Jinan 250033, China
– name: 6 Lead Contact
– name: 2 Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27109, USA
– name: 4 Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA
– name: 3 Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
– name: 1 Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
Author_xml – sequence: 1
  givenname: Xingzhe
  surname: Ma
  fullname: Ma, Xingzhe
  organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 2
  givenname: Enguang
  surname: Bi
  fullname: Bi, Enguang
  organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 3
  givenname: Yong
  surname: Lu
  fullname: Lu, Yong
  organization: Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27109, USA
– sequence: 4
  givenname: Pan
  surname: Su
  fullname: Su, Pan
  organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 5
  givenname: Chunjian
  surname: Huang
  fullname: Huang, Chunjian
  organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 6
  givenname: Lintao
  surname: Liu
  fullname: Liu, Lintao
  organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 7
  givenname: Qiang
  surname: Wang
  fullname: Wang, Qiang
  organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 8
  givenname: Maojie
  surname: Yang
  fullname: Yang, Maojie
  organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 9
  givenname: Matthew F.
  surname: Kalady
  fullname: Kalady, Matthew F.
  organization: Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
– sequence: 10
  givenname: Jianfei
  surname: Qian
  fullname: Qian, Jianfei
  organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 11
  givenname: Aijun
  surname: Zhang
  fullname: Zhang, Aijun
  organization: Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 12
  givenname: Anisha A.
  surname: Gupte
  fullname: Gupte, Anisha A.
  organization: Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 13
  givenname: Dale J.
  surname: Hamilton
  fullname: Hamilton, Dale J.
  organization: Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA
– sequence: 14
  givenname: Chengyun
  surname: Zheng
  fullname: Zheng, Chengyun
  organization: Department of Hematology, Second Hospital of Shandong University, Jinan 250033, China
– sequence: 15
  givenname: Qing
  surname: Yi
  fullname: Yi, Qing
  email: qyi@houstonmethodist.org
  organization: Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31031094$$D View this record in MEDLINE/PubMed
BookMark eNp9UV1rFDEUDVKxH_oHfJA8CjJjbj5mJiCCjLUtVHxZn0M2c9fNMpPUZGbRf2-WrcX6UAgk3HvOubnnnJOTEAMS8hpYDQya97vaTTjXnIGumawZ48_IGWjBq1ZydlLeSrFKgoBTcp7zjjHRCC1ekFMBrBwtz8h1v40j5hlTHOlNGBaHmfafu3d0RXscR3r5a2uXPPsYqA903iJdLVNM9Kt3KWLY-xTDhGF-SZ5v7Jjx1f19Qb5_uVz119Xtt6ub_tNt5aRSc9VJi4O2g0Sn1VpAx7vGCr62m0Y3m0GVTukqYEOn26bUkbUdcwqxtQ4UiAvy8ah7t6wnHFwZnexo7pKfbPptovXmcSf4rfkR96ZlDUhoi8Dbe4EUfy5ldTP57MqqNmBcsuEcmrZVwHWBvvl31sOQv_YVAD8Cihc5J9w8QICZQ0ZmZw4ZmUNGhklTMiqk7j-S87M9OFz-68enqR-OVCwO7z0mk53H4HDwCd1shuifov8BKZmtNQ
CitedBy_id crossref_primary_10_1016_j_autrev_2024_103579
crossref_primary_10_3389_fimmu_2023_1204363
crossref_primary_10_1136_jitc_2019_000501
crossref_primary_10_1186_s40364_023_00507_3
crossref_primary_10_1007_s11906_024_01300_9
crossref_primary_10_1016_j_cmet_2022_02_003
crossref_primary_10_3390_genes14101953
crossref_primary_10_70322_immune_2025_10005
crossref_primary_10_1016_j_canlet_2025_217613
crossref_primary_10_1371_journal_pbio_3002621
crossref_primary_10_3389_fonc_2023_1107484
crossref_primary_10_1016_j_cmet_2023_04_015
crossref_primary_10_1158_1078_0432_CCR_20_1967
crossref_primary_10_1111_cas_15331
crossref_primary_10_1007_s12672_024_01658_x
crossref_primary_10_1186_s40364_024_00646_1
crossref_primary_10_3389_fonc_2023_1187279
crossref_primary_10_1016_j_biomaterials_2024_122609
crossref_primary_10_4049_jimmunol_2200037
crossref_primary_10_1002_iid3_379
crossref_primary_10_1093_oxfimm_iqaa001
crossref_primary_10_3390_cancers13030474
crossref_primary_10_1186_s12943_021_01420_9
crossref_primary_10_1038_s41392_022_01125_5
crossref_primary_10_1016_j_apsb_2021_03_027
crossref_primary_10_3389_fimmu_2022_1020422
crossref_primary_10_1016_j_intimp_2023_111168
crossref_primary_10_3389_fimmu_2023_1322746
crossref_primary_10_3389_fonc_2024_1448966
crossref_primary_10_1136_jitc_2020_002137
crossref_primary_10_2147_CMAR_S305719
crossref_primary_10_1007_s00262_025_03989_2
crossref_primary_10_1371_journal_pbio_3002974
crossref_primary_10_3389_fimmu_2022_869061
crossref_primary_10_1182_blood_2022019333
crossref_primary_10_3389_fcell_2023_1187989
crossref_primary_10_1002_smtd_202200898
crossref_primary_10_1111_1541_4337_13055
crossref_primary_10_1186_s13287_021_02377_8
crossref_primary_10_2174_1871530323666230413112614
crossref_primary_10_3389_fphar_2022_840440
crossref_primary_10_1016_j_copbio_2021_02_003
crossref_primary_10_1016_j_immuni_2024_08_003
crossref_primary_10_1016_j_jsbmb_2019_105443
crossref_primary_10_1016_j_ymthe_2021_05_012
crossref_primary_10_1016_j_immuni_2022_12_008
crossref_primary_10_1007_s12672_023_00806_z
crossref_primary_10_1016_j_trecan_2024_03_010
crossref_primary_10_1016_j_it_2022_04_010
crossref_primary_10_3389_fonc_2023_1080910
crossref_primary_10_3389_fimmu_2021_645242
crossref_primary_10_1007_s00277_024_06117_9
crossref_primary_10_3389_fphar_2024_1304502
crossref_primary_10_1084_jem_20221140
crossref_primary_10_3390_cancers14010183
crossref_primary_10_1007_s10238_024_01479_w
crossref_primary_10_1186_s13046_024_03011_0
crossref_primary_10_1002_lt_26381
crossref_primary_10_1016_j_cell_2024_04_023
crossref_primary_10_1186_s12935_024_03481_4
crossref_primary_10_1038_s41467_024_49495_4
crossref_primary_10_1111_imr_12845
crossref_primary_10_1016_j_ejphar_2024_176519
crossref_primary_10_1007_s11427_019_1735_4
crossref_primary_10_3389_fonc_2021_759015
crossref_primary_10_1016_j_cmet_2021_07_004
crossref_primary_10_1016_j_omto_2021_01_011
crossref_primary_10_3390_cells11193103
crossref_primary_10_1016_j_cmet_2019_10_013
crossref_primary_10_1016_j_cmet_2022_10_010
crossref_primary_10_1038_s41573_021_00320_3
crossref_primary_10_3389_fonc_2024_1395192
crossref_primary_10_1016_j_scib_2023_12_035
crossref_primary_10_3390_ijms22168755
crossref_primary_10_3389_fimmu_2023_1151632
crossref_primary_10_1089_hum_2020_271
crossref_primary_10_18632_aging_203879
crossref_primary_10_1038_s41391_022_00557_y
crossref_primary_10_1155_2021_6640384
crossref_primary_10_3390_genes14051008
crossref_primary_10_1016_j_celrep_2024_114156
crossref_primary_10_1016_j_chembiol_2024_04_005
crossref_primary_10_1186_s12944_024_02024_0
crossref_primary_10_3390_ijms232012236
crossref_primary_10_1016_j_celrep_2024_115128
crossref_primary_10_1097_JN9_0000000000000008
crossref_primary_10_3390_cancers13133327
crossref_primary_10_1111_febs_16181
crossref_primary_10_3389_fimmu_2023_1149622
crossref_primary_10_1038_s41571_020_00459_9
crossref_primary_10_1186_s12951_023_01841_2
crossref_primary_10_1016_j_prp_2019_152780
crossref_primary_10_1038_s41598_023_45096_1
crossref_primary_10_1016_j_lfs_2023_122329
crossref_primary_10_3390_cancers12061410
crossref_primary_10_1016_j_isci_2023_106916
crossref_primary_10_1016_j_trecan_2022_06_006
crossref_primary_10_1038_s41591_022_01799_y
crossref_primary_10_1186_s13578_023_01138_9
crossref_primary_10_1152_ajpcell_00551_2024
crossref_primary_10_1038_s41568_020_00312_2
crossref_primary_10_1016_j_bbcan_2024_189183
crossref_primary_10_1002_adma_202307752
crossref_primary_10_3389_fphar_2024_1440869
crossref_primary_10_1089_ars_2023_0340
crossref_primary_10_3389_fimmu_2024_1451103
crossref_primary_10_1128_spectrum_02198_22
crossref_primary_10_1016_j_chembiol_2024_02_001
crossref_primary_10_1016_j_exppara_2023_108623
crossref_primary_10_1016_j_heliyon_2024_e35338
crossref_primary_10_1038_s41423_021_00709_5
crossref_primary_10_1136_gutjnl_2023_331117
crossref_primary_10_1136_jitc_2020_001361
crossref_primary_10_1002_JLB_5MR0921_011R
crossref_primary_10_1016_j_trecan_2024_10_002
crossref_primary_10_1146_annurev_cancerbio_061421_042605
crossref_primary_10_1186_s13020_023_00785_x
crossref_primary_10_1016_j_biopha_2022_113665
crossref_primary_10_1016_j_crphar_2022_100146
crossref_primary_10_1016_j_biopha_2021_112277
crossref_primary_10_3389_fonc_2021_772263
crossref_primary_10_1016_j_celrep_2024_115064
crossref_primary_10_1016_j_ccell_2023_01_009
crossref_primary_10_1038_s42255_020_00280_9
crossref_primary_10_1126_sciimmunol_adg3868
crossref_primary_10_1016_j_cellimm_2023_104773
crossref_primary_10_3389_fimmu_2024_1490845
crossref_primary_10_1186_s12944_023_01830_2
crossref_primary_10_1016_j_cell_2023_03_013
crossref_primary_10_3389_fimmu_2024_1427859
crossref_primary_10_3389_fimmu_2024_1476427
crossref_primary_10_1016_j_apsb_2024_07_021
crossref_primary_10_3389_fimmu_2023_1170321
crossref_primary_10_1007_s00262_023_03555_8
crossref_primary_10_1038_s41586_023_06733_x
crossref_primary_10_3390_ijms25031725
crossref_primary_10_3390_pharmaceutics14081685
crossref_primary_10_1002_mco2_27
crossref_primary_10_1007_s11010_024_05106_w
crossref_primary_10_3389_fonc_2021_761107
crossref_primary_10_1016_j_immuni_2021_12_012
crossref_primary_10_1186_s12943_022_01704_8
crossref_primary_10_1016_j_bbcan_2024_189162
crossref_primary_10_1007_s12032_022_01842_5
crossref_primary_10_32604_or_2023_027112
crossref_primary_10_1016_j_trecan_2024_09_011
crossref_primary_10_1038_s41388_024_03255_2
crossref_primary_10_1186_s12967_023_04758_4
crossref_primary_10_1097_CJI_0000000000000534
crossref_primary_10_1002_advs_202306827
crossref_primary_10_1126_scitranslmed_aaz6314
crossref_primary_10_1016_j_critrevonc_2022_103731
crossref_primary_10_1016_j_canlet_2020_05_033
crossref_primary_10_1016_j_jbc_2022_101617
crossref_primary_10_3390_ijms21165845
crossref_primary_10_1007_s00395_024_01068_8
crossref_primary_10_1002_advs_202400702
crossref_primary_10_1016_j_heliyon_2024_e33144
crossref_primary_10_1038_s41422_020_0374_x
crossref_primary_10_3389_fonc_2022_1024789
crossref_primary_10_1038_s41590_020_00850_9
crossref_primary_10_3389_fcell_2021_803132
crossref_primary_10_1016_j_ccell_2022_02_003
crossref_primary_10_1016_j_intimp_2024_112367
crossref_primary_10_1016_j_stem_2023_05_006
crossref_primary_10_1038_s41467_023_38360_5
crossref_primary_10_1007_s12072_023_10595_w
crossref_primary_10_1186_s13045_021_01200_4
crossref_primary_10_1016_j_envpol_2024_123565
crossref_primary_10_3390_metabo11010012
crossref_primary_10_3389_fimmu_2023_1198551
crossref_primary_10_1002_JLB_1A0521_251R
crossref_primary_10_1007_s00281_025_01043_y
crossref_primary_10_1038_s41389_022_00420_8
crossref_primary_10_1152_ajpcell_00588_2022
crossref_primary_10_3390_cancers17010155
crossref_primary_10_1016_j_jacc_2021_11_048
crossref_primary_10_1016_j_biopha_2023_116030
crossref_primary_10_3389_fimmu_2022_1046755
crossref_primary_10_1016_j_compbiomed_2024_108396
crossref_primary_10_1186_s12887_024_04700_7
crossref_primary_10_3389_fnut_2022_883308
crossref_primary_10_3390_cancers15194787
crossref_primary_10_3390_ijms252212403
crossref_primary_10_1002_ctm2_1320
crossref_primary_10_1158_0008_5472_CAN_21_1392
crossref_primary_10_7554_eLife_55185
crossref_primary_10_3389_fimmu_2022_884030
crossref_primary_10_1016_j_biopha_2022_113741
crossref_primary_10_1016_j_semcancer_2024_07_001
crossref_primary_10_1016_j_cmet_2023_02_013
crossref_primary_10_1016_j_immuni_2024_03_021
crossref_primary_10_1158_2326_6066_CIR_20_0358
crossref_primary_10_1002_cam4_70684
crossref_primary_10_1002_adhm_202300018
crossref_primary_10_1016_j_medntd_2024_100295
crossref_primary_10_1038_s41401_024_01304_w
crossref_primary_10_1371_journal_pone_0315980
crossref_primary_10_1002_advs_202411053
crossref_primary_10_1016_j_tem_2024_11_014
crossref_primary_10_1002_path_5907
crossref_primary_10_1007_s12026_024_09483_8
crossref_primary_10_1021_acs_orglett_2c02978
crossref_primary_10_1016_j_molcel_2019_09_008
crossref_primary_10_1016_j_canlet_2023_216267
crossref_primary_10_3390_ani14020225
crossref_primary_10_1097_CM9_0000000000002989
crossref_primary_10_1016_j_cmet_2022_08_007
crossref_primary_10_1136_jitc_2021_003217
crossref_primary_10_1186_s12916_022_02436_8
crossref_primary_10_1007_s11684_023_1012_z
crossref_primary_10_1016_j_molmet_2024_102044
crossref_primary_10_1016_j_canlet_2023_216396
crossref_primary_10_1002_med_21727
crossref_primary_10_3389_fgene_2021_646362
crossref_primary_10_1172_jci_insight_165544
crossref_primary_10_3389_fonc_2022_1024985
crossref_primary_10_1016_j_it_2021_12_004
crossref_primary_10_3389_fimmu_2024_1507501
crossref_primary_10_1136_jitc_2022_005940
crossref_primary_10_20517_cdr_2023_60
crossref_primary_10_1002_advs_202406975
crossref_primary_10_1002_ctm2_1429
crossref_primary_10_3390_cancers14071825
crossref_primary_10_1136_jitc_2022_004616
crossref_primary_10_3389_fimmu_2024_1468957
crossref_primary_10_1016_j_trecan_2023_06_003
crossref_primary_10_1038_s41419_024_06897_y
crossref_primary_10_1080_21645515_2020_1852872
crossref_primary_10_1016_j_intimp_2024_112571
crossref_primary_10_3390_cancers15153898
crossref_primary_10_1186_s12964_023_01438_0
crossref_primary_10_1177_17588359221079123
crossref_primary_10_1186_s12893_023_01988_7
crossref_primary_10_3389_fcell_2021_764125
crossref_primary_10_1002_advs_202414100
crossref_primary_10_1016_j_plipres_2024_101288
crossref_primary_10_1038_s41467_023_39683_z
crossref_primary_10_3389_fimmu_2022_1057546
crossref_primary_10_1016_j_xcrm_2023_101144
crossref_primary_10_1016_j_canlet_2023_216208
crossref_primary_10_1158_2159_8290_CD_21_0211
crossref_primary_10_1152_ajpcell_00148_2022
crossref_primary_10_3390_cancers16152630
crossref_primary_10_1016_j_ccell_2024_11_003
crossref_primary_10_3389_fendo_2024_1396022
crossref_primary_10_1158_2326_6066_CIR_20_0791
crossref_primary_10_3389_fonc_2025_1549237
crossref_primary_10_4103_glioma_glioma_16_22
crossref_primary_10_1016_j_ccell_2023_03_002
crossref_primary_10_3389_fimmu_2022_977394
crossref_primary_10_1038_s41467_024_50077_7
crossref_primary_10_1038_s41388_023_02836_x
crossref_primary_10_1158_1055_9965_EPI_21_0443
crossref_primary_10_2174_1381612826666200130091318
crossref_primary_10_1186_s12943_024_01981_5
crossref_primary_10_1172_jci_insight_175320
crossref_primary_10_3389_fonc_2022_957966
crossref_primary_10_1111_cas_15999
crossref_primary_10_1016_j_intimp_2024_113244
crossref_primary_10_1515_med_2023_0701
crossref_primary_10_3390_cancers14010250
crossref_primary_10_1016_j_canlet_2023_216336
crossref_primary_10_1080_1120009X_2023_2290348
crossref_primary_10_1016_j_drudis_2022_103347
crossref_primary_10_1186_s12885_023_10836_z
crossref_primary_10_1089_ars_2022_0040
crossref_primary_10_1016_j_cytogfr_2023_08_004
crossref_primary_10_1002_smll_202305708
crossref_primary_10_1172_JCI171874
crossref_primary_10_1136_jitc_2024_010824
crossref_primary_10_1186_s13046_023_02634_z
crossref_primary_10_1016_j_devcel_2021_04_013
crossref_primary_10_1016_j_trsl_2024_10_003
crossref_primary_10_3390_cancers12071755
crossref_primary_10_1038_s41392_024_01765_9
crossref_primary_10_1038_s41423_019_0344_8
crossref_primary_10_1016_j_cmet_2019_11_010
crossref_primary_10_1038_s41467_024_52617_7
crossref_primary_10_1016_j_jmb_2021_167328
crossref_primary_10_1002_ijc_33781
crossref_primary_10_1038_s12276_023_01079_w
crossref_primary_10_1038_s41467_023_38316_9
crossref_primary_10_4251_wjgo_v14_i1_110
crossref_primary_10_37349_etat_2025_1002297
crossref_primary_10_2174_1573394718666220428120818
crossref_primary_10_3389_fonc_2022_902974
crossref_primary_10_1016_j_molcel_2021_04_009
crossref_primary_10_1155_2023_9708282
crossref_primary_10_1158_0008_5472_CAN_23_0356
crossref_primary_10_1007_s12094_023_03134_4
crossref_primary_10_3389_fimmu_2023_1255443
crossref_primary_10_1016_j_xcrm_2024_101592
crossref_primary_10_3389_fphar_2023_1192777
crossref_primary_10_3390_ijms22189878
crossref_primary_10_1007_s11883_023_01125_y
crossref_primary_10_1016_j_molmet_2022_101529
crossref_primary_10_1007_s11684_023_1025_7
crossref_primary_10_1016_j_ebiom_2024_105092
crossref_primary_10_1016_j_it_2021_11_007
crossref_primary_10_1158_2767_9764_CRC_24_0191
crossref_primary_10_3389_fimmu_2023_1325360
crossref_primary_10_1038_s41467_024_47835_y
crossref_primary_10_1073_pnas_2415042122
crossref_primary_10_3389_fimmu_2023_1225948
crossref_primary_10_1016_j_ccell_2023_04_016
crossref_primary_10_1039_D4CS00679H
crossref_primary_10_1007_s00262_020_02668_8
crossref_primary_10_1038_s41586_023_06483_w
crossref_primary_10_2174_1568009623666230712095021
crossref_primary_10_1126_sciadv_abq4722
crossref_primary_10_1016_j_biomaterials_2024_123022
crossref_primary_10_1016_j_ebiom_2022_104216
crossref_primary_10_1016_j_cmet_2024_02_009
crossref_primary_10_1038_s41423_022_00872_3
crossref_primary_10_1101_cshperspect_a037044
crossref_primary_10_1126_science_adl4100
crossref_primary_10_1016_j_cmet_2019_06_007
crossref_primary_10_3390_ijms24119182
crossref_primary_10_3390_cancers15153948
crossref_primary_10_1182_blood_2020005795
crossref_primary_10_1245_s10434_021_10928_9
crossref_primary_10_1002_ange_202412844
crossref_primary_10_3389_fimmu_2021_613185
crossref_primary_10_1016_j_bbalip_2021_158964
crossref_primary_10_1084_jem_20240559
crossref_primary_10_3390_curroncol29110642
crossref_primary_10_3390_cimb45120609
crossref_primary_10_1016_j_canlet_2021_02_013
crossref_primary_10_1097_HEP_0000000000000025
crossref_primary_10_1186_s12944_024_02401_9
crossref_primary_10_15252_embj_2022111494
crossref_primary_10_1007_s10495_024_01997_8
crossref_primary_10_1186_s12885_022_09385_8
crossref_primary_10_1038_s41419_024_07122_6
crossref_primary_10_1002_ijc_34668
crossref_primary_10_1016_j_molimm_2021_06_001
crossref_primary_10_1155_2021_9398661
crossref_primary_10_1016_j_ijbiomac_2024_134660
crossref_primary_10_1080_2162402X_2024_2411070
crossref_primary_10_3390_antibiotics12091468
crossref_primary_10_1002_jgm_3496
crossref_primary_10_1186_s13046_019_1409_3
crossref_primary_10_1038_s41568_024_00743_1
crossref_primary_10_1146_annurev_immunol_070621_030155
crossref_primary_10_1093_brain_awac222
crossref_primary_10_1093_jleuko_qiad114
crossref_primary_10_3389_fendo_2024_1411706
crossref_primary_10_1021_jacs_3c08622
crossref_primary_10_1186_s13046_021_02041_2
crossref_primary_10_1007_s12032_024_02435_0
crossref_primary_10_1136_jitc_2022_004584
crossref_primary_10_1038_s42255_025_01233_w
crossref_primary_10_3389_fcell_2022_867341
crossref_primary_10_3390_cancers14081905
crossref_primary_10_1038_s41568_020_0273_y
crossref_primary_10_1038_s41698_022_00300_9
crossref_primary_10_3389_fmolb_2020_00217
crossref_primary_10_3389_fimmu_2023_1186383
crossref_primary_10_1038_s41423_024_01206_1
crossref_primary_10_3389_fimmu_2021_716084
crossref_primary_10_37349_edd_2022_00003
crossref_primary_10_1016_j_compbiomed_2024_107926
crossref_primary_10_1016_j_smim_2021_101485
crossref_primary_10_1038_s41420_024_01865_z
crossref_primary_10_1172_JCI153247
crossref_primary_10_3389_fimmu_2022_937406
crossref_primary_10_1016_j_ijbiomac_2024_136810
crossref_primary_10_3389_fgene_2021_723802
crossref_primary_10_1016_j_nantod_2021_101332
crossref_primary_10_1038_s41423_021_00735_3
crossref_primary_10_3389_fonc_2021_751086
crossref_primary_10_1111_imm_13588
crossref_primary_10_1186_s12967_023_03896_z
crossref_primary_10_1186_s12885_023_11182_w
crossref_primary_10_1186_s12935_021_02042_3
crossref_primary_10_3389_fimmu_2023_1166440
crossref_primary_10_3390_biom12091182
crossref_primary_10_1136_jitc_2022_005611
crossref_primary_10_3390_cancers16213671
crossref_primary_10_4049_jimmunol_2100186
crossref_primary_10_1038_s41598_024_52647_7
crossref_primary_10_1002_advs_202101672
crossref_primary_10_1038_s41420_024_02092_2
crossref_primary_10_1186_s13045_022_01349_6
crossref_primary_10_3390_ijms22136779
crossref_primary_10_1038_s41392_021_00784_0
crossref_primary_10_1016_j_trecan_2022_12_008
crossref_primary_10_3390_cancers13061229
crossref_primary_10_1002_adma_202311109
crossref_primary_10_1084_jem_20221839
crossref_primary_10_1002_advs_202403629
crossref_primary_10_3389_fphar_2023_1126916
crossref_primary_10_1172_JCI144318
crossref_primary_10_1186_s12903_023_02822_5
crossref_primary_10_1002_advs_202405826
crossref_primary_10_12677_acm_2024_1451499
crossref_primary_10_3389_fimmu_2023_1212215
crossref_primary_10_1007_s11882_025_01199_5
crossref_primary_10_1016_j_immuni_2021_05_003
crossref_primary_10_3389_fimmu_2022_909580
crossref_primary_10_1002_cnr2_2078
crossref_primary_10_1007_s10753_021_01609_6
crossref_primary_10_1007_s00210_022_02200_y
crossref_primary_10_1186_s12920_023_01543_6
crossref_primary_10_1016_j_cmet_2024_01_005
crossref_primary_10_1016_j_apsb_2022_10_027
crossref_primary_10_3390_cancers17030498
crossref_primary_10_3389_fimmu_2022_843242
crossref_primary_10_3389_fmolb_2024_1403021
crossref_primary_10_2147_CMAR_S304022
crossref_primary_10_1172_JCI179874
crossref_primary_10_1186_s12920_022_01411_9
crossref_primary_10_1186_s13046_024_03195_5
crossref_primary_10_1038_s41392_024_02120_8
crossref_primary_10_1007_s12272_023_01473_y
crossref_primary_10_4049_jimmunol_2300616
crossref_primary_10_1016_j_biopha_2023_115131
crossref_primary_10_1002_anie_202412844
crossref_primary_10_1016_j_lungcan_2024_108023
crossref_primary_10_2147_IJN_S439828
crossref_primary_10_3390_ijms25052502
crossref_primary_10_1158_2159_8290_CD_20_1243
crossref_primary_10_1016_j_jconrel_2025_01_046
crossref_primary_10_1016_j_apsb_2023_04_002
crossref_primary_10_1016_j_ejphar_2022_175410
crossref_primary_10_1186_s13046_022_02457_4
crossref_primary_10_1111_imcb_12647
crossref_primary_10_54457_DR_202301006
crossref_primary_10_3389_fonc_2023_1251355
crossref_primary_10_1007_s00281_022_00932_w
crossref_primary_10_1038_s41423_022_00939_1
crossref_primary_10_3390_cancers13235912
crossref_primary_10_3390_ijms232214122
crossref_primary_10_1016_j_canlet_2023_216511
crossref_primary_10_1016_j_bbadis_2024_167646
crossref_primary_10_1038_s41392_020_00280_x
crossref_primary_10_1186_s40364_021_00321_9
crossref_primary_10_1016_j_heliyon_2023_e22885
crossref_primary_10_1038_s41435_024_00307_1
crossref_primary_10_1016_j_ejphar_2023_175721
crossref_primary_10_1186_s13046_021_01959_x
crossref_primary_10_1016_j_jconrel_2022_04_017
crossref_primary_10_3389_fonc_2020_01100
crossref_primary_10_1038_s42255_020_0174_0
crossref_primary_10_1016_j_cej_2023_142160
crossref_primary_10_1007_s11094_024_03262_3
crossref_primary_10_3389_fimmu_2023_1127071
crossref_primary_10_12997_jla_2021_10_2_184
crossref_primary_10_1007_s12672_025_01890_z
crossref_primary_10_1093_lifemeta_loac038
crossref_primary_10_1016_j_intimp_2025_114024
crossref_primary_10_2147_OTT_S315998
crossref_primary_10_1016_j_pharmthera_2021_107923
crossref_primary_10_3390_ijms25010323
crossref_primary_10_3389_fendo_2023_1217579
crossref_primary_10_3390_ijms25031396
crossref_primary_10_1002_adtp_202100025
crossref_primary_10_1097_MD_0000000000031691
crossref_primary_10_3389_fendo_2022_988295
crossref_primary_10_3390_ijms241813854
crossref_primary_10_1016_j_tranon_2021_101043
crossref_primary_10_1158_2326_6066_CIR_22_0595
crossref_primary_10_1038_s41419_024_07082_x
crossref_primary_10_1038_s41590_024_01896_9
crossref_primary_10_1038_s41467_021_23864_9
crossref_primary_10_1016_j_cmet_2021_02_015
crossref_primary_10_1093_intimm_dxad035
crossref_primary_10_1016_j_heliyon_2024_e30807
crossref_primary_10_1038_s42255_025_01240_x
crossref_primary_10_18632_aging_102305
crossref_primary_10_1016_j_addr_2023_115122
crossref_primary_10_34133_research_0488
crossref_primary_10_1038_s41590_021_01047_4
crossref_primary_10_1007_s11427_021_1999_2
crossref_primary_10_1186_s12885_023_11015_w
crossref_primary_10_1007_s00262_023_03530_3
crossref_primary_10_3390_biom12050716
crossref_primary_10_7717_peerj_16825
crossref_primary_10_1038_s41598_025_94669_9
crossref_primary_10_3389_fimmu_2024_1440830
crossref_primary_10_1016_j_adcanc_2022_100065
crossref_primary_10_1097_MD_0000000000031307
crossref_primary_10_1146_annurev_immunol_101819_024752
crossref_primary_10_3390_cancers12123529
crossref_primary_10_1038_s41423_021_00781_x
crossref_primary_10_1136_jitc_2021_002916
crossref_primary_10_3389_fcell_2020_600350
crossref_primary_10_1016_j_jaccao_2022_11_011
crossref_primary_10_1158_2326_6066_CIR_23_0506
crossref_primary_10_3390_cancers14215442
crossref_primary_10_1093_jleuko_qiad081
crossref_primary_10_3390_cancers14174293
crossref_primary_10_1097_CM9_0000000000003046
crossref_primary_10_1016_j_bbcan_2020_188394
crossref_primary_10_1002_cam4_6080
crossref_primary_10_1007_s12672_022_00592_0
crossref_primary_10_1038_s41392_024_01771_x
crossref_primary_10_37349_edd_2024_00048
crossref_primary_10_1007_s13668_024_00542_y
crossref_primary_10_3389_fimmu_2023_1166052
crossref_primary_10_1016_j_bbalip_2021_159066
crossref_primary_10_1007_s44178_024_00096_7
crossref_primary_10_1002_smll_202305440
crossref_primary_10_3389_fimmu_2024_1439231
crossref_primary_10_1186_s12967_025_06126_w
crossref_primary_10_1101_cshperspect_a037770
crossref_primary_10_3389_fonc_2021_738177
crossref_primary_10_1038_s41577_023_00838_0
crossref_primary_10_1016_j_adcanc_2023_100110
crossref_primary_10_1016_j_aquaculture_2021_736631
crossref_primary_10_1016_j_biochi_2022_01_017
crossref_primary_10_1186_s13046_024_03235_0
crossref_primary_10_1016_j_csbj_2022_07_030
crossref_primary_10_1038_s41467_020_14332_x
crossref_primary_10_3390_cells9112352
crossref_primary_10_1159_000531943
crossref_primary_10_1016_j_tcb_2021_08_002
crossref_primary_10_1038_s41577_021_00537_8
crossref_primary_10_1186_s12943_023_01893_w
crossref_primary_10_1080_08830185_2024_2401352
crossref_primary_10_1002_1878_0261_13691
crossref_primary_10_3389_fimmu_2019_02293
crossref_primary_10_1136_jitc_2019_000422
crossref_primary_10_1186_s12964_024_01470_8
crossref_primary_10_1128_mbio_02346_23
crossref_primary_10_3389_fbioe_2023_1065773
crossref_primary_10_1002_ctm2_37
crossref_primary_10_4049_immunohorizons_2200064
crossref_primary_10_1158_1078_0432_CCR_22_2181
crossref_primary_10_1002_adfm_202405265
crossref_primary_10_1158_1078_0432_CCR_21_1535
crossref_primary_10_3390_biom13010147
crossref_primary_10_1111_cpr_13654
crossref_primary_10_3390_cells11223554
crossref_primary_10_1038_s41556_022_01002_x
crossref_primary_10_18632_aging_205083
crossref_primary_10_1002_adma_202303567
crossref_primary_10_2174_0115680096273730231206054104
crossref_primary_10_1007_s10337_022_04222_3
crossref_primary_10_2147_IJN_S392998
crossref_primary_10_1038_s41467_021_22967_7
crossref_primary_10_1097_MD_0000000000031416
crossref_primary_10_1038_s41467_022_31135_4
crossref_primary_10_1146_annurev_cancerbio_030518_055817
crossref_primary_10_1016_j_cels_2024_11_010
crossref_primary_10_1016_j_it_2024_05_006
crossref_primary_10_1002_cam4_7241
crossref_primary_10_3389_fimmu_2024_1418527
crossref_primary_10_3389_fimmu_2023_1172931
crossref_primary_10_1016_j_heliyon_2024_e39425
crossref_primary_10_1038_s41598_024_72578_7
crossref_primary_10_1016_j_phrs_2021_105654
crossref_primary_10_1002_cam4_70718
crossref_primary_10_1016_j_prp_2024_155534
crossref_primary_10_1080_2162402X_2022_2116844
crossref_primary_10_1186_s13045_023_01498_2
crossref_primary_10_1038_s41589_022_01017_3
crossref_primary_10_1073_pnas_2412120121
crossref_primary_10_1021_acs_analchem_4c04179
crossref_primary_10_1111_crj_13717
crossref_primary_10_3389_fimmu_2021_641883
crossref_primary_10_3390_ijms252413413
crossref_primary_10_3389_fonc_2024_1518010
crossref_primary_10_1002_cnr2_2146
crossref_primary_10_1186_s12957_021_02471_4
crossref_primary_10_1016_j_xcrm_2024_101913
crossref_primary_10_1186_s12944_022_01766_z
crossref_primary_10_1007_s00262_020_02770_x
crossref_primary_10_1016_j_bcp_2025_116802
crossref_primary_10_1186_s12920_022_01295_9
crossref_primary_10_1038_s41423_024_01224_z
crossref_primary_10_1159_000538659
crossref_primary_10_1016_j_bbalip_2019_158518
crossref_primary_10_1016_j_phrs_2020_105131
crossref_primary_10_3389_fimmu_2019_03154
crossref_primary_10_1186_s12885_023_10897_0
crossref_primary_10_1002_eji_202149486
crossref_primary_10_1038_s41467_020_19672_2
crossref_primary_10_1007_s00262_021_02979_4
crossref_primary_10_1111_febs_16665
crossref_primary_10_1038_s41420_024_02110_3
crossref_primary_10_1093_oxfimm_iqad006
crossref_primary_10_1186_s12943_025_02258_1
crossref_primary_10_1038_s41392_023_01708_w
crossref_primary_10_1038_s41573_024_01098_w
crossref_primary_10_1007_s00384_024_04735_3
crossref_primary_10_1016_j_cellsig_2023_110983
crossref_primary_10_1186_s13045_023_01430_8
crossref_primary_10_3389_fendo_2024_1336357
crossref_primary_10_3389_fcell_2021_740653
Cites_doi 10.1038/nature17412
10.4049/jimmunol.1302750
10.1056/NEJMra1514296
10.1016/j.amjcard.2005.12.010
10.1016/j.cmet.2016.12.018
10.1016/j.cell.2015.05.025
10.1016/j.ccell.2018.02.005
10.1126/science.aar4060
10.4049/jimmunol.181.8.5433
10.1016/j.immuni.2016.04.011
10.1038/ni.2035
10.18632/oncotarget.21003
10.1002/1097-0142(19940115)73:2<253::AID-CNCR2820730204>3.0.CO;2-F
10.1158/0008-5472.CAN-12-4100
10.1038/ncb1035
10.4049/jimmunol.1502643
10.1097/COC.0000000000000239
10.1016/j.immuni.2016.04.023
10.1056/NEJMoa1201735
10.1038/ni.2046
10.1083/jcb.200502078
10.1084/jem.20171576
10.1182/blood-2010-08-303099
10.1016/j.immuni.2016.12.015
10.1002/eji.200939842
10.3109/07357907.2011.616252
10.1038/s41598-017-00462-8
10.1084/jem.20140559
10.1084/jem.20100643
10.1038/s41586-018-0597-x
10.1158/0008-5472.CAN-11-1620
10.1172/JCI73448
10.1016/j.molimm.2016.05.014
10.1038/ni.3462
10.1038/s41467-017-00910-z
10.1158/2159-8290.CD-15-1347
10.1126/scisignal.aak9741
10.1002/eji.201646875
10.1084/jem.20130208
10.1097/QAD.0000000000000917
10.1073/pnas.1317431111
10.1038/s41590-018-0045-y
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.cmet.2019.04.002
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 156.e5
ExternalDocumentID PMC7061417
31031094
10_1016_j_cmet_2019_04_002
S155041311930186X
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA163881
– fundername: NCI NIH HHS
  grantid: R01 CA200539
– fundername: NCI NIH HHS
  grantid: R01 CA214811
– fundername: NCI NIH HHS
  grantid: R01 CA211073
GroupedDBID ---
--K
0R~
0SF
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
AAIKJ
AALRI
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKBMS
AKYEP
APXCP
CITATION
HZ~
OZT
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c455t-84aed9ad4ec95b318286a32baf696fd5ad49ad510d89762bae0780c5ee7ac1513
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 14:35:03 EDT 2025
Fri Jul 11 06:50:25 EDT 2025
Thu Apr 03 06:56:28 EDT 2025
Tue Jul 01 03:58:18 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Fri Aug 02 08:58:28 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords exhaustion
CD8+ T cells
cholesterol
tumor microenvironment
immune checkpoints
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-84aed9ad4ec95b318286a32baf696fd5ad49ad510d89762bae0780c5ee7ac1513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
These authors contributed equally to this work.
Q.Y. and X.M initiated the study, designed the experiments, and wrote the paper; X.M. performed most of the experiments and statistical analyses; E.B. edited the paper and provided critical suggestions. Y.L., P.S., C.H., L.L., Q.W., M.Y., M.F. K., J.Q. and C.Z. provided important suggestions or patient samples. A.Z., A.G., D.H. helped with Seahorse Assay.
OpenAccessLink http://www.cell.com/article/S155041311930186X/pdf
PMID 31031094
PQID 2216775129
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7061417
proquest_miscellaneous_2216775129
pubmed_primary_31031094
crossref_primary_10_1016_j_cmet_2019_04_002
crossref_citationtrail_10_1016_j_cmet_2019_04_002
elsevier_sciencedirect_doi_10_1016_j_cmet_2019_04_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-02
PublicationDateYYYYMMDD 2019-07-02
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Rupp, Schumann, Roybal, Gate, Ye, Lim, Marson (bib32) 2017; 7
Yang, Bai, Xiong, Zhang, Chen, Zheng, Meng, Li, Wang, Xu (bib42) 2016; 531
Kao, Oestreich, Paley, Crawford, Angelosanto, Ali, Intlekofer, Boss, Reiner, Weinmann (bib19) 2011; 12
Bi, Ma, Lu, Yang, Wang, Xue, Qian, Wang, Yi (bib6) 2017; 10
Callahan, Postow, Wolchok (bib9) 2016; 44
Lee, Ahn, Kissick, Ahmed (bib21) 2015; 6
Song, Sandoval, Chae, Chopra, Tan, Rutkowski, Raundhal, Chaurio, Payne, Konrad (bib34) 2018; 562
Ribas, Wolchok (bib31) 2018; 359
Swamy, Beck-Garcia, Beck-Garcia, Hartl, Morath, Yousefi, Dopfer, Molnár, Schulze, Blanco (bib36) 2016; 44
Dessì, Batetta, Pulisci, Spano, Anchisi, Tessitore, Costelli, Baccino, Aroasio, Pani (bib12) 1994; 73
Liu, Liang, Dong, Fang, Lv, Zhang, Fiskesund, Xie, Liu, Yin (bib22) 2018; 33
Boussiotis (bib7) 2016; 375
Austin, Lu, Majumder, Ahmed, Boss (bib3) 2014; 192
Nielsen, Nordestgaard, Bojesen (bib27) 2012; 367
Lu, Hong, Li, Zheng, Zhang, Wang, Qian, Yi (bib24) 2014; 111
Bally, Austin, Boss (bib5) 2016; 196
Lu, Youngblood, Austin, Mohammed, Butler, Ahmed, Boss (bib23) 2014; 211
Chae, Valsecchi, Kim, Bianchi, Khemasuwan, Desai, Tester (bib10) 2011; 29
Okoye, Namdar, Xu, Crux, Elahi (bib28) 2017; 8
Buchbinder, Desai (bib8) 2016; 39
Stephen, Payne, Chaurio, Allegrezza, Zhu, Perez-Sanz, Perales-Puchalt, Nguyen, Vara-Ailor, Eruslanov (bib35) 2017; 46
Woo, Turnis, Goldberg, Bankoti, Selby, Nirschl, Bettini, Gravano, Vogel, Liu (bib41) 2012; 72
Papandreou, Denko, Olson, Van Melckebeke, Lust, Tam, Solow-Cordero, Bouley, Offner, Niwa (bib29) 2011; 117
Wang, Beck-García, Zorzin, Schamel, Davis (bib39) 2016; 17
Park, Freeman, Ghasemzadeh, Chattergoon, Rutebemberwa, Steigner, Winter, Huynh, Sebald, Lee (bib30) 2016; 6
Voron, Colussi, Marcheteau, Pernot, Nizard, Pointet, Latreche, Bergaya, Benhamouda, Tanchot (bib38) 2015; 212
Feng, Yao, Li, Devlin, Zhang, Harding, Sweeney, Rong, Kuriakose, Fisher (bib17) 2003; 5
Devries-Seimon, Li, Yao, Stone, Wang, Davis, Flavell, Tabas (bib13) 2005; 171
Elahi, Weiss, Merani (bib16) 2016; 30
Yun, Jun, Komori, Lee, Kwon, Chwae, Kim, Shin, Park (bib43) 2016; 75
Wherry (bib40) 2011; 12
Kamimura, Bevan (bib18) 2008; 181
Dyck, Mills (bib15) 2017; 47
Law, Rudnicka (bib20) 2006; 97
Baek, Yu, He, Wardell, Chang, Kwon, Pillai, McDowell, Thompson, Dubois (bib4) 2017; 8
Tang, Ranatunga, Kriss, Cubitt, Tao, Pinilla-Ibarz, Del Valle, Hu (bib37) 2014; 124
Duraiswamy, Kaluza, Freeman, Coukos (bib14) 2013; 73
Anderson, Lord, Dardalhon, Lee, Sabatos-Peyton, Glimcher, Kuchroo (bib1) 2010; 40
McKinney, Smith (bib26) 2018; 19
Ma, Bi, Huang, Lu, Xue, Guo, Wang, Yang, Qian, Dong (bib25) 2018; 215
Cubillos-Ruiz, Silberman, Rutkowski, Chopra, Perales-Puchalt, Song, Zhang, Bettigole, Gupta, Holcomb (bib11) 2015; 161
Angelin, Gil-de-Gómez, Dahiya, Jiao, Guo, Levine, Wang, Quinn, Kopinski, Wang (bib2) 2017; 25
Sakuishi, Apetoh, Sullivan, Blazar, Kuchroo, Anderson (bib33) 2010; 207
Duraiswamy (10.1016/j.cmet.2019.04.002_bib14) 2013; 73
Voron (10.1016/j.cmet.2019.04.002_bib38) 2015; 212
Lu (10.1016/j.cmet.2019.04.002_bib24) 2014; 111
Ribas (10.1016/j.cmet.2019.04.002_bib31) 2018; 359
Dyck (10.1016/j.cmet.2019.04.002_bib15) 2017; 47
Baek (10.1016/j.cmet.2019.04.002_bib4) 2017; 8
Elahi (10.1016/j.cmet.2019.04.002_bib16) 2016; 30
Wang (10.1016/j.cmet.2019.04.002_bib39) 2016; 17
Callahan (10.1016/j.cmet.2019.04.002_bib9) 2016; 44
Wherry (10.1016/j.cmet.2019.04.002_bib40) 2011; 12
Rupp (10.1016/j.cmet.2019.04.002_bib32) 2017; 7
Ma (10.1016/j.cmet.2019.04.002_bib25) 2018; 215
Park (10.1016/j.cmet.2019.04.002_bib30) 2016; 6
Kamimura (10.1016/j.cmet.2019.04.002_bib18) 2008; 181
Anderson (10.1016/j.cmet.2019.04.002_bib1) 2010; 40
Chae (10.1016/j.cmet.2019.04.002_bib10) 2011; 29
Nielsen (10.1016/j.cmet.2019.04.002_bib27) 2012; 367
Swamy (10.1016/j.cmet.2019.04.002_bib36) 2016; 44
Woo (10.1016/j.cmet.2019.04.002_bib41) 2012; 72
Lee (10.1016/j.cmet.2019.04.002_bib21) 2015; 6
Song (10.1016/j.cmet.2019.04.002_bib34) 2018; 562
Austin (10.1016/j.cmet.2019.04.002_bib3) 2014; 192
Okoye (10.1016/j.cmet.2019.04.002_bib28) 2017; 8
Buchbinder (10.1016/j.cmet.2019.04.002_bib8) 2016; 39
Kao (10.1016/j.cmet.2019.04.002_bib19) 2011; 12
Bi (10.1016/j.cmet.2019.04.002_bib6) 2017; 10
McKinney (10.1016/j.cmet.2019.04.002_bib26) 2018; 19
Devries-Seimon (10.1016/j.cmet.2019.04.002_bib13) 2005; 171
Tang (10.1016/j.cmet.2019.04.002_bib37) 2014; 124
Dessì (10.1016/j.cmet.2019.04.002_bib12) 1994; 73
Bally (10.1016/j.cmet.2019.04.002_bib5) 2016; 196
Angelin (10.1016/j.cmet.2019.04.002_bib2) 2017; 25
Feng (10.1016/j.cmet.2019.04.002_bib17) 2003; 5
Law (10.1016/j.cmet.2019.04.002_bib20) 2006; 97
Yang (10.1016/j.cmet.2019.04.002_bib42) 2016; 531
Liu (10.1016/j.cmet.2019.04.002_bib22) 2018; 33
Papandreou (10.1016/j.cmet.2019.04.002_bib29) 2011; 117
Sakuishi (10.1016/j.cmet.2019.04.002_bib33) 2010; 207
Yun (10.1016/j.cmet.2019.04.002_bib43) 2016; 75
Boussiotis (10.1016/j.cmet.2019.04.002_bib7) 2016; 375
Lu (10.1016/j.cmet.2019.04.002_bib23) 2014; 211
Cubillos-Ruiz (10.1016/j.cmet.2019.04.002_bib11) 2015; 161
Stephen (10.1016/j.cmet.2019.04.002_bib35) 2017; 46
31269422 - Cell Metab. 2019 Jul 2;30(1):12-13
References_xml – volume: 39
  start-page: 98
  year: 2016
  end-page: 106
  ident: bib8
  article-title: CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition
  publication-title: Am. J. Clin. Oncol.
– volume: 73
  start-page: 3591
  year: 2013
  end-page: 3603
  ident: bib14
  article-title: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors
  publication-title: Cancer Res.
– volume: 211
  start-page: 515
  year: 2014
  end-page: 527
  ident: bib23
  article-title: Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection
  publication-title: J. Exp. Med.
– volume: 171
  start-page: 61
  year: 2005
  end-page: 73
  ident: bib13
  article-title: Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor
  publication-title: J. Cell Biol.
– volume: 33
  start-page: 480
  year: 2018
  end-page: 494.e7
  ident: bib22
  article-title: Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation
  publication-title: Cancer Cell
– volume: 124
  start-page: 2585
  year: 2014
  end-page: 2598
  ident: bib37
  article-title: Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival
  publication-title: J. Clin. Invest.
– volume: 17
  start-page: 844
  year: 2016
  end-page: 850
  ident: bib39
  article-title: Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol
  publication-title: Nat. Immunol.
– volume: 161
  start-page: 1527
  year: 2015
  end-page: 1538
  ident: bib11
  article-title: ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis
  publication-title: Cell
– volume: 19
  start-page: 213
  year: 2018
  end-page: 221
  ident: bib26
  article-title: Metabolic exhaustion in infection, cancer and autoimmunity
  publication-title: Nat. Immunol.
– volume: 6
  start-page: 1366
  year: 2016
  end-page: 1381
  ident: bib30
  article-title: TGFbeta1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer
  publication-title: Cancer Discov.
– volume: 72
  start-page: 917
  year: 2012
  end-page: 927
  ident: bib41
  article-title: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape
  publication-title: Cancer Res.
– volume: 531
  start-page: 651
  year: 2016
  end-page: 655
  ident: bib42
  article-title: Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism
  publication-title: Nature
– volume: 367
  start-page: 1792
  year: 2012
  end-page: 1802
  ident: bib27
  article-title: Statin use and reduced cancer-related mortality
  publication-title: N. Engl. J. Med.
– volume: 73
  start-page: 253
  year: 1994
  end-page: 258
  ident: bib12
  article-title: Cholesterol content in tumor tissues is inversely associated with high-density lipoprotein cholesterol in serum in patients with gastrointestinal cancer
  publication-title: Cancer
– volume: 47
  start-page: 765
  year: 2017
  end-page: 779
  ident: bib15
  article-title: Immune checkpoints and their inhibition in cancer and infectious diseases
  publication-title: Eur. J. Immunol.
– volume: 562
  start-page: 423
  year: 2018
  end-page: 428
  ident: bib34
  article-title: IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity
  publication-title: Nature
– volume: 97
  start-page: 52C
  year: 2006
  end-page: 60C
  ident: bib20
  article-title: Statin safety: a systematic review
  publication-title: Am. J. Cardiol.
– volume: 375
  start-page: 1767
  year: 2016
  end-page: 1778
  ident: bib7
  article-title: Molecular and biochemical aspects of the PD-1 checkpoint pathway
  publication-title: N. Engl. J. Med.
– volume: 6
  start-page: 7
  year: 2015
  end-page: 17
  ident: bib21
  article-title: Reinvigorating exhausted T cells by blockade of the PD-1 pathway
  publication-title: For Immunopathol. dis. Therap.
– volume: 215
  start-page: 1555
  year: 2018
  end-page: 1569
  ident: bib25
  article-title: Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity
  publication-title: J. Exp. Med.
– volume: 359
  start-page: 1350
  year: 2018
  end-page: 1355
  ident: bib31
  article-title: Cancer immunotherapy using checkpoint blockade
  publication-title: Science
– volume: 181
  start-page: 5433
  year: 2008
  end-page: 5441
  ident: bib18
  article-title: Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection
  publication-title: J. Immunol.
– volume: 29
  start-page: 585
  year: 2011
  end-page: 593
  ident: bib10
  article-title: Reduced risk of breast cancer recurrence in patients using ACE inhibitors, ARBs, and/or statins
  publication-title: Cancer Invest.
– volume: 25
  start-page: 1282
  year: 2017
  end-page: 1293.e7
  ident: bib2
  article-title: Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments
  publication-title: Cell Metab.
– volume: 8
  start-page: 864
  year: 2017
  ident: bib4
  article-title: The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells
  publication-title: Nat. Commun.
– volume: 75
  start-page: 60
  year: 2016
  end-page: 68
  ident: bib43
  article-title: The regulation of TIM-3 transcription in T cells involves c-Jun binding but not CpG methylation at the TIM-3 promoter
  publication-title: Mol. Immunol.
– volume: 5
  start-page: 781
  year: 2003
  end-page: 792
  ident: bib17
  article-title: The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages
  publication-title: Nat. Cell Biol.
– volume: 8
  start-page: 98215
  year: 2017
  end-page: 98232
  ident: bib28
  article-title: Atorvastatin downregulates co-inhibitory receptor expression by targeting Ras-activated mTOR signalling
  publication-title: Oncotarget
– volume: 46
  start-page: 51
  year: 2017
  end-page: 64
  ident: bib35
  article-title: SATB1 expression governs epigenetic repression of PD-1 in tumor-reactive T cells
  publication-title: Immunity
– volume: 10
  start-page: eaak9741
  year: 2017
  ident: bib6
  article-title: FoxO1 and Foxp1 play opposing roles in regulating the differentiation and antitumor activity of TH9 cells programmed by IL-7
  publication-title: Sci. Signal.
– volume: 207
  start-page: 2187
  year: 2010
  end-page: 2194
  ident: bib33
  article-title: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity
  publication-title: J. Exp. Med.
– volume: 192
  start-page: 4876
  year: 2014
  end-page: 4886
  ident: bib3
  article-title: STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells
  publication-title: J. Immunol.
– volume: 12
  start-page: 663
  year: 2011
  end-page: 671
  ident: bib19
  article-title: Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection
  publication-title: Nat. Immunol.
– volume: 44
  start-page: 1069
  year: 2016
  end-page: 1078
  ident: bib9
  article-title: Targeting T cell co-receptors for cancer therapy
  publication-title: Immunity
– volume: 30
  start-page: 171
  year: 2016
  end-page: 183
  ident: bib16
  article-title: Atorvastatin restricts HIV replication in CD4+ T cells by upregulation of p21
  publication-title: AIDS
– volume: 111
  start-page: 2265
  year: 2014
  end-page: 2270
  ident: bib24
  article-title: Tumor-specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 212
  start-page: 139
  year: 2015
  end-page: 148
  ident: bib38
  article-title: VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors
  publication-title: J. Exp. Med.
– volume: 7
  start-page: 737
  year: 2017
  ident: bib32
  article-title: CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells
  publication-title: Sci. Rep.
– volume: 44
  start-page: 1091
  year: 2016
  end-page: 1101
  ident: bib36
  article-title: A cholesterol-based allostery model of T cell receptor phosphorylation
  publication-title: Immunity
– volume: 12
  start-page: 492
  year: 2011
  end-page: 499
  ident: bib40
  article-title: T cell exhaustion
  publication-title: Nat. Immunol.
– volume: 196
  start-page: 2431
  year: 2016
  end-page: 2437
  ident: bib5
  article-title: Genetic and epigenetic regulation of PD-1 expression
  publication-title: J. Immunol.
– volume: 40
  start-page: 859
  year: 2010
  end-page: 866
  ident: bib1
  article-title: T-bet, a Th1 transcription factor regulates the expression of Tim-3
  publication-title: Eur. J. Immunol.
– volume: 117
  start-page: 1311
  year: 2011
  end-page: 1314
  ident: bib29
  article-title: Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma
  publication-title: Blood
– volume: 531
  start-page: 651
  year: 2016
  ident: 10.1016/j.cmet.2019.04.002_bib42
  article-title: Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism
  publication-title: Nature
  doi: 10.1038/nature17412
– volume: 192
  start-page: 4876
  year: 2014
  ident: 10.1016/j.cmet.2019.04.002_bib3
  article-title: STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1302750
– volume: 375
  start-page: 1767
  year: 2016
  ident: 10.1016/j.cmet.2019.04.002_bib7
  article-title: Molecular and biochemical aspects of the PD-1 checkpoint pathway
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1514296
– volume: 97
  start-page: 52C
  year: 2006
  ident: 10.1016/j.cmet.2019.04.002_bib20
  article-title: Statin safety: a systematic review
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2005.12.010
– volume: 25
  start-page: 1282
  year: 2017
  ident: 10.1016/j.cmet.2019.04.002_bib2
  article-title: Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.12.018
– volume: 161
  start-page: 1527
  year: 2015
  ident: 10.1016/j.cmet.2019.04.002_bib11
  article-title: ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.025
– volume: 33
  start-page: 480
  year: 2018
  ident: 10.1016/j.cmet.2019.04.002_bib22
  article-title: Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.02.005
– volume: 359
  start-page: 1350
  year: 2018
  ident: 10.1016/j.cmet.2019.04.002_bib31
  article-title: Cancer immunotherapy using checkpoint blockade
  publication-title: Science
  doi: 10.1126/science.aar4060
– volume: 181
  start-page: 5433
  year: 2008
  ident: 10.1016/j.cmet.2019.04.002_bib18
  article-title: Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.8.5433
– volume: 44
  start-page: 1091
  year: 2016
  ident: 10.1016/j.cmet.2019.04.002_bib36
  article-title: A cholesterol-based allostery model of T cell receptor phosphorylation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.04.011
– volume: 12
  start-page: 492
  year: 2011
  ident: 10.1016/j.cmet.2019.04.002_bib40
  article-title: T cell exhaustion
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2035
– volume: 8
  start-page: 98215
  year: 2017
  ident: 10.1016/j.cmet.2019.04.002_bib28
  article-title: Atorvastatin downregulates co-inhibitory receptor expression by targeting Ras-activated mTOR signalling
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.21003
– volume: 73
  start-page: 253
  year: 1994
  ident: 10.1016/j.cmet.2019.04.002_bib12
  article-title: Cholesterol content in tumor tissues is inversely associated with high-density lipoprotein cholesterol in serum in patients with gastrointestinal cancer
  publication-title: Cancer
  doi: 10.1002/1097-0142(19940115)73:2<253::AID-CNCR2820730204>3.0.CO;2-F
– volume: 73
  start-page: 3591
  year: 2013
  ident: 10.1016/j.cmet.2019.04.002_bib14
  article-title: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-4100
– volume: 5
  start-page: 781
  year: 2003
  ident: 10.1016/j.cmet.2019.04.002_bib17
  article-title: The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1035
– volume: 196
  start-page: 2431
  year: 2016
  ident: 10.1016/j.cmet.2019.04.002_bib5
  article-title: Genetic and epigenetic regulation of PD-1 expression
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1502643
– volume: 39
  start-page: 98
  year: 2016
  ident: 10.1016/j.cmet.2019.04.002_bib8
  article-title: CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition
  publication-title: Am. J. Clin. Oncol.
  doi: 10.1097/COC.0000000000000239
– volume: 44
  start-page: 1069
  year: 2016
  ident: 10.1016/j.cmet.2019.04.002_bib9
  article-title: Targeting T cell co-receptors for cancer therapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.04.023
– volume: 367
  start-page: 1792
  year: 2012
  ident: 10.1016/j.cmet.2019.04.002_bib27
  article-title: Statin use and reduced cancer-related mortality
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1201735
– volume: 12
  start-page: 663
  year: 2011
  ident: 10.1016/j.cmet.2019.04.002_bib19
  article-title: Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2046
– volume: 171
  start-page: 61
  year: 2005
  ident: 10.1016/j.cmet.2019.04.002_bib13
  article-title: Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200502078
– volume: 215
  start-page: 1555
  year: 2018
  ident: 10.1016/j.cmet.2019.04.002_bib25
  article-title: Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20171576
– volume: 117
  start-page: 1311
  year: 2011
  ident: 10.1016/j.cmet.2019.04.002_bib29
  article-title: Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood-2010-08-303099
– volume: 46
  start-page: 51
  year: 2017
  ident: 10.1016/j.cmet.2019.04.002_bib35
  article-title: SATB1 expression governs epigenetic repression of PD-1 in tumor-reactive T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.12.015
– volume: 40
  start-page: 859
  year: 2010
  ident: 10.1016/j.cmet.2019.04.002_bib1
  article-title: T-bet, a Th1 transcription factor regulates the expression of Tim-3
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200939842
– volume: 29
  start-page: 585
  year: 2011
  ident: 10.1016/j.cmet.2019.04.002_bib10
  article-title: Reduced risk of breast cancer recurrence in patients using ACE inhibitors, ARBs, and/or statins
  publication-title: Cancer Invest.
  doi: 10.3109/07357907.2011.616252
– volume: 7
  start-page: 737
  year: 2017
  ident: 10.1016/j.cmet.2019.04.002_bib32
  article-title: CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00462-8
– volume: 212
  start-page: 139
  year: 2015
  ident: 10.1016/j.cmet.2019.04.002_bib38
  article-title: VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20140559
– volume: 207
  start-page: 2187
  year: 2010
  ident: 10.1016/j.cmet.2019.04.002_bib33
  article-title: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20100643
– volume: 562
  start-page: 423
  year: 2018
  ident: 10.1016/j.cmet.2019.04.002_bib34
  article-title: IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity
  publication-title: Nature
  doi: 10.1038/s41586-018-0597-x
– volume: 72
  start-page: 917
  year: 2012
  ident: 10.1016/j.cmet.2019.04.002_bib41
  article-title: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-1620
– volume: 124
  start-page: 2585
  year: 2014
  ident: 10.1016/j.cmet.2019.04.002_bib37
  article-title: Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI73448
– volume: 75
  start-page: 60
  year: 2016
  ident: 10.1016/j.cmet.2019.04.002_bib43
  article-title: The regulation of TIM-3 transcription in T cells involves c-Jun binding but not CpG methylation at the TIM-3 promoter
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2016.05.014
– volume: 17
  start-page: 844
  year: 2016
  ident: 10.1016/j.cmet.2019.04.002_bib39
  article-title: Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3462
– volume: 8
  start-page: 864
  year: 2017
  ident: 10.1016/j.cmet.2019.04.002_bib4
  article-title: The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00910-z
– volume: 6
  start-page: 1366
  year: 2016
  ident: 10.1016/j.cmet.2019.04.002_bib30
  article-title: TGFbeta1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-15-1347
– volume: 10
  start-page: eaak9741
  year: 2017
  ident: 10.1016/j.cmet.2019.04.002_bib6
  article-title: FoxO1 and Foxp1 play opposing roles in regulating the differentiation and antitumor activity of TH9 cells programmed by IL-7
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aak9741
– volume: 47
  start-page: 765
  year: 2017
  ident: 10.1016/j.cmet.2019.04.002_bib15
  article-title: Immune checkpoints and their inhibition in cancer and infectious diseases
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201646875
– volume: 211
  start-page: 515
  year: 2014
  ident: 10.1016/j.cmet.2019.04.002_bib23
  article-title: Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20130208
– volume: 30
  start-page: 171
  year: 2016
  ident: 10.1016/j.cmet.2019.04.002_bib16
  article-title: Atorvastatin restricts HIV replication in CD4+ T cells by upregulation of p21
  publication-title: AIDS
  doi: 10.1097/QAD.0000000000000917
– volume: 6
  start-page: 7
  year: 2015
  ident: 10.1016/j.cmet.2019.04.002_bib21
  article-title: Reinvigorating exhausted T cells by blockade of the PD-1 pathway
  publication-title: For Immunopathol. dis. Therap.
– volume: 111
  start-page: 2265
  year: 2014
  ident: 10.1016/j.cmet.2019.04.002_bib24
  article-title: Tumor-specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1317431111
– volume: 19
  start-page: 213
  year: 2018
  ident: 10.1016/j.cmet.2019.04.002_bib26
  article-title: Metabolic exhaustion in infection, cancer and autoimmunity
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0045-y
– reference: 31269422 - Cell Metab. 2019 Jul 2;30(1):12-13
SSID ssj0036393
Score 2.7021863
Snippet Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor...
Tumor-infiltrating T cells often lose their effector function; however, the mechanisms are incompletely understood. We report that cholesterol in the tumor...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 143
SubjectTerms CD8+ T cells
cholesterol
exhaustion
immune checkpoints
tumor microenvironment
Title Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment
URI https://dx.doi.org/10.1016/j.cmet.2019.04.002
https://www.ncbi.nlm.nih.gov/pubmed/31031094
https://www.proquest.com/docview/2216775129
https://pubmed.ncbi.nlm.nih.gov/PMC7061417
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da8IwEA8iDPYy9j33RQZ7k6Jpk7R93DqHDNzLFHwLaZqiQ6s4he2_310_RLfhwx6bXEq4Sy6_tHe_I-Se28AwuPw4bhpLh8tYO7FlsPG41kwazYTGROHeq-wO-MtQDGskqnJhMKyy9P2FT8-9ddnSKrXZmo_HrTcE1xzZYkJYpIEcgh_2eJAn8Q0fK2_swQmcB9mDsIPSZeJMEeNlphbjKVmY052Wn1b-OJx-g8-fMZQbh9LzITko0SR9KCZ8RGo2OyZ7RX3JrxPSjbD6LVIhzCYUi3SAU6DRU9CkfRrZyYR2PkfI-wO2oeOMAhak_dV0tqA9DNPbyIE7JYPnTj_qOmXpBMdwIZaoapuEOuHWhCKGfesGUnturFMZyjQR0AO9sB-TAPAItFuACm0jrPW1ARDgnZF6NsvsBaHCIMU8T6TXTrmbetqDd2iBirciZmGDsEpnypS84ljeYqKqALJ3hXpWqGfV5gr03CDN9Zh5waqxU1pUplBba0OB29857q6ym4JNg39CdGZnqw_lukz6PmKdBjkv7LieBxZeY3DpbRB_y8JrASTk3u7JxqOcmNvH6zXzL_853yuyj095MLB7TerLxcreAORZxrf5mv4GrmT-2w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIQQviN8UGBgJnqaotWM7ycMeoNvUsnUvdFLfjOM4WlGXTlsr2N_FP7i7xKnWgfaAtFfbiU5357tz8vk7gE_Sp47j4ScSZa4jqXMb5Z7jxpPWcu0sV5YuCo-O9OBYfpuoyQb8ae_CEKwyxP4mptfROox0gza7Z9Np9zsV15LYYjJ00lRPArLywF_-wnPbxc5wF438WYj9vXF_EIXWApGTSi1IFF9ktpDeZSpHvxaptrHIbakzXRYKZ3AW_bVIMV_juMdU2nPK-8Q6TJIxvvce3MfqI6FoMJx8bcN_jCm_RvWjdBGJF27qNKAyd-oJwMmzml81fMv5Rzb8u9q9Cdq8lgX3n8DjUL6yL42GnsKGr57Bg6ah5eVzGPSp3S5xL8xnjLqCYBRi_d10m41Z389mbO_3CRENoTOwacWw-GTj5en8nI0IF3jt0t0LOL4Thb6EzWpe-dfAlCNOe1nouFdKUcY2xndYRZb2KudZB3irM-MCkTn105iZFrH205CeDenZ9KRBPXdge_XMWUPjcetq1ZrCrDmjwTxz63MfW7sZ3KX068VWfr68MEJwnSRUXHXgVWPHlRzU6Y3jKbsDyZqFVwuIAXx9ppqe1EzgCZ3nefLmP-X9AA8H49GhORweHbyFRzRTI5HFO9hcnC_9FtZbi_x97d8Mftz1hroC7E49Eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholesterol+Induces+CD8+%2B+T+Cell+Exhaustion+in+the+Tumor+Microenvironment&rft.jtitle=Cell+metabolism&rft.au=Ma%2C+Xingzhe&rft.au=Bi%2C+Enguang&rft.au=Lu%2C+Yong&rft.au=Su%2C+Pan&rft.date=2019-07-02&rft.eissn=1932-7420&rft.volume=30&rft.issue=1&rft.spage=143&rft_id=info:doi/10.1016%2Fj.cmet.2019.04.002&rft_id=info%3Apmid%2F31031094&rft.externalDocID=31031094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon