Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota

Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived comm...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 30; no. 2; pp. 260 - 272.e5
Main Authors Aranda-Díaz, Andrés, Ng, Katharine Michelle, Thomsen, Tani, Real-Ramírez, Imperio, Dahan, Dylan, Dittmar, Susannah, Gonzalez, Carlos Gutierrez, Chavez, Taylor, Vasquez, Kimberly S., Nguyen, Taylor H., Yu, Feiqiao Brian, Higginbottom, Steven K., Neff, Norma F., Elias, Joshua E., Sonnenburg, Justin L., Huang, Kerwyn Casey
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 09.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research. [Display omitted] •Stool-derived in vitro communities (SICs) can be phylogenetically complex and reproducible•Mouse colonization with a SIC establishes near-native microbiota composition and host proteome•Antibiotic treatment in vivo increases susceptibility to Salmonella invasion in vitro•Antibiotic treatment in vitro mimics compositional changes in vivo Aranda-Díaz et al. demonstrate the utility of batch culturing of stool-derived in vitro communities (SICs) for low-cost, quantitative, and high-throughput experimentation on gut microbiotas. SICs retain the taxonomical diversity of their fecal origin and recapitulate the microbiota response to pathogen invasion and antibiotic treatment.
AbstractList Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro . We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained and host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo , including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research.
Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research.Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research.
Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research.
Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research. [Display omitted] •Stool-derived in vitro communities (SICs) can be phylogenetically complex and reproducible•Mouse colonization with a SIC establishes near-native microbiota composition and host proteome•Antibiotic treatment in vivo increases susceptibility to Salmonella invasion in vitro•Antibiotic treatment in vitro mimics compositional changes in vivo Aranda-Díaz et al. demonstrate the utility of batch culturing of stool-derived in vitro communities (SICs) for low-cost, quantitative, and high-throughput experimentation on gut microbiotas. SICs retain the taxonomical diversity of their fecal origin and recapitulate the microbiota response to pathogen invasion and antibiotic treatment.
Author Ng, Katharine Michelle
Sonnenburg, Justin L.
Real-Ramírez, Imperio
Aranda-Díaz, Andrés
Vasquez, Kimberly S.
Nguyen, Taylor H.
Elias, Joshua E.
Higginbottom, Steven K.
Yu, Feiqiao Brian
Gonzalez, Carlos Gutierrez
Neff, Norma F.
Huang, Kerwyn Casey
Dahan, Dylan
Dittmar, Susannah
Chavez, Taylor
Thomsen, Tani
AuthorAffiliation 1 Department of Bioengineering, Stanford University, Stanford, CA 94305
4 Chan Zuckerberg Biohub, San Francisco, CA 94158
3 Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
2 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
AuthorAffiliation_xml – name: 1 Department of Bioengineering, Stanford University, Stanford, CA 94305
– name: 3 Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
– name: 2 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
– name: 4 Chan Zuckerberg Biohub, San Francisco, CA 94158
Author_xml – sequence: 1
  givenname: Andrés
  surname: Aranda-Díaz
  fullname: Aranda-Díaz, Andrés
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
– sequence: 2
  givenname: Katharine Michelle
  surname: Ng
  fullname: Ng, Katharine Michelle
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
– sequence: 3
  givenname: Tani
  surname: Thomsen
  fullname: Thomsen, Tani
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
– sequence: 4
  givenname: Imperio
  surname: Real-Ramírez
  fullname: Real-Ramírez, Imperio
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
– sequence: 5
  givenname: Dylan
  surname: Dahan
  fullname: Dahan, Dylan
  organization: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 6
  givenname: Susannah
  surname: Dittmar
  fullname: Dittmar, Susannah
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
– sequence: 7
  givenname: Carlos Gutierrez
  surname: Gonzalez
  fullname: Gonzalez, Carlos Gutierrez
  organization: Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 8
  givenname: Taylor
  surname: Chavez
  fullname: Chavez, Taylor
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
– sequence: 9
  givenname: Kimberly S.
  surname: Vasquez
  fullname: Vasquez, Kimberly S.
  organization: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 10
  givenname: Taylor H.
  surname: Nguyen
  fullname: Nguyen, Taylor H.
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
– sequence: 11
  givenname: Feiqiao Brian
  surname: Yu
  fullname: Yu, Feiqiao Brian
  organization: Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
– sequence: 12
  givenname: Steven K.
  surname: Higginbottom
  fullname: Higginbottom, Steven K.
  organization: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 13
  givenname: Norma F.
  surname: Neff
  fullname: Neff, Norma F.
  organization: Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
– sequence: 14
  givenname: Joshua E.
  surname: Elias
  fullname: Elias, Joshua E.
  organization: Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
– sequence: 15
  givenname: Justin L.
  surname: Sonnenburg
  fullname: Sonnenburg, Justin L.
  organization: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 16
  givenname: Kerwyn Casey
  surname: Huang
  fullname: Huang, Kerwyn Casey
  email: kchuang@stanford.edu
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35051349$$D View this record in MEDLINE/PubMed
BookMark eNp9kcmKFjEUhQtpsQd9AReSpQurzFBDCkSQph2gwY2uQyq5Zd2fqqRN8hfoG_gWPks_WecfWtRFZ5ML-c655Jzz4sR5B0XxnNGKUda-3lRm8kvFKWcV4xWl8lFxxnpRly1t-5P9zErBuDwtzmPcUNo0tGNPilPR0IaJuj8rfl3FpIcZ47SAS0Q7S8ykgzYJAv7UCb0jfiR7CF4RiyuEmIcRjJ5Lm6EVLEF3-3vFFDxZ0AQ_oJ6J8cuydZgQIkmTTmTxFuY8QsYTxIQuU0feJ_20eDzqOcKz431RfH1_9eXyY3n9-cOny3fXpambJpWy5l1nBBs6asSgdd02rB7aRmgt-WC1bYF2tB55Pr1sbSeFtLWRXU9HLqQUF8Xbg-_NdljAmvztoGd1E3DR4YfyGtW_Lw4n9c2vqqeSC9Fng5dHg-C_b_NH1ILRwDxrB34bFW_z6q6TkmX0xd-7_iy5zz8D8gDkFGIMMCqDaZ96Xo2zYlTtqlYbtata7apWjKtcdZby_6T37g-K3hxEkBNeEYKKBsEZsBjAJGU9PiS_A0R1xqI
CitedBy_id crossref_primary_10_1038_s41596_023_00926_4
crossref_primary_10_1016_j_cell_2024_03_034
crossref_primary_10_3389_fmicb_2024_1349391
crossref_primary_10_1016_j_celrep_2023_113519
crossref_primary_10_7554_eLife_75168
crossref_primary_10_1039_D3FO00625E
crossref_primary_10_1016_j_chembiol_2022_12_001
crossref_primary_10_1093_jmammal_gyae153
crossref_primary_10_1124_dmd_123_001605
crossref_primary_10_1038_s41467_023_37895_x
crossref_primary_10_1016_j_mib_2022_102258
crossref_primary_10_1128_msystems_00951_22
crossref_primary_10_1016_j_mib_2024_102578
crossref_primary_10_1038_s41570_023_00471_4
crossref_primary_10_1186_s12934_024_02322_3
crossref_primary_10_2139_ssrn_4102621
crossref_primary_10_1016_j_tim_2024_12_009
crossref_primary_10_3390_biomimetics10020073
crossref_primary_10_3390_foods12040734
crossref_primary_10_1002_adma_202300977
crossref_primary_10_1126_science_add5787
crossref_primary_10_1038_s41586_023_05989_7
crossref_primary_10_1371_journal_pbio_3002100
crossref_primary_10_1016_j_celrep_2024_114891
crossref_primary_10_1093_jbmrpl_ziae082
crossref_primary_10_1146_annurev_biophys_112221_074832
crossref_primary_10_1038_s41467_023_43279_y
crossref_primary_10_1128_spectrum_03650_23
crossref_primary_10_1371_journal_ppat_1012384
crossref_primary_10_1016_j_cotox_2023_100430
crossref_primary_10_1111_1751_7915_14506
crossref_primary_10_1111_1751_7915_14509
crossref_primary_10_1002_imt2_75
crossref_primary_10_3390_bios14090449
crossref_primary_10_1073_pnas_2322440122
crossref_primary_10_1126_science_adk2536
crossref_primary_10_3389_fphys_2023_1147001
crossref_primary_10_1016_j_fochx_2024_101611
crossref_primary_10_1093_ismeco_ycae035
crossref_primary_10_1186_s42523_023_00275_3
crossref_primary_10_1016_j_isci_2022_103907
crossref_primary_10_15252_msb_202311525
crossref_primary_10_1016_j_chom_2022_09_011
crossref_primary_10_1002_mnfr_202300386
crossref_primary_10_1016_j_fsi_2023_108869
crossref_primary_10_31083_j_fbl2908310
crossref_primary_10_1016_j_cell_2022_08_003
crossref_primary_10_1016_j_chom_2023_03_013
crossref_primary_10_1038_s41564_024_01625_w
crossref_primary_10_1038_s41467_024_46766_y
crossref_primary_10_1111_jam_15740
crossref_primary_10_1038_s41589_023_01357_8
crossref_primary_10_1093_ismejo_wraf017
crossref_primary_10_1128_aem_02014_23
Cites_doi 10.1073/pnas.1711596114
10.1016/j.imlet.2014.07.016
10.1007/s002530051622
10.1016/j.bbi.2016.02.020
10.1073/pnas.1000087107
10.7554/eLife.51493
10.1016/j.chom.2015.09.002
10.1128/IAI.01189-07
10.15252/msb.20178157
10.1038/nature18846
10.1016/j.chom.2019.10.011
10.1073/pnas.1713372114
10.1038/nature16504
10.1128/mSystems.00200-20
10.1128/mSystems.00185-19
10.1128/IAI.71.5.2839-2858.2003
10.1371/journal.pbio.2000631
10.1016/j.cub.2020.01.050
10.1038/nature17645
10.1038/nature11400
10.1038/s41396-018-0212-z
10.1016/j.chom.2008.09.009
10.1016/j.cell.2017.03.041
10.1007/978-1-4939-6361-4_18
10.1126/science.aat9931
10.1016/j.chom.2015.10.007
10.1038/nmeth.3869
10.4161/gmic.18754
10.1016/j.cell.2014.05.052
10.1038/ncomms5714
10.1128/AEM.71.12.8228-8235.2005
10.1073/pnas.1319470110
10.1038/nmeth.f.303
10.1371/journal.pbio.0050244
10.1038/nprot.2016.181
10.1186/1471-2334-9-202
10.1038/s41564-018-0123-9
10.1093/jac/dkv312
10.1126/science.1206025
10.1007/s002489900072
10.1128/mBio.00974-15
10.1016/j.yrtph.2004.08.005
10.1099/00207713-52-6-2141
10.1126/science.1223490
10.1523/JNEUROSCI.3299-14.2014
10.1053/j.gastro.2013.01.047
10.1073/pnas.1900102116
10.1016/j.cell.2018.05.008
10.1128/AEM.01996-06
10.1126/science.aat1168
10.1096/fj.14-265983
10.1038/nature12503
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.chom.2021.12.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 272.e5
ExternalDocumentID PMC9082339
35051349
10_1016_j_chom_2021_12_008
S1931312821005795
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK085025
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
53G
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
RIG
ZBA
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c455t-84277c31b70c3baa46514b653aa82bdad6e0704f2222986d7838d4c8790f23883
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 18:16:50 EDT 2025
Tue Aug 05 10:22:05 EDT 2025
Wed Feb 19 02:25:58 EST 2025
Thu Apr 24 23:08:38 EDT 2025
Tue Jul 01 02:44:23 EDT 2025
Fri Feb 23 02:40:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords microbiota perturbations
ecological stability
microbial ecology
ex vivo
synthetic communities
antibiotics
culturomics
gut microbiota
ciprofloxacin
Language English
License Copyright © 2021. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-84277c31b70c3baa46514b653aa82bdad6e0704f2222986d7838d4c8790f23883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
A.A.-D, K.M.N., J.L.S., and K.C.H designed the research; A.A.-D., K.M.N., T.T., S.D., F.B.Y., I.R.R., T.C., S.H, K.V., C.G.G., and T.N. performed the research; A.A.-D., K.M.N., D.D., and C.G.G. analyzed the data; and A.A.-D, J.L.S., and K.C.H wrote the paper and all authors reviewed it before submission.
Author Contributions
Lead contact
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9082339
PMID 35051349
PQID 2622277881
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9082339
proquest_miscellaneous_2622277881
pubmed_primary_35051349
crossref_citationtrail_10_1016_j_chom_2021_12_008
crossref_primary_10_1016_j_chom_2021_12_008
elsevier_sciencedirect_doi_10_1016_j_chom_2021_12_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-09
PublicationDateYYYYMMDD 2022-02-09
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ng, Ferreyra, Higginbottom, Lynch, Kashyap, Gopinath, Naidu, Choudhury, Weimer, Monack, Sonnenburg (bib37) 2013; 502
Whitaker, Shepherd, Sonnenburg (bib51) 2017; 169
Lawley, Bouley, Hoy, Gerke, Relman, Monack (bib29) 2008; 76
Cox, Yamanishi, Sohn, Alekseyenko, Leung, Cho, Kim, Li, Gao, Mahana (bib12) 2014; 158
Goldford, Lu, Bajić, Estrela, Tikhonov, Sanchez-Gorostiaga, Segrè, Mehta, Sanchez (bib19) 2018; 361
Callahan, McMurdie, Rosen, Han, Johnson, Holmes (bib8) 2016; 13
Duncan, Hold, Harmsen, Stewart, Flint (bib15) 2002; 52
Fröhlich, Farzi, Mayerhofer, Reichmann, Jačan, Wagner, Zinser, Bordag, Magnes, Fröhlich (bib18) 2016; 56
Sonnenburg, Bäckhed (bib45) 2016; 535
Barthel, Hapfelmeier, Quintanilla-Martínez, Kremer, Rohde, Hogardt, Pfeffer, Rüssmann, Hardt (bib5) 2003; 71
Shi, Colavin, Lee, Huang (bib43) 2017; 12
Khoruts, Weingarden (bib28) 2014; 162
Auchtung, Robinson, Farrell, Britton (bib3) 2016; 1476
Gonzalez, Wastyk, Topf, Gardner, Sonnenburg, Elias (bib20) 2020; 5
Faith, McNulty, Rey, Gordon (bib17) 2011; 333
Cho, Yamanishi, Cox, Methé, Zavadil, Li, Gao, Mahana, Raju, Teitler (bib11) 2012; 488
Zimmermann, Zimmermann-Kogadeeva, Wegmann, Goodman (bib52) 2019; 363
Schubert, Sinani, Schloss (bib42) 2015; 6
Minekus, Smeets-Peeters, Bernalier, Marol-Bonnin, Havenaar, Marteau, Alric, Fonty, Huis In’t Veld (bib35) 1999; 53
Ivanov, Frutos, Manel, Yoshinaga, Rifkin, Sartor, Finlay, Littman (bib24) 2008; 4
Rezzonico, Mestdagh, Delley, Combremont, Dumas, Holmes, Nicholson, Bibiloni (bib41) 2011; 2
Carman, Simon, Fernández, Miller, Bartholomew (bib10) 2004; 40
Aranda-Díaz, Obadia, Thomsen, Hallberg, Güvener, Ludington, Huang (bib2) 2020; 9
Barroso-Batista, Pedro, Sales-Dias, Pinto, Thompson, Pereira, Demengeot, Gordo, Xavier (bib4) 2020; 30
Mark Welch, Hasegawa, McNulty, Gordon, Borisy (bib33) 2017; 114
Hooper, Littman, Macpherson (bib22) 2012; 336
Sorg, Lin, van Doorn, Sorg, Olson, Nizet, Veening (bib46) 2016; 14
Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon (bib9) 2010; 7
Nicoloff, Andersson (bib38) 2016; 71
Gutiérrez, Garrido (bib21) 2019; 4
Lozupone, Knight (bib30) 2005; 71
Ng, Aranda-Díaz, Tropini, Frankel, Van Treuren, O’Loughlin, Merrill, Yu, Pruss, Oliveira (bib36) 2019; 26
Lozupone, Hamady, Kelley, Knight (bib31) 2007; 73
Rettedal, Gumpert, Sommer (bib39) 2014; 5
Kehe, Kulesa, Ortiz, Ackerman, Thakku, Sellers, Kuehn, Gore, Friedman, Blainey (bib27) 2019; 116
Venturelli, Carr, Fisher, Hsu, Lau, Bowen, Hromada, Northen, Arkin (bib50) 2018; 14
Stecher, Robbiani, Walker, Westendorf, Barthel, Kremer, Chaffron, Macpherson, Buer, Parkhill (bib47) 2007; 5
Tropini, Moss, Merrill, Ng, Higginbottom, Casavant, Gonzalez, Fremin, Bouley, Elias (bib49) 2018; 173
Johansson, Jakobsson, Holmén-Larsson, Schütte, Ermund, Rodríguez-Piñeiro, Arike, Wising, Svensson, Bäckhed, Hansson (bib25) 2015; 18
Reyes, Wu, McNulty, Rohwer, Gordon (bib40) 2013; 110
Brook (bib6) 2009; 9
Browne, Forster, Anonye, Kumar, Neville, Stares, Goulding, Lawley (bib7) 2016; 533
Kashyap, Marcobal, Ursell, Larauche, Duboc, Earle, Sonnenburg, Ferreyra, Higginbottom, Million (bib26) 2013; 144
de Vos, Zagorski, McNally, Bollenbach (bib13) 2017; 114
Hwang, Park, Kim, Kim, Ka, Lee, Seong, Seok, Kim (bib23) 2015; 29
Mayer, Knight, Mazmanian, Cryan, Tillisch (bib34) 2014; 34
Sonnenburg, Smits, Tikhonov, Higginbottom, Wingreen, Sonnenburg (bib44) 2016; 529
Adamowicz, Flynn, Hunter, Harcombe (bib1) 2018; 12
Earle, Billings, Sigal, Lichtman, Hansson, Elias, Amieva, Huang, Sonnenburg (bib16) 2015; 18
Tramontano, Andrejev, Pruteanu, Klünemann, Kuhn, Galardini, Jouhten, Zelezniak, Zeller, Bork (bib48) 2018; 3
Macfarlane, Macfarlane, Gibson (bib32) 1998; 35
Dethlefsen, Relman (bib14) 2011; 108
Gutiérrez (10.1016/j.chom.2021.12.008_bib21) 2019; 4
Lawley (10.1016/j.chom.2021.12.008_bib29) 2008; 76
Rettedal (10.1016/j.chom.2021.12.008_bib39) 2014; 5
Rezzonico (10.1016/j.chom.2021.12.008_bib41) 2011; 2
Cox (10.1016/j.chom.2021.12.008_bib12) 2014; 158
Schubert (10.1016/j.chom.2021.12.008_bib42) 2015; 6
Auchtung (10.1016/j.chom.2021.12.008_bib3) 2016; 1476
de Vos (10.1016/j.chom.2021.12.008_bib13) 2017; 114
Sonnenburg (10.1016/j.chom.2021.12.008_bib44) 2016; 529
Hwang (10.1016/j.chom.2021.12.008_bib23) 2015; 29
Duncan (10.1016/j.chom.2021.12.008_bib15) 2002; 52
Faith (10.1016/j.chom.2021.12.008_bib17) 2011; 333
Carman (10.1016/j.chom.2021.12.008_bib10) 2004; 40
Lozupone (10.1016/j.chom.2021.12.008_bib31) 2007; 73
Earle (10.1016/j.chom.2021.12.008_bib16) 2015; 18
Ng (10.1016/j.chom.2021.12.008_bib36) 2019; 26
Minekus (10.1016/j.chom.2021.12.008_bib35) 1999; 53
Aranda-Díaz (10.1016/j.chom.2021.12.008_bib2) 2020; 9
Venturelli (10.1016/j.chom.2021.12.008_bib50) 2018; 14
Tramontano (10.1016/j.chom.2021.12.008_bib48) 2018; 3
Ivanov (10.1016/j.chom.2021.12.008_bib24) 2008; 4
Browne (10.1016/j.chom.2021.12.008_bib7) 2016; 533
Mark Welch (10.1016/j.chom.2021.12.008_bib33) 2017; 114
Khoruts (10.1016/j.chom.2021.12.008_bib28) 2014; 162
Goldford (10.1016/j.chom.2021.12.008_bib19) 2018; 361
Mayer (10.1016/j.chom.2021.12.008_bib34) 2014; 34
Gonzalez (10.1016/j.chom.2021.12.008_bib20) 2020; 5
Whitaker (10.1016/j.chom.2021.12.008_bib51) 2017; 169
Johansson (10.1016/j.chom.2021.12.008_bib25) 2015; 18
Kehe (10.1016/j.chom.2021.12.008_bib27) 2019; 116
Ng (10.1016/j.chom.2021.12.008_bib37) 2013; 502
Fröhlich (10.1016/j.chom.2021.12.008_bib18) 2016; 56
Cho (10.1016/j.chom.2021.12.008_bib11) 2012; 488
Kashyap (10.1016/j.chom.2021.12.008_bib26) 2013; 144
Barthel (10.1016/j.chom.2021.12.008_bib5) 2003; 71
Macfarlane (10.1016/j.chom.2021.12.008_bib32) 1998; 35
Tropini (10.1016/j.chom.2021.12.008_bib49) 2018; 173
Lozupone (10.1016/j.chom.2021.12.008_bib30) 2005; 71
Reyes (10.1016/j.chom.2021.12.008_bib40) 2013; 110
Stecher (10.1016/j.chom.2021.12.008_bib47) 2007; 5
Barroso-Batista (10.1016/j.chom.2021.12.008_bib4) 2020; 30
Sonnenburg (10.1016/j.chom.2021.12.008_bib45) 2016; 535
Nicoloff (10.1016/j.chom.2021.12.008_bib38) 2016; 71
Hooper (10.1016/j.chom.2021.12.008_bib22) 2012; 336
Sorg (10.1016/j.chom.2021.12.008_bib46) 2016; 14
Brook (10.1016/j.chom.2021.12.008_bib6) 2009; 9
Shi (10.1016/j.chom.2021.12.008_bib43) 2017; 12
Adamowicz (10.1016/j.chom.2021.12.008_bib1) 2018; 12
Dethlefsen (10.1016/j.chom.2021.12.008_bib14) 2011; 108
Callahan (10.1016/j.chom.2021.12.008_bib8) 2016; 13
Caporaso (10.1016/j.chom.2021.12.008_bib9) 2010; 7
Zimmermann (10.1016/j.chom.2021.12.008_bib52) 2019; 363
References_xml – volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  ident: bib9
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
– volume: 110
  start-page: 20236
  year: 2013
  end-page: 20241
  ident: bib40
  article-title: Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 429
  year: 2017
  end-page: 438
  ident: bib43
  article-title: Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates
  publication-title: Nat. Protoc.
– volume: 9
  year: 2020
  ident: bib2
  article-title: Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance
  publication-title: Elife
– volume: 71
  start-page: 2839
  year: 2003
  end-page: 2858
  ident: bib5
  article-title: Pretreatment of mice with streptomycin provides a
  publication-title: Infect. Immun.
– volume: 14
  year: 2018
  ident: bib50
  article-title: Deciphering microbial interactions in synthetic human gut microbiome communities
  publication-title: Mol. Syst. Biol.
– volume: 18
  start-page: 582
  year: 2015
  end-page: 592
  ident: bib25
  article-title: Normalization of host intestinal mucus layers requires long-term microbial colonization
  publication-title: Cell Host Microbe
– volume: 18
  start-page: 478
  year: 2015
  end-page: 488
  ident: bib16
  article-title: Quantitative imaging of gut microbiota spatial organization
  publication-title: Cell Host Microbe
– volume: 6
  year: 2015
  ident: bib42
  article-title: Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against
  publication-title: mBio
– volume: 336
  start-page: 1268
  year: 2012
  end-page: 1273
  ident: bib22
  article-title: Interactions between the microbiota and the immune system
  publication-title: Science
– volume: 34
  start-page: 15490
  year: 2014
  end-page: 15496
  ident: bib34
  article-title: Gut microbes and the brain: paradigm shift in neuroscience
  publication-title: J. Neurosci.
– volume: 158
  start-page: 705
  year: 2014
  end-page: 721
  ident: bib12
  article-title: Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences
  publication-title: Cell
– volume: 73
  start-page: 1576
  year: 2007
  end-page: 1585
  ident: bib31
  article-title: Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities
  publication-title: Appl. Environ. Microbiol.
– volume: 333
  start-page: 101
  year: 2011
  end-page: 104
  ident: bib17
  article-title: Predicting a human gut microbiota's response to diet in gnotobiotic mice
  publication-title: Science
– volume: 173
  start-page: 1742
  year: 2018
  end-page: 1754.e17
  ident: bib49
  article-title: Transient osmotic perturbation causes long-term alteration to the gut microbiota
  publication-title: Cell
– volume: 1476
  start-page: 235
  year: 2016
  end-page: 258
  ident: bib3
  article-title: MiniBioReactor arrays (MBRAs) as a tool for studying
  publication-title: Methods Mol. Biol.
– volume: 14
  year: 2016
  ident: bib46
  article-title: Collective resistance in microbial communities by intracellular antibiotic deactivation
  publication-title: PLoS Biol
– volume: 71
  start-page: 100
  year: 2016
  end-page: 110
  ident: bib38
  article-title: Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes
  publication-title: J. Antimicrob. Chemother.
– volume: 71
  start-page: 8228
  year: 2005
  end-page: 8235
  ident: bib30
  article-title: UniFrac: a new phylogenetic method for comparing microbial communities
  publication-title: Appl. Environ. Microbiol.
– volume: 4
  year: 2019
  ident: bib21
  article-title: Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes
  publication-title: mSystems
– volume: 5
  year: 2020
  ident: bib20
  article-title: High-throughput stool metaproteomics: method and application to human specimens
  publication-title: mSystems
– volume: 35
  start-page: 180
  year: 1998
  end-page: 187
  ident: bib32
  article-title: Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon
  publication-title: Microb. Ecol.
– volume: 361
  start-page: 469
  year: 2018
  end-page: 474
  ident: bib19
  article-title: Emergent simplicity in microbial community assembly
  publication-title: Science
– volume: 5
  start-page: 4714
  year: 2014
  ident: bib39
  article-title: Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1049
  year: 2020
  end-page: 1062.e7
  ident: bib4
  article-title: Specific eco-evolutionary contexts in the mouse gut reveal
  publication-title: Curr. Biol.
– volume: 12
  start-page: 2723
  year: 2018
  end-page: 2735
  ident: bib1
  article-title: Cross-feeding modulates antibiotic tolerance in bacterial communities
  publication-title: ISME J
– volume: 2
  start-page: 307
  year: 2011
  end-page: 318
  ident: bib41
  article-title: Bacterial adaptation to the gut environment favors successful colonization: microbial and metabonomic characterization of a simplified microbiota mouse model
  publication-title: Gut Microbes
– volume: 363
  year: 2019
  ident: bib52
  article-title: Separating host and microbiome contributions to drug pharmacokinetics and toxicity
  publication-title: Science
– volume: 502
  start-page: 96
  year: 2013
  end-page: 99
  ident: bib37
  article-title: Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens
  publication-title: Nature
– volume: 9
  start-page: 202
  year: 2009
  ident: bib6
  article-title: The role of beta-lactamase-producing-bacteria in mixed infections
  publication-title: BMC Infect. Dis.
– volume: 529
  start-page: 212
  year: 2016
  end-page: 215
  ident: bib44
  article-title: Diet-induced extinctions in the gut microbiota compound over generations
  publication-title: Nature
– volume: 13
  start-page: 581
  year: 2016
  end-page: 583
  ident: bib8
  article-title: DADA2: high-resolution sample inference from Illumina amplicon data
  publication-title: Nat. Methods
– volume: 144
  start-page: 967
  year: 2013
  end-page: 977
  ident: bib26
  article-title: Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice
  publication-title: Gastroenterology
– volume: 533
  start-page: 543
  year: 2016
  end-page: 546
  ident: bib7
  article-title: Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation
  publication-title: Nature
– volume: 4
  start-page: 337
  year: 2008
  end-page: 349
  ident: bib24
  article-title: Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine
  publication-title: Cell Host Microbe
– volume: 108
  start-page: 4554
  year: 2011
  end-page: 4561
  ident: bib14
  article-title: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 40
  start-page: 319
  year: 2004
  end-page: 326
  ident: bib10
  article-title: Ciprofloxacin at low levels disrupts colonization resistance of human fecal microflora growing in chemostats
  publication-title: Regul. Toxicol. Pharmacol.
– volume: 114
  start-page: 10666
  year: 2017
  end-page: 10671
  ident: bib13
  article-title: Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 53
  start-page: 108
  year: 1999
  end-page: 114
  ident: bib35
  article-title: A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 169
  start-page: 538
  year: 2017
  end-page: 546.e12
  ident: bib51
  article-title: Tunable expression tools enable single-cell strain distinction in the gut microbiome
  publication-title: Cell
– volume: 52
  start-page: 2141
  year: 2002
  end-page: 2146
  ident: bib15
  article-title: Growth requirements and fermentation products of
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 76
  start-page: 403
  year: 2008
  end-page: 416
  ident: bib29
  article-title: Host transmission of
  publication-title: Infect. Immun.
– volume: 3
  start-page: 514
  year: 2018
  end-page: 522
  ident: bib48
  article-title: Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies
  publication-title: Nat. Microbiol.
– volume: 162
  start-page: 77
  year: 2014
  end-page: 81
  ident: bib28
  article-title: Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology
  publication-title: Immunol. Lett.
– volume: 116
  start-page: 12804
  year: 2019
  end-page: 12809
  ident: bib27
  article-title: Massively parallel screening of synthetic microbial communities
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 650
  year: 2019
  end-page: 665.e4
  ident: bib36
  article-title: Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs
  publication-title: Cell Host Microbe
– volume: 5
  start-page: 2177
  year: 2007
  end-page: 2189
  ident: bib47
  article-title: serovar Typhimurium exploits inflammation to compete with the intestinal microbiota
  publication-title: PLoS Biol
– volume: 56
  start-page: 140
  year: 2016
  end-page: 155
  ident: bib18
  article-title: Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication
  publication-title: Brain Behav. Immun.
– volume: 114
  start-page: E9105
  year: 2017
  end-page: E9114
  ident: bib33
  article-title: Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 2397
  year: 2015
  end-page: 2411
  ident: bib23
  article-title: Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity
  publication-title: FASEB J
– volume: 488
  start-page: 621
  year: 2012
  end-page: 626
  ident: bib11
  article-title: Antibiotics in early life alter the murine colonic microbiome and adiposity
  publication-title: Nature
– volume: 535
  start-page: 56
  year: 2016
  end-page: 64
  ident: bib45
  article-title: Diet-microbiota interactions as moderators of human metabolism
  publication-title: Nature
– volume: 114
  start-page: E9105
  year: 2017
  ident: 10.1016/j.chom.2021.12.008_bib33
  article-title: Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1711596114
– volume: 162
  start-page: 77
  year: 2014
  ident: 10.1016/j.chom.2021.12.008_bib28
  article-title: Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology
  publication-title: Immunol. Lett.
  doi: 10.1016/j.imlet.2014.07.016
– volume: 53
  start-page: 108
  year: 1999
  ident: 10.1016/j.chom.2021.12.008_bib35
  article-title: A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051622
– volume: 56
  start-page: 140
  year: 2016
  ident: 10.1016/j.chom.2021.12.008_bib18
  article-title: Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2016.02.020
– volume: 108
  start-page: 4554
  issue: Suppl. 1
  year: 2011
  ident: 10.1016/j.chom.2021.12.008_bib14
  article-title: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1000087107
– volume: 9
  year: 2020
  ident: 10.1016/j.chom.2021.12.008_bib2
  article-title: Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance
  publication-title: Elife
  doi: 10.7554/eLife.51493
– volume: 18
  start-page: 478
  year: 2015
  ident: 10.1016/j.chom.2021.12.008_bib16
  article-title: Quantitative imaging of gut microbiota spatial organization
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.09.002
– volume: 76
  start-page: 403
  year: 2008
  ident: 10.1016/j.chom.2021.12.008_bib29
  article-title: Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01189-07
– volume: 14
  year: 2018
  ident: 10.1016/j.chom.2021.12.008_bib50
  article-title: Deciphering microbial interactions in synthetic human gut microbiome communities
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20178157
– volume: 535
  start-page: 56
  year: 2016
  ident: 10.1016/j.chom.2021.12.008_bib45
  article-title: Diet-microbiota interactions as moderators of human metabolism
  publication-title: Nature
  doi: 10.1038/nature18846
– volume: 26
  start-page: 650
  year: 2019
  ident: 10.1016/j.chom.2021.12.008_bib36
  article-title: Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.10.011
– volume: 114
  start-page: 10666
  year: 2017
  ident: 10.1016/j.chom.2021.12.008_bib13
  article-title: Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1713372114
– volume: 529
  start-page: 212
  year: 2016
  ident: 10.1016/j.chom.2021.12.008_bib44
  article-title: Diet-induced extinctions in the gut microbiota compound over generations
  publication-title: Nature
  doi: 10.1038/nature16504
– volume: 5
  year: 2020
  ident: 10.1016/j.chom.2021.12.008_bib20
  article-title: High-throughput stool metaproteomics: method and application to human specimens
  publication-title: mSystems
  doi: 10.1128/mSystems.00200-20
– volume: 4
  year: 2019
  ident: 10.1016/j.chom.2021.12.008_bib21
  article-title: Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes
  publication-title: mSystems
  doi: 10.1128/mSystems.00185-19
– volume: 71
  start-page: 2839
  year: 2003
  ident: 10.1016/j.chom.2021.12.008_bib5
  article-title: Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.71.5.2839-2858.2003
– volume: 14
  year: 2016
  ident: 10.1016/j.chom.2021.12.008_bib46
  article-title: Collective resistance in microbial communities by intracellular antibiotic deactivation
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2000631
– volume: 30
  start-page: 1049
  year: 2020
  ident: 10.1016/j.chom.2021.12.008_bib4
  article-title: Specific eco-evolutionary contexts in the mouse gut reveal Escherichia coli metabolic versatility
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.01.050
– volume: 533
  start-page: 543
  year: 2016
  ident: 10.1016/j.chom.2021.12.008_bib7
  article-title: Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation
  publication-title: Nature
  doi: 10.1038/nature17645
– volume: 488
  start-page: 621
  year: 2012
  ident: 10.1016/j.chom.2021.12.008_bib11
  article-title: Antibiotics in early life alter the murine colonic microbiome and adiposity
  publication-title: Nature
  doi: 10.1038/nature11400
– volume: 12
  start-page: 2723
  year: 2018
  ident: 10.1016/j.chom.2021.12.008_bib1
  article-title: Cross-feeding modulates antibiotic tolerance in bacterial communities
  publication-title: ISME J
  doi: 10.1038/s41396-018-0212-z
– volume: 4
  start-page: 337
  year: 2008
  ident: 10.1016/j.chom.2021.12.008_bib24
  article-title: Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.09.009
– volume: 169
  start-page: 538
  year: 2017
  ident: 10.1016/j.chom.2021.12.008_bib51
  article-title: Tunable expression tools enable single-cell strain distinction in the gut microbiome
  publication-title: Cell
  doi: 10.1016/j.cell.2017.03.041
– volume: 1476
  start-page: 235
  year: 2016
  ident: 10.1016/j.chom.2021.12.008_bib3
  article-title: MiniBioReactor arrays (MBRAs) as a tool for studying C. difficile physiology in the presence of a complex community
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6361-4_18
– volume: 363
  year: 2019
  ident: 10.1016/j.chom.2021.12.008_bib52
  article-title: Separating host and microbiome contributions to drug pharmacokinetics and toxicity
  publication-title: Science
  doi: 10.1126/science.aat9931
– volume: 18
  start-page: 582
  year: 2015
  ident: 10.1016/j.chom.2021.12.008_bib25
  article-title: Normalization of host intestinal mucus layers requires long-term microbial colonization
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.10.007
– volume: 13
  start-page: 581
  year: 2016
  ident: 10.1016/j.chom.2021.12.008_bib8
  article-title: DADA2: high-resolution sample inference from Illumina amplicon data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3869
– volume: 2
  start-page: 307
  year: 2011
  ident: 10.1016/j.chom.2021.12.008_bib41
  article-title: Bacterial adaptation to the gut environment favors successful colonization: microbial and metabonomic characterization of a simplified microbiota mouse model
  publication-title: Gut Microbes
  doi: 10.4161/gmic.18754
– volume: 158
  start-page: 705
  year: 2014
  ident: 10.1016/j.chom.2021.12.008_bib12
  article-title: Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.052
– volume: 5
  start-page: 4714
  year: 2014
  ident: 10.1016/j.chom.2021.12.008_bib39
  article-title: Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5714
– volume: 71
  start-page: 8228
  year: 2005
  ident: 10.1016/j.chom.2021.12.008_bib30
  article-title: UniFrac: a new phylogenetic method for comparing microbial communities
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.12.8228-8235.2005
– volume: 110
  start-page: 20236
  year: 2013
  ident: 10.1016/j.chom.2021.12.008_bib40
  article-title: Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1319470110
– volume: 7
  start-page: 335
  year: 2010
  ident: 10.1016/j.chom.2021.12.008_bib9
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.303
– volume: 5
  start-page: 2177
  year: 2007
  ident: 10.1016/j.chom.2021.12.008_bib47
  article-title: Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050244
– volume: 12
  start-page: 429
  year: 2017
  ident: 10.1016/j.chom.2021.12.008_bib43
  article-title: Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.181
– volume: 9
  start-page: 202
  year: 2009
  ident: 10.1016/j.chom.2021.12.008_bib6
  article-title: The role of beta-lactamase-producing-bacteria in mixed infections
  publication-title: BMC Infect. Dis.
  doi: 10.1186/1471-2334-9-202
– volume: 3
  start-page: 514
  year: 2018
  ident: 10.1016/j.chom.2021.12.008_bib48
  article-title: Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-018-0123-9
– volume: 71
  start-page: 100
  year: 2016
  ident: 10.1016/j.chom.2021.12.008_bib38
  article-title: Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkv312
– volume: 333
  start-page: 101
  year: 2011
  ident: 10.1016/j.chom.2021.12.008_bib17
  article-title: Predicting a human gut microbiota's response to diet in gnotobiotic mice
  publication-title: Science
  doi: 10.1126/science.1206025
– volume: 35
  start-page: 180
  year: 1998
  ident: 10.1016/j.chom.2021.12.008_bib32
  article-title: Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon
  publication-title: Microb. Ecol.
  doi: 10.1007/s002489900072
– volume: 6
  year: 2015
  ident: 10.1016/j.chom.2021.12.008_bib42
  article-title: Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile
  publication-title: mBio
  doi: 10.1128/mBio.00974-15
– volume: 40
  start-page: 319
  year: 2004
  ident: 10.1016/j.chom.2021.12.008_bib10
  article-title: Ciprofloxacin at low levels disrupts colonization resistance of human fecal microflora growing in chemostats
  publication-title: Regul. Toxicol. Pharmacol.
  doi: 10.1016/j.yrtph.2004.08.005
– volume: 52
  start-page: 2141
  year: 2002
  ident: 10.1016/j.chom.2021.12.008_bib15
  article-title: Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/00207713-52-6-2141
– volume: 336
  start-page: 1268
  year: 2012
  ident: 10.1016/j.chom.2021.12.008_bib22
  article-title: Interactions between the microbiota and the immune system
  publication-title: Science
  doi: 10.1126/science.1223490
– volume: 34
  start-page: 15490
  year: 2014
  ident: 10.1016/j.chom.2021.12.008_bib34
  article-title: Gut microbes and the brain: paradigm shift in neuroscience
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3299-14.2014
– volume: 144
  start-page: 967
  year: 2013
  ident: 10.1016/j.chom.2021.12.008_bib26
  article-title: Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.01.047
– volume: 116
  start-page: 12804
  year: 2019
  ident: 10.1016/j.chom.2021.12.008_bib27
  article-title: Massively parallel screening of synthetic microbial communities
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1900102116
– volume: 173
  start-page: 1742
  year: 2018
  ident: 10.1016/j.chom.2021.12.008_bib49
  article-title: Transient osmotic perturbation causes long-term alteration to the gut microbiota
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.008
– volume: 73
  start-page: 1576
  year: 2007
  ident: 10.1016/j.chom.2021.12.008_bib31
  article-title: Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01996-06
– volume: 361
  start-page: 469
  year: 2018
  ident: 10.1016/j.chom.2021.12.008_bib19
  article-title: Emergent simplicity in microbial community assembly
  publication-title: Science
  doi: 10.1126/science.aat1168
– volume: 29
  start-page: 2397
  year: 2015
  ident: 10.1016/j.chom.2021.12.008_bib23
  article-title: Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity
  publication-title: FASEB J
  doi: 10.1096/fj.14-265983
– volume: 502
  start-page: 96
  year: 2013
  ident: 10.1016/j.chom.2021.12.008_bib37
  article-title: Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens
  publication-title: Nature
  doi: 10.1038/nature12503
SSID ssj0055071
Score 2.5733736
Snippet Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 260
SubjectTerms Animals
antibiotics
Bacteria
Bacteroides
ciprofloxacin
culturomics
ecological stability
ex vivo
Feces - microbiology
Gastrointestinal Microbiome
gut microbiota
Humans
Mice
microbial ecology
Microbiota
microbiota perturbations
synthetic communities
Title Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota
URI https://dx.doi.org/10.1016/j.chom.2021.12.008
https://www.ncbi.nlm.nih.gov/pubmed/35051349
https://www.proquest.com/docview/2622277881
https://pubmed.ncbi.nlm.nih.gov/PMC9082339
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZWlSpxQVAoXSjISNxotJvYie1jWbWqkOAClfZmOf7RpoJktU0r8Qi8Bc_CkzFjJysW0B64RckksTLOeGzP932EvBEsFHODFTWyNBl3RmXK4YajClxIzqDPIN75w8fq6pq_X5bLCVmMWBgsqxxif4rpMVoPZ2bD15ytm2b2CVKPnEF4hUkLIioRaA6PjiC-5bsxGiNdV552lvMMrQfgTKrxQj0SmCMWeVwSRInJfw9Ofyeff9ZQ_jYoXT4iD4dskp6nBj8mE98ekcOkL_ntCfl-AblfXGbCNUBqWkftlqA54S9pF2g08mfUxRoNOAgePJc5MLr3jjbtzx_3Tb_p6Ncm0jbBG23ClSAbK-1XpqdRUQcOPUUCCogb2K7BvuvNU3J9efF5cZUN2guZ5WXZZ5IXQliW12JuWW0MSqbzuiqZMbKonXGVh2DBQ4F64LJyQjLpuJVCzQNkAZIdk4O2a_0JoSoPlQmuhOmw4155FZRgzlqHpLhzbqYkHz-6tgMxOepjfNFjBdqNRkdpdJTOCw2OmpK323vWiZZjr3U5-lLvdC4N48be-16Pjtfw1-FWiml9d3eriwoxxEjFPyXPUkfYtoNBUomkj1MidrrI1gAZvXevtM0qMntH_Xmmnv9ne1-QBwWiM7CoXJ2Sg35z519CztTXr-JP8QueKRgK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKEaIXVP4XChiJG0S7iZ3YPrZVqy20vdBKe7Mc_6ipIKnatBKPwFvwLDwZM3ayYgH1wC1KxorlGY_H9sz3EfJOsFDMDGbUyNJk3BmVKYcXjipwITkDm8F656Pjan7KPy7KxRrZHWthMK1y8P3Jp0dvPbyZDqM5vWia6WcIPXIG7hU2LVhRWd4hdyEaEDg7DxY7oztGvK48XS3nGYoPlTMpyQsJSWCTWOTxTBA5Jv-9Ov0dff6ZRPnbqrS_SR4M4STdTj1-SNZ8-4jcSwST3x6T73sQ_MVzJjwEpKZ11C4RmlMBJu0CjUL-A3UxSQMeggfVZQ6EbryjTfvzx03TX3b0axNxm-CPNhWWIBwr7c9MTyOlDjx6iggU4DiwX4N815sn5HR_72R3ng3kC5nlZdlnkhdCWJbXYmZZbQxypvO6KpkxsqidcZUHb8FDgYTgsnJCMum4lULNAoQBkj0l623X-ueEqjxUJrgS9sOOe-VVUII5ax2i4s64mZB8HHRtB2RyJMj4oscUtHONitKoKJ0XGhQ1Ie-XbS4SLset0uWoS71iXRoWjlvbvR0Vr2Ha4V2KaX13faWLCouIEYt_Qp4lQ1j2g0FUiaiPEyJWTGQpgJDeq1_a5ixCe0cCeqZe_Gd_35D785OjQ314cPzpJdkosFQDM8zVFlnvL6_9Kwig-vp1nCC_AK0DGyo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishment+and+characterization+of+stable%2C+diverse%2C+fecal-derived+in%C2%A0vitro+microbial+communities+that+model+the+intestinal+microbiota&rft.jtitle=Cell+host+%26+microbe&rft.au=Aranda-D%C3%ADaz%2C+Andr%C3%A9s&rft.au=Ng%2C+Katharine+Michelle&rft.au=Thomsen%2C+Tani&rft.au=Real-Ram%C3%ADrez%2C+Imperio&rft.date=2022-02-09&rft.eissn=1934-6069&rft.volume=30&rft.issue=2&rft.spage=260&rft_id=info:doi/10.1016%2Fj.chom.2021.12.008&rft_id=info%3Apmid%2F35051349&rft.externalDocID=35051349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon