Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota
Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived comm...
Saved in:
Published in | Cell host & microbe Vol. 30; no. 2; pp. 260 - 272.e5 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
09.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research.
[Display omitted]
•Stool-derived in vitro communities (SICs) can be phylogenetically complex and reproducible•Mouse colonization with a SIC establishes near-native microbiota composition and host proteome•Antibiotic treatment in vivo increases susceptibility to Salmonella invasion in vitro•Antibiotic treatment in vitro mimics compositional changes in vivo
Aranda-Díaz et al. demonstrate the utility of batch culturing of stool-derived in vitro communities (SICs) for low-cost, quantitative, and high-throughput experimentation on gut microbiotas. SICs retain the taxonomical diversity of their fecal origin and recapitulate the microbiota response to pathogen invasion and antibiotic treatment. |
---|---|
AbstractList | Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities
in vitro
. We generated hundreds of
in vitro
communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained and host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin
in vivo
increased susceptibility to
Salmonella
invasion
in vitro
and the
in vitro
response to ciprofloxacin was predictive of compositional changes observed
in vivo
, including the resilience and sensitivity of each
Bacteroides
species. These findings demonstrate that stool-derived
in vitro
communities can serve as a powerful system for microbiota research. Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research.Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research. Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research. Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research. [Display omitted] •Stool-derived in vitro communities (SICs) can be phylogenetically complex and reproducible•Mouse colonization with a SIC establishes near-native microbiota composition and host proteome•Antibiotic treatment in vivo increases susceptibility to Salmonella invasion in vitro•Antibiotic treatment in vitro mimics compositional changes in vivo Aranda-Díaz et al. demonstrate the utility of batch culturing of stool-derived in vitro communities (SICs) for low-cost, quantitative, and high-throughput experimentation on gut microbiotas. SICs retain the taxonomical diversity of their fecal origin and recapitulate the microbiota response to pathogen invasion and antibiotic treatment. |
Author | Ng, Katharine Michelle Sonnenburg, Justin L. Real-Ramírez, Imperio Aranda-Díaz, Andrés Vasquez, Kimberly S. Nguyen, Taylor H. Elias, Joshua E. Higginbottom, Steven K. Yu, Feiqiao Brian Gonzalez, Carlos Gutierrez Neff, Norma F. Huang, Kerwyn Casey Dahan, Dylan Dittmar, Susannah Chavez, Taylor Thomsen, Tani |
AuthorAffiliation | 1 Department of Bioengineering, Stanford University, Stanford, CA 94305 4 Chan Zuckerberg Biohub, San Francisco, CA 94158 3 Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 2 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 |
AuthorAffiliation_xml | – name: 1 Department of Bioengineering, Stanford University, Stanford, CA 94305 – name: 3 Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 – name: 2 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 – name: 4 Chan Zuckerberg Biohub, San Francisco, CA 94158 |
Author_xml | – sequence: 1 givenname: Andrés surname: Aranda-Díaz fullname: Aranda-Díaz, Andrés organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 2 givenname: Katharine Michelle surname: Ng fullname: Ng, Katharine Michelle organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 3 givenname: Tani surname: Thomsen fullname: Thomsen, Tani organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 4 givenname: Imperio surname: Real-Ramírez fullname: Real-Ramírez, Imperio organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 5 givenname: Dylan surname: Dahan fullname: Dahan, Dylan organization: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 6 givenname: Susannah surname: Dittmar fullname: Dittmar, Susannah organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 7 givenname: Carlos Gutierrez surname: Gonzalez fullname: Gonzalez, Carlos Gutierrez organization: Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 8 givenname: Taylor surname: Chavez fullname: Chavez, Taylor organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 9 givenname: Kimberly S. surname: Vasquez fullname: Vasquez, Kimberly S. organization: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 10 givenname: Taylor H. surname: Nguyen fullname: Nguyen, Taylor H. organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 11 givenname: Feiqiao Brian surname: Yu fullname: Yu, Feiqiao Brian organization: Chan Zuckerberg Biohub, San Francisco, CA 94158, USA – sequence: 12 givenname: Steven K. surname: Higginbottom fullname: Higginbottom, Steven K. organization: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 13 givenname: Norma F. surname: Neff fullname: Neff, Norma F. organization: Chan Zuckerberg Biohub, San Francisco, CA 94158, USA – sequence: 14 givenname: Joshua E. surname: Elias fullname: Elias, Joshua E. organization: Chan Zuckerberg Biohub, San Francisco, CA 94158, USA – sequence: 15 givenname: Justin L. surname: Sonnenburg fullname: Sonnenburg, Justin L. organization: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 16 givenname: Kerwyn Casey surname: Huang fullname: Huang, Kerwyn Casey email: kchuang@stanford.edu organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35051349$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcmKFjEUhQtpsQd9AReSpQurzFBDCkSQph2gwY2uQyq5Zd2fqqRN8hfoG_gWPks_WecfWtRFZ5ML-c655Jzz4sR5B0XxnNGKUda-3lRm8kvFKWcV4xWl8lFxxnpRly1t-5P9zErBuDwtzmPcUNo0tGNPilPR0IaJuj8rfl3FpIcZ47SAS0Q7S8ykgzYJAv7UCb0jfiR7CF4RiyuEmIcRjJ5Lm6EVLEF3-3vFFDxZ0AQ_oJ6J8cuydZgQIkmTTmTxFuY8QsYTxIQuU0feJ_20eDzqOcKz431RfH1_9eXyY3n9-cOny3fXpambJpWy5l1nBBs6asSgdd02rB7aRmgt-WC1bYF2tB55Pr1sbSeFtLWRXU9HLqQUF8Xbg-_NdljAmvztoGd1E3DR4YfyGtW_Lw4n9c2vqqeSC9Fng5dHg-C_b_NH1ILRwDxrB34bFW_z6q6TkmX0xd-7_iy5zz8D8gDkFGIMMCqDaZ96Xo2zYlTtqlYbtata7apWjKtcdZby_6T37g-K3hxEkBNeEYKKBsEZsBjAJGU9PiS_A0R1xqI |
CitedBy_id | crossref_primary_10_1038_s41596_023_00926_4 crossref_primary_10_1016_j_cell_2024_03_034 crossref_primary_10_3389_fmicb_2024_1349391 crossref_primary_10_1016_j_celrep_2023_113519 crossref_primary_10_7554_eLife_75168 crossref_primary_10_1039_D3FO00625E crossref_primary_10_1016_j_chembiol_2022_12_001 crossref_primary_10_1093_jmammal_gyae153 crossref_primary_10_1124_dmd_123_001605 crossref_primary_10_1038_s41467_023_37895_x crossref_primary_10_1016_j_mib_2022_102258 crossref_primary_10_1128_msystems_00951_22 crossref_primary_10_1016_j_mib_2024_102578 crossref_primary_10_1038_s41570_023_00471_4 crossref_primary_10_1186_s12934_024_02322_3 crossref_primary_10_2139_ssrn_4102621 crossref_primary_10_1016_j_tim_2024_12_009 crossref_primary_10_3390_biomimetics10020073 crossref_primary_10_3390_foods12040734 crossref_primary_10_1002_adma_202300977 crossref_primary_10_1126_science_add5787 crossref_primary_10_1038_s41586_023_05989_7 crossref_primary_10_1371_journal_pbio_3002100 crossref_primary_10_1016_j_celrep_2024_114891 crossref_primary_10_1093_jbmrpl_ziae082 crossref_primary_10_1146_annurev_biophys_112221_074832 crossref_primary_10_1038_s41467_023_43279_y crossref_primary_10_1128_spectrum_03650_23 crossref_primary_10_1371_journal_ppat_1012384 crossref_primary_10_1016_j_cotox_2023_100430 crossref_primary_10_1111_1751_7915_14506 crossref_primary_10_1111_1751_7915_14509 crossref_primary_10_1002_imt2_75 crossref_primary_10_3390_bios14090449 crossref_primary_10_1073_pnas_2322440122 crossref_primary_10_1126_science_adk2536 crossref_primary_10_3389_fphys_2023_1147001 crossref_primary_10_1016_j_fochx_2024_101611 crossref_primary_10_1093_ismeco_ycae035 crossref_primary_10_1186_s42523_023_00275_3 crossref_primary_10_1016_j_isci_2022_103907 crossref_primary_10_15252_msb_202311525 crossref_primary_10_1016_j_chom_2022_09_011 crossref_primary_10_1002_mnfr_202300386 crossref_primary_10_1016_j_fsi_2023_108869 crossref_primary_10_31083_j_fbl2908310 crossref_primary_10_1016_j_cell_2022_08_003 crossref_primary_10_1016_j_chom_2023_03_013 crossref_primary_10_1038_s41564_024_01625_w crossref_primary_10_1038_s41467_024_46766_y crossref_primary_10_1111_jam_15740 crossref_primary_10_1038_s41589_023_01357_8 crossref_primary_10_1093_ismejo_wraf017 crossref_primary_10_1128_aem_02014_23 |
Cites_doi | 10.1073/pnas.1711596114 10.1016/j.imlet.2014.07.016 10.1007/s002530051622 10.1016/j.bbi.2016.02.020 10.1073/pnas.1000087107 10.7554/eLife.51493 10.1016/j.chom.2015.09.002 10.1128/IAI.01189-07 10.15252/msb.20178157 10.1038/nature18846 10.1016/j.chom.2019.10.011 10.1073/pnas.1713372114 10.1038/nature16504 10.1128/mSystems.00200-20 10.1128/mSystems.00185-19 10.1128/IAI.71.5.2839-2858.2003 10.1371/journal.pbio.2000631 10.1016/j.cub.2020.01.050 10.1038/nature17645 10.1038/nature11400 10.1038/s41396-018-0212-z 10.1016/j.chom.2008.09.009 10.1016/j.cell.2017.03.041 10.1007/978-1-4939-6361-4_18 10.1126/science.aat9931 10.1016/j.chom.2015.10.007 10.1038/nmeth.3869 10.4161/gmic.18754 10.1016/j.cell.2014.05.052 10.1038/ncomms5714 10.1128/AEM.71.12.8228-8235.2005 10.1073/pnas.1319470110 10.1038/nmeth.f.303 10.1371/journal.pbio.0050244 10.1038/nprot.2016.181 10.1186/1471-2334-9-202 10.1038/s41564-018-0123-9 10.1093/jac/dkv312 10.1126/science.1206025 10.1007/s002489900072 10.1128/mBio.00974-15 10.1016/j.yrtph.2004.08.005 10.1099/00207713-52-6-2141 10.1126/science.1223490 10.1523/JNEUROSCI.3299-14.2014 10.1053/j.gastro.2013.01.047 10.1073/pnas.1900102116 10.1016/j.cell.2018.05.008 10.1128/AEM.01996-06 10.1126/science.aat1168 10.1096/fj.14-265983 10.1038/nature12503 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.chom.2021.12.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 272.e5 |
ExternalDocumentID | PMC9082339 35051349 10_1016_j_chom_2021_12_008 S1931312821005795 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK085025 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG K97 M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 53G AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT RIG ZBA 0SF CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c455t-84277c31b70c3baa46514b653aa82bdad6e0704f2222986d7838d4c8790f23883 |
IEDL.DBID | IXB |
ISSN | 1931-3128 1934-6069 |
IngestDate | Thu Aug 21 18:16:50 EDT 2025 Tue Aug 05 10:22:05 EDT 2025 Wed Feb 19 02:25:58 EST 2025 Thu Apr 24 23:08:38 EDT 2025 Tue Jul 01 02:44:23 EDT 2025 Fri Feb 23 02:40:53 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | microbiota perturbations ecological stability microbial ecology ex vivo synthetic communities antibiotics culturomics gut microbiota ciprofloxacin |
Language | English |
License | Copyright © 2021. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-84277c31b70c3baa46514b653aa82bdad6e0704f2222986d7838d4c8790f23883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 A.A.-D, K.M.N., J.L.S., and K.C.H designed the research; A.A.-D., K.M.N., T.T., S.D., F.B.Y., I.R.R., T.C., S.H, K.V., C.G.G., and T.N. performed the research; A.A.-D., K.M.N., D.D., and C.G.G. analyzed the data; and A.A.-D, J.L.S., and K.C.H wrote the paper and all authors reviewed it before submission. Author Contributions Lead contact |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9082339 |
PMID | 35051349 |
PQID | 2622277881 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9082339 proquest_miscellaneous_2622277881 pubmed_primary_35051349 crossref_citationtrail_10_1016_j_chom_2021_12_008 crossref_primary_10_1016_j_chom_2021_12_008 elsevier_sciencedirect_doi_10_1016_j_chom_2021_12_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-09 |
PublicationDateYYYYMMDD | 2022-02-09 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ng, Ferreyra, Higginbottom, Lynch, Kashyap, Gopinath, Naidu, Choudhury, Weimer, Monack, Sonnenburg (bib37) 2013; 502 Whitaker, Shepherd, Sonnenburg (bib51) 2017; 169 Lawley, Bouley, Hoy, Gerke, Relman, Monack (bib29) 2008; 76 Cox, Yamanishi, Sohn, Alekseyenko, Leung, Cho, Kim, Li, Gao, Mahana (bib12) 2014; 158 Goldford, Lu, Bajić, Estrela, Tikhonov, Sanchez-Gorostiaga, Segrè, Mehta, Sanchez (bib19) 2018; 361 Callahan, McMurdie, Rosen, Han, Johnson, Holmes (bib8) 2016; 13 Duncan, Hold, Harmsen, Stewart, Flint (bib15) 2002; 52 Fröhlich, Farzi, Mayerhofer, Reichmann, Jačan, Wagner, Zinser, Bordag, Magnes, Fröhlich (bib18) 2016; 56 Sonnenburg, Bäckhed (bib45) 2016; 535 Barthel, Hapfelmeier, Quintanilla-Martínez, Kremer, Rohde, Hogardt, Pfeffer, Rüssmann, Hardt (bib5) 2003; 71 Shi, Colavin, Lee, Huang (bib43) 2017; 12 Khoruts, Weingarden (bib28) 2014; 162 Auchtung, Robinson, Farrell, Britton (bib3) 2016; 1476 Gonzalez, Wastyk, Topf, Gardner, Sonnenburg, Elias (bib20) 2020; 5 Faith, McNulty, Rey, Gordon (bib17) 2011; 333 Cho, Yamanishi, Cox, Methé, Zavadil, Li, Gao, Mahana, Raju, Teitler (bib11) 2012; 488 Zimmermann, Zimmermann-Kogadeeva, Wegmann, Goodman (bib52) 2019; 363 Schubert, Sinani, Schloss (bib42) 2015; 6 Minekus, Smeets-Peeters, Bernalier, Marol-Bonnin, Havenaar, Marteau, Alric, Fonty, Huis In’t Veld (bib35) 1999; 53 Ivanov, Frutos, Manel, Yoshinaga, Rifkin, Sartor, Finlay, Littman (bib24) 2008; 4 Rezzonico, Mestdagh, Delley, Combremont, Dumas, Holmes, Nicholson, Bibiloni (bib41) 2011; 2 Carman, Simon, Fernández, Miller, Bartholomew (bib10) 2004; 40 Aranda-Díaz, Obadia, Thomsen, Hallberg, Güvener, Ludington, Huang (bib2) 2020; 9 Barroso-Batista, Pedro, Sales-Dias, Pinto, Thompson, Pereira, Demengeot, Gordo, Xavier (bib4) 2020; 30 Mark Welch, Hasegawa, McNulty, Gordon, Borisy (bib33) 2017; 114 Hooper, Littman, Macpherson (bib22) 2012; 336 Sorg, Lin, van Doorn, Sorg, Olson, Nizet, Veening (bib46) 2016; 14 Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon (bib9) 2010; 7 Nicoloff, Andersson (bib38) 2016; 71 Gutiérrez, Garrido (bib21) 2019; 4 Lozupone, Knight (bib30) 2005; 71 Ng, Aranda-Díaz, Tropini, Frankel, Van Treuren, O’Loughlin, Merrill, Yu, Pruss, Oliveira (bib36) 2019; 26 Lozupone, Hamady, Kelley, Knight (bib31) 2007; 73 Rettedal, Gumpert, Sommer (bib39) 2014; 5 Kehe, Kulesa, Ortiz, Ackerman, Thakku, Sellers, Kuehn, Gore, Friedman, Blainey (bib27) 2019; 116 Venturelli, Carr, Fisher, Hsu, Lau, Bowen, Hromada, Northen, Arkin (bib50) 2018; 14 Stecher, Robbiani, Walker, Westendorf, Barthel, Kremer, Chaffron, Macpherson, Buer, Parkhill (bib47) 2007; 5 Tropini, Moss, Merrill, Ng, Higginbottom, Casavant, Gonzalez, Fremin, Bouley, Elias (bib49) 2018; 173 Johansson, Jakobsson, Holmén-Larsson, Schütte, Ermund, Rodríguez-Piñeiro, Arike, Wising, Svensson, Bäckhed, Hansson (bib25) 2015; 18 Reyes, Wu, McNulty, Rohwer, Gordon (bib40) 2013; 110 Brook (bib6) 2009; 9 Browne, Forster, Anonye, Kumar, Neville, Stares, Goulding, Lawley (bib7) 2016; 533 Kashyap, Marcobal, Ursell, Larauche, Duboc, Earle, Sonnenburg, Ferreyra, Higginbottom, Million (bib26) 2013; 144 de Vos, Zagorski, McNally, Bollenbach (bib13) 2017; 114 Hwang, Park, Kim, Kim, Ka, Lee, Seong, Seok, Kim (bib23) 2015; 29 Mayer, Knight, Mazmanian, Cryan, Tillisch (bib34) 2014; 34 Sonnenburg, Smits, Tikhonov, Higginbottom, Wingreen, Sonnenburg (bib44) 2016; 529 Adamowicz, Flynn, Hunter, Harcombe (bib1) 2018; 12 Earle, Billings, Sigal, Lichtman, Hansson, Elias, Amieva, Huang, Sonnenburg (bib16) 2015; 18 Tramontano, Andrejev, Pruteanu, Klünemann, Kuhn, Galardini, Jouhten, Zelezniak, Zeller, Bork (bib48) 2018; 3 Macfarlane, Macfarlane, Gibson (bib32) 1998; 35 Dethlefsen, Relman (bib14) 2011; 108 Gutiérrez (10.1016/j.chom.2021.12.008_bib21) 2019; 4 Lawley (10.1016/j.chom.2021.12.008_bib29) 2008; 76 Rettedal (10.1016/j.chom.2021.12.008_bib39) 2014; 5 Rezzonico (10.1016/j.chom.2021.12.008_bib41) 2011; 2 Cox (10.1016/j.chom.2021.12.008_bib12) 2014; 158 Schubert (10.1016/j.chom.2021.12.008_bib42) 2015; 6 Auchtung (10.1016/j.chom.2021.12.008_bib3) 2016; 1476 de Vos (10.1016/j.chom.2021.12.008_bib13) 2017; 114 Sonnenburg (10.1016/j.chom.2021.12.008_bib44) 2016; 529 Hwang (10.1016/j.chom.2021.12.008_bib23) 2015; 29 Duncan (10.1016/j.chom.2021.12.008_bib15) 2002; 52 Faith (10.1016/j.chom.2021.12.008_bib17) 2011; 333 Carman (10.1016/j.chom.2021.12.008_bib10) 2004; 40 Lozupone (10.1016/j.chom.2021.12.008_bib31) 2007; 73 Earle (10.1016/j.chom.2021.12.008_bib16) 2015; 18 Ng (10.1016/j.chom.2021.12.008_bib36) 2019; 26 Minekus (10.1016/j.chom.2021.12.008_bib35) 1999; 53 Aranda-Díaz (10.1016/j.chom.2021.12.008_bib2) 2020; 9 Venturelli (10.1016/j.chom.2021.12.008_bib50) 2018; 14 Tramontano (10.1016/j.chom.2021.12.008_bib48) 2018; 3 Ivanov (10.1016/j.chom.2021.12.008_bib24) 2008; 4 Browne (10.1016/j.chom.2021.12.008_bib7) 2016; 533 Mark Welch (10.1016/j.chom.2021.12.008_bib33) 2017; 114 Khoruts (10.1016/j.chom.2021.12.008_bib28) 2014; 162 Goldford (10.1016/j.chom.2021.12.008_bib19) 2018; 361 Mayer (10.1016/j.chom.2021.12.008_bib34) 2014; 34 Gonzalez (10.1016/j.chom.2021.12.008_bib20) 2020; 5 Whitaker (10.1016/j.chom.2021.12.008_bib51) 2017; 169 Johansson (10.1016/j.chom.2021.12.008_bib25) 2015; 18 Kehe (10.1016/j.chom.2021.12.008_bib27) 2019; 116 Ng (10.1016/j.chom.2021.12.008_bib37) 2013; 502 Fröhlich (10.1016/j.chom.2021.12.008_bib18) 2016; 56 Cho (10.1016/j.chom.2021.12.008_bib11) 2012; 488 Kashyap (10.1016/j.chom.2021.12.008_bib26) 2013; 144 Barthel (10.1016/j.chom.2021.12.008_bib5) 2003; 71 Macfarlane (10.1016/j.chom.2021.12.008_bib32) 1998; 35 Tropini (10.1016/j.chom.2021.12.008_bib49) 2018; 173 Lozupone (10.1016/j.chom.2021.12.008_bib30) 2005; 71 Reyes (10.1016/j.chom.2021.12.008_bib40) 2013; 110 Stecher (10.1016/j.chom.2021.12.008_bib47) 2007; 5 Barroso-Batista (10.1016/j.chom.2021.12.008_bib4) 2020; 30 Sonnenburg (10.1016/j.chom.2021.12.008_bib45) 2016; 535 Nicoloff (10.1016/j.chom.2021.12.008_bib38) 2016; 71 Hooper (10.1016/j.chom.2021.12.008_bib22) 2012; 336 Sorg (10.1016/j.chom.2021.12.008_bib46) 2016; 14 Brook (10.1016/j.chom.2021.12.008_bib6) 2009; 9 Shi (10.1016/j.chom.2021.12.008_bib43) 2017; 12 Adamowicz (10.1016/j.chom.2021.12.008_bib1) 2018; 12 Dethlefsen (10.1016/j.chom.2021.12.008_bib14) 2011; 108 Callahan (10.1016/j.chom.2021.12.008_bib8) 2016; 13 Caporaso (10.1016/j.chom.2021.12.008_bib9) 2010; 7 Zimmermann (10.1016/j.chom.2021.12.008_bib52) 2019; 363 |
References_xml | – volume: 7 start-page: 335 year: 2010 end-page: 336 ident: bib9 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods – volume: 110 start-page: 20236 year: 2013 end-page: 20241 ident: bib40 article-title: Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 429 year: 2017 end-page: 438 ident: bib43 article-title: Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates publication-title: Nat. Protoc. – volume: 9 year: 2020 ident: bib2 article-title: Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance publication-title: Elife – volume: 71 start-page: 2839 year: 2003 end-page: 2858 ident: bib5 article-title: Pretreatment of mice with streptomycin provides a publication-title: Infect. Immun. – volume: 14 year: 2018 ident: bib50 article-title: Deciphering microbial interactions in synthetic human gut microbiome communities publication-title: Mol. Syst. Biol. – volume: 18 start-page: 582 year: 2015 end-page: 592 ident: bib25 article-title: Normalization of host intestinal mucus layers requires long-term microbial colonization publication-title: Cell Host Microbe – volume: 18 start-page: 478 year: 2015 end-page: 488 ident: bib16 article-title: Quantitative imaging of gut microbiota spatial organization publication-title: Cell Host Microbe – volume: 6 year: 2015 ident: bib42 article-title: Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against publication-title: mBio – volume: 336 start-page: 1268 year: 2012 end-page: 1273 ident: bib22 article-title: Interactions between the microbiota and the immune system publication-title: Science – volume: 34 start-page: 15490 year: 2014 end-page: 15496 ident: bib34 article-title: Gut microbes and the brain: paradigm shift in neuroscience publication-title: J. Neurosci. – volume: 158 start-page: 705 year: 2014 end-page: 721 ident: bib12 article-title: Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences publication-title: Cell – volume: 73 start-page: 1576 year: 2007 end-page: 1585 ident: bib31 article-title: Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities publication-title: Appl. Environ. Microbiol. – volume: 333 start-page: 101 year: 2011 end-page: 104 ident: bib17 article-title: Predicting a human gut microbiota's response to diet in gnotobiotic mice publication-title: Science – volume: 173 start-page: 1742 year: 2018 end-page: 1754.e17 ident: bib49 article-title: Transient osmotic perturbation causes long-term alteration to the gut microbiota publication-title: Cell – volume: 1476 start-page: 235 year: 2016 end-page: 258 ident: bib3 article-title: MiniBioReactor arrays (MBRAs) as a tool for studying publication-title: Methods Mol. Biol. – volume: 14 year: 2016 ident: bib46 article-title: Collective resistance in microbial communities by intracellular antibiotic deactivation publication-title: PLoS Biol – volume: 71 start-page: 100 year: 2016 end-page: 110 ident: bib38 article-title: Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes publication-title: J. Antimicrob. Chemother. – volume: 71 start-page: 8228 year: 2005 end-page: 8235 ident: bib30 article-title: UniFrac: a new phylogenetic method for comparing microbial communities publication-title: Appl. Environ. Microbiol. – volume: 4 year: 2019 ident: bib21 article-title: Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes publication-title: mSystems – volume: 5 year: 2020 ident: bib20 article-title: High-throughput stool metaproteomics: method and application to human specimens publication-title: mSystems – volume: 35 start-page: 180 year: 1998 end-page: 187 ident: bib32 article-title: Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon publication-title: Microb. Ecol. – volume: 361 start-page: 469 year: 2018 end-page: 474 ident: bib19 article-title: Emergent simplicity in microbial community assembly publication-title: Science – volume: 5 start-page: 4714 year: 2014 ident: bib39 article-title: Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria publication-title: Nat. Commun. – volume: 30 start-page: 1049 year: 2020 end-page: 1062.e7 ident: bib4 article-title: Specific eco-evolutionary contexts in the mouse gut reveal publication-title: Curr. Biol. – volume: 12 start-page: 2723 year: 2018 end-page: 2735 ident: bib1 article-title: Cross-feeding modulates antibiotic tolerance in bacterial communities publication-title: ISME J – volume: 2 start-page: 307 year: 2011 end-page: 318 ident: bib41 article-title: Bacterial adaptation to the gut environment favors successful colonization: microbial and metabonomic characterization of a simplified microbiota mouse model publication-title: Gut Microbes – volume: 363 year: 2019 ident: bib52 article-title: Separating host and microbiome contributions to drug pharmacokinetics and toxicity publication-title: Science – volume: 502 start-page: 96 year: 2013 end-page: 99 ident: bib37 article-title: Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens publication-title: Nature – volume: 9 start-page: 202 year: 2009 ident: bib6 article-title: The role of beta-lactamase-producing-bacteria in mixed infections publication-title: BMC Infect. Dis. – volume: 529 start-page: 212 year: 2016 end-page: 215 ident: bib44 article-title: Diet-induced extinctions in the gut microbiota compound over generations publication-title: Nature – volume: 13 start-page: 581 year: 2016 end-page: 583 ident: bib8 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods – volume: 144 start-page: 967 year: 2013 end-page: 977 ident: bib26 article-title: Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice publication-title: Gastroenterology – volume: 533 start-page: 543 year: 2016 end-page: 546 ident: bib7 article-title: Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation publication-title: Nature – volume: 4 start-page: 337 year: 2008 end-page: 349 ident: bib24 article-title: Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine publication-title: Cell Host Microbe – volume: 108 start-page: 4554 year: 2011 end-page: 4561 ident: bib14 article-title: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation publication-title: Proc. Natl. Acad. Sci. USA – volume: 40 start-page: 319 year: 2004 end-page: 326 ident: bib10 article-title: Ciprofloxacin at low levels disrupts colonization resistance of human fecal microflora growing in chemostats publication-title: Regul. Toxicol. Pharmacol. – volume: 114 start-page: 10666 year: 2017 end-page: 10671 ident: bib13 article-title: Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections publication-title: Proc. Natl. Acad. Sci. USA – volume: 53 start-page: 108 year: 1999 end-page: 114 ident: bib35 article-title: A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products publication-title: Appl. Microbiol. Biotechnol. – volume: 169 start-page: 538 year: 2017 end-page: 546.e12 ident: bib51 article-title: Tunable expression tools enable single-cell strain distinction in the gut microbiome publication-title: Cell – volume: 52 start-page: 2141 year: 2002 end-page: 2146 ident: bib15 article-title: Growth requirements and fermentation products of publication-title: Int. J. Syst. Evol. Microbiol. – volume: 76 start-page: 403 year: 2008 end-page: 416 ident: bib29 article-title: Host transmission of publication-title: Infect. Immun. – volume: 3 start-page: 514 year: 2018 end-page: 522 ident: bib48 article-title: Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies publication-title: Nat. Microbiol. – volume: 162 start-page: 77 year: 2014 end-page: 81 ident: bib28 article-title: Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology publication-title: Immunol. Lett. – volume: 116 start-page: 12804 year: 2019 end-page: 12809 ident: bib27 article-title: Massively parallel screening of synthetic microbial communities publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 start-page: 650 year: 2019 end-page: 665.e4 ident: bib36 article-title: Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs publication-title: Cell Host Microbe – volume: 5 start-page: 2177 year: 2007 end-page: 2189 ident: bib47 article-title: serovar Typhimurium exploits inflammation to compete with the intestinal microbiota publication-title: PLoS Biol – volume: 56 start-page: 140 year: 2016 end-page: 155 ident: bib18 article-title: Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication publication-title: Brain Behav. Immun. – volume: 114 start-page: E9105 year: 2017 end-page: E9114 ident: bib33 article-title: Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 2397 year: 2015 end-page: 2411 ident: bib23 article-title: Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity publication-title: FASEB J – volume: 488 start-page: 621 year: 2012 end-page: 626 ident: bib11 article-title: Antibiotics in early life alter the murine colonic microbiome and adiposity publication-title: Nature – volume: 535 start-page: 56 year: 2016 end-page: 64 ident: bib45 article-title: Diet-microbiota interactions as moderators of human metabolism publication-title: Nature – volume: 114 start-page: E9105 year: 2017 ident: 10.1016/j.chom.2021.12.008_bib33 article-title: Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1711596114 – volume: 162 start-page: 77 year: 2014 ident: 10.1016/j.chom.2021.12.008_bib28 article-title: Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2014.07.016 – volume: 53 start-page: 108 year: 1999 ident: 10.1016/j.chom.2021.12.008_bib35 article-title: A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051622 – volume: 56 start-page: 140 year: 2016 ident: 10.1016/j.chom.2021.12.008_bib18 article-title: Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication publication-title: Brain Behav. Immun. doi: 10.1016/j.bbi.2016.02.020 – volume: 108 start-page: 4554 issue: Suppl. 1 year: 2011 ident: 10.1016/j.chom.2021.12.008_bib14 article-title: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1000087107 – volume: 9 year: 2020 ident: 10.1016/j.chom.2021.12.008_bib2 article-title: Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance publication-title: Elife doi: 10.7554/eLife.51493 – volume: 18 start-page: 478 year: 2015 ident: 10.1016/j.chom.2021.12.008_bib16 article-title: Quantitative imaging of gut microbiota spatial organization publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.09.002 – volume: 76 start-page: 403 year: 2008 ident: 10.1016/j.chom.2021.12.008_bib29 article-title: Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota publication-title: Infect. Immun. doi: 10.1128/IAI.01189-07 – volume: 14 year: 2018 ident: 10.1016/j.chom.2021.12.008_bib50 article-title: Deciphering microbial interactions in synthetic human gut microbiome communities publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20178157 – volume: 535 start-page: 56 year: 2016 ident: 10.1016/j.chom.2021.12.008_bib45 article-title: Diet-microbiota interactions as moderators of human metabolism publication-title: Nature doi: 10.1038/nature18846 – volume: 26 start-page: 650 year: 2019 ident: 10.1016/j.chom.2021.12.008_bib36 article-title: Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.10.011 – volume: 114 start-page: 10666 year: 2017 ident: 10.1016/j.chom.2021.12.008_bib13 article-title: Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1713372114 – volume: 529 start-page: 212 year: 2016 ident: 10.1016/j.chom.2021.12.008_bib44 article-title: Diet-induced extinctions in the gut microbiota compound over generations publication-title: Nature doi: 10.1038/nature16504 – volume: 5 year: 2020 ident: 10.1016/j.chom.2021.12.008_bib20 article-title: High-throughput stool metaproteomics: method and application to human specimens publication-title: mSystems doi: 10.1128/mSystems.00200-20 – volume: 4 year: 2019 ident: 10.1016/j.chom.2021.12.008_bib21 article-title: Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes publication-title: mSystems doi: 10.1128/mSystems.00185-19 – volume: 71 start-page: 2839 year: 2003 ident: 10.1016/j.chom.2021.12.008_bib5 article-title: Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host publication-title: Infect. Immun. doi: 10.1128/IAI.71.5.2839-2858.2003 – volume: 14 year: 2016 ident: 10.1016/j.chom.2021.12.008_bib46 article-title: Collective resistance in microbial communities by intracellular antibiotic deactivation publication-title: PLoS Biol doi: 10.1371/journal.pbio.2000631 – volume: 30 start-page: 1049 year: 2020 ident: 10.1016/j.chom.2021.12.008_bib4 article-title: Specific eco-evolutionary contexts in the mouse gut reveal Escherichia coli metabolic versatility publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.01.050 – volume: 533 start-page: 543 year: 2016 ident: 10.1016/j.chom.2021.12.008_bib7 article-title: Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation publication-title: Nature doi: 10.1038/nature17645 – volume: 488 start-page: 621 year: 2012 ident: 10.1016/j.chom.2021.12.008_bib11 article-title: Antibiotics in early life alter the murine colonic microbiome and adiposity publication-title: Nature doi: 10.1038/nature11400 – volume: 12 start-page: 2723 year: 2018 ident: 10.1016/j.chom.2021.12.008_bib1 article-title: Cross-feeding modulates antibiotic tolerance in bacterial communities publication-title: ISME J doi: 10.1038/s41396-018-0212-z – volume: 4 start-page: 337 year: 2008 ident: 10.1016/j.chom.2021.12.008_bib24 article-title: Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.09.009 – volume: 169 start-page: 538 year: 2017 ident: 10.1016/j.chom.2021.12.008_bib51 article-title: Tunable expression tools enable single-cell strain distinction in the gut microbiome publication-title: Cell doi: 10.1016/j.cell.2017.03.041 – volume: 1476 start-page: 235 year: 2016 ident: 10.1016/j.chom.2021.12.008_bib3 article-title: MiniBioReactor arrays (MBRAs) as a tool for studying C. difficile physiology in the presence of a complex community publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6361-4_18 – volume: 363 year: 2019 ident: 10.1016/j.chom.2021.12.008_bib52 article-title: Separating host and microbiome contributions to drug pharmacokinetics and toxicity publication-title: Science doi: 10.1126/science.aat9931 – volume: 18 start-page: 582 year: 2015 ident: 10.1016/j.chom.2021.12.008_bib25 article-title: Normalization of host intestinal mucus layers requires long-term microbial colonization publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.10.007 – volume: 13 start-page: 581 year: 2016 ident: 10.1016/j.chom.2021.12.008_bib8 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 2 start-page: 307 year: 2011 ident: 10.1016/j.chom.2021.12.008_bib41 article-title: Bacterial adaptation to the gut environment favors successful colonization: microbial and metabonomic characterization of a simplified microbiota mouse model publication-title: Gut Microbes doi: 10.4161/gmic.18754 – volume: 158 start-page: 705 year: 2014 ident: 10.1016/j.chom.2021.12.008_bib12 article-title: Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences publication-title: Cell doi: 10.1016/j.cell.2014.05.052 – volume: 5 start-page: 4714 year: 2014 ident: 10.1016/j.chom.2021.12.008_bib39 article-title: Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria publication-title: Nat. Commun. doi: 10.1038/ncomms5714 – volume: 71 start-page: 8228 year: 2005 ident: 10.1016/j.chom.2021.12.008_bib30 article-title: UniFrac: a new phylogenetic method for comparing microbial communities publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.12.8228-8235.2005 – volume: 110 start-page: 20236 year: 2013 ident: 10.1016/j.chom.2021.12.008_bib40 article-title: Gnotobiotic mouse model of phage-bacterial host dynamics in the human gut publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1319470110 – volume: 7 start-page: 335 year: 2010 ident: 10.1016/j.chom.2021.12.008_bib9 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods doi: 10.1038/nmeth.f.303 – volume: 5 start-page: 2177 year: 2007 ident: 10.1016/j.chom.2021.12.008_bib47 article-title: Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050244 – volume: 12 start-page: 429 year: 2017 ident: 10.1016/j.chom.2021.12.008_bib43 article-title: Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.181 – volume: 9 start-page: 202 year: 2009 ident: 10.1016/j.chom.2021.12.008_bib6 article-title: The role of beta-lactamase-producing-bacteria in mixed infections publication-title: BMC Infect. Dis. doi: 10.1186/1471-2334-9-202 – volume: 3 start-page: 514 year: 2018 ident: 10.1016/j.chom.2021.12.008_bib48 article-title: Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0123-9 – volume: 71 start-page: 100 year: 2016 ident: 10.1016/j.chom.2021.12.008_bib38 article-title: Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkv312 – volume: 333 start-page: 101 year: 2011 ident: 10.1016/j.chom.2021.12.008_bib17 article-title: Predicting a human gut microbiota's response to diet in gnotobiotic mice publication-title: Science doi: 10.1126/science.1206025 – volume: 35 start-page: 180 year: 1998 ident: 10.1016/j.chom.2021.12.008_bib32 article-title: Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon publication-title: Microb. Ecol. doi: 10.1007/s002489900072 – volume: 6 year: 2015 ident: 10.1016/j.chom.2021.12.008_bib42 article-title: Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile publication-title: mBio doi: 10.1128/mBio.00974-15 – volume: 40 start-page: 319 year: 2004 ident: 10.1016/j.chom.2021.12.008_bib10 article-title: Ciprofloxacin at low levels disrupts colonization resistance of human fecal microflora growing in chemostats publication-title: Regul. Toxicol. Pharmacol. doi: 10.1016/j.yrtph.2004.08.005 – volume: 52 start-page: 2141 year: 2002 ident: 10.1016/j.chom.2021.12.008_bib15 article-title: Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/00207713-52-6-2141 – volume: 336 start-page: 1268 year: 2012 ident: 10.1016/j.chom.2021.12.008_bib22 article-title: Interactions between the microbiota and the immune system publication-title: Science doi: 10.1126/science.1223490 – volume: 34 start-page: 15490 year: 2014 ident: 10.1016/j.chom.2021.12.008_bib34 article-title: Gut microbes and the brain: paradigm shift in neuroscience publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3299-14.2014 – volume: 144 start-page: 967 year: 2013 ident: 10.1016/j.chom.2021.12.008_bib26 article-title: Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.01.047 – volume: 116 start-page: 12804 year: 2019 ident: 10.1016/j.chom.2021.12.008_bib27 article-title: Massively parallel screening of synthetic microbial communities publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1900102116 – volume: 173 start-page: 1742 year: 2018 ident: 10.1016/j.chom.2021.12.008_bib49 article-title: Transient osmotic perturbation causes long-term alteration to the gut microbiota publication-title: Cell doi: 10.1016/j.cell.2018.05.008 – volume: 73 start-page: 1576 year: 2007 ident: 10.1016/j.chom.2021.12.008_bib31 article-title: Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01996-06 – volume: 361 start-page: 469 year: 2018 ident: 10.1016/j.chom.2021.12.008_bib19 article-title: Emergent simplicity in microbial community assembly publication-title: Science doi: 10.1126/science.aat1168 – volume: 29 start-page: 2397 year: 2015 ident: 10.1016/j.chom.2021.12.008_bib23 article-title: Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity publication-title: FASEB J doi: 10.1096/fj.14-265983 – volume: 502 start-page: 96 year: 2013 ident: 10.1016/j.chom.2021.12.008_bib37 article-title: Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens publication-title: Nature doi: 10.1038/nature12503 |
SSID | ssj0055071 |
Score | 2.5733736 |
Snippet | Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 260 |
SubjectTerms | Animals antibiotics Bacteria Bacteroides ciprofloxacin culturomics ecological stability ex vivo Feces - microbiology Gastrointestinal Microbiome gut microbiota Humans Mice microbial ecology Microbiota microbiota perturbations synthetic communities |
Title | Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota |
URI | https://dx.doi.org/10.1016/j.chom.2021.12.008 https://www.ncbi.nlm.nih.gov/pubmed/35051349 https://www.proquest.com/docview/2622277881 https://pubmed.ncbi.nlm.nih.gov/PMC9082339 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZWlSpxQVAoXSjISNxotJvYie1jWbWqkOAClfZmOf7RpoJktU0r8Qi8Bc_CkzFjJysW0B64RckksTLOeGzP932EvBEsFHODFTWyNBl3RmXK4YajClxIzqDPIN75w8fq6pq_X5bLCVmMWBgsqxxif4rpMVoPZ2bD15ytm2b2CVKPnEF4hUkLIioRaA6PjiC-5bsxGiNdV552lvMMrQfgTKrxQj0SmCMWeVwSRInJfw9Ofyeff9ZQ_jYoXT4iD4dskp6nBj8mE98ekcOkL_ntCfl-AblfXGbCNUBqWkftlqA54S9pF2g08mfUxRoNOAgePJc5MLr3jjbtzx_3Tb_p6Ncm0jbBG23ClSAbK-1XpqdRUQcOPUUCCogb2K7BvuvNU3J9efF5cZUN2guZ5WXZZ5IXQliW12JuWW0MSqbzuiqZMbKonXGVh2DBQ4F64LJyQjLpuJVCzQNkAZIdk4O2a_0JoSoPlQmuhOmw4155FZRgzlqHpLhzbqYkHz-6tgMxOepjfNFjBdqNRkdpdJTOCw2OmpK323vWiZZjr3U5-lLvdC4N48be-16Pjtfw1-FWiml9d3eriwoxxEjFPyXPUkfYtoNBUomkj1MidrrI1gAZvXevtM0qMntH_Xmmnv9ne1-QBwWiM7CoXJ2Sg35z519CztTXr-JP8QueKRgK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKEaIXVP4XChiJG0S7iZ3YPrZVqy20vdBKe7Mc_6ipIKnatBKPwFvwLDwZM3ayYgH1wC1KxorlGY_H9sz3EfJOsFDMDGbUyNJk3BmVKYcXjipwITkDm8F656Pjan7KPy7KxRrZHWthMK1y8P3Jp0dvPbyZDqM5vWia6WcIPXIG7hU2LVhRWd4hdyEaEDg7DxY7oztGvK48XS3nGYoPlTMpyQsJSWCTWOTxTBA5Jv-9Ov0dff6ZRPnbqrS_SR4M4STdTj1-SNZ8-4jcSwST3x6T73sQ_MVzJjwEpKZ11C4RmlMBJu0CjUL-A3UxSQMeggfVZQ6EbryjTfvzx03TX3b0axNxm-CPNhWWIBwr7c9MTyOlDjx6iggU4DiwX4N815sn5HR_72R3ng3kC5nlZdlnkhdCWJbXYmZZbQxypvO6KpkxsqidcZUHb8FDgYTgsnJCMum4lULNAoQBkj0l623X-ueEqjxUJrgS9sOOe-VVUII5ax2i4s64mZB8HHRtB2RyJMj4oscUtHONitKoKJ0XGhQ1Ie-XbS4SLset0uWoS71iXRoWjlvbvR0Vr2Ha4V2KaX13faWLCouIEYt_Qp4lQ1j2g0FUiaiPEyJWTGQpgJDeq1_a5ixCe0cCeqZe_Gd_35D785OjQ314cPzpJdkosFQDM8zVFlnvL6_9Kwig-vp1nCC_AK0DGyo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishment+and+characterization+of+stable%2C+diverse%2C+fecal-derived+in%C2%A0vitro+microbial+communities+that+model+the+intestinal+microbiota&rft.jtitle=Cell+host+%26+microbe&rft.au=Aranda-D%C3%ADaz%2C+Andr%C3%A9s&rft.au=Ng%2C+Katharine+Michelle&rft.au=Thomsen%2C+Tani&rft.au=Real-Ram%C3%ADrez%2C+Imperio&rft.date=2022-02-09&rft.eissn=1934-6069&rft.volume=30&rft.issue=2&rft.spage=260&rft_id=info:doi/10.1016%2Fj.chom.2021.12.008&rft_id=info%3Apmid%2F35051349&rft.externalDocID=35051349 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |