One-Pot Synthesis of Bright Blue Luminescent N-Doped GQDs: Optical Properties and Cell Imaging

High fluorescent graphene quantum dots (GQDs) are promising in bioimaging and optoelectronics. In this paper, bright blue fluorescent N-doped GQDs were synthesized using a ultrasonic-assisted hydrothermal method. The morphology, structure, surface chemistry, optical properties, and stability subject...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 11; no. 11; p. 2798
Main Authors Wang, Huaidong, Qi, Chong, Yang, Ailing, Wang, Xiaoxu, Xu, Jie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 22.10.2021
MDPI
Subjects
Online AccessGet full text
ISSN2079-4991
2079-4991
DOI10.3390/nano11112798

Cover

Loading…
Abstract High fluorescent graphene quantum dots (GQDs) are promising in bioimaging and optoelectronics. In this paper, bright blue fluorescent N-doped GQDs were synthesized using a ultrasonic-assisted hydrothermal method. The morphology, structure, surface chemistry, optical properties, and stability subject to photo-bleaching, temperature, pH and preservation period for the N-GQDs were investigated in detail using various microscopy and spectroscopy techniques. The results showed that the N-GQDs possessed an average size of 2.65 nm, 3.57% N doping, and up to 54% quantum yield (QY). The photoluminescence (PL) spectra of the N-GQDs are excitation dependent when excited in the range of 300–370 nm and excitation independent in the range of 380–500 nm for the core and surface states emission. The N-GQDs showed excellent photo-bleaching resistance and superior photo-stability. At room temperature and in the pH range of 3–8, the fluorescence of the N-GQDs was almost invariable. The N-GQDs can be stably preserved for at least 40 days. The average decay lifetime of the N-GQDs was 2.653 ns, and the radiative and nonradiative decay rate constants were calculated to be 2.04 × 108 s−1 and 1.73 × 108 s−1, respectively. The PL mechanism was qualitatively explained. The N-GQDs was used for cell imaging, and it showed good results, implying great potential applications for bioimaging or biomarking.
AbstractList High fluorescent graphene quantum dots (GQDs) are promising in bioimaging and optoelectronics. In this paper, bright blue fluorescent N-doped GQDs were synthesized using a ultrasonic-assisted hydrothermal method. The morphology, structure, surface chemistry, optical properties, and stability subject to photo-bleaching, temperature, pH and preservation period for the N-GQDs were investigated in detail using various microscopy and spectroscopy techniques. The results showed that the N-GQDs possessed an average size of 2.65 nm, 3.57% N doping, and up to 54% quantum yield (QY). The photoluminescence (PL) spectra of the N-GQDs are excitation dependent when excited in the range of 300–370 nm and excitation independent in the range of 380–500 nm for the core and surface states emission. The N-GQDs showed excellent photo-bleaching resistance and superior photo-stability. At room temperature and in the pH range of 3–8, the fluorescence of the N-GQDs was almost invariable. The N-GQDs can be stably preserved for at least 40 days. The average decay lifetime of the N-GQDs was 2.653 ns, and the radiative and nonradiative decay rate constants were calculated to be 2.04 × 108 s−1 and 1.73 × 108 s−1, respectively. The PL mechanism was qualitatively explained. The N-GQDs was used for cell imaging, and it showed good results, implying great potential applications for bioimaging or biomarking.
High fluorescent graphene quantum dots (GQDs) are promising in bioimaging and optoelectronics. In this paper, bright blue fluorescent N-doped GQDs were synthesized using a ultrasonic-assisted hydrothermal method. The morphology, structure, surface chemistry, optical properties, and stability subject to photo-bleaching, temperature, pH and preservation period for the N-GQDs were investigated in detail using various microscopy and spectroscopy techniques. The results showed that the N-GQDs possessed an average size of 2.65 nm, 3.57% N doping, and up to 54% quantum yield (QY). The photoluminescence (PL) spectra of the N-GQDs are excitation dependent when excited in the range of 300–370 nm and excitation independent in the range of 380–500 nm for the core and surface states emission. The N-GQDs showed excellent photo-bleaching resistance and superior photo-stability. At room temperature and in the pH range of 3–8, the fluorescence of the N-GQDs was almost invariable. The N-GQDs can be stably preserved for at least 40 days. The average decay lifetime of the N-GQDs was 2.653 ns, and the radiative and nonradiative decay rate constants were calculated to be 2.04 × 10 8 s −1 and 1.73 × 10 8 s −1 , respectively. The PL mechanism was qualitatively explained. The N-GQDs was used for cell imaging, and it showed good results, implying great potential applications for bioimaging or biomarking.
High fluorescent graphene quantum dots (GQDs) are promising in bioimaging and optoelectronics. In this paper, bright blue fluorescent N-doped GQDs were synthesized using a ultrasonic-assisted hydrothermal method. The morphology, structure, surface chemistry, optical properties, and stability subject to photo-bleaching, temperature, pH and preservation period for the N-GQDs were investigated in detail using various microscopy and spectroscopy techniques. The results showed that the N-GQDs possessed an average size of 2.65 nm, 3.57% N doping, and up to 54% quantum yield (QY). The photoluminescence (PL) spectra of the N-GQDs are excitation dependent when excited in the range of 300-370 nm and excitation independent in the range of 380-500 nm for the core and surface states emission. The N-GQDs showed excellent photo-bleaching resistance and superior photo-stability. At room temperature and in the pH range of 3-8, the fluorescence of the N-GQDs was almost invariable. The N-GQDs can be stably preserved for at least 40 days. The average decay lifetime of the N-GQDs was 2.653 ns, and the radiative and nonradiative decay rate constants were calculated to be 2.04 × 108 s-1 and 1.73 × 108 s-1, respectively. The PL mechanism was qualitatively explained. The N-GQDs was used for cell imaging, and it showed good results, implying great potential applications for bioimaging or biomarking.High fluorescent graphene quantum dots (GQDs) are promising in bioimaging and optoelectronics. In this paper, bright blue fluorescent N-doped GQDs were synthesized using a ultrasonic-assisted hydrothermal method. The morphology, structure, surface chemistry, optical properties, and stability subject to photo-bleaching, temperature, pH and preservation period for the N-GQDs were investigated in detail using various microscopy and spectroscopy techniques. The results showed that the N-GQDs possessed an average size of 2.65 nm, 3.57% N doping, and up to 54% quantum yield (QY). The photoluminescence (PL) spectra of the N-GQDs are excitation dependent when excited in the range of 300-370 nm and excitation independent in the range of 380-500 nm for the core and surface states emission. The N-GQDs showed excellent photo-bleaching resistance and superior photo-stability. At room temperature and in the pH range of 3-8, the fluorescence of the N-GQDs was almost invariable. The N-GQDs can be stably preserved for at least 40 days. The average decay lifetime of the N-GQDs was 2.653 ns, and the radiative and nonradiative decay rate constants were calculated to be 2.04 × 108 s-1 and 1.73 × 108 s-1, respectively. The PL mechanism was qualitatively explained. The N-GQDs was used for cell imaging, and it showed good results, implying great potential applications for bioimaging or biomarking.
Author Yang, Ailing
Xu, Jie
Wang, Xiaoxu
Wang, Huaidong
Qi, Chong
AuthorAffiliation 2 College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; wangxx0416@163.com (X.W.); xujie9@ouc.edu.cn (J.X.)
1 College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; wanghuai-dong@stu.ouc.edu.cn (H.W.); qichong@stu.ouc.edu.cn (C.Q.)
AuthorAffiliation_xml – name: 1 College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; wanghuai-dong@stu.ouc.edu.cn (H.W.); qichong@stu.ouc.edu.cn (C.Q.)
– name: 2 College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; wangxx0416@163.com (X.W.); xujie9@ouc.edu.cn (J.X.)
Author_xml – sequence: 1
  givenname: Huaidong
  surname: Wang
  fullname: Wang, Huaidong
– sequence: 2
  givenname: Chong
  surname: Qi
  fullname: Qi, Chong
– sequence: 3
  givenname: Ailing
  surname: Yang
  fullname: Yang, Ailing
– sequence: 4
  givenname: Xiaoxu
  surname: Wang
  fullname: Wang, Xiaoxu
– sequence: 5
  givenname: Jie
  surname: Xu
  fullname: Xu, Jie
BookMark eNptkk1v1DAQhiNUREvpjR9giQsHAnb8EZsDUrstZaUVWwRcsRxnkvUqsRc7Qeq_r5ctUlsxF1vjdx7PvJqXxZEPHoriNcHvKVX4gzc-kBxVreSz4qTCtSqZUuTowf24OEtpi3MoQiWnL4pjyiTlXLCT4tfaQ3kTJvT91k8bSC6h0KGL6PrNhC6GGdBqHp2HZMFP6Gt5GXbQoutvl-kjWu8mZ82AbmJOxslBQsa3aAHDgJaj6Z3vXxXPOzMkOLs_T4ufn69-LL6Uq_X1cnG-Ki3jfColEa2oK940UDWkFrnVxlhmKLXCclWzpsaWG95i4HXbARXMMiZUB4R1FQA9LZYHbhvMVu-iG0281cE4_TcRYq9N7tAOoDnriJHWVrgjzDY0O8SVoFLKTtW0sZn16cDazc0I7X7waIZH0Mcv3m10H_5oKSpKOc2At_eAGH7PkCY9uuzfMBgPYU66EphhQhnHWfrmiXQb5uizVXtVRYSSRGZVdVDZGFKK0GnrJjO5sP_fDZpgvd8G_XAbctG7J0X_Jviv_A6qt7WQ
CitedBy_id crossref_primary_10_3390_pharmaceutics15041170
crossref_primary_10_3390_photonics10030262
crossref_primary_10_1002_qua_26900
crossref_primary_10_1039_D3NR02612D
crossref_primary_10_1021_acsomega_3c10324
crossref_primary_10_1016_j_ccst_2024_100302
crossref_primary_10_1021_acsabm_3c00176
crossref_primary_10_1039_D2NJ02603A
crossref_primary_10_1016_j_carbon_2022_11_026
crossref_primary_10_1088_1742_6596_2548_1_012022
crossref_primary_10_1007_s10854_023_09855_0
crossref_primary_10_1016_j_ijbiomac_2025_141638
crossref_primary_10_1016_j_carbpol_2023_120928
crossref_primary_10_1016_j_foodchem_2022_134509
crossref_primary_10_1063_5_0160324
crossref_primary_10_1080_24701556_2024_2355506
crossref_primary_10_3390_molecules29235666
crossref_primary_10_3390_nano13020220
Cites_doi 10.1002/adma.200903783
10.1002/adma.201201930
10.1039/C3NR05380F
10.1071/CH15431
10.1016/j.jlumin.2016.12.006
10.1002/smll.201402648
10.1021/nl2038979
10.1088/0953-8984/9/1/004
10.1039/C2TB00189F
10.1016/j.pmatsci.2012.03.002
10.1021/acs.chemmater.6b01710
10.1039/c3ra42066c
10.1016/j.snb.2019.126866
10.1016/0584-8539(94)E0017-5
10.1021/ja206030c
10.3866/PKU.WHXB201606282
10.1039/C8GC01638K
10.1016/j.pmatsci.2013.04.003
10.1021/acsanm.9b01309
10.1016/j.cocis.2015.11.007
10.1039/C4RA17131D
10.1016/j.snb.2020.127709
10.1039/C6AY01254J
10.1016/j.carbon.2012.06.002
10.1016/j.saa.2021.119898
10.1016/j.snb.2019.05.035
10.1002/smll.201902136
10.1021/acssensors.8b00918
10.1039/C5NR07579C
10.1016/j.saa.2020.118802
10.1126/science.aaa3145
10.1002/adma.200902825
10.1016/j.matchemphys.2014.06.043
10.1039/C5RA08158K
10.1021/acsomega.9b03318
10.1016/j.cis.2018.07.001
10.3390/mi11090866
10.2147/IJN.S168570
10.1016/j.bios.2018.07.060
10.1039/c2ra20182h
10.3390/ma10111328
10.1142/S179329202050071X
10.1021/acs.jpcc.6b07935
10.1038/nnano.2012.71
10.1039/c3tc30820k
10.1021/acssuschemeng.7b02941
10.1021/am3030849
10.1016/j.snb.2020.128219
10.1039/c3nr33849e
10.1007/s11051-014-2720-8
10.1016/j.saa.2020.118964
10.1039/c3nr33794d
10.1039/C4TC01991A
10.1366/13-07307
10.1021/nl400368v
10.1039/c3nr04402e
10.1016/j.electacta.2021.138557
10.1039/C5AY02976G
10.1039/C4RA10601F
10.1021/nn4023137
10.1021/acs.jpcc.8b01385
10.1007/s12034-014-0834-3
10.1002/adma.201003819
10.1039/C4NR06365A
10.1021/ja2036749
10.1039/C7RA09126E
10.1002/smll.200700578
10.3389/fchem.2020.00424
10.1016/j.microc.2019.04.039
10.1039/C9NR05422G
10.1039/C3NR06353D
10.1021/acsanm.9b00811
10.1002/ppsc.201470018
10.1002/adma.201102866
10.1002/smll.201302286
10.1016/j.rser.2020.110391
10.1126/science.1102896
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/nano11112798
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_54f1a8cc20f14cb39915963888f973bc
PMC8623353
10_3390_nano11112798
GeographicLocations United States--US
China
Japan
GeographicLocations_xml – name: China
– name: United States--US
– name: Japan
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c455t-816d6725bbe2b176009bac4a33c6c5974b70c5a5d0e57dfe364c4469fe14f2ee3
IEDL.DBID BENPR
ISSN 2079-4991
IngestDate Wed Aug 27 01:32:21 EDT 2025
Thu Aug 21 14:32:26 EDT 2025
Fri Jul 11 00:29:27 EDT 2025
Fri Jul 25 12:11:45 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
Tue Jul 01 01:17:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-816d6725bbe2b176009bac4a33c6c5974b70c5a5d0e57dfe364c4469fe14f2ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2602169818?pq-origsite=%requestingapplication%
PMID 34835564
PQID 2602169818
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_54f1a8cc20f14cb39915963888f973bc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8623353
proquest_miscellaneous_2604013450
proquest_journals_2602169818
crossref_citationtrail_10_3390_nano11112798
crossref_primary_10_3390_nano11112798
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211022
PublicationDateYYYYMMDD 2021-10-22
PublicationDate_xml – month: 10
  year: 2021
  text: 20211022
  day: 22
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yang (ref_21) 2014; 6
Xu (ref_6) 2021; 260
Tang (ref_5) 2013; 58
Son (ref_19) 2012; 7
Ju (ref_74) 2014; 4
Choi (ref_64) 2016; 28
Liu (ref_20) 2015; 347
ref_58
Li (ref_49) 2011; 23
ref_10
Li (ref_53) 2018; 6
Chu (ref_27) 2019; 298
Shin (ref_79) 2014; 10
Pang (ref_15) 2016; 8
Hou (ref_45) 2016; 69
Geim (ref_1) 2009; 6
Baskin (ref_38) 1955; 100
Liu (ref_2) 2021; 246
Song (ref_7) 2010; 22
Kaur (ref_59) 2018; 259
Bao (ref_66) 2011; 23
Qian (ref_69) 2013; 3
Tetsuka (ref_41) 2012; 24
Zhu (ref_30) 2012; 2
Zheng (ref_70) 2015; 11
Du (ref_75) 2016; 8
Gu (ref_43) 2019; 11
Kaewanan (ref_25) 2017; 7
Bourlinos (ref_57) 2008; 4
Sun (ref_9) 2013; 5
Kuila (ref_4) 2012; 57
Du (ref_26) 2014; 16
Gavgani (ref_28) 2015; 5
Xu (ref_13) 2015; 3
Novoselov (ref_39) 2004; 306
Shinde (ref_50) 2015; 38
Peng (ref_40) 2012; 12
Hu (ref_71) 2013; 1
Schroer (ref_51) 2019; 2
Pan (ref_22) 2010; 22
Zheng (ref_8) 2013; 7
Sangam (ref_23) 2018; 20
Zhang (ref_46) 2014; 68
Dai (ref_67) 2014; 31
Jin (ref_18) 2015; 20
Zhang (ref_34) 2019; 147
Hong (ref_37) 2018; 13
Ghosh (ref_16) 2021; 135
Lin (ref_72) 2015; 7
Wang (ref_63) 2018; 3
Jiang (ref_44) 2016; 8
Li (ref_54) 2016; 120
Hatamluyi (ref_35) 2020; 318
Tarakeshwar (ref_42) 1994; 50
Wu (ref_61) 2014; 6
Wu (ref_47) 2013; 1
Santiago (ref_52) 2019; 2
Li (ref_31) 2012; 134
Liu (ref_3) 2020; 243
Ruiyi (ref_33) 2020; 309
Dong (ref_24) 2012; 50
Li (ref_12) 2018; 119
Qu (ref_32) 2013; 5
Liu (ref_29) 2013; 5
Younis (ref_78) 2020; 8
Wang (ref_11) 2020; 15
Yang (ref_56) 2018; 122
Gupta (ref_17) 2011; 133
Zhan (ref_48) 2019; 4
Zhu (ref_65) 2014; 147
Fan (ref_76) 2015; 5
Li (ref_55) 2013; 5
Oshima (ref_36) 1997; 9
Lu (ref_77) 2019; 15
Shehab (ref_14) 2017; 184
Vercelli (ref_62) 2021; 387
Liu (ref_68) 2013; 13
Wang (ref_73) 2016; 32
Moniruzzaman (ref_60) 2019; 295
References_xml – volume: 22
  start-page: 2206
  year: 2010
  ident: ref_7
  article-title: Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903783
– volume: 24
  start-page: 5333
  year: 2012
  ident: ref_41
  article-title: Optically tunable amino-functionalized graphene quantum dots
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201930
– volume: 6
  start-page: 1890
  year: 2014
  ident: ref_21
  article-title: Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate
  publication-title: Nanoscale
  doi: 10.1039/C3NR05380F
– volume: 69
  start-page: 357
  year: 2016
  ident: ref_45
  article-title: Microwave-Assisted Synthesis of Nitrogen-Doped Multi-Layer Graphene Quantum Dots with Oxygen-Rich Functional Groups
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH15431
– volume: 184
  start-page: 110
  year: 2017
  ident: ref_14
  article-title: Graphene quantum dots prepared from glucose as optical sensor for glucose
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2016.12.006
– volume: 11
  start-page: 1620
  year: 2015
  ident: ref_70
  article-title: Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications
  publication-title: Small
  doi: 10.1002/smll.201402648
– volume: 12
  start-page: 844
  year: 2012
  ident: ref_40
  article-title: Graphene Quantum Dots Derived from Carbon Fibers
  publication-title: Nano Lett.
  doi: 10.1021/nl2038979
– volume: 9
  start-page: 1
  year: 1997
  ident: ref_36
  article-title: Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/9/1/004
– volume: 1
  start-page: 39
  year: 2013
  ident: ref_71
  article-title: One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C2TB00189F
– volume: 57
  start-page: 1061
  year: 2012
  ident: ref_4
  article-title: Chemical functionalization of graphene and its applications
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2012.03.002
– volume: 28
  start-page: 6840
  year: 2016
  ident: ref_64
  article-title: Integrative Approach toward Uncovering the Origin of Photoluminescence in Dual Heteroatom-Doped Carbon Nanodots
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01710
– volume: 3
  start-page: 14571
  year: 2013
  ident: ref_69
  article-title: Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: An experimental and theoretical investigation
  publication-title: RSC Adv.
  doi: 10.1039/c3ra42066c
– volume: 298
  start-page: 126866
  year: 2019
  ident: ref_27
  article-title: Electrochemical aptasensor for detection of acetamiprid in vegetables with graphene aerogel-glutamic acid functionalized graphene quantum dot/gold nanostars as redox probe with catalyst
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.126866
– volume: 50
  start-page: 2327
  year: 1994
  ident: ref_42
  article-title: Ground state vibrations of citric acid and the citrate trianion—An ab initio study
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/0584-8539(94)E0017-5
– volume: 134
  start-page: 15
  year: 2012
  ident: ref_31
  article-title: Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206030c
– volume: 32
  start-page: 2636
  year: 2016
  ident: ref_73
  article-title: Surface Defect Passivation of Graphene Quantum Dots by Amino Functionalization and Photoluminescence Emission Enhancement
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB201606282
– volume: 20
  start-page: 4245
  year: 2018
  ident: ref_23
  article-title: Sustainable synthesis of single crystalline sulphur-doped graphene quantum dots for bioimaging and beyond
  publication-title: Green Chem.
  doi: 10.1039/C8GC01638K
– volume: 58
  start-page: 1244
  year: 2013
  ident: ref_5
  article-title: Graphene-analogous low-dimensional materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.04.003
– volume: 2
  start-page: 6858
  year: 2019
  ident: ref_51
  article-title: Nitrogen-Sulfur-Doped Graphene Quantum Dots with Metal Ion-Resistance for Bioimaging
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01309
– volume: 20
  start-page: 439
  year: 2015
  ident: ref_18
  article-title: Graphene, graphene quantum dots and their applications in optoelectronics
  publication-title: Curr. Opin. Colloid. Interface Sci.
  doi: 10.1016/j.cocis.2015.11.007
– volume: 5
  start-page: 19773
  year: 2015
  ident: ref_76
  article-title: Fluorescent graphene quantum dots for biosensing and bioimaging
  publication-title: RSC Adv.
  doi: 10.1039/C4RA17131D
– volume: 309
  start-page: 127709
  year: 2020
  ident: ref_33
  article-title: Electrochemical detection of cancer cells in human blood using folic acid and glutamic acid-functionalized graphene quantum dot-palladium@gold as redox probe with excellent electrocatalytic activity and target recognition
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.127709
– volume: 8
  start-page: 4912
  year: 2016
  ident: ref_15
  article-title: Graphene quantum dots and Nafion composite as an ultrasensitive electrochemical sensor for the detection of dopamine
  publication-title: Anal. Methods
  doi: 10.1039/C6AY01254J
– volume: 50
  start-page: 4738
  year: 2012
  ident: ref_24
  article-title: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.06.002
– volume: 260
  start-page: 119898
  year: 2021
  ident: ref_6
  article-title: Graphene oxide-regulated low-background aptasensor for the “turn on” detection of tetracycline
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2021.119898
– volume: 295
  start-page: 12
  year: 2019
  ident: ref_60
  article-title: N-doped carbon dots with tunable emission for multifaceted application: Solvatochromism, moisture sensing, pH sensing, and solid state multicolor lighting
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.05.035
– volume: 15
  start-page: 1902136
  year: 2019
  ident: ref_77
  article-title: Graphene Quantum Dots for Optical Bioimaging
  publication-title: Small
  doi: 10.1002/smll.201902136
– volume: 3
  start-page: 2408
  year: 2018
  ident: ref_63
  article-title: Graphene Quantum Dots Integrated in lonophore-Based Fluorescent Nanosensors for Na+ and K+
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.8b00918
– volume: 8
  start-page: 2532
  year: 2016
  ident: ref_75
  article-title: Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications
  publication-title: Nanoscale
  doi: 10.1039/C5NR07579C
– volume: 243
  start-page: 118802
  year: 2020
  ident: ref_3
  article-title: Fabrication of graphene oxide and sliver nanoparticle hybrids for fluorescence quenching of DNA labeled by methylene blue
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118802
– volume: 347
  start-page: 970
  year: 2015
  ident: ref_20
  article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway
  publication-title: Science
  doi: 10.1126/science.aaa3145
– volume: 22
  start-page: 734
  year: 2010
  ident: ref_22
  article-title: Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902825
– volume: 147
  start-page: 963
  year: 2014
  ident: ref_65
  article-title: Hydrothermal synthesis of two photoluminescent nitrogen-doped graphene quantum dots emitted green and khaki luminescence
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.06.043
– volume: 5
  start-page: 57559
  year: 2015
  ident: ref_28
  article-title: A room temperature volatile organic compound sensor with enhanced performance, fast response and recovery based on N-doped graphene quantum dots and poly(3,4-ethylenedioxythiophene)–poly (styrene sulfonate) nanocomposite
  publication-title: RSC Adv.
  doi: 10.1039/C5RA08158K
– volume: 4
  start-page: 22574
  year: 2019
  ident: ref_48
  article-title: Ethanol-Precipitation-Assisted Highly Efficient Synthesis of Nitrogen-Doped Carbon Quantum Dots from Chitosan
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b03318
– volume: 259
  start-page: 44
  year: 2018
  ident: ref_59
  article-title: Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2018.07.001
– ident: ref_10
  doi: 10.3390/mi11090866
– volume: 13
  start-page: 4807
  year: 2018
  ident: ref_37
  article-title: Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S168570
– volume: 119
  start-page: 156
  year: 2018
  ident: ref_12
  article-title: Electrochemical sensor for detection of cancer cell based on folic acid and octadecylamine-functionalized graphene aerogel microspheres
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.07.060
– volume: 2
  start-page: 2717
  year: 2012
  ident: ref_30
  article-title: Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20182h
– ident: ref_58
  doi: 10.3390/ma10111328
– volume: 15
  start-page: 2050071
  year: 2020
  ident: ref_11
  article-title: A Strategy for Microwave-Controlled Release of Anticancer Drugs: (Fe3O4/nGO) @mSiO2/GQDs Nanocomposite Carrier Jointly Enhanced by nGO and GQDs
  publication-title: Nano
  doi: 10.1142/S179329202050071X
– volume: 120
  start-page: 26004
  year: 2016
  ident: ref_54
  article-title: Chemical Nature of Redox-Controlled Photoluminescence of Graphene Quantum Dots by Post-Synthesis Treatment
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b07935
– volume: 6
  start-page: 11
  year: 2009
  ident: ref_1
  article-title: The rise of graphene
  publication-title: Nat. Mater.
– volume: 7
  start-page: 465
  year: 2012
  ident: ref_19
  article-title: Emissive ZnO-graphene quantum dots for white-light-emitting diodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.71
– volume: 1
  start-page: 4676
  year: 2013
  ident: ref_47
  article-title: Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc30820k
– volume: 6
  start-page: 1708
  year: 2018
  ident: ref_53
  article-title: Redox Induced Fluorescence On-Off Switching Based on Nitrogen Enriched Graphene Quantum Dots for Formaldehyde Detection and Bioimaging
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02941
– volume: 5
  start-page: 1174
  year: 2013
  ident: ref_9
  article-title: Improvement of Photoluminescence of Graphene Quantum Dots with a Biocompatible Photochemical Reduction Pathway and Its Bioimaging Application
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3030849
– volume: 318
  start-page: 128219
  year: 2020
  ident: ref_35
  article-title: Ultra-sensitive molecularly imprinted electrochemical sensor for patulin detection based on a novel assembling strategy using Au@Cu-MOF/N-GQDs
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128219
– volume: 5
  start-page: 4015
  year: 2013
  ident: ref_55
  article-title: Focusing on luminescent graphene quantum dots: Current status and future perspectives
  publication-title: Nanoscale
  doi: 10.1039/c3nr33849e
– volume: 16
  start-page: 2720
  year: 2014
  ident: ref_26
  article-title: Nitrogen-doped carbon dots as multifunctional fluorescent probes
  publication-title: J. Nanopar. Res.
  doi: 10.1007/s11051-014-2720-8
– volume: 246
  start-page: 118964
  year: 2021
  ident: ref_2
  article-title: Facile synthesis of carbon dots from wheat straw for colorimetric and fluorescent detection of fluoride and cellular imaging
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118964
– volume: 5
  start-page: 1810
  year: 2013
  ident: ref_29
  article-title: Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites
  publication-title: Nanoscale
  doi: 10.1039/c3nr33794d
– volume: 3
  start-page: 291
  year: 2015
  ident: ref_13
  article-title: Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01991A
– volume: 68
  start-page: 570
  year: 2014
  ident: ref_46
  article-title: Chemical Structure and Interlayer Distance Correlation of Graphite Oxide in the Heating Process as Revealed by In Situ Fourier Transform Infrared Spectroscopy and Wide-Angle X-ray Diffraction Techniques
  publication-title: Appl. Spectrosc.
  doi: 10.1366/13-07307
– volume: 13
  start-page: 2436
  year: 2013
  ident: ref_68
  article-title: Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging
  publication-title: Nano Lett.
  doi: 10.1021/nl400368v
– volume: 5
  start-page: 12272
  year: 2013
  ident: ref_32
  article-title: Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts
  publication-title: Nanoscale
  doi: 10.1039/c3nr04402e
– volume: 387
  start-page: 138557
  year: 2021
  ident: ref_62
  article-title: Nitrogen-doped carbon quantum dots obtained hydrothermally from citric acid and urea: The role of the specific nitrogen centers in their electrochemical and optical responses
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138557
– volume: 8
  start-page: 2448
  year: 2016
  ident: ref_44
  article-title: A sensitive enzyme-free hydrogen peroxide sensor based on a chitosan-graphene quantum dot/silver nanocube nanocomposite modified electrode
  publication-title: Anal. Methods
  doi: 10.1039/C5AY02976G
– volume: 4
  start-page: 52583
  year: 2014
  ident: ref_74
  article-title: Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging
  publication-title: RSC Adv.
  doi: 10.1039/C4RA10601F
– volume: 7
  start-page: 6278
  year: 2013
  ident: ref_8
  article-title: Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes
  publication-title: ACS Nano
  doi: 10.1021/nn4023137
– volume: 122
  start-page: 6483
  year: 2018
  ident: ref_56
  article-title: Exploring the Emissive States of Heteroatom-Doped Graphene Quantum Dots
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b01385
– volume: 38
  start-page: 435
  year: 2015
  ident: ref_50
  article-title: Electrochemical preparation of nitrogen-doped graphene quantum dots and their size-dependent electrocatalytic activity for oxygen reduction
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-014-0834-3
– volume: 23
  start-page: 776
  year: 2011
  ident: ref_49
  article-title: An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003819
– volume: 7
  start-page: 1872
  year: 2015
  ident: ref_72
  article-title: A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution
  publication-title: Nanoscale
  doi: 10.1039/C4NR06365A
– volume: 133
  start-page: 9960
  year: 2011
  ident: ref_17
  article-title: Luminscent graphene quantum dots for organic photovoltaic devices
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2036749
– volume: 7
  start-page: 48058
  year: 2017
  ident: ref_25
  article-title: A fluorescence switching sensor based on graphene quantum dots decorated with Hg2+ and hydrolyzed thioacetamide for highly Ag+-sensitive and selective detection
  publication-title: RSC Adv.
  doi: 10.1039/C7RA09126E
– volume: 4
  start-page: 455
  year: 2008
  ident: ref_57
  article-title: Surface functionalized carbogenic quantum dots
  publication-title: Small
  doi: 10.1002/smll.200700578
– volume: 8
  start-page: 424
  year: 2020
  ident: ref_78
  article-title: Recent Advances on Graphene Quantum Dots for Bioimaging Applications
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00424
– volume: 147
  start-page: 1141
  year: 2019
  ident: ref_34
  article-title: Simultaneous detection of iodide and mercuric ions by nitrogen-sulfur co-doped graphene quantum dots based on flow injection turn off-on chemiluminescence analysis system
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2019.04.039
– volume: 11
  start-page: 16553
  year: 2019
  ident: ref_43
  article-title: Tailoring fluorescence emissions, quantum yields, and white light emitting from nitrogen-doped graphene and carbon nitride quantum dots
  publication-title: Nanoscale
  doi: 10.1039/C9NR05422G
– volume: 6
  start-page: 3868
  year: 2014
  ident: ref_61
  article-title: A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots
  publication-title: Nanoscale
  doi: 10.1039/C3NR06353D
– volume: 2
  start-page: 3925
  year: 2019
  ident: ref_52
  article-title: Diethylenetriamine-Doped Graphene Oxide Quantum Dots with Tunable Photoluminescence for Optoelectronic Applications
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00811
– volume: 31
  start-page: 509
  year: 2014
  ident: ref_67
  article-title: Doping: Versatile Graphene Quantum Dots with Tunable Nitrogen Doping
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201470018
– volume: 23
  start-page: 5801
  year: 2011
  ident: ref_66
  article-title: Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102866
– volume: 10
  start-page: 866
  year: 2014
  ident: ref_79
  article-title: Mass production of graphene quantum dots by one-pot synthesis directly from graphite in high yield
  publication-title: Small
  doi: 10.1002/smll.201302286
– volume: 135
  start-page: 110391
  year: 2021
  ident: ref_16
  article-title: Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2020.110391
– volume: 100
  start-page: 544
  year: 1955
  ident: ref_38
  article-title: Lattice Constants of Graphite at Low Temperatures
  publication-title: Phys. Rev. Lett.
– volume: 306
  start-page: 666
  year: 2004
  ident: ref_39
  article-title: Electric Field Effect in Atomically Thin Carbon Films
  publication-title: Science
  doi: 10.1126/science.1102896
SSID ssj0000913853
Score 2.2737103
Snippet High fluorescent graphene quantum dots (GQDs) are promising in bioimaging and optoelectronics. In this paper, bright blue fluorescent N-doped GQDs were...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2798
SubjectTerms Biocompatibility
Bleaching
Carbon
cell imaging
Decay
Decay rate
Excitation
Fluorescence
Fourier transforms
Graphene
Graphite
Medical imaging
Morphology
Nitrogen
nitrogen doped graphene quantum dots
Optical properties
Optoelectronics
pH effects
photo-stability
Photobleaching
Photochemical reactions
Photoluminescence
Photons
Quantum dots
Radiation
Rate constants
Room temperature
Spectroscopy
Surface chemistry
Surface stability
ultrasonic-assisted hydrothermal
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzhULW1FWloZqT1VEYkfidMby6OAeFUFiVMj2xkLpMVZsbsH_n3HTlglh6qXXuOR4ozHM_PZk28I-cIcSM1KhhupsKmQqkqVM7ggGkAIW2SmCf87X1wWJ7fi7E7eDVp9hZqwjh64U9yeFC7XylqWuVxYg_EUAzAajVKuKrmxwftizBuAqeiDq5xjIOoq3Tni-j2vfRvcAysrNYpBkap_lF-OqyMH4eb4NXnV54l0v5vfG7IGfotsDtgD35LfVx7S63ZBfz17TOPmD3PaOjqJcJtOpkug58vHUNUeXkEv08N2Bg398fNw_p1ezeIZNr0OZ_FPgVSVat_QA5hO6elj7Fz0jtweH90cnKR9u4TUCikXqcqLpiiZNAaYycOFW2W0FZpzW9iAG0yZWallk4EsGwe8EBbBYOUgF44B8Pdk3bcetgk16AezXDnInBBNZY1tGCZWiK4wATJKJuTbiwJr23OJh5YW0xoxRVB3PVR3Qr6upGcdh8Zf5CZhLVYygfk6PkB7qHt7qP9lDwnZeVnJut-O8xpBG8uLCpOThOyuhnEjhdsR7aFdRpmANYXMElKOLGA0ofGIf7iPlNyICzmX_MP_-IKPZIOFwhkMkIztkPXF0xI-YeazMJ-jkf8BvvEBlw
  priority: 102
  providerName: Directory of Open Access Journals
Title One-Pot Synthesis of Bright Blue Luminescent N-Doped GQDs: Optical Properties and Cell Imaging
URI https://www.proquest.com/docview/2602169818
https://www.proquest.com/docview/2604013450
https://pubmed.ncbi.nlm.nih.gov/PMC8623353
https://doaj.org/article/54f1a8cc20f14cb39915963888f973bc
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9gIPiPEhAqMyEjyhaIljJw4viG7rBoKufEzaE5Ht2DCpc0rTPvDf785Nu-ZhvCaWHN357n53vvyOkDfMWaFYwcCQchNzIctYOg0KUdZybvJE1_i_89dxfnbBP1-Ky67g1nZtlWufGBx13RiskR8C7mZpXkJ8-TD7G-PUKLxd7UZo7JA9cMESkq-94cl48n1TZUHWSwhIq473DPL7Q698g26CFaXsxaJA2d_Dmf0uya2wM3pEHnZ4kX5cKXif3LP-MXmwxSL4hPw69zaeNAv6458HONdetbRxdBjSbjqcLi39srzG7nbcgo7j42Zma3r67bh9T89noZZNJ1iTnyO5KlW-pkd2OqWfrsMEo6fkYnTy8-gs7sYmxIYLsYhlmtd5wYTWlukUL95KrQxXWWZyg_mDLhIjlKgTK4ra2SznBpLC0tmUO2Zt9ozs-sbb54Rq8IdJKp1NHOd1abSpGQAskDQAIS1FRN6tBViZjlMcR1tMK8gtUNzVtrgj8nazerbi0rhj3RB1sVmDDNjhQTP_XXUGVQnuUiWNYYlLudGAswCYgTOR0pVFpk1EDtaarDqzbKvbQxSR15vXYFB4S6K8bZZhDeacXCQRKXonoPdB_Tf-6k-g5ob8MMtE9uL_m78k9xm2xkAIZOyA7C7mS_sKsM1CD8iOHJ0OumM8CBWCG_wC_M4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeAAeEJ8iMMBI7AlFSxw7cZAQoitdy7puiE3aEyF2bJjUOaVphfZP8TdylyaleYC3vcanJPJ9_c53viPkNbNG5CxhoEix9rmQqS-tAobkxnCu40AVeN_5aBIPz_inc3G-RX63d2GwrLK1ibWhLkqNZ-R7gLtZGKfgX97Pfvo4NQqzq-0IjZVYHJqrXxCyVe9GfeDvLmODj6f7Q7-ZKuBrLsTCl2FcxAkTShmmQsxLpSrXPI8iHWuE1yoJtMhFERiRFNZEMdcQM6XWhNwyYyJ47w1yk0dRiholBwfrMx3ssQnub1VfD-vBnstdiUaJJanseL56QEAH1XZrMjec3OAeudugU_phJU73yZZxD8idjZ6FD8nXY2f8k3JBv1w5AI_VRUVLS3t1kE9706Wh4-Ul1tLjJ-jE75czU9CDz_3qLT2e1Sfn9AQzAHNs5UpzV9B9M53S0WU9L-kRObuW7XxMtl3pzBNCFVjfIJTWBJbzItVKFwzgHMR0ALuUFB55025gppsO5jhIY5pBJIPbnW1ut0d219SzVeeOf9D1kBdrGuy3XT8o59-zRn0zwW2YS61ZYEOuFaA6gIFguqS0aRIp7ZGdlpNZYwSq7K_IeuTVehnUF3MyuTPlsqbBCJeLwCNJRwI6P9RdcRc_6kbgEI1GkYie_v_jL8mt4enROBuPJofPyG2GRTngfBnbIduL-dI8B1S1UC9qUabk23Xrzh9hiDas
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVELwgDiFS4FFok_Iir2HDySESNPQ0JKGo1KfMN71bqmUrkMOof41fh2zjh3iB3jrq3dkWzvXNzuzMwAvqdEipzFFRYqUz0WS-omRyJBca85VFMjC3Xf-OIoOT_mHM3G2Bb-buzCurLKxiZWhLkrlzsi7iLtpGKXoX7qmLosY9wdvpz99N0HKZVqbcRorETnSV78wfJu_GfaR13uUDg6-7h_69YQBX3EhFn4SRkUUUyGlpjJ0OapU5ornjKlIOagt40CJXBSBFnFhNIu4wvgpNTrkhmrN8L03YDvGqCjowHbvYDT-vD7hcR030Rmuqu0ZS4OuzW3pTBSN06TlB6txAS2M267Q3HB5g7twp8aq5N1KuO7Blrb34fZGB8MH8O3Ean9cLsiXK4tQcn4xJ6UhvSrkJ73JUpPj5aWrrHefICO_X051Qd5_6s9fk5NpdY5Oxi4fMHONXUluC7KvJxMyvKymJz2E02vZ0EfQsaXVj4FItMVBmBgdGM6LVElVUAR3GOEhCJOJ8OBVs4GZqvuZu7EakwzjGrfd2eZ2e7C3pp6u-nj8g67neLGmcd23qwfl7DyrlTkT3IR5ohQNTMiVRIyHoBANWZKYNGZSebDbcDKrTcI8-yvAHrxYL6MyuwxNbnW5rGhcvMtF4EHckoDWD7VX7MWPqi04xqaMCbbz_48_h5uoN9nxcHT0BG5RV6GDnpjSXegsZkv9FCHWQj6rZZnA9-tWnz_ZHTw-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Pot+Synthesis+of+Bright+Blue+Luminescent+N-Doped+GQDs%3A+Optical+Properties+and+Cell+Imaging&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Huaidong&rft.au=Qi%2C+Chong&rft.au=Yang%2C+Ailing&rft.au=Wang%2C+Xiaoxu&rft.date=2021-10-22&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=11&rft.issue=11&rft.spage=2798&rft_id=info:doi/10.3390%2Fnano11112798&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_nano11112798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon