Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations

Massive stars end their lives in explosions with kinetic energies on the order of 1051 erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant a...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 517; p. A80
Main Authors Fischer, T., Whitehouse, S. C., Mezzacappa, A., Thielemann, F.-K., Liebendörfer, M.
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.07.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Massive stars end their lives in explosions with kinetic energies on the order of 1051 erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant at the center, the protoneutron star (PNS), heat the material above the PNS surface. This heat is partly converted into kinetic energy, and the material accelerates to an outflow that is known as the neutrino-driven wind. For the first time we simulate the collapse, bounce, explosion, and the neutrino-driven wind phases consistently over more than 20 s. Our numerical model is based on spherically symmetric general relativistic radiation hydrodynamics using spectral three-flavor Boltzmann neutrino transport. In simulations where no explosions are obtained naturally, we model neutrino-driven explosions for low- and intermediate-mass Fe-core progenitor stars by enhancing the charged current reaction rates. In the case of a special progenitor star, the 8.8 $M_\odot$ O-Ne-Mg-core, the explosion in spherical symmetry was obtained without enhanced opacities. The post-explosion evolution is in qualitative agreement with static steady-state and parametrized dynamic models of the neutrino-driven wind. On the other hand, we generally find lower neutrino luminosities and mean neutrino energies, as well as a different evolutionary behavior of the neutrino luminosities and mean neutrino energies. The neutrino-driven wind is proton-rich for more than 10 s and the contraction of the PNS differs from the assumptions made for the conditions at the inner boundary in previous neutrino-driven wind studies. Despite the moderately high entropies of about 100 kB/baryon and the fast expansion timescales, the conditions found in our models are unlikely to favor r-process nucleosynthesis. The simulations are carried out until the neutrino-driven wind settles down to a quasi-stationary state. About 5 s after the bounce, the peak temperature inside the PNS already starts to decrease because of the continued deleptonization. This moment determines the beginning of a cooling phase dominated by the emission of neutrinos. We discuss the physical conditions of the quasi-static PNS evolution and take the effects of deleptonization and mass accretion from early fallback into account.
AbstractList Massive stars end their lives in explosions with kinetic energies on the order of 1051 erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant at the center, the protoneutron star (PNS), heat the material above the PNS surface. This heat is partly converted into kinetic energy, and the material accelerates to an outflow that is known as the neutrino-driven wind. For the first time we simulate the collapse, bounce, explosion, and the neutrino-driven wind phases consistently over more than 20 s. Our numerical model is based on spherically symmetric general relativistic radiation hydrodynamics using spectral three-flavor Boltzmann neutrino transport. In simulations where no explosions are obtained naturally, we model neutrino-driven explosions for low- and intermediate-mass Fe-core progenitor stars by enhancing the charged current reaction rates. In the case of a special progenitor star, the 8.8 $M_\odot$ O-Ne-Mg-core, the explosion in spherical symmetry was obtained without enhanced opacities. The post-explosion evolution is in qualitative agreement with static steady-state and parametrized dynamic models of the neutrino-driven wind. On the other hand, we generally find lower neutrino luminosities and mean neutrino energies, as well as a different evolutionary behavior of the neutrino luminosities and mean neutrino energies. The neutrino-driven wind is proton-rich for more than 10 s and the contraction of the PNS differs from the assumptions made for the conditions at the inner boundary in previous neutrino-driven wind studies. Despite the moderately high entropies of about 100 kB/baryon and the fast expansion timescales, the conditions found in our models are unlikely to favor r-process nucleosynthesis. The simulations are carried out until the neutrino-driven wind settles down to a quasi-stationary state. About 5 s after the bounce, the peak temperature inside the PNS already starts to decrease because of the continued deleptonization. This moment determines the beginning of a cooling phase dominated by the emission of neutrinos. We discuss the physical conditions of the quasi-static PNS evolution and take the effects of deleptonization and mass accretion from early fallback into account.
Massive stars end their lives in explosions with kinetic energies on the order of 10{sup 51} erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant at the center, the protoneutron star (PNS), heat the material above the PNS surface. This heat is partly converted into kinetic energy, and the material accelerates to an outflow that is known as the neutrino-driven wind. For the first time we simulate the collapse, bounce, explosion, and the neutrino-driven wind phases consistently over more than 20 s. Our numerical model is based on spherically symmetric general relativistic radiation hydrodynamics using spectral three-flavor Boltzmann neutrino transport. In simulations where no explosions are obtained naturally, we model neutrino-driven explosions for low- and intermediate-mass Fe-core progenitor stars by enhancing the charged current reaction rates. In the case of a special progenitor star, the 8.8 M{circle_dot} O-Ne-Mg-core, the explosion in spherical symmetry was obtained without enhanced opacities. The post-explosion evolution is in qualitative agreement with static steady-state and parametrized dynamic models of the neutrino-driven wind. On the other hand, we generally find lower neutrino luminosities and mean neutrino energies, as well as a different evolutionary behavior of the neutrino luminosities and mean neutrino energies. The neutrino-driven wind is proton-rich for more than 10 s and the contraction of the PNS differs from the assumptions made for the conditions at the inner boundary in previous neutrino-driven wind studies. Despite the moderately high entropies of about 100 k{sub B}/baryon and the fast expansion timescales, the conditions found in our models are unlikely to favor r-process nucleosynthesis. The simulations are carried out until the neutrino-driven wind settles down to a quasi-stationary state. About 5 s after the bounce, the peak temperature inside the PNS already starts to decrease because of the continued deleptonization. This moment determines the beginning of a cooling phase dominated by the emission of neutrinos. We discuss the physical conditions of the quasi-static PNS evolution and take the effects of deleptonization and mass accretion from early fallback into account.
Author Thielemann, F.-K.
Liebendörfer, M.
Mezzacappa, A.
Fischer, T.
Whitehouse, S. C.
Author_xml – sequence: 1
  givenname: T.
  surname: Fischer
  fullname: Fischer, T.
  organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
– sequence: 2
  givenname: S. C.
  surname: Whitehouse
  fullname: Whitehouse, S. C.
  organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
– sequence: 3
  givenname: A.
  surname: Mezzacappa
  fullname: Mezzacappa, A.
  organization: Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-1200, USA
– sequence: 4
  givenname: F.-K.
  surname: Thielemann
  fullname: Thielemann, F.-K.
  organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
– sequence: 5
  givenname: M.
  surname: Liebendörfer
  fullname: Liebendörfer, M.
  organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23398034$$DView record in Pascal Francis
https://www.osti.gov/biblio/1036601$$D View this record in Osti.gov
BookMark eNqFkU9vEzEQxS1UJNLST8DFqsRx6diza-8eqwpapAg48EfqxXJtL3G7sSvbCc2B746ToD1w4WSN3u89j96ckpMQgyPkDYN3DDp2CQBtI1CwSw4wMGQgXpAFa5E3IFtxQhYz8Yqc5vxQR856XJDfX1IsNWxTUgw0F52o28ZpU3wddbC0rBw9yD7Exia_dYH-8lXwgf50wSU90eQmXfzW5-LNDNOkrdeHnNXOpmh3Qa-9yTT79WY6CPk1eTnqKbvzv-8Z-fbh_dfr22b5-ebj9dWyMW3XlUbaVjMxgjG9BYeIgBYMk7aTI--xk0Jq6DiHcRzvewODEINEbTouOd73Fs_IxTE31hVVNr44szIxBGeKYoBCAKvQ2yP0pLPR05h0MD6rp-TXOu0URxx6wLZyeORMijknN84IA7U_h9qXrfZlq_kc1TX846pbHFooSfvpP97m6K0Nu-f5O50elZAoO9XDD3XL5R3w5Xf1Cf8AL0Sh9g
CODEN AAEJAF
CitedBy_id crossref_primary_10_1103_PhysRevC_100_025806
crossref_primary_10_1103_PhysRevD_106_043026
crossref_primary_10_1016_j_nuclphysbps_2011_04_118
crossref_primary_10_1103_PhysRevLett_106_201104
crossref_primary_10_1103_PhysRevC_97_035804
crossref_primary_10_1103_PhysRevD_103_023016
crossref_primary_10_1103_PhysRevD_106_043029
crossref_primary_10_1103_PhysRevD_84_103008
crossref_primary_10_1088_0067_0049_194_2_39
crossref_primary_10_1051_epjconf_201610906005
crossref_primary_10_1016_j_ppnp_2019_04_002
crossref_primary_10_1088_0004_637X_790_2_115
crossref_primary_10_1088_0031_8949_2013_T152_014011
crossref_primary_10_1088_1361_6471_ab0849
crossref_primary_10_1016_j_ppnp_2011_01_027
crossref_primary_10_1051_0004_6361_201015530
crossref_primary_10_3847_0067_0049_223_2_22
crossref_primary_10_1103_PhysRevC_98_055805
crossref_primary_10_1088_0264_9381_30_12_123001
crossref_primary_10_1051_0004_6361_202348281
crossref_primary_10_3847_2041_8213_ad5f02
crossref_primary_10_1002_andp_202200306
crossref_primary_10_1088_0004_637X_746_2_180
crossref_primary_10_1093_mnras_stu604
crossref_primary_10_1051_0004_6361_201628991
crossref_primary_10_1051_0004_6361_201116591
crossref_primary_10_3847_1538_4357_abd476
crossref_primary_10_3847_1538_4357_833_2_282
crossref_primary_10_1093_mnras_sty2460
crossref_primary_10_1103_PhysRevD_94_044018
crossref_primary_10_1103_PhysRevD_88_023008
crossref_primary_10_1051_0004_6361_201220584
crossref_primary_10_1093_ptep_pts017
crossref_primary_10_1103_PhysRevD_93_024011
crossref_primary_10_1088_0004_637X_773_1_78
crossref_primary_10_1093_mnras_stu1352
crossref_primary_10_1103_PhysRevD_85_043011
crossref_primary_10_1016_j_phpro_2014_12_090
crossref_primary_10_1093_mnras_sty1018
crossref_primary_10_1103_PhysRevD_89_103528
crossref_primary_10_1103_PhysRevD_105_063028
crossref_primary_10_1088_0004_637X_774_1_17
crossref_primary_10_1103_PhysRevD_101_063027
crossref_primary_10_1103_PhysRevD_96_124005
crossref_primary_10_1016_j_chinastron_2016_05_005
crossref_primary_10_1103_PhysRevD_105_063026
crossref_primary_10_1093_mnras_stad372
crossref_primary_10_1088_1361_6471_aaa90a
crossref_primary_10_1088_1742_6596_403_1_012034
crossref_primary_10_1103_RevModPhys_89_015007
crossref_primary_10_1103_PhysRevC_107_014618
crossref_primary_10_1051_0004_6361_201117450
crossref_primary_10_1093_ptep_ptv079
crossref_primary_10_1134_S1063778816020137
crossref_primary_10_1088_0004_637X_750_1_18
crossref_primary_10_1088_1742_6596_403_1_012037
crossref_primary_10_1093_mnras_stz293
crossref_primary_10_1093_ptep_pts009
crossref_primary_10_1103_PhysRevD_93_042002
crossref_primary_10_1103_PhysRevC_87_025801
crossref_primary_10_1103_PhysRevD_96_043015
crossref_primary_10_1140_epja_i2018_12648_5
crossref_primary_10_1088_1475_7516_2018_06_019
crossref_primary_10_1038_s41586_020_03059_w
crossref_primary_10_1093_mnras_stw1083
crossref_primary_10_1088_0004_637X_755_2_126
crossref_primary_10_1016_j_ppnp_2011_01_032
crossref_primary_10_1088_0004_637X_731_1_5
crossref_primary_10_1134_S1063778818010167
crossref_primary_10_1093_mnras_stae231
crossref_primary_10_1017_pasa_2016_40
crossref_primary_10_1088_1742_6596_375_1_042039
crossref_primary_10_3847_1538_4357_ac0dc5
crossref_primary_10_1103_PhysRevD_85_083003
crossref_primary_10_1142_S0218271815300128
crossref_primary_10_1146_annurev_nucl_101918_023434
crossref_primary_10_1088_0004_637X_806_2_275
crossref_primary_10_1103_PhysRevLett_110_141101
crossref_primary_10_1155_2012_428757
crossref_primary_10_1007_s41114_017_0006_z
crossref_primary_10_1103_PhysRevD_91_065016
crossref_primary_10_1103_PhysRevD_95_065022
crossref_primary_10_1088_1475_7516_2024_05_056
crossref_primary_10_3847_1538_4357_ac88cd
crossref_primary_10_1007_s10714_020_02752_5
crossref_primary_10_1103_PhysRevD_86_101302
crossref_primary_10_3847_1538_4357_ad409c
crossref_primary_10_1051_epjconf_201610906001
crossref_primary_10_1103_PhysRevLett_118_011103
crossref_primary_10_1103_PhysRevLett_132_101005
crossref_primary_10_1051_epjconf_201610906002
crossref_primary_10_1103_PhysRevD_96_123015
crossref_primary_10_3847_1538_4357_ad344e
crossref_primary_10_1103_PhysRevC_86_035803
crossref_primary_10_1088_1475_7516_2017_05_051
crossref_primary_10_1007_s10714_017_2327_3
crossref_primary_10_1088_0004_637X_747_1_73
crossref_primary_10_3847_1538_4365_ad12c1
crossref_primary_10_3847_0004_637X_816_2_79
crossref_primary_10_1088_1361_6471_aadeae
crossref_primary_10_1038_s41586_020_2948_7
crossref_primary_10_1103_PhysRevD_103_103005
crossref_primary_10_1088_1475_7516_2016_02_007
crossref_primary_10_1098_rsta_2012_0272
crossref_primary_10_1016_j_nuclphysa_2015_07_020
crossref_primary_10_1007_s12043_023_02574_5
crossref_primary_10_3847_1538_4357_ab2e05
crossref_primary_10_3847_1538_4357_ad5009
crossref_primary_10_1088_2041_8205_760_1_L4
crossref_primary_10_1093_mnras_stu1442
crossref_primary_10_1103_PhysRevD_98_063013
crossref_primary_10_3847_1538_4357_ad4d8e
crossref_primary_10_1103_PhysRevD_95_063004
crossref_primary_10_1093_mnras_staa1691
crossref_primary_10_1103_PhysRevD_86_125001
crossref_primary_10_1088_0004_637X_739_2_93
crossref_primary_10_1134_S1063778819040161
crossref_primary_10_1103_PhysRevD_89_013011
crossref_primary_10_3847_1538_4357_ab64f8
crossref_primary_10_1088_1475_7516_2020_12_008
crossref_primary_10_1093_mnras_stz543
crossref_primary_10_1051_0004_6361_201935792
crossref_primary_10_1051_epjconf_202327913005
crossref_primary_10_1155_2013_506146
crossref_primary_10_1016_j_nuclphysa_2013_03_010
crossref_primary_10_3847_2041_8213_acdad2
crossref_primary_10_1103_PhysRevC_86_065803
crossref_primary_10_1093_mnras_stw946
crossref_primary_10_1088_0067_0049_219_2_24
crossref_primary_10_1103_PhysRevD_86_083004
crossref_primary_10_1088_2041_8205_744_1_L14
crossref_primary_10_3847_0004_637X_821_1_38
crossref_primary_10_3847_1538_4357_aaafd1
crossref_primary_10_3390_universe4030050
crossref_primary_10_1103_PhysRevD_111_063007
crossref_primary_10_3847_2041_8213_ab5642
crossref_primary_10_1088_1475_7516_2020_01_010
crossref_primary_10_1088_0004_637X_808_2_188
crossref_primary_10_1088_0004_637X_778_1_8
crossref_primary_10_1093_ptep_ptaa154
crossref_primary_10_1103_PhysRevD_83_125013
crossref_primary_10_1007_JHEP07_2017_108
crossref_primary_10_3847_1538_4357_aadbae
crossref_primary_10_1093_mnras_stv1352
crossref_primary_10_1111_j_1365_2966_2012_21443_x
crossref_primary_10_1140_epja_i2015_15022_3
crossref_primary_10_1088_1475_7516_2016_04_043
crossref_primary_10_1093_mnras_stz1240
crossref_primary_10_1103_PhysRevD_102_023037
crossref_primary_10_1103_PhysRevD_87_085037
crossref_primary_10_1088_0954_3899_39_9_095204
crossref_primary_10_1103_PhysRevLett_109_251104
crossref_primary_10_1051_0004_6361_201117810
crossref_primary_10_1093_mnras_sty1683
crossref_primary_10_1093_mnras_sty2531
crossref_primary_10_1103_PhysRevD_89_061303
crossref_primary_10_1088_0004_637X_762_2_126
crossref_primary_10_1088_1475_7516_2014_11_030
crossref_primary_10_3847_1538_4357_ac85bc
crossref_primary_10_1103_PhysRevD_101_043007
crossref_primary_10_1103_PhysRevD_97_103018
crossref_primary_10_1146_annurev_nucl_102711_094901
crossref_primary_10_1088_0004_637X_764_1_99
crossref_primary_10_1088_0004_637X_813_1_2
crossref_primary_10_1103_PhysRevD_96_023009
crossref_primary_10_1093_mnras_stt2502
crossref_primary_10_1007_s41114_019_0024_0
crossref_primary_10_1140_epja_i2014_14046_5
crossref_primary_10_3847_1538_4357_aadd48
crossref_primary_10_3847_1538_4357_ab86b0
crossref_primary_10_1088_0067_0049_205_1_2
crossref_primary_10_1088_2041_8205_766_1_L13
crossref_primary_10_1093_mnras_stac016
crossref_primary_10_3847_0004_637X_826_1_57
crossref_primary_10_3847_1538_4357_aa92c5
crossref_primary_10_1088_0954_3899_40_1_013201
crossref_primary_10_1016_j_physletb_2022_137403
crossref_primary_10_1103_PhysRevD_105_063009
crossref_primary_10_1103_PhysRevD_84_025002
crossref_primary_10_1051_0004_6361_201220636
crossref_primary_10_1088_2041_8205_738_2_L32
crossref_primary_10_1093_mnras_stac1035
crossref_primary_10_1103_PhysRevC_103_025806
crossref_primary_10_1103_PhysRevLett_108_061103
crossref_primary_10_3847_1538_4357_ad24f2
crossref_primary_10_1103_PhysRevLett_107_151101
crossref_primary_10_1103_PhysRevD_104_103012
crossref_primary_10_3847_1538_4357_ab1d4b
crossref_primary_10_1016_j_astropartphys_2012_02_011
crossref_primary_10_1093_mnras_stac2359
crossref_primary_10_1093_mnras_stx1738
crossref_primary_10_1088_0004_637X_760_1_94
crossref_primary_10_3847_1538_4357_ab8308
crossref_primary_10_1016_j_nuclphysbps_2011_04_076
crossref_primary_10_1103_PhysRevD_89_093001
crossref_primary_10_1155_2013_143184
crossref_primary_10_1093_mnras_stad1198
crossref_primary_10_1103_RevModPhys_93_015002
crossref_primary_10_3847_1538_4357_aaaf6f
crossref_primary_10_1051_0004_6361_201834381
crossref_primary_10_1016_j_nuclphysbps_2012_09_050
crossref_primary_10_1088_1475_7516_2011_10_019
crossref_primary_10_1016_j_nuclphysbps_2011_04_081
crossref_primary_10_1051_0004_6361_201322887
crossref_primary_10_1088_1475_7516_2020_10_038
crossref_primary_10_1103_PhysRevC_91_055807
crossref_primary_10_1103_PhysRevD_111_063053
crossref_primary_10_1093_mnras_stac2352
crossref_primary_10_3390_universe4060067
crossref_primary_10_3847_0004_637X_818_2_165
crossref_primary_10_1103_PhysRevD_108_063032
crossref_primary_10_3847_1538_4357_aabfde
crossref_primary_10_1016_j_astropartphys_2016_02_005
crossref_primary_10_1016_j_physrep_2025_02_002
crossref_primary_10_1088_1475_7516_2015_02_006
crossref_primary_10_1103_PhysRevD_104_103001
crossref_primary_10_1088_1475_7516_2025_01_061
crossref_primary_10_1093_mnras_stx1987
crossref_primary_10_1103_PhysRevD_102_023022
crossref_primary_10_1088_1361_6471_aa7bdc
crossref_primary_10_1016_j_nima_2022_167666
crossref_primary_10_1088_1361_6471_ad57d7
crossref_primary_10_1088_1361_6471_ab36a2
crossref_primary_10_3847_1538_4357_ad393d
crossref_primary_10_1088_0954_3899_43_3_030401
crossref_primary_10_1103_PhysRevD_99_121305
crossref_primary_10_1088_2041_8205_801_2_L24
crossref_primary_10_1088_1361_6471_ab1ff7
crossref_primary_10_1103_PhysRevC_92_035807
crossref_primary_10_1088_1742_6596_665_1_012069
crossref_primary_10_3847_1538_4357_aa9c83
crossref_primary_10_1016_j_ppnp_2019_02_008
crossref_primary_10_1088_0067_0049_203_2_27
crossref_primary_10_1140_epja_i2016_16054_9
crossref_primary_10_1051_epjconf_202327502016
crossref_primary_10_1093_mnras_sts708
crossref_primary_10_1103_PhysRevD_87_103007
crossref_primary_10_1103_PhysRevD_104_103007
crossref_primary_10_1103_PhysRevD_84_105040
crossref_primary_10_1007_s11433_017_9142_2
crossref_primary_10_1088_1475_7516_2012_07_012
crossref_primary_10_1143_PTPS_186_87
crossref_primary_10_1088_0004_637X_729_1_46
crossref_primary_10_1088_0004_637X_774_2_103
crossref_primary_10_1140_epja_i2012_12122_6
crossref_primary_10_1103_PhysRevD_92_013009
crossref_primary_10_1016_j_phpro_2014_12_103
crossref_primary_10_1088_1361_6633_aa6a25
crossref_primary_10_1088_2041_8205_750_1_L22
crossref_primary_10_1103_PhysRevC_85_045801
crossref_primary_10_1093_mnras_sty480
crossref_primary_10_3847_1538_4357_ac69da
crossref_primary_10_1103_PhysRevLett_108_261104
crossref_primary_10_1093_ptep_ptaa185
crossref_primary_10_1016_j_ppnp_2015_09_001
crossref_primary_10_1088_1742_6596_2156_1_012135
crossref_primary_10_1103_PhysRevC_106_045805
crossref_primary_10_3847_1538_4357_aa8039
crossref_primary_10_1088_0004_637X_722_1_954
crossref_primary_10_1088_2041_8205_770_2_L22
crossref_primary_10_1103_PhysRevD_90_064026
crossref_primary_10_1093_mnras_stx1962
crossref_primary_10_1103_PhysRevD_102_076016
crossref_primary_10_1140_epjs_s11734_021_00002_6
crossref_primary_10_1103_PhysRevD_92_083009
crossref_primary_10_1103_PhysRevD_103_043016
crossref_primary_10_3847_1538_4357_aca526
crossref_primary_10_1016_j_nuclphysbps_2011_04_089
crossref_primary_10_1051_0004_6361_201116897
crossref_primary_10_1088_0004_637X_788_1_82
crossref_primary_10_1093_ptep_ptac118
crossref_primary_10_1093_mnras_stac1916
crossref_primary_10_1088_0004_637X_738_1_61
crossref_primary_10_1007_lrca_2015_1
crossref_primary_10_3847_1538_4357_abae65
crossref_primary_10_3847_1538_4357_ac6ac9
crossref_primary_10_1088_1361_6471_aa7bc8
crossref_primary_10_1051_0004_6361_201425513
crossref_primary_10_1093_ptep_ptu020
crossref_primary_10_1103_PhysRevD_85_085031
crossref_primary_10_1016_j_nuclphysbps_2012_09_049
crossref_primary_10_1103_PhysRevC_101_025804
crossref_primary_10_1103_PhysRevD_105_123036
crossref_primary_10_1103_PhysRevD_94_093007
crossref_primary_10_1103_PhysRevD_84_033013
crossref_primary_10_1103_PhysRevLett_117_142701
crossref_primary_10_1051_epjconf_20146607024
crossref_primary_10_3847_0004_637X_825_1_6
crossref_primary_10_1140_epjc_s10052_019_6633_7
crossref_primary_10_1093_mnras_stw1453
crossref_primary_10_1007_s11214_018_0494_5
crossref_primary_10_1140_epja_s10050_022_00708_8
crossref_primary_10_1103_PhysRevD_111_043008
crossref_primary_10_1088_1475_7516_2025_03_046
crossref_primary_10_1111_j_1365_2966_2012_21859_x
crossref_primary_10_1093_mnras_stv2296
crossref_primary_10_1051_0004_6361_201219949
crossref_primary_10_1103_PhysRevD_83_113006
crossref_primary_10_3847_1538_4357_abd54e
crossref_primary_10_3847_1538_4357_aae7d2
crossref_primary_10_1093_mnras_stv345
crossref_primary_10_1051_0004_6361_201628321
crossref_primary_10_1088_1742_6596_381_1_012016
crossref_primary_10_1016_j_physrep_2017_03_002
crossref_primary_10_1088_0004_637X_748_1_70
crossref_primary_10_1140_epja_s10050_021_00593_7
crossref_primary_10_3847_1538_4357_aae7c9
crossref_primary_10_1088_0004_637X_810_2_109
crossref_primary_10_1088_0954_3899_41_4_044002
crossref_primary_10_1103_RevModPhys_92_045006
crossref_primary_10_3847_1538_4357_ac795e
crossref_primary_10_1088_0954_3899_41_4_044003
crossref_primary_10_1088_0954_3899_41_4_044005
crossref_primary_10_1140_epja_s10050_021_00571_z
crossref_primary_10_1088_0954_3899_41_4_044008
crossref_primary_10_1088_1742_6596_337_1_012041
crossref_primary_10_1103_PhysRevC_101_055803
crossref_primary_10_1103_PhysRevD_85_113002
crossref_primary_10_1140_epja_s10050_020_00073_4
crossref_primary_10_1103_PhysRevC_103_055808
crossref_primary_10_1103_PhysRevD_104_115026
crossref_primary_10_1088_1742_6596_312_4_042008
crossref_primary_10_1093_mnras_stab3393
crossref_primary_10_1103_PhysRevD_96_043013
crossref_primary_10_1140_epja_i2017_12207_8
crossref_primary_10_1088_1742_6596_312_4_042005
crossref_primary_10_1103_PhysRevD_96_103008
crossref_primary_10_1103_PhysRevD_85_125010
crossref_primary_10_1088_1361_6471_aa5ae7
crossref_primary_10_1093_mnras_stw1227
crossref_primary_10_1103_PhysRevD_107_083016
crossref_primary_10_3847_1538_4357_abce63
crossref_primary_10_1093_pasj_pst030
crossref_primary_10_1103_PhysRevLett_108_151101
crossref_primary_10_1103_PhysRevD_92_105020
crossref_primary_10_1103_PhysRevD_109_123008
crossref_primary_10_1103_PhysRevD_90_103007
crossref_primary_10_3847_1538_4357_aaf8a8
crossref_primary_10_3847_1538_4357_ac2d90
crossref_primary_10_1088_0004_637X_810_2_115
crossref_primary_10_1103_PhysRevD_94_085012
crossref_primary_10_1103_PhysRevC_83_045809
crossref_primary_10_1088_0954_3899_38_3_035201
crossref_primary_10_1103_PhysRevD_106_063019
crossref_primary_10_1134_S1063778812050067
crossref_primary_10_3847_1538_4357_acea83
crossref_primary_10_1016_j_ppnp_2024_104107
crossref_primary_10_1093_mnras_stad1458
crossref_primary_10_1088_1742_6596_940_1_012001
crossref_primary_10_1088_2041_8205_811_1_L10
crossref_primary_10_1051_0004_6361_202039457
crossref_primary_10_1088_1361_6471_aa8891
crossref_primary_10_1088_0004_637X_772_2_150
crossref_primary_10_1007_s11214_024_01122_w
crossref_primary_10_3847_1538_4357_ab1d5d
crossref_primary_10_3847_0004_637X_818_2_124
crossref_primary_10_1016_j_ppnp_2015_08_001
crossref_primary_10_1051_epjconf_20159303008
crossref_primary_10_1103_PhysRevD_84_044017
crossref_primary_10_1103_PhysRevLett_128_221103
crossref_primary_10_1016_j_nuclphysbps_2013_04_122
crossref_primary_10_1103_PhysRevD_88_025004
crossref_primary_10_1088_0004_637X_758_1_9
crossref_primary_10_1088_0004_637X_792_1_6
crossref_primary_10_1103_PhysRevD_94_123010
crossref_primary_10_3847_0004_637X_831_1_98
crossref_primary_10_3847_1538_4357_ad118c
crossref_primary_10_1088_0004_637X_738_2_165
crossref_primary_10_1142_S0217732320300116
crossref_primary_10_1140_epja_i2011_11098_y
crossref_primary_10_1088_1475_7516_2025_02_005
crossref_primary_10_1093_mnras_stt2350
crossref_primary_10_1142_S0218301318300084
Cites_doi 10.1051/0004-6361:200810292
10.1086/171338
10.1051/0004-6361:20054703
10.1086/173163
10.1086/163343
10.1051/0004-6361:20010012
10.1086/166886
10.1016/j.newar.2003.12.038
10.1103/PhysRev.136.B571
10.1086/164587
10.1088/0004-637X/694/1/664
10.1086/172791
10.1086/313271
10.1103/PhysRevC.78.015806
10.1086/304181
10.1016/S0375-9474(01)00730-8
10.1086/165716
10.1103/PhysRevD.63.103004
10.1086/427203
10.1103/PhysRevD.65.043001
10.1051/0004-6361:20064855
10.1007/s10509-007-9329-7
10.1086/174817
10.1088/0034-4885/69/4/R03
10.1086/309604
10.1086/308632
10.1016/j.nuclphysa.2005.05.008
10.1086/498224
10.1103/PhysRevLett.102.081101
10.1007/BF00684583
10.1086/176188
10.1086/177973
10.1143/PTP.100.1013
10.1086/505483
10.1086/191056
10.1086/172394
10.1103/RevModPhys.74.1015
10.1086/323861
10.1016/S0377-0427(99)00162-4
10.1086/190818
10.1088/1742-6596/46/1/054
10.1016/j.newar.2006.06.003
10.1103/PhysRevLett.91.201102
10.1086/161749
10.1051/0004-6361/200811055
10.1086/174638
10.1103/PhysRevLett.96.142502
10.1016/0370-1573(93)90059-M
10.1063/1.2900257
10.1103/PhysRevD.63.104003
10.1086/508568
10.1103/PhysRevLett.90.241102
10.1051/0004-6361:20066983
10.1086/339872
10.1086/172395
10.1086/380191
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DBID BSCLL
AAYXX
CITATION
IQODW
OTOTI
DOI 10.1051/0004-6361/200913106
DatabaseName Istex
CrossRef
Pascal-Francis
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 1036601
23398034
10_1051_0004_6361_200913106
ark_67375_80W_H27Z02LV_N
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOTM
ABDNZ
ABDPE
ABPPZ
ABTAH
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
AEILP
AENEX
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
BSCLL
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNP
RNS
RSV
SDH
SJN
SOJ
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
AAOGA
AAYXX
ABNSH
ACRPL
ADNMO
AGQPQ
CITATION
IQODW
ACBIF
ACZCS
OTOTI
XFK
ID FETCH-LOGICAL-c455t-7d4a16f0cc8d0e33303d0c17d57f2835767a05220fffb8c0966973ac52723b8d3
ISSN 0004-6361
IngestDate Fri May 19 00:38:41 EDT 2023
Mon Jul 21 09:16:16 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Sun Jul 06 05:04:46 EDT 2025
Wed Oct 30 09:59:47 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Protons
Spherical symmetry
High density
Nucleosynthesis
Luminosity
Reaction rates
Entropy
Relativistic hydrodynamics
Massive stars
Neutrinos
Radiative transfer
Opacity
Kinetic energy
Dynamic model
Collapse
Stellar cores
Accretion
Digital simulation
Stellar evolution
hydrodynamics
Flavor
r process
Baryons
relativistic processes
Quasi stationary state
Elementary particles
Hydrodynamic model
Massless particles
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-7d4a16f0cc8d0e33303d0c17d57f2835767a05220fffb8c0966973ac52723b8d3
Notes ark:/67375/80W-H27Z02LV-N
other:2010A%26A...517A..80F
publisher-ID:aa13106-09
istex:C880F56D511ECA2E5ED2735ADED7D690C275D122
USDOE
DE-AC05-00OR22725
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2010/09/aa13106-09.pdf
ParticipantIDs osti_scitechconnect_1036601
pascalfrancis_primary_23398034
crossref_primary_10_1051_0004_6361_200913106
crossref_citationtrail_10_1051_0004_6361_200913106
istex_primary_ark_67375_80W_H27Z02LV_N
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
– name: United States
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2010
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Liebendörfer (Liebendoerferxetalx2001b) 2001; 63
Fröhlich (Froehlichxetalx2006c) 2006; 50
Hoffman (Hoffmanxetalx1997a) 1997; 482
Langanke (Langankexetalx2003) 2003; 90
Mezzacappaxetalx2006
Janka (JankaMuellerx1995) 1995; 448
Bethe (BetheWilsonx1985) 1985; 295
Fischer (Fischerxetalx2009) 2009; 499
Horowitz (Horowitzx2002) 2002; 65
Bruenn (Bruennxetalx2006) 2006; 46
Wanajo (Wanajox2006a) 2006; 647
Woosley (Woosleyxetalx2002) 2002; 74
Scheck (Scheckxetalx2006) 2006; 457
Schinder (SchinderShapirox1982) 1982; 50
Hoffmanxetalx2007
Misner (MisnerSharpx1964) 1964; 136
Janka (Jankax2001) 2001; 368
Otsuki (Otsukixetalx2000) 2000; 533
Jankaxetalx2008a
Panov (PanovJankax2009) 2009; 494
Burrows (Burrowsxetalx1995) 1995; 450
Duncan (Duncanxetalx1986) 1986; 309
Liebendörfer (Liebendoerferxetalx2005) 2005; 620
Fröhlich (Froehlichxetalx2006b) 2006; 96
Kitaura (Kitauraxetalx2006) 2006; 450
Liebendörfer (Liebendoerferxetalx2001a) 2001; 63
Shen (Shenxetalx1998) 1989; 100
Bruenn (Bruennx1985) 1985; 58
Thompson (Thompsonxetalx2001) 2001; 562
Henderson (HendersonPagex2007) 2007; 308
Witti (Wittixetalx1994) 1994; 286
Thompson (ThompsonBurrowsx2001) 2001; 688
Kotake (Kotakexetalx2006) 2006; 69
Herant (Herantxetalx1994) 1994; 435
Wanajo (Wanajox2006b) 2006; 650
Arcones (Arconesxetalx2007) 2007; 467
Thielemann (Thielemannxetalx2004) 2004; 48
Liebendoerferx2004
Mezzacappa (MezzacappaBruennx1993a) 1993; 405
Mezzacappa (MezzacappaBruennx1993c) 1993; 410
Liebendörfer (Liebendoerferxetalx2002) 2002; 141
Nomoto (Nomotox1987) 1987; 322
Fröhlich (Froehlichxetalx2006a) 2006; 637
Woosley (WoosleyBaronx1992) 1992; 391
Hix (Hixxetalx2003) 2003; 91
Arcones (Arconesxetalx2008) 2008; 78
Liebendörfer (Liebendoerferxetalx2004) 2004; 150
Marek (MarekJankax2009) 2009; 694
Woosley (Woosleyxetalx1994) 1994; 433
Yueh (YuehBuchlerx1976) 1976; 41
Wilson (WilsonMaylex1993) 1993; 227
Mayle (MayleWilsonx1988) 1988; 334
Nomoto (Nomotox1984) 1984; 277
Mezzacappa (MezzacappaMesserx1999) 1999; 109
Timmes (TimmesArnettx1999) 1999; 125
Sagert (Sagertxetalx2009) 2009; 102
Takahashi (Takahashixetalx1994) 1994; 286
Miller (Millerxetalx1993) 1993; 415
Nomoto (Nomotox1983) 1983; 101
Janka (Jankaxetalx2005) 2005; 758
Qian (QianWoosleyx1996) 1996; 471
Mezzacappa (MezzacappaBruennx1993b) 1993; 405
Janka (JankaMuellerx1996) 1995; 306
References_xml – volume: 494
  start-page: 829
  year: 2009
  ident: PanovJankax2009
  publication-title: A&A
  doi: 10.1051/0004-6361:200810292
– volume: 391
  start-page: 228
  year: 1992
  ident: WoosleyBaronx1992
  publication-title: ApJ
  doi: 10.1086/171338
– volume: 450
  start-page: 345
  year: 2006
  ident: Kitauraxetalx2006
  publication-title: A&A
  doi: 10.1051/0004-6361:20054703
– volume: 415
  start-page: 278
  year: 1993
  ident: Millerxetalx1993
  publication-title: ApJ
  doi: 10.1086/173163
– volume: 295
  start-page: 14
  year: 1985
  ident: BetheWilsonx1985
  publication-title: ApJ
  doi: 10.1086/163343
– volume: 368
  start-page: 527
  year: 2001
  ident: Jankax2001
  publication-title: A&A
  doi: 10.1051/0004-6361:20010012
– volume: 306
  start-page: 167
  year: 1995
  ident: JankaMuellerx1996
  publication-title: A&A
– volume: 334
  start-page: 909
  year: 1988
  ident: MayleWilsonx1988
  publication-title: ApJ
  doi: 10.1086/166886
– volume: 48
  start-page: 605
  year: 2004
  ident: Thielemannxetalx2004
  publication-title: New Astron. Rev.
  doi: 10.1016/j.newar.2003.12.038
– volume: 136
  start-page: 571
  year: 1964
  ident: MisnerSharpx1964
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B571
– volume: 309
  start-page: 141
  year: 1986
  ident: Duncanxetalx1986
  publication-title: ApJ
  doi: 10.1086/164587
– volume: 694
  start-page: 664
  year: 2009
  ident: MarekJankax2009
  publication-title: ApJ
  doi: 10.1088/0004-637X/694/1/664
– volume: 410
  start-page: 740
  year: 1993
  ident: MezzacappaBruennx1993c
  publication-title: ApJ
  doi: 10.1086/172791
– volume: 125
  start-page: 277
  year: 1999
  ident: TimmesArnettx1999
  publication-title: ApJS
  doi: 10.1086/313271
– volume: 286
  start-page: 841
  year: 1994
  ident: Wittixetalx1994
  publication-title: A&A
– volume: 78
  start-page: 015806
  year: 2008
  ident: Arconesxetalx2008
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.78.015806
– volume: 482
  start-page: 951
  year: 1997
  ident: Hoffmanxetalx1997a
  publication-title: ApJ
  doi: 10.1086/304181
– volume: 688
  start-page: 377
  year: 2001
  ident: ThompsonBurrowsx2001
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(01)00730-8
– volume: 322
  start-page: 206
  year: 1987
  ident: Nomotox1987
  publication-title: ApJ
  doi: 10.1086/165716
– volume: 63
  start-page: 103004
  year: 2001
  ident: Liebendoerferxetalx2001a
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.63.103004
– volume: 620
  start-page: 840
  year: 2005
  ident: Liebendoerferxetalx2005
  publication-title: ApJ
  doi: 10.1086/427203
– volume: 65
  start-page: 043001
  year: 2002
  ident: Horowitzx2002
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.65.043001
– volume: 457
  start-page: 963
  year: 2006
  ident: Scheckxetalx2006
  publication-title: A&A
  doi: 10.1051/0004-6361:20064855
– volume: 308
  start-page: 513
  year: 2007
  ident: HendersonPagex2007
  publication-title: Ap&SS
  doi: 10.1007/s10509-007-9329-7
– volume: 435
  start-page: 339
  year: 1994
  ident: Herantxetalx1994
  publication-title: ApJ
  doi: 10.1086/174817
– volume: 69
  start-page: 971
  year: 2006
  ident: Kotakexetalx2006
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/69/4/R03
– volume: 448
  start-page: L109
  year: 1995
  ident: JankaMuellerx1995
  publication-title: ApJ
  doi: 10.1086/309604
– volume: 533
  start-page: 424
  year: 2000
  ident: Otsukixetalx2000
  publication-title: ApJ
  doi: 10.1086/308632
– volume: 758
  start-page: 19
  year: 2005
  ident: Jankaxetalx2005
  publication-title: Nuclear Physics A
  doi: 10.1016/j.nuclphysa.2005.05.008
– volume: 637
  start-page: 415
  year: 2006
  ident: Froehlichxetalx2006a
  publication-title: ApJ
  doi: 10.1086/498224
– volume: 102
  start-page: 081101
  issue: 8
  year: 2009
  ident: Sagertxetalx2009
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.081101
– volume: 41
  start-page: 221
  year: 1976
  ident: YuehBuchlerx1976
  publication-title: Ap&SS
  doi: 10.1007/BF00684583
– volume: 450
  start-page: 830
  year: 1995
  ident: Burrowsxetalx1995
  publication-title: ApJ
  doi: 10.1086/176188
– volume: 101
  start-page: 139
  year: 1983
  ident: Nomotox1983
  publication-title: IAU Symp.
– volume: 471
  start-page: 331
  year: 1996
  ident: QianWoosleyx1996
  publication-title: ApJ
  doi: 10.1086/177973
– volume: 100
  start-page: 1013
  year: 1989
  ident: Shenxetalx1998
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.100.1013
– volume: 647
  start-page: 1323
  year: 2006
  ident: Wanajox2006a
  publication-title: ApJ
  doi: 10.1086/505483
– volume: 58
  start-page: 771
  year: 1985
  ident: Bruennx1985
  publication-title: ApJS
  doi: 10.1086/191056
– volume: 405
  start-page: 637
  year: 1993
  ident: MezzacappaBruennx1993a
  publication-title: ApJ
  doi: 10.1086/172394
– volume: 74
  start-page: 1015
  year: 2002
  ident: Woosleyxetalx2002
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.1015
– volume: 562
  start-page: 887
  year: 2001
  ident: Thompsonxetalx2001
  publication-title: ApJ
  doi: 10.1086/323861
– volume: 109
  start-page: 281
  year: 1999
  ident: MezzacappaMesserx1999
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00162-4
– volume: 50
  start-page: 23
  year: 1982
  ident: SchinderShapirox1982
  publication-title: ApJS
  doi: 10.1086/190818
– volume: 46
  start-page: 393
  year: 2006
  ident: Bruennxetalx2006
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/46/1/054
– volume: 50
  start-page: 496
  year: 2006
  ident: Froehlichxetalx2006c
  publication-title: New Astron. Rev.
  doi: 10.1016/j.newar.2006.06.003
– ident: Mezzacappaxetalx2006
– volume: 91
  start-page: 201102
  year: 2003
  ident: Hixxetalx2003
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.201102
– volume: 277
  start-page: 791
  year: 1984
  ident: Nomotox1984
  publication-title: ApJ
  doi: 10.1086/161749
– volume: 499
  start-page: 1
  year: 2009
  ident: Fischerxetalx2009
  publication-title: A&A
  doi: 10.1051/0004-6361/200811055
– volume: 433
  start-page: 229
  year: 1994
  ident: Woosleyxetalx1994
  publication-title: ApJ
  doi: 10.1086/174638
– volume: 96
  start-page: 142502
  issue: 14
  year: 2006
  ident: Froehlichxetalx2006b
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.142502
– volume: 227
  start-page: 97
  year: 1993
  ident: WilsonMaylex1993
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(93)90059-M
– ident: Jankaxetalx2008a
  doi: 10.1063/1.2900257
– volume: 63
  start-page: 104003
  year: 2001
  ident: Liebendoerferxetalx2001b
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.63.104003
– volume: 650
  start-page: L79
  year: 2006
  ident: Wanajox2006b
  publication-title: ApJ
  doi: 10.1086/508568
– volume: 90
  start-page: 241102
  year: 2003
  ident: Langankexetalx2003
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.241102
– volume: 467
  start-page: 1227
  year: 2007
  ident: Arconesxetalx2007
  publication-title: A&A
  doi: 10.1051/0004-6361:20066983
– ident: Hoffmanxetalx2007
– ident: Liebendoerferx2004
– volume: 141
  start-page: 229
  year: 2002
  ident: Liebendoerferxetalx2002
  publication-title: ApJS
  doi: 10.1086/339872
– volume: 405
  start-page: 669
  year: 1993
  ident: MezzacappaBruennx1993b
  publication-title: ApJ
  doi: 10.1086/172395
– volume: 286
  start-page: 857
  year: 1994
  ident: Takahashixetalx1994
  publication-title: A&A
– volume: 150
  start-page: 263
  year: 2004
  ident: Liebendoerferxetalx2004
  publication-title: ApJS
  doi: 10.1086/380191
SSID ssj0002183
Score 2.5332289
Snippet Massive stars end their lives in explosions with kinetic energies on the order of 1051 erg. Immediately after the explosion has been launched, a region of low...
Massive stars end their lives in explosions with kinetic energies on the order of 10{sup 51} erg. Immediately after the explosion has been launched, a region...
SourceID osti
pascalfrancis
crossref
istex
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage A80
SubjectTerms Astronomy
CHARGED CURRENTS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONTRACTION
Earth, ocean, space
ENTROPY
Exact sciences and technology
EXPLOSIONS
HEATING
HYDRODYNAMICS
KINETIC ENERGY
KINETICS
NEUTRINOS
NUCLEOSYNTHESIS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
R PROCESS
RADIANT HEAT TRANSFER
RADIATIONS
radiative transfer
REACTION KINETICS
relativistic processes
STAR EVOLUTION
STARS
SYMMETRY
TRANSPORT
Title Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations
URI https://api.istex.fr/ark:/67375/80W-H27Z02LV-N/fulltext.pdf
https://www.osti.gov/biblio/1036601
Volume 517
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJiReEAzQymDyA9pLSebEdpw9VhOlfGyaRAcTL5HjJGo1-qGm5aMS_Ev8i9zFqZeNaWK8RKnjXj7ul_P5cv4dIS8KGBQUWD2PFxHzhEylp0UgMCSgVMpllitcO3x0HPVPxdszedZq_W5kLS0XqW9W164r-R-tQhvoFVfJ3kKzTig0wD7oF7agYdj-k45P5lPk0l5iOBuDAkjeXZ_QZUZWh0eTqZfN0bB1vo0quiUsnYzhqHoxy9eKr9l17syRsqCSM_yRgY21devLTjka1_W-yqZb2y3xEqZjS-ak8ZcNmVQxXUup1Yg59Ealw4p_MSyA9zucLm2lxw9-59AdOspXK230bGaDwK59MMTl8eO6znPP9975zSgGfoBX6yjG2jILL-KWmN3PrTEWHDNj6xBlba2lXepZ29uuLQP11zgApsYmTlqhuOyFIQNqwK7h3b4yHrosxer7vAzw-7xIUEzihNwhmyHMS7Bkxus3v9zQj_6mnW_Z865prmSw79r2nZBLrtAmvtXfwTGYgr4xQ1eX8JIWtrpKw-UZPCD367kK7VrgPSStfLJFtp2u6R7tNjS9Re6e2L1H5GcTmRSRSR0yKUCEAjLpFWRSRCYdTWiNTNpEputMHTLpJWTSBjIfk9Peq8Fh36sLfXhGSLnwVCZ0EBXMmDhjOefgVmXMBCqTqkA-QBUpzWCiwIqiSGMDs-7oQHFtZKhCnsYZf0I2JnBT24QGXGpTRDFMe7QQcRiHQRbD89ZpHGrNRZuE62eemJoFH4uxfElu0HabvHR_mlkSmJu771XKdH31_BzzJ5VMYvYp6YfqMwvff0yO22QHtZ2As4uMzQZT28wC5PIoYkGb7F4CgRMXcn4QMy6e3u6ydsi9izfvGdlYzJf5c_CoF-luheI_wI3Gwg
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protoneutron+star+evolution+and+the+neutrino-driven+wind+in+general+relativistic+neutrino+radiation+hydrodynamics+simulations&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Fischer%2C+T.&rft.au=Whitehouse%2C+S.+C.&rft.au=Mezzacappa%2C+A.&rft.au=Thielemann%2C+F.-K.&rft.date=2010-07-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=517&rft.spage=A80&rft_id=info:doi/10.1051%2F0004-6361%2F200913106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_200913106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon