Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations
Massive stars end their lives in explosions with kinetic energies on the order of 1051 erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant a...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 517; p. A80 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences
01.07.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Massive stars end their lives in explosions with kinetic energies on the order of 1051 erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant at the center, the protoneutron star (PNS), heat the material above the PNS surface. This heat is partly converted into kinetic energy, and the material accelerates to an outflow that is known as the neutrino-driven wind. For the first time we simulate the collapse, bounce, explosion, and the neutrino-driven wind phases consistently over more than 20 s. Our numerical model is based on spherically symmetric general relativistic radiation hydrodynamics using spectral three-flavor Boltzmann neutrino transport. In simulations where no explosions are obtained naturally, we model neutrino-driven explosions for low- and intermediate-mass Fe-core progenitor stars by enhancing the charged current reaction rates. In the case of a special progenitor star, the 8.8 $M_\odot$ O-Ne-Mg-core, the explosion in spherical symmetry was obtained without enhanced opacities. The post-explosion evolution is in qualitative agreement with static steady-state and parametrized dynamic models of the neutrino-driven wind. On the other hand, we generally find lower neutrino luminosities and mean neutrino energies, as well as a different evolutionary behavior of the neutrino luminosities and mean neutrino energies. The neutrino-driven wind is proton-rich for more than 10 s and the contraction of the PNS differs from the assumptions made for the conditions at the inner boundary in previous neutrino-driven wind studies. Despite the moderately high entropies of about 100 kB/baryon and the fast expansion timescales, the conditions found in our models are unlikely to favor r-process nucleosynthesis. The simulations are carried out until the neutrino-driven wind settles down to a quasi-stationary state. About 5 s after the bounce, the peak temperature inside the PNS already starts to decrease because of the continued deleptonization. This moment determines the beginning of a cooling phase dominated by the emission of neutrinos. We discuss the physical conditions of the quasi-static PNS evolution and take the effects of deleptonization and mass accretion from early fallback into account. |
---|---|
AbstractList | Massive stars end their lives in explosions with kinetic energies on the order of 1051 erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant at the center, the protoneutron star (PNS), heat the material above the PNS surface. This heat is partly converted into kinetic energy, and the material accelerates to an outflow that is known as the neutrino-driven wind. For the first time we simulate the collapse, bounce, explosion, and the neutrino-driven wind phases consistently over more than 20 s. Our numerical model is based on spherically symmetric general relativistic radiation hydrodynamics using spectral three-flavor Boltzmann neutrino transport. In simulations where no explosions are obtained naturally, we model neutrino-driven explosions for low- and intermediate-mass Fe-core progenitor stars by enhancing the charged current reaction rates. In the case of a special progenitor star, the 8.8 $M_\odot$ O-Ne-Mg-core, the explosion in spherical symmetry was obtained without enhanced opacities. The post-explosion evolution is in qualitative agreement with static steady-state and parametrized dynamic models of the neutrino-driven wind. On the other hand, we generally find lower neutrino luminosities and mean neutrino energies, as well as a different evolutionary behavior of the neutrino luminosities and mean neutrino energies. The neutrino-driven wind is proton-rich for more than 10 s and the contraction of the PNS differs from the assumptions made for the conditions at the inner boundary in previous neutrino-driven wind studies. Despite the moderately high entropies of about 100 kB/baryon and the fast expansion timescales, the conditions found in our models are unlikely to favor r-process nucleosynthesis. The simulations are carried out until the neutrino-driven wind settles down to a quasi-stationary state. About 5 s after the bounce, the peak temperature inside the PNS already starts to decrease because of the continued deleptonization. This moment determines the beginning of a cooling phase dominated by the emission of neutrinos. We discuss the physical conditions of the quasi-static PNS evolution and take the effects of deleptonization and mass accretion from early fallback into account. Massive stars end their lives in explosions with kinetic energies on the order of 10{sup 51} erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant at the center, the protoneutron star (PNS), heat the material above the PNS surface. This heat is partly converted into kinetic energy, and the material accelerates to an outflow that is known as the neutrino-driven wind. For the first time we simulate the collapse, bounce, explosion, and the neutrino-driven wind phases consistently over more than 20 s. Our numerical model is based on spherically symmetric general relativistic radiation hydrodynamics using spectral three-flavor Boltzmann neutrino transport. In simulations where no explosions are obtained naturally, we model neutrino-driven explosions for low- and intermediate-mass Fe-core progenitor stars by enhancing the charged current reaction rates. In the case of a special progenitor star, the 8.8 M{circle_dot} O-Ne-Mg-core, the explosion in spherical symmetry was obtained without enhanced opacities. The post-explosion evolution is in qualitative agreement with static steady-state and parametrized dynamic models of the neutrino-driven wind. On the other hand, we generally find lower neutrino luminosities and mean neutrino energies, as well as a different evolutionary behavior of the neutrino luminosities and mean neutrino energies. The neutrino-driven wind is proton-rich for more than 10 s and the contraction of the PNS differs from the assumptions made for the conditions at the inner boundary in previous neutrino-driven wind studies. Despite the moderately high entropies of about 100 k{sub B}/baryon and the fast expansion timescales, the conditions found in our models are unlikely to favor r-process nucleosynthesis. The simulations are carried out until the neutrino-driven wind settles down to a quasi-stationary state. About 5 s after the bounce, the peak temperature inside the PNS already starts to decrease because of the continued deleptonization. This moment determines the beginning of a cooling phase dominated by the emission of neutrinos. We discuss the physical conditions of the quasi-static PNS evolution and take the effects of deleptonization and mass accretion from early fallback into account. |
Author | Thielemann, F.-K. Liebendörfer, M. Mezzacappa, A. Fischer, T. Whitehouse, S. C. |
Author_xml | – sequence: 1 givenname: T. surname: Fischer fullname: Fischer, T. organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland – sequence: 2 givenname: S. C. surname: Whitehouse fullname: Whitehouse, S. C. organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland – sequence: 3 givenname: A. surname: Mezzacappa fullname: Mezzacappa, A. organization: Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-1200, USA – sequence: 4 givenname: F.-K. surname: Thielemann fullname: Thielemann, F.-K. organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland – sequence: 5 givenname: M. surname: Liebendörfer fullname: Liebendörfer, M. organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23398034$$DView record in Pascal Francis https://www.osti.gov/biblio/1036601$$D View this record in Osti.gov |
BookMark | eNqFkU9vEzEQxS1UJNLST8DFqsRx6diza-8eqwpapAg48EfqxXJtL3G7sSvbCc2B746ToD1w4WSN3u89j96ckpMQgyPkDYN3DDp2CQBtI1CwSw4wMGQgXpAFa5E3IFtxQhYz8Yqc5vxQR856XJDfX1IsNWxTUgw0F52o28ZpU3wddbC0rBw9yD7Exia_dYH-8lXwgf50wSU90eQmXfzW5-LNDNOkrdeHnNXOpmh3Qa-9yTT79WY6CPk1eTnqKbvzv-8Z-fbh_dfr22b5-ebj9dWyMW3XlUbaVjMxgjG9BYeIgBYMk7aTI--xk0Jq6DiHcRzvewODEINEbTouOd73Fs_IxTE31hVVNr44szIxBGeKYoBCAKvQ2yP0pLPR05h0MD6rp-TXOu0URxx6wLZyeORMijknN84IA7U_h9qXrfZlq_kc1TX846pbHFooSfvpP97m6K0Nu-f5O50elZAoO9XDD3XL5R3w5Xf1Cf8AL0Sh9g |
CODEN | AAEJAF |
CitedBy_id | crossref_primary_10_1103_PhysRevC_100_025806 crossref_primary_10_1103_PhysRevD_106_043026 crossref_primary_10_1016_j_nuclphysbps_2011_04_118 crossref_primary_10_1103_PhysRevLett_106_201104 crossref_primary_10_1103_PhysRevC_97_035804 crossref_primary_10_1103_PhysRevD_103_023016 crossref_primary_10_1103_PhysRevD_106_043029 crossref_primary_10_1103_PhysRevD_84_103008 crossref_primary_10_1088_0067_0049_194_2_39 crossref_primary_10_1051_epjconf_201610906005 crossref_primary_10_1016_j_ppnp_2019_04_002 crossref_primary_10_1088_0004_637X_790_2_115 crossref_primary_10_1088_0031_8949_2013_T152_014011 crossref_primary_10_1088_1361_6471_ab0849 crossref_primary_10_1016_j_ppnp_2011_01_027 crossref_primary_10_1051_0004_6361_201015530 crossref_primary_10_3847_0067_0049_223_2_22 crossref_primary_10_1103_PhysRevC_98_055805 crossref_primary_10_1088_0264_9381_30_12_123001 crossref_primary_10_1051_0004_6361_202348281 crossref_primary_10_3847_2041_8213_ad5f02 crossref_primary_10_1002_andp_202200306 crossref_primary_10_1088_0004_637X_746_2_180 crossref_primary_10_1093_mnras_stu604 crossref_primary_10_1051_0004_6361_201628991 crossref_primary_10_1051_0004_6361_201116591 crossref_primary_10_3847_1538_4357_abd476 crossref_primary_10_3847_1538_4357_833_2_282 crossref_primary_10_1093_mnras_sty2460 crossref_primary_10_1103_PhysRevD_94_044018 crossref_primary_10_1103_PhysRevD_88_023008 crossref_primary_10_1051_0004_6361_201220584 crossref_primary_10_1093_ptep_pts017 crossref_primary_10_1103_PhysRevD_93_024011 crossref_primary_10_1088_0004_637X_773_1_78 crossref_primary_10_1093_mnras_stu1352 crossref_primary_10_1103_PhysRevD_85_043011 crossref_primary_10_1016_j_phpro_2014_12_090 crossref_primary_10_1093_mnras_sty1018 crossref_primary_10_1103_PhysRevD_89_103528 crossref_primary_10_1103_PhysRevD_105_063028 crossref_primary_10_1088_0004_637X_774_1_17 crossref_primary_10_1103_PhysRevD_101_063027 crossref_primary_10_1103_PhysRevD_96_124005 crossref_primary_10_1016_j_chinastron_2016_05_005 crossref_primary_10_1103_PhysRevD_105_063026 crossref_primary_10_1093_mnras_stad372 crossref_primary_10_1088_1361_6471_aaa90a crossref_primary_10_1088_1742_6596_403_1_012034 crossref_primary_10_1103_RevModPhys_89_015007 crossref_primary_10_1103_PhysRevC_107_014618 crossref_primary_10_1051_0004_6361_201117450 crossref_primary_10_1093_ptep_ptv079 crossref_primary_10_1134_S1063778816020137 crossref_primary_10_1088_0004_637X_750_1_18 crossref_primary_10_1088_1742_6596_403_1_012037 crossref_primary_10_1093_mnras_stz293 crossref_primary_10_1093_ptep_pts009 crossref_primary_10_1103_PhysRevD_93_042002 crossref_primary_10_1103_PhysRevC_87_025801 crossref_primary_10_1103_PhysRevD_96_043015 crossref_primary_10_1140_epja_i2018_12648_5 crossref_primary_10_1088_1475_7516_2018_06_019 crossref_primary_10_1038_s41586_020_03059_w crossref_primary_10_1093_mnras_stw1083 crossref_primary_10_1088_0004_637X_755_2_126 crossref_primary_10_1016_j_ppnp_2011_01_032 crossref_primary_10_1088_0004_637X_731_1_5 crossref_primary_10_1134_S1063778818010167 crossref_primary_10_1093_mnras_stae231 crossref_primary_10_1017_pasa_2016_40 crossref_primary_10_1088_1742_6596_375_1_042039 crossref_primary_10_3847_1538_4357_ac0dc5 crossref_primary_10_1103_PhysRevD_85_083003 crossref_primary_10_1142_S0218271815300128 crossref_primary_10_1146_annurev_nucl_101918_023434 crossref_primary_10_1088_0004_637X_806_2_275 crossref_primary_10_1103_PhysRevLett_110_141101 crossref_primary_10_1155_2012_428757 crossref_primary_10_1007_s41114_017_0006_z crossref_primary_10_1103_PhysRevD_91_065016 crossref_primary_10_1103_PhysRevD_95_065022 crossref_primary_10_1088_1475_7516_2024_05_056 crossref_primary_10_3847_1538_4357_ac88cd crossref_primary_10_1007_s10714_020_02752_5 crossref_primary_10_1103_PhysRevD_86_101302 crossref_primary_10_3847_1538_4357_ad409c crossref_primary_10_1051_epjconf_201610906001 crossref_primary_10_1103_PhysRevLett_118_011103 crossref_primary_10_1103_PhysRevLett_132_101005 crossref_primary_10_1051_epjconf_201610906002 crossref_primary_10_1103_PhysRevD_96_123015 crossref_primary_10_3847_1538_4357_ad344e crossref_primary_10_1103_PhysRevC_86_035803 crossref_primary_10_1088_1475_7516_2017_05_051 crossref_primary_10_1007_s10714_017_2327_3 crossref_primary_10_1088_0004_637X_747_1_73 crossref_primary_10_3847_1538_4365_ad12c1 crossref_primary_10_3847_0004_637X_816_2_79 crossref_primary_10_1088_1361_6471_aadeae crossref_primary_10_1038_s41586_020_2948_7 crossref_primary_10_1103_PhysRevD_103_103005 crossref_primary_10_1088_1475_7516_2016_02_007 crossref_primary_10_1098_rsta_2012_0272 crossref_primary_10_1016_j_nuclphysa_2015_07_020 crossref_primary_10_1007_s12043_023_02574_5 crossref_primary_10_3847_1538_4357_ab2e05 crossref_primary_10_3847_1538_4357_ad5009 crossref_primary_10_1088_2041_8205_760_1_L4 crossref_primary_10_1093_mnras_stu1442 crossref_primary_10_1103_PhysRevD_98_063013 crossref_primary_10_3847_1538_4357_ad4d8e crossref_primary_10_1103_PhysRevD_95_063004 crossref_primary_10_1093_mnras_staa1691 crossref_primary_10_1103_PhysRevD_86_125001 crossref_primary_10_1088_0004_637X_739_2_93 crossref_primary_10_1134_S1063778819040161 crossref_primary_10_1103_PhysRevD_89_013011 crossref_primary_10_3847_1538_4357_ab64f8 crossref_primary_10_1088_1475_7516_2020_12_008 crossref_primary_10_1093_mnras_stz543 crossref_primary_10_1051_0004_6361_201935792 crossref_primary_10_1051_epjconf_202327913005 crossref_primary_10_1155_2013_506146 crossref_primary_10_1016_j_nuclphysa_2013_03_010 crossref_primary_10_3847_2041_8213_acdad2 crossref_primary_10_1103_PhysRevC_86_065803 crossref_primary_10_1093_mnras_stw946 crossref_primary_10_1088_0067_0049_219_2_24 crossref_primary_10_1103_PhysRevD_86_083004 crossref_primary_10_1088_2041_8205_744_1_L14 crossref_primary_10_3847_0004_637X_821_1_38 crossref_primary_10_3847_1538_4357_aaafd1 crossref_primary_10_3390_universe4030050 crossref_primary_10_1103_PhysRevD_111_063007 crossref_primary_10_3847_2041_8213_ab5642 crossref_primary_10_1088_1475_7516_2020_01_010 crossref_primary_10_1088_0004_637X_808_2_188 crossref_primary_10_1088_0004_637X_778_1_8 crossref_primary_10_1093_ptep_ptaa154 crossref_primary_10_1103_PhysRevD_83_125013 crossref_primary_10_1007_JHEP07_2017_108 crossref_primary_10_3847_1538_4357_aadbae crossref_primary_10_1093_mnras_stv1352 crossref_primary_10_1111_j_1365_2966_2012_21443_x crossref_primary_10_1140_epja_i2015_15022_3 crossref_primary_10_1088_1475_7516_2016_04_043 crossref_primary_10_1093_mnras_stz1240 crossref_primary_10_1103_PhysRevD_102_023037 crossref_primary_10_1103_PhysRevD_87_085037 crossref_primary_10_1088_0954_3899_39_9_095204 crossref_primary_10_1103_PhysRevLett_109_251104 crossref_primary_10_1051_0004_6361_201117810 crossref_primary_10_1093_mnras_sty1683 crossref_primary_10_1093_mnras_sty2531 crossref_primary_10_1103_PhysRevD_89_061303 crossref_primary_10_1088_0004_637X_762_2_126 crossref_primary_10_1088_1475_7516_2014_11_030 crossref_primary_10_3847_1538_4357_ac85bc crossref_primary_10_1103_PhysRevD_101_043007 crossref_primary_10_1103_PhysRevD_97_103018 crossref_primary_10_1146_annurev_nucl_102711_094901 crossref_primary_10_1088_0004_637X_764_1_99 crossref_primary_10_1088_0004_637X_813_1_2 crossref_primary_10_1103_PhysRevD_96_023009 crossref_primary_10_1093_mnras_stt2502 crossref_primary_10_1007_s41114_019_0024_0 crossref_primary_10_1140_epja_i2014_14046_5 crossref_primary_10_3847_1538_4357_aadd48 crossref_primary_10_3847_1538_4357_ab86b0 crossref_primary_10_1088_0067_0049_205_1_2 crossref_primary_10_1088_2041_8205_766_1_L13 crossref_primary_10_1093_mnras_stac016 crossref_primary_10_3847_0004_637X_826_1_57 crossref_primary_10_3847_1538_4357_aa92c5 crossref_primary_10_1088_0954_3899_40_1_013201 crossref_primary_10_1016_j_physletb_2022_137403 crossref_primary_10_1103_PhysRevD_105_063009 crossref_primary_10_1103_PhysRevD_84_025002 crossref_primary_10_1051_0004_6361_201220636 crossref_primary_10_1088_2041_8205_738_2_L32 crossref_primary_10_1093_mnras_stac1035 crossref_primary_10_1103_PhysRevC_103_025806 crossref_primary_10_1103_PhysRevLett_108_061103 crossref_primary_10_3847_1538_4357_ad24f2 crossref_primary_10_1103_PhysRevLett_107_151101 crossref_primary_10_1103_PhysRevD_104_103012 crossref_primary_10_3847_1538_4357_ab1d4b crossref_primary_10_1016_j_astropartphys_2012_02_011 crossref_primary_10_1093_mnras_stac2359 crossref_primary_10_1093_mnras_stx1738 crossref_primary_10_1088_0004_637X_760_1_94 crossref_primary_10_3847_1538_4357_ab8308 crossref_primary_10_1016_j_nuclphysbps_2011_04_076 crossref_primary_10_1103_PhysRevD_89_093001 crossref_primary_10_1155_2013_143184 crossref_primary_10_1093_mnras_stad1198 crossref_primary_10_1103_RevModPhys_93_015002 crossref_primary_10_3847_1538_4357_aaaf6f crossref_primary_10_1051_0004_6361_201834381 crossref_primary_10_1016_j_nuclphysbps_2012_09_050 crossref_primary_10_1088_1475_7516_2011_10_019 crossref_primary_10_1016_j_nuclphysbps_2011_04_081 crossref_primary_10_1051_0004_6361_201322887 crossref_primary_10_1088_1475_7516_2020_10_038 crossref_primary_10_1103_PhysRevC_91_055807 crossref_primary_10_1103_PhysRevD_111_063053 crossref_primary_10_1093_mnras_stac2352 crossref_primary_10_3390_universe4060067 crossref_primary_10_3847_0004_637X_818_2_165 crossref_primary_10_1103_PhysRevD_108_063032 crossref_primary_10_3847_1538_4357_aabfde crossref_primary_10_1016_j_astropartphys_2016_02_005 crossref_primary_10_1016_j_physrep_2025_02_002 crossref_primary_10_1088_1475_7516_2015_02_006 crossref_primary_10_1103_PhysRevD_104_103001 crossref_primary_10_1088_1475_7516_2025_01_061 crossref_primary_10_1093_mnras_stx1987 crossref_primary_10_1103_PhysRevD_102_023022 crossref_primary_10_1088_1361_6471_aa7bdc crossref_primary_10_1016_j_nima_2022_167666 crossref_primary_10_1088_1361_6471_ad57d7 crossref_primary_10_1088_1361_6471_ab36a2 crossref_primary_10_3847_1538_4357_ad393d crossref_primary_10_1088_0954_3899_43_3_030401 crossref_primary_10_1103_PhysRevD_99_121305 crossref_primary_10_1088_2041_8205_801_2_L24 crossref_primary_10_1088_1361_6471_ab1ff7 crossref_primary_10_1103_PhysRevC_92_035807 crossref_primary_10_1088_1742_6596_665_1_012069 crossref_primary_10_3847_1538_4357_aa9c83 crossref_primary_10_1016_j_ppnp_2019_02_008 crossref_primary_10_1088_0067_0049_203_2_27 crossref_primary_10_1140_epja_i2016_16054_9 crossref_primary_10_1051_epjconf_202327502016 crossref_primary_10_1093_mnras_sts708 crossref_primary_10_1103_PhysRevD_87_103007 crossref_primary_10_1103_PhysRevD_104_103007 crossref_primary_10_1103_PhysRevD_84_105040 crossref_primary_10_1007_s11433_017_9142_2 crossref_primary_10_1088_1475_7516_2012_07_012 crossref_primary_10_1143_PTPS_186_87 crossref_primary_10_1088_0004_637X_729_1_46 crossref_primary_10_1088_0004_637X_774_2_103 crossref_primary_10_1140_epja_i2012_12122_6 crossref_primary_10_1103_PhysRevD_92_013009 crossref_primary_10_1016_j_phpro_2014_12_103 crossref_primary_10_1088_1361_6633_aa6a25 crossref_primary_10_1088_2041_8205_750_1_L22 crossref_primary_10_1103_PhysRevC_85_045801 crossref_primary_10_1093_mnras_sty480 crossref_primary_10_3847_1538_4357_ac69da crossref_primary_10_1103_PhysRevLett_108_261104 crossref_primary_10_1093_ptep_ptaa185 crossref_primary_10_1016_j_ppnp_2015_09_001 crossref_primary_10_1088_1742_6596_2156_1_012135 crossref_primary_10_1103_PhysRevC_106_045805 crossref_primary_10_3847_1538_4357_aa8039 crossref_primary_10_1088_0004_637X_722_1_954 crossref_primary_10_1088_2041_8205_770_2_L22 crossref_primary_10_1103_PhysRevD_90_064026 crossref_primary_10_1093_mnras_stx1962 crossref_primary_10_1103_PhysRevD_102_076016 crossref_primary_10_1140_epjs_s11734_021_00002_6 crossref_primary_10_1103_PhysRevD_92_083009 crossref_primary_10_1103_PhysRevD_103_043016 crossref_primary_10_3847_1538_4357_aca526 crossref_primary_10_1016_j_nuclphysbps_2011_04_089 crossref_primary_10_1051_0004_6361_201116897 crossref_primary_10_1088_0004_637X_788_1_82 crossref_primary_10_1093_ptep_ptac118 crossref_primary_10_1093_mnras_stac1916 crossref_primary_10_1088_0004_637X_738_1_61 crossref_primary_10_1007_lrca_2015_1 crossref_primary_10_3847_1538_4357_abae65 crossref_primary_10_3847_1538_4357_ac6ac9 crossref_primary_10_1088_1361_6471_aa7bc8 crossref_primary_10_1051_0004_6361_201425513 crossref_primary_10_1093_ptep_ptu020 crossref_primary_10_1103_PhysRevD_85_085031 crossref_primary_10_1016_j_nuclphysbps_2012_09_049 crossref_primary_10_1103_PhysRevC_101_025804 crossref_primary_10_1103_PhysRevD_105_123036 crossref_primary_10_1103_PhysRevD_94_093007 crossref_primary_10_1103_PhysRevD_84_033013 crossref_primary_10_1103_PhysRevLett_117_142701 crossref_primary_10_1051_epjconf_20146607024 crossref_primary_10_3847_0004_637X_825_1_6 crossref_primary_10_1140_epjc_s10052_019_6633_7 crossref_primary_10_1093_mnras_stw1453 crossref_primary_10_1007_s11214_018_0494_5 crossref_primary_10_1140_epja_s10050_022_00708_8 crossref_primary_10_1103_PhysRevD_111_043008 crossref_primary_10_1088_1475_7516_2025_03_046 crossref_primary_10_1111_j_1365_2966_2012_21859_x crossref_primary_10_1093_mnras_stv2296 crossref_primary_10_1051_0004_6361_201219949 crossref_primary_10_1103_PhysRevD_83_113006 crossref_primary_10_3847_1538_4357_abd54e crossref_primary_10_3847_1538_4357_aae7d2 crossref_primary_10_1093_mnras_stv345 crossref_primary_10_1051_0004_6361_201628321 crossref_primary_10_1088_1742_6596_381_1_012016 crossref_primary_10_1016_j_physrep_2017_03_002 crossref_primary_10_1088_0004_637X_748_1_70 crossref_primary_10_1140_epja_s10050_021_00593_7 crossref_primary_10_3847_1538_4357_aae7c9 crossref_primary_10_1088_0004_637X_810_2_109 crossref_primary_10_1088_0954_3899_41_4_044002 crossref_primary_10_1103_RevModPhys_92_045006 crossref_primary_10_3847_1538_4357_ac795e crossref_primary_10_1088_0954_3899_41_4_044003 crossref_primary_10_1088_0954_3899_41_4_044005 crossref_primary_10_1140_epja_s10050_021_00571_z crossref_primary_10_1088_0954_3899_41_4_044008 crossref_primary_10_1088_1742_6596_337_1_012041 crossref_primary_10_1103_PhysRevC_101_055803 crossref_primary_10_1103_PhysRevD_85_113002 crossref_primary_10_1140_epja_s10050_020_00073_4 crossref_primary_10_1103_PhysRevC_103_055808 crossref_primary_10_1103_PhysRevD_104_115026 crossref_primary_10_1088_1742_6596_312_4_042008 crossref_primary_10_1093_mnras_stab3393 crossref_primary_10_1103_PhysRevD_96_043013 crossref_primary_10_1140_epja_i2017_12207_8 crossref_primary_10_1088_1742_6596_312_4_042005 crossref_primary_10_1103_PhysRevD_96_103008 crossref_primary_10_1103_PhysRevD_85_125010 crossref_primary_10_1088_1361_6471_aa5ae7 crossref_primary_10_1093_mnras_stw1227 crossref_primary_10_1103_PhysRevD_107_083016 crossref_primary_10_3847_1538_4357_abce63 crossref_primary_10_1093_pasj_pst030 crossref_primary_10_1103_PhysRevLett_108_151101 crossref_primary_10_1103_PhysRevD_92_105020 crossref_primary_10_1103_PhysRevD_109_123008 crossref_primary_10_1103_PhysRevD_90_103007 crossref_primary_10_3847_1538_4357_aaf8a8 crossref_primary_10_3847_1538_4357_ac2d90 crossref_primary_10_1088_0004_637X_810_2_115 crossref_primary_10_1103_PhysRevD_94_085012 crossref_primary_10_1103_PhysRevC_83_045809 crossref_primary_10_1088_0954_3899_38_3_035201 crossref_primary_10_1103_PhysRevD_106_063019 crossref_primary_10_1134_S1063778812050067 crossref_primary_10_3847_1538_4357_acea83 crossref_primary_10_1016_j_ppnp_2024_104107 crossref_primary_10_1093_mnras_stad1458 crossref_primary_10_1088_1742_6596_940_1_012001 crossref_primary_10_1088_2041_8205_811_1_L10 crossref_primary_10_1051_0004_6361_202039457 crossref_primary_10_1088_1361_6471_aa8891 crossref_primary_10_1088_0004_637X_772_2_150 crossref_primary_10_1007_s11214_024_01122_w crossref_primary_10_3847_1538_4357_ab1d5d crossref_primary_10_3847_0004_637X_818_2_124 crossref_primary_10_1016_j_ppnp_2015_08_001 crossref_primary_10_1051_epjconf_20159303008 crossref_primary_10_1103_PhysRevD_84_044017 crossref_primary_10_1103_PhysRevLett_128_221103 crossref_primary_10_1016_j_nuclphysbps_2013_04_122 crossref_primary_10_1103_PhysRevD_88_025004 crossref_primary_10_1088_0004_637X_758_1_9 crossref_primary_10_1088_0004_637X_792_1_6 crossref_primary_10_1103_PhysRevD_94_123010 crossref_primary_10_3847_0004_637X_831_1_98 crossref_primary_10_3847_1538_4357_ad118c crossref_primary_10_1088_0004_637X_738_2_165 crossref_primary_10_1142_S0217732320300116 crossref_primary_10_1140_epja_i2011_11098_y crossref_primary_10_1088_1475_7516_2025_02_005 crossref_primary_10_1093_mnras_stt2350 crossref_primary_10_1142_S0218301318300084 |
Cites_doi | 10.1051/0004-6361:200810292 10.1086/171338 10.1051/0004-6361:20054703 10.1086/173163 10.1086/163343 10.1051/0004-6361:20010012 10.1086/166886 10.1016/j.newar.2003.12.038 10.1103/PhysRev.136.B571 10.1086/164587 10.1088/0004-637X/694/1/664 10.1086/172791 10.1086/313271 10.1103/PhysRevC.78.015806 10.1086/304181 10.1016/S0375-9474(01)00730-8 10.1086/165716 10.1103/PhysRevD.63.103004 10.1086/427203 10.1103/PhysRevD.65.043001 10.1051/0004-6361:20064855 10.1007/s10509-007-9329-7 10.1086/174817 10.1088/0034-4885/69/4/R03 10.1086/309604 10.1086/308632 10.1016/j.nuclphysa.2005.05.008 10.1086/498224 10.1103/PhysRevLett.102.081101 10.1007/BF00684583 10.1086/176188 10.1086/177973 10.1143/PTP.100.1013 10.1086/505483 10.1086/191056 10.1086/172394 10.1103/RevModPhys.74.1015 10.1086/323861 10.1016/S0377-0427(99)00162-4 10.1086/190818 10.1088/1742-6596/46/1/054 10.1016/j.newar.2006.06.003 10.1103/PhysRevLett.91.201102 10.1086/161749 10.1051/0004-6361/200811055 10.1086/174638 10.1103/PhysRevLett.96.142502 10.1016/0370-1573(93)90059-M 10.1063/1.2900257 10.1103/PhysRevD.63.104003 10.1086/508568 10.1103/PhysRevLett.90.241102 10.1051/0004-6361:20066983 10.1086/339872 10.1086/172395 10.1086/380191 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
DBID | BSCLL AAYXX CITATION IQODW OTOTI |
DOI | 10.1051/0004-6361/200913106 |
DatabaseName | Istex CrossRef Pascal-Francis OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 1036601 23398034 10_1051_0004_6361_200913106 ark_67375_80W_H27Z02LV_N |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOTM ABDNZ ABDPE ABPPZ ABTAH ABUBZ ABZDU ACACO ACGFS ACNCT ACYGS ACYRX ADCOW ADHUB ADIYS AEILP AENEX AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ BSCLL CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNP RNS RSV SDH SJN SOJ TR2 UPT UQL VH1 VOH WH7 XOL ZY4 AAOGA AAYXX ABNSH ACRPL ADNMO AGQPQ CITATION IQODW ACBIF ACZCS OTOTI XFK |
ID | FETCH-LOGICAL-c455t-7d4a16f0cc8d0e33303d0c17d57f2835767a05220fffb8c0966973ac52723b8d3 |
ISSN | 0004-6361 |
IngestDate | Fri May 19 00:38:41 EDT 2023 Mon Jul 21 09:16:16 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Sun Jul 06 05:04:46 EDT 2025 Wed Oct 30 09:59:47 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Protons Spherical symmetry High density Nucleosynthesis Luminosity Reaction rates Entropy Relativistic hydrodynamics Massive stars Neutrinos Radiative transfer Opacity Kinetic energy Dynamic model Collapse Stellar cores Accretion Digital simulation Stellar evolution hydrodynamics Flavor r process Baryons relativistic processes Quasi stationary state Elementary particles Hydrodynamic model Massless particles |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c455t-7d4a16f0cc8d0e33303d0c17d57f2835767a05220fffb8c0966973ac52723b8d3 |
Notes | ark:/67375/80W-H27Z02LV-N other:2010A%26A...517A..80F publisher-ID:aa13106-09 istex:C880F56D511ECA2E5ED2735ADED7D690C275D122 USDOE DE-AC05-00OR22725 |
OpenAccessLink | https://www.aanda.org/articles/aa/pdf/2010/09/aa13106-09.pdf |
ParticipantIDs | osti_scitechconnect_1036601 pascalfrancis_primary_23398034 crossref_primary_10_1051_0004_6361_200913106 crossref_citationtrail_10_1051_0004_6361_200913106 istex_primary_ark_67375_80W_H27Z02LV_N |
PublicationCentury | 2000 |
PublicationDate | 2010-07-01 |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis – name: United States |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2010 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Liebendörfer (Liebendoerferxetalx2001b) 2001; 63 Fröhlich (Froehlichxetalx2006c) 2006; 50 Hoffman (Hoffmanxetalx1997a) 1997; 482 Langanke (Langankexetalx2003) 2003; 90 Mezzacappaxetalx2006 Janka (JankaMuellerx1995) 1995; 448 Bethe (BetheWilsonx1985) 1985; 295 Fischer (Fischerxetalx2009) 2009; 499 Horowitz (Horowitzx2002) 2002; 65 Bruenn (Bruennxetalx2006) 2006; 46 Wanajo (Wanajox2006a) 2006; 647 Woosley (Woosleyxetalx2002) 2002; 74 Scheck (Scheckxetalx2006) 2006; 457 Schinder (SchinderShapirox1982) 1982; 50 Hoffmanxetalx2007 Misner (MisnerSharpx1964) 1964; 136 Janka (Jankax2001) 2001; 368 Otsuki (Otsukixetalx2000) 2000; 533 Jankaxetalx2008a Panov (PanovJankax2009) 2009; 494 Burrows (Burrowsxetalx1995) 1995; 450 Duncan (Duncanxetalx1986) 1986; 309 Liebendörfer (Liebendoerferxetalx2005) 2005; 620 Fröhlich (Froehlichxetalx2006b) 2006; 96 Kitaura (Kitauraxetalx2006) 2006; 450 Liebendörfer (Liebendoerferxetalx2001a) 2001; 63 Shen (Shenxetalx1998) 1989; 100 Bruenn (Bruennx1985) 1985; 58 Thompson (Thompsonxetalx2001) 2001; 562 Henderson (HendersonPagex2007) 2007; 308 Witti (Wittixetalx1994) 1994; 286 Thompson (ThompsonBurrowsx2001) 2001; 688 Kotake (Kotakexetalx2006) 2006; 69 Herant (Herantxetalx1994) 1994; 435 Wanajo (Wanajox2006b) 2006; 650 Arcones (Arconesxetalx2007) 2007; 467 Thielemann (Thielemannxetalx2004) 2004; 48 Liebendoerferx2004 Mezzacappa (MezzacappaBruennx1993a) 1993; 405 Mezzacappa (MezzacappaBruennx1993c) 1993; 410 Liebendörfer (Liebendoerferxetalx2002) 2002; 141 Nomoto (Nomotox1987) 1987; 322 Fröhlich (Froehlichxetalx2006a) 2006; 637 Woosley (WoosleyBaronx1992) 1992; 391 Hix (Hixxetalx2003) 2003; 91 Arcones (Arconesxetalx2008) 2008; 78 Liebendörfer (Liebendoerferxetalx2004) 2004; 150 Marek (MarekJankax2009) 2009; 694 Woosley (Woosleyxetalx1994) 1994; 433 Yueh (YuehBuchlerx1976) 1976; 41 Wilson (WilsonMaylex1993) 1993; 227 Mayle (MayleWilsonx1988) 1988; 334 Nomoto (Nomotox1984) 1984; 277 Mezzacappa (MezzacappaMesserx1999) 1999; 109 Timmes (TimmesArnettx1999) 1999; 125 Sagert (Sagertxetalx2009) 2009; 102 Takahashi (Takahashixetalx1994) 1994; 286 Miller (Millerxetalx1993) 1993; 415 Nomoto (Nomotox1983) 1983; 101 Janka (Jankaxetalx2005) 2005; 758 Qian (QianWoosleyx1996) 1996; 471 Mezzacappa (MezzacappaBruennx1993b) 1993; 405 Janka (JankaMuellerx1996) 1995; 306 |
References_xml | – volume: 494 start-page: 829 year: 2009 ident: PanovJankax2009 publication-title: A&A doi: 10.1051/0004-6361:200810292 – volume: 391 start-page: 228 year: 1992 ident: WoosleyBaronx1992 publication-title: ApJ doi: 10.1086/171338 – volume: 450 start-page: 345 year: 2006 ident: Kitauraxetalx2006 publication-title: A&A doi: 10.1051/0004-6361:20054703 – volume: 415 start-page: 278 year: 1993 ident: Millerxetalx1993 publication-title: ApJ doi: 10.1086/173163 – volume: 295 start-page: 14 year: 1985 ident: BetheWilsonx1985 publication-title: ApJ doi: 10.1086/163343 – volume: 368 start-page: 527 year: 2001 ident: Jankax2001 publication-title: A&A doi: 10.1051/0004-6361:20010012 – volume: 306 start-page: 167 year: 1995 ident: JankaMuellerx1996 publication-title: A&A – volume: 334 start-page: 909 year: 1988 ident: MayleWilsonx1988 publication-title: ApJ doi: 10.1086/166886 – volume: 48 start-page: 605 year: 2004 ident: Thielemannxetalx2004 publication-title: New Astron. Rev. doi: 10.1016/j.newar.2003.12.038 – volume: 136 start-page: 571 year: 1964 ident: MisnerSharpx1964 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B571 – volume: 309 start-page: 141 year: 1986 ident: Duncanxetalx1986 publication-title: ApJ doi: 10.1086/164587 – volume: 694 start-page: 664 year: 2009 ident: MarekJankax2009 publication-title: ApJ doi: 10.1088/0004-637X/694/1/664 – volume: 410 start-page: 740 year: 1993 ident: MezzacappaBruennx1993c publication-title: ApJ doi: 10.1086/172791 – volume: 125 start-page: 277 year: 1999 ident: TimmesArnettx1999 publication-title: ApJS doi: 10.1086/313271 – volume: 286 start-page: 841 year: 1994 ident: Wittixetalx1994 publication-title: A&A – volume: 78 start-page: 015806 year: 2008 ident: Arconesxetalx2008 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.78.015806 – volume: 482 start-page: 951 year: 1997 ident: Hoffmanxetalx1997a publication-title: ApJ doi: 10.1086/304181 – volume: 688 start-page: 377 year: 2001 ident: ThompsonBurrowsx2001 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(01)00730-8 – volume: 322 start-page: 206 year: 1987 ident: Nomotox1987 publication-title: ApJ doi: 10.1086/165716 – volume: 63 start-page: 103004 year: 2001 ident: Liebendoerferxetalx2001a publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.63.103004 – volume: 620 start-page: 840 year: 2005 ident: Liebendoerferxetalx2005 publication-title: ApJ doi: 10.1086/427203 – volume: 65 start-page: 043001 year: 2002 ident: Horowitzx2002 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.65.043001 – volume: 457 start-page: 963 year: 2006 ident: Scheckxetalx2006 publication-title: A&A doi: 10.1051/0004-6361:20064855 – volume: 308 start-page: 513 year: 2007 ident: HendersonPagex2007 publication-title: Ap&SS doi: 10.1007/s10509-007-9329-7 – volume: 435 start-page: 339 year: 1994 ident: Herantxetalx1994 publication-title: ApJ doi: 10.1086/174817 – volume: 69 start-page: 971 year: 2006 ident: Kotakexetalx2006 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/69/4/R03 – volume: 448 start-page: L109 year: 1995 ident: JankaMuellerx1995 publication-title: ApJ doi: 10.1086/309604 – volume: 533 start-page: 424 year: 2000 ident: Otsukixetalx2000 publication-title: ApJ doi: 10.1086/308632 – volume: 758 start-page: 19 year: 2005 ident: Jankaxetalx2005 publication-title: Nuclear Physics A doi: 10.1016/j.nuclphysa.2005.05.008 – volume: 637 start-page: 415 year: 2006 ident: Froehlichxetalx2006a publication-title: ApJ doi: 10.1086/498224 – volume: 102 start-page: 081101 issue: 8 year: 2009 ident: Sagertxetalx2009 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.081101 – volume: 41 start-page: 221 year: 1976 ident: YuehBuchlerx1976 publication-title: Ap&SS doi: 10.1007/BF00684583 – volume: 450 start-page: 830 year: 1995 ident: Burrowsxetalx1995 publication-title: ApJ doi: 10.1086/176188 – volume: 101 start-page: 139 year: 1983 ident: Nomotox1983 publication-title: IAU Symp. – volume: 471 start-page: 331 year: 1996 ident: QianWoosleyx1996 publication-title: ApJ doi: 10.1086/177973 – volume: 100 start-page: 1013 year: 1989 ident: Shenxetalx1998 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.100.1013 – volume: 647 start-page: 1323 year: 2006 ident: Wanajox2006a publication-title: ApJ doi: 10.1086/505483 – volume: 58 start-page: 771 year: 1985 ident: Bruennx1985 publication-title: ApJS doi: 10.1086/191056 – volume: 405 start-page: 637 year: 1993 ident: MezzacappaBruennx1993a publication-title: ApJ doi: 10.1086/172394 – volume: 74 start-page: 1015 year: 2002 ident: Woosleyxetalx2002 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.74.1015 – volume: 562 start-page: 887 year: 2001 ident: Thompsonxetalx2001 publication-title: ApJ doi: 10.1086/323861 – volume: 109 start-page: 281 year: 1999 ident: MezzacappaMesserx1999 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(99)00162-4 – volume: 50 start-page: 23 year: 1982 ident: SchinderShapirox1982 publication-title: ApJS doi: 10.1086/190818 – volume: 46 start-page: 393 year: 2006 ident: Bruennxetalx2006 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/46/1/054 – volume: 50 start-page: 496 year: 2006 ident: Froehlichxetalx2006c publication-title: New Astron. Rev. doi: 10.1016/j.newar.2006.06.003 – ident: Mezzacappaxetalx2006 – volume: 91 start-page: 201102 year: 2003 ident: Hixxetalx2003 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.201102 – volume: 277 start-page: 791 year: 1984 ident: Nomotox1984 publication-title: ApJ doi: 10.1086/161749 – volume: 499 start-page: 1 year: 2009 ident: Fischerxetalx2009 publication-title: A&A doi: 10.1051/0004-6361/200811055 – volume: 433 start-page: 229 year: 1994 ident: Woosleyxetalx1994 publication-title: ApJ doi: 10.1086/174638 – volume: 96 start-page: 142502 issue: 14 year: 2006 ident: Froehlichxetalx2006b publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.142502 – volume: 227 start-page: 97 year: 1993 ident: WilsonMaylex1993 publication-title: Phys. Rep. doi: 10.1016/0370-1573(93)90059-M – ident: Jankaxetalx2008a doi: 10.1063/1.2900257 – volume: 63 start-page: 104003 year: 2001 ident: Liebendoerferxetalx2001b publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.63.104003 – volume: 650 start-page: L79 year: 2006 ident: Wanajox2006b publication-title: ApJ doi: 10.1086/508568 – volume: 90 start-page: 241102 year: 2003 ident: Langankexetalx2003 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.241102 – volume: 467 start-page: 1227 year: 2007 ident: Arconesxetalx2007 publication-title: A&A doi: 10.1051/0004-6361:20066983 – ident: Hoffmanxetalx2007 – ident: Liebendoerferx2004 – volume: 141 start-page: 229 year: 2002 ident: Liebendoerferxetalx2002 publication-title: ApJS doi: 10.1086/339872 – volume: 405 start-page: 669 year: 1993 ident: MezzacappaBruennx1993b publication-title: ApJ doi: 10.1086/172395 – volume: 286 start-page: 857 year: 1994 ident: Takahashixetalx1994 publication-title: A&A – volume: 150 start-page: 263 year: 2004 ident: Liebendoerferxetalx2004 publication-title: ApJS doi: 10.1086/380191 |
SSID | ssj0002183 |
Score | 2.5332289 |
Snippet | Massive stars end their lives in explosions with kinetic energies on the order of 1051 erg. Immediately after the explosion has been launched, a region of low... Massive stars end their lives in explosions with kinetic energies on the order of 10{sup 51} erg. Immediately after the explosion has been launched, a region... |
SourceID | osti pascalfrancis crossref istex |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | A80 |
SubjectTerms | Astronomy CHARGED CURRENTS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONTRACTION Earth, ocean, space ENTROPY Exact sciences and technology EXPLOSIONS HEATING HYDRODYNAMICS KINETIC ENERGY KINETICS NEUTRINOS NUCLEOSYNTHESIS PHYSICS OF ELEMENTARY PARTICLES AND FIELDS R PROCESS RADIANT HEAT TRANSFER RADIATIONS radiative transfer REACTION KINETICS relativistic processes STAR EVOLUTION STARS SYMMETRY TRANSPORT |
Title | Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations |
URI | https://api.istex.fr/ark:/67375/80W-H27Z02LV-N/fulltext.pdf https://www.osti.gov/biblio/1036601 |
Volume | 517 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJiReEAzQymDyA9pLSebEdpw9VhOlfGyaRAcTL5HjJGo1-qGm5aMS_Ev8i9zFqZeNaWK8RKnjXj7ul_P5cv4dIS8KGBQUWD2PFxHzhEylp0UgMCSgVMpllitcO3x0HPVPxdszedZq_W5kLS0XqW9W164r-R-tQhvoFVfJ3kKzTig0wD7oF7agYdj-k45P5lPk0l5iOBuDAkjeXZ_QZUZWh0eTqZfN0bB1vo0quiUsnYzhqHoxy9eKr9l17syRsqCSM_yRgY21devLTjka1_W-yqZb2y3xEqZjS-ak8ZcNmVQxXUup1Yg59Ealw4p_MSyA9zucLm2lxw9-59AdOspXK230bGaDwK59MMTl8eO6znPP9975zSgGfoBX6yjG2jILL-KWmN3PrTEWHDNj6xBlba2lXepZ29uuLQP11zgApsYmTlqhuOyFIQNqwK7h3b4yHrosxer7vAzw-7xIUEzihNwhmyHMS7Bkxus3v9zQj_6mnW_Z865prmSw79r2nZBLrtAmvtXfwTGYgr4xQ1eX8JIWtrpKw-UZPCD367kK7VrgPSStfLJFtp2u6R7tNjS9Re6e2L1H5GcTmRSRSR0yKUCEAjLpFWRSRCYdTWiNTNpEputMHTLpJWTSBjIfk9Peq8Fh36sLfXhGSLnwVCZ0EBXMmDhjOefgVmXMBCqTqkA-QBUpzWCiwIqiSGMDs-7oQHFtZKhCnsYZf0I2JnBT24QGXGpTRDFMe7QQcRiHQRbD89ZpHGrNRZuE62eemJoFH4uxfElu0HabvHR_mlkSmJu771XKdH31_BzzJ5VMYvYp6YfqMwvff0yO22QHtZ2As4uMzQZT28wC5PIoYkGb7F4CgRMXcn4QMy6e3u6ydsi9izfvGdlYzJf5c_CoF-luheI_wI3Gwg |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protoneutron+star+evolution+and+the+neutrino-driven+wind+in+general+relativistic+neutrino+radiation+hydrodynamics+simulations&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Fischer%2C+T.&rft.au=Whitehouse%2C+S.+C.&rft.au=Mezzacappa%2C+A.&rft.au=Thielemann%2C+F.-K.&rft.date=2010-07-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=517&rft.spage=A80&rft_id=info:doi/10.1051%2F0004-6361%2F200913106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_200913106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |