Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food

Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 15; no. 1; pp. 27 - 44
Main Authors Zhao, Fang-Jie, Tang, Zhong, Song, Jia-Jun, Huang, Xin-Yuan, Wang, Peng
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 03.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed. Accumulation of toxic metals and metalloids, such as arsenic, cadmium, lead, and mercury in food crops, can affect food safety and human health. This review discusses the molecular mechanisms and regulation of their uptake, transport, and detoxification as well as crop improvement strategies to reduce their accumulation in the edible parts. The potential of using metal-accumulating plants to clean up contaminated soil is also discussed.
AbstractList Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed.
Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed. Accumulation of toxic metals and metalloids, such as arsenic, cadmium, lead, and mercury in food crops, can affect food safety and human health. This review discusses the molecular mechanisms and regulation of their uptake, transport, and detoxification as well as crop improvement strategies to reduce their accumulation in the edible parts. The potential of using metal-accumulating plants to clean up contaminated soil is also discussed.
Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed.
Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed.Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed.
Author Tang, Zhong
Wang, Peng
Zhao, Fang-Jie
Song, Jia-Jun
Huang, Xin-Yuan
Author_xml – sequence: 1
  givenname: Fang-Jie
  orcidid: 0000-0002-0164-169X
  surname: Zhao
  fullname: Zhao, Fang-Jie
  email: fangjie.zhao@njau.edu.cn
– sequence: 2
  givenname: Zhong
  surname: Tang
  fullname: Tang, Zhong
– sequence: 3
  givenname: Jia-Jun
  surname: Song
  fullname: Song, Jia-Jun
– sequence: 4
  givenname: Xin-Yuan
  surname: Huang
  fullname: Huang, Xin-Yuan
– sequence: 5
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34619329$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v3CAURFWq5qP9Az1EHHNYuw9sMFS5RFG_pEi9JGfE4meVjW1cYKPsvy_b3Vx6SE-MHjPzYOacnMxhRkI-MqgZMPlpU09hXGoOnNWg6zJ6Q85YJ3illexOCpZdW3EQ_JScp7QBkKBk846cNq1kuuH6jGzvw7N3dMJsx0Tt3B_gGHyfPtOHJdtHXNEc7ZyWEPOK9piLYvDOZh_mFV1-7XKIOGHvj5O9iYthoX5aYngqV3OmQ4g02QFjQaF_T94OZR9-OJ4X5OHrl_vb79Xdz28_bm_uKtcKkavOit5ai4oDKGGFw4FrrXjHoLNMMwnDugOJazk0AJ1aQ4usZb3VrLVSiuaCXB18y0N-bzFlM_nkcBztjGGbDJeNlFoJ3vyfKhRILVvGCvXySN2uy7_NEv1k4868pFoI6kAoMaQUcTDO57_plCD9aBiYfYFmY_YFmn2BBrQpoyLl_0hf3F8VXR9EWLJ88hhNch5nVzqJ6LLpg39N_geT_rT6
CitedBy_id crossref_primary_10_1016_j_ecoenv_2024_117324
crossref_primary_10_1016_j_plaphy_2024_109323
crossref_primary_10_1016_j_ecoenv_2023_115422
crossref_primary_10_1016_j_plaphy_2024_108351
crossref_primary_10_1039_D4NR04108A
crossref_primary_10_1016_j_chemosphere_2024_141140
crossref_primary_10_3390_toxics11090801
crossref_primary_10_1134_S1064229324600441
crossref_primary_10_1016_j_cj_2023_01_007
crossref_primary_10_1007_s11356_023_28629_z
crossref_primary_10_3390_agronomy15030541
crossref_primary_10_1039_D4EN00763H
crossref_primary_10_3390_plants13020313
crossref_primary_10_1007_s42729_024_01885_9
crossref_primary_10_1016_j_ecoenv_2024_117218
crossref_primary_10_1016_j_ecoenv_2025_118004
crossref_primary_10_1007_s11356_024_31986_y
crossref_primary_10_1016_j_envres_2023_117270
crossref_primary_10_1111_nph_19070
crossref_primary_10_1016_j_rsci_2024_08_003
crossref_primary_10_3389_fpls_2023_1261518
crossref_primary_10_3390_su142114355
crossref_primary_10_1016_j_chemosphere_2023_140681
crossref_primary_10_3389_fpls_2022_898247
crossref_primary_10_1186_s12870_024_05786_y
crossref_primary_10_1007_s44372_025_00090_x
crossref_primary_10_3390_plants13202921
crossref_primary_10_1016_j_chemosphere_2023_140559
crossref_primary_10_3390_ijms25010613
crossref_primary_10_1007_s42729_024_01813_x
crossref_primary_10_1016_j_ecoenv_2022_114065
crossref_primary_10_1016_j_plaphy_2024_109458
crossref_primary_10_1016_j_chemosphere_2024_143464
crossref_primary_10_1016_j_scitotenv_2024_173166
crossref_primary_10_3390_ijms252111455
crossref_primary_10_1007_s00344_024_11416_6
crossref_primary_10_1007_s11270_024_07135_z
crossref_primary_10_1016_j_ijbiomac_2024_137358
crossref_primary_10_1021_acs_jafc_3c04967
crossref_primary_10_1111_pce_14530
crossref_primary_10_1186_s43170_023_00185_z
crossref_primary_10_1016_j_envexpbot_2023_105267
crossref_primary_10_1002_smll_202301137
crossref_primary_10_1007_s41748_023_00349_x
crossref_primary_10_1111_tpj_70058
crossref_primary_10_1007_s44154_023_00136_8
crossref_primary_10_1093_pcp_pcac071
crossref_primary_10_3390_ijms24010052
crossref_primary_10_2139_ssrn_4107531
crossref_primary_10_1016_j_plaphy_2024_108940
crossref_primary_10_1007_s11104_023_06303_0
crossref_primary_10_3390_agriculture13101983
crossref_primary_10_1016_j_plaphy_2025_109641
crossref_primary_10_1016_j_sajb_2024_10_047
crossref_primary_10_1007_s11356_023_31536_y
crossref_primary_10_1016_j_envpol_2025_126110
crossref_primary_10_1128_mmbr_00042_23
crossref_primary_10_1016_j_scitotenv_2022_160994
crossref_primary_10_1016_j_jhazmat_2024_133531
crossref_primary_10_1016_j_plantsci_2022_111357
crossref_primary_10_1016_j_celrep_2025_115336
crossref_primary_10_1016_j_scitotenv_2024_171915
crossref_primary_10_1111_ppl_70018
crossref_primary_10_1016_j_envpol_2024_124188
crossref_primary_10_1093_jxb_erad179
crossref_primary_10_1016_j_ecoenv_2023_115056
crossref_primary_10_1016_j_jenvman_2023_119124
crossref_primary_10_1016_j_molp_2024_09_012
crossref_primary_10_1021_acs_langmuir_4c04604
crossref_primary_10_1007_s11104_023_06095_3
crossref_primary_10_1021_acs_est_4c08658
crossref_primary_10_1016_j_jhazmat_2024_135702
crossref_primary_10_1021_acs_est_2c06384
crossref_primary_10_1080_15226514_2023_2211172
crossref_primary_10_1016_j_plaphy_2023_108149
crossref_primary_10_1016_j_apgeochem_2024_106149
crossref_primary_10_1111_pce_15296
crossref_primary_10_1016_j_envpol_2025_125927
crossref_primary_10_1007_s40572_024_00462_7
crossref_primary_10_1093_plphys_kiac534
crossref_primary_10_1016_j_fct_2023_113886
crossref_primary_10_1016_j_envres_2024_119945
crossref_primary_10_1016_j_ecoenv_2024_117548
crossref_primary_10_1016_j_jenvman_2023_119392
crossref_primary_10_1021_acs_jafc_4c04334
crossref_primary_10_1016_j_foodchem_2022_134086
crossref_primary_10_1016_j_jenvman_2025_124746
crossref_primary_10_3390_molecules28093921
crossref_primary_10_1093_treephys_tpaf002
crossref_primary_10_1111_ppl_14226
crossref_primary_10_1016_j_ijbiomac_2022_01_202
crossref_primary_10_1146_annurev_arplant_062923_021424
crossref_primary_10_1007_s00425_023_04296_9
crossref_primary_10_1016_j_chemosphere_2023_137783
crossref_primary_10_1016_j_envexpbot_2023_105343
crossref_primary_10_1016_j_plaphy_2023_107763
crossref_primary_10_1007_s44307_024_00052_6
crossref_primary_10_1080_10643389_2022_2099192
crossref_primary_10_1007_s00128_024_03915_9
crossref_primary_10_3390_plants11162178
crossref_primary_10_1007_s00299_025_03445_6
crossref_primary_10_1016_j_scitotenv_2024_174503
crossref_primary_10_3390_genes14122204
crossref_primary_10_1016_j_scitotenv_2024_176369
crossref_primary_10_1134_S1021443722603007
crossref_primary_10_1016_j_jenvman_2024_123488
crossref_primary_10_1093_jxb_erad074
crossref_primary_10_1016_j_enmm_2024_100975
crossref_primary_10_1016_j_freeradbiomed_2023_02_010
crossref_primary_10_3390_ijms252011145
crossref_primary_10_3390_agriculture13081607
crossref_primary_10_1007_s11356_023_25259_3
crossref_primary_10_1007_s10311_023_01663_6
crossref_primary_10_3390_horticulturae9070835
crossref_primary_10_1016_j_jhazmat_2023_132958
crossref_primary_10_1016_j_plaphy_2025_109612
crossref_primary_10_1016_j_rser_2023_113474
crossref_primary_10_1186_s12870_024_05948_y
crossref_primary_10_1016_j_plaphy_2024_109164
crossref_primary_10_1016_j_ibiod_2024_105872
crossref_primary_10_1016_j_jhazmat_2025_137252
crossref_primary_10_1007_s11104_022_05323_6
crossref_primary_10_1186_s12951_022_01509_3
crossref_primary_10_1002_fes3_70061
crossref_primary_10_1016_j_ijbiomac_2023_127103
crossref_primary_10_1093_jxb_erac323
crossref_primary_10_3390_genes13122395
crossref_primary_10_1016_j_ecoenv_2024_116644
crossref_primary_10_1016_j_scitotenv_2023_168389
crossref_primary_10_1007_s11104_022_05373_w
crossref_primary_10_1016_j_envpol_2023_122066
crossref_primary_10_3389_fgene_2023_1133600
crossref_primary_10_1016_j_jhazmat_2023_132496
crossref_primary_10_1007_s10534_024_00661_7
crossref_primary_10_2139_ssrn_4055931
crossref_primary_10_3390_agronomy14020356
crossref_primary_10_1016_j_scitotenv_2025_178778
crossref_primary_10_1021_acsestengg_4c00576
crossref_primary_10_1016_j_cj_2024_05_014
crossref_primary_10_3389_fpls_2022_993484
crossref_primary_10_1111_pbi_14379
crossref_primary_10_3390_plants12223816
crossref_primary_10_1021_acs_est_4c00977
crossref_primary_10_2139_ssrn_4064435
crossref_primary_10_1007_s10725_024_01137_x
crossref_primary_10_1016_j_tplants_2023_07_003
crossref_primary_10_1021_acs_est_4c02471
crossref_primary_10_1016_j_scitotenv_2024_172907
crossref_primary_10_1016_j_plaphy_2023_108135
crossref_primary_10_3390_toxics13010014
crossref_primary_10_1016_j_scitotenv_2024_172128
crossref_primary_10_1007_s11356_025_36223_8
crossref_primary_10_1186_s12903_025_05763_3
crossref_primary_10_1016_j_envres_2024_118920
crossref_primary_10_1007_s10646_024_02792_6
crossref_primary_10_1016_j_jhazmat_2024_136210
crossref_primary_10_3390_horticulturae8090761
crossref_primary_10_1016_j_scitotenv_2023_161965
crossref_primary_10_1016_j_scitotenv_2023_168918
crossref_primary_10_1007_s00299_023_03112_8
crossref_primary_10_3390_min13020175
crossref_primary_10_1080_10643389_2024_2373949
crossref_primary_10_1016_j_scitotenv_2024_176417
crossref_primary_10_1016_j_ecoenv_2024_116397
crossref_primary_10_1007_s12011_023_04007_1
crossref_primary_10_3389_fgene_2022_941118
crossref_primary_10_1016_j_earscirev_2024_104802
crossref_primary_10_1007_s11356_022_21022_2
crossref_primary_10_1111_nph_19727
crossref_primary_10_1007_s00425_023_04170_8
crossref_primary_10_1016_j_scitotenv_2024_174129
crossref_primary_10_1186_s43170_024_00274_7
crossref_primary_10_1016_j_jece_2024_112125
crossref_primary_10_3390_cells12030441
crossref_primary_10_1186_s12870_024_05960_2
crossref_primary_10_4236_jep_2024_1512062
crossref_primary_10_1093_mtomcs_mfad016
crossref_primary_10_1016_j_plaphy_2024_108848
crossref_primary_10_3390_plants13040530
crossref_primary_10_1016_j_chemosphere_2022_137650
crossref_primary_10_1111_jipb_13440
crossref_primary_10_1038_s41467_024_53898_8
crossref_primary_10_1016_j_ecoenv_2023_115120
crossref_primary_10_1016_j_jenvman_2024_123779
crossref_primary_10_1093_jxb_erad366
crossref_primary_10_3389_fpls_2023_1138281
crossref_primary_10_1016_j_cj_2022_09_014
crossref_primary_10_1007_s11104_025_07236_6
crossref_primary_10_1007_s11356_024_34748_y
crossref_primary_10_1016_j_envpol_2023_122578
crossref_primary_10_1016_j_chemosphere_2024_142691
crossref_primary_10_1016_j_jes_2023_07_033
crossref_primary_10_1007_s11104_024_06791_8
crossref_primary_10_1016_j_chemosphere_2022_137501
crossref_primary_10_1016_j_envpol_2023_122689
crossref_primary_10_37349_ec_2023_00012
crossref_primary_10_1016_j_jhazmat_2023_131219
crossref_primary_10_3390_agriculture13071302
crossref_primary_10_1016_j_scitotenv_2022_155006
crossref_primary_10_1016_j_scitotenv_2023_169378
crossref_primary_10_1016_j_jretconser_2024_103886
crossref_primary_10_1016_j_envint_2024_108904
crossref_primary_10_1016_j_jclepro_2023_139060
crossref_primary_10_3390_agronomy13112778
crossref_primary_10_1016_j_marpolbul_2023_114808
crossref_primary_10_1016_j_jhazmat_2023_131580
crossref_primary_10_1016_j_chemosphere_2023_138902
crossref_primary_10_1007_s00299_024_03153_7
crossref_primary_10_1016_j_molp_2023_09_007
crossref_primary_10_1016_j_jhazmat_2024_133702
crossref_primary_10_1016_j_plaphy_2025_109578
Cites_doi 10.1093/pcp/pcr166
10.1016/j.bbrc.2019.03.024
10.1007/s00122-013-2207-5
10.1016/j.molp.2021.05.020
10.1038/nplants.2015.202
10.1093/jxb/erz310
10.1289/ehp.9462
10.1186/1741-7007-6-26
10.1105/tpc.113.114009
10.1111/j.1469-8137.2009.02912.x
10.1111/j.1365-3040.2012.02527.x
10.3389/fpls.2017.02197
10.3389/fphys.2012.00182
10.1111/pce.12747
10.1021/acs.jafc.0c06853
10.1105/tpc.020487
10.1016/j.envpol.2016.10.043
10.1111/jipb.12794
10.1104/pp.19.01569
10.1080/07352689.2020.1792179
10.1038/s41477-021-00856-7
10.1104/pp.108.130294
10.2135/cropsci2013.10.0656
10.1038/s41467-021-21282-5
10.1105/tpc.109.069773
10.1111/nph.14572
10.1016/j.pbi.2017.05.002
10.1016/j.envpol.2007.01.011
10.1021/es5047099
10.1146/annurev.arplant.53.100301.135154
10.1016/j.envpol.2019.03.063
10.1351/pac200274050793
10.3389/fpls.2017.01868
10.1104/pp.113.216564
10.1093/jxb/erz091
10.1371/journal.pgen.1002923
10.1093/jxb/erv164
10.1021/es070627i
10.1093/plphys/kiab086
10.1126/science.1201438
10.1093/jxb/eraa253
10.1111/nph.13512
10.1007/s11104-011-0926-4
10.1111/nph.16404
10.1038/s41467-018-03088-0
10.1021/es802412r
10.1093/jxb/erab003
10.1080/00380768.2013.804390
10.1021/es0502324
10.1038/s41598-017-14832-9
10.1007/s11104-008-9786-y
10.1111/j.1469-8137.2010.03459.x
10.1016/j.molp.2020.05.007
10.1093/pcp/pcw163
10.1007/s11032-019-0992-5
10.1104/pp.15.01882
10.1016/j.tplants.2015.04.007
10.1104/pp.109.140350
10.1111/j.1469-8137.2008.02638.x
10.1105/tpc.109.073023
10.1105/tpc.11.6.1153
10.1016/j.envpol.2016.04.019
10.1111/j.1365-313X.2011.04789.x
10.1073/pnas.1005396107
10.1016/j.scitotenv.2018.05.050
10.1038/ncomms5617
10.1021/acs.est.7b03028
10.1371/journal.pbio.1002009
10.1002/jpln.201200440
10.1093/jxb/eraa465
10.1016/j.envint.2019.03.004
10.1146/annurev-arplant-042809-112156
10.1093/jxb/eru259
10.1074/jbc.M806881200
10.1021/es803643v
10.1007/s11104-018-3849-5
10.1021/es802612a
10.1021/es8001103
10.1111/pce.13843
10.1105/tpc.001388
10.1038/nature11517
10.1021/es502000d
10.1016/j.ecoenv.2020.110462
10.1021/es702748q
10.1021/acs.est.0c02877
10.3389/fpls.2018.00476
10.1007/s11104-019-04374-6
10.1371/journal.pone.0177978
10.1111/tpj.13612
10.1016/j.molp.2015.01.005
10.1111/j.1469-8137.2011.03956.x
10.1126/science.2434996
10.1021/es303310t
10.1073/pnas.090091397
10.1038/s41588-019-0381-3
10.1111/j.1469-8137.2008.02716.x
10.1007/s11104-009-0074-2
10.1046/j.1365-313x.2000.00901.x
10.1016/j.envint.2011.05.007
10.1021/es4012096
10.1897/09-131.1
10.1021/es702212p
10.1104/pp.109.146126
10.1105/tpc.106.041871
10.1104/pp.109.150862
10.1111/nph.12497
10.1111/nph.14761
10.1038/s41467-019-12946-4
10.1093/pcp/pcx029
10.1016/j.chemosphere.2020.128893
10.1016/j.envpol.2021.117918
10.1038/nature05964
10.1007/s00122-010-1370-1
10.1016/j.molcel.2018.02.009
10.1093/jxb/eru340
10.1105/tpc.112.096925
10.1021/es101139z
10.1073/pnas.1013964107
10.1111/nph.13472
10.1016/j.jes.2016.10.004
10.1016/j.scitotenv.2014.03.090
10.1021/es405234p
10.1093/jxb/erz366
10.1016/j.agee.2019.106651
10.1021/es060800v
10.1038/s43016-020-0130-x
10.1111/nph.15190
10.1111/nph.16217
10.1146/annurev-arplant-042809-112152
10.1093/jxb/erab254
10.1016/j.plantsci.2021.110894
10.1093/jxb/erw362
10.1093/jxb/err158
10.1093/jxb/erx364
10.1016/j.envpol.2012.02.018
10.1038/s41467-020-18608-0
10.1073/pnas.0802361105
10.1073/pnas.1414968111
10.1021/es304295n
10.1289/ehp.1001915
10.1016/j.envpol.2020.115193
10.1021/acs.est.1c00133
10.1371/journal.pone.0173681
10.1104/pp.109.4.1427
10.1016/j.soilbio.2021.108129
10.1093/jxb/erx165
10.3390/ijms20020413
10.1080/10937401003673750
10.1111/nph.14907
10.1104/pp.16.01189
10.1111/pbi.12905
10.1093/jxb/erz400
10.1186/s12284-017-0149-2
10.1016/j.tox.2015.03.005
10.1104/pp.18.00485
10.1111/j.1469-8137.2009.03071.x
10.1104/pp.18.01380
10.1104/pp.111.173088
10.1021/acs.est.0c03001
10.1093/jxb/erp119
10.1073/pnas.1116531109
10.1105/tpc.18.00375
10.1038/nature06877
10.1038/s41561-020-0533-1
10.1371/journal.pgen.1009636
10.1104/pp.16.01332
10.1007/s00424-007-0408-y
10.1021/es8036687
10.1111/j.1469-8137.2010.03192.x
10.1104/pp.116.3.1063
10.1007/s11104-015-2739-3
10.1038/s41598-019-55736-0
10.1093/jxb/erz093
10.1021/acs.est.7b01487
10.1104/pp.111.181669
10.1080/00380768.2020.1719806
10.1038/s41467-019-10544-y
10.1111/j.1365-313X.2004.02161.x
10.1021/bi200002a
ContentType Journal Article
Copyright 2021 The Author
Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Author
– notice: Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.molp.2021.09.016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1752-9867
EndPage 44
ExternalDocumentID 34619329
10_1016_j_molp_2021_09_016
S1674205221004068
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--M
.2P
.I3
0R~
123
2WC
4.4
457
53G
7-5
70D
8P~
AABVA
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAIYJ
AAKOC
AALRI
AAOAW
AATLK
AAVLN
AAXUO
ABGRD
ABJNI
ABMAC
ABNKS
ABVKL
ABYKQ
ABZBJ
ACDAQ
ACGFS
ACPRK
ACRLP
ADBBV
ADEYI
ADEZE
ADFTL
ADOCK
ADZTZ
AEBSH
AEGPL
AEKER
AENEX
AEXQZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGKEF
AGUBO
AHMBA
AHXPO
AIEXJ
AIJHB
AIKHN
AITUG
AJOXV
AKHUL
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
BKOJK
BLXMC
CS3
CZ4
DU5
E3Z
EBS
EE~
EFJIC
EFLBG
ESX
F5P
F9B
FDB
FIRID
FYGXN
GBLVA
H5~
HW0
HZ~
IOX
IXB
KOM
M-Z
M41
M49
N9A
NU-
O9-
OAUVE
OK1
P2P
PQQKQ
Q1.
RCE
RD5
ROL
RW1
RXO
SPCBC
SSA
SSZ
T5K
TR2
W8F
X7H
~91
~G-
1RT
AAEDT
AAHBH
AAMRU
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFPUW
AGCQF
AGHFR
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AXJTR
BNPGV
CITATION
CKLRP
CW9
EJD
H13
O0~
OVD
SSH
TEORI
TGP
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c455t-7a5daaae820085a5cef299827107a19160fb706eb6f30078b04e141da914a6653
IEDL.DBID AIKHN
ISSN 1674-2052
1752-9867
IngestDate Fri Jul 11 03:58:54 EDT 2025
Fri Jul 11 00:15:22 EDT 2025
Wed Feb 19 02:27:32 EST 2025
Thu Apr 24 23:13:17 EDT 2025
Tue Jul 01 01:40:50 EDT 2025
Fri Feb 23 02:40:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords food safety
toxic metals/metalloids
phytoremediation
transporters
detoxification
heavy metals
Language English
License Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-7a5daaae820085a5cef299827107a19160fb706eb6f30078b04e141da914a6653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0164-169X
PMID 34619329
PQID 2580696411
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2636698523
proquest_miscellaneous_2580696411
pubmed_primary_34619329
crossref_citationtrail_10_1016_j_molp_2021_09_016
crossref_primary_10_1016_j_molp_2021_09_016
elsevier_sciencedirect_doi_10_1016_j_molp_2021_09_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-03
PublicationDateYYYYMMDD 2022-01-03
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular plant
PublicationTitleAlternate Mol Plant
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tang, Mao, Li, Lv, Zhang, Chen, He, Wang, Zeng, Shao (bib130) 2017; 7
Williams, Price, Raab, Hossain, Feldmann, Meharg (bib148) 2005; 39
Wu, Yamaji, Yamane, Kashino-Fujii, Sato, Feng Ma (bib152) 2016; 172
Song, Wang, Mao, Sui, Yong, Yang, Jiang, Zhang, Gong (bib117) 2017; 12
Uraguchi, Kamiya, Sakamoto, Kasai, Sato, Nagamura, Yoshida, Kyozuka, Ishikawa, Fujiwara (bib137) 2011; 108
Finnegan, Chen (bib37) 2012; 3
Pommerrenig, Diehn, Bernhardt, Bienert, Mitani-Ueno, Fuge, Bieber, Spitzer, Braeutigam, Ma (bib102) 2020; 225
Tang, Wang, Gao, Ji, Yang, Wang, Tang, Zhao (bib133) 2020; 71
Sasaki, Yamaji, Ma (bib107) 2014; 65
Wan, Lei, Yang, Chen (bib140) 2020; 266
Blanco, Kerl, Planer-Friedrich (bib2) 2021; 69
Tan, Zhu, Fan, Peng, Wang, Sun, Chen (bib127) 2019; 512
Bridges, Zalups (bib3) 2010; 13
Williams, Lei, Sun, Huang, Lu, Deacon, Meharg, Zhu (bib150) 2009; 43
Chao, Chen, Chen, Shi, Chen, Wang, Danku, Zhao, Salt (bib13) 2014; 12
Li, Stroud, Ma, McGrath, Zhao (bib63) 2009; 43
Moon, Belloeil, Ianna, Shin (bib89) 2019; 20
Morel, Crouzet, Gravot, Auroy, Leonhardt, Vavasseur, Richaud (bib93) 2009; 149
Wang, Na, Bermejo, Chen, Banks, Salt, Zhao (bib141) 2018; 217
Lv, Li, Sun, Ouyang, Jing, He, Wu, Zheng, Zheng, Tang (bib73) 2020; 11
Reeves, Baker, Jaffre, Erskine, Echevarria, van der Ent (bib103) 2018; 218
Lei, Fujii-Kashino, Wu, Hisano, Saisho, Deng, Yamaji, Sato, Zhao, Ma (bib61) 2020; 1
Chen, Yang, Wang, Wang, Li, Zhao (bib16) 2018; 639
Chen, Yang, Yan, Liu, Wang, Fan, Ren, Tang, Xiao, Liu (bib18) 2016; 171
Miyadate, Adachi, Hiraizumi, Tezuka, Nakazawa, Kawamoto, Katou, Kodama, Sakurai, Takahashi (bib86) 2011; 189
Xu, Shi, Wang, Tang, Lv, Zhu, Ding, Wang, Zhao, Wu (bib154) 2017; 215
Moore, Chen, van de Meene, Hughes, Liu, Geraki, Mosselmans, McGrath, Grovenor, Zhao (bib92) 2014; 201
Mitani, Yamaji, Ma (bib85) 2008; 456
Duan, Hu, Schneider, McDermott, Chen, Sauer, Rosen, Daus, Liu, Zhu (bib32) 2016; 2
Chang, Huang, Yamaji, Zhang, Ma, Zhao (bib11) 2020; 43
Fleck, Mattusch, Schenk (bib40) 2013; 176
Bienert, Thorsen, Schüssler, Nilsson, Wagner, Tamás, Jahn (bib1) 2008; 6
Cailliatte, Schikora, Briat, Mari, Curie (bib5) 2010; 22
Yamaji, Ma (bib156) 2017; 39
Meng, Feng, Qiu, Anderson, Wang, Zhao (bib81) 2014; 48
Moore, Schröder, Wu, Martin, Hawes, McGrath, Hawkesford, Ma, Zhao, Grovenor (bib91) 2011; 156
Chen, Sun, Tang, Liu, Moore, Maathuis, Miller, McGrath, Zhao (bib21) 2017; 68
Meharg, Williams, Adomako, Lawgali, Deacon, Villada, Cambell, Sun, Zhu, Feldmann (bib79) 2009; 43
Park, Song, Ko, Eom, Hansen, Schiller, Lee, Martinoia, Lee (bib99) 2012; 69
Sanchez-Bermejo, Castrillo, del Llano, Navarro, Zarco-Fernandez, Martinez-Herrera, Leo-del Puerto, Munoz, Camara, Paz-Ares (bib106) 2014; 5
Cohen, Fox, Garvin, Kochian (bib25) 1998; 116
Yan, Xu, Xie, Gao, Wu, Sun, Feng, Chen, Zhang, Dai (bib158) 2019; 10
Zhou, Jiang, Ming, Wang, Tang, Sun (bib179) 2019; 39
Mei, Wong, Yang, Dong, Qiu, Ye (bib80) 2012; 165
Seyfferth, Webb, Andrews, Fendorf (bib111) 2010; 44
Lomax, Liu, Wu, Xue, Xiong, Zhou, McGrath, Meharg, Miller, Zhao (bib69) 2012; 193
Sun, Yang, Li, Tian, Zhang, Liang, Liu, Chen, Li, Lv (bib122) 2019; 70
Yan, Wang, Wang, Yang, Lian, Tang, Huang, Salt, Zhao (bib159) 2016; 39
Yang, Zhang, Zhang, Hu, Zhang, Lu, Dong, Wang, Zhao, Huang (bib162) 2014; 65
Zhao, Ma, Meharg, McGrath (bib174) 2009; 181
Wang, Zhang, Mao, Xu, Zhao (bib145) 2016; 67
Huhmann, Harvey, Uddin, Choudhury, Ahmed, Duxbury, Bostick, van Geen (bib49) 2017; 51
Lu, Zhang, Tang, Huang, Ma, Zhao (bib71) 2019; 126
Ishikawa (bib52) 2020; 66
Ye, Li, Xu, Zeng, Cheng, Yang, Luo, Lian (bib164) 2017; 8
Dong, Wu, Sun, He, Li, Peng, Ji, Meng, Zhao, Tang (bib30) 2021; 36
Uraguchi, Mori, Kuramata, Kawasaki, Arao, Ishikawa (bib136) 2009; 60
Castrillo, Sanchez-Bermejo, de Lorenzo, Crevillen, Fraile-Escanciano, Mohan, Mouriz, Catarecha, Sobrino-Plata, Olsson (bib9) 2013; 25
Carey, Scheckel, Lombi, Newville, Choi, Norton, Charnock, Feldmann, Price, Meharg (bib7) 2010; 152
Fischer, Kuehnlenz, Thieme, Schmidt, Clemens (bib38) 2014; 48
Sun, Chen, Che, Konishi, Tang, Miller, Ma, Zhao (bib123) 2018; 219
Hanikenne, Talke, Haydon, Lanz, Nolte, Motte, Kroymann, Weigel, Kramer (bib43) 2008; 453
Tang, Kang, Wang, Zhao (bib131) 2016; 401
Sunkar, Kaplan, Bouche, Arazi, Dolev, Talke, Maathuis, Sanders, Bouchez, Fromm (bib125) 2000; 24
Maccaferri, Harris, Twardziok, Pasam, Gundlach, Spannagl, Ormanbekova, Lux, Prade, Milner (bib77) 2019; 51
Satoh-Nagasawa, Mori, Nakazawa, Kawamoto, Nagato, Sakurai, Takahashi, Watanabe, Akagi (bib109) 2012; 53
Zhao, Zhu, Meharg (bib173) 2013; 47
Zhang, Feng, Larssen, Qiu, Vogt (bib166) 2010; 118
Zhao, Ma, Zhu, Tang, McGrath (bib176) 2015; 49
Vazquez, Velez, Devesa, Puig (bib138) 2015; 331
Chen, Moore, Miller, McGrath, Ma, Zhao (bib20) 2015; 66
Ma, Yamaji (bib74) 2015; 20
Vert, Grotz, Dedaldechamp, Gaymard, Guerinot, Briata, Curie (bib139) 2002; 14
Wang, Kerl, Hu, Martin, Mu, Brueggenwirth, Wu, Said-Pullicino, Romani, Wu (bib143) 2020; 13
Luo, Huang, Zeng, Peng, Zhang, Ma, Guan, Yi, Fu, Han (bib72) 2018; 9
Su, McGrath, Zhao (bib119) 2010; 328
Ding, Gong, Wang, Wang, Bao, Sun, Cai, Yi, Chen, Zhu (bib28) 2018; 177
Fischer, Sanchez-Bermejo, Xu, Flis, Ramakrishna, Guerinot, Zhao, Salt (bib39) 2021; 72
Wang, Chen, Yu, Xie, Yuan, Qi, Xiao, Guo, Chen, Yi (bib142) 2017; 8
Ma, Yamaji, Mitani, Tamai, Konishi, Fujiwara, Katsuhara, Yano (bib76) 2007; 448
Zhang, Wang, Ju, Li, Lam-Son Phan, Xu (bib170) 2019; 180
Zhao, McGrath, Meharg (bib172) 2010; 61
Westheimer (bib146) 1987; 235
Hayashi, Kuramata, Abe, Takagi, Ozawa, Ishikawa (bib45) 2017; 91
Indriolo, Na, Ellis, Salt, Banks (bib51) 2010; 22
Cao, Sun, Ai, Mei, Liu, Sun, Xu, Liu, Chen, Ma (bib6) 2017; 51
Shao, Che, Yamaji, Shen, Ma (bib112) 2017; 68
Panaullah, Alam, Hossain, Loeppert, Lauren, Meisner, Ahmed, Duxbury (bib98) 2009; 317
Krämer (bib58) 2010; 61
Zhang, Gao, Chen, Zhang, Huang, Zhao (bib167) 2020; 54
Kamiya, Islam, Duan, Uraguchi, Fujiwara (bib54) 2013; 59
Zhang, Wu, Tang, Huang, Wang, Salt, Zhao (bib168) 2019; 70
Mitani-Ueno, Yamaji, Ma (bib83) 2016; 57
Liu, Wood, Raab, McGrath, Zhao, Feldmann (bib67) 2010; 152
Chen, Xu, Shen, Yan, Xu, He, Ma (bib22) 2013; 47
Tang, Chen, Chen, Ji, Zhao (bib132) 2017; 58
Ji, Zhou, Liu, Wang, Yang, Zheng, Zhang, Zhang, Ge, Yang (bib53) 2017; 12
Moe, Peng, Lu, Chen, Chen, Gabos, Li, Le (bib87) 2016; 49
Cobbett, Goldsbrough (bib24) 2002; 53
Dai, Chen, Gao, Tang, Kopittke, Zhao, Wang (bib26) 2021; 55
Murakami, Nakagawa, Ae, Ito, Arao (bib95) 2009; 43
Pita-Barbosa, Ricachenevsky, Wilson, Dottorini, Salt (bib101) 2019; 9
Sun, Xu, Tang, Tang, Huang, Wirtz, Hell, Zhao (bib124) 2021; 12
Hayashi, Kuramata, Abe, Yamaguchi, Takagi, Tanikawa, Iino, Sugimoto, Ishikawa (bib46) 2021; 186
Meharg, Lombi, Williams, Scheckel, Feldmann, Raab, Zhu, Islam (bib78) 2008; 42
Wu, Sato, Ma (bib153) 2015; 208
Lombi, Scheckel, Pallon, Carey, Zhu, Meharg (bib70) 2009; 184
Clemens (bib23) 2019; 70
Shi, Wang, Chen, Tang, Wu, Salt, Chao, Zhao (bib113) 2016; 172
Tang, Luo, Zhang, Guo, Li, Song, Zhang, Feng, Kong, Li (bib129) 2021
Ha, Smith, Howden, Dietrich, Bugg, O'Connell, Goldsbrough, Cobbett (bib42) 1999; 11
Tan, Qu, Zhu, Peng, Wang, Gao, Chen (bib128) 2020; 183
Cai, Huang, Che, Yamaji, Ma (bib4) 2019; 70
Wong, Cobbett (bib151) 2009; 181
Li, Sun, Williams, Nunes, Zhu (bib62) 2011; 37
Mohan, Castrillo, Navarro, Zarco-Fernandez, Ramireddy, Mateo, Zamarreno, Paz-Ares, Munoz, Garcia-Mina (bib88) 2016; 171
Norton, Williams, Adomako, Price, Zhu, Zhao, McGrath, Deacon, Villada, Sommella (bib97) 2014; 485
Yang, Lu, Zhao, Xie, Ramakrishna, Wang, Du, Liang, Sun, Zhao (bib163) 2018; 30
Ueno, Yamaji, Kono, Huang, Ando, Yano, Ma (bib135) 2010; 107
Song, Yamaki, Yamaji, Ko, Jung, Fujii-Kashino, An, Martinoia, Lee, Ma (bib115) 2014; 111
Chen, Yang, Shen, Dai, Tang, Wang, Zhao (bib14) 2021; 154
DiTusa, Fontenot, Wallace, Silvers, Steele, Elnagar, Dearman, Smith (bib29) 2016; 209
Gu, Wang, Zhang, Dai, Chen, Lombi, Howard, van der Ent, Zhao, Kopittke (bib41) 2020; 54
Kamiya, Tanaka, Mitani, Ma, Maeshima, Fujiwara (bib55) 2009; 284
Song, Park, Mendoza-Cozatl, Suter-Grotemeyer, Shim, Hortensteiner, Geisler, Weder, Rea, Rentsch (bib116) 2010; 107
Takahashi, Ishimaru, Shimo, Ogo, Senoura, Nishizawa, Nakanishi (bib126) 2012; 35
Zhao, Ago, Mitani, Li, Su, Yamaji, McGrath, Ma (bib177) 2010; 186
Hao, Zeng, Wang, Zeng, Dai, Xie, Yang, Tian, Chen, Li (bib44) 2018; 9
Liu, Zhu, Hu, Williams, Gault, Meharg, Charnock, Smith (bib68) 2006; 40
Chao, Silva, Baxter, Huang, Nordborg, Danku, Lahner, Yakubova, Salt (bib12) 2012; 8
Deng, Yamaji, Ma, Lee, Jeon, Martinoia, Lee, Song (bib27) 2018; 16
Sasaki, Yamaji, Yokosho, Ma (bib108) 2012; 24
Wang, Chen, Kopittke, Zhao (bib144) 2019; 249
Lane, Morel (bib60) 2000; 97
Sterckeman, Thomine (bib118) 2020; 39
Zhao, Wang (bib171) 2020; 446
Catarecha, Segura, Franco-Zorrilla, Garcia-Ponce, Lanza, Solano, Paz-Ares, Leyva (bib10) 2007; 19
Duffus (bib34) 2002; 74
Ma, Yamaji, Mitani, Xu, Su, McGrath, Zhao (bib75) 2008; 105
Lilay, Persson, Castro, Liao, Alexander, Aarts, Assuncao (bib65) 2021; 7
Moore, Schroder, Lombi, Zhao, McGrath, Hawkesford, Shewry, Grovenor (bib90) 2010; 185
Williams, Villada, Deacon, Raab, Figuerola, Green, Feldmann, Meharg (bib149) 2007; 41
Zhu, Sun, Lei, Teng, Liu, Chen, Wang, Carey, Deacon, Raab (bib181) 2008; 42
Zhao, Meng, Feng (bib178) 2020; 195
Chen, Wang, Chang, Kopittke, Zhao (bib15) 2021; 267
Dubeaux, Neveu, Zelazny, Vert (bib33) 2018; 69
Zhu, Chen, Xu, Zhu, Huang (bib180) 2016; 219
Zhao, Stroud, Khan, McGrath (bib175) 2012; 350
Duan, Shao, Tang, Chen, Wang, Tang, Yang, Liu, Zhao (bib31) 2017; 10
Hussain, Haydon, Wang, Wong, Sherson, Young, Camakaris, Harper, Cobbett (bib50) 2004; 16
Fang, Wang, Chen, Christl, Wang, Kretzschmar, Zhao (bib36) 2021; 289
Zavala, Gerads, Gürleyük, Duxbury (bib165) 2008; 42
Chen, Huang, Salt, Zhao (bib17) 2020; 226
Wiebe, Harris, Faris, Clarke, Knox, Taylor, Pozniak (bib147) 2010; 121
Huang, Wang, Yamaji, Ma (bib48) 2020; 13
Yang, Fu, Huang, Li, Long, Wei, Wang, Chen, Xia (bib161) 2021; 307
Li, Ago, Liu, Mitani, Feldmann, McGrath, Ma, Zhao (bib64) 2009; 150
Schoepp-Cothenet, Nitschke, Barge, Ponce, Russell, Ts
Lombi (10.1016/j.molp.2021.09.016_bib70) 2009; 184
Yamaji (10.1016/j.molp.2021.09.016_bib156) 2017; 39
Su (10.1016/j.molp.2021.09.016_bib119) 2010; 328
Zhao (10.1016/j.molp.2021.09.016_bib176) 2015; 49
Hao (10.1016/j.molp.2021.09.016_bib44) 2018; 9
Williams (10.1016/j.molp.2021.09.016_bib150) 2009; 43
Li (10.1016/j.molp.2021.09.016_bib64) 2009; 150
Zhao (10.1016/j.molp.2021.09.016_bib177) 2010; 186
Dong (10.1016/j.molp.2021.09.016_bib30) 2021; 36
Maccaferri (10.1016/j.molp.2021.09.016_bib77) 2019; 51
Duan (10.1016/j.molp.2021.09.016_bib32) 2016; 2
Fischer (10.1016/j.molp.2021.09.016_bib39) 2021; 72
Riaz (10.1016/j.molp.2021.09.016_bib104) 2021; 72
Hayashi (10.1016/j.molp.2021.09.016_bib46) 2021; 186
Ma (10.1016/j.molp.2021.09.016_bib74) 2015; 20
Fleck (10.1016/j.molp.2021.09.016_bib40) 2013; 176
Lilay (10.1016/j.molp.2021.09.016_bib65) 2021; 7
Uraguchi (10.1016/j.molp.2021.09.016_bib136) 2009; 60
Luo (10.1016/j.molp.2021.09.016_bib72) 2018; 9
Park (10.1016/j.molp.2021.09.016_bib99) 2012; 69
Ji (10.1016/j.molp.2021.09.016_bib53) 2017; 12
Tan (10.1016/j.molp.2021.09.016_bib127) 2019; 512
Ueno (10.1016/j.molp.2021.09.016_bib135) 2010; 107
Vazquez (10.1016/j.molp.2021.09.016_bib138) 2015; 331
Tawfik (10.1016/j.molp.2021.09.016_bib134) 2011; 50
Norton (10.1016/j.molp.2021.09.016_bib97) 2014; 485
Lv (10.1016/j.molp.2021.09.016_bib73) 2020; 11
Chen (10.1016/j.molp.2021.09.016_bib14) 2021; 154
Zhu (10.1016/j.molp.2021.09.016_bib180) 2016; 219
Mei (10.1016/j.molp.2021.09.016_bib80) 2012; 165
Yang (10.1016/j.molp.2021.09.016_bib161) 2021; 307
Williams (10.1016/j.molp.2021.09.016_bib149) 2007; 41
Bienert (10.1016/j.molp.2021.09.016_bib1) 2008; 6
Cai (10.1016/j.molp.2021.09.016_bib4) 2019; 70
Vert (10.1016/j.molp.2021.09.016_bib139) 2002; 14
Wu (10.1016/j.molp.2021.09.016_bib152) 2016; 172
Sui (10.1016/j.molp.2021.09.016_bib121) 2018; 433
Pinson (10.1016/j.molp.2021.09.016_bib100) 2015; 55
Seyfferth (10.1016/j.molp.2021.09.016_bib111) 2010; 44
Duan (10.1016/j.molp.2021.09.016_bib31) 2017; 10
Westheimer (10.1016/j.molp.2021.09.016_bib146) 1987; 235
Zhao (10.1016/j.molp.2021.09.016_bib178) 2020; 195
Chen (10.1016/j.molp.2021.09.016_bib20) 2015; 66
Zhang (10.1016/j.molp.2021.09.016_bib167) 2020; 54
Catarecha (10.1016/j.molp.2021.09.016_bib10) 2007; 19
Chao (10.1016/j.molp.2021.09.016_bib13) 2014; 12
Krzeslowska (10.1016/j.molp.2021.09.016_bib59) 2016; 214
Gu (10.1016/j.molp.2021.09.016_bib41) 2020; 54
Sun (10.1016/j.molp.2021.09.016_bib122) 2019; 70
Reeves (10.1016/j.molp.2021.09.016_bib103) 2018; 218
Schoepp-Cothenet (10.1016/j.molp.2021.09.016_bib110) 2011; 332
Zhang (10.1016/j.molp.2021.09.016_bib169) 2014; 127
Tang (10.1016/j.molp.2021.09.016_bib133) 2020; 71
Wang (10.1016/j.molp.2021.09.016_bib144) 2019; 249
Chen (10.1016/j.molp.2021.09.016_bib18) 2016; 171
Kamiya (10.1016/j.molp.2021.09.016_bib54) 2013; 59
Williams (10.1016/j.molp.2021.09.016_bib148) 2005; 39
Dai (10.1016/j.molp.2021.09.016_bib26) 2021; 55
Chen (10.1016/j.molp.2021.09.016_bib15) 2021; 267
Hussain (10.1016/j.molp.2021.09.016_bib50) 2004; 16
Ma (10.1016/j.molp.2021.09.016_bib75) 2008; 105
Lomax (10.1016/j.molp.2021.09.016_bib69) 2012; 193
Morel (10.1016/j.molp.2021.09.016_bib93) 2009; 149
Muehe (10.1016/j.molp.2021.09.016_bib94) 2019; 10
Hanikenne (10.1016/j.molp.2021.09.016_bib43) 2008; 453
Wan (10.1016/j.molp.2021.09.016_bib140) 2020; 266
Cao (10.1016/j.molp.2021.09.016_bib6) 2017; 51
Navarro (10.1016/j.molp.2021.09.016_bib96) 2021; 14
Cohen (10.1016/j.molp.2021.09.016_bib25) 1998; 116
Pommerrenig (10.1016/j.molp.2021.09.016_bib102) 2020; 225
Indriolo (10.1016/j.molp.2021.09.016_bib51) 2010; 22
Zhao (10.1016/j.molp.2021.09.016_bib175) 2012; 350
Zhao (10.1016/j.molp.2021.09.016_bib174) 2009; 181
Murakami (10.1016/j.molp.2021.09.016_bib95) 2009; 43
Castrillo (10.1016/j.molp.2021.09.016_bib9) 2013; 25
Carey (10.1016/j.molp.2021.09.016_bib7) 2010; 152
Duffus (10.1016/j.molp.2021.09.016_bib34) 2002; 74
Zavala (10.1016/j.molp.2021.09.016_bib165) 2008; 42
Finnegan (10.1016/j.molp.2021.09.016_bib37) 2012; 3
Mitani-Ueno (10.1016/j.molp.2021.09.016_bib83) 2016; 57
Zhou (10.1016/j.molp.2021.09.016_bib179) 2019; 39
Wong (10.1016/j.molp.2021.09.016_bib151) 2009; 181
Mitani-Ueno (10.1016/j.molp.2021.09.016_bib84) 2011; 62
Kamiya (10.1016/j.molp.2021.09.016_bib55) 2009; 284
Hayashi (10.1016/j.molp.2021.09.016_bib45) 2017; 91
Ding (10.1016/j.molp.2021.09.016_bib28) 2018; 177
Zhao (10.1016/j.molp.2021.09.016_bib172) 2010; 61
Wiebe (10.1016/j.molp.2021.09.016_bib147) 2010; 121
Chen (10.1016/j.molp.2021.09.016_bib16) 2018; 639
Meharg (10.1016/j.molp.2021.09.016_bib78) 2008; 42
Sui (10.1016/j.molp.2021.09.016_bib120) 2019; 70
Zhao (10.1016/j.molp.2021.09.016_bib171) 2020; 446
Zhu (10.1016/j.molp.2021.09.016_bib181) 2008; 42
Xu (10.1016/j.molp.2021.09.016_bib154) 2017; 215
Yamaji (10.1016/j.molp.2021.09.016_bib157) 2013; 162
Wang (10.1016/j.molp.2021.09.016_bib142) 2017; 8
Yang (10.1016/j.molp.2021.09.016_bib162) 2014; 65
Huang (10.1016/j.molp.2021.09.016_bib48) 2020; 13
Chao (10.1016/j.molp.2021.09.016_bib12) 2012; 8
Cailliatte (10.1016/j.molp.2021.09.016_bib5) 2010; 22
Song (10.1016/j.molp.2021.09.016_bib117) 2017; 12
Sunkar (10.1016/j.molp.2021.09.016_bib125) 2000; 24
Uraguchi (10.1016/j.molp.2021.09.016_bib137) 2011; 108
Moe (10.1016/j.molp.2021.09.016_bib87) 2016; 49
Ishikawa (10.1016/j.molp.2021.09.016_bib52) 2020; 66
Lane (10.1016/j.molp.2021.09.016_bib60) 2000; 97
Liu (10.1016/j.molp.2021.09.016_bib67) 2010; 152
Satoh-Nagasawa (10.1016/j.molp.2021.09.016_bib109) 2012; 53
Chang (10.1016/j.molp.2021.09.016_bib11) 2020; 43
Elias (10.1016/j.molp.2021.09.016_bib35) 2012; 491
Mitani (10.1016/j.molp.2021.09.016_bib85) 2008; 456
Kile (10.1016/j.molp.2021.09.016_bib56) 2007; 115
Kopittke (10.1016/j.molp.2021.09.016_bib57) 2007; 150
Zhang (10.1016/j.molp.2021.09.016_bib170) 2019; 180
Zhao (10.1016/j.molp.2021.09.016_bib173) 2013; 47
Shao (10.1016/j.molp.2021.09.016_bib112) 2017; 68
Ha (10.1016/j.molp.2021.09.016_bib42) 1999; 11
Sterckeman (10.1016/j.molp.2021.09.016_bib118) 2020; 39
Sun (10.1016/j.molp.2021.09.016_bib123) 2018; 219
Panaullah (10.1016/j.molp.2021.09.016_bib98) 2009; 317
Sanchez-Bermejo (10.1016/j.molp.2021.09.016_bib106) 2014; 5
Chen (10.1016/j.molp.2021.09.016_bib22) 2013; 47
Deng (10.1016/j.molp.2021.09.016_bib27) 2018; 16
Wang (10.1016/j.molp.2021.09.016_bib141) 2018; 217
Meharg (10.1016/j.molp.2021.09.016_bib79) 2009; 43
Sun (10.1016/j.molp.2021.09.016_bib124) 2021; 12
Li (10.1016/j.molp.2021.09.016_bib63) 2009; 43
Moore (10.1016/j.molp.2021.09.016_bib92) 2014; 201
Moon (10.1016/j.molp.2021.09.016_bib89) 2019; 20
Zhang (10.1016/j.molp.2021.09.016_bib166) 2010; 118
Shi (10.1016/j.molp.2021.09.016_bib113) 2016; 172
Yan (10.1016/j.molp.2021.09.016_bib160) 2021; 17
Salt (10.1016/j.molp.2021.09.016_bib105) 1995; 109
Ye (10.1016/j.molp.2021.09.016_bib164) 2017; 8
Song (10.1016/j.molp.2021.09.016_bib115) 2014; 111
Wang (10.1016/j.molp.2021.09.016_bib143) 2020; 13
Fischer (10.1016/j.molp.2021.09.016_bib38) 2014; 48
Li (10.1016/j.molp.2021.09.016_bib62) 2011; 37
Hu (10.1016/j.molp.2021.09.016_bib47) 2019; 286
Miyadate (10.1016/j.molp.2021.09.016_bib86) 2011; 189
Sasaki (10.1016/j.molp.2021.09.016_bib108) 2012; 24
Bridges (10.1016/j.molp.2021.09.016_bib3) 2010; 13
Xu (10.1016/j.molp.2021.09.016_bib155) 2015; 8
Zhang (10.1016/j.molp.2021.09.016_bib168) 2019; 70
Huhmann (10.1016/j.molp.2021.09.016_bib49) 2017; 51
Meyers (10.1016/j.molp.2021.09.016_bib82) 2009; 28
Krämer (10.1016/j.molp.2021.09.016_bib58) 2010; 61
Meng (10.1016/j.molp.2021.09.016_bib81) 2014; 48
Sasaki (10.1016/j.molp.2021.09.016_bib107) 2014; 65
Yang (10.1016/j.molp.2021.09.016_bib163) 2018; 30
Tang (10.1016/j.molp.2021.09.016_bib129) 2021
Yan (10.1016/j.molp.2021.09.016_bib159) 2016; 39
Wang (10.1016/j.molp.2021.09.016_bib145) 2016; 67
Song (10.1016/j.molp.2021.09.016_bib116) 2010; 107
Blanco (10.1016/j.molp.2021.09.016_bib2) 2021; 69
Ma (10.1016/j.molp.2021.09.016_bib76) 2007; 448
Takahashi (10.1016/j.molp.2021.09.016_bib126) 2012; 35
Clemens (10.1016/j.molp.2021.09.016_bib23) 2019; 70
Lu (10.1016/j.molp.2021.09.016_bib71) 2019; 126
Chen (10.1016/j.molp.2021.09.016_bib19) 2011; 157
Cobbett (10.1016/j.molp.2021.09.016_bib24) 2002; 53
DiTusa (10.1016/j.molp.2021.09.016_bib29) 2016; 209
Tang (10.1016/j.molp.2021.09.016_bib130) 2017; 7
Lei (10.1016/j.molp.2021.09.016_bib61) 2020; 1
Chen (10.1016/j.molp.2021.09.016_bib17) 2020; 226
Dubeaux (10.1016/j.molp.2021.09.016_bib33) 2018; 69
Liu (10.1016/j.molp.2021.09.016_bib68) 2006; 40
Pita-Barbosa (10.1016/j.molp.2021.09.016_bib101) 2019; 9
Fang (10.1016/j.molp.2021.09.016_bib36) 2021; 289
Wu (10.1016/j.molp.2021.09.016_bib153) 2015; 208
Yan (10.1016/j.molp.2021.09.016_bib158) 2019; 10
Tang (10.1016/j.molp.2021.09.016_bib131) 2016; 401
Moore (10.1016/j.molp.2021.09.016_bib90) 2010; 185
Carrasco-Gil (10.1016/j.molp.2021.09.016_bib8) 2013; 47
Mohan (10.1016/j.molp.2021.09.016_bib88) 2016; 171
Shin (10.1016/j.molp.2021.09.016_bib114) 2004; 39
Chen (10.1016/j.molp.2021.09.016_bib21) 2017; 68
Tan (10.1016/j.molp.2021.09.016_bib128) 2020; 183
Liu (10.1016/j.molp.2021.09.016_bib66) 2019; 62
Moore (10.1016/j.molp.2021.09.016_bib91) 2011; 156
Tang (10.1016/j.molp.2021.09.016_bib132) 2017; 58
References_xml – volume: 35
  start-page: 1948
  year: 2012
  end-page: 1957
  ident: bib126
  article-title: The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice
  publication-title: Plant Cell Environ.
– volume: 48
  start-page: 7974
  year: 2014
  end-page: 7981
  ident: bib81
  article-title: Localization and speciation of mercury in brown rice with implications for pan-Asian public health
  publication-title: Environ. Sci. Technol.
– volume: 22
  start-page: 2045
  year: 2010
  end-page: 2057
  ident: bib51
  article-title: A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern
  publication-title: Plant Cell
– volume: 446
  start-page: 1
  year: 2020
  end-page: 21
  ident: bib171
  article-title: Arsenic and cadmium accumulation in rice and mitigation strategies
  publication-title: Plant Soil
– volume: 107
  start-page: 16500
  year: 2010
  end-page: 16505
  ident: bib135
  article-title: Gene limiting cadmium accumulation in rice
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 331
  start-page: 119
  year: 2015
  end-page: 124
  ident: bib138
  article-title: Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury
  publication-title: Toxicology
– volume: 332
  year: 2011
  ident: bib110
  article-title: Comment on "A bacterium that can grow by using arsenic instead of phosphorus”
  publication-title: Science
– volume: 193
  start-page: 665
  year: 2012
  end-page: 672
  ident: bib69
  article-title: Methylated arsenic species in plants originate from soil microorganisms
  publication-title: New Phytol.
– volume: 70
  start-page: 2717
  year: 2019
  end-page: 2725
  ident: bib4
  article-title: The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice
  publication-title: J. Exp. Bot.
– volume: 51
  start-page: 885
  year: 2019
  end-page: 895
  ident: bib77
  article-title: Durum wheat genome highlights past domestication signatures and future improvement targets
  publication-title: Nat. Genet.
– volume: 266
  start-page: 115193
  year: 2020
  ident: bib140
  article-title: Three-year field experiment on the risk reduction, environmental merit, and cost assessment of four in situ remediation technologies for metal(loid)-contaminated agricultural soil
  publication-title: Environ. Pollut.
– volume: 249
  start-page: 1038
  year: 2019
  end-page: 1048
  ident: bib144
  article-title: Cadmium contamination in agricultural soils of China and the impact on food safety
  publication-title: Environ. Pollut.
– volume: 118
  start-page: 1183
  year: 2010
  end-page: 1188
  ident: bib166
  article-title: In inland China, rice, rather than fish, is the major pathway for methylmercury exposure
  publication-title: Environ. Health Perspect.
– volume: 22
  start-page: 904
  year: 2010
  end-page: 917
  ident: bib5
  article-title: High-affinity manganese uptake by the metal transporter NRAMP1 is essential for
  publication-title: Plant Cell
– volume: 39
  start-page: 1941
  year: 2016
  end-page: 1954
  ident: bib159
  article-title: A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars
  publication-title: Plant Cell Environ.
– volume: 25
  start-page: 2944
  year: 2013
  end-page: 2957
  ident: bib9
  article-title: WRKY6 transcription factor restricts arsenate uptake and transposon activation in
  publication-title: Plant Cell
– volume: 66
  start-page: 28
  year: 2020
  end-page: 33
  ident: bib52
  article-title: Mechanisms of cadmium accumulation in rice grains and molecular breeding for its reduction
  publication-title: Soil Sci. Plant Nutr.
– volume: 65
  start-page: 4849
  year: 2014
  end-page: 4861
  ident: bib162
  article-title: OsNRAMP5 contributes to manganese translocation and distribution in rice shoots
  publication-title: J. Exp. Bot.
– volume: 186
  start-page: 392
  year: 2010
  end-page: 399
  ident: bib177
  article-title: The role of the rice aquaporin Lsi1 in arsenite efflux from roots
  publication-title: New Phytol.
– volume: 453
  start-page: 391
  year: 2008
  end-page: 396
  ident: bib43
  article-title: Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4
  publication-title: Nature
– volume: 57
  start-page: 2510
  year: 2016
  end-page: 2518
  ident: bib83
  article-title: High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice
  publication-title: Plant Cell Physiol.
– volume: 72
  start-page: 2045
  year: 2021
  end-page: 2055
  ident: bib104
  article-title: All together now: regulation of the iron deficiency response
  publication-title: J. Exp. Bot.
– volume: 53
  start-page: 159
  year: 2002
  end-page: 182
  ident: bib24
  article-title: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis
  publication-title: Annu. Rev. Plant Biol.
– volume: 40
  start-page: 5730
  year: 2006
  end-page: 5736
  ident: bib68
  article-title: Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (
  publication-title: Environ. Sci. Technol.
– volume: 62
  start-page: 314
  year: 2019
  end-page: 329
  ident: bib66
  article-title: Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice
  publication-title: J. Intergr. Plant Biol.
– volume: 43
  start-page: 3778
  year: 2009
  end-page: 3783
  ident: bib63
  article-title: Mitigation of arsenic accumulation in rice with water management and silicon fertilization
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 8108
  year: 2010
  end-page: 8113
  ident: bib111
  article-title: Arsenic localization, speciation, and co-occurrence with iron on rice (
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 3082
  year: 2013
  end-page: 3090
  ident: bib8
  article-title: Mercury localization and speciation in plants grown hydroponically or in a natural environment
  publication-title: Environ. Sci. Technol.
– volume: 58
  start-page: 904
  year: 2017
  end-page: 913
  ident: bib132
  article-title: OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain
  publication-title: Plant Cell Physiol.
– volume: 16
  start-page: 1691
  year: 2018
  end-page: 1699
  ident: bib27
  article-title: Engineering rice with lower grain arsenic
  publication-title: Plant Biotechnol. J.
– volume: 60
  start-page: 2677
  year: 2009
  end-page: 2688
  ident: bib136
  article-title: Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice
  publication-title: J. Exp. Bot.
– volume: 152
  start-page: 2211
  year: 2010
  end-page: 2221
  ident: bib67
  article-title: Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in
  publication-title: Plant Physiol.
– volume: 289
  start-page: 117918
  year: 2021
  ident: bib36
  article-title: Two-year and multi-site field trials to evaluate soil amendments for controlling cadmium accumulation in rice grain
  publication-title: Environ. Pollut.
– volume: 37
  start-page: 1219
  year: 2011
  end-page: 1225
  ident: bib62
  article-title: Inorganic arsenic in Chinese food and its cancer risk
  publication-title: Environ. Int.
– volume: 5
  start-page: 4617
  year: 2014
  ident: bib106
  article-title: Natural variation in arsenate tolerance identifies an arsenate reductase in
  publication-title: Nat. Commun.
– volume: 50
  start-page: 1128
  year: 2011
  end-page: 1134
  ident: bib134
  article-title: Arsenate replacing phosphate: alternative life chemistries and ion promiscuity
  publication-title: Biochemistry
– volume: 20
  start-page: 413
  year: 2019
  ident: bib89
  article-title: CNGC family members contribute to heavy metal ion uptake in plants
  publication-title: Inter. J. Mol. Sci.
– volume: 51
  start-page: 12131
  year: 2017
  end-page: 12138
  ident: bib6
  article-title: Knocking out
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 629
  year: 2004
  end-page: 642
  ident: bib114
  article-title: Phosphate transport in
  publication-title: Plant J.
– volume: 180
  start-page: 529
  year: 2019
  end-page: 542
  ident: bib170
  article-title: The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation
  publication-title: Plant Physiol.
– volume: 328
  start-page: 27
  year: 2010
  end-page: 34
  ident: bib119
  article-title: Rice is more efficient in arsenite uptake and translocation than wheat and barley
  publication-title: Plant Soil
– volume: 51
  start-page: 11553
  year: 2017
  end-page: 11560
  ident: bib49
  article-title: Field study of rice yield diminished by soil arsenic in Bangladesh
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 113
  year: 2016
  end-page: 124
  ident: bib87
  article-title: Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing
  publication-title: J. Environ. Sci.
– volume: 39
  start-page: 18
  year: 2017
  end-page: 24
  ident: bib156
  article-title: Node-controlled allocation of mineral elements in Poaceae
  publication-title: Curr. Opin. Plant Biol.
– volume: 162
  start-page: 927
  year: 2013
  end-page: 939
  ident: bib157
  article-title: Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2
  publication-title: Plant Physiol.
– volume: 16
  start-page: 1327
  year: 2004
  end-page: 1339
  ident: bib50
  article-title: P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in
  publication-title: Plant Cell
– volume: 185
  start-page: 434
  year: 2010
  end-page: 445
  ident: bib90
  article-title: NanoSIMS analysis of arsenic and selenium in cereal grain
  publication-title: New Phytol.
– volume: 62
  start-page: 4391
  year: 2011
  end-page: 4398
  ident: bib84
  article-title: The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic
  publication-title: J. Exp. Bot.
– volume: 108
  start-page: 20959
  year: 2011
  end-page: 20964
  ident: bib137
  article-title: Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 17
  start-page: e1009636
  year: 2021
  ident: bib160
  article-title: A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in
  publication-title: PLoS Genet.
– volume: 116
  start-page: 1063
  year: 1998
  end-page: 1072
  ident: bib25
  article-title: The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants
  publication-title: Plant Physiol.
– volume: 171
  start-page: 707
  year: 2016
  end-page: 719
  ident: bib18
  article-title: Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in
  publication-title: Plant Physiol.
– volume: 24
  start-page: 2155
  year: 2012
  end-page: 2167
  ident: bib108
  article-title: Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice
  publication-title: Plant Cell
– volume: 12
  start-page: e0173681
  year: 2017
  ident: bib53
  article-title: Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in
  publication-title: PLoS One
– volume: 217
  start-page: 206
  year: 2018
  end-page: 218
  ident: bib141
  article-title: Dissecting the components controlling root-to-shoot arsenic translocation in
  publication-title: New Phytol.
– volume: 97
  start-page: 4627
  year: 2000
  end-page: 4631
  ident: bib60
  article-title: A biological function for cadmium in marine diatoms
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 183
  start-page: 1235
  year: 2020
  end-page: 1249
  ident: bib128
  article-title: ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake
  publication-title: Plant Physiol.
– volume: 69
  start-page: 953
  year: 2018
  end-page: 964
  ident: bib33
  article-title: Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition
  publication-title: Mol. Cell
– volume: 235
  start-page: 1173
  year: 1987
  end-page: 1178
  ident: bib146
  article-title: Why nature chose phosphates
  publication-title: Science
– volume: 184
  start-page: 193
  year: 2009
  end-page: 201
  ident: bib70
  article-title: Speciation and distribution of arsenic and localization of nutrients in rice grains
  publication-title: New Phytol.
– volume: 48
  start-page: 7552
  year: 2014
  end-page: 7559
  ident: bib38
  article-title: Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification
  publication-title: Environ. Sci. Technol.
– volume: 150
  start-page: 2071
  year: 2009
  end-page: 2080
  ident: bib64
  article-title: The rice aquaporin Lsi1 mediates uptake of methylated arsenic species
  publication-title: Plant Physiol.
– volume: 71
  start-page: 5631
  year: 2020
  end-page: 5644
  ident: bib133
  article-title: Dimethylarsinic acid is the causal agent inducing rice straighthead disease
  publication-title: J. Exp. Bot.
– volume: 61
  start-page: 535
  year: 2010
  end-page: 559
  ident: bib172
  article-title: Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies
  publication-title: Annu. Rev. Plant Biol.
– volume: 286
  start-page: 106651
  year: 2019
  ident: bib47
  article-title: Assessment of phytoextraction using
  publication-title: Agric. Ecosyst. Environ.
– volume: 65
  start-page: 6013
  year: 2014
  end-page: 6021
  ident: bib107
  article-title: Overexpression of
  publication-title: J. Exp. Bot.
– volume: 13
  start-page: 385
  year: 2010
  end-page: 410
  ident: bib3
  article-title: Transport of inorganic mercury and methylmercury in target tissues and organs
  publication-title: J. Toxicol. Environ. Health B Crit. Rev.
– volume: 74
  start-page: 793
  year: 2002
  end-page: 807
  ident: bib34
  article-title: Heavy metals"—a meaningless term? (IUPAC technical report)
  publication-title: Pure Appl. Chem.
– volume: 219
  start-page: 641
  year: 2018
  end-page: 653
  ident: bib123
  article-title: Decreasing arsenic accumulation in rice by overexpressing
  publication-title: New Phytol.
– volume: 66
  start-page: 3717
  year: 2015
  end-page: 3724
  ident: bib20
  article-title: The role of nodes in arsenic storage and distribution in rice
  publication-title: J. Exp. Bot.
– volume: 12
  start-page: e0177978
  year: 2017
  ident: bib117
  article-title: Dietary cadmium exposure assessment among the Chinese population
  publication-title: PLoS One
– volume: 176
  start-page: 785
  year: 2013
  end-page: 794
  ident: bib40
  article-title: Silicon decreases the arsenic level in rice grain by limiting arsenite transport
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 43
  start-page: 1612
  year: 2009
  end-page: 1617
  ident: bib79
  article-title: Geographical variation in total and inorganic arsenic content of polished (white) rice
  publication-title: Environ. Sci. Technol.
– volume: 14
  start-page: 1223
  year: 2002
  end-page: 1233
  ident: bib139
  article-title: IRT1, an
  publication-title: Plant Cell
– volume: 267
  start-page: 128893
  year: 2021
  ident: bib15
  article-title: Producing Cd-safe rice grains in moderately and seriously Cd-contaminated paddy soils
  publication-title: Chemosphere
– volume: 105
  start-page: 9931
  year: 2008
  end-page: 9935
  ident: bib75
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 53
  start-page: 213
  year: 2012
  end-page: 224
  ident: bib109
  article-title: Mutations in rice (
  publication-title: Plant Cell Physiol.
– volume: 20
  start-page: 435
  year: 2015
  end-page: 442
  ident: bib74
  article-title: A cooperative system of silicon transport in plants
  publication-title: Trends Plant Sci.
– volume: 201
  start-page: 104
  year: 2014
  end-page: 115
  ident: bib92
  article-title: Combined NanoSIMS and synchrotron X-ray fluorescence reveals distinct cellular and subcellular distribution patterns of trace elements in rice tissues
  publication-title: New Phytol.
– volume: 10
  start-page: 2562
  year: 2019
  ident: bib158
  article-title: Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies
  publication-title: Nat. Commun.
– volume: 209
  start-page: 762
  year: 2016
  end-page: 772
  ident: bib29
  article-title: A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern
  publication-title: New Phytol.
– volume: 1
  start-page: 489
  year: 2020
  end-page: 499
  ident: bib61
  article-title: Breeding for low cadmium barley by introgression of a Sukkula-like transposable element
  publication-title: Nat. Food
– volume: 39
  start-page: 5531
  year: 2005
  end-page: 5540
  ident: bib148
  article-title: Variation in arsenic speciation and concentration in paddy rice related to dietary exposure
  publication-title: Environ. Sci. Technol.
– volume: 70
  start-page: 5537
  year: 2019
  end-page: 5557
  ident: bib23
  article-title: Safer food through plant science: reducing toxic element accumulation in crops
  publication-title: J. Exp. Bot.
– volume: 47
  start-page: 9355
  year: 2013
  end-page: 9362
  ident: bib22
  article-title: Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 5878
  year: 2009
  end-page: 5883
  ident: bib95
  article-title: Phytoextraction by rice capable of accumulating Cd at high levels: reduction of Cd content of rice grain
  publication-title: Environ. Sci. Technol.
– volume: 12
  start-page: 1392
  year: 2021
  ident: bib124
  article-title: A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain
  publication-title: Nat. Commun.
– volume: 36
  start-page: 79
  year: 2021
  end-page: 88
  ident: bib30
  article-title: Effects of
  publication-title: Hybrid Rice
– volume: 491
  start-page: 134
  year: 2012
  end-page: 137
  ident: bib35
  article-title: The molecular basis of phosphate discrimination in arsenate-rich environments
  publication-title: Nature
– volume: 3
  start-page: 182
  year: 2012
  ident: bib37
  article-title: Arsenic toxicity: the effects on plant metabolism
  publication-title: Front. Physiol.
– volume: 69
  start-page: 278
  year: 2012
  end-page: 288
  ident: bib99
  article-title: The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury
  publication-title: Plant J.
– volume: 14
  start-page: 1
  year: 2021
  end-page: 19
  ident: bib96
  article-title: Arsenite provides a selective signal that coordinates arsenate uptake and detoxificacion involving regulation of PHR1 stability in
  publication-title: Mol. Plant
– volume: 152
  start-page: 309
  year: 2010
  end-page: 319
  ident: bib7
  article-title: Grain unloading of arsenic species in rice
  publication-title: Plant Physiol.
– volume: 24
  start-page: 533
  year: 2000
  end-page: 542
  ident: bib125
  article-title: Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous
  publication-title: Plant J.
– volume: 639
  start-page: 271
  year: 2018
  end-page: 277
  ident: bib16
  article-title: Dietary cadmium intake from rice and vegetables and potential health risk: a case study in Xiangtan, southern China
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 2476
  year: 2020
  end-page: 2491
  ident: bib11
  article-title: OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice
  publication-title: Plant Cell Environ.
– volume: 55
  start-page: 8665
  year: 2021
  end-page: 8674
  ident: bib26
  article-title: Dynamics of dimethylated monothioarsenate (DMMTA) in paddy soils and its accumulation in rice grains
  publication-title: Environ. Sci. Technol.
– volume: 448
  start-page: 209
  year: 2007
  end-page: 212
  ident: bib76
  article-title: An efflux transporter of silicon in rice
  publication-title: Nature
– volume: 43
  start-page: 637
  year: 2009
  end-page: 642
  ident: bib150
  article-title: Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China
  publication-title: Environ. Sci. Technol.
– volume: 154
  start-page: 108129
  year: 2021
  ident: bib14
  article-title: Sulfate addition and rising temperature promote arsenic methylation and the formation of methylated thioarsenates in paddy soils
  publication-title: Soil Biol. Biochem.
– volume: 9
  start-page: 645
  year: 2018
  ident: bib72
  article-title: A defensin-like protein drives cadmium efflux and allocation in rice
  publication-title: Nat. Commun.
– volume: 30
  start-page: 2720
  year: 2018
  end-page: 2740
  ident: bib163
  article-title: Genome-wide association studies reveal the genetic basis of ionomic variation in rice
  publication-title: Plant Cell
– volume: 47
  start-page: 3957
  year: 2013
  end-page: 3966
  ident: bib173
  article-title: Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms
  publication-title: Environ. Sci. Technol.
– volume: 10
  start-page: 4985
  year: 2019
  ident: bib94
  article-title: Rice production threatened by coupled stresses of climate and soil arsenic
  publication-title: Nat. Commun.
– volume: 156
  start-page: 913
  year: 2011
  end-page: 924
  ident: bib91
  article-title: NanoSIMS analysis reveals contrasting patterns of arsenic and silicon localization in rice roots
  publication-title: Plant Physiol.
– volume: 12
  start-page: e1002009
  year: 2014
  ident: bib13
  article-title: Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants
  publication-title: PLoS Biol.
– volume: 19
  start-page: 1123
  year: 2007
  end-page: 1133
  ident: bib10
  article-title: A mutant of the
  publication-title: Plant Cell
– volume: 70
  start-page: 2857
  year: 2019
  end-page: 2871
  ident: bib120
  article-title: Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain
  publication-title: J. Exp. Bot.
– volume: 67
  start-page: 6051
  year: 2016
  end-page: 6059
  ident: bib145
  article-title: The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice
  publication-title: J. Exp. Bot.
– volume: 41
  start-page: 6854
  year: 2007
  end-page: 6859
  ident: bib149
  article-title: Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 14438
  year: 2017
  ident: bib130
  article-title: Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating
  publication-title: Sci. Rep.
– volume: 42
  start-page: 3861
  year: 2008
  end-page: 3866
  ident: bib165
  article-title: Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 10100
  year: 2020
  end-page: 10108
  ident: bib167
  article-title: Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains
  publication-title: Environ. Sci. Technol.
– volume: 69
  start-page: 2287
  year: 2021
  end-page: 2294
  ident: bib2
  article-title: Detection of thioarsenates in rice grains and rice products
  publication-title: J. Agric. Food Chem.
– volume: 215
  start-page: 1090
  year: 2017
  end-page: 1101
  ident: bib154
  article-title: OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice
  publication-title: New Phytol.
– volume: 195
  start-page: 110462
  year: 2020
  ident: bib178
  article-title: Mercury methylation in rice paddy and accumulation in rice plant: a review
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 10
  start-page: 9
  year: 2017
  ident: bib31
  article-title: Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars
  publication-title: Rice
– volume: 54
  start-page: 12072
  year: 2020
  end-page: 12080
  ident: bib41
  article-title: Chemical speciation and distribution of cadmium in rice grain and implications for bioavailability to humans
  publication-title: Environ. Sci. Technol.
– volume: 456
  start-page: 679
  year: 2008
  end-page: 686
  ident: bib85
  article-title: Characterization of substrate specificity of a rice silicon transporter, Lsi1
  publication-title: Pflugers Arch.
– volume: 171
  start-page: 1418
  year: 2016
  end-page: 1426
  ident: bib88
  article-title: Cytokinin determines thiol-mediated arsenic tolerance and accumulation
  publication-title: Plant Physiol.
– volume: 181
  start-page: 71
  year: 2009
  end-page: 78
  ident: bib151
  article-title: HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in
  publication-title: New Phytol.
– volume: 61
  start-page: 517
  year: 2010
  end-page: 534
  ident: bib58
  article-title: Metal hyperaccumulation in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 68
  start-page: 5641
  year: 2017
  end-page: 5651
  ident: bib112
  article-title: Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice
  publication-title: J. Exp. Bot.
– volume: 2
  start-page: 15202
  year: 2016
  ident: bib32
  article-title: Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in
  publication-title: Nat. Plants
– volume: 8
  start-page: 2197
  year: 2017
  ident: bib164
  article-title: OsPT4 contributes to arsenate uptake and transport in rice
  publication-title: Front. Plant Sci.
– volume: 172
  start-page: 1708
  year: 2016
  end-page: 1719
  ident: bib113
  article-title: OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation
  publication-title: Plant Physiol.
– volume: 218
  start-page: 407
  year: 2018
  end-page: 411
  ident: bib103
  article-title: A global database for plants that hyperaccumulate metal and metalloid trace elements
  publication-title: New Phytol.
– volume: 49
  start-page: 750
  year: 2015
  end-page: 759
  ident: bib176
  article-title: Soil contamination in China: current status and mitigation strategies
  publication-title: Environ. Sci. Technol.
– volume: 214
  start-page: 354
  year: 2016
  end-page: 361
  ident: bib59
  article-title: Pectinous cell wall thickenings formation—a common defense strategy of plants to cope with Pb
  publication-title: Environ. Pollut.
– volume: 127
  start-page: 137
  year: 2014
  end-page: 165
  ident: bib169
  article-title: Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain
  publication-title: Theor. Appl. Genet.
– volume: 121
  start-page: 1047
  year: 2010
  end-page: 1058
  ident: bib147
  article-title: Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (
  publication-title: Theor. Appl. Genet.
– volume: 8
  start-page: 1868
  year: 2017
  ident: bib142
  article-title: OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice
  publication-title: Front. Plant Sci.
– volume: 433
  start-page: 377
  year: 2018
  end-page: 389
  ident: bib121
  article-title: Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize
  publication-title: Plant Soil
– volume: 226
  start-page: 838
  year: 2020
  end-page: 850
  ident: bib17
  article-title: Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain
  publication-title: New Phytol.
– volume: 109
  start-page: 1427
  year: 1995
  end-page: 1433
  ident: bib105
  article-title: Mechanisms of cadmium mobility and accumulation in Indian mustard
  publication-title: Plant Physiol.
– volume: 401
  start-page: 243
  year: 2016
  end-page: 257
  ident: bib131
  article-title: Phytotoxicity and detoxification mechanism differ among inorganic and methylated arsenic species in
  publication-title: Plant Soil
– volume: 55
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib100
  article-title: World-wide genetic diversity for mineral element concentrations in rice grain
  publication-title: Crop Sci.
– volume: 68
  start-page: 3007
  year: 2017
  end-page: 3016
  ident: bib21
  article-title: The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice
  publication-title: J. Exp. Bot.
– volume: 28
  start-page: 2250
  year: 2009
  end-page: 2254
  ident: bib82
  article-title: Characterization of lead precipitate following uptake by roots of
  publication-title: Environ. Toxicol. Chem.
– volume: 126
  start-page: 619
  year: 2019
  end-page: 626
  ident: bib71
  article-title: Producing cadmium-free Indica rice by overexpressing
  publication-title: Environ. Int.
– volume: 72
  start-page: 415
  year: 2021
  end-page: 425
  ident: bib39
  article-title: Targeted expression of the arsenate reductase HAC1 identifies cell type specificity of arsenic metabolism and transport in plant roots
  publication-title: J. Exp. Bot.
– volume: 11
  start-page: 1153
  year: 1999
  end-page: 1163
  ident: bib42
  article-title: Phytochelatin synthase genes from
  publication-title: Plant Cell
– volume: 317
  start-page: 31
  year: 2009
  end-page: 39
  ident: bib98
  article-title: Arsenic toxicity to rice (
  publication-title: Plant Soil
– volume: 177
  start-page: 1691
  year: 2018
  end-page: 1703
  ident: bib28
  article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice
  publication-title: Plant Physiol.
– volume: 11
  start-page: 4778
  year: 2020
  ident: bib73
  article-title: Resequencing of 1,143
  publication-title: Nat. Commun.
– volume: 42
  start-page: 5008
  year: 2008
  end-page: 5013
  ident: bib181
  article-title: High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice
  publication-title: Environ. Sci. Technol.
– volume: 225
  start-page: 1383
  year: 2020
  end-page: 1396
  ident: bib102
  article-title: Functional evolution of nodulin 26-like intrinsic proteins: from bacterial arsenic detoxification to plant nutrient transport
  publication-title: New Phytol.
– volume: 70
  start-page: 5865
  year: 2019
  end-page: 5878
  ident: bib168
  article-title: Variation in the
  publication-title: J. Exp. Bot.
– volume: 172
  start-page: 1899
  year: 2016
  end-page: 1910
  ident: bib152
  article-title: The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron
  publication-title: Plant Physiol.
– volume: 512
  start-page: 112
  year: 2019
  end-page: 118
  ident: bib127
  article-title: OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 165
  start-page: 109
  year: 2012
  end-page: 117
  ident: bib80
  article-title: The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere
  publication-title: Environ. Pollut.
– volume: 284
  start-page: 2114
  year: 2009
  end-page: 2120
  ident: bib55
  article-title: NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 722
  year: 2015
  end-page: 733
  ident: bib155
  article-title: NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions
  publication-title: Mol. Plant
– volume: 42
  start-page: 1051
  year: 2008
  end-page: 1057
  ident: bib78
  article-title: Speciation and localization of arsenic in white and brown rice grains
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 476
  year: 2018
  ident: bib44
  article-title: A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice
  publication-title: Front. Plant Sci.
– volume: 107
  start-page: 21187
  year: 2010
  end-page: 21192
  ident: bib116
  article-title: Arsenic tolerance in
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 150
  start-page: 280
  year: 2007
  end-page: 287
  ident: bib57
  article-title: Toxic effects of Pb
  publication-title: Environ. Pollut.
– volume: 181
  start-page: 777
  year: 2009
  end-page: 794
  ident: bib174
  article-title: Arsenic uptake and metabolism in plants
  publication-title: New Phytol.
– volume: 157
  start-page: 269
  year: 2011
  end-page: 278
  ident: bib19
  article-title: OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice
  publication-title: Plant Physiol.
– volume: 7
  start-page: 137
  year: 2021
  end-page: 143
  ident: bib65
  article-title: bZIP19 and bZIP23 act as zinc sensors to control plant zinc status
  publication-title: Nat. Plants
– volume: 350
  start-page: 413
  year: 2012
  end-page: 420
  ident: bib175
  article-title: Arsenic translocation in rice investigated using radioactive
  publication-title: Plant Soil
– volume: 208
  start-page: 817
  year: 2015
  end-page: 829
  ident: bib153
  article-title: Genome-wide association mapping of cadmium accumulation in different organs of barley
  publication-title: New Phytol.
– volume: 91
  start-page: 840
  year: 2017
  end-page: 848
  ident: bib45
  article-title: Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains
  publication-title: Plant J.
– volume: 13
  start-page: 282
  year: 2020
  end-page: 289
  ident: bib143
  article-title: Thiolated arsenic species observed in rice paddy pore waters
  publication-title: Nat. Geosci.
– year: 2021
  ident: bib129
  article-title: Natural variations in the P-type ATPase heavy metal transporter ZmHMA3 controlling cadmium accumulation in maize grains
  publication-title: J. Exp. Bot.
– volume: 9
  start-page: 19482
  year: 2019
  ident: bib101
  article-title: Transcriptional plasticity buffers genetic variation in zinc homeostasis
  publication-title: Sci. Rep.
– volume: 115
  start-page: 889
  year: 2007
  end-page: 893
  ident: bib56
  article-title: Dietary arsenic exposure in Bangladesh
  publication-title: Environ. Health Perspect.
– volume: 59
  start-page: 580
  year: 2013
  end-page: 590
  ident: bib54
  article-title: Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in as accumulation in shoots of rice
  publication-title: Soil Sci. Plant Nutr.
– volume: 13
  start-page: 825
  year: 2020
  end-page: 835
  ident: bib48
  article-title: Plant nutrition for human nutrition: hints from rice research and future perspectives
  publication-title: Mol. Plant
– volume: 111
  start-page: 15699
  year: 2014
  end-page: 15704
  ident: bib115
  article-title: A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 6
  start-page: 26
  year: 2008
  ident: bib1
  article-title: A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)
  publication-title: BMC Biol.
– volume: 8
  start-page: e1002923
  year: 2012
  ident: bib12
  article-title: Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in
  publication-title: PLoS Genet.
– volume: 186
  start-page: 611
  year: 2021
  end-page: 623
  ident: bib46
  article-title: Deficiency in alcohol dehydrogenase 2 reduces arsenic in rice grains by suppressing silicate transporters
  publication-title: Plant Physiol.
– volume: 39
  start-page: 322
  year: 2020
  end-page: 359
  ident: bib118
  article-title: Mechanisms of cadmium accumulation in plants
  publication-title: Crit. Rev. Plant Sci.
– volume: 307
  start-page: 110894
  year: 2021
  ident: bib161
  article-title: The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice
  publication-title: Plant Sci.
– volume: 70
  start-page: 6389
  year: 2019
  end-page: 6400
  ident: bib122
  article-title: Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3
  publication-title: J. Exp. Bot.
– volume: 219
  start-page: 99
  year: 2016
  end-page: 106
  ident: bib180
  article-title: Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China
  publication-title: Environ. Pollut.
– volume: 189
  start-page: 190
  year: 2011
  end-page: 199
  ident: bib86
  article-title: OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles
  publication-title: New Phytol.
– volume: 39
  start-page: 84
  year: 2019
  ident: bib179
  article-title: Introgressing the allelic variation of a major locus in reducing the grain cadmium accumulation in
  publication-title: Mol. Breed.
– volume: 149
  start-page: 894
  year: 2009
  end-page: 904
  ident: bib93
  article-title: AtHMA3, a P(1B)-ATPase allowing Cd/Zn/Co/Pb aacuolar storage in
  publication-title: Plant Physiol.
– volume: 485
  start-page: 428
  year: 2014
  end-page: 434
  ident: bib97
  article-title: Lead in rice: analysis of baseline lead levels in market and field collected rice grains
  publication-title: Sci. Total Environ.
– volume: 53
  start-page: 213
  year: 2012
  ident: 10.1016/j.molp.2021.09.016_bib109
  article-title: Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcr166
– volume: 512
  start-page: 112
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib127
  article-title: OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.03.024
– volume: 127
  start-page: 137
  year: 2014
  ident: 10.1016/j.molp.2021.09.016_bib169
  article-title: Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-013-2207-5
– volume: 14
  start-page: 1
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib96
  article-title: Arsenite provides a selective signal that coordinates arsenate uptake and detoxificacion involving regulation of PHR1 stability in Arabidopsis thaliana
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2021.05.020
– volume: 2
  start-page: 15202
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib32
  article-title: Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.202
– volume: 70
  start-page: 5865
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib168
  article-title: Variation in the BrHMA3 coding region controls natural variation in cadmium accumulation in Brassica rapa vegetables
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz310
– volume: 115
  start-page: 889
  year: 2007
  ident: 10.1016/j.molp.2021.09.016_bib56
  article-title: Dietary arsenic exposure in Bangladesh
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.9462
– volume: 6
  start-page: 26
  year: 2008
  ident: 10.1016/j.molp.2021.09.016_bib1
  article-title: A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes
  publication-title: BMC Biol.
  doi: 10.1186/1741-7007-6-26
– volume: 25
  start-page: 2944
  year: 2013
  ident: 10.1016/j.molp.2021.09.016_bib9
  article-title: WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.114009
– volume: 184
  start-page: 193
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib70
  article-title: Speciation and distribution of arsenic and localization of nutrients in rice grains
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.02912.x
– volume: 35
  start-page: 1948
  year: 2012
  ident: 10.1016/j.molp.2021.09.016_bib126
  article-title: The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2012.02527.x
– volume: 8
  start-page: 2197
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib164
  article-title: OsPT4 contributes to arsenate uptake and transport in rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02197
– volume: 3
  start-page: 182
  year: 2012
  ident: 10.1016/j.molp.2021.09.016_bib37
  article-title: Arsenic toxicity: the effects on plant metabolism
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2012.00182
– volume: 39
  start-page: 1941
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib159
  article-title: A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12747
– volume: 69
  start-page: 2287
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib2
  article-title: Detection of thioarsenates in rice grains and rice products
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c06853
– volume: 16
  start-page: 1327
  year: 2004
  ident: 10.1016/j.molp.2021.09.016_bib50
  article-title: P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.020487
– volume: 219
  start-page: 99
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib180
  article-title: Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.10.043
– volume: 62
  start-page: 314
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib66
  article-title: Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice
  publication-title: J. Intergr. Plant Biol.
  doi: 10.1111/jipb.12794
– volume: 183
  start-page: 1235
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib128
  article-title: ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.01569
– volume: 39
  start-page: 322
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib118
  article-title: Mechanisms of cadmium accumulation in plants
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2020.1792179
– volume: 7
  start-page: 137
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib65
  article-title: Arabidopsis bZIP19 and bZIP23 act as zinc sensors to control plant zinc status
  publication-title: Nat. Plants
  doi: 10.1038/s41477-021-00856-7
– volume: 149
  start-page: 894
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib93
  article-title: AtHMA3, a P(1B)-ATPase allowing Cd/Zn/Co/Pb aacuolar storage in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.130294
– volume: 55
  start-page: 1
  year: 2015
  ident: 10.1016/j.molp.2021.09.016_bib100
  article-title: World-wide genetic diversity for mineral element concentrations in rice grain
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2013.10.0656
– volume: 12
  start-page: 1392
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib124
  article-title: A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21282-5
– volume: 22
  start-page: 2045
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib51
  article-title: A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.069773
– volume: 215
  start-page: 1090
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib154
  article-title: OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice
  publication-title: New Phytol.
  doi: 10.1111/nph.14572
– volume: 39
  start-page: 18
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib156
  article-title: Node-controlled allocation of mineral elements in Poaceae
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2017.05.002
– volume: 150
  start-page: 280
  year: 2007
  ident: 10.1016/j.molp.2021.09.016_bib57
  article-title: Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata)
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.01.011
– volume: 49
  start-page: 750
  year: 2015
  ident: 10.1016/j.molp.2021.09.016_bib176
  article-title: Soil contamination in China: current status and mitigation strategies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5047099
– volume: 53
  start-page: 159
  year: 2002
  ident: 10.1016/j.molp.2021.09.016_bib24
  article-title: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.53.100301.135154
– volume: 249
  start-page: 1038
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib144
  article-title: Cadmium contamination in agricultural soils of China and the impact on food safety
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.03.063
– volume: 74
  start-page: 793
  year: 2002
  ident: 10.1016/j.molp.2021.09.016_bib34
  article-title: Heavy metals"—a meaningless term? (IUPAC technical report)
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200274050793
– volume: 8
  start-page: 1868
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib142
  article-title: OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01868
– volume: 162
  start-page: 927
  year: 2013
  ident: 10.1016/j.molp.2021.09.016_bib157
  article-title: Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.216564
– volume: 70
  start-page: 2717
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib4
  article-title: The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz091
– volume: 8
  start-page: e1002923
  year: 2012
  ident: 10.1016/j.molp.2021.09.016_bib12
  article-title: Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002923
– volume: 66
  start-page: 3717
  year: 2015
  ident: 10.1016/j.molp.2021.09.016_bib20
  article-title: The role of nodes in arsenic storage and distribution in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv164
– volume: 41
  start-page: 6854
  year: 2007
  ident: 10.1016/j.molp.2021.09.016_bib149
  article-title: Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es070627i
– volume: 186
  start-page: 611
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib46
  article-title: Deficiency in alcohol dehydrogenase 2 reduces arsenic in rice grains by suppressing silicate transporters
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab086
– volume: 332
  year: 2011
  ident: 10.1016/j.molp.2021.09.016_bib110
  article-title: Comment on "A bacterium that can grow by using arsenic instead of phosphorus”
  publication-title: Science
  doi: 10.1126/science.1201438
– volume: 71
  start-page: 5631
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib133
  article-title: Dimethylarsinic acid is the causal agent inducing rice straighthead disease
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa253
– volume: 208
  start-page: 817
  year: 2015
  ident: 10.1016/j.molp.2021.09.016_bib153
  article-title: Genome-wide association mapping of cadmium accumulation in different organs of barley
  publication-title: New Phytol.
  doi: 10.1111/nph.13512
– volume: 350
  start-page: 413
  year: 2012
  ident: 10.1016/j.molp.2021.09.016_bib175
  article-title: Arsenic translocation in rice investigated using radioactive 73As tracer
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0926-4
– volume: 226
  start-page: 838
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib17
  article-title: Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain
  publication-title: New Phytol.
  doi: 10.1111/nph.16404
– volume: 9
  start-page: 645
  year: 2018
  ident: 10.1016/j.molp.2021.09.016_bib72
  article-title: A defensin-like protein drives cadmium efflux and allocation in rice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03088-0
– volume: 43
  start-page: 637
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib150
  article-title: Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802412r
– volume: 72
  start-page: 2045
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib104
  article-title: All together now: regulation of the iron deficiency response
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erab003
– volume: 59
  start-page: 580
  year: 2013
  ident: 10.1016/j.molp.2021.09.016_bib54
  article-title: Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in as accumulation in shoots of rice
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2013.804390
– volume: 39
  start-page: 5531
  year: 2005
  ident: 10.1016/j.molp.2021.09.016_bib148
  article-title: Variation in arsenic speciation and concentration in paddy rice related to dietary exposure
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0502324
– volume: 7
  start-page: 14438
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib130
  article-title: Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14832-9
– volume: 317
  start-page: 31
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib98
  article-title: Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9786-y
– volume: 189
  start-page: 190
  year: 2011
  ident: 10.1016/j.molp.2021.09.016_bib86
  article-title: OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03459.x
– volume: 13
  start-page: 825
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib48
  article-title: Plant nutrition for human nutrition: hints from rice research and future perspectives
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.05.007
– volume: 57
  start-page: 2510
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib83
  article-title: High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcw163
– volume: 39
  start-page: 84
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib179
  article-title: Introgressing the allelic variation of a major locus in reducing the grain cadmium accumulation in indica rice hybrids
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-019-0992-5
– volume: 171
  start-page: 707
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib18
  article-title: Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.01882
– volume: 20
  start-page: 435
  year: 2015
  ident: 10.1016/j.molp.2021.09.016_bib74
  article-title: A cooperative system of silicon transport in plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.04.007
– volume: 150
  start-page: 2071
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib64
  article-title: The rice aquaporin Lsi1 mediates uptake of methylated arsenic species
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.140350
– volume: 181
  start-page: 71
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib151
  article-title: HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02638.x
– volume: 22
  start-page: 904
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib5
  article-title: High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.073023
– volume: 11
  start-page: 1153
  year: 1999
  ident: 10.1016/j.molp.2021.09.016_bib42
  article-title: Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.6.1153
– volume: 214
  start-page: 354
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib59
  article-title: Pectinous cell wall thickenings formation—a common defense strategy of plants to cope with Pb
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.04.019
– volume: 69
  start-page: 278
  year: 2012
  ident: 10.1016/j.molp.2021.09.016_bib99
  article-title: The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04789.x
– volume: 107
  start-page: 16500
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib135
  article-title: Gene limiting cadmium accumulation in rice
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1005396107
– volume: 639
  start-page: 271
  year: 2018
  ident: 10.1016/j.molp.2021.09.016_bib16
  article-title: Dietary cadmium intake from rice and vegetables and potential health risk: a case study in Xiangtan, southern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.050
– volume: 5
  start-page: 4617
  year: 2014
  ident: 10.1016/j.molp.2021.09.016_bib106
  article-title: Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5617
– volume: 51
  start-page: 12131
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib6
  article-title: Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03028
– volume: 12
  start-page: e1002009
  year: 2014
  ident: 10.1016/j.molp.2021.09.016_bib13
  article-title: Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002009
– volume: 176
  start-page: 785
  year: 2013
  ident: 10.1016/j.molp.2021.09.016_bib40
  article-title: Silicon decreases the arsenic level in rice grain by limiting arsenite transport
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201200440
– volume: 72
  start-page: 415
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib39
  article-title: Targeted expression of the arsenate reductase HAC1 identifies cell type specificity of arsenic metabolism and transport in plant roots
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa465
– volume: 126
  start-page: 619
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib71
  article-title: Producing cadmium-free Indica rice by overexpressing OsHMA3
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.03.004
– volume: 61
  start-page: 517
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib58
  article-title: Metal hyperaccumulation in plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042809-112156
– volume: 65
  start-page: 4849
  year: 2014
  ident: 10.1016/j.molp.2021.09.016_bib162
  article-title: OsNRAMP5 contributes to manganese translocation and distribution in rice shoots
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru259
– volume: 284
  start-page: 2114
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib55
  article-title: NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M806881200
– volume: 43
  start-page: 3778
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib63
  article-title: Mitigation of arsenic accumulation in rice with water management and silicon fertilization
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803643v
– volume: 433
  start-page: 377
  year: 2018
  ident: 10.1016/j.molp.2021.09.016_bib121
  article-title: Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3849-5
– volume: 43
  start-page: 1612
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib79
  article-title: Geographical variation in total and inorganic arsenic content of polished (white) rice
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802612a
– volume: 42
  start-page: 5008
  year: 2008
  ident: 10.1016/j.molp.2021.09.016_bib181
  article-title: High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8001103
– volume: 43
  start-page: 2476
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib11
  article-title: OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13843
– volume: 14
  start-page: 1223
  year: 2002
  ident: 10.1016/j.molp.2021.09.016_bib139
  article-title: IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth
  publication-title: Plant Cell
  doi: 10.1105/tpc.001388
– volume: 491
  start-page: 134
  year: 2012
  ident: 10.1016/j.molp.2021.09.016_bib35
  article-title: The molecular basis of phosphate discrimination in arsenate-rich environments
  publication-title: Nature
  doi: 10.1038/nature11517
– volume: 48
  start-page: 7974
  year: 2014
  ident: 10.1016/j.molp.2021.09.016_bib81
  article-title: Localization and speciation of mercury in brown rice with implications for pan-Asian public health
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es502000d
– volume: 195
  start-page: 110462
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib178
  article-title: Mercury methylation in rice paddy and accumulation in rice plant: a review
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110462
– volume: 42
  start-page: 3861
  year: 2008
  ident: 10.1016/j.molp.2021.09.016_bib165
  article-title: Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702748q
– volume: 54
  start-page: 10100
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib167
  article-title: Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c02877
– volume: 9
  start-page: 476
  year: 2018
  ident: 10.1016/j.molp.2021.09.016_bib44
  article-title: A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00476
– volume: 446
  start-page: 1
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib171
  article-title: Arsenic and cadmium accumulation in rice and mitigation strategies
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04374-6
– volume: 12
  start-page: e0177978
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib117
  article-title: Dietary cadmium exposure assessment among the Chinese population
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0177978
– volume: 91
  start-page: 840
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib45
  article-title: Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains
  publication-title: Plant J.
  doi: 10.1111/tpj.13612
– volume: 8
  start-page: 722
  year: 2015
  ident: 10.1016/j.molp.2021.09.016_bib155
  article-title: Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2015.01.005
– volume: 193
  start-page: 665
  year: 2012
  ident: 10.1016/j.molp.2021.09.016_bib69
  article-title: Methylated arsenic species in plants originate from soil microorganisms
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.03956.x
– volume: 235
  start-page: 1173
  year: 1987
  ident: 10.1016/j.molp.2021.09.016_bib146
  article-title: Why nature chose phosphates
  publication-title: Science
  doi: 10.1126/science.2434996
– volume: 47
  start-page: 3082
  year: 2013
  ident: 10.1016/j.molp.2021.09.016_bib8
  article-title: Mercury localization and speciation in plants grown hydroponically or in a natural environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303310t
– volume: 97
  start-page: 4627
  year: 2000
  ident: 10.1016/j.molp.2021.09.016_bib60
  article-title: A biological function for cadmium in marine diatoms
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.090091397
– volume: 51
  start-page: 885
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib77
  article-title: Durum wheat genome highlights past domestication signatures and future improvement targets
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0381-3
– volume: 181
  start-page: 777
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib174
  article-title: Arsenic uptake and metabolism in plants
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02716.x
– volume: 328
  start-page: 27
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib119
  article-title: Rice is more efficient in arsenite uptake and translocation than wheat and barley
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0074-2
– volume: 24
  start-page: 533
  year: 2000
  ident: 10.1016/j.molp.2021.09.016_bib125
  article-title: Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.2000.00901.x
– volume: 37
  start-page: 1219
  year: 2011
  ident: 10.1016/j.molp.2021.09.016_bib62
  article-title: Inorganic arsenic in Chinese food and its cancer risk
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2011.05.007
– volume: 47
  start-page: 9355
  year: 2013
  ident: 10.1016/j.molp.2021.09.016_bib22
  article-title: Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4012096
– volume: 28
  start-page: 2250
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib82
  article-title: Characterization of lead precipitate following uptake by roots of Brassica juncea
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/09-131.1
– volume: 42
  start-page: 1051
  year: 2008
  ident: 10.1016/j.molp.2021.09.016_bib78
  article-title: Speciation and localization of arsenic in white and brown rice grains
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702212p
– volume: 152
  start-page: 309
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib7
  article-title: Grain unloading of arsenic species in rice
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.146126
– volume: 19
  start-page: 1123
  year: 2007
  ident: 10.1016/j.molp.2021.09.016_bib10
  article-title: A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041871
– volume: 152
  start-page: 2211
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib67
  article-title: Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.150862
– volume: 36
  start-page: 79
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib30
  article-title: Effects of OsNRAMP5 mutation on heat tolerance and main economic traits of rice under the conditions of different manganese concentration (in Chinese)
  publication-title: Hybrid Rice
– volume: 201
  start-page: 104
  year: 2014
  ident: 10.1016/j.molp.2021.09.016_bib92
  article-title: Combined NanoSIMS and synchrotron X-ray fluorescence reveals distinct cellular and subcellular distribution patterns of trace elements in rice tissues
  publication-title: New Phytol.
  doi: 10.1111/nph.12497
– volume: 217
  start-page: 206
  year: 2018
  ident: 10.1016/j.molp.2021.09.016_bib141
  article-title: Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana
  publication-title: New Phytol.
  doi: 10.1111/nph.14761
– volume: 10
  start-page: 4985
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib94
  article-title: Rice production threatened by coupled stresses of climate and soil arsenic
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12946-4
– volume: 58
  start-page: 904
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib132
  article-title: OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcx029
– volume: 267
  start-page: 128893
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib15
  article-title: Producing Cd-safe rice grains in moderately and seriously Cd-contaminated paddy soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128893
– volume: 289
  start-page: 117918
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib36
  article-title: Two-year and multi-site field trials to evaluate soil amendments for controlling cadmium accumulation in rice grain
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.117918
– volume: 448
  start-page: 209
  year: 2007
  ident: 10.1016/j.molp.2021.09.016_bib76
  article-title: An efflux transporter of silicon in rice
  publication-title: Nature
  doi: 10.1038/nature05964
– volume: 121
  start-page: 1047
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib147
  article-title: Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum)
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-010-1370-1
– volume: 69
  start-page: 953
  year: 2018
  ident: 10.1016/j.molp.2021.09.016_bib33
  article-title: Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.02.009
– volume: 65
  start-page: 6013
  year: 2014
  ident: 10.1016/j.molp.2021.09.016_bib107
  article-title: Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru340
– volume: 24
  start-page: 2155
  year: 2012
  ident: 10.1016/j.molp.2021.09.016_bib108
  article-title: Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.096925
– volume: 44
  start-page: 8108
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib111
  article-title: Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101139z
– volume: 107
  start-page: 21187
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib116
  article-title: Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1013964107
– volume: 209
  start-page: 762
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib29
  article-title: A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter
  publication-title: New Phytol.
  doi: 10.1111/nph.13472
– volume: 49
  start-page: 113
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib87
  article-title: Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2016.10.004
– volume: 485
  start-page: 428
  year: 2014
  ident: 10.1016/j.molp.2021.09.016_bib97
  article-title: Lead in rice: analysis of baseline lead levels in market and field collected rice grains
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.03.090
– volume: 48
  start-page: 7552
  year: 2014
  ident: 10.1016/j.molp.2021.09.016_bib38
  article-title: Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405234p
– volume: 70
  start-page: 5537
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib23
  article-title: Safer food through plant science: reducing toxic element accumulation in crops
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz366
– volume: 286
  start-page: 106651
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib47
  article-title: Assessment of phytoextraction using Sedum plumbizincicola and rice production in Cd-polluted acid paddy soils of south China: a field study
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2019.106651
– volume: 40
  start-page: 5730
  year: 2006
  ident: 10.1016/j.molp.2021.09.016_bib68
  article-title: Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060800v
– volume: 1
  start-page: 489
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib61
  article-title: Breeding for low cadmium barley by introgression of a Sukkula-like transposable element
  publication-title: Nat. Food
  doi: 10.1038/s43016-020-0130-x
– volume: 219
  start-page: 641
  year: 2018
  ident: 10.1016/j.molp.2021.09.016_bib123
  article-title: Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots
  publication-title: New Phytol.
  doi: 10.1111/nph.15190
– volume: 225
  start-page: 1383
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib102
  article-title: Functional evolution of nodulin 26-like intrinsic proteins: from bacterial arsenic detoxification to plant nutrient transport
  publication-title: New Phytol.
  doi: 10.1111/nph.16217
– volume: 61
  start-page: 535
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib172
  article-title: Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042809-112152
– year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib129
  article-title: Natural variations in the P-type ATPase heavy metal transporter ZmHMA3 controlling cadmium accumulation in maize grains
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erab254
– volume: 307
  start-page: 110894
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib161
  article-title: The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2021.110894
– volume: 67
  start-page: 6051
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib145
  article-title: The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw362
– volume: 62
  start-page: 4391
  year: 2011
  ident: 10.1016/j.molp.2021.09.016_bib84
  article-title: The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err158
– volume: 68
  start-page: 5641
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib112
  article-title: Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx364
– volume: 171
  start-page: 1418
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib88
  article-title: Cytokinin determines thiol-mediated arsenic tolerance and accumulation
  publication-title: Plant Physiol.
– volume: 165
  start-page: 109
  year: 2012
  ident: 10.1016/j.molp.2021.09.016_bib80
  article-title: The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2012.02.018
– volume: 11
  start-page: 4778
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib73
  article-title: Resequencing of 1,143 indica rice accessions reveals important genetic variations and different heterosis patterns
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18608-0
– volume: 105
  start-page: 9931
  year: 2008
  ident: 10.1016/j.molp.2021.09.016_bib75
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0802361105
– volume: 111
  start-page: 15699
  year: 2014
  ident: 10.1016/j.molp.2021.09.016_bib115
  article-title: A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1414968111
– volume: 47
  start-page: 3957
  year: 2013
  ident: 10.1016/j.molp.2021.09.016_bib173
  article-title: Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304295n
– volume: 118
  start-page: 1183
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib166
  article-title: In inland China, rice, rather than fish, is the major pathway for methylmercury exposure
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1001915
– volume: 266
  start-page: 115193
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib140
  article-title: Three-year field experiment on the risk reduction, environmental merit, and cost assessment of four in situ remediation technologies for metal(loid)-contaminated agricultural soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115193
– volume: 55
  start-page: 8665
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib26
  article-title: Dynamics of dimethylated monothioarsenate (DMMTA) in paddy soils and its accumulation in rice grains
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c00133
– volume: 12
  start-page: e0173681
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib53
  article-title: Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0173681
– volume: 109
  start-page: 1427
  year: 1995
  ident: 10.1016/j.molp.2021.09.016_bib105
  article-title: Mechanisms of cadmium mobility and accumulation in Indian mustard
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.4.1427
– volume: 154
  start-page: 108129
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib14
  article-title: Sulfate addition and rising temperature promote arsenic methylation and the formation of methylated thioarsenates in paddy soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2021.108129
– volume: 68
  start-page: 3007
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib21
  article-title: The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx165
– volume: 20
  start-page: 413
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib89
  article-title: Arabidopsis CNGC family members contribute to heavy metal ion uptake in plants
  publication-title: Inter. J. Mol. Sci.
  doi: 10.3390/ijms20020413
– volume: 13
  start-page: 385
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib3
  article-title: Transport of inorganic mercury and methylmercury in target tissues and organs
  publication-title: J. Toxicol. Environ. Health B Crit. Rev.
  doi: 10.1080/10937401003673750
– volume: 218
  start-page: 407
  year: 2018
  ident: 10.1016/j.molp.2021.09.016_bib103
  article-title: A global database for plants that hyperaccumulate metal and metalloid trace elements
  publication-title: New Phytol.
  doi: 10.1111/nph.14907
– volume: 172
  start-page: 1899
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib152
  article-title: The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01189
– volume: 16
  start-page: 1691
  year: 2018
  ident: 10.1016/j.molp.2021.09.016_bib27
  article-title: Engineering rice with lower grain arsenic
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12905
– volume: 70
  start-page: 6389
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib122
  article-title: Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz400
– volume: 10
  start-page: 9
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib31
  article-title: Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars
  publication-title: Rice
  doi: 10.1186/s12284-017-0149-2
– volume: 331
  start-page: 119
  year: 2015
  ident: 10.1016/j.molp.2021.09.016_bib138
  article-title: Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury
  publication-title: Toxicology
  doi: 10.1016/j.tox.2015.03.005
– volume: 177
  start-page: 1691
  year: 2018
  ident: 10.1016/j.molp.2021.09.016_bib28
  article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.00485
– volume: 185
  start-page: 434
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib90
  article-title: NanoSIMS analysis of arsenic and selenium in cereal grain
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.03071.x
– volume: 180
  start-page: 529
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib170
  article-title: The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.01380
– volume: 156
  start-page: 913
  year: 2011
  ident: 10.1016/j.molp.2021.09.016_bib91
  article-title: NanoSIMS analysis reveals contrasting patterns of arsenic and silicon localization in rice roots
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.173088
– volume: 54
  start-page: 12072
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib41
  article-title: Chemical speciation and distribution of cadmium in rice grain and implications for bioavailability to humans
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c03001
– volume: 60
  start-page: 2677
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib136
  article-title: Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp119
– volume: 108
  start-page: 20959
  year: 2011
  ident: 10.1016/j.molp.2021.09.016_bib137
  article-title: Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1116531109
– volume: 30
  start-page: 2720
  year: 2018
  ident: 10.1016/j.molp.2021.09.016_bib163
  article-title: Genome-wide association studies reveal the genetic basis of ionomic variation in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00375
– volume: 453
  start-page: 391
  year: 2008
  ident: 10.1016/j.molp.2021.09.016_bib43
  article-title: Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4
  publication-title: Nature
  doi: 10.1038/nature06877
– volume: 13
  start-page: 282
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib143
  article-title: Thiolated arsenic species observed in rice paddy pore waters
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-020-0533-1
– volume: 17
  start-page: e1009636
  year: 2021
  ident: 10.1016/j.molp.2021.09.016_bib160
  article-title: A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1009636
– volume: 172
  start-page: 1708
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib113
  article-title: OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01332
– volume: 456
  start-page: 679
  year: 2008
  ident: 10.1016/j.molp.2021.09.016_bib85
  article-title: Characterization of substrate specificity of a rice silicon transporter, Lsi1
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-007-0408-y
– volume: 43
  start-page: 5878
  year: 2009
  ident: 10.1016/j.molp.2021.09.016_bib95
  article-title: Phytoextraction by rice capable of accumulating Cd at high levels: reduction of Cd content of rice grain
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8036687
– volume: 186
  start-page: 392
  year: 2010
  ident: 10.1016/j.molp.2021.09.016_bib177
  article-title: The role of the rice aquaporin Lsi1 in arsenite efflux from roots
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03192.x
– volume: 116
  start-page: 1063
  year: 1998
  ident: 10.1016/j.molp.2021.09.016_bib25
  article-title: The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.116.3.1063
– volume: 401
  start-page: 243
  year: 2016
  ident: 10.1016/j.molp.2021.09.016_bib131
  article-title: Phytotoxicity and detoxification mechanism differ among inorganic and methylated arsenic species in Arabidopsis thaliana
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2739-3
– volume: 9
  start-page: 19482
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib101
  article-title: Transcriptional plasticity buffers genetic variation in zinc homeostasis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55736-0
– volume: 70
  start-page: 2857
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib120
  article-title: Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz093
– volume: 51
  start-page: 11553
  year: 2017
  ident: 10.1016/j.molp.2021.09.016_bib49
  article-title: Field study of rice yield diminished by soil arsenic in Bangladesh
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01487
– volume: 157
  start-page: 269
  year: 2011
  ident: 10.1016/j.molp.2021.09.016_bib19
  article-title: OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.181669
– volume: 66
  start-page: 28
  year: 2020
  ident: 10.1016/j.molp.2021.09.016_bib52
  article-title: Mechanisms of cadmium accumulation in rice grains and molecular breeding for its reduction
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2020.1719806
– volume: 10
  start-page: 2562
  year: 2019
  ident: 10.1016/j.molp.2021.09.016_bib158
  article-title: Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10544-y
– volume: 39
  start-page: 629
  year: 2004
  ident: 10.1016/j.molp.2021.09.016_bib114
  article-title: Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02161.x
– volume: 50
  start-page: 1128
  year: 2011
  ident: 10.1016/j.molp.2021.09.016_bib134
  article-title: Arsenate replacing phosphate: alternative life chemistries and ion promiscuity
  publication-title: Biochemistry
  doi: 10.1021/bi200002a
SSID ssj0060863
Score 2.6751678
SecondaryResourceType review_article
Snippet Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As),...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27
SubjectTerms arsenic
Biodegradation, Environmental
Biological Transport - drug effects
cadmium
Crops, Agricultural - drug effects
Crops, Agricultural - genetics
Crops, Agricultural - growth & development
detoxification
Food Safety
genes
genetically modified organisms
germplasm
heavy metals
human health
hyperaccumulators
iron
lead
manganese
mercury
Metalloids - toxicity
Metals, Heavy - toxicity
methylation
phosphates
phytochelatins
phytoremediation
Plant Breeding - methods
quantitative traits
silicon
Soil - chemistry
Soil Pollutants - toxicity
toxic metals/metalloids
toxicity
transcription (genetics)
transporters
zinc
Title Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food
URI https://dx.doi.org/10.1016/j.molp.2021.09.016
https://www.ncbi.nlm.nih.gov/pubmed/34619329
https://www.proquest.com/docview/2580696411
https://www.proquest.com/docview/2636698523
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ59NBL6LubposKvXXN6mHJcm7J0rDpI5Q2C3sTsi2Dm429ZL2Q_vvO2HKg0O6hNyE0RmjGM59G8yDkfSmFMUqg_yuREeB_HjnneOSNYlJlLmYGs5G_Xun5Iv60VMs9MhtyYTCsMuj-Xqd32jrMTMNpTtdVNf2B8fOCAX7AomdMm31yKGSqQbQPzy4_z68GhawBtXdx9rA-QoKQO9OHed02KyxbKXhX7hTbnv_dPv0Lf3Z26OIJOQoAkp71e3xK9nz9jDw6bwDk_XpOttfNfZXTWw-YekNdXfTDVVMVm1O6WLfuxk9oO1Q0n9DCt0BRBs_dhMKpwy3cdwkl_Qx-BPt80arzP3TuRApQl25c6e9g1BQvyOLi4_VsHoXOClEeK9VGiVMFsMQbjH5QTuW-BLNkBMCNxMENTrMyS5j2mS4lgoiMxZ7HvHApj53WSr4kB3VT-9eEyiwBTMjizGOdnNw4rgwvC4DBwgNT8hHhw3naPJQdx-4XKzvEl_20yAOLPLAstTA1Ih8eaNZ90Y2dq9XAJvuH6FiwCjvp3g08tfBP4UOJq32z3VihDNOpjjnfsUZLrVMQczkir3qBeNirjDXi4vT4P3f2hjwWmGXRRbudkIP2buvfAvZpszHI9uz7l2_jIONjsn-5PP8NA6QDlA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpUmguJX1v2zQq9NY1K1kPy701IWHTJrl0F_YmZFsGtxt7yXoh_fedke1AIdlDbkKMjNCMZz6N5kHIl1LExqgY_V-JiAD_88g5xyNvFBMqc5IZzEa-vNLTufyxUIsdcjLkwmBYZa_7O50etHU_M-lPc7KqqskvjJ-PGeAHLHrGtHlC9gANJNi_4XxxPKhjDZg9RNkDdYTkfeZMF-R13SyxaGXMQ7FTbHp-v3V6CH0GK3R2QJ738JF-73b4guz4-iV5etwAxPv7imxmzW2V02sPiHpNXV10w2VTFetvdL5q3R8_pu1Qz3xMC9_CirL3240pnDncwX1IJ-lm8CPY5YtWwfsQnIkUgC5du9LfwKgpXpP52ensZBr1fRWiXCrVRolTBTDEG4x9UE7lvgSjZGIAG4mD-5tmZZYw7TNdCoQQGZOeS164lEuntRJvyG7d1P4doSJLABEymXmskpMbx5XhZQEgOPbAknxE-HCeNu-LjmPvi6Udost-W-SBRR5YllqYGpGvd2tWXcmNrdRqYJP9T3As2ISt6z4PPLXwR-Eziat9s1nbWBmmUy0530KjhdYpCLkYkbedQNztVUiNqDh9_8idHZFn09nlhb04v_r5gezHmG8R4t4-kt32ZuMPAQW12acg5f8AGy4Cyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxic+metals+and+metalloids%3A+Uptake%2C+transport%2C+detoxification%2C+phytoremediation%2C+and+crop+improvement+for+safer+food&rft.jtitle=Molecular+plant&rft.au=Zhao%2C+Fang-Jie&rft.au=Tang%2C+Zhong&rft.au=Song%2C+Jia-Jun&rft.au=Huang%2C+Xin-Yuan&rft.date=2022-01-03&rft.issn=1752-9867&rft.eissn=1752-9867&rft.volume=15&rft.issue=1&rft.spage=27&rft_id=info:doi/10.1016%2Fj.molp.2021.09.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2052&client=summon