Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food
Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and...
Saved in:
Published in | Molecular plant Vol. 15; no. 1; pp. 27 - 44 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
03.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed.
Accumulation of toxic metals and metalloids, such as arsenic, cadmium, lead, and mercury in food crops, can affect food safety and human health. This review discusses the molecular mechanisms and regulation of their uptake, transport, and detoxification as well as crop improvement strategies to reduce their accumulation in the edible parts. The potential of using metal-accumulating plants to clean up contaminated soil is also discussed. |
---|---|
AbstractList | Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed. Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed. Accumulation of toxic metals and metalloids, such as arsenic, cadmium, lead, and mercury in food crops, can affect food safety and human health. This review discusses the molecular mechanisms and regulation of their uptake, transport, and detoxification as well as crop improvement strategies to reduce their accumulation in the edible parts. The potential of using metal-accumulating plants to clean up contaminated soil is also discussed. Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed. Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed.Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in food crops that poses significant risks to human health. Understanding how these toxic metals and their methylated species are taken up, translocated, and detoxified is prerequisite to developing strategies to limit their accumulation for safer food. Toxic metals are taken up and transported across different cellular compartments and plant tissues via various transporters for essential or beneficial nutrients, e.g. As by phosphate and silicon transporters, and Cd by manganese (Mn), zinc (Zn), and iron (Fe) transporters. These transport processes are subjected to interactions with nutrients and the regulation at the transcriptional and post-translational levels. Complexation with thiol-rich compounds, such as phytochelatins, and sequestration in the vacuoles are the common mechanisms for detoxification and for limiting their translocation. A number of genes involved in toxic metal uptake, transport, and detoxification have been identified, offering targets for genetic manipulation via gene editing or transgenic technologies. Natural variations in toxic metal accumulation exist within crop germplasm, and some of the quantitative trait loci underlying these variations have been cloned, paving the way for marker-assisted breeding of low metal accumulation crops. Using plants to extract and remove toxic metals from soil is also possible, but this phytoremediation approach requires metal hyperaccumulation for efficiency. Knowledge gaps and future research needs are also discussed. |
Author | Tang, Zhong Wang, Peng Zhao, Fang-Jie Song, Jia-Jun Huang, Xin-Yuan |
Author_xml | – sequence: 1 givenname: Fang-Jie orcidid: 0000-0002-0164-169X surname: Zhao fullname: Zhao, Fang-Jie email: fangjie.zhao@njau.edu.cn – sequence: 2 givenname: Zhong surname: Tang fullname: Tang, Zhong – sequence: 3 givenname: Jia-Jun surname: Song fullname: Song, Jia-Jun – sequence: 4 givenname: Xin-Yuan surname: Huang fullname: Huang, Xin-Yuan – sequence: 5 givenname: Peng surname: Wang fullname: Wang, Peng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34619329$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v3CAURFWq5qP9Az1EHHNYuw9sMFS5RFG_pEi9JGfE4meVjW1cYKPsvy_b3Vx6SE-MHjPzYOacnMxhRkI-MqgZMPlpU09hXGoOnNWg6zJ6Q85YJ3illexOCpZdW3EQ_JScp7QBkKBk846cNq1kuuH6jGzvw7N3dMJsx0Tt3B_gGHyfPtOHJdtHXNEc7ZyWEPOK9piLYvDOZh_mFV1-7XKIOGHvj5O9iYthoX5aYngqV3OmQ4g02QFjQaF_T94OZR9-OJ4X5OHrl_vb79Xdz28_bm_uKtcKkavOit5ai4oDKGGFw4FrrXjHoLNMMwnDugOJazk0AJ1aQ4usZb3VrLVSiuaCXB18y0N-bzFlM_nkcBztjGGbDJeNlFoJ3vyfKhRILVvGCvXySN2uy7_NEv1k4868pFoI6kAoMaQUcTDO57_plCD9aBiYfYFmY_YFmn2BBrQpoyLl_0hf3F8VXR9EWLJ88hhNch5nVzqJ6LLpg39N_geT_rT6 |
CitedBy_id | crossref_primary_10_1016_j_ecoenv_2024_117324 crossref_primary_10_1016_j_plaphy_2024_109323 crossref_primary_10_1016_j_ecoenv_2023_115422 crossref_primary_10_1016_j_plaphy_2024_108351 crossref_primary_10_1039_D4NR04108A crossref_primary_10_1016_j_chemosphere_2024_141140 crossref_primary_10_3390_toxics11090801 crossref_primary_10_1134_S1064229324600441 crossref_primary_10_1016_j_cj_2023_01_007 crossref_primary_10_1007_s11356_023_28629_z crossref_primary_10_3390_agronomy15030541 crossref_primary_10_1039_D4EN00763H crossref_primary_10_3390_plants13020313 crossref_primary_10_1007_s42729_024_01885_9 crossref_primary_10_1016_j_ecoenv_2024_117218 crossref_primary_10_1016_j_ecoenv_2025_118004 crossref_primary_10_1007_s11356_024_31986_y crossref_primary_10_1016_j_envres_2023_117270 crossref_primary_10_1111_nph_19070 crossref_primary_10_1016_j_rsci_2024_08_003 crossref_primary_10_3389_fpls_2023_1261518 crossref_primary_10_3390_su142114355 crossref_primary_10_1016_j_chemosphere_2023_140681 crossref_primary_10_3389_fpls_2022_898247 crossref_primary_10_1186_s12870_024_05786_y crossref_primary_10_1007_s44372_025_00090_x crossref_primary_10_3390_plants13202921 crossref_primary_10_1016_j_chemosphere_2023_140559 crossref_primary_10_3390_ijms25010613 crossref_primary_10_1007_s42729_024_01813_x crossref_primary_10_1016_j_ecoenv_2022_114065 crossref_primary_10_1016_j_plaphy_2024_109458 crossref_primary_10_1016_j_chemosphere_2024_143464 crossref_primary_10_1016_j_scitotenv_2024_173166 crossref_primary_10_3390_ijms252111455 crossref_primary_10_1007_s00344_024_11416_6 crossref_primary_10_1007_s11270_024_07135_z crossref_primary_10_1016_j_ijbiomac_2024_137358 crossref_primary_10_1021_acs_jafc_3c04967 crossref_primary_10_1111_pce_14530 crossref_primary_10_1186_s43170_023_00185_z crossref_primary_10_1016_j_envexpbot_2023_105267 crossref_primary_10_1002_smll_202301137 crossref_primary_10_1007_s41748_023_00349_x crossref_primary_10_1111_tpj_70058 crossref_primary_10_1007_s44154_023_00136_8 crossref_primary_10_1093_pcp_pcac071 crossref_primary_10_3390_ijms24010052 crossref_primary_10_2139_ssrn_4107531 crossref_primary_10_1016_j_plaphy_2024_108940 crossref_primary_10_1007_s11104_023_06303_0 crossref_primary_10_3390_agriculture13101983 crossref_primary_10_1016_j_plaphy_2025_109641 crossref_primary_10_1016_j_sajb_2024_10_047 crossref_primary_10_1007_s11356_023_31536_y crossref_primary_10_1016_j_envpol_2025_126110 crossref_primary_10_1128_mmbr_00042_23 crossref_primary_10_1016_j_scitotenv_2022_160994 crossref_primary_10_1016_j_jhazmat_2024_133531 crossref_primary_10_1016_j_plantsci_2022_111357 crossref_primary_10_1016_j_celrep_2025_115336 crossref_primary_10_1016_j_scitotenv_2024_171915 crossref_primary_10_1111_ppl_70018 crossref_primary_10_1016_j_envpol_2024_124188 crossref_primary_10_1093_jxb_erad179 crossref_primary_10_1016_j_ecoenv_2023_115056 crossref_primary_10_1016_j_jenvman_2023_119124 crossref_primary_10_1016_j_molp_2024_09_012 crossref_primary_10_1021_acs_langmuir_4c04604 crossref_primary_10_1007_s11104_023_06095_3 crossref_primary_10_1021_acs_est_4c08658 crossref_primary_10_1016_j_jhazmat_2024_135702 crossref_primary_10_1021_acs_est_2c06384 crossref_primary_10_1080_15226514_2023_2211172 crossref_primary_10_1016_j_plaphy_2023_108149 crossref_primary_10_1016_j_apgeochem_2024_106149 crossref_primary_10_1111_pce_15296 crossref_primary_10_1016_j_envpol_2025_125927 crossref_primary_10_1007_s40572_024_00462_7 crossref_primary_10_1093_plphys_kiac534 crossref_primary_10_1016_j_fct_2023_113886 crossref_primary_10_1016_j_envres_2024_119945 crossref_primary_10_1016_j_ecoenv_2024_117548 crossref_primary_10_1016_j_jenvman_2023_119392 crossref_primary_10_1021_acs_jafc_4c04334 crossref_primary_10_1016_j_foodchem_2022_134086 crossref_primary_10_1016_j_jenvman_2025_124746 crossref_primary_10_3390_molecules28093921 crossref_primary_10_1093_treephys_tpaf002 crossref_primary_10_1111_ppl_14226 crossref_primary_10_1016_j_ijbiomac_2022_01_202 crossref_primary_10_1146_annurev_arplant_062923_021424 crossref_primary_10_1007_s00425_023_04296_9 crossref_primary_10_1016_j_chemosphere_2023_137783 crossref_primary_10_1016_j_envexpbot_2023_105343 crossref_primary_10_1016_j_plaphy_2023_107763 crossref_primary_10_1007_s44307_024_00052_6 crossref_primary_10_1080_10643389_2022_2099192 crossref_primary_10_1007_s00128_024_03915_9 crossref_primary_10_3390_plants11162178 crossref_primary_10_1007_s00299_025_03445_6 crossref_primary_10_1016_j_scitotenv_2024_174503 crossref_primary_10_3390_genes14122204 crossref_primary_10_1016_j_scitotenv_2024_176369 crossref_primary_10_1134_S1021443722603007 crossref_primary_10_1016_j_jenvman_2024_123488 crossref_primary_10_1093_jxb_erad074 crossref_primary_10_1016_j_enmm_2024_100975 crossref_primary_10_1016_j_freeradbiomed_2023_02_010 crossref_primary_10_3390_ijms252011145 crossref_primary_10_3390_agriculture13081607 crossref_primary_10_1007_s11356_023_25259_3 crossref_primary_10_1007_s10311_023_01663_6 crossref_primary_10_3390_horticulturae9070835 crossref_primary_10_1016_j_jhazmat_2023_132958 crossref_primary_10_1016_j_plaphy_2025_109612 crossref_primary_10_1016_j_rser_2023_113474 crossref_primary_10_1186_s12870_024_05948_y crossref_primary_10_1016_j_plaphy_2024_109164 crossref_primary_10_1016_j_ibiod_2024_105872 crossref_primary_10_1016_j_jhazmat_2025_137252 crossref_primary_10_1007_s11104_022_05323_6 crossref_primary_10_1186_s12951_022_01509_3 crossref_primary_10_1002_fes3_70061 crossref_primary_10_1016_j_ijbiomac_2023_127103 crossref_primary_10_1093_jxb_erac323 crossref_primary_10_3390_genes13122395 crossref_primary_10_1016_j_ecoenv_2024_116644 crossref_primary_10_1016_j_scitotenv_2023_168389 crossref_primary_10_1007_s11104_022_05373_w crossref_primary_10_1016_j_envpol_2023_122066 crossref_primary_10_3389_fgene_2023_1133600 crossref_primary_10_1016_j_jhazmat_2023_132496 crossref_primary_10_1007_s10534_024_00661_7 crossref_primary_10_2139_ssrn_4055931 crossref_primary_10_3390_agronomy14020356 crossref_primary_10_1016_j_scitotenv_2025_178778 crossref_primary_10_1021_acsestengg_4c00576 crossref_primary_10_1016_j_cj_2024_05_014 crossref_primary_10_3389_fpls_2022_993484 crossref_primary_10_1111_pbi_14379 crossref_primary_10_3390_plants12223816 crossref_primary_10_1021_acs_est_4c00977 crossref_primary_10_2139_ssrn_4064435 crossref_primary_10_1007_s10725_024_01137_x crossref_primary_10_1016_j_tplants_2023_07_003 crossref_primary_10_1021_acs_est_4c02471 crossref_primary_10_1016_j_scitotenv_2024_172907 crossref_primary_10_1016_j_plaphy_2023_108135 crossref_primary_10_3390_toxics13010014 crossref_primary_10_1016_j_scitotenv_2024_172128 crossref_primary_10_1007_s11356_025_36223_8 crossref_primary_10_1186_s12903_025_05763_3 crossref_primary_10_1016_j_envres_2024_118920 crossref_primary_10_1007_s10646_024_02792_6 crossref_primary_10_1016_j_jhazmat_2024_136210 crossref_primary_10_3390_horticulturae8090761 crossref_primary_10_1016_j_scitotenv_2023_161965 crossref_primary_10_1016_j_scitotenv_2023_168918 crossref_primary_10_1007_s00299_023_03112_8 crossref_primary_10_3390_min13020175 crossref_primary_10_1080_10643389_2024_2373949 crossref_primary_10_1016_j_scitotenv_2024_176417 crossref_primary_10_1016_j_ecoenv_2024_116397 crossref_primary_10_1007_s12011_023_04007_1 crossref_primary_10_3389_fgene_2022_941118 crossref_primary_10_1016_j_earscirev_2024_104802 crossref_primary_10_1007_s11356_022_21022_2 crossref_primary_10_1111_nph_19727 crossref_primary_10_1007_s00425_023_04170_8 crossref_primary_10_1016_j_scitotenv_2024_174129 crossref_primary_10_1186_s43170_024_00274_7 crossref_primary_10_1016_j_jece_2024_112125 crossref_primary_10_3390_cells12030441 crossref_primary_10_1186_s12870_024_05960_2 crossref_primary_10_4236_jep_2024_1512062 crossref_primary_10_1093_mtomcs_mfad016 crossref_primary_10_1016_j_plaphy_2024_108848 crossref_primary_10_3390_plants13040530 crossref_primary_10_1016_j_chemosphere_2022_137650 crossref_primary_10_1111_jipb_13440 crossref_primary_10_1038_s41467_024_53898_8 crossref_primary_10_1016_j_ecoenv_2023_115120 crossref_primary_10_1016_j_jenvman_2024_123779 crossref_primary_10_1093_jxb_erad366 crossref_primary_10_3389_fpls_2023_1138281 crossref_primary_10_1016_j_cj_2022_09_014 crossref_primary_10_1007_s11104_025_07236_6 crossref_primary_10_1007_s11356_024_34748_y crossref_primary_10_1016_j_envpol_2023_122578 crossref_primary_10_1016_j_chemosphere_2024_142691 crossref_primary_10_1016_j_jes_2023_07_033 crossref_primary_10_1007_s11104_024_06791_8 crossref_primary_10_1016_j_chemosphere_2022_137501 crossref_primary_10_1016_j_envpol_2023_122689 crossref_primary_10_37349_ec_2023_00012 crossref_primary_10_1016_j_jhazmat_2023_131219 crossref_primary_10_3390_agriculture13071302 crossref_primary_10_1016_j_scitotenv_2022_155006 crossref_primary_10_1016_j_scitotenv_2023_169378 crossref_primary_10_1016_j_jretconser_2024_103886 crossref_primary_10_1016_j_envint_2024_108904 crossref_primary_10_1016_j_jclepro_2023_139060 crossref_primary_10_3390_agronomy13112778 crossref_primary_10_1016_j_marpolbul_2023_114808 crossref_primary_10_1016_j_jhazmat_2023_131580 crossref_primary_10_1016_j_chemosphere_2023_138902 crossref_primary_10_1007_s00299_024_03153_7 crossref_primary_10_1016_j_molp_2023_09_007 crossref_primary_10_1016_j_jhazmat_2024_133702 crossref_primary_10_1016_j_plaphy_2025_109578 |
Cites_doi | 10.1093/pcp/pcr166 10.1016/j.bbrc.2019.03.024 10.1007/s00122-013-2207-5 10.1016/j.molp.2021.05.020 10.1038/nplants.2015.202 10.1093/jxb/erz310 10.1289/ehp.9462 10.1186/1741-7007-6-26 10.1105/tpc.113.114009 10.1111/j.1469-8137.2009.02912.x 10.1111/j.1365-3040.2012.02527.x 10.3389/fpls.2017.02197 10.3389/fphys.2012.00182 10.1111/pce.12747 10.1021/acs.jafc.0c06853 10.1105/tpc.020487 10.1016/j.envpol.2016.10.043 10.1111/jipb.12794 10.1104/pp.19.01569 10.1080/07352689.2020.1792179 10.1038/s41477-021-00856-7 10.1104/pp.108.130294 10.2135/cropsci2013.10.0656 10.1038/s41467-021-21282-5 10.1105/tpc.109.069773 10.1111/nph.14572 10.1016/j.pbi.2017.05.002 10.1016/j.envpol.2007.01.011 10.1021/es5047099 10.1146/annurev.arplant.53.100301.135154 10.1016/j.envpol.2019.03.063 10.1351/pac200274050793 10.3389/fpls.2017.01868 10.1104/pp.113.216564 10.1093/jxb/erz091 10.1371/journal.pgen.1002923 10.1093/jxb/erv164 10.1021/es070627i 10.1093/plphys/kiab086 10.1126/science.1201438 10.1093/jxb/eraa253 10.1111/nph.13512 10.1007/s11104-011-0926-4 10.1111/nph.16404 10.1038/s41467-018-03088-0 10.1021/es802412r 10.1093/jxb/erab003 10.1080/00380768.2013.804390 10.1021/es0502324 10.1038/s41598-017-14832-9 10.1007/s11104-008-9786-y 10.1111/j.1469-8137.2010.03459.x 10.1016/j.molp.2020.05.007 10.1093/pcp/pcw163 10.1007/s11032-019-0992-5 10.1104/pp.15.01882 10.1016/j.tplants.2015.04.007 10.1104/pp.109.140350 10.1111/j.1469-8137.2008.02638.x 10.1105/tpc.109.073023 10.1105/tpc.11.6.1153 10.1016/j.envpol.2016.04.019 10.1111/j.1365-313X.2011.04789.x 10.1073/pnas.1005396107 10.1016/j.scitotenv.2018.05.050 10.1038/ncomms5617 10.1021/acs.est.7b03028 10.1371/journal.pbio.1002009 10.1002/jpln.201200440 10.1093/jxb/eraa465 10.1016/j.envint.2019.03.004 10.1146/annurev-arplant-042809-112156 10.1093/jxb/eru259 10.1074/jbc.M806881200 10.1021/es803643v 10.1007/s11104-018-3849-5 10.1021/es802612a 10.1021/es8001103 10.1111/pce.13843 10.1105/tpc.001388 10.1038/nature11517 10.1021/es502000d 10.1016/j.ecoenv.2020.110462 10.1021/es702748q 10.1021/acs.est.0c02877 10.3389/fpls.2018.00476 10.1007/s11104-019-04374-6 10.1371/journal.pone.0177978 10.1111/tpj.13612 10.1016/j.molp.2015.01.005 10.1111/j.1469-8137.2011.03956.x 10.1126/science.2434996 10.1021/es303310t 10.1073/pnas.090091397 10.1038/s41588-019-0381-3 10.1111/j.1469-8137.2008.02716.x 10.1007/s11104-009-0074-2 10.1046/j.1365-313x.2000.00901.x 10.1016/j.envint.2011.05.007 10.1021/es4012096 10.1897/09-131.1 10.1021/es702212p 10.1104/pp.109.146126 10.1105/tpc.106.041871 10.1104/pp.109.150862 10.1111/nph.12497 10.1111/nph.14761 10.1038/s41467-019-12946-4 10.1093/pcp/pcx029 10.1016/j.chemosphere.2020.128893 10.1016/j.envpol.2021.117918 10.1038/nature05964 10.1007/s00122-010-1370-1 10.1016/j.molcel.2018.02.009 10.1093/jxb/eru340 10.1105/tpc.112.096925 10.1021/es101139z 10.1073/pnas.1013964107 10.1111/nph.13472 10.1016/j.jes.2016.10.004 10.1016/j.scitotenv.2014.03.090 10.1021/es405234p 10.1093/jxb/erz366 10.1016/j.agee.2019.106651 10.1021/es060800v 10.1038/s43016-020-0130-x 10.1111/nph.15190 10.1111/nph.16217 10.1146/annurev-arplant-042809-112152 10.1093/jxb/erab254 10.1016/j.plantsci.2021.110894 10.1093/jxb/erw362 10.1093/jxb/err158 10.1093/jxb/erx364 10.1016/j.envpol.2012.02.018 10.1038/s41467-020-18608-0 10.1073/pnas.0802361105 10.1073/pnas.1414968111 10.1021/es304295n 10.1289/ehp.1001915 10.1016/j.envpol.2020.115193 10.1021/acs.est.1c00133 10.1371/journal.pone.0173681 10.1104/pp.109.4.1427 10.1016/j.soilbio.2021.108129 10.1093/jxb/erx165 10.3390/ijms20020413 10.1080/10937401003673750 10.1111/nph.14907 10.1104/pp.16.01189 10.1111/pbi.12905 10.1093/jxb/erz400 10.1186/s12284-017-0149-2 10.1016/j.tox.2015.03.005 10.1104/pp.18.00485 10.1111/j.1469-8137.2009.03071.x 10.1104/pp.18.01380 10.1104/pp.111.173088 10.1021/acs.est.0c03001 10.1093/jxb/erp119 10.1073/pnas.1116531109 10.1105/tpc.18.00375 10.1038/nature06877 10.1038/s41561-020-0533-1 10.1371/journal.pgen.1009636 10.1104/pp.16.01332 10.1007/s00424-007-0408-y 10.1021/es8036687 10.1111/j.1469-8137.2010.03192.x 10.1104/pp.116.3.1063 10.1007/s11104-015-2739-3 10.1038/s41598-019-55736-0 10.1093/jxb/erz093 10.1021/acs.est.7b01487 10.1104/pp.111.181669 10.1080/00380768.2020.1719806 10.1038/s41467-019-10544-y 10.1111/j.1365-313X.2004.02161.x 10.1021/bi200002a |
ContentType | Journal Article |
Copyright | 2021 The Author Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 The Author – notice: Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molp.2021.09.016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1752-9867 |
EndPage | 44 |
ExternalDocumentID | 34619329 10_1016_j_molp_2021_09_016 S1674205221004068 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --M .2P .I3 0R~ 123 2WC 4.4 457 53G 7-5 70D 8P~ AABVA AACTN AAEDW AAFTH AAIAV AAIKJ AAIYJ AAKOC AALRI AAOAW AATLK AAVLN AAXUO ABGRD ABJNI ABMAC ABNKS ABVKL ABYKQ ABZBJ ACDAQ ACGFS ACPRK ACRLP ADBBV ADEYI ADEZE ADFTL ADOCK ADZTZ AEBSH AEGPL AEKER AENEX AEXQZ AFKWA AFRAH AFTJW AFXIZ AGKEF AGUBO AHMBA AHXPO AIEXJ AIJHB AIKHN AITUG AJOXV AKHUL ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ BKOJK BLXMC CS3 CZ4 DU5 E3Z EBS EE~ EFJIC EFLBG ESX F5P F9B FDB FIRID FYGXN GBLVA H5~ HW0 HZ~ IOX IXB KOM M-Z M41 M49 N9A NU- O9- OAUVE OK1 P2P PQQKQ Q1. RCE RD5 ROL RW1 RXO SPCBC SSA SSZ T5K TR2 W8F X7H ~91 ~G- 1RT AAEDT AAHBH AAMRU AAQFI AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACVFH ADCNI ADVLN AEIPS AEUPX AFPUW AGCQF AGHFR AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP AXJTR BNPGV CITATION CKLRP CW9 EJD H13 O0~ OVD SSH TEORI TGP 0SF CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-7a5daaae820085a5cef299827107a19160fb706eb6f30078b04e141da914a6653 |
IEDL.DBID | AIKHN |
ISSN | 1674-2052 1752-9867 |
IngestDate | Fri Jul 11 03:58:54 EDT 2025 Fri Jul 11 00:15:22 EDT 2025 Wed Feb 19 02:27:32 EST 2025 Thu Apr 24 23:13:17 EDT 2025 Tue Jul 01 01:40:50 EDT 2025 Fri Feb 23 02:40:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | food safety toxic metals/metalloids phytoremediation transporters detoxification heavy metals |
Language | English |
License | Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-7a5daaae820085a5cef299827107a19160fb706eb6f30078b04e141da914a6653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0164-169X |
PMID | 34619329 |
PQID | 2580696411 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2636698523 proquest_miscellaneous_2580696411 pubmed_primary_34619329 crossref_citationtrail_10_1016_j_molp_2021_09_016 crossref_primary_10_1016_j_molp_2021_09_016 elsevier_sciencedirect_doi_10_1016_j_molp_2021_09_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-03 |
PublicationDateYYYYMMDD | 2022-01-03 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular plant |
PublicationTitleAlternate | Mol Plant |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Tang, Mao, Li, Lv, Zhang, Chen, He, Wang, Zeng, Shao (bib130) 2017; 7 Williams, Price, Raab, Hossain, Feldmann, Meharg (bib148) 2005; 39 Wu, Yamaji, Yamane, Kashino-Fujii, Sato, Feng Ma (bib152) 2016; 172 Song, Wang, Mao, Sui, Yong, Yang, Jiang, Zhang, Gong (bib117) 2017; 12 Uraguchi, Kamiya, Sakamoto, Kasai, Sato, Nagamura, Yoshida, Kyozuka, Ishikawa, Fujiwara (bib137) 2011; 108 Finnegan, Chen (bib37) 2012; 3 Pommerrenig, Diehn, Bernhardt, Bienert, Mitani-Ueno, Fuge, Bieber, Spitzer, Braeutigam, Ma (bib102) 2020; 225 Tang, Wang, Gao, Ji, Yang, Wang, Tang, Zhao (bib133) 2020; 71 Sasaki, Yamaji, Ma (bib107) 2014; 65 Wan, Lei, Yang, Chen (bib140) 2020; 266 Blanco, Kerl, Planer-Friedrich (bib2) 2021; 69 Tan, Zhu, Fan, Peng, Wang, Sun, Chen (bib127) 2019; 512 Bridges, Zalups (bib3) 2010; 13 Williams, Lei, Sun, Huang, Lu, Deacon, Meharg, Zhu (bib150) 2009; 43 Chao, Chen, Chen, Shi, Chen, Wang, Danku, Zhao, Salt (bib13) 2014; 12 Li, Stroud, Ma, McGrath, Zhao (bib63) 2009; 43 Moon, Belloeil, Ianna, Shin (bib89) 2019; 20 Morel, Crouzet, Gravot, Auroy, Leonhardt, Vavasseur, Richaud (bib93) 2009; 149 Wang, Na, Bermejo, Chen, Banks, Salt, Zhao (bib141) 2018; 217 Lv, Li, Sun, Ouyang, Jing, He, Wu, Zheng, Zheng, Tang (bib73) 2020; 11 Reeves, Baker, Jaffre, Erskine, Echevarria, van der Ent (bib103) 2018; 218 Lei, Fujii-Kashino, Wu, Hisano, Saisho, Deng, Yamaji, Sato, Zhao, Ma (bib61) 2020; 1 Chen, Yang, Wang, Wang, Li, Zhao (bib16) 2018; 639 Chen, Yang, Yan, Liu, Wang, Fan, Ren, Tang, Xiao, Liu (bib18) 2016; 171 Miyadate, Adachi, Hiraizumi, Tezuka, Nakazawa, Kawamoto, Katou, Kodama, Sakurai, Takahashi (bib86) 2011; 189 Xu, Shi, Wang, Tang, Lv, Zhu, Ding, Wang, Zhao, Wu (bib154) 2017; 215 Moore, Chen, van de Meene, Hughes, Liu, Geraki, Mosselmans, McGrath, Grovenor, Zhao (bib92) 2014; 201 Mitani, Yamaji, Ma (bib85) 2008; 456 Duan, Hu, Schneider, McDermott, Chen, Sauer, Rosen, Daus, Liu, Zhu (bib32) 2016; 2 Chang, Huang, Yamaji, Zhang, Ma, Zhao (bib11) 2020; 43 Fleck, Mattusch, Schenk (bib40) 2013; 176 Bienert, Thorsen, Schüssler, Nilsson, Wagner, Tamás, Jahn (bib1) 2008; 6 Cailliatte, Schikora, Briat, Mari, Curie (bib5) 2010; 22 Yamaji, Ma (bib156) 2017; 39 Meng, Feng, Qiu, Anderson, Wang, Zhao (bib81) 2014; 48 Moore, Schröder, Wu, Martin, Hawes, McGrath, Hawkesford, Ma, Zhao, Grovenor (bib91) 2011; 156 Chen, Sun, Tang, Liu, Moore, Maathuis, Miller, McGrath, Zhao (bib21) 2017; 68 Meharg, Williams, Adomako, Lawgali, Deacon, Villada, Cambell, Sun, Zhu, Feldmann (bib79) 2009; 43 Park, Song, Ko, Eom, Hansen, Schiller, Lee, Martinoia, Lee (bib99) 2012; 69 Sanchez-Bermejo, Castrillo, del Llano, Navarro, Zarco-Fernandez, Martinez-Herrera, Leo-del Puerto, Munoz, Camara, Paz-Ares (bib106) 2014; 5 Cohen, Fox, Garvin, Kochian (bib25) 1998; 116 Yan, Xu, Xie, Gao, Wu, Sun, Feng, Chen, Zhang, Dai (bib158) 2019; 10 Zhou, Jiang, Ming, Wang, Tang, Sun (bib179) 2019; 39 Mei, Wong, Yang, Dong, Qiu, Ye (bib80) 2012; 165 Seyfferth, Webb, Andrews, Fendorf (bib111) 2010; 44 Lomax, Liu, Wu, Xue, Xiong, Zhou, McGrath, Meharg, Miller, Zhao (bib69) 2012; 193 Sun, Yang, Li, Tian, Zhang, Liang, Liu, Chen, Li, Lv (bib122) 2019; 70 Yan, Wang, Wang, Yang, Lian, Tang, Huang, Salt, Zhao (bib159) 2016; 39 Yang, Zhang, Zhang, Hu, Zhang, Lu, Dong, Wang, Zhao, Huang (bib162) 2014; 65 Zhao, Ma, Meharg, McGrath (bib174) 2009; 181 Wang, Zhang, Mao, Xu, Zhao (bib145) 2016; 67 Huhmann, Harvey, Uddin, Choudhury, Ahmed, Duxbury, Bostick, van Geen (bib49) 2017; 51 Lu, Zhang, Tang, Huang, Ma, Zhao (bib71) 2019; 126 Ishikawa (bib52) 2020; 66 Ye, Li, Xu, Zeng, Cheng, Yang, Luo, Lian (bib164) 2017; 8 Dong, Wu, Sun, He, Li, Peng, Ji, Meng, Zhao, Tang (bib30) 2021; 36 Uraguchi, Mori, Kuramata, Kawasaki, Arao, Ishikawa (bib136) 2009; 60 Castrillo, Sanchez-Bermejo, de Lorenzo, Crevillen, Fraile-Escanciano, Mohan, Mouriz, Catarecha, Sobrino-Plata, Olsson (bib9) 2013; 25 Carey, Scheckel, Lombi, Newville, Choi, Norton, Charnock, Feldmann, Price, Meharg (bib7) 2010; 152 Fischer, Kuehnlenz, Thieme, Schmidt, Clemens (bib38) 2014; 48 Sun, Chen, Che, Konishi, Tang, Miller, Ma, Zhao (bib123) 2018; 219 Hanikenne, Talke, Haydon, Lanz, Nolte, Motte, Kroymann, Weigel, Kramer (bib43) 2008; 453 Tang, Kang, Wang, Zhao (bib131) 2016; 401 Sunkar, Kaplan, Bouche, Arazi, Dolev, Talke, Maathuis, Sanders, Bouchez, Fromm (bib125) 2000; 24 Maccaferri, Harris, Twardziok, Pasam, Gundlach, Spannagl, Ormanbekova, Lux, Prade, Milner (bib77) 2019; 51 Satoh-Nagasawa, Mori, Nakazawa, Kawamoto, Nagato, Sakurai, Takahashi, Watanabe, Akagi (bib109) 2012; 53 Zhao, Zhu, Meharg (bib173) 2013; 47 Zhang, Feng, Larssen, Qiu, Vogt (bib166) 2010; 118 Zhao, Ma, Zhu, Tang, McGrath (bib176) 2015; 49 Vazquez, Velez, Devesa, Puig (bib138) 2015; 331 Chen, Moore, Miller, McGrath, Ma, Zhao (bib20) 2015; 66 Ma, Yamaji (bib74) 2015; 20 Vert, Grotz, Dedaldechamp, Gaymard, Guerinot, Briata, Curie (bib139) 2002; 14 Wang, Kerl, Hu, Martin, Mu, Brueggenwirth, Wu, Said-Pullicino, Romani, Wu (bib143) 2020; 13 Luo, Huang, Zeng, Peng, Zhang, Ma, Guan, Yi, Fu, Han (bib72) 2018; 9 Su, McGrath, Zhao (bib119) 2010; 328 Ding, Gong, Wang, Wang, Bao, Sun, Cai, Yi, Chen, Zhu (bib28) 2018; 177 Fischer, Sanchez-Bermejo, Xu, Flis, Ramakrishna, Guerinot, Zhao, Salt (bib39) 2021; 72 Wang, Chen, Yu, Xie, Yuan, Qi, Xiao, Guo, Chen, Yi (bib142) 2017; 8 Ma, Yamaji, Mitani, Tamai, Konishi, Fujiwara, Katsuhara, Yano (bib76) 2007; 448 Zhang, Wang, Ju, Li, Lam-Son Phan, Xu (bib170) 2019; 180 Zhao, McGrath, Meharg (bib172) 2010; 61 Westheimer (bib146) 1987; 235 Hayashi, Kuramata, Abe, Takagi, Ozawa, Ishikawa (bib45) 2017; 91 Indriolo, Na, Ellis, Salt, Banks (bib51) 2010; 22 Cao, Sun, Ai, Mei, Liu, Sun, Xu, Liu, Chen, Ma (bib6) 2017; 51 Shao, Che, Yamaji, Shen, Ma (bib112) 2017; 68 Panaullah, Alam, Hossain, Loeppert, Lauren, Meisner, Ahmed, Duxbury (bib98) 2009; 317 Krämer (bib58) 2010; 61 Zhang, Gao, Chen, Zhang, Huang, Zhao (bib167) 2020; 54 Kamiya, Islam, Duan, Uraguchi, Fujiwara (bib54) 2013; 59 Zhang, Wu, Tang, Huang, Wang, Salt, Zhao (bib168) 2019; 70 Mitani-Ueno, Yamaji, Ma (bib83) 2016; 57 Liu, Wood, Raab, McGrath, Zhao, Feldmann (bib67) 2010; 152 Chen, Xu, Shen, Yan, Xu, He, Ma (bib22) 2013; 47 Tang, Chen, Chen, Ji, Zhao (bib132) 2017; 58 Ji, Zhou, Liu, Wang, Yang, Zheng, Zhang, Zhang, Ge, Yang (bib53) 2017; 12 Moe, Peng, Lu, Chen, Chen, Gabos, Li, Le (bib87) 2016; 49 Cobbett, Goldsbrough (bib24) 2002; 53 Dai, Chen, Gao, Tang, Kopittke, Zhao, Wang (bib26) 2021; 55 Murakami, Nakagawa, Ae, Ito, Arao (bib95) 2009; 43 Pita-Barbosa, Ricachenevsky, Wilson, Dottorini, Salt (bib101) 2019; 9 Sun, Xu, Tang, Tang, Huang, Wirtz, Hell, Zhao (bib124) 2021; 12 Hayashi, Kuramata, Abe, Yamaguchi, Takagi, Tanikawa, Iino, Sugimoto, Ishikawa (bib46) 2021; 186 Meharg, Lombi, Williams, Scheckel, Feldmann, Raab, Zhu, Islam (bib78) 2008; 42 Wu, Sato, Ma (bib153) 2015; 208 Lombi, Scheckel, Pallon, Carey, Zhu, Meharg (bib70) 2009; 184 Clemens (bib23) 2019; 70 Shi, Wang, Chen, Tang, Wu, Salt, Chao, Zhao (bib113) 2016; 172 Tang, Luo, Zhang, Guo, Li, Song, Zhang, Feng, Kong, Li (bib129) 2021 Ha, Smith, Howden, Dietrich, Bugg, O'Connell, Goldsbrough, Cobbett (bib42) 1999; 11 Tan, Qu, Zhu, Peng, Wang, Gao, Chen (bib128) 2020; 183 Cai, Huang, Che, Yamaji, Ma (bib4) 2019; 70 Wong, Cobbett (bib151) 2009; 181 Li, Sun, Williams, Nunes, Zhu (bib62) 2011; 37 Mohan, Castrillo, Navarro, Zarco-Fernandez, Ramireddy, Mateo, Zamarreno, Paz-Ares, Munoz, Garcia-Mina (bib88) 2016; 171 Norton, Williams, Adomako, Price, Zhu, Zhao, McGrath, Deacon, Villada, Sommella (bib97) 2014; 485 Yang, Lu, Zhao, Xie, Ramakrishna, Wang, Du, Liang, Sun, Zhao (bib163) 2018; 30 Ueno, Yamaji, Kono, Huang, Ando, Yano, Ma (bib135) 2010; 107 Song, Yamaki, Yamaji, Ko, Jung, Fujii-Kashino, An, Martinoia, Lee, Ma (bib115) 2014; 111 Chen, Yang, Shen, Dai, Tang, Wang, Zhao (bib14) 2021; 154 DiTusa, Fontenot, Wallace, Silvers, Steele, Elnagar, Dearman, Smith (bib29) 2016; 209 Gu, Wang, Zhang, Dai, Chen, Lombi, Howard, van der Ent, Zhao, Kopittke (bib41) 2020; 54 Kamiya, Tanaka, Mitani, Ma, Maeshima, Fujiwara (bib55) 2009; 284 Song, Park, Mendoza-Cozatl, Suter-Grotemeyer, Shim, Hortensteiner, Geisler, Weder, Rea, Rentsch (bib116) 2010; 107 Takahashi, Ishimaru, Shimo, Ogo, Senoura, Nishizawa, Nakanishi (bib126) 2012; 35 Zhao, Ago, Mitani, Li, Su, Yamaji, McGrath, Ma (bib177) 2010; 186 Hao, Zeng, Wang, Zeng, Dai, Xie, Yang, Tian, Chen, Li (bib44) 2018; 9 Liu, Zhu, Hu, Williams, Gault, Meharg, Charnock, Smith (bib68) 2006; 40 Chao, Silva, Baxter, Huang, Nordborg, Danku, Lahner, Yakubova, Salt (bib12) 2012; 8 Deng, Yamaji, Ma, Lee, Jeon, Martinoia, Lee, Song (bib27) 2018; 16 Sasaki, Yamaji, Yokosho, Ma (bib108) 2012; 24 Wang, Chen, Kopittke, Zhao (bib144) 2019; 249 Lane, Morel (bib60) 2000; 97 Sterckeman, Thomine (bib118) 2020; 39 Zhao, Wang (bib171) 2020; 446 Catarecha, Segura, Franco-Zorrilla, Garcia-Ponce, Lanza, Solano, Paz-Ares, Leyva (bib10) 2007; 19 Duffus (bib34) 2002; 74 Ma, Yamaji, Mitani, Xu, Su, McGrath, Zhao (bib75) 2008; 105 Lilay, Persson, Castro, Liao, Alexander, Aarts, Assuncao (bib65) 2021; 7 Moore, Schroder, Lombi, Zhao, McGrath, Hawkesford, Shewry, Grovenor (bib90) 2010; 185 Williams, Villada, Deacon, Raab, Figuerola, Green, Feldmann, Meharg (bib149) 2007; 41 Zhu, Sun, Lei, Teng, Liu, Chen, Wang, Carey, Deacon, Raab (bib181) 2008; 42 Zhao, Meng, Feng (bib178) 2020; 195 Chen, Wang, Chang, Kopittke, Zhao (bib15) 2021; 267 Dubeaux, Neveu, Zelazny, Vert (bib33) 2018; 69 Zhu, Chen, Xu, Zhu, Huang (bib180) 2016; 219 Zhao, Stroud, Khan, McGrath (bib175) 2012; 350 Duan, Shao, Tang, Chen, Wang, Tang, Yang, Liu, Zhao (bib31) 2017; 10 Hussain, Haydon, Wang, Wong, Sherson, Young, Camakaris, Harper, Cobbett (bib50) 2004; 16 Fang, Wang, Chen, Christl, Wang, Kretzschmar, Zhao (bib36) 2021; 289 Zavala, Gerads, Gürleyük, Duxbury (bib165) 2008; 42 Chen, Huang, Salt, Zhao (bib17) 2020; 226 Wiebe, Harris, Faris, Clarke, Knox, Taylor, Pozniak (bib147) 2010; 121 Huang, Wang, Yamaji, Ma (bib48) 2020; 13 Yang, Fu, Huang, Li, Long, Wei, Wang, Chen, Xia (bib161) 2021; 307 Li, Ago, Liu, Mitani, Feldmann, McGrath, Ma, Zhao (bib64) 2009; 150 Schoepp-Cothenet, Nitschke, Barge, Ponce, Russell, Ts Lombi (10.1016/j.molp.2021.09.016_bib70) 2009; 184 Yamaji (10.1016/j.molp.2021.09.016_bib156) 2017; 39 Su (10.1016/j.molp.2021.09.016_bib119) 2010; 328 Zhao (10.1016/j.molp.2021.09.016_bib176) 2015; 49 Hao (10.1016/j.molp.2021.09.016_bib44) 2018; 9 Williams (10.1016/j.molp.2021.09.016_bib150) 2009; 43 Li (10.1016/j.molp.2021.09.016_bib64) 2009; 150 Zhao (10.1016/j.molp.2021.09.016_bib177) 2010; 186 Dong (10.1016/j.molp.2021.09.016_bib30) 2021; 36 Maccaferri (10.1016/j.molp.2021.09.016_bib77) 2019; 51 Duan (10.1016/j.molp.2021.09.016_bib32) 2016; 2 Fischer (10.1016/j.molp.2021.09.016_bib39) 2021; 72 Riaz (10.1016/j.molp.2021.09.016_bib104) 2021; 72 Hayashi (10.1016/j.molp.2021.09.016_bib46) 2021; 186 Ma (10.1016/j.molp.2021.09.016_bib74) 2015; 20 Fleck (10.1016/j.molp.2021.09.016_bib40) 2013; 176 Lilay (10.1016/j.molp.2021.09.016_bib65) 2021; 7 Uraguchi (10.1016/j.molp.2021.09.016_bib136) 2009; 60 Luo (10.1016/j.molp.2021.09.016_bib72) 2018; 9 Park (10.1016/j.molp.2021.09.016_bib99) 2012; 69 Ji (10.1016/j.molp.2021.09.016_bib53) 2017; 12 Tan (10.1016/j.molp.2021.09.016_bib127) 2019; 512 Ueno (10.1016/j.molp.2021.09.016_bib135) 2010; 107 Vazquez (10.1016/j.molp.2021.09.016_bib138) 2015; 331 Tawfik (10.1016/j.molp.2021.09.016_bib134) 2011; 50 Norton (10.1016/j.molp.2021.09.016_bib97) 2014; 485 Lv (10.1016/j.molp.2021.09.016_bib73) 2020; 11 Chen (10.1016/j.molp.2021.09.016_bib14) 2021; 154 Zhu (10.1016/j.molp.2021.09.016_bib180) 2016; 219 Mei (10.1016/j.molp.2021.09.016_bib80) 2012; 165 Yang (10.1016/j.molp.2021.09.016_bib161) 2021; 307 Williams (10.1016/j.molp.2021.09.016_bib149) 2007; 41 Bienert (10.1016/j.molp.2021.09.016_bib1) 2008; 6 Cai (10.1016/j.molp.2021.09.016_bib4) 2019; 70 Vert (10.1016/j.molp.2021.09.016_bib139) 2002; 14 Wu (10.1016/j.molp.2021.09.016_bib152) 2016; 172 Sui (10.1016/j.molp.2021.09.016_bib121) 2018; 433 Pinson (10.1016/j.molp.2021.09.016_bib100) 2015; 55 Seyfferth (10.1016/j.molp.2021.09.016_bib111) 2010; 44 Duan (10.1016/j.molp.2021.09.016_bib31) 2017; 10 Westheimer (10.1016/j.molp.2021.09.016_bib146) 1987; 235 Zhao (10.1016/j.molp.2021.09.016_bib178) 2020; 195 Chen (10.1016/j.molp.2021.09.016_bib20) 2015; 66 Zhang (10.1016/j.molp.2021.09.016_bib167) 2020; 54 Catarecha (10.1016/j.molp.2021.09.016_bib10) 2007; 19 Chao (10.1016/j.molp.2021.09.016_bib13) 2014; 12 Krzeslowska (10.1016/j.molp.2021.09.016_bib59) 2016; 214 Gu (10.1016/j.molp.2021.09.016_bib41) 2020; 54 Sun (10.1016/j.molp.2021.09.016_bib122) 2019; 70 Reeves (10.1016/j.molp.2021.09.016_bib103) 2018; 218 Schoepp-Cothenet (10.1016/j.molp.2021.09.016_bib110) 2011; 332 Zhang (10.1016/j.molp.2021.09.016_bib169) 2014; 127 Tang (10.1016/j.molp.2021.09.016_bib133) 2020; 71 Wang (10.1016/j.molp.2021.09.016_bib144) 2019; 249 Chen (10.1016/j.molp.2021.09.016_bib18) 2016; 171 Kamiya (10.1016/j.molp.2021.09.016_bib54) 2013; 59 Williams (10.1016/j.molp.2021.09.016_bib148) 2005; 39 Dai (10.1016/j.molp.2021.09.016_bib26) 2021; 55 Chen (10.1016/j.molp.2021.09.016_bib15) 2021; 267 Hussain (10.1016/j.molp.2021.09.016_bib50) 2004; 16 Ma (10.1016/j.molp.2021.09.016_bib75) 2008; 105 Lomax (10.1016/j.molp.2021.09.016_bib69) 2012; 193 Morel (10.1016/j.molp.2021.09.016_bib93) 2009; 149 Muehe (10.1016/j.molp.2021.09.016_bib94) 2019; 10 Hanikenne (10.1016/j.molp.2021.09.016_bib43) 2008; 453 Wan (10.1016/j.molp.2021.09.016_bib140) 2020; 266 Cao (10.1016/j.molp.2021.09.016_bib6) 2017; 51 Navarro (10.1016/j.molp.2021.09.016_bib96) 2021; 14 Cohen (10.1016/j.molp.2021.09.016_bib25) 1998; 116 Pommerrenig (10.1016/j.molp.2021.09.016_bib102) 2020; 225 Indriolo (10.1016/j.molp.2021.09.016_bib51) 2010; 22 Zhao (10.1016/j.molp.2021.09.016_bib175) 2012; 350 Zhao (10.1016/j.molp.2021.09.016_bib174) 2009; 181 Murakami (10.1016/j.molp.2021.09.016_bib95) 2009; 43 Castrillo (10.1016/j.molp.2021.09.016_bib9) 2013; 25 Carey (10.1016/j.molp.2021.09.016_bib7) 2010; 152 Duffus (10.1016/j.molp.2021.09.016_bib34) 2002; 74 Zavala (10.1016/j.molp.2021.09.016_bib165) 2008; 42 Finnegan (10.1016/j.molp.2021.09.016_bib37) 2012; 3 Mitani-Ueno (10.1016/j.molp.2021.09.016_bib83) 2016; 57 Zhou (10.1016/j.molp.2021.09.016_bib179) 2019; 39 Wong (10.1016/j.molp.2021.09.016_bib151) 2009; 181 Mitani-Ueno (10.1016/j.molp.2021.09.016_bib84) 2011; 62 Kamiya (10.1016/j.molp.2021.09.016_bib55) 2009; 284 Hayashi (10.1016/j.molp.2021.09.016_bib45) 2017; 91 Ding (10.1016/j.molp.2021.09.016_bib28) 2018; 177 Zhao (10.1016/j.molp.2021.09.016_bib172) 2010; 61 Wiebe (10.1016/j.molp.2021.09.016_bib147) 2010; 121 Chen (10.1016/j.molp.2021.09.016_bib16) 2018; 639 Meharg (10.1016/j.molp.2021.09.016_bib78) 2008; 42 Sui (10.1016/j.molp.2021.09.016_bib120) 2019; 70 Zhao (10.1016/j.molp.2021.09.016_bib171) 2020; 446 Zhu (10.1016/j.molp.2021.09.016_bib181) 2008; 42 Xu (10.1016/j.molp.2021.09.016_bib154) 2017; 215 Yamaji (10.1016/j.molp.2021.09.016_bib157) 2013; 162 Wang (10.1016/j.molp.2021.09.016_bib142) 2017; 8 Yang (10.1016/j.molp.2021.09.016_bib162) 2014; 65 Huang (10.1016/j.molp.2021.09.016_bib48) 2020; 13 Chao (10.1016/j.molp.2021.09.016_bib12) 2012; 8 Cailliatte (10.1016/j.molp.2021.09.016_bib5) 2010; 22 Song (10.1016/j.molp.2021.09.016_bib117) 2017; 12 Sunkar (10.1016/j.molp.2021.09.016_bib125) 2000; 24 Uraguchi (10.1016/j.molp.2021.09.016_bib137) 2011; 108 Moe (10.1016/j.molp.2021.09.016_bib87) 2016; 49 Ishikawa (10.1016/j.molp.2021.09.016_bib52) 2020; 66 Lane (10.1016/j.molp.2021.09.016_bib60) 2000; 97 Liu (10.1016/j.molp.2021.09.016_bib67) 2010; 152 Satoh-Nagasawa (10.1016/j.molp.2021.09.016_bib109) 2012; 53 Chang (10.1016/j.molp.2021.09.016_bib11) 2020; 43 Elias (10.1016/j.molp.2021.09.016_bib35) 2012; 491 Mitani (10.1016/j.molp.2021.09.016_bib85) 2008; 456 Kile (10.1016/j.molp.2021.09.016_bib56) 2007; 115 Kopittke (10.1016/j.molp.2021.09.016_bib57) 2007; 150 Zhang (10.1016/j.molp.2021.09.016_bib170) 2019; 180 Zhao (10.1016/j.molp.2021.09.016_bib173) 2013; 47 Shao (10.1016/j.molp.2021.09.016_bib112) 2017; 68 Ha (10.1016/j.molp.2021.09.016_bib42) 1999; 11 Sterckeman (10.1016/j.molp.2021.09.016_bib118) 2020; 39 Sun (10.1016/j.molp.2021.09.016_bib123) 2018; 219 Panaullah (10.1016/j.molp.2021.09.016_bib98) 2009; 317 Sanchez-Bermejo (10.1016/j.molp.2021.09.016_bib106) 2014; 5 Chen (10.1016/j.molp.2021.09.016_bib22) 2013; 47 Deng (10.1016/j.molp.2021.09.016_bib27) 2018; 16 Wang (10.1016/j.molp.2021.09.016_bib141) 2018; 217 Meharg (10.1016/j.molp.2021.09.016_bib79) 2009; 43 Sun (10.1016/j.molp.2021.09.016_bib124) 2021; 12 Li (10.1016/j.molp.2021.09.016_bib63) 2009; 43 Moore (10.1016/j.molp.2021.09.016_bib92) 2014; 201 Moon (10.1016/j.molp.2021.09.016_bib89) 2019; 20 Zhang (10.1016/j.molp.2021.09.016_bib166) 2010; 118 Shi (10.1016/j.molp.2021.09.016_bib113) 2016; 172 Yan (10.1016/j.molp.2021.09.016_bib160) 2021; 17 Salt (10.1016/j.molp.2021.09.016_bib105) 1995; 109 Ye (10.1016/j.molp.2021.09.016_bib164) 2017; 8 Song (10.1016/j.molp.2021.09.016_bib115) 2014; 111 Wang (10.1016/j.molp.2021.09.016_bib143) 2020; 13 Fischer (10.1016/j.molp.2021.09.016_bib38) 2014; 48 Li (10.1016/j.molp.2021.09.016_bib62) 2011; 37 Hu (10.1016/j.molp.2021.09.016_bib47) 2019; 286 Miyadate (10.1016/j.molp.2021.09.016_bib86) 2011; 189 Sasaki (10.1016/j.molp.2021.09.016_bib108) 2012; 24 Bridges (10.1016/j.molp.2021.09.016_bib3) 2010; 13 Xu (10.1016/j.molp.2021.09.016_bib155) 2015; 8 Zhang (10.1016/j.molp.2021.09.016_bib168) 2019; 70 Huhmann (10.1016/j.molp.2021.09.016_bib49) 2017; 51 Meyers (10.1016/j.molp.2021.09.016_bib82) 2009; 28 Krämer (10.1016/j.molp.2021.09.016_bib58) 2010; 61 Meng (10.1016/j.molp.2021.09.016_bib81) 2014; 48 Sasaki (10.1016/j.molp.2021.09.016_bib107) 2014; 65 Yang (10.1016/j.molp.2021.09.016_bib163) 2018; 30 Tang (10.1016/j.molp.2021.09.016_bib129) 2021 Yan (10.1016/j.molp.2021.09.016_bib159) 2016; 39 Wang (10.1016/j.molp.2021.09.016_bib145) 2016; 67 Song (10.1016/j.molp.2021.09.016_bib116) 2010; 107 Blanco (10.1016/j.molp.2021.09.016_bib2) 2021; 69 Ma (10.1016/j.molp.2021.09.016_bib76) 2007; 448 Takahashi (10.1016/j.molp.2021.09.016_bib126) 2012; 35 Clemens (10.1016/j.molp.2021.09.016_bib23) 2019; 70 Lu (10.1016/j.molp.2021.09.016_bib71) 2019; 126 Chen (10.1016/j.molp.2021.09.016_bib19) 2011; 157 Cobbett (10.1016/j.molp.2021.09.016_bib24) 2002; 53 DiTusa (10.1016/j.molp.2021.09.016_bib29) 2016; 209 Tang (10.1016/j.molp.2021.09.016_bib130) 2017; 7 Lei (10.1016/j.molp.2021.09.016_bib61) 2020; 1 Chen (10.1016/j.molp.2021.09.016_bib17) 2020; 226 Dubeaux (10.1016/j.molp.2021.09.016_bib33) 2018; 69 Liu (10.1016/j.molp.2021.09.016_bib68) 2006; 40 Pita-Barbosa (10.1016/j.molp.2021.09.016_bib101) 2019; 9 Fang (10.1016/j.molp.2021.09.016_bib36) 2021; 289 Wu (10.1016/j.molp.2021.09.016_bib153) 2015; 208 Yan (10.1016/j.molp.2021.09.016_bib158) 2019; 10 Tang (10.1016/j.molp.2021.09.016_bib131) 2016; 401 Moore (10.1016/j.molp.2021.09.016_bib90) 2010; 185 Carrasco-Gil (10.1016/j.molp.2021.09.016_bib8) 2013; 47 Mohan (10.1016/j.molp.2021.09.016_bib88) 2016; 171 Shin (10.1016/j.molp.2021.09.016_bib114) 2004; 39 Chen (10.1016/j.molp.2021.09.016_bib21) 2017; 68 Tan (10.1016/j.molp.2021.09.016_bib128) 2020; 183 Liu (10.1016/j.molp.2021.09.016_bib66) 2019; 62 Moore (10.1016/j.molp.2021.09.016_bib91) 2011; 156 Tang (10.1016/j.molp.2021.09.016_bib132) 2017; 58 |
References_xml | – volume: 35 start-page: 1948 year: 2012 end-page: 1957 ident: bib126 article-title: The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice publication-title: Plant Cell Environ. – volume: 48 start-page: 7974 year: 2014 end-page: 7981 ident: bib81 article-title: Localization and speciation of mercury in brown rice with implications for pan-Asian public health publication-title: Environ. Sci. Technol. – volume: 22 start-page: 2045 year: 2010 end-page: 2057 ident: bib51 article-title: A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern publication-title: Plant Cell – volume: 446 start-page: 1 year: 2020 end-page: 21 ident: bib171 article-title: Arsenic and cadmium accumulation in rice and mitigation strategies publication-title: Plant Soil – volume: 107 start-page: 16500 year: 2010 end-page: 16505 ident: bib135 article-title: Gene limiting cadmium accumulation in rice publication-title: Proc. Natl. Acad. Sci. U S A – volume: 331 start-page: 119 year: 2015 end-page: 124 ident: bib138 article-title: Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury publication-title: Toxicology – volume: 332 year: 2011 ident: bib110 article-title: Comment on "A bacterium that can grow by using arsenic instead of phosphorus” publication-title: Science – volume: 193 start-page: 665 year: 2012 end-page: 672 ident: bib69 article-title: Methylated arsenic species in plants originate from soil microorganisms publication-title: New Phytol. – volume: 70 start-page: 2717 year: 2019 end-page: 2725 ident: bib4 article-title: The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice publication-title: J. Exp. Bot. – volume: 51 start-page: 885 year: 2019 end-page: 895 ident: bib77 article-title: Durum wheat genome highlights past domestication signatures and future improvement targets publication-title: Nat. Genet. – volume: 266 start-page: 115193 year: 2020 ident: bib140 article-title: Three-year field experiment on the risk reduction, environmental merit, and cost assessment of four in situ remediation technologies for metal(loid)-contaminated agricultural soil publication-title: Environ. Pollut. – volume: 249 start-page: 1038 year: 2019 end-page: 1048 ident: bib144 article-title: Cadmium contamination in agricultural soils of China and the impact on food safety publication-title: Environ. Pollut. – volume: 118 start-page: 1183 year: 2010 end-page: 1188 ident: bib166 article-title: In inland China, rice, rather than fish, is the major pathway for methylmercury exposure publication-title: Environ. Health Perspect. – volume: 22 start-page: 904 year: 2010 end-page: 917 ident: bib5 article-title: High-affinity manganese uptake by the metal transporter NRAMP1 is essential for publication-title: Plant Cell – volume: 39 start-page: 1941 year: 2016 end-page: 1954 ident: bib159 article-title: A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars publication-title: Plant Cell Environ. – volume: 25 start-page: 2944 year: 2013 end-page: 2957 ident: bib9 article-title: WRKY6 transcription factor restricts arsenate uptake and transposon activation in publication-title: Plant Cell – volume: 66 start-page: 28 year: 2020 end-page: 33 ident: bib52 article-title: Mechanisms of cadmium accumulation in rice grains and molecular breeding for its reduction publication-title: Soil Sci. Plant Nutr. – volume: 65 start-page: 4849 year: 2014 end-page: 4861 ident: bib162 article-title: OsNRAMP5 contributes to manganese translocation and distribution in rice shoots publication-title: J. Exp. Bot. – volume: 186 start-page: 392 year: 2010 end-page: 399 ident: bib177 article-title: The role of the rice aquaporin Lsi1 in arsenite efflux from roots publication-title: New Phytol. – volume: 453 start-page: 391 year: 2008 end-page: 396 ident: bib43 article-title: Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4 publication-title: Nature – volume: 57 start-page: 2510 year: 2016 end-page: 2518 ident: bib83 article-title: High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice publication-title: Plant Cell Physiol. – volume: 72 start-page: 2045 year: 2021 end-page: 2055 ident: bib104 article-title: All together now: regulation of the iron deficiency response publication-title: J. Exp. Bot. – volume: 53 start-page: 159 year: 2002 end-page: 182 ident: bib24 article-title: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis publication-title: Annu. Rev. Plant Biol. – volume: 40 start-page: 5730 year: 2006 end-page: 5736 ident: bib68 article-title: Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants ( publication-title: Environ. Sci. Technol. – volume: 62 start-page: 314 year: 2019 end-page: 329 ident: bib66 article-title: Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice publication-title: J. Intergr. Plant Biol. – volume: 43 start-page: 3778 year: 2009 end-page: 3783 ident: bib63 article-title: Mitigation of arsenic accumulation in rice with water management and silicon fertilization publication-title: Environ. Sci. Technol. – volume: 44 start-page: 8108 year: 2010 end-page: 8113 ident: bib111 article-title: Arsenic localization, speciation, and co-occurrence with iron on rice ( publication-title: Environ. Sci. Technol. – volume: 47 start-page: 3082 year: 2013 end-page: 3090 ident: bib8 article-title: Mercury localization and speciation in plants grown hydroponically or in a natural environment publication-title: Environ. Sci. Technol. – volume: 58 start-page: 904 year: 2017 end-page: 913 ident: bib132 article-title: OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain publication-title: Plant Cell Physiol. – volume: 16 start-page: 1691 year: 2018 end-page: 1699 ident: bib27 article-title: Engineering rice with lower grain arsenic publication-title: Plant Biotechnol. J. – volume: 60 start-page: 2677 year: 2009 end-page: 2688 ident: bib136 article-title: Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice publication-title: J. Exp. Bot. – volume: 152 start-page: 2211 year: 2010 end-page: 2221 ident: bib67 article-title: Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in publication-title: Plant Physiol. – volume: 289 start-page: 117918 year: 2021 ident: bib36 article-title: Two-year and multi-site field trials to evaluate soil amendments for controlling cadmium accumulation in rice grain publication-title: Environ. Pollut. – volume: 37 start-page: 1219 year: 2011 end-page: 1225 ident: bib62 article-title: Inorganic arsenic in Chinese food and its cancer risk publication-title: Environ. Int. – volume: 5 start-page: 4617 year: 2014 ident: bib106 article-title: Natural variation in arsenate tolerance identifies an arsenate reductase in publication-title: Nat. Commun. – volume: 50 start-page: 1128 year: 2011 end-page: 1134 ident: bib134 article-title: Arsenate replacing phosphate: alternative life chemistries and ion promiscuity publication-title: Biochemistry – volume: 20 start-page: 413 year: 2019 ident: bib89 article-title: CNGC family members contribute to heavy metal ion uptake in plants publication-title: Inter. J. Mol. Sci. – volume: 51 start-page: 12131 year: 2017 end-page: 12138 ident: bib6 article-title: Knocking out publication-title: Environ. Sci. Technol. – volume: 39 start-page: 629 year: 2004 end-page: 642 ident: bib114 article-title: Phosphate transport in publication-title: Plant J. – volume: 180 start-page: 529 year: 2019 end-page: 542 ident: bib170 article-title: The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation publication-title: Plant Physiol. – volume: 328 start-page: 27 year: 2010 end-page: 34 ident: bib119 article-title: Rice is more efficient in arsenite uptake and translocation than wheat and barley publication-title: Plant Soil – volume: 51 start-page: 11553 year: 2017 end-page: 11560 ident: bib49 article-title: Field study of rice yield diminished by soil arsenic in Bangladesh publication-title: Environ. Sci. Technol. – volume: 49 start-page: 113 year: 2016 end-page: 124 ident: bib87 article-title: Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing publication-title: J. Environ. Sci. – volume: 39 start-page: 18 year: 2017 end-page: 24 ident: bib156 article-title: Node-controlled allocation of mineral elements in Poaceae publication-title: Curr. Opin. Plant Biol. – volume: 162 start-page: 927 year: 2013 end-page: 939 ident: bib157 article-title: Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2 publication-title: Plant Physiol. – volume: 16 start-page: 1327 year: 2004 end-page: 1339 ident: bib50 article-title: P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in publication-title: Plant Cell – volume: 185 start-page: 434 year: 2010 end-page: 445 ident: bib90 article-title: NanoSIMS analysis of arsenic and selenium in cereal grain publication-title: New Phytol. – volume: 62 start-page: 4391 year: 2011 end-page: 4398 ident: bib84 article-title: The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic publication-title: J. Exp. Bot. – volume: 108 start-page: 20959 year: 2011 end-page: 20964 ident: bib137 article-title: Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains publication-title: Proc. Natl. Acad. Sci. U S A – volume: 17 start-page: e1009636 year: 2021 ident: bib160 article-title: A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in publication-title: PLoS Genet. – volume: 116 start-page: 1063 year: 1998 end-page: 1072 ident: bib25 article-title: The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants publication-title: Plant Physiol. – volume: 171 start-page: 707 year: 2016 end-page: 719 ident: bib18 article-title: Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in publication-title: Plant Physiol. – volume: 24 start-page: 2155 year: 2012 end-page: 2167 ident: bib108 article-title: Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice publication-title: Plant Cell – volume: 12 start-page: e0173681 year: 2017 ident: bib53 article-title: Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in publication-title: PLoS One – volume: 217 start-page: 206 year: 2018 end-page: 218 ident: bib141 article-title: Dissecting the components controlling root-to-shoot arsenic translocation in publication-title: New Phytol. – volume: 97 start-page: 4627 year: 2000 end-page: 4631 ident: bib60 article-title: A biological function for cadmium in marine diatoms publication-title: Proc. Natl. Acad. Sci. U S A – volume: 183 start-page: 1235 year: 2020 end-page: 1249 ident: bib128 article-title: ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake publication-title: Plant Physiol. – volume: 69 start-page: 953 year: 2018 end-page: 964 ident: bib33 article-title: Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition publication-title: Mol. Cell – volume: 235 start-page: 1173 year: 1987 end-page: 1178 ident: bib146 article-title: Why nature chose phosphates publication-title: Science – volume: 184 start-page: 193 year: 2009 end-page: 201 ident: bib70 article-title: Speciation and distribution of arsenic and localization of nutrients in rice grains publication-title: New Phytol. – volume: 48 start-page: 7552 year: 2014 end-page: 7559 ident: bib38 article-title: Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification publication-title: Environ. Sci. Technol. – volume: 150 start-page: 2071 year: 2009 end-page: 2080 ident: bib64 article-title: The rice aquaporin Lsi1 mediates uptake of methylated arsenic species publication-title: Plant Physiol. – volume: 71 start-page: 5631 year: 2020 end-page: 5644 ident: bib133 article-title: Dimethylarsinic acid is the causal agent inducing rice straighthead disease publication-title: J. Exp. Bot. – volume: 61 start-page: 535 year: 2010 end-page: 559 ident: bib172 article-title: Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies publication-title: Annu. Rev. Plant Biol. – volume: 286 start-page: 106651 year: 2019 ident: bib47 article-title: Assessment of phytoextraction using publication-title: Agric. Ecosyst. Environ. – volume: 65 start-page: 6013 year: 2014 end-page: 6021 ident: bib107 article-title: Overexpression of publication-title: J. Exp. Bot. – volume: 13 start-page: 385 year: 2010 end-page: 410 ident: bib3 article-title: Transport of inorganic mercury and methylmercury in target tissues and organs publication-title: J. Toxicol. Environ. Health B Crit. Rev. – volume: 74 start-page: 793 year: 2002 end-page: 807 ident: bib34 article-title: Heavy metals"—a meaningless term? (IUPAC technical report) publication-title: Pure Appl. Chem. – volume: 219 start-page: 641 year: 2018 end-page: 653 ident: bib123 article-title: Decreasing arsenic accumulation in rice by overexpressing publication-title: New Phytol. – volume: 66 start-page: 3717 year: 2015 end-page: 3724 ident: bib20 article-title: The role of nodes in arsenic storage and distribution in rice publication-title: J. Exp. Bot. – volume: 12 start-page: e0177978 year: 2017 ident: bib117 article-title: Dietary cadmium exposure assessment among the Chinese population publication-title: PLoS One – volume: 176 start-page: 785 year: 2013 end-page: 794 ident: bib40 article-title: Silicon decreases the arsenic level in rice grain by limiting arsenite transport publication-title: J. Plant Nutr. Soil Sci. – volume: 43 start-page: 1612 year: 2009 end-page: 1617 ident: bib79 article-title: Geographical variation in total and inorganic arsenic content of polished (white) rice publication-title: Environ. Sci. Technol. – volume: 14 start-page: 1223 year: 2002 end-page: 1233 ident: bib139 article-title: IRT1, an publication-title: Plant Cell – volume: 267 start-page: 128893 year: 2021 ident: bib15 article-title: Producing Cd-safe rice grains in moderately and seriously Cd-contaminated paddy soils publication-title: Chemosphere – volume: 105 start-page: 9931 year: 2008 end-page: 9935 ident: bib75 article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain publication-title: Proc. Natl. Acad. Sci. U S A – volume: 53 start-page: 213 year: 2012 end-page: 224 ident: bib109 article-title: Mutations in rice ( publication-title: Plant Cell Physiol. – volume: 20 start-page: 435 year: 2015 end-page: 442 ident: bib74 article-title: A cooperative system of silicon transport in plants publication-title: Trends Plant Sci. – volume: 201 start-page: 104 year: 2014 end-page: 115 ident: bib92 article-title: Combined NanoSIMS and synchrotron X-ray fluorescence reveals distinct cellular and subcellular distribution patterns of trace elements in rice tissues publication-title: New Phytol. – volume: 10 start-page: 2562 year: 2019 ident: bib158 article-title: Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies publication-title: Nat. Commun. – volume: 209 start-page: 762 year: 2016 end-page: 772 ident: bib29 article-title: A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern publication-title: New Phytol. – volume: 1 start-page: 489 year: 2020 end-page: 499 ident: bib61 article-title: Breeding for low cadmium barley by introgression of a Sukkula-like transposable element publication-title: Nat. Food – volume: 39 start-page: 5531 year: 2005 end-page: 5540 ident: bib148 article-title: Variation in arsenic speciation and concentration in paddy rice related to dietary exposure publication-title: Environ. Sci. Technol. – volume: 70 start-page: 5537 year: 2019 end-page: 5557 ident: bib23 article-title: Safer food through plant science: reducing toxic element accumulation in crops publication-title: J. Exp. Bot. – volume: 47 start-page: 9355 year: 2013 end-page: 9362 ident: bib22 article-title: Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a publication-title: Environ. Sci. Technol. – volume: 43 start-page: 5878 year: 2009 end-page: 5883 ident: bib95 article-title: Phytoextraction by rice capable of accumulating Cd at high levels: reduction of Cd content of rice grain publication-title: Environ. Sci. Technol. – volume: 12 start-page: 1392 year: 2021 ident: bib124 article-title: A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain publication-title: Nat. Commun. – volume: 36 start-page: 79 year: 2021 end-page: 88 ident: bib30 article-title: Effects of publication-title: Hybrid Rice – volume: 491 start-page: 134 year: 2012 end-page: 137 ident: bib35 article-title: The molecular basis of phosphate discrimination in arsenate-rich environments publication-title: Nature – volume: 3 start-page: 182 year: 2012 ident: bib37 article-title: Arsenic toxicity: the effects on plant metabolism publication-title: Front. Physiol. – volume: 69 start-page: 278 year: 2012 end-page: 288 ident: bib99 article-title: The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury publication-title: Plant J. – volume: 14 start-page: 1 year: 2021 end-page: 19 ident: bib96 article-title: Arsenite provides a selective signal that coordinates arsenate uptake and detoxificacion involving regulation of PHR1 stability in publication-title: Mol. Plant – volume: 152 start-page: 309 year: 2010 end-page: 319 ident: bib7 article-title: Grain unloading of arsenic species in rice publication-title: Plant Physiol. – volume: 24 start-page: 533 year: 2000 end-page: 542 ident: bib125 article-title: Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous publication-title: Plant J. – volume: 639 start-page: 271 year: 2018 end-page: 277 ident: bib16 article-title: Dietary cadmium intake from rice and vegetables and potential health risk: a case study in Xiangtan, southern China publication-title: Sci. Total Environ. – volume: 43 start-page: 2476 year: 2020 end-page: 2491 ident: bib11 article-title: OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice publication-title: Plant Cell Environ. – volume: 55 start-page: 8665 year: 2021 end-page: 8674 ident: bib26 article-title: Dynamics of dimethylated monothioarsenate (DMMTA) in paddy soils and its accumulation in rice grains publication-title: Environ. Sci. Technol. – volume: 448 start-page: 209 year: 2007 end-page: 212 ident: bib76 article-title: An efflux transporter of silicon in rice publication-title: Nature – volume: 43 start-page: 637 year: 2009 end-page: 642 ident: bib150 article-title: Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China publication-title: Environ. Sci. Technol. – volume: 154 start-page: 108129 year: 2021 ident: bib14 article-title: Sulfate addition and rising temperature promote arsenic methylation and the formation of methylated thioarsenates in paddy soils publication-title: Soil Biol. Biochem. – volume: 9 start-page: 645 year: 2018 ident: bib72 article-title: A defensin-like protein drives cadmium efflux and allocation in rice publication-title: Nat. Commun. – volume: 30 start-page: 2720 year: 2018 end-page: 2740 ident: bib163 article-title: Genome-wide association studies reveal the genetic basis of ionomic variation in rice publication-title: Plant Cell – volume: 47 start-page: 3957 year: 2013 end-page: 3966 ident: bib173 article-title: Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms publication-title: Environ. Sci. Technol. – volume: 10 start-page: 4985 year: 2019 ident: bib94 article-title: Rice production threatened by coupled stresses of climate and soil arsenic publication-title: Nat. Commun. – volume: 156 start-page: 913 year: 2011 end-page: 924 ident: bib91 article-title: NanoSIMS analysis reveals contrasting patterns of arsenic and silicon localization in rice roots publication-title: Plant Physiol. – volume: 12 start-page: e1002009 year: 2014 ident: bib13 article-title: Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants publication-title: PLoS Biol. – volume: 19 start-page: 1123 year: 2007 end-page: 1133 ident: bib10 article-title: A mutant of the publication-title: Plant Cell – volume: 70 start-page: 2857 year: 2019 end-page: 2871 ident: bib120 article-title: Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain publication-title: J. Exp. Bot. – volume: 67 start-page: 6051 year: 2016 end-page: 6059 ident: bib145 article-title: The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice publication-title: J. Exp. Bot. – volume: 41 start-page: 6854 year: 2007 end-page: 6859 ident: bib149 article-title: Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley publication-title: Environ. Sci. Technol. – volume: 7 start-page: 14438 year: 2017 ident: bib130 article-title: Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating publication-title: Sci. Rep. – volume: 42 start-page: 3861 year: 2008 end-page: 3866 ident: bib165 article-title: Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health publication-title: Environ. Sci. Technol. – volume: 54 start-page: 10100 year: 2020 end-page: 10108 ident: bib167 article-title: Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains publication-title: Environ. Sci. Technol. – volume: 69 start-page: 2287 year: 2021 end-page: 2294 ident: bib2 article-title: Detection of thioarsenates in rice grains and rice products publication-title: J. Agric. Food Chem. – volume: 215 start-page: 1090 year: 2017 end-page: 1101 ident: bib154 article-title: OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice publication-title: New Phytol. – volume: 195 start-page: 110462 year: 2020 ident: bib178 article-title: Mercury methylation in rice paddy and accumulation in rice plant: a review publication-title: Ecotoxicol. Environ. Saf. – volume: 10 start-page: 9 year: 2017 ident: bib31 article-title: Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars publication-title: Rice – volume: 54 start-page: 12072 year: 2020 end-page: 12080 ident: bib41 article-title: Chemical speciation and distribution of cadmium in rice grain and implications for bioavailability to humans publication-title: Environ. Sci. Technol. – volume: 456 start-page: 679 year: 2008 end-page: 686 ident: bib85 article-title: Characterization of substrate specificity of a rice silicon transporter, Lsi1 publication-title: Pflugers Arch. – volume: 171 start-page: 1418 year: 2016 end-page: 1426 ident: bib88 article-title: Cytokinin determines thiol-mediated arsenic tolerance and accumulation publication-title: Plant Physiol. – volume: 181 start-page: 71 year: 2009 end-page: 78 ident: bib151 article-title: HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in publication-title: New Phytol. – volume: 61 start-page: 517 year: 2010 end-page: 534 ident: bib58 article-title: Metal hyperaccumulation in plants publication-title: Annu. Rev. Plant Biol. – volume: 68 start-page: 5641 year: 2017 end-page: 5651 ident: bib112 article-title: Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice publication-title: J. Exp. Bot. – volume: 2 start-page: 15202 year: 2016 ident: bib32 article-title: Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in publication-title: Nat. Plants – volume: 8 start-page: 2197 year: 2017 ident: bib164 article-title: OsPT4 contributes to arsenate uptake and transport in rice publication-title: Front. Plant Sci. – volume: 172 start-page: 1708 year: 2016 end-page: 1719 ident: bib113 article-title: OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation publication-title: Plant Physiol. – volume: 218 start-page: 407 year: 2018 end-page: 411 ident: bib103 article-title: A global database for plants that hyperaccumulate metal and metalloid trace elements publication-title: New Phytol. – volume: 49 start-page: 750 year: 2015 end-page: 759 ident: bib176 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environ. Sci. Technol. – volume: 214 start-page: 354 year: 2016 end-page: 361 ident: bib59 article-title: Pectinous cell wall thickenings formation—a common defense strategy of plants to cope with Pb publication-title: Environ. Pollut. – volume: 127 start-page: 137 year: 2014 end-page: 165 ident: bib169 article-title: Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain publication-title: Theor. Appl. Genet. – volume: 121 start-page: 1047 year: 2010 end-page: 1058 ident: bib147 article-title: Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat ( publication-title: Theor. Appl. Genet. – volume: 8 start-page: 1868 year: 2017 ident: bib142 article-title: OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice publication-title: Front. Plant Sci. – volume: 433 start-page: 377 year: 2018 end-page: 389 ident: bib121 article-title: Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize publication-title: Plant Soil – volume: 226 start-page: 838 year: 2020 end-page: 850 ident: bib17 article-title: Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain publication-title: New Phytol. – volume: 109 start-page: 1427 year: 1995 end-page: 1433 ident: bib105 article-title: Mechanisms of cadmium mobility and accumulation in Indian mustard publication-title: Plant Physiol. – volume: 401 start-page: 243 year: 2016 end-page: 257 ident: bib131 article-title: Phytotoxicity and detoxification mechanism differ among inorganic and methylated arsenic species in publication-title: Plant Soil – volume: 55 start-page: 1 year: 2015 end-page: 18 ident: bib100 article-title: World-wide genetic diversity for mineral element concentrations in rice grain publication-title: Crop Sci. – volume: 68 start-page: 3007 year: 2017 end-page: 3016 ident: bib21 article-title: The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice publication-title: J. Exp. Bot. – volume: 28 start-page: 2250 year: 2009 end-page: 2254 ident: bib82 article-title: Characterization of lead precipitate following uptake by roots of publication-title: Environ. Toxicol. Chem. – volume: 126 start-page: 619 year: 2019 end-page: 626 ident: bib71 article-title: Producing cadmium-free Indica rice by overexpressing publication-title: Environ. Int. – volume: 72 start-page: 415 year: 2021 end-page: 425 ident: bib39 article-title: Targeted expression of the arsenate reductase HAC1 identifies cell type specificity of arsenic metabolism and transport in plant roots publication-title: J. Exp. Bot. – volume: 11 start-page: 1153 year: 1999 end-page: 1163 ident: bib42 article-title: Phytochelatin synthase genes from publication-title: Plant Cell – volume: 317 start-page: 31 year: 2009 end-page: 39 ident: bib98 article-title: Arsenic toxicity to rice ( publication-title: Plant Soil – volume: 177 start-page: 1691 year: 2018 end-page: 1703 ident: bib28 article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice publication-title: Plant Physiol. – volume: 11 start-page: 4778 year: 2020 ident: bib73 article-title: Resequencing of 1,143 publication-title: Nat. Commun. – volume: 42 start-page: 5008 year: 2008 end-page: 5013 ident: bib181 article-title: High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice publication-title: Environ. Sci. Technol. – volume: 225 start-page: 1383 year: 2020 end-page: 1396 ident: bib102 article-title: Functional evolution of nodulin 26-like intrinsic proteins: from bacterial arsenic detoxification to plant nutrient transport publication-title: New Phytol. – volume: 70 start-page: 5865 year: 2019 end-page: 5878 ident: bib168 article-title: Variation in the publication-title: J. Exp. Bot. – volume: 172 start-page: 1899 year: 2016 end-page: 1910 ident: bib152 article-title: The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron publication-title: Plant Physiol. – volume: 512 start-page: 112 year: 2019 end-page: 118 ident: bib127 article-title: OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice publication-title: Biochem. Biophys. Res. Commun. – volume: 165 start-page: 109 year: 2012 end-page: 117 ident: bib80 article-title: The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere publication-title: Environ. Pollut. – volume: 284 start-page: 2114 year: 2009 end-page: 2120 ident: bib55 article-title: NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of publication-title: J. Biol. Chem. – volume: 8 start-page: 722 year: 2015 end-page: 733 ident: bib155 article-title: NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions publication-title: Mol. Plant – volume: 42 start-page: 1051 year: 2008 end-page: 1057 ident: bib78 article-title: Speciation and localization of arsenic in white and brown rice grains publication-title: Environ. Sci. Technol. – volume: 9 start-page: 476 year: 2018 ident: bib44 article-title: A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice publication-title: Front. Plant Sci. – volume: 107 start-page: 21187 year: 2010 end-page: 21192 ident: bib116 article-title: Arsenic tolerance in publication-title: Proc. Natl. Acad. Sci. U S A – volume: 150 start-page: 280 year: 2007 end-page: 287 ident: bib57 article-title: Toxic effects of Pb publication-title: Environ. Pollut. – volume: 181 start-page: 777 year: 2009 end-page: 794 ident: bib174 article-title: Arsenic uptake and metabolism in plants publication-title: New Phytol. – volume: 157 start-page: 269 year: 2011 end-page: 278 ident: bib19 article-title: OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice publication-title: Plant Physiol. – volume: 7 start-page: 137 year: 2021 end-page: 143 ident: bib65 article-title: bZIP19 and bZIP23 act as zinc sensors to control plant zinc status publication-title: Nat. Plants – volume: 350 start-page: 413 year: 2012 end-page: 420 ident: bib175 article-title: Arsenic translocation in rice investigated using radioactive publication-title: Plant Soil – volume: 208 start-page: 817 year: 2015 end-page: 829 ident: bib153 article-title: Genome-wide association mapping of cadmium accumulation in different organs of barley publication-title: New Phytol. – volume: 91 start-page: 840 year: 2017 end-page: 848 ident: bib45 article-title: Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains publication-title: Plant J. – volume: 13 start-page: 282 year: 2020 end-page: 289 ident: bib143 article-title: Thiolated arsenic species observed in rice paddy pore waters publication-title: Nat. Geosci. – year: 2021 ident: bib129 article-title: Natural variations in the P-type ATPase heavy metal transporter ZmHMA3 controlling cadmium accumulation in maize grains publication-title: J. Exp. Bot. – volume: 9 start-page: 19482 year: 2019 ident: bib101 article-title: Transcriptional plasticity buffers genetic variation in zinc homeostasis publication-title: Sci. Rep. – volume: 115 start-page: 889 year: 2007 end-page: 893 ident: bib56 article-title: Dietary arsenic exposure in Bangladesh publication-title: Environ. Health Perspect. – volume: 59 start-page: 580 year: 2013 end-page: 590 ident: bib54 article-title: Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in as accumulation in shoots of rice publication-title: Soil Sci. Plant Nutr. – volume: 13 start-page: 825 year: 2020 end-page: 835 ident: bib48 article-title: Plant nutrition for human nutrition: hints from rice research and future perspectives publication-title: Mol. Plant – volume: 111 start-page: 15699 year: 2014 end-page: 15704 ident: bib115 article-title: A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain publication-title: Proc. Natl. Acad. Sci. U S A – volume: 6 start-page: 26 year: 2008 ident: bib1 article-title: A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH) publication-title: BMC Biol. – volume: 8 start-page: e1002923 year: 2012 ident: bib12 article-title: Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in publication-title: PLoS Genet. – volume: 186 start-page: 611 year: 2021 end-page: 623 ident: bib46 article-title: Deficiency in alcohol dehydrogenase 2 reduces arsenic in rice grains by suppressing silicate transporters publication-title: Plant Physiol. – volume: 39 start-page: 322 year: 2020 end-page: 359 ident: bib118 article-title: Mechanisms of cadmium accumulation in plants publication-title: Crit. Rev. Plant Sci. – volume: 307 start-page: 110894 year: 2021 ident: bib161 article-title: The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice publication-title: Plant Sci. – volume: 70 start-page: 6389 year: 2019 end-page: 6400 ident: bib122 article-title: Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3 publication-title: J. Exp. Bot. – volume: 219 start-page: 99 year: 2016 end-page: 106 ident: bib180 article-title: Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China publication-title: Environ. Pollut. – volume: 189 start-page: 190 year: 2011 end-page: 199 ident: bib86 article-title: OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles publication-title: New Phytol. – volume: 39 start-page: 84 year: 2019 ident: bib179 article-title: Introgressing the allelic variation of a major locus in reducing the grain cadmium accumulation in publication-title: Mol. Breed. – volume: 149 start-page: 894 year: 2009 end-page: 904 ident: bib93 article-title: AtHMA3, a P(1B)-ATPase allowing Cd/Zn/Co/Pb aacuolar storage in publication-title: Plant Physiol. – volume: 485 start-page: 428 year: 2014 end-page: 434 ident: bib97 article-title: Lead in rice: analysis of baseline lead levels in market and field collected rice grains publication-title: Sci. Total Environ. – volume: 53 start-page: 213 year: 2012 ident: 10.1016/j.molp.2021.09.016_bib109 article-title: Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcr166 – volume: 512 start-page: 112 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib127 article-title: OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.03.024 – volume: 127 start-page: 137 year: 2014 ident: 10.1016/j.molp.2021.09.016_bib169 article-title: Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-013-2207-5 – volume: 14 start-page: 1 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib96 article-title: Arsenite provides a selective signal that coordinates arsenate uptake and detoxificacion involving regulation of PHR1 stability in Arabidopsis thaliana publication-title: Mol. Plant doi: 10.1016/j.molp.2021.05.020 – volume: 2 start-page: 15202 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib32 article-title: Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds publication-title: Nat. Plants doi: 10.1038/nplants.2015.202 – volume: 70 start-page: 5865 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib168 article-title: Variation in the BrHMA3 coding region controls natural variation in cadmium accumulation in Brassica rapa vegetables publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz310 – volume: 115 start-page: 889 year: 2007 ident: 10.1016/j.molp.2021.09.016_bib56 article-title: Dietary arsenic exposure in Bangladesh publication-title: Environ. Health Perspect. doi: 10.1289/ehp.9462 – volume: 6 start-page: 26 year: 2008 ident: 10.1016/j.molp.2021.09.016_bib1 article-title: A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes publication-title: BMC Biol. doi: 10.1186/1741-7007-6-26 – volume: 25 start-page: 2944 year: 2013 ident: 10.1016/j.molp.2021.09.016_bib9 article-title: WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.114009 – volume: 184 start-page: 193 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib70 article-title: Speciation and distribution of arsenic and localization of nutrients in rice grains publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.02912.x – volume: 35 start-page: 1948 year: 2012 ident: 10.1016/j.molp.2021.09.016_bib126 article-title: The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2012.02527.x – volume: 8 start-page: 2197 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib164 article-title: OsPT4 contributes to arsenate uptake and transport in rice publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02197 – volume: 3 start-page: 182 year: 2012 ident: 10.1016/j.molp.2021.09.016_bib37 article-title: Arsenic toxicity: the effects on plant metabolism publication-title: Front. Physiol. doi: 10.3389/fphys.2012.00182 – volume: 39 start-page: 1941 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib159 article-title: A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars publication-title: Plant Cell Environ. doi: 10.1111/pce.12747 – volume: 69 start-page: 2287 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib2 article-title: Detection of thioarsenates in rice grains and rice products publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c06853 – volume: 16 start-page: 1327 year: 2004 ident: 10.1016/j.molp.2021.09.016_bib50 article-title: P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.020487 – volume: 219 start-page: 99 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib180 article-title: Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.10.043 – volume: 62 start-page: 314 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib66 article-title: Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice publication-title: J. Intergr. Plant Biol. doi: 10.1111/jipb.12794 – volume: 183 start-page: 1235 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib128 article-title: ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake publication-title: Plant Physiol. doi: 10.1104/pp.19.01569 – volume: 39 start-page: 322 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib118 article-title: Mechanisms of cadmium accumulation in plants publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2020.1792179 – volume: 7 start-page: 137 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib65 article-title: Arabidopsis bZIP19 and bZIP23 act as zinc sensors to control plant zinc status publication-title: Nat. Plants doi: 10.1038/s41477-021-00856-7 – volume: 149 start-page: 894 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib93 article-title: AtHMA3, a P(1B)-ATPase allowing Cd/Zn/Co/Pb aacuolar storage in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.108.130294 – volume: 55 start-page: 1 year: 2015 ident: 10.1016/j.molp.2021.09.016_bib100 article-title: World-wide genetic diversity for mineral element concentrations in rice grain publication-title: Crop Sci. doi: 10.2135/cropsci2013.10.0656 – volume: 12 start-page: 1392 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib124 article-title: A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain publication-title: Nat. Commun. doi: 10.1038/s41467-021-21282-5 – volume: 22 start-page: 2045 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib51 article-title: A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants publication-title: Plant Cell doi: 10.1105/tpc.109.069773 – volume: 215 start-page: 1090 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib154 article-title: OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice publication-title: New Phytol. doi: 10.1111/nph.14572 – volume: 39 start-page: 18 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib156 article-title: Node-controlled allocation of mineral elements in Poaceae publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2017.05.002 – volume: 150 start-page: 280 year: 2007 ident: 10.1016/j.molp.2021.09.016_bib57 article-title: Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata) publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.01.011 – volume: 49 start-page: 750 year: 2015 ident: 10.1016/j.molp.2021.09.016_bib176 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environ. Sci. Technol. doi: 10.1021/es5047099 – volume: 53 start-page: 159 year: 2002 ident: 10.1016/j.molp.2021.09.016_bib24 article-title: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.53.100301.135154 – volume: 249 start-page: 1038 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib144 article-title: Cadmium contamination in agricultural soils of China and the impact on food safety publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.03.063 – volume: 74 start-page: 793 year: 2002 ident: 10.1016/j.molp.2021.09.016_bib34 article-title: Heavy metals"—a meaningless term? (IUPAC technical report) publication-title: Pure Appl. Chem. doi: 10.1351/pac200274050793 – volume: 8 start-page: 1868 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib142 article-title: OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01868 – volume: 162 start-page: 927 year: 2013 ident: 10.1016/j.molp.2021.09.016_bib157 article-title: Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2 publication-title: Plant Physiol. doi: 10.1104/pp.113.216564 – volume: 70 start-page: 2717 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib4 article-title: The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz091 – volume: 8 start-page: e1002923 year: 2012 ident: 10.1016/j.molp.2021.09.016_bib12 article-title: Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002923 – volume: 66 start-page: 3717 year: 2015 ident: 10.1016/j.molp.2021.09.016_bib20 article-title: The role of nodes in arsenic storage and distribution in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv164 – volume: 41 start-page: 6854 year: 2007 ident: 10.1016/j.molp.2021.09.016_bib149 article-title: Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley publication-title: Environ. Sci. Technol. doi: 10.1021/es070627i – volume: 186 start-page: 611 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib46 article-title: Deficiency in alcohol dehydrogenase 2 reduces arsenic in rice grains by suppressing silicate transporters publication-title: Plant Physiol. doi: 10.1093/plphys/kiab086 – volume: 332 year: 2011 ident: 10.1016/j.molp.2021.09.016_bib110 article-title: Comment on "A bacterium that can grow by using arsenic instead of phosphorus” publication-title: Science doi: 10.1126/science.1201438 – volume: 71 start-page: 5631 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib133 article-title: Dimethylarsinic acid is the causal agent inducing rice straighthead disease publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa253 – volume: 208 start-page: 817 year: 2015 ident: 10.1016/j.molp.2021.09.016_bib153 article-title: Genome-wide association mapping of cadmium accumulation in different organs of barley publication-title: New Phytol. doi: 10.1111/nph.13512 – volume: 350 start-page: 413 year: 2012 ident: 10.1016/j.molp.2021.09.016_bib175 article-title: Arsenic translocation in rice investigated using radioactive 73As tracer publication-title: Plant Soil doi: 10.1007/s11104-011-0926-4 – volume: 226 start-page: 838 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib17 article-title: Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain publication-title: New Phytol. doi: 10.1111/nph.16404 – volume: 9 start-page: 645 year: 2018 ident: 10.1016/j.molp.2021.09.016_bib72 article-title: A defensin-like protein drives cadmium efflux and allocation in rice publication-title: Nat. Commun. doi: 10.1038/s41467-018-03088-0 – volume: 43 start-page: 637 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib150 article-title: Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China publication-title: Environ. Sci. Technol. doi: 10.1021/es802412r – volume: 72 start-page: 2045 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib104 article-title: All together now: regulation of the iron deficiency response publication-title: J. Exp. Bot. doi: 10.1093/jxb/erab003 – volume: 59 start-page: 580 year: 2013 ident: 10.1016/j.molp.2021.09.016_bib54 article-title: Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in as accumulation in shoots of rice publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2013.804390 – volume: 39 start-page: 5531 year: 2005 ident: 10.1016/j.molp.2021.09.016_bib148 article-title: Variation in arsenic speciation and concentration in paddy rice related to dietary exposure publication-title: Environ. Sci. Technol. doi: 10.1021/es0502324 – volume: 7 start-page: 14438 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib130 article-title: Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield publication-title: Sci. Rep. doi: 10.1038/s41598-017-14832-9 – volume: 317 start-page: 31 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib98 article-title: Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh publication-title: Plant Soil doi: 10.1007/s11104-008-9786-y – volume: 189 start-page: 190 year: 2011 ident: 10.1016/j.molp.2021.09.016_bib86 article-title: OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03459.x – volume: 13 start-page: 825 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib48 article-title: Plant nutrition for human nutrition: hints from rice research and future perspectives publication-title: Mol. Plant doi: 10.1016/j.molp.2020.05.007 – volume: 57 start-page: 2510 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib83 article-title: High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcw163 – volume: 39 start-page: 84 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib179 article-title: Introgressing the allelic variation of a major locus in reducing the grain cadmium accumulation in indica rice hybrids publication-title: Mol. Breed. doi: 10.1007/s11032-019-0992-5 – volume: 171 start-page: 707 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib18 article-title: Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.15.01882 – volume: 20 start-page: 435 year: 2015 ident: 10.1016/j.molp.2021.09.016_bib74 article-title: A cooperative system of silicon transport in plants publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.04.007 – volume: 150 start-page: 2071 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib64 article-title: The rice aquaporin Lsi1 mediates uptake of methylated arsenic species publication-title: Plant Physiol. doi: 10.1104/pp.109.140350 – volume: 181 start-page: 71 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib151 article-title: HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02638.x – volume: 22 start-page: 904 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib5 article-title: High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions publication-title: Plant Cell doi: 10.1105/tpc.109.073023 – volume: 11 start-page: 1153 year: 1999 ident: 10.1016/j.molp.2021.09.016_bib42 article-title: Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe publication-title: Plant Cell doi: 10.1105/tpc.11.6.1153 – volume: 214 start-page: 354 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib59 article-title: Pectinous cell wall thickenings formation—a common defense strategy of plants to cope with Pb publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.04.019 – volume: 69 start-page: 278 year: 2012 ident: 10.1016/j.molp.2021.09.016_bib99 article-title: The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04789.x – volume: 107 start-page: 16500 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib135 article-title: Gene limiting cadmium accumulation in rice publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1005396107 – volume: 639 start-page: 271 year: 2018 ident: 10.1016/j.molp.2021.09.016_bib16 article-title: Dietary cadmium intake from rice and vegetables and potential health risk: a case study in Xiangtan, southern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.050 – volume: 5 start-page: 4617 year: 2014 ident: 10.1016/j.molp.2021.09.016_bib106 article-title: Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana publication-title: Nat. Commun. doi: 10.1038/ncomms5617 – volume: 51 start-page: 12131 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib6 article-title: Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03028 – volume: 12 start-page: e1002009 year: 2014 ident: 10.1016/j.molp.2021.09.016_bib13 article-title: Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002009 – volume: 176 start-page: 785 year: 2013 ident: 10.1016/j.molp.2021.09.016_bib40 article-title: Silicon decreases the arsenic level in rice grain by limiting arsenite transport publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201200440 – volume: 72 start-page: 415 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib39 article-title: Targeted expression of the arsenate reductase HAC1 identifies cell type specificity of arsenic metabolism and transport in plant roots publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa465 – volume: 126 start-page: 619 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib71 article-title: Producing cadmium-free Indica rice by overexpressing OsHMA3 publication-title: Environ. Int. doi: 10.1016/j.envint.2019.03.004 – volume: 61 start-page: 517 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib58 article-title: Metal hyperaccumulation in plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112156 – volume: 65 start-page: 4849 year: 2014 ident: 10.1016/j.molp.2021.09.016_bib162 article-title: OsNRAMP5 contributes to manganese translocation and distribution in rice shoots publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru259 – volume: 284 start-page: 2114 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib55 article-title: NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana publication-title: J. Biol. Chem. doi: 10.1074/jbc.M806881200 – volume: 43 start-page: 3778 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib63 article-title: Mitigation of arsenic accumulation in rice with water management and silicon fertilization publication-title: Environ. Sci. Technol. doi: 10.1021/es803643v – volume: 433 start-page: 377 year: 2018 ident: 10.1016/j.molp.2021.09.016_bib121 article-title: Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize publication-title: Plant Soil doi: 10.1007/s11104-018-3849-5 – volume: 43 start-page: 1612 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib79 article-title: Geographical variation in total and inorganic arsenic content of polished (white) rice publication-title: Environ. Sci. Technol. doi: 10.1021/es802612a – volume: 42 start-page: 5008 year: 2008 ident: 10.1016/j.molp.2021.09.016_bib181 article-title: High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice publication-title: Environ. Sci. Technol. doi: 10.1021/es8001103 – volume: 43 start-page: 2476 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib11 article-title: OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice publication-title: Plant Cell Environ. doi: 10.1111/pce.13843 – volume: 14 start-page: 1223 year: 2002 ident: 10.1016/j.molp.2021.09.016_bib139 article-title: IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth publication-title: Plant Cell doi: 10.1105/tpc.001388 – volume: 491 start-page: 134 year: 2012 ident: 10.1016/j.molp.2021.09.016_bib35 article-title: The molecular basis of phosphate discrimination in arsenate-rich environments publication-title: Nature doi: 10.1038/nature11517 – volume: 48 start-page: 7974 year: 2014 ident: 10.1016/j.molp.2021.09.016_bib81 article-title: Localization and speciation of mercury in brown rice with implications for pan-Asian public health publication-title: Environ. Sci. Technol. doi: 10.1021/es502000d – volume: 195 start-page: 110462 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib178 article-title: Mercury methylation in rice paddy and accumulation in rice plant: a review publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110462 – volume: 42 start-page: 3861 year: 2008 ident: 10.1016/j.molp.2021.09.016_bib165 article-title: Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health publication-title: Environ. Sci. Technol. doi: 10.1021/es702748q – volume: 54 start-page: 10100 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib167 article-title: Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02877 – volume: 9 start-page: 476 year: 2018 ident: 10.1016/j.molp.2021.09.016_bib44 article-title: A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00476 – volume: 446 start-page: 1 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib171 article-title: Arsenic and cadmium accumulation in rice and mitigation strategies publication-title: Plant Soil doi: 10.1007/s11104-019-04374-6 – volume: 12 start-page: e0177978 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib117 article-title: Dietary cadmium exposure assessment among the Chinese population publication-title: PLoS One doi: 10.1371/journal.pone.0177978 – volume: 91 start-page: 840 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib45 article-title: Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains publication-title: Plant J. doi: 10.1111/tpj.13612 – volume: 8 start-page: 722 year: 2015 ident: 10.1016/j.molp.2021.09.016_bib155 article-title: Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions publication-title: Mol. Plant doi: 10.1016/j.molp.2015.01.005 – volume: 193 start-page: 665 year: 2012 ident: 10.1016/j.molp.2021.09.016_bib69 article-title: Methylated arsenic species in plants originate from soil microorganisms publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03956.x – volume: 235 start-page: 1173 year: 1987 ident: 10.1016/j.molp.2021.09.016_bib146 article-title: Why nature chose phosphates publication-title: Science doi: 10.1126/science.2434996 – volume: 47 start-page: 3082 year: 2013 ident: 10.1016/j.molp.2021.09.016_bib8 article-title: Mercury localization and speciation in plants grown hydroponically or in a natural environment publication-title: Environ. Sci. Technol. doi: 10.1021/es303310t – volume: 97 start-page: 4627 year: 2000 ident: 10.1016/j.molp.2021.09.016_bib60 article-title: A biological function for cadmium in marine diatoms publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.090091397 – volume: 51 start-page: 885 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib77 article-title: Durum wheat genome highlights past domestication signatures and future improvement targets publication-title: Nat. Genet. doi: 10.1038/s41588-019-0381-3 – volume: 181 start-page: 777 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib174 article-title: Arsenic uptake and metabolism in plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02716.x – volume: 328 start-page: 27 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib119 article-title: Rice is more efficient in arsenite uptake and translocation than wheat and barley publication-title: Plant Soil doi: 10.1007/s11104-009-0074-2 – volume: 24 start-page: 533 year: 2000 ident: 10.1016/j.molp.2021.09.016_bib125 article-title: Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00901.x – volume: 37 start-page: 1219 year: 2011 ident: 10.1016/j.molp.2021.09.016_bib62 article-title: Inorganic arsenic in Chinese food and its cancer risk publication-title: Environ. Int. doi: 10.1016/j.envint.2011.05.007 – volume: 47 start-page: 9355 year: 2013 ident: 10.1016/j.molp.2021.09.016_bib22 article-title: Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach publication-title: Environ. Sci. Technol. doi: 10.1021/es4012096 – volume: 28 start-page: 2250 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib82 article-title: Characterization of lead precipitate following uptake by roots of Brassica juncea publication-title: Environ. Toxicol. Chem. doi: 10.1897/09-131.1 – volume: 42 start-page: 1051 year: 2008 ident: 10.1016/j.molp.2021.09.016_bib78 article-title: Speciation and localization of arsenic in white and brown rice grains publication-title: Environ. Sci. Technol. doi: 10.1021/es702212p – volume: 152 start-page: 309 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib7 article-title: Grain unloading of arsenic species in rice publication-title: Plant Physiol. doi: 10.1104/pp.109.146126 – volume: 19 start-page: 1123 year: 2007 ident: 10.1016/j.molp.2021.09.016_bib10 article-title: A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation publication-title: Plant Cell doi: 10.1105/tpc.106.041871 – volume: 152 start-page: 2211 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib67 article-title: Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.109.150862 – volume: 36 start-page: 79 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib30 article-title: Effects of OsNRAMP5 mutation on heat tolerance and main economic traits of rice under the conditions of different manganese concentration (in Chinese) publication-title: Hybrid Rice – volume: 201 start-page: 104 year: 2014 ident: 10.1016/j.molp.2021.09.016_bib92 article-title: Combined NanoSIMS and synchrotron X-ray fluorescence reveals distinct cellular and subcellular distribution patterns of trace elements in rice tissues publication-title: New Phytol. doi: 10.1111/nph.12497 – volume: 217 start-page: 206 year: 2018 ident: 10.1016/j.molp.2021.09.016_bib141 article-title: Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana publication-title: New Phytol. doi: 10.1111/nph.14761 – volume: 10 start-page: 4985 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib94 article-title: Rice production threatened by coupled stresses of climate and soil arsenic publication-title: Nat. Commun. doi: 10.1038/s41467-019-12946-4 – volume: 58 start-page: 904 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib132 article-title: OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcx029 – volume: 267 start-page: 128893 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib15 article-title: Producing Cd-safe rice grains in moderately and seriously Cd-contaminated paddy soils publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128893 – volume: 289 start-page: 117918 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib36 article-title: Two-year and multi-site field trials to evaluate soil amendments for controlling cadmium accumulation in rice grain publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117918 – volume: 448 start-page: 209 year: 2007 ident: 10.1016/j.molp.2021.09.016_bib76 article-title: An efflux transporter of silicon in rice publication-title: Nature doi: 10.1038/nature05964 – volume: 121 start-page: 1047 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib147 article-title: Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum) publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-010-1370-1 – volume: 69 start-page: 953 year: 2018 ident: 10.1016/j.molp.2021.09.016_bib33 article-title: Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.02.009 – volume: 65 start-page: 6013 year: 2014 ident: 10.1016/j.molp.2021.09.016_bib107 article-title: Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru340 – volume: 24 start-page: 2155 year: 2012 ident: 10.1016/j.molp.2021.09.016_bib108 article-title: Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice publication-title: Plant Cell doi: 10.1105/tpc.112.096925 – volume: 44 start-page: 8108 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib111 article-title: Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings publication-title: Environ. Sci. Technol. doi: 10.1021/es101139z – volume: 107 start-page: 21187 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib116 article-title: Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1013964107 – volume: 209 start-page: 762 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib29 article-title: A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter publication-title: New Phytol. doi: 10.1111/nph.13472 – volume: 49 start-page: 113 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib87 article-title: Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2016.10.004 – volume: 485 start-page: 428 year: 2014 ident: 10.1016/j.molp.2021.09.016_bib97 article-title: Lead in rice: analysis of baseline lead levels in market and field collected rice grains publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.03.090 – volume: 48 start-page: 7552 year: 2014 ident: 10.1016/j.molp.2021.09.016_bib38 article-title: Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification publication-title: Environ. Sci. Technol. doi: 10.1021/es405234p – volume: 70 start-page: 5537 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib23 article-title: Safer food through plant science: reducing toxic element accumulation in crops publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz366 – volume: 286 start-page: 106651 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib47 article-title: Assessment of phytoextraction using Sedum plumbizincicola and rice production in Cd-polluted acid paddy soils of south China: a field study publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2019.106651 – volume: 40 start-page: 5730 year: 2006 ident: 10.1016/j.molp.2021.09.016_bib68 article-title: Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.) publication-title: Environ. Sci. Technol. doi: 10.1021/es060800v – volume: 1 start-page: 489 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib61 article-title: Breeding for low cadmium barley by introgression of a Sukkula-like transposable element publication-title: Nat. Food doi: 10.1038/s43016-020-0130-x – volume: 219 start-page: 641 year: 2018 ident: 10.1016/j.molp.2021.09.016_bib123 article-title: Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots publication-title: New Phytol. doi: 10.1111/nph.15190 – volume: 225 start-page: 1383 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib102 article-title: Functional evolution of nodulin 26-like intrinsic proteins: from bacterial arsenic detoxification to plant nutrient transport publication-title: New Phytol. doi: 10.1111/nph.16217 – volume: 61 start-page: 535 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib172 article-title: Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112152 – year: 2021 ident: 10.1016/j.molp.2021.09.016_bib129 article-title: Natural variations in the P-type ATPase heavy metal transporter ZmHMA3 controlling cadmium accumulation in maize grains publication-title: J. Exp. Bot. doi: 10.1093/jxb/erab254 – volume: 307 start-page: 110894 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib161 article-title: The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice publication-title: Plant Sci. doi: 10.1016/j.plantsci.2021.110894 – volume: 67 start-page: 6051 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib145 article-title: The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw362 – volume: 62 start-page: 4391 year: 2011 ident: 10.1016/j.molp.2021.09.016_bib84 article-title: The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic publication-title: J. Exp. Bot. doi: 10.1093/jxb/err158 – volume: 68 start-page: 5641 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib112 article-title: Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx364 – volume: 171 start-page: 1418 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib88 article-title: Cytokinin determines thiol-mediated arsenic tolerance and accumulation publication-title: Plant Physiol. – volume: 165 start-page: 109 year: 2012 ident: 10.1016/j.molp.2021.09.016_bib80 article-title: The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2012.02.018 – volume: 11 start-page: 4778 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib73 article-title: Resequencing of 1,143 indica rice accessions reveals important genetic variations and different heterosis patterns publication-title: Nat. Commun. doi: 10.1038/s41467-020-18608-0 – volume: 105 start-page: 9931 year: 2008 ident: 10.1016/j.molp.2021.09.016_bib75 article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0802361105 – volume: 111 start-page: 15699 year: 2014 ident: 10.1016/j.molp.2021.09.016_bib115 article-title: A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1414968111 – volume: 47 start-page: 3957 year: 2013 ident: 10.1016/j.molp.2021.09.016_bib173 article-title: Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/es304295n – volume: 118 start-page: 1183 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib166 article-title: In inland China, rice, rather than fish, is the major pathway for methylmercury exposure publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1001915 – volume: 266 start-page: 115193 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib140 article-title: Three-year field experiment on the risk reduction, environmental merit, and cost assessment of four in situ remediation technologies for metal(loid)-contaminated agricultural soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115193 – volume: 55 start-page: 8665 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib26 article-title: Dynamics of dimethylated monothioarsenate (DMMTA) in paddy soils and its accumulation in rice grains publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c00133 – volume: 12 start-page: e0173681 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib53 article-title: Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana publication-title: PLoS One doi: 10.1371/journal.pone.0173681 – volume: 109 start-page: 1427 year: 1995 ident: 10.1016/j.molp.2021.09.016_bib105 article-title: Mechanisms of cadmium mobility and accumulation in Indian mustard publication-title: Plant Physiol. doi: 10.1104/pp.109.4.1427 – volume: 154 start-page: 108129 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib14 article-title: Sulfate addition and rising temperature promote arsenic methylation and the formation of methylated thioarsenates in paddy soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108129 – volume: 68 start-page: 3007 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib21 article-title: The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx165 – volume: 20 start-page: 413 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib89 article-title: Arabidopsis CNGC family members contribute to heavy metal ion uptake in plants publication-title: Inter. J. Mol. Sci. doi: 10.3390/ijms20020413 – volume: 13 start-page: 385 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib3 article-title: Transport of inorganic mercury and methylmercury in target tissues and organs publication-title: J. Toxicol. Environ. Health B Crit. Rev. doi: 10.1080/10937401003673750 – volume: 218 start-page: 407 year: 2018 ident: 10.1016/j.molp.2021.09.016_bib103 article-title: A global database for plants that hyperaccumulate metal and metalloid trace elements publication-title: New Phytol. doi: 10.1111/nph.14907 – volume: 172 start-page: 1899 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib152 article-title: The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron publication-title: Plant Physiol. doi: 10.1104/pp.16.01189 – volume: 16 start-page: 1691 year: 2018 ident: 10.1016/j.molp.2021.09.016_bib27 article-title: Engineering rice with lower grain arsenic publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12905 – volume: 70 start-page: 6389 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib122 article-title: Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz400 – volume: 10 start-page: 9 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib31 article-title: Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars publication-title: Rice doi: 10.1186/s12284-017-0149-2 – volume: 331 start-page: 119 year: 2015 ident: 10.1016/j.molp.2021.09.016_bib138 article-title: Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury publication-title: Toxicology doi: 10.1016/j.tox.2015.03.005 – volume: 177 start-page: 1691 year: 2018 ident: 10.1016/j.molp.2021.09.016_bib28 article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice publication-title: Plant Physiol. doi: 10.1104/pp.18.00485 – volume: 185 start-page: 434 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib90 article-title: NanoSIMS analysis of arsenic and selenium in cereal grain publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.03071.x – volume: 180 start-page: 529 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib170 article-title: The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation publication-title: Plant Physiol. doi: 10.1104/pp.18.01380 – volume: 156 start-page: 913 year: 2011 ident: 10.1016/j.molp.2021.09.016_bib91 article-title: NanoSIMS analysis reveals contrasting patterns of arsenic and silicon localization in rice roots publication-title: Plant Physiol. doi: 10.1104/pp.111.173088 – volume: 54 start-page: 12072 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib41 article-title: Chemical speciation and distribution of cadmium in rice grain and implications for bioavailability to humans publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c03001 – volume: 60 start-page: 2677 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib136 article-title: Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp119 – volume: 108 start-page: 20959 year: 2011 ident: 10.1016/j.molp.2021.09.016_bib137 article-title: Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1116531109 – volume: 30 start-page: 2720 year: 2018 ident: 10.1016/j.molp.2021.09.016_bib163 article-title: Genome-wide association studies reveal the genetic basis of ionomic variation in rice publication-title: Plant Cell doi: 10.1105/tpc.18.00375 – volume: 453 start-page: 391 year: 2008 ident: 10.1016/j.molp.2021.09.016_bib43 article-title: Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4 publication-title: Nature doi: 10.1038/nature06877 – volume: 13 start-page: 282 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib143 article-title: Thiolated arsenic species observed in rice paddy pore waters publication-title: Nat. Geosci. doi: 10.1038/s41561-020-0533-1 – volume: 17 start-page: e1009636 year: 2021 ident: 10.1016/j.molp.2021.09.016_bib160 article-title: A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1009636 – volume: 172 start-page: 1708 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib113 article-title: OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation publication-title: Plant Physiol. doi: 10.1104/pp.16.01332 – volume: 456 start-page: 679 year: 2008 ident: 10.1016/j.molp.2021.09.016_bib85 article-title: Characterization of substrate specificity of a rice silicon transporter, Lsi1 publication-title: Pflugers Arch. doi: 10.1007/s00424-007-0408-y – volume: 43 start-page: 5878 year: 2009 ident: 10.1016/j.molp.2021.09.016_bib95 article-title: Phytoextraction by rice capable of accumulating Cd at high levels: reduction of Cd content of rice grain publication-title: Environ. Sci. Technol. doi: 10.1021/es8036687 – volume: 186 start-page: 392 year: 2010 ident: 10.1016/j.molp.2021.09.016_bib177 article-title: The role of the rice aquaporin Lsi1 in arsenite efflux from roots publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03192.x – volume: 116 start-page: 1063 year: 1998 ident: 10.1016/j.molp.2021.09.016_bib25 article-title: The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants publication-title: Plant Physiol. doi: 10.1104/pp.116.3.1063 – volume: 401 start-page: 243 year: 2016 ident: 10.1016/j.molp.2021.09.016_bib131 article-title: Phytotoxicity and detoxification mechanism differ among inorganic and methylated arsenic species in Arabidopsis thaliana publication-title: Plant Soil doi: 10.1007/s11104-015-2739-3 – volume: 9 start-page: 19482 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib101 article-title: Transcriptional plasticity buffers genetic variation in zinc homeostasis publication-title: Sci. Rep. doi: 10.1038/s41598-019-55736-0 – volume: 70 start-page: 2857 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib120 article-title: Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz093 – volume: 51 start-page: 11553 year: 2017 ident: 10.1016/j.molp.2021.09.016_bib49 article-title: Field study of rice yield diminished by soil arsenic in Bangladesh publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01487 – volume: 157 start-page: 269 year: 2011 ident: 10.1016/j.molp.2021.09.016_bib19 article-title: OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice publication-title: Plant Physiol. doi: 10.1104/pp.111.181669 – volume: 66 start-page: 28 year: 2020 ident: 10.1016/j.molp.2021.09.016_bib52 article-title: Mechanisms of cadmium accumulation in rice grains and molecular breeding for its reduction publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2020.1719806 – volume: 10 start-page: 2562 year: 2019 ident: 10.1016/j.molp.2021.09.016_bib158 article-title: Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies publication-title: Nat. Commun. doi: 10.1038/s41467-019-10544-y – volume: 39 start-page: 629 year: 2004 ident: 10.1016/j.molp.2021.09.016_bib114 article-title: Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02161.x – volume: 50 start-page: 1128 year: 2011 ident: 10.1016/j.molp.2021.09.016_bib134 article-title: Arsenate replacing phosphate: alternative life chemistries and ion promiscuity publication-title: Biochemistry doi: 10.1021/bi200002a |
SSID | ssj0060863 |
Score | 2.6751678 |
SecondaryResourceType | review_article |
Snippet | Agricultural soils are under threat of toxic metal/metalloid contamination from anthropogenic activities, leading to excessive accumulation of arsenic (As),... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 27 |
SubjectTerms | arsenic Biodegradation, Environmental Biological Transport - drug effects cadmium Crops, Agricultural - drug effects Crops, Agricultural - genetics Crops, Agricultural - growth & development detoxification Food Safety genes genetically modified organisms germplasm heavy metals human health hyperaccumulators iron lead manganese mercury Metalloids - toxicity Metals, Heavy - toxicity methylation phosphates phytochelatins phytoremediation Plant Breeding - methods quantitative traits silicon Soil - chemistry Soil Pollutants - toxicity toxic metals/metalloids toxicity transcription (genetics) transporters zinc |
Title | Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food |
URI | https://dx.doi.org/10.1016/j.molp.2021.09.016 https://www.ncbi.nlm.nih.gov/pubmed/34619329 https://www.proquest.com/docview/2580696411 https://www.proquest.com/docview/2636698523 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ59NBL6LubposKvXXN6mHJcm7J0rDpI5Q2C3sTsi2Dm429ZL2Q_vvO2HKg0O6hNyE0RmjGM59G8yDkfSmFMUqg_yuREeB_HjnneOSNYlJlLmYGs5G_Xun5Iv60VMs9MhtyYTCsMuj-Xqd32jrMTMNpTtdVNf2B8fOCAX7AomdMm31yKGSqQbQPzy4_z68GhawBtXdx9rA-QoKQO9OHed02KyxbKXhX7hTbnv_dPv0Lf3Z26OIJOQoAkp71e3xK9nz9jDw6bwDk_XpOttfNfZXTWw-YekNdXfTDVVMVm1O6WLfuxk9oO1Q0n9DCt0BRBs_dhMKpwy3cdwkl_Qx-BPt80arzP3TuRApQl25c6e9g1BQvyOLi4_VsHoXOClEeK9VGiVMFsMQbjH5QTuW-BLNkBMCNxMENTrMyS5j2mS4lgoiMxZ7HvHApj53WSr4kB3VT-9eEyiwBTMjizGOdnNw4rgwvC4DBwgNT8hHhw3naPJQdx-4XKzvEl_20yAOLPLAstTA1Ih8eaNZ90Y2dq9XAJvuH6FiwCjvp3g08tfBP4UOJq32z3VihDNOpjjnfsUZLrVMQczkir3qBeNirjDXi4vT4P3f2hjwWmGXRRbudkIP2buvfAvZpszHI9uz7l2_jIONjsn-5PP8NA6QDlA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpUmguJX1v2zQq9NY1K1kPy701IWHTJrl0F_YmZFsGtxt7yXoh_fedke1AIdlDbkKMjNCMZz6N5kHIl1LExqgY_V-JiAD_88g5xyNvFBMqc5IZzEa-vNLTufyxUIsdcjLkwmBYZa_7O50etHU_M-lPc7KqqskvjJ-PGeAHLHrGtHlC9gANJNi_4XxxPKhjDZg9RNkDdYTkfeZMF-R13SyxaGXMQ7FTbHp-v3V6CH0GK3R2QJ738JF-73b4guz4-iV5etwAxPv7imxmzW2V02sPiHpNXV10w2VTFetvdL5q3R8_pu1Qz3xMC9_CirL3240pnDncwX1IJ-lm8CPY5YtWwfsQnIkUgC5du9LfwKgpXpP52ensZBr1fRWiXCrVRolTBTDEG4x9UE7lvgSjZGIAG4mD-5tmZZYw7TNdCoQQGZOeS164lEuntRJvyG7d1P4doSJLABEymXmskpMbx5XhZQEgOPbAknxE-HCeNu-LjmPvi6Udost-W-SBRR5YllqYGpGvd2tWXcmNrdRqYJP9T3As2ISt6z4PPLXwR-Eziat9s1nbWBmmUy0530KjhdYpCLkYkbedQNztVUiNqDh9_8idHZFn09nlhb04v_r5gezHmG8R4t4-kt32ZuMPAQW12acg5f8AGy4Cyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxic+metals+and+metalloids%3A+Uptake%2C+transport%2C+detoxification%2C+phytoremediation%2C+and+crop+improvement+for+safer+food&rft.jtitle=Molecular+plant&rft.au=Zhao%2C+Fang-Jie&rft.au=Tang%2C+Zhong&rft.au=Song%2C+Jia-Jun&rft.au=Huang%2C+Xin-Yuan&rft.date=2022-01-03&rft.issn=1752-9867&rft.eissn=1752-9867&rft.volume=15&rft.issue=1&rft.spage=27&rft_id=info:doi/10.1016%2Fj.molp.2021.09.016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2052&client=summon |