Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review

The application of novel organic redox materials is a plausible pathway towards techno-economic energy storage targets due to their low cost and sustainable design. Their operation in non-aqueous redox flow batteries affords researchers the opportunity to innovate, design and optimise these new chem...

Full description

Saved in:
Bibliographic Details
Published inElectrochemistry communications Vol. 91; pp. 19 - 24
Main Authors Armstrong, Craig G., Toghill, Kathryn E.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of novel organic redox materials is a plausible pathway towards techno-economic energy storage targets due to their low cost and sustainable design. Their operation in non-aqueous redox flow batteries affords researchers the opportunity to innovate, design and optimise these new chemistries towards practical energy densities. Despite this, the identification of high capacity organics which also display long-term stability is inherently challenging due to the high reactivity of molecular radicals. •Redox-active organic molecules are promising new energy storage materials.•The stability of molecular free radicals is concisely reviewed.•Decomposition of radical states results in irreversible battery capacity loss.•Radical half-life depends on chemical structure and electrolyte conditions.•Neutral, anionic and cationic radicals are distinct chemical species.
AbstractList The application of novel organic redox materials is a plausible pathway towards techno-economic energy storage targets due to their low cost and sustainable design. Their operation in non-aqueous redox flow batteries affords researchers the opportunity to innovate, design and optimise these new chemistries towards practical energy densities. Despite this, the identification of high capacity organics which also display long-term stability is inherently challenging due to the high reactivity of molecular radicals. •Redox-active organic molecules are promising new energy storage materials.•The stability of molecular free radicals is concisely reviewed.•Decomposition of radical states results in irreversible battery capacity loss.•Radical half-life depends on chemical structure and electrolyte conditions.•Neutral, anionic and cationic radicals are distinct chemical species.
Author Armstrong, Craig G.
Toghill, Kathryn E.
Author_xml – sequence: 1
  givenname: Craig G.
  surname: Armstrong
  fullname: Armstrong, Craig G.
– sequence: 2
  givenname: Kathryn E.
  orcidid: 0000-0002-1890-6818
  surname: Toghill
  fullname: Toghill, Kathryn E.
  email: k.toghill@lancaster.ac.uk
BookMark eNp9kM9OwzAMhyMEEtvgDTjkBVriNk1SDkjTxD9pEgfgwiVKUxdlahtIOsbenkzjzMmWrN9n-5uT09GPSMgVsBwYiOtNjj1aP-QFA5UznjOQJ2QGSpYZ1Kw4TX2pVFZwBedkHuOGMSjqupyR95fJNK530576jg4-cba9CTSY1lnTR-pG6sOHGZ2laWtmvrbot5EGbP0P7Xq_o42ZJgwO4w1d0sGNLg2_He4uyFmXCHj5Vxfk7f7udfWYrZ8fnlbLdWZ5VU2ZFAxrZU2llKhB8MaiUaaqrORNWQMTXAJnqikbBV2LJj1RSVFYaxtAKbpyQfiRa4OPMWCnP4MbTNhrYPrgR2_00Y8--NGM6-QnxW6PMUy3pXuDjtbhaLF1Ae2kW-_-B_wCiLVzAw
CitedBy_id crossref_primary_10_1149_1945_7111_ab9b0d
crossref_primary_10_1007_s12274_019_2355_2
crossref_primary_10_1039_D3DD00050H
crossref_primary_10_1016_j_jechem_2021_10_037
crossref_primary_10_1021_acssuschemeng_9b07244
crossref_primary_10_1021_acs_chemrev_9b00482
crossref_primary_10_1002_cssc_201903379
crossref_primary_10_1016_j_coelec_2019_12_006
crossref_primary_10_1016_j_electacta_2019_01_140
crossref_primary_10_1021_acsami_3c11741
crossref_primary_10_1039_D0MH01632B
crossref_primary_10_1016_j_cej_2021_133564
crossref_primary_10_1021_acs_chemmater_9b05345
crossref_primary_10_1002_aenm_202400721
crossref_primary_10_1016_j_elecom_2023_107509
crossref_primary_10_1021_jacs_3c14776
crossref_primary_10_1073_pnas_2105889118
crossref_primary_10_3390_batteries9040215
crossref_primary_10_1007_s11814_020_0669_0
crossref_primary_10_1021_acsaem_3c02171
crossref_primary_10_1021_jacs_3c05210
crossref_primary_10_1016_j_jpowsour_2019_227037
crossref_primary_10_1016_j_surfcoat_2018_11_028
crossref_primary_10_1002_batt_201900056
crossref_primary_10_1070_RCR5025
crossref_primary_10_1002_chem_201903360
crossref_primary_10_1016_j_jelechem_2020_114241
crossref_primary_10_1039_D2SC03450F
crossref_primary_10_3390_batteries4040054
crossref_primary_10_1002_cssc_202300303
crossref_primary_10_1016_j_coelec_2020_05_006
crossref_primary_10_1002_batt_202300519
crossref_primary_10_1039_D2NJ03495F
crossref_primary_10_1246_cl_190905
crossref_primary_10_1039_C9CC07937H
crossref_primary_10_3390_batteries8100193
crossref_primary_10_1016_j_jpowsour_2019_02_021
crossref_primary_10_1016_j_elecom_2019_106625
crossref_primary_10_1039_D2CC06011F
crossref_primary_10_1016_j_electacta_2019_135580
crossref_primary_10_1088_2516_1083_ad0913
crossref_primary_10_1016_j_memsci_2021_120002
crossref_primary_10_1021_acs_chemmater_9b02376
crossref_primary_10_3390_batteries9100504
crossref_primary_10_1002_cssc_202300128
crossref_primary_10_1002_aenm_202203532
crossref_primary_10_1016_j_coche_2022_100856
crossref_primary_10_1039_D3MA00417A
crossref_primary_10_1016_j_jpowsour_2022_232611
crossref_primary_10_1039_D0SE00800A
crossref_primary_10_1016_j_matt_2019_05_009
crossref_primary_10_1016_j_jcis_2022_11_057
crossref_primary_10_3762_bjoc_19_88
crossref_primary_10_1021_jacs_1c13543
crossref_primary_10_1039_D0DT02462G
crossref_primary_10_1016_j_elecom_2019_106530
crossref_primary_10_1021_acs_orglett_9b04545
crossref_primary_10_1016_j_ensm_2021_07_006
crossref_primary_10_1016_j_chempr_2019_07_006
crossref_primary_10_1016_j_coelec_2019_08_006
crossref_primary_10_1002_aenm_202401197
crossref_primary_10_1002_chem_202101516
crossref_primary_10_1016_j_molstruc_2022_133739
crossref_primary_10_1021_acs_jpcb_2c00719
crossref_primary_10_1038_s41578_022_00511_3
crossref_primary_10_1149_1945_7111_abb7e9
crossref_primary_10_1088_1742_6596_1942_1_012007
crossref_primary_10_1039_D1SC04990A
crossref_primary_10_1016_j_jpowsour_2021_229983
crossref_primary_10_1039_C9SC04213J
crossref_primary_10_1002_cssc_201901702
crossref_primary_10_1002_celc_202001584
Cites_doi 10.1016/j.jpowsour.2016.06.125
10.1039/C6EE02027E
10.1149/2.0811412jes
10.1039/C7TA05883G
10.1002/er.1658
10.1021/jacs.7b00147
10.1002/cphc.201402674
10.1063/1.5010210
10.1039/C4EE02158D
10.1149/1.2108706
10.1021/acsenergylett.7b00019
10.1002/aenm.201701272
10.1002/anie.201610582
10.1002/aenm.201401782
10.1002/aenm.201200322
10.1016/j.elecom.2015.07.013
10.1039/C3CC47503D
10.1002/cplu.201402099
10.1039/c2cc32466k
10.1021/acs.chemmater.6b00640
10.1021/acsenergylett.6b00255
10.1149/2.0081601jes
10.1149/2.0971602jes
10.1002/adma.201405840
10.1002/anie.201501443
10.1002/adsu.201700131
10.1039/C8TA01059E
10.1039/C6TA01177B
10.1016/j.electacta.2017.05.167
10.1002/ente.201500020
10.1002/aenm.201602027
10.1021/acs.jpcc.7b08281
10.1016/j.elecom.2010.09.013
10.1039/C4TA04730C
10.1007/BF01016050
10.1021/acs.chemmater.5b04053
10.1016/j.jpowsour.2017.03.019
10.1016/j.jpowsour.2010.12.096
10.1016/j.joule.2017.08.018
10.1021/jacs.5b09572
10.1021/acsenergylett.7b00559
10.1039/C4TA04463K
10.1039/C4TA06622G
10.1149/2.1511707jes
10.1039/C5TA02380G
10.1038/srep39101
10.1149/2.012112esl
10.1002/adma.201403746
10.1021/acs.accounts.6b00341
10.1016/j.ijhydene.2017.03.034
10.1021/acsenergylett.7b00261
10.1016/j.electacta.2009.05.017
10.1021/jp503767h
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.elecom.2018.04.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-1902
EndPage 24
ExternalDocumentID 10_1016_j_elecom_2018_04_017
S1388248118300870
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SSG
SSK
SSZ
T5K
UNMZH
XFK
XPP
ZMT
~G-
AAXKI
AAYXX
ACRPL
ADNMO
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c455t-760e98ca58869164bcea8a55c74b39106471408b3b81fdea2485762cccb1e76f3
IEDL.DBID AIKHN
ISSN 1388-2481
IngestDate Fri Dec 06 04:03:42 EST 2024
Fri Feb 23 02:28:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Redox flow batteries
Non-aqueous electrolyte
Redox active organics
Molecular radicals
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-760e98ca58869164bcea8a55c74b39106471408b3b81fdea2485762cccb1e76f3
ORCID 0000-0002-1890-6818
OpenAccessLink https://eprints.lancs.ac.uk/id/eprint/124854/1/1_s2.0_S1388248118300870_main.pdf
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_elecom_2018_04_017
elsevier_sciencedirect_doi_10_1016_j_elecom_2018_04_017
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Electrochemistry communications
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Carino, Staszak-Jirkovsky, Assary, Curtiss, Markovic, Brushett (bb0280) 2016; 28
Doris, Ward, Baskin, Frischmann, Gavvalapalli, Chénard, Sevov, Prendergast, Moore, Helms (bb0045) 2017; 56
Wei, Xu, Vijayakumar, Cosimbescu, Liu, Sprenkle, Wang (bb0115) 2014; 26
Wei, Xu, Huang, Zhang, Walter, Lawrence, Vijayakumar, Henderson, Liu, Cosimbescu, Li, Sprenkle, Wang (bb0095) 2015; 54
Beh, De Porcellinis, Gracia, Xia, Gordon, Aziz (bb0025) 2017; 2
Wedege, Dražević, Konya, Bentien (bb0030) 2016; 6
Huang, Yang, Vijayakumar, Duan, Hollas, Pan, Wang, Wei, Zhang (bb0190) 2018; 2
Brushett, Vaughey, Jansen (bb0195) 2012; 2
Zhang, Shkrob, Assary, Tung, Silcox, Curtiss, Thompson, Zhang (bb0225) 2017; 121
Ergun, Elliott, Kaur, Parkin, Odom (bb0255) 2014; 118
Hendriks, Sevov, Cook, Sanford (bb0160) 2017; 2
Su, Ferrandon, Kowalski, Vaughey, Brushett (bb0235) 2014; 161
Wang, Xu, Cosimbescu, Choi, Li, Yang (bb0170) 2012; 48
Kaur, Ergun, Elliott, Odom (bb0265) 2014; 2
Clayden, Greeves, Warren, Wothers (bb0100) 2001
Milshtein, Kaur, Casselman, Kowalski, Modekrutti, Zhang, Attanayake, Elliott, Parkin, Risko, Brushett, Odom (bb0250) 2016; 9
Duan, Vemuri, Milshtein, Laramie, Dmello, Huang, Zhang, Hu, Vijayakumar, Wang, Liu, Darling, Thompson, Smith, Moore, Brushett, Wei (bb0145) 2016; 4
Potash, McKone, Conte, Abruña (bb0185) 2016; 163
Skyllas-Kazacos, Kazacos, Poon, Verseema (bb0005) 2010; 34
Suttil, Kucharyson, Escalante-Garcia, Cabrera, James, Savinell, Sanford, Thompson (bb0075) 2015; 3
Burgess, Moore, Rodríguez-López (bb0055) 2016; 49
Su, Ferrandon, Barton, de la Rosa, Vaughey, Brushett (bb0230) 2017; 246
Winsberg, Hagemann, Muench, Friebe, Häupler, Janoschka, Morgenstern, Hager, Schubert (bb0060) 2016; 28
Skyllas-Kazacos, Rychcik, Robins, Fane, Green (bb0010) 1986; 133
Kaur, Holubowitch, Ergun, Elliott, Odom (bb0205) 2015; 3
Chen, Eisenach, Aziz (bb0035) 2016; 163
Ergun, Elliott, Kaur, Parkin, Odom (bb0260) 2014; 50
Huang, Duan, Zhang, Shkrob, Assary, Pan, Liao, Zhang, Wei, Zhang (bb0210) 2018; 6
Bauld (bb0105) 1997
Darling, Gallagher, Kowalski, Ha, Brushett (bb0020) 2014; 7
Narayana, Casselman, Elliott, Ergun, Parkin, Risko, Odom (bb0245) 2015; 16
Matsuda, Tanaka, Okada, Takasu, Morita, Matsumura-Inoue (bb0070) 1988; 18
Xing, Huo, Wang, Zhao, Li (bb0140) 2017; 42
Takechi, Kato, Hase (bb0135) 2015; 27
Kim, Lee, Han, Ryu, Oh (bb0275) 2017; 348
Compton, Banks (bb0165) 2011
Oh, Lee, Chun, Jeon, Shim, Shin, Yang (bb0065) 2014; 2
Shinkle, Sleightholme, Griffith, Thompson, Monroe (bb0080) 2012; 206
Sevov, Brooner, Chénard, Assary, Moore, Rodríguez-López, Sanford (bb0150) 2015; 137
Kim, Kim, Ariga (bb0050) 2017; 1
Kim, Hwang, Kim, Ryu, Oh, Kim (bb0175) 2018; 6
Huang, Su, Kowalski, Barton, Ferrandon, Burrell, Brushett, Zhang (bb0240) 2015; 3
Duan, Huang, Kowalski, Shkrob, Vijayakumar, Walter, Pan, Yang, Milshtein, Li, Liao, Zhang, Wang, Liu, Moore, Brushett, Zhang, Wei (bb0200) 2017; 2
Park, Shim, Yang, Shin, Jin, Lee, Lee, Jeon (bb0125) 2015; 59
Wei, Duan, Huang, Zhang, Li, Reed, Xu, Sprenkle, Wang (bb0180) 2016; 1
Huang, Pan, Duan, Wei, Assary, Su, Brushett, Cheng, Liao, Ferrandon, Wang, Zhang, Burrell, Curtiss, Shkrob, Moore, Zhang (bb0090) 2016; 6
Liu, Shinkle, Li, Monroe, Thompson, Sleightholme (bb0085) 2010; 12
Huang, Cheng, Assary, Wang, Xue, Burrell, Curtiss, Zhang (bb0215) 2015; 5
Zhang, Yang, Shkrob, Assary, On Tung, Silcox, Duan, Zhang, Su, Hu, Pan, Liao, Zhang, Wang, Curtiss, Thompson, Wei, Zhang (bb0220) 2017; 7
Huang, Wang (bb0015) 2015; 80
Chen, Qin, Amine (bb0110) 2009; 54
Li, Li, Liu, Huang, Fang, Wang, Peng (bb0120) 2011; 14
Montoto, Nagarjuna, Moore, Rodríguez-López (bb0040) 2017; 164
Kowalski, Casselman, Kaur, Milshtein, Elliott, Modekrutti, Attanayake, Zhang, Parkin, Risko, Brushett, Odom (bb0270) 2017; 5
Sevov, Hickey, Cook, Robinson, Barnett, Minteer, Sigman, Sanford (bb0155) 2017; 139
Sevov, Samaroo, Sanford (bb0285) 2017; 7
Milshtein, Barton, Darling, Brushett (bb0130) 2016; 327
Beh (10.1016/j.elecom.2018.04.017_bb0025) 2017; 2
Narayana (10.1016/j.elecom.2018.04.017_bb0245) 2015; 16
Kim (10.1016/j.elecom.2018.04.017_bb0275) 2017; 348
Sevov (10.1016/j.elecom.2018.04.017_bb0155) 2017; 139
Huang (10.1016/j.elecom.2018.04.017_bb0215) 2015; 5
Park (10.1016/j.elecom.2018.04.017_bb0125) 2015; 59
Milshtein (10.1016/j.elecom.2018.04.017_bb0130) 2016; 327
Ergun (10.1016/j.elecom.2018.04.017_bb0255) 2014; 118
Huang (10.1016/j.elecom.2018.04.017_bb0015) 2015; 80
Kaur (10.1016/j.elecom.2018.04.017_bb0265) 2014; 2
Milshtein (10.1016/j.elecom.2018.04.017_bb0250) 2016; 9
Shinkle (10.1016/j.elecom.2018.04.017_bb0080) 2012; 206
Wang (10.1016/j.elecom.2018.04.017_bb0170) 2012; 48
Huang (10.1016/j.elecom.2018.04.017_bb0190) 2018; 2
Liu (10.1016/j.elecom.2018.04.017_bb0085) 2010; 12
Potash (10.1016/j.elecom.2018.04.017_bb0185) 2016; 163
Burgess (10.1016/j.elecom.2018.04.017_bb0055) 2016; 49
Chen (10.1016/j.elecom.2018.04.017_bb0110) 2009; 54
Xing (10.1016/j.elecom.2018.04.017_bb0140) 2017; 42
Huang (10.1016/j.elecom.2018.04.017_bb0210) 2018; 6
Kowalski (10.1016/j.elecom.2018.04.017_bb0270) 2017; 5
Duan (10.1016/j.elecom.2018.04.017_bb0200) 2017; 2
Su (10.1016/j.elecom.2018.04.017_bb0230) 2017; 246
Sevov (10.1016/j.elecom.2018.04.017_bb0150) 2015; 137
Winsberg (10.1016/j.elecom.2018.04.017_bb0060) 2016; 28
Zhang (10.1016/j.elecom.2018.04.017_bb0220) 2017; 7
Kim (10.1016/j.elecom.2018.04.017_bb0175) 2018; 6
Wedege (10.1016/j.elecom.2018.04.017_bb0030) 2016; 6
Sevov (10.1016/j.elecom.2018.04.017_bb0285) 2017; 7
Huang (10.1016/j.elecom.2018.04.017_bb0090) 2016; 6
Clayden (10.1016/j.elecom.2018.04.017_bb0100) 2001
Kim (10.1016/j.elecom.2018.04.017_bb0050) 2017; 1
Suttil (10.1016/j.elecom.2018.04.017_bb0075) 2015; 3
Bauld (10.1016/j.elecom.2018.04.017_bb0105) 1997
Ergun (10.1016/j.elecom.2018.04.017_bb0260) 2014; 50
Montoto (10.1016/j.elecom.2018.04.017_bb0040) 2017; 164
Li (10.1016/j.elecom.2018.04.017_bb0120) 2011; 14
Kaur (10.1016/j.elecom.2018.04.017_bb0205) 2015; 3
Takechi (10.1016/j.elecom.2018.04.017_bb0135) 2015; 27
Chen (10.1016/j.elecom.2018.04.017_bb0035) 2016; 163
Zhang (10.1016/j.elecom.2018.04.017_bb0225) 2017; 121
Wei (10.1016/j.elecom.2018.04.017_bb0115) 2014; 26
Su (10.1016/j.elecom.2018.04.017_bb0235) 2014; 161
Matsuda (10.1016/j.elecom.2018.04.017_bb0070) 1988; 18
Duan (10.1016/j.elecom.2018.04.017_bb0145) 2016; 4
Huang (10.1016/j.elecom.2018.04.017_bb0240) 2015; 3
Wei (10.1016/j.elecom.2018.04.017_bb0180) 2016; 1
Skyllas-Kazacos (10.1016/j.elecom.2018.04.017_bb0010) 1986; 133
Carino (10.1016/j.elecom.2018.04.017_bb0280) 2016; 28
Doris (10.1016/j.elecom.2018.04.017_bb0045) 2017; 56
Oh (10.1016/j.elecom.2018.04.017_bb0065) 2014; 2
Hendriks (10.1016/j.elecom.2018.04.017_bb0160) 2017; 2
Skyllas-Kazacos (10.1016/j.elecom.2018.04.017_bb0005) 2010; 34
Brushett (10.1016/j.elecom.2018.04.017_bb0195) 2012; 2
Darling (10.1016/j.elecom.2018.04.017_bb0020) 2014; 7
Compton (10.1016/j.elecom.2018.04.017_bb0165) 2011
Wei (10.1016/j.elecom.2018.04.017_bb0095) 2015; 54
References_xml – volume: 28
  start-page: 2529
  year: 2016
  end-page: 2539
  ident: bb0280
  article-title: Tuning the stability of organic active materials for nonaqueous redox flow batteries via reversible, electrochemically mediated Li
  publication-title: Chem. Mater.
  contributor:
    fullname: Brushett
– volume: 42
  start-page: 17488
  year: 2017
  end-page: 17494
  ident: bb0140
  article-title: A benzophenone-based anolyte for high energy density all-organic redox flow battery
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Li
– volume: 163
  start-page: A338
  year: 2016
  end-page: A344
  ident: bb0185
  article-title: On the benefits of a symmetric redox flow battery
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Abruña
– volume: 2
  start-page: 1390
  year: 2012
  end-page: 1396
  ident: bb0195
  article-title: An all-organic non-aqueous lithium-ion redox flow battery
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Jansen
– volume: 26
  start-page: 7649
  year: 2014
  end-page: 7653
  ident: bb0115
  article-title: TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries
  publication-title: Adv. Mater.
  contributor:
    fullname: Wang
– volume: 5
  year: 2015
  ident: bb0215
  article-title: Liquid catholyte molecules for nonaqueous redox flow batteries
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Zhang
– volume: 118
  start-page: 14824
  year: 2014
  end-page: 14832
  ident: bb0255
  article-title: Controlling oxidation potentials in redox shuttle candidates for lithium-ion batteries
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Odom
– volume: 6
  year: 2016
  ident: bb0090
  article-title: The lightest organic radical cation for charge storage in redox flow batteries
  publication-title: Sci. Rep.
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 6251
  year: 2018
  end-page: 6254
  ident: bb0210
  article-title: Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Zhang
– volume: 3
  start-page: 7929
  year: 2015
  end-page: 7938
  ident: bb0075
  article-title: Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Thompson
– volume: 164
  start-page: A1688
  year: 2017
  end-page: A1694
  ident: bb0040
  article-title: Redox active polymers for non-aqueous redox flow batteries: validation of the size-exclusion approach
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Rodríguez-López
– volume: 7
  year: 2017
  ident: bb0285
  article-title: Cyclopropenium salts as cyclable, high-potential catholytes in nonaqueous media
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Sanford
– volume: 139
  start-page: 2924
  year: 2017
  end-page: 2927
  ident: bb0155
  article-title: Physical organic approach to persistent, cyclable, low-potential electrolytes for flow battery applications
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Sanford
– volume: 161
  start-page: A1905
  year: 2014
  end-page: A1914
  ident: bb0235
  article-title: Electrolyte development for non-aqueous redox flow batteries using a high-throughput screening platform
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Brushett
– volume: 6
  start-page: 47901
  year: 2018
  ident: bb0175
  article-title: Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell
  publication-title: APL Mater.
  contributor:
    fullname: Kim
– volume: 9
  start-page: 3531
  year: 2016
  end-page: 3543
  ident: bb0250
  article-title: High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Odom
– volume: 7
  start-page: 1701272
  year: 2017
  ident: bb0220
  article-title: Annulated dialkoxybenzenes as catholyte materials for non-aqueous redox flow batteries: achieving high chemical stability through bicyclic substitution
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Zhang
– volume: 246
  start-page: 251
  year: 2017
  end-page: 258
  ident: bb0230
  article-title: An investigation of 2,5-di-
  publication-title: Electrochim. Acta
  contributor:
    fullname: Brushett
– volume: 48
  start-page: 6669
  year: 2012
  ident: bb0170
  article-title: Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery
  publication-title: Chem. Commun.
  contributor:
    fullname: Yang
– volume: 3
  start-page: 476
  year: 2015
  end-page: 480
  ident: bb0205
  article-title: A highly soluble organic catholyte for non-aqueous redox flow batteries
  publication-title: Energ. Technol.
  contributor:
    fullname: Odom
– volume: 59
  start-page: 68
  year: 2015
  end-page: 71
  ident: bb0125
  article-title: Electrochemical properties of a non-aqueous redox battery with all-organic redox couples
  publication-title: Electrochem. Commun.
  contributor:
    fullname: Jeon
– volume: 2
  year: 2018
  ident: bb0190
  article-title: A two-electron storage nonaqueous organic redox flow battery
  publication-title: Adv. Sustain. Syst.
  contributor:
    fullname: Zhang
– volume: 348
  start-page: 264
  year: 2017
  end-page: 269
  ident: bb0275
  article-title: A comparative study on the solubility and stability of
  publication-title: J. Power Sources
  contributor:
    fullname: Oh
– volume: 54
  start-page: 8684
  year: 2015
  end-page: 8687
  ident: bb0095
  article-title: Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Wang
– volume: 34
  start-page: 182
  year: 2010
  end-page: 189
  ident: bb0005
  article-title: Recent advances with UNSW vanadium-based redox flow batteries
  publication-title: Int. J. Energy Res.
  contributor:
    fullname: Verseema
– volume: 1
  start-page: 705
  year: 2016
  end-page: 711
  ident: bb0180
  article-title: A high-current, stable nonaqueous organic redox flow battery
  publication-title: ACS Energy Lett.
  contributor:
    fullname: Wang
– year: 2001
  ident: bb0100
  article-title: Organic Chemistry
  contributor:
    fullname: Wothers
– volume: 6
  year: 2016
  ident: bb0030
  article-title: Organic redox species in aqueous flow batteries: redox potentials, chemical stability and solubility
  publication-title: Sci. Rep.
  contributor:
    fullname: Bentien
– volume: 137
  start-page: 14465
  year: 2015
  end-page: 14472
  ident: bb0150
  article-title: Evolutionary design of low molecular weight organic anolyte materials for applications in nonaqueous redox flow batteries
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Sanford
– volume: 2
  start-page: 2430
  year: 2017
  end-page: 2435
  ident: bb0160
  article-title: Multielectron cycling of a low-potential anolyte in alkali metal electrolytes for nonaqueous redox flow batteries
  publication-title: ACS Energy Lett.
  contributor:
    fullname: Sanford
– volume: 80
  start-page: 312
  year: 2015
  end-page: 322
  ident: bb0015
  article-title: Next-generation, high-energy-density redox flow batteries
  publication-title: ChemPlusChem
  contributor:
    fullname: Wang
– volume: 28
  start-page: 3401
  year: 2016
  end-page: 3405
  ident: bb0060
  article-title: Poly(boron-dipyrromethene)—a redox-active polymer class for polymer redox-flow batteries
  publication-title: Chem. Mater.
  contributor:
    fullname: Schubert
– volume: 14
  start-page: A171
  year: 2011
  ident: bb0120
  article-title: Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and
  publication-title: Electrochem. Solid-State Lett.
  contributor:
    fullname: Peng
– volume: 18
  start-page: 909
  year: 1988
  end-page: 914
  ident: bb0070
  article-title: A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte
  publication-title: J. Appl. Electrochem.
  contributor:
    fullname: Matsumura-Inoue
– volume: 12
  start-page: 1634
  year: 2010
  end-page: 1637
  ident: bb0085
  article-title: Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries
  publication-title: Electrochem. Commun.
  contributor:
    fullname: Sleightholme
– volume: 27
  start-page: 2501
  year: 2015
  end-page: 2506
  ident: bb0135
  article-title: A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries
  publication-title: Adv. Mater.
  contributor:
    fullname: Hase
– year: 2011
  ident: bb0165
  article-title: Understanding Voltammetry
  contributor:
    fullname: Banks
– volume: 2
  start-page: 639
  year: 2017
  end-page: 644
  ident: bb0025
  article-title: A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention
  publication-title: ACS Energy Lett.
  contributor:
    fullname: Aziz
– volume: 54
  start-page: 5605
  year: 2009
  end-page: 5613
  ident: bb0110
  article-title: Redox shuttles for safer lithium-ion batteries
  publication-title: Electrochim. Acta
  contributor:
    fullname: Amine
– volume: 1
  start-page: 739
  year: 2017
  end-page: 768
  ident: bb0050
  article-title: Redox-active polymers for energy storage nanoarchitectonics
  publication-title: Joule
  contributor:
    fullname: Ariga
– volume: 49
  start-page: 2649
  year: 2016
  end-page: 2657
  ident: bb0055
  article-title: Redox active polymers as soluble nanomaterials for energy storage
  publication-title: Acc. Chem. Res.
  contributor:
    fullname: Rodríguez-López
– volume: 7
  start-page: 3459
  year: 2014
  end-page: 3477
  ident: bb0020
  article-title: Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Brushett
– volume: 3
  start-page: 14971
  year: 2015
  end-page: 14976
  ident: bb0240
  article-title: A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Zhang
– volume: 2
  start-page: 19994
  year: 2014
  end-page: 19998
  ident: bb0065
  article-title: A metal-free and all-organic redox flow battery with polythiophene as the electroactive species
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Yang
– volume: 16
  start-page: 1179
  year: 2015
  end-page: 1189
  ident: bb0245
  article-title: -substituted phenothiazine derivatives: how the stability of the neutral and radical cation forms affects overcharge performance in lithium-ion batteries
  publication-title: ChemPhysChem
  contributor:
    fullname: Odom
– volume: 133
  start-page: 1057
  year: 1986
  ident: bb0010
  article-title: New all-vanadium redox flow cell
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Green
– volume: 56
  start-page: 1595
  year: 2017
  end-page: 1599
  ident: bb0045
  article-title: Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Helms
– volume: 2
  start-page: 1156
  year: 2017
  end-page: 1161
  ident: bb0200
  article-title: “Wine-dark sea” in an organic flow battery: storing negative charge in 2,1,3-benzothiadiazole radicals leads to improved cyclability
  publication-title: ACS Energy Lett.
  contributor:
    fullname: Wei
– volume: 206
  start-page: 490
  year: 2012
  end-page: 496
  ident: bb0080
  article-title: Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery
  publication-title: J. Power Sources
  contributor:
    fullname: Monroe
– volume: 2
  start-page: 18190
  year: 2014
  end-page: 18193
  ident: bb0265
  article-title: 3,7-Bis(trifluoromethyl)-
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Odom
– volume: 121
  start-page: 23347
  year: 2017
  end-page: 23358
  ident: bb0225
  article-title: Toward improved catholyte materials for redox flow batteries: what controls chemical stability of persistent radical cations?
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Zhang
– volume: 327
  start-page: 151
  year: 2016
  end-page: 159
  ident: bb0130
  article-title: 4-Acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries
  publication-title: J. Power Sources
  contributor:
    fullname: Brushett
– volume: 50
  start-page: 5339
  year: 2014
  end-page: 5341
  ident: bb0260
  article-title: Overcharge performance of 3,7-disubstituted
  publication-title: Chem. Commun.
  contributor:
    fullname: Odom
– year: 1997
  ident: bb0105
  article-title: Radicals, Ion Radicals, and Triplets
  contributor:
    fullname: Bauld
– volume: 163
  start-page: A5057
  year: 2016
  end-page: A5063
  ident: bb0035
  article-title: Cycling analysis of a quinone-bromide redox flow battery
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Aziz
– volume: 4
  start-page: 5448
  year: 2016
  end-page: 5456
  ident: bb0145
  article-title: A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Wei
– volume: 5
  start-page: 24371
  year: 2017
  end-page: 24379
  ident: bb0270
  article-title: A stable two-electron-donating phenothiazine for application in nonaqueous redox flow batteries
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Odom
– volume: 327
  start-page: 151
  year: 2016
  ident: 10.1016/j.elecom.2018.04.017_bb0130
  article-title: 4-Acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.125
  contributor:
    fullname: Milshtein
– volume: 9
  start-page: 3531
  year: 2016
  ident: 10.1016/j.elecom.2018.04.017_bb0250
  article-title: High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02027E
  contributor:
    fullname: Milshtein
– volume: 161
  start-page: A1905
  year: 2014
  ident: 10.1016/j.elecom.2018.04.017_bb0235
  article-title: Electrolyte development for non-aqueous redox flow batteries using a high-throughput screening platform
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0811412jes
  contributor:
    fullname: Su
– volume: 5
  start-page: 24371
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0270
  article-title: A stable two-electron-donating phenothiazine for application in nonaqueous redox flow batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05883G
  contributor:
    fullname: Kowalski
– volume: 34
  start-page: 182
  year: 2010
  ident: 10.1016/j.elecom.2018.04.017_bb0005
  article-title: Recent advances with UNSW vanadium-based redox flow batteries
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1658
  contributor:
    fullname: Skyllas-Kazacos
– volume: 139
  start-page: 2924
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0155
  article-title: Physical organic approach to persistent, cyclable, low-potential electrolytes for flow battery applications
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00147
  contributor:
    fullname: Sevov
– volume: 16
  start-page: 1179
  year: 2015
  ident: 10.1016/j.elecom.2018.04.017_bb0245
  article-title: N-substituted phenothiazine derivatives: how the stability of the neutral and radical cation forms affects overcharge performance in lithium-ion batteries
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201402674
  contributor:
    fullname: Narayana
– volume: 6
  start-page: 47901
  year: 2018
  ident: 10.1016/j.elecom.2018.04.017_bb0175
  article-title: Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell
  publication-title: APL Mater.
  doi: 10.1063/1.5010210
  contributor:
    fullname: Kim
– volume: 7
  start-page: 3459
  year: 2014
  ident: 10.1016/j.elecom.2018.04.017_bb0020
  article-title: Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02158D
  contributor:
    fullname: Darling
– volume: 133
  start-page: 1057
  year: 1986
  ident: 10.1016/j.elecom.2018.04.017_bb0010
  article-title: New all-vanadium redox flow cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2108706
  contributor:
    fullname: Skyllas-Kazacos
– volume: 2
  start-page: 639
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0025
  article-title: A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00019
  contributor:
    fullname: Beh
– volume: 7
  start-page: 1701272
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0220
  article-title: Annulated dialkoxybenzenes as catholyte materials for non-aqueous redox flow batteries: achieving high chemical stability through bicyclic substitution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701272
  contributor:
    fullname: Zhang
– volume: 56
  start-page: 1595
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0045
  article-title: Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610582
  contributor:
    fullname: Doris
– volume: 5
  year: 2015
  ident: 10.1016/j.elecom.2018.04.017_bb0215
  article-title: Liquid catholyte molecules for nonaqueous redox flow batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401782
  contributor:
    fullname: Huang
– year: 2001
  ident: 10.1016/j.elecom.2018.04.017_bb0100
  contributor:
    fullname: Clayden
– volume: 2
  start-page: 1390
  year: 2012
  ident: 10.1016/j.elecom.2018.04.017_bb0195
  article-title: An all-organic non-aqueous lithium-ion redox flow battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200322
  contributor:
    fullname: Brushett
– volume: 59
  start-page: 68
  year: 2015
  ident: 10.1016/j.elecom.2018.04.017_bb0125
  article-title: Electrochemical properties of a non-aqueous redox battery with all-organic redox couples
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.07.013
  contributor:
    fullname: Park
– volume: 50
  start-page: 5339
  year: 2014
  ident: 10.1016/j.elecom.2018.04.017_bb0260
  article-title: Overcharge performance of 3,7-disubstituted N-ethylphenothiazine derivatives in lithium-ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC47503D
  contributor:
    fullname: Ergun
– volume: 80
  start-page: 312
  year: 2015
  ident: 10.1016/j.elecom.2018.04.017_bb0015
  article-title: Next-generation, high-energy-density redox flow batteries
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201402099
  contributor:
    fullname: Huang
– volume: 48
  start-page: 6669
  year: 2012
  ident: 10.1016/j.elecom.2018.04.017_bb0170
  article-title: Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc32466k
  contributor:
    fullname: Wang
– volume: 28
  start-page: 3401
  year: 2016
  ident: 10.1016/j.elecom.2018.04.017_bb0060
  article-title: Poly(boron-dipyrromethene)—a redox-active polymer class for polymer redox-flow batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00640
  contributor:
    fullname: Winsberg
– volume: 1
  start-page: 705
  year: 2016
  ident: 10.1016/j.elecom.2018.04.017_bb0180
  article-title: A high-current, stable nonaqueous organic redox flow battery
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00255
  contributor:
    fullname: Wei
– volume: 163
  start-page: A5057
  year: 2016
  ident: 10.1016/j.elecom.2018.04.017_bb0035
  article-title: Cycling analysis of a quinone-bromide redox flow battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0081601jes
  contributor:
    fullname: Chen
– volume: 163
  start-page: A338
  year: 2016
  ident: 10.1016/j.elecom.2018.04.017_bb0185
  article-title: On the benefits of a symmetric redox flow battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0971602jes
  contributor:
    fullname: Potash
– year: 1997
  ident: 10.1016/j.elecom.2018.04.017_bb0105
  contributor:
    fullname: Bauld
– year: 2011
  ident: 10.1016/j.elecom.2018.04.017_bb0165
  contributor:
    fullname: Compton
– volume: 27
  start-page: 2501
  year: 2015
  ident: 10.1016/j.elecom.2018.04.017_bb0135
  article-title: A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405840
  contributor:
    fullname: Takechi
– volume: 54
  start-page: 8684
  year: 2015
  ident: 10.1016/j.elecom.2018.04.017_bb0095
  article-title: Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201501443
  contributor:
    fullname: Wei
– volume: 2
  year: 2018
  ident: 10.1016/j.elecom.2018.04.017_bb0190
  article-title: A two-electron storage nonaqueous organic redox flow battery
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201700131
  contributor:
    fullname: Huang
– volume: 6
  start-page: 6251
  year: 2018
  ident: 10.1016/j.elecom.2018.04.017_bb0210
  article-title: Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01059E
  contributor:
    fullname: Huang
– volume: 4
  start-page: 5448
  year: 2016
  ident: 10.1016/j.elecom.2018.04.017_bb0145
  article-title: A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01177B
  contributor:
    fullname: Duan
– volume: 246
  start-page: 251
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0230
  article-title: An investigation of 2,5-di-tert-butyl-1,4-bis(methoxyethoxy)benzene in ether-based electrolytes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.05.167
  contributor:
    fullname: Su
– volume: 3
  start-page: 476
  year: 2015
  ident: 10.1016/j.elecom.2018.04.017_bb0205
  article-title: A highly soluble organic catholyte for non-aqueous redox flow batteries
  publication-title: Energ. Technol.
  doi: 10.1002/ente.201500020
  contributor:
    fullname: Kaur
– volume: 7
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0285
  article-title: Cyclopropenium salts as cyclable, high-potential catholytes in nonaqueous media
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602027
  contributor:
    fullname: Sevov
– volume: 121
  start-page: 23347
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0225
  article-title: Toward improved catholyte materials for redox flow batteries: what controls chemical stability of persistent radical cations?
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b08281
  contributor:
    fullname: Zhang
– volume: 12
  start-page: 1634
  year: 2010
  ident: 10.1016/j.elecom.2018.04.017_bb0085
  article-title: Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.09.013
  contributor:
    fullname: Liu
– volume: 2
  start-page: 19994
  year: 2014
  ident: 10.1016/j.elecom.2018.04.017_bb0065
  article-title: A metal-free and all-organic redox flow battery with polythiophene as the electroactive species
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04730C
  contributor:
    fullname: Oh
– volume: 18
  start-page: 909
  year: 1988
  ident: 10.1016/j.elecom.2018.04.017_bb0070
  article-title: A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF01016050
  contributor:
    fullname: Matsuda
– volume: 28
  start-page: 2529
  year: 2016
  ident: 10.1016/j.elecom.2018.04.017_bb0280
  article-title: Tuning the stability of organic active materials for nonaqueous redox flow batteries via reversible, electrochemically mediated Li+ coordination
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04053
  contributor:
    fullname: Carino
– volume: 348
  start-page: 264
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0275
  article-title: A comparative study on the solubility and stability of p-phenylenediamine-based organic redox couples for non-aqueous flow batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.019
  contributor:
    fullname: Kim
– volume: 206
  start-page: 490
  year: 2012
  ident: 10.1016/j.elecom.2018.04.017_bb0080
  article-title: Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.096
  contributor:
    fullname: Shinkle
– volume: 1
  start-page: 739
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0050
  article-title: Redox-active polymers for energy storage nanoarchitectonics
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.018
  contributor:
    fullname: Kim
– volume: 137
  start-page: 14465
  year: 2015
  ident: 10.1016/j.elecom.2018.04.017_bb0150
  article-title: Evolutionary design of low molecular weight organic anolyte materials for applications in nonaqueous redox flow batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09572
  contributor:
    fullname: Sevov
– volume: 2
  start-page: 2430
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0160
  article-title: Multielectron cycling of a low-potential anolyte in alkali metal electrolytes for nonaqueous redox flow batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00559
  contributor:
    fullname: Hendriks
– volume: 2
  start-page: 18190
  year: 2014
  ident: 10.1016/j.elecom.2018.04.017_bb0265
  article-title: 3,7-Bis(trifluoromethyl)-N-ethylphenothiazine: a redox shuttle with extensive overcharge protection in lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04463K
  contributor:
    fullname: Kaur
– volume: 3
  start-page: 7929
  year: 2015
  ident: 10.1016/j.elecom.2018.04.017_bb0075
  article-title: Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06622G
  contributor:
    fullname: Suttil
– volume: 164
  start-page: A1688
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0040
  article-title: Redox active polymers for non-aqueous redox flow batteries: validation of the size-exclusion approach
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1511707jes
  contributor:
    fullname: Montoto
– volume: 3
  start-page: 14971
  year: 2015
  ident: 10.1016/j.elecom.2018.04.017_bb0240
  article-title: A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02380G
  contributor:
    fullname: Huang
– volume: 6
  year: 2016
  ident: 10.1016/j.elecom.2018.04.017_bb0030
  article-title: Organic redox species in aqueous flow batteries: redox potentials, chemical stability and solubility
  publication-title: Sci. Rep.
  doi: 10.1038/srep39101
  contributor:
    fullname: Wedege
– volume: 14
  start-page: A171
  year: 2011
  ident: 10.1016/j.elecom.2018.04.017_bb0120
  article-title: Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-methylphthalimide
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/2.012112esl
  contributor:
    fullname: Li
– volume: 26
  start-page: 7649
  year: 2014
  ident: 10.1016/j.elecom.2018.04.017_bb0115
  article-title: TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403746
  contributor:
    fullname: Wei
– volume: 49
  start-page: 2649
  year: 2016
  ident: 10.1016/j.elecom.2018.04.017_bb0055
  article-title: Redox active polymers as soluble nanomaterials for energy storage
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00341
  contributor:
    fullname: Burgess
– volume: 6
  year: 2016
  ident: 10.1016/j.elecom.2018.04.017_bb0090
  article-title: The lightest organic radical cation for charge storage in redox flow batteries
  publication-title: Sci. Rep.
  contributor:
    fullname: Huang
– volume: 42
  start-page: 17488
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0140
  article-title: A benzophenone-based anolyte for high energy density all-organic redox flow battery
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.03.034
  contributor:
    fullname: Xing
– volume: 2
  start-page: 1156
  year: 2017
  ident: 10.1016/j.elecom.2018.04.017_bb0200
  article-title: “Wine-dark sea” in an organic flow battery: storing negative charge in 2,1,3-benzothiadiazole radicals leads to improved cyclability
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00261
  contributor:
    fullname: Duan
– volume: 54
  start-page: 5605
  year: 2009
  ident: 10.1016/j.elecom.2018.04.017_bb0110
  article-title: Redox shuttles for safer lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.05.017
  contributor:
    fullname: Chen
– volume: 118
  start-page: 14824
  year: 2014
  ident: 10.1016/j.elecom.2018.04.017_bb0255
  article-title: Controlling oxidation potentials in redox shuttle candidates for lithium-ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp503767h
  contributor:
    fullname: Ergun
SSID ssj0012993
Score 2.5611203
SecondaryResourceType review_article
Snippet The application of novel organic redox materials is a plausible pathway towards techno-economic energy storage targets due to their low cost and sustainable...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 19
SubjectTerms Molecular radicals
Non-aqueous electrolyte
Redox active organics
Redox flow batteries
Title Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review
URI https://dx.doi.org/10.1016/j.elecom.2018.04.017
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB1qe9CL-In1o-TgNbbbZLOpt1IsVaEXLRQvIUkTqGhb2op68bc7ye6KgnjwuIGBMBvezDAz7wGcC4eQJ4WnvjXxNEhcUY21MoIhWiRW6MzFKd-hGIz4zTgdV6BX7sKEscoC-3NMj2hdnDQLbzYX02nzLmGYHXKJGTILxGpYt9cwHIVeba17fTsYfjUTEHHjnD0LjwINyg26OOYV1GbmYSU9kZHzNCqX_RKhvkWd_g5sF-ki6eY32oWKm-3BZq9UaduHB8wW43zrO5l78lyK3ZKljg2YFZnOSK7cZAlW-lRjHMBinwSe0Dfin-avxESKTayYL0mXBKoRku-zHMCof3XfG9BCL4FanqZrmomW60irUykFZn3cWKelTlObccMwLRA8sPNJw4xM_MTpwGaGWGitNYnLhGeHUMWbuCMgsu09574jQ2eUtY00VkysFi4xbetkVgda-kgtcloMVc6LParcpyr4VLW4Qp_WISsdqX78XoXI_afl8b8tT2ArfOVzXadQXS9f3BlmEGvTgI2Lj6RRvJNPoEHGIw
link.rule.ids 314,780,784,4502,24116,27924,27925,45585,45679
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB1KPdSL-In1Mwevsd1uNpt6K8Wyau3FFoqXkKQJVLQttaJe_O1OsruiIB687mYgOxtm3pA3bwDOuMWQJ7ijrjlx1I-4ogprZQyGaBEZrlIbWL4Dno3Y9TgZV6Bb9sJ4WmUR-_OYHqJ18aRReLOxmE4bd1GM6JAJRMixF1bDun2NJYh-8VCff3zxPDCfBeVdv5r65WX_XCB5-Vkzc9-QHomgeBrmlv2Sn77lnN4mbBRgkXTy_WxBxc62odYtZ7TtwD1ixcBufSdzR57KUbdkqcL1yzOZzkg-t8kQrPOpwiyApT7xKqFvxD3OX4kOAptYL1-QDvFCIyTvZtmFUe9y2M1oMS2BGvzsFU1507aFUYkQHDEf08YqoZLEpEzHCAo489p8QsdaRG5ildcyw0hojNGRTbmL96CKO7H7QETLOcZcW_h70bilhTZ8YhS3kW4ZK9I60NJHcpGLYsiSLfYgc59K71PZZBJ9Woe0dKT88XMlxu0_LQ_-bXkKtWx425f9q8HNIaz7NznD6wiqq-WLPUYssdIn4ax8AmcLxvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+molecular+radicals+in+organic+non-aqueous+redox+flow+batteries%3A+A+mini+review&rft.jtitle=Electrochemistry+communications&rft.au=Armstrong%2C+Craig+G.&rft.au=Toghill%2C+Kathryn+E.&rft.date=2018-06-01&rft.issn=1388-2481&rft.volume=91&rft.spage=19&rft.epage=24&rft_id=info:doi/10.1016%2Fj.elecom.2018.04.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_elecom_2018_04_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2481&client=summon