Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review
The application of novel organic redox materials is a plausible pathway towards techno-economic energy storage targets due to their low cost and sustainable design. Their operation in non-aqueous redox flow batteries affords researchers the opportunity to innovate, design and optimise these new chem...
Saved in:
Published in | Electrochemistry communications Vol. 91; pp. 19 - 24 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of novel organic redox materials is a plausible pathway towards techno-economic energy storage targets due to their low cost and sustainable design. Their operation in non-aqueous redox flow batteries affords researchers the opportunity to innovate, design and optimise these new chemistries towards practical energy densities. Despite this, the identification of high capacity organics which also display long-term stability is inherently challenging due to the high reactivity of molecular radicals.
•Redox-active organic molecules are promising new energy storage materials.•The stability of molecular free radicals is concisely reviewed.•Decomposition of radical states results in irreversible battery capacity loss.•Radical half-life depends on chemical structure and electrolyte conditions.•Neutral, anionic and cationic radicals are distinct chemical species. |
---|---|
AbstractList | The application of novel organic redox materials is a plausible pathway towards techno-economic energy storage targets due to their low cost and sustainable design. Their operation in non-aqueous redox flow batteries affords researchers the opportunity to innovate, design and optimise these new chemistries towards practical energy densities. Despite this, the identification of high capacity organics which also display long-term stability is inherently challenging due to the high reactivity of molecular radicals.
•Redox-active organic molecules are promising new energy storage materials.•The stability of molecular free radicals is concisely reviewed.•Decomposition of radical states results in irreversible battery capacity loss.•Radical half-life depends on chemical structure and electrolyte conditions.•Neutral, anionic and cationic radicals are distinct chemical species. |
Author | Armstrong, Craig G. Toghill, Kathryn E. |
Author_xml | – sequence: 1 givenname: Craig G. surname: Armstrong fullname: Armstrong, Craig G. – sequence: 2 givenname: Kathryn E. orcidid: 0000-0002-1890-6818 surname: Toghill fullname: Toghill, Kathryn E. email: k.toghill@lancaster.ac.uk |
BookMark | eNp9kM9OwzAMhyMEEtvgDTjkBVriNk1SDkjTxD9pEgfgwiVKUxdlahtIOsbenkzjzMmWrN9n-5uT09GPSMgVsBwYiOtNjj1aP-QFA5UznjOQJ2QGSpYZ1Kw4TX2pVFZwBedkHuOGMSjqupyR95fJNK530576jg4-cba9CTSY1lnTR-pG6sOHGZ2laWtmvrbot5EGbP0P7Xq_o42ZJgwO4w1d0sGNLg2_He4uyFmXCHj5Vxfk7f7udfWYrZ8fnlbLdWZ5VU2ZFAxrZU2llKhB8MaiUaaqrORNWQMTXAJnqikbBV2LJj1RSVFYaxtAKbpyQfiRa4OPMWCnP4MbTNhrYPrgR2_00Y8--NGM6-QnxW6PMUy3pXuDjtbhaLF1Ae2kW-_-B_wCiLVzAw |
CitedBy_id | crossref_primary_10_1149_1945_7111_ab9b0d crossref_primary_10_1007_s12274_019_2355_2 crossref_primary_10_1039_D3DD00050H crossref_primary_10_1016_j_jechem_2021_10_037 crossref_primary_10_1021_acssuschemeng_9b07244 crossref_primary_10_1021_acs_chemrev_9b00482 crossref_primary_10_1002_cssc_201903379 crossref_primary_10_1016_j_coelec_2019_12_006 crossref_primary_10_1016_j_electacta_2019_01_140 crossref_primary_10_1021_acsami_3c11741 crossref_primary_10_1039_D0MH01632B crossref_primary_10_1016_j_cej_2021_133564 crossref_primary_10_1021_acs_chemmater_9b05345 crossref_primary_10_1002_aenm_202400721 crossref_primary_10_1016_j_elecom_2023_107509 crossref_primary_10_1021_jacs_3c14776 crossref_primary_10_1073_pnas_2105889118 crossref_primary_10_3390_batteries9040215 crossref_primary_10_1007_s11814_020_0669_0 crossref_primary_10_1021_acsaem_3c02171 crossref_primary_10_1021_jacs_3c05210 crossref_primary_10_1016_j_jpowsour_2019_227037 crossref_primary_10_1016_j_surfcoat_2018_11_028 crossref_primary_10_1002_batt_201900056 crossref_primary_10_1070_RCR5025 crossref_primary_10_1002_chem_201903360 crossref_primary_10_1016_j_jelechem_2020_114241 crossref_primary_10_1039_D2SC03450F crossref_primary_10_3390_batteries4040054 crossref_primary_10_1002_cssc_202300303 crossref_primary_10_1016_j_coelec_2020_05_006 crossref_primary_10_1002_batt_202300519 crossref_primary_10_1039_D2NJ03495F crossref_primary_10_1246_cl_190905 crossref_primary_10_1039_C9CC07937H crossref_primary_10_3390_batteries8100193 crossref_primary_10_1016_j_jpowsour_2019_02_021 crossref_primary_10_1016_j_elecom_2019_106625 crossref_primary_10_1039_D2CC06011F crossref_primary_10_1016_j_electacta_2019_135580 crossref_primary_10_1088_2516_1083_ad0913 crossref_primary_10_1016_j_memsci_2021_120002 crossref_primary_10_1021_acs_chemmater_9b02376 crossref_primary_10_3390_batteries9100504 crossref_primary_10_1002_cssc_202300128 crossref_primary_10_1002_aenm_202203532 crossref_primary_10_1016_j_coche_2022_100856 crossref_primary_10_1039_D3MA00417A crossref_primary_10_1016_j_jpowsour_2022_232611 crossref_primary_10_1039_D0SE00800A crossref_primary_10_1016_j_matt_2019_05_009 crossref_primary_10_1016_j_jcis_2022_11_057 crossref_primary_10_3762_bjoc_19_88 crossref_primary_10_1021_jacs_1c13543 crossref_primary_10_1039_D0DT02462G crossref_primary_10_1016_j_elecom_2019_106530 crossref_primary_10_1021_acs_orglett_9b04545 crossref_primary_10_1016_j_ensm_2021_07_006 crossref_primary_10_1016_j_chempr_2019_07_006 crossref_primary_10_1016_j_coelec_2019_08_006 crossref_primary_10_1002_aenm_202401197 crossref_primary_10_1002_chem_202101516 crossref_primary_10_1016_j_molstruc_2022_133739 crossref_primary_10_1021_acs_jpcb_2c00719 crossref_primary_10_1038_s41578_022_00511_3 crossref_primary_10_1149_1945_7111_abb7e9 crossref_primary_10_1088_1742_6596_1942_1_012007 crossref_primary_10_1039_D1SC04990A crossref_primary_10_1016_j_jpowsour_2021_229983 crossref_primary_10_1039_C9SC04213J crossref_primary_10_1002_cssc_201901702 crossref_primary_10_1002_celc_202001584 |
Cites_doi | 10.1016/j.jpowsour.2016.06.125 10.1039/C6EE02027E 10.1149/2.0811412jes 10.1039/C7TA05883G 10.1002/er.1658 10.1021/jacs.7b00147 10.1002/cphc.201402674 10.1063/1.5010210 10.1039/C4EE02158D 10.1149/1.2108706 10.1021/acsenergylett.7b00019 10.1002/aenm.201701272 10.1002/anie.201610582 10.1002/aenm.201401782 10.1002/aenm.201200322 10.1016/j.elecom.2015.07.013 10.1039/C3CC47503D 10.1002/cplu.201402099 10.1039/c2cc32466k 10.1021/acs.chemmater.6b00640 10.1021/acsenergylett.6b00255 10.1149/2.0081601jes 10.1149/2.0971602jes 10.1002/adma.201405840 10.1002/anie.201501443 10.1002/adsu.201700131 10.1039/C8TA01059E 10.1039/C6TA01177B 10.1016/j.electacta.2017.05.167 10.1002/ente.201500020 10.1002/aenm.201602027 10.1021/acs.jpcc.7b08281 10.1016/j.elecom.2010.09.013 10.1039/C4TA04730C 10.1007/BF01016050 10.1021/acs.chemmater.5b04053 10.1016/j.jpowsour.2017.03.019 10.1016/j.jpowsour.2010.12.096 10.1016/j.joule.2017.08.018 10.1021/jacs.5b09572 10.1021/acsenergylett.7b00559 10.1039/C4TA04463K 10.1039/C4TA06622G 10.1149/2.1511707jes 10.1039/C5TA02380G 10.1038/srep39101 10.1149/2.012112esl 10.1002/adma.201403746 10.1021/acs.accounts.6b00341 10.1016/j.ijhydene.2017.03.034 10.1021/acsenergylett.7b00261 10.1016/j.electacta.2009.05.017 10.1021/jp503767h |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.elecom.2018.04.017 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-1902 |
EndPage | 24 |
ExternalDocumentID | 10_1016_j_elecom_2018_04_017 S1388248118300870 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SDF SDG SDP SES SEW SPC SSG SSK SSZ T5K UNMZH XFK XPP ZMT ~G- AAXKI AAYXX ACRPL ADNMO ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c455t-760e98ca58869164bcea8a55c74b39106471408b3b81fdea2485762cccb1e76f3 |
IEDL.DBID | AIKHN |
ISSN | 1388-2481 |
IngestDate | Fri Dec 06 04:03:42 EST 2024 Fri Feb 23 02:28:56 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Redox flow batteries Non-aqueous electrolyte Redox active organics Molecular radicals |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-760e98ca58869164bcea8a55c74b39106471408b3b81fdea2485762cccb1e76f3 |
ORCID | 0000-0002-1890-6818 |
OpenAccessLink | https://eprints.lancs.ac.uk/id/eprint/124854/1/1_s2.0_S1388248118300870_main.pdf |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_elecom_2018_04_017 elsevier_sciencedirect_doi_10_1016_j_elecom_2018_04_017 |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Electrochemistry communications |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Carino, Staszak-Jirkovsky, Assary, Curtiss, Markovic, Brushett (bb0280) 2016; 28 Doris, Ward, Baskin, Frischmann, Gavvalapalli, Chénard, Sevov, Prendergast, Moore, Helms (bb0045) 2017; 56 Wei, Xu, Vijayakumar, Cosimbescu, Liu, Sprenkle, Wang (bb0115) 2014; 26 Wei, Xu, Huang, Zhang, Walter, Lawrence, Vijayakumar, Henderson, Liu, Cosimbescu, Li, Sprenkle, Wang (bb0095) 2015; 54 Beh, De Porcellinis, Gracia, Xia, Gordon, Aziz (bb0025) 2017; 2 Wedege, Dražević, Konya, Bentien (bb0030) 2016; 6 Huang, Yang, Vijayakumar, Duan, Hollas, Pan, Wang, Wei, Zhang (bb0190) 2018; 2 Brushett, Vaughey, Jansen (bb0195) 2012; 2 Zhang, Shkrob, Assary, Tung, Silcox, Curtiss, Thompson, Zhang (bb0225) 2017; 121 Ergun, Elliott, Kaur, Parkin, Odom (bb0255) 2014; 118 Hendriks, Sevov, Cook, Sanford (bb0160) 2017; 2 Su, Ferrandon, Kowalski, Vaughey, Brushett (bb0235) 2014; 161 Wang, Xu, Cosimbescu, Choi, Li, Yang (bb0170) 2012; 48 Kaur, Ergun, Elliott, Odom (bb0265) 2014; 2 Clayden, Greeves, Warren, Wothers (bb0100) 2001 Milshtein, Kaur, Casselman, Kowalski, Modekrutti, Zhang, Attanayake, Elliott, Parkin, Risko, Brushett, Odom (bb0250) 2016; 9 Duan, Vemuri, Milshtein, Laramie, Dmello, Huang, Zhang, Hu, Vijayakumar, Wang, Liu, Darling, Thompson, Smith, Moore, Brushett, Wei (bb0145) 2016; 4 Potash, McKone, Conte, Abruña (bb0185) 2016; 163 Skyllas-Kazacos, Kazacos, Poon, Verseema (bb0005) 2010; 34 Suttil, Kucharyson, Escalante-Garcia, Cabrera, James, Savinell, Sanford, Thompson (bb0075) 2015; 3 Burgess, Moore, Rodríguez-López (bb0055) 2016; 49 Su, Ferrandon, Barton, de la Rosa, Vaughey, Brushett (bb0230) 2017; 246 Winsberg, Hagemann, Muench, Friebe, Häupler, Janoschka, Morgenstern, Hager, Schubert (bb0060) 2016; 28 Skyllas-Kazacos, Rychcik, Robins, Fane, Green (bb0010) 1986; 133 Kaur, Holubowitch, Ergun, Elliott, Odom (bb0205) 2015; 3 Chen, Eisenach, Aziz (bb0035) 2016; 163 Ergun, Elliott, Kaur, Parkin, Odom (bb0260) 2014; 50 Huang, Duan, Zhang, Shkrob, Assary, Pan, Liao, Zhang, Wei, Zhang (bb0210) 2018; 6 Bauld (bb0105) 1997 Darling, Gallagher, Kowalski, Ha, Brushett (bb0020) 2014; 7 Narayana, Casselman, Elliott, Ergun, Parkin, Risko, Odom (bb0245) 2015; 16 Matsuda, Tanaka, Okada, Takasu, Morita, Matsumura-Inoue (bb0070) 1988; 18 Xing, Huo, Wang, Zhao, Li (bb0140) 2017; 42 Takechi, Kato, Hase (bb0135) 2015; 27 Kim, Lee, Han, Ryu, Oh (bb0275) 2017; 348 Compton, Banks (bb0165) 2011 Oh, Lee, Chun, Jeon, Shim, Shin, Yang (bb0065) 2014; 2 Shinkle, Sleightholme, Griffith, Thompson, Monroe (bb0080) 2012; 206 Sevov, Brooner, Chénard, Assary, Moore, Rodríguez-López, Sanford (bb0150) 2015; 137 Kim, Kim, Ariga (bb0050) 2017; 1 Kim, Hwang, Kim, Ryu, Oh, Kim (bb0175) 2018; 6 Huang, Su, Kowalski, Barton, Ferrandon, Burrell, Brushett, Zhang (bb0240) 2015; 3 Duan, Huang, Kowalski, Shkrob, Vijayakumar, Walter, Pan, Yang, Milshtein, Li, Liao, Zhang, Wang, Liu, Moore, Brushett, Zhang, Wei (bb0200) 2017; 2 Park, Shim, Yang, Shin, Jin, Lee, Lee, Jeon (bb0125) 2015; 59 Wei, Duan, Huang, Zhang, Li, Reed, Xu, Sprenkle, Wang (bb0180) 2016; 1 Huang, Pan, Duan, Wei, Assary, Su, Brushett, Cheng, Liao, Ferrandon, Wang, Zhang, Burrell, Curtiss, Shkrob, Moore, Zhang (bb0090) 2016; 6 Liu, Shinkle, Li, Monroe, Thompson, Sleightholme (bb0085) 2010; 12 Huang, Cheng, Assary, Wang, Xue, Burrell, Curtiss, Zhang (bb0215) 2015; 5 Zhang, Yang, Shkrob, Assary, On Tung, Silcox, Duan, Zhang, Su, Hu, Pan, Liao, Zhang, Wang, Curtiss, Thompson, Wei, Zhang (bb0220) 2017; 7 Huang, Wang (bb0015) 2015; 80 Chen, Qin, Amine (bb0110) 2009; 54 Li, Li, Liu, Huang, Fang, Wang, Peng (bb0120) 2011; 14 Montoto, Nagarjuna, Moore, Rodríguez-López (bb0040) 2017; 164 Kowalski, Casselman, Kaur, Milshtein, Elliott, Modekrutti, Attanayake, Zhang, Parkin, Risko, Brushett, Odom (bb0270) 2017; 5 Sevov, Hickey, Cook, Robinson, Barnett, Minteer, Sigman, Sanford (bb0155) 2017; 139 Sevov, Samaroo, Sanford (bb0285) 2017; 7 Milshtein, Barton, Darling, Brushett (bb0130) 2016; 327 Beh (10.1016/j.elecom.2018.04.017_bb0025) 2017; 2 Narayana (10.1016/j.elecom.2018.04.017_bb0245) 2015; 16 Kim (10.1016/j.elecom.2018.04.017_bb0275) 2017; 348 Sevov (10.1016/j.elecom.2018.04.017_bb0155) 2017; 139 Huang (10.1016/j.elecom.2018.04.017_bb0215) 2015; 5 Park (10.1016/j.elecom.2018.04.017_bb0125) 2015; 59 Milshtein (10.1016/j.elecom.2018.04.017_bb0130) 2016; 327 Ergun (10.1016/j.elecom.2018.04.017_bb0255) 2014; 118 Huang (10.1016/j.elecom.2018.04.017_bb0015) 2015; 80 Kaur (10.1016/j.elecom.2018.04.017_bb0265) 2014; 2 Milshtein (10.1016/j.elecom.2018.04.017_bb0250) 2016; 9 Shinkle (10.1016/j.elecom.2018.04.017_bb0080) 2012; 206 Wang (10.1016/j.elecom.2018.04.017_bb0170) 2012; 48 Huang (10.1016/j.elecom.2018.04.017_bb0190) 2018; 2 Liu (10.1016/j.elecom.2018.04.017_bb0085) 2010; 12 Potash (10.1016/j.elecom.2018.04.017_bb0185) 2016; 163 Burgess (10.1016/j.elecom.2018.04.017_bb0055) 2016; 49 Chen (10.1016/j.elecom.2018.04.017_bb0110) 2009; 54 Xing (10.1016/j.elecom.2018.04.017_bb0140) 2017; 42 Huang (10.1016/j.elecom.2018.04.017_bb0210) 2018; 6 Kowalski (10.1016/j.elecom.2018.04.017_bb0270) 2017; 5 Duan (10.1016/j.elecom.2018.04.017_bb0200) 2017; 2 Su (10.1016/j.elecom.2018.04.017_bb0230) 2017; 246 Sevov (10.1016/j.elecom.2018.04.017_bb0150) 2015; 137 Winsberg (10.1016/j.elecom.2018.04.017_bb0060) 2016; 28 Zhang (10.1016/j.elecom.2018.04.017_bb0220) 2017; 7 Kim (10.1016/j.elecom.2018.04.017_bb0175) 2018; 6 Wedege (10.1016/j.elecom.2018.04.017_bb0030) 2016; 6 Sevov (10.1016/j.elecom.2018.04.017_bb0285) 2017; 7 Huang (10.1016/j.elecom.2018.04.017_bb0090) 2016; 6 Clayden (10.1016/j.elecom.2018.04.017_bb0100) 2001 Kim (10.1016/j.elecom.2018.04.017_bb0050) 2017; 1 Suttil (10.1016/j.elecom.2018.04.017_bb0075) 2015; 3 Bauld (10.1016/j.elecom.2018.04.017_bb0105) 1997 Ergun (10.1016/j.elecom.2018.04.017_bb0260) 2014; 50 Montoto (10.1016/j.elecom.2018.04.017_bb0040) 2017; 164 Li (10.1016/j.elecom.2018.04.017_bb0120) 2011; 14 Kaur (10.1016/j.elecom.2018.04.017_bb0205) 2015; 3 Takechi (10.1016/j.elecom.2018.04.017_bb0135) 2015; 27 Chen (10.1016/j.elecom.2018.04.017_bb0035) 2016; 163 Zhang (10.1016/j.elecom.2018.04.017_bb0225) 2017; 121 Wei (10.1016/j.elecom.2018.04.017_bb0115) 2014; 26 Su (10.1016/j.elecom.2018.04.017_bb0235) 2014; 161 Matsuda (10.1016/j.elecom.2018.04.017_bb0070) 1988; 18 Duan (10.1016/j.elecom.2018.04.017_bb0145) 2016; 4 Huang (10.1016/j.elecom.2018.04.017_bb0240) 2015; 3 Wei (10.1016/j.elecom.2018.04.017_bb0180) 2016; 1 Skyllas-Kazacos (10.1016/j.elecom.2018.04.017_bb0010) 1986; 133 Carino (10.1016/j.elecom.2018.04.017_bb0280) 2016; 28 Doris (10.1016/j.elecom.2018.04.017_bb0045) 2017; 56 Oh (10.1016/j.elecom.2018.04.017_bb0065) 2014; 2 Hendriks (10.1016/j.elecom.2018.04.017_bb0160) 2017; 2 Skyllas-Kazacos (10.1016/j.elecom.2018.04.017_bb0005) 2010; 34 Brushett (10.1016/j.elecom.2018.04.017_bb0195) 2012; 2 Darling (10.1016/j.elecom.2018.04.017_bb0020) 2014; 7 Compton (10.1016/j.elecom.2018.04.017_bb0165) 2011 Wei (10.1016/j.elecom.2018.04.017_bb0095) 2015; 54 |
References_xml | – volume: 28 start-page: 2529 year: 2016 end-page: 2539 ident: bb0280 article-title: Tuning the stability of organic active materials for nonaqueous redox flow batteries via reversible, electrochemically mediated Li publication-title: Chem. Mater. contributor: fullname: Brushett – volume: 42 start-page: 17488 year: 2017 end-page: 17494 ident: bb0140 article-title: A benzophenone-based anolyte for high energy density all-organic redox flow battery publication-title: Int. J. Hydrog. Energy contributor: fullname: Li – volume: 163 start-page: A338 year: 2016 end-page: A344 ident: bb0185 article-title: On the benefits of a symmetric redox flow battery publication-title: J. Electrochem. Soc. contributor: fullname: Abruña – volume: 2 start-page: 1390 year: 2012 end-page: 1396 ident: bb0195 article-title: An all-organic non-aqueous lithium-ion redox flow battery publication-title: Adv. Energy Mater. contributor: fullname: Jansen – volume: 26 start-page: 7649 year: 2014 end-page: 7653 ident: bb0115 article-title: TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries publication-title: Adv. Mater. contributor: fullname: Wang – volume: 5 year: 2015 ident: bb0215 article-title: Liquid catholyte molecules for nonaqueous redox flow batteries publication-title: Adv. Energy Mater. contributor: fullname: Zhang – volume: 118 start-page: 14824 year: 2014 end-page: 14832 ident: bb0255 article-title: Controlling oxidation potentials in redox shuttle candidates for lithium-ion batteries publication-title: J. Phys. Chem. C contributor: fullname: Odom – volume: 6 year: 2016 ident: bb0090 article-title: The lightest organic radical cation for charge storage in redox flow batteries publication-title: Sci. Rep. contributor: fullname: Zhang – volume: 6 start-page: 6251 year: 2018 end-page: 6254 ident: bb0210 article-title: Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells publication-title: J. Mater. Chem. A contributor: fullname: Zhang – volume: 3 start-page: 7929 year: 2015 end-page: 7938 ident: bb0075 article-title: Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries publication-title: J. Mater. Chem. A contributor: fullname: Thompson – volume: 164 start-page: A1688 year: 2017 end-page: A1694 ident: bb0040 article-title: Redox active polymers for non-aqueous redox flow batteries: validation of the size-exclusion approach publication-title: J. Electrochem. Soc. contributor: fullname: Rodríguez-López – volume: 7 year: 2017 ident: bb0285 article-title: Cyclopropenium salts as cyclable, high-potential catholytes in nonaqueous media publication-title: Adv. Energy Mater. contributor: fullname: Sanford – volume: 139 start-page: 2924 year: 2017 end-page: 2927 ident: bb0155 article-title: Physical organic approach to persistent, cyclable, low-potential electrolytes for flow battery applications publication-title: J. Am. Chem. Soc. contributor: fullname: Sanford – volume: 161 start-page: A1905 year: 2014 end-page: A1914 ident: bb0235 article-title: Electrolyte development for non-aqueous redox flow batteries using a high-throughput screening platform publication-title: J. Electrochem. Soc. contributor: fullname: Brushett – volume: 6 start-page: 47901 year: 2018 ident: bb0175 article-title: Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell publication-title: APL Mater. contributor: fullname: Kim – volume: 9 start-page: 3531 year: 2016 end-page: 3543 ident: bb0250 article-title: High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries publication-title: Energy Environ. Sci. contributor: fullname: Odom – volume: 7 start-page: 1701272 year: 2017 ident: bb0220 article-title: Annulated dialkoxybenzenes as catholyte materials for non-aqueous redox flow batteries: achieving high chemical stability through bicyclic substitution publication-title: Adv. Energy Mater. contributor: fullname: Zhang – volume: 246 start-page: 251 year: 2017 end-page: 258 ident: bb0230 article-title: An investigation of 2,5-di- publication-title: Electrochim. Acta contributor: fullname: Brushett – volume: 48 start-page: 6669 year: 2012 ident: bb0170 article-title: Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery publication-title: Chem. Commun. contributor: fullname: Yang – volume: 3 start-page: 476 year: 2015 end-page: 480 ident: bb0205 article-title: A highly soluble organic catholyte for non-aqueous redox flow batteries publication-title: Energ. Technol. contributor: fullname: Odom – volume: 59 start-page: 68 year: 2015 end-page: 71 ident: bb0125 article-title: Electrochemical properties of a non-aqueous redox battery with all-organic redox couples publication-title: Electrochem. Commun. contributor: fullname: Jeon – volume: 2 year: 2018 ident: bb0190 article-title: A two-electron storage nonaqueous organic redox flow battery publication-title: Adv. Sustain. Syst. contributor: fullname: Zhang – volume: 348 start-page: 264 year: 2017 end-page: 269 ident: bb0275 article-title: A comparative study on the solubility and stability of publication-title: J. Power Sources contributor: fullname: Oh – volume: 54 start-page: 8684 year: 2015 end-page: 8687 ident: bb0095 article-title: Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery publication-title: Angew. Chem. Int. Ed. contributor: fullname: Wang – volume: 34 start-page: 182 year: 2010 end-page: 189 ident: bb0005 article-title: Recent advances with UNSW vanadium-based redox flow batteries publication-title: Int. J. Energy Res. contributor: fullname: Verseema – volume: 1 start-page: 705 year: 2016 end-page: 711 ident: bb0180 article-title: A high-current, stable nonaqueous organic redox flow battery publication-title: ACS Energy Lett. contributor: fullname: Wang – year: 2001 ident: bb0100 article-title: Organic Chemistry contributor: fullname: Wothers – volume: 6 year: 2016 ident: bb0030 article-title: Organic redox species in aqueous flow batteries: redox potentials, chemical stability and solubility publication-title: Sci. Rep. contributor: fullname: Bentien – volume: 137 start-page: 14465 year: 2015 end-page: 14472 ident: bb0150 article-title: Evolutionary design of low molecular weight organic anolyte materials for applications in nonaqueous redox flow batteries publication-title: J. Am. Chem. Soc. contributor: fullname: Sanford – volume: 2 start-page: 2430 year: 2017 end-page: 2435 ident: bb0160 article-title: Multielectron cycling of a low-potential anolyte in alkali metal electrolytes for nonaqueous redox flow batteries publication-title: ACS Energy Lett. contributor: fullname: Sanford – volume: 80 start-page: 312 year: 2015 end-page: 322 ident: bb0015 article-title: Next-generation, high-energy-density redox flow batteries publication-title: ChemPlusChem contributor: fullname: Wang – volume: 28 start-page: 3401 year: 2016 end-page: 3405 ident: bb0060 article-title: Poly(boron-dipyrromethene)—a redox-active polymer class for polymer redox-flow batteries publication-title: Chem. Mater. contributor: fullname: Schubert – volume: 14 start-page: A171 year: 2011 ident: bb0120 article-title: Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and publication-title: Electrochem. Solid-State Lett. contributor: fullname: Peng – volume: 18 start-page: 909 year: 1988 end-page: 914 ident: bb0070 article-title: A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte publication-title: J. Appl. Electrochem. contributor: fullname: Matsumura-Inoue – volume: 12 start-page: 1634 year: 2010 end-page: 1637 ident: bb0085 article-title: Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries publication-title: Electrochem. Commun. contributor: fullname: Sleightholme – volume: 27 start-page: 2501 year: 2015 end-page: 2506 ident: bb0135 article-title: A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries publication-title: Adv. Mater. contributor: fullname: Hase – year: 2011 ident: bb0165 article-title: Understanding Voltammetry contributor: fullname: Banks – volume: 2 start-page: 639 year: 2017 end-page: 644 ident: bb0025 article-title: A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention publication-title: ACS Energy Lett. contributor: fullname: Aziz – volume: 54 start-page: 5605 year: 2009 end-page: 5613 ident: bb0110 article-title: Redox shuttles for safer lithium-ion batteries publication-title: Electrochim. Acta contributor: fullname: Amine – volume: 1 start-page: 739 year: 2017 end-page: 768 ident: bb0050 article-title: Redox-active polymers for energy storage nanoarchitectonics publication-title: Joule contributor: fullname: Ariga – volume: 49 start-page: 2649 year: 2016 end-page: 2657 ident: bb0055 article-title: Redox active polymers as soluble nanomaterials for energy storage publication-title: Acc. Chem. Res. contributor: fullname: Rodríguez-López – volume: 7 start-page: 3459 year: 2014 end-page: 3477 ident: bb0020 article-title: Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries publication-title: Energy Environ. Sci. contributor: fullname: Brushett – volume: 3 start-page: 14971 year: 2015 end-page: 14976 ident: bb0240 article-title: A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries publication-title: J. Mater. Chem. A contributor: fullname: Zhang – volume: 2 start-page: 19994 year: 2014 end-page: 19998 ident: bb0065 article-title: A metal-free and all-organic redox flow battery with polythiophene as the electroactive species publication-title: J. Mater. Chem. A contributor: fullname: Yang – volume: 16 start-page: 1179 year: 2015 end-page: 1189 ident: bb0245 article-title: -substituted phenothiazine derivatives: how the stability of the neutral and radical cation forms affects overcharge performance in lithium-ion batteries publication-title: ChemPhysChem contributor: fullname: Odom – volume: 133 start-page: 1057 year: 1986 ident: bb0010 article-title: New all-vanadium redox flow cell publication-title: J. Electrochem. Soc. contributor: fullname: Green – volume: 56 start-page: 1595 year: 2017 end-page: 1599 ident: bb0045 article-title: Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries publication-title: Angew. Chem. Int. Ed. contributor: fullname: Helms – volume: 2 start-page: 1156 year: 2017 end-page: 1161 ident: bb0200 article-title: “Wine-dark sea” in an organic flow battery: storing negative charge in 2,1,3-benzothiadiazole radicals leads to improved cyclability publication-title: ACS Energy Lett. contributor: fullname: Wei – volume: 206 start-page: 490 year: 2012 end-page: 496 ident: bb0080 article-title: Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery publication-title: J. Power Sources contributor: fullname: Monroe – volume: 2 start-page: 18190 year: 2014 end-page: 18193 ident: bb0265 article-title: 3,7-Bis(trifluoromethyl)- publication-title: J. Mater. Chem. A contributor: fullname: Odom – volume: 121 start-page: 23347 year: 2017 end-page: 23358 ident: bb0225 article-title: Toward improved catholyte materials for redox flow batteries: what controls chemical stability of persistent radical cations? publication-title: J. Phys. Chem. C contributor: fullname: Zhang – volume: 327 start-page: 151 year: 2016 end-page: 159 ident: bb0130 article-title: 4-Acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries publication-title: J. Power Sources contributor: fullname: Brushett – volume: 50 start-page: 5339 year: 2014 end-page: 5341 ident: bb0260 article-title: Overcharge performance of 3,7-disubstituted publication-title: Chem. Commun. contributor: fullname: Odom – year: 1997 ident: bb0105 article-title: Radicals, Ion Radicals, and Triplets contributor: fullname: Bauld – volume: 163 start-page: A5057 year: 2016 end-page: A5063 ident: bb0035 article-title: Cycling analysis of a quinone-bromide redox flow battery publication-title: J. Electrochem. Soc. contributor: fullname: Aziz – volume: 4 start-page: 5448 year: 2016 end-page: 5456 ident: bb0145 article-title: A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR publication-title: J. Mater. Chem. A contributor: fullname: Wei – volume: 5 start-page: 24371 year: 2017 end-page: 24379 ident: bb0270 article-title: A stable two-electron-donating phenothiazine for application in nonaqueous redox flow batteries publication-title: J. Mater. Chem. A contributor: fullname: Odom – volume: 327 start-page: 151 year: 2016 ident: 10.1016/j.elecom.2018.04.017_bb0130 article-title: 4-Acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.125 contributor: fullname: Milshtein – volume: 9 start-page: 3531 year: 2016 ident: 10.1016/j.elecom.2018.04.017_bb0250 article-title: High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02027E contributor: fullname: Milshtein – volume: 161 start-page: A1905 year: 2014 ident: 10.1016/j.elecom.2018.04.017_bb0235 article-title: Electrolyte development for non-aqueous redox flow batteries using a high-throughput screening platform publication-title: J. Electrochem. Soc. doi: 10.1149/2.0811412jes contributor: fullname: Su – volume: 5 start-page: 24371 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0270 article-title: A stable two-electron-donating phenothiazine for application in nonaqueous redox flow batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05883G contributor: fullname: Kowalski – volume: 34 start-page: 182 year: 2010 ident: 10.1016/j.elecom.2018.04.017_bb0005 article-title: Recent advances with UNSW vanadium-based redox flow batteries publication-title: Int. J. Energy Res. doi: 10.1002/er.1658 contributor: fullname: Skyllas-Kazacos – volume: 139 start-page: 2924 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0155 article-title: Physical organic approach to persistent, cyclable, low-potential electrolytes for flow battery applications publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00147 contributor: fullname: Sevov – volume: 16 start-page: 1179 year: 2015 ident: 10.1016/j.elecom.2018.04.017_bb0245 article-title: N-substituted phenothiazine derivatives: how the stability of the neutral and radical cation forms affects overcharge performance in lithium-ion batteries publication-title: ChemPhysChem doi: 10.1002/cphc.201402674 contributor: fullname: Narayana – volume: 6 start-page: 47901 year: 2018 ident: 10.1016/j.elecom.2018.04.017_bb0175 article-title: Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell publication-title: APL Mater. doi: 10.1063/1.5010210 contributor: fullname: Kim – volume: 7 start-page: 3459 year: 2014 ident: 10.1016/j.elecom.2018.04.017_bb0020 article-title: Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02158D contributor: fullname: Darling – volume: 133 start-page: 1057 year: 1986 ident: 10.1016/j.elecom.2018.04.017_bb0010 article-title: New all-vanadium redox flow cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.2108706 contributor: fullname: Skyllas-Kazacos – volume: 2 start-page: 639 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0025 article-title: A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00019 contributor: fullname: Beh – volume: 7 start-page: 1701272 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0220 article-title: Annulated dialkoxybenzenes as catholyte materials for non-aqueous redox flow batteries: achieving high chemical stability through bicyclic substitution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701272 contributor: fullname: Zhang – volume: 56 start-page: 1595 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0045 article-title: Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610582 contributor: fullname: Doris – volume: 5 year: 2015 ident: 10.1016/j.elecom.2018.04.017_bb0215 article-title: Liquid catholyte molecules for nonaqueous redox flow batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401782 contributor: fullname: Huang – year: 2001 ident: 10.1016/j.elecom.2018.04.017_bb0100 contributor: fullname: Clayden – volume: 2 start-page: 1390 year: 2012 ident: 10.1016/j.elecom.2018.04.017_bb0195 article-title: An all-organic non-aqueous lithium-ion redox flow battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200322 contributor: fullname: Brushett – volume: 59 start-page: 68 year: 2015 ident: 10.1016/j.elecom.2018.04.017_bb0125 article-title: Electrochemical properties of a non-aqueous redox battery with all-organic redox couples publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.07.013 contributor: fullname: Park – volume: 50 start-page: 5339 year: 2014 ident: 10.1016/j.elecom.2018.04.017_bb0260 article-title: Overcharge performance of 3,7-disubstituted N-ethylphenothiazine derivatives in lithium-ion batteries publication-title: Chem. Commun. doi: 10.1039/C3CC47503D contributor: fullname: Ergun – volume: 80 start-page: 312 year: 2015 ident: 10.1016/j.elecom.2018.04.017_bb0015 article-title: Next-generation, high-energy-density redox flow batteries publication-title: ChemPlusChem doi: 10.1002/cplu.201402099 contributor: fullname: Huang – volume: 48 start-page: 6669 year: 2012 ident: 10.1016/j.elecom.2018.04.017_bb0170 article-title: Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery publication-title: Chem. Commun. doi: 10.1039/c2cc32466k contributor: fullname: Wang – volume: 28 start-page: 3401 year: 2016 ident: 10.1016/j.elecom.2018.04.017_bb0060 article-title: Poly(boron-dipyrromethene)—a redox-active polymer class for polymer redox-flow batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00640 contributor: fullname: Winsberg – volume: 1 start-page: 705 year: 2016 ident: 10.1016/j.elecom.2018.04.017_bb0180 article-title: A high-current, stable nonaqueous organic redox flow battery publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00255 contributor: fullname: Wei – volume: 163 start-page: A5057 year: 2016 ident: 10.1016/j.elecom.2018.04.017_bb0035 article-title: Cycling analysis of a quinone-bromide redox flow battery publication-title: J. Electrochem. Soc. doi: 10.1149/2.0081601jes contributor: fullname: Chen – volume: 163 start-page: A338 year: 2016 ident: 10.1016/j.elecom.2018.04.017_bb0185 article-title: On the benefits of a symmetric redox flow battery publication-title: J. Electrochem. Soc. doi: 10.1149/2.0971602jes contributor: fullname: Potash – year: 1997 ident: 10.1016/j.elecom.2018.04.017_bb0105 contributor: fullname: Bauld – year: 2011 ident: 10.1016/j.elecom.2018.04.017_bb0165 contributor: fullname: Compton – volume: 27 start-page: 2501 year: 2015 ident: 10.1016/j.elecom.2018.04.017_bb0135 article-title: A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries publication-title: Adv. Mater. doi: 10.1002/adma.201405840 contributor: fullname: Takechi – volume: 54 start-page: 8684 year: 2015 ident: 10.1016/j.elecom.2018.04.017_bb0095 article-title: Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201501443 contributor: fullname: Wei – volume: 2 year: 2018 ident: 10.1016/j.elecom.2018.04.017_bb0190 article-title: A two-electron storage nonaqueous organic redox flow battery publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201700131 contributor: fullname: Huang – volume: 6 start-page: 6251 year: 2018 ident: 10.1016/j.elecom.2018.04.017_bb0210 article-title: Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01059E contributor: fullname: Huang – volume: 4 start-page: 5448 year: 2016 ident: 10.1016/j.elecom.2018.04.017_bb0145 article-title: A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01177B contributor: fullname: Duan – volume: 246 start-page: 251 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0230 article-title: An investigation of 2,5-di-tert-butyl-1,4-bis(methoxyethoxy)benzene in ether-based electrolytes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.05.167 contributor: fullname: Su – volume: 3 start-page: 476 year: 2015 ident: 10.1016/j.elecom.2018.04.017_bb0205 article-title: A highly soluble organic catholyte for non-aqueous redox flow batteries publication-title: Energ. Technol. doi: 10.1002/ente.201500020 contributor: fullname: Kaur – volume: 7 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0285 article-title: Cyclopropenium salts as cyclable, high-potential catholytes in nonaqueous media publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602027 contributor: fullname: Sevov – volume: 121 start-page: 23347 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0225 article-title: Toward improved catholyte materials for redox flow batteries: what controls chemical stability of persistent radical cations? publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b08281 contributor: fullname: Zhang – volume: 12 start-page: 1634 year: 2010 ident: 10.1016/j.elecom.2018.04.017_bb0085 article-title: Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.09.013 contributor: fullname: Liu – volume: 2 start-page: 19994 year: 2014 ident: 10.1016/j.elecom.2018.04.017_bb0065 article-title: A metal-free and all-organic redox flow battery with polythiophene as the electroactive species publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04730C contributor: fullname: Oh – volume: 18 start-page: 909 year: 1988 ident: 10.1016/j.elecom.2018.04.017_bb0070 article-title: A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte publication-title: J. Appl. Electrochem. doi: 10.1007/BF01016050 contributor: fullname: Matsuda – volume: 28 start-page: 2529 year: 2016 ident: 10.1016/j.elecom.2018.04.017_bb0280 article-title: Tuning the stability of organic active materials for nonaqueous redox flow batteries via reversible, electrochemically mediated Li+ coordination publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04053 contributor: fullname: Carino – volume: 348 start-page: 264 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0275 article-title: A comparative study on the solubility and stability of p-phenylenediamine-based organic redox couples for non-aqueous flow batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.019 contributor: fullname: Kim – volume: 206 start-page: 490 year: 2012 ident: 10.1016/j.elecom.2018.04.017_bb0080 article-title: Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.12.096 contributor: fullname: Shinkle – volume: 1 start-page: 739 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0050 article-title: Redox-active polymers for energy storage nanoarchitectonics publication-title: Joule doi: 10.1016/j.joule.2017.08.018 contributor: fullname: Kim – volume: 137 start-page: 14465 year: 2015 ident: 10.1016/j.elecom.2018.04.017_bb0150 article-title: Evolutionary design of low molecular weight organic anolyte materials for applications in nonaqueous redox flow batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09572 contributor: fullname: Sevov – volume: 2 start-page: 2430 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0160 article-title: Multielectron cycling of a low-potential anolyte in alkali metal electrolytes for nonaqueous redox flow batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00559 contributor: fullname: Hendriks – volume: 2 start-page: 18190 year: 2014 ident: 10.1016/j.elecom.2018.04.017_bb0265 article-title: 3,7-Bis(trifluoromethyl)-N-ethylphenothiazine: a redox shuttle with extensive overcharge protection in lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04463K contributor: fullname: Kaur – volume: 3 start-page: 7929 year: 2015 ident: 10.1016/j.elecom.2018.04.017_bb0075 article-title: Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06622G contributor: fullname: Suttil – volume: 164 start-page: A1688 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0040 article-title: Redox active polymers for non-aqueous redox flow batteries: validation of the size-exclusion approach publication-title: J. Electrochem. Soc. doi: 10.1149/2.1511707jes contributor: fullname: Montoto – volume: 3 start-page: 14971 year: 2015 ident: 10.1016/j.elecom.2018.04.017_bb0240 article-title: A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02380G contributor: fullname: Huang – volume: 6 year: 2016 ident: 10.1016/j.elecom.2018.04.017_bb0030 article-title: Organic redox species in aqueous flow batteries: redox potentials, chemical stability and solubility publication-title: Sci. Rep. doi: 10.1038/srep39101 contributor: fullname: Wedege – volume: 14 start-page: A171 year: 2011 ident: 10.1016/j.elecom.2018.04.017_bb0120 article-title: Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-methylphthalimide publication-title: Electrochem. Solid-State Lett. doi: 10.1149/2.012112esl contributor: fullname: Li – volume: 26 start-page: 7649 year: 2014 ident: 10.1016/j.elecom.2018.04.017_bb0115 article-title: TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries publication-title: Adv. Mater. doi: 10.1002/adma.201403746 contributor: fullname: Wei – volume: 49 start-page: 2649 year: 2016 ident: 10.1016/j.elecom.2018.04.017_bb0055 article-title: Redox active polymers as soluble nanomaterials for energy storage publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00341 contributor: fullname: Burgess – volume: 6 year: 2016 ident: 10.1016/j.elecom.2018.04.017_bb0090 article-title: The lightest organic radical cation for charge storage in redox flow batteries publication-title: Sci. Rep. contributor: fullname: Huang – volume: 42 start-page: 17488 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0140 article-title: A benzophenone-based anolyte for high energy density all-organic redox flow battery publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.03.034 contributor: fullname: Xing – volume: 2 start-page: 1156 year: 2017 ident: 10.1016/j.elecom.2018.04.017_bb0200 article-title: “Wine-dark sea” in an organic flow battery: storing negative charge in 2,1,3-benzothiadiazole radicals leads to improved cyclability publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00261 contributor: fullname: Duan – volume: 54 start-page: 5605 year: 2009 ident: 10.1016/j.elecom.2018.04.017_bb0110 article-title: Redox shuttles for safer lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.05.017 contributor: fullname: Chen – volume: 118 start-page: 14824 year: 2014 ident: 10.1016/j.elecom.2018.04.017_bb0255 article-title: Controlling oxidation potentials in redox shuttle candidates for lithium-ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/jp503767h contributor: fullname: Ergun |
SSID | ssj0012993 |
Score | 2.5611203 |
SecondaryResourceType | review_article |
Snippet | The application of novel organic redox materials is a plausible pathway towards techno-economic energy storage targets due to their low cost and sustainable... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 19 |
SubjectTerms | Molecular radicals Non-aqueous electrolyte Redox active organics Redox flow batteries |
Title | Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review |
URI | https://dx.doi.org/10.1016/j.elecom.2018.04.017 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB1qe9CL-In1o-TgNbbbZLOpt1IsVaEXLRQvIUkTqGhb2op68bc7ye6KgnjwuIGBMBvezDAz7wGcC4eQJ4WnvjXxNEhcUY21MoIhWiRW6MzFKd-hGIz4zTgdV6BX7sKEscoC-3NMj2hdnDQLbzYX02nzLmGYHXKJGTILxGpYt9cwHIVeba17fTsYfjUTEHHjnD0LjwINyg26OOYV1GbmYSU9kZHzNCqX_RKhvkWd_g5sF-ki6eY32oWKm-3BZq9UaduHB8wW43zrO5l78lyK3ZKljg2YFZnOSK7cZAlW-lRjHMBinwSe0Dfin-avxESKTayYL0mXBKoRku-zHMCof3XfG9BCL4FanqZrmomW60irUykFZn3cWKelTlObccMwLRA8sPNJw4xM_MTpwGaGWGitNYnLhGeHUMWbuCMgsu09574jQ2eUtY00VkysFi4xbetkVgda-kgtcloMVc6LParcpyr4VLW4Qp_WISsdqX78XoXI_afl8b8tT2ArfOVzXadQXS9f3BlmEGvTgI2Lj6RRvJNPoEHGIw |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB1KPdSL-In1Mwevsd1uNpt6K8Wyau3FFoqXkKQJVLQttaJe_O1OsruiIB687mYgOxtm3pA3bwDOuMWQJ7ijrjlx1I-4ogprZQyGaBEZrlIbWL4Dno3Y9TgZV6Bb9sJ4WmUR-_OYHqJ18aRReLOxmE4bd1GM6JAJRMixF1bDun2NJYh-8VCff3zxPDCfBeVdv5r65WX_XCB5-Vkzc9-QHomgeBrmlv2Sn77lnN4mbBRgkXTy_WxBxc62odYtZ7TtwD1ixcBufSdzR57KUbdkqcL1yzOZzkg-t8kQrPOpwiyApT7xKqFvxD3OX4kOAptYL1-QDvFCIyTvZtmFUe9y2M1oMS2BGvzsFU1507aFUYkQHDEf08YqoZLEpEzHCAo489p8QsdaRG5ildcyw0hojNGRTbmL96CKO7H7QETLOcZcW_h70bilhTZ8YhS3kW4ZK9I60NJHcpGLYsiSLfYgc59K71PZZBJ9Woe0dKT88XMlxu0_LQ_-bXkKtWx425f9q8HNIaz7NznD6wiqq-WLPUYssdIn4ax8AmcLxvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+molecular+radicals+in+organic+non-aqueous+redox+flow+batteries%3A+A+mini+review&rft.jtitle=Electrochemistry+communications&rft.au=Armstrong%2C+Craig+G.&rft.au=Toghill%2C+Kathryn+E.&rft.date=2018-06-01&rft.issn=1388-2481&rft.volume=91&rft.spage=19&rft.epage=24&rft_id=info:doi/10.1016%2Fj.elecom.2018.04.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_elecom_2018_04_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2481&client=summon |