Rapid and multiplex detection of Legionella's RNA using digital microfluidics

Despite recent advances in the miniaturization and automation of biosensors, technologies for on-site monitoring of environmental water are still at an early stage of development. Prevention of outbreaks caused by pathogens such as Legionella pneumophila would be facilitated by the development of se...

Full description

Saved in:
Bibliographic Details
Published inLab on a chip Vol. 15; no. 6; pp. 1609 - 1618
Main Authors Foudeh, Amir M, Brassard, Daniel, Tabrizian, Maryam, Veres, Teodor
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.01.2015
Subjects
Online AccessGet full text
ISSN1473-0197
1473-0189
1473-0189
DOI10.1039/c4lc01468e

Cover

Loading…
Abstract Despite recent advances in the miniaturization and automation of biosensors, technologies for on-site monitoring of environmental water are still at an early stage of development. Prevention of outbreaks caused by pathogens such as Legionella pneumophila would be facilitated by the development of sensitive and specific bioanalytical assays that can be easily integrated in miniaturized fluidic handling systems. In this work, we report on the integration of an amplification-free assay in digital microfluidics (DMF) for the detection of Legionella bacteria based on targeting 16s rRNA. We first review the design of the developed DMF devices, which provide the capability to store up to one hundred nL-size droplets simultaneously, and discuss the challenges involved with on-chip integration of the RNA-based assay. By optimizing the various steps of the assay, including magnetic capture, hybridization duration, washing steps, and assay temperature, a limit of detection as low as 1.8 attomoles of synthetic 16s rRNA was obtained, which compares advantageously to other amplification-free detection systems. Finally, we demonstrate the specificity of the developed assay by performing multiplex detection of 16s rRNAs from a pathogenic and a non-pathogenic species of Legionella. We believe the developed DMF devices combined with the proposed detection system offers new prospects for the deployment of rapid and cost-effective technologies for on-site monitoring of pathogenic bacteria.
NRC publication: Yes
AbstractList Despite recent advances in the miniaturization and automation of biosensors, technologies for on-site monitoring of environmental water are still at an early stage of development. Prevention of outbreaks caused by pathogens such as Legionella pneumophila would be facilitated by the development of sensitive and specific bioanalytical assays that can be easily integrated in miniaturized fluidic handling systems. In this work, we report on the integration of an amplification-free assay in digital microfluidics (DMF) for the detection of Legionella bacteria based on targeting 16s rRNA. We first review the design of the developed DMF devices, which provide the capability to store up to one hundred nL-size droplets simultaneously, and discuss the challenges involved with on-chip integration of the RNA-based assay. By optimizing the various steps of the assay, including magnetic capture, hybridization duration, washing steps, and assay temperature, a limit of detection as low as 1.8 attomoles of synthetic 16s rRNA was obtained, which compares advantageously to other amplification-free detection systems. Finally, we demonstrate the specificity of the developed assay by performing multiplex detection of 16s rRNAs from a pathogenic and a non-pathogenic species of Legionella. We believe the developed DMF devices combined with the proposed detection system offers new prospects for the deployment of rapid and cost-effective technologies for on-site monitoring of pathogenic bacteria.
Despite recent advances in the miniaturization and automation of biosensors, technologies for on-site monitoring of environmental water are still at an early stage of development. Prevention of outbreaks caused by pathogens such as Legionella pneumophilawould be facilitated by the development of sensitive and specific bioanalytical assays that can be easily integrated in miniaturized fluidic handling systems. In this work, we report on the integration of an amplification-free assay in digital microfluidics (DMF) for the detection of Legionellabacteria based on targeting 16s rRNA. We first review the design of the developed DMF devices, which provide the capability to store up to one hundred nL-size droplets simultaneously, and discuss the challenges involved with on-chip integration of the RNA-based assay. By optimizing the various steps of the assay, including magnetic capture, hybridization duration, washing steps, and assay temperature, a limit of detection as low as 1.8 attomoles of synthetic 16s rRNA was obtained, which compares advantageously to other amplification-free detection systems. Finally, we demonstrate the specificity of the developed assay by performing multiplex detection of 16s rRNAs from a pathogenic and a non-pathogenic species of Legionella. We believe the developed DMF devices combined with the proposed detection system offers new prospects for the deployment of rapid and cost-effective technologies for on-site monitoring of pathogenic bacteria.
Despite recent advances in the miniaturization and automation of biosensors, technologies for on-site monitoring of environmental water are still at an early stage of development. Prevention of outbreaks caused by pathogens such as Legionella pneumophila would be facilitated by the development of sensitive and specific bioanalytical assays that can be easily integrated in miniaturized fluidic handling systems. In this work, we report on the integration of an amplification-free assay in digital microfluidics (DMF) for the detection of Legionella bacteria based on targeting 16s rRNA. We first review the design of the developed DMF devices, which provide the capability to store up to one hundred nL-size droplets simultaneously, and discuss the challenges involved with on-chip integration of the RNA-based assay. By optimizing the various steps of the assay, including magnetic capture, hybridization duration, washing steps, and assay temperature, a limit of detection as low as 1.8 attomoles of synthetic 16s rRNA was obtained, which compares advantageously to other amplification-free detection systems. Finally, we demonstrate the specificity of the developed assay by performing multiplex detection of 16s rRNAs from a pathogenic and a non-pathogenic species of Legionella . We believe the developed DMF devices combined with the proposed detection system offers new prospects for the deployment of rapid and cost-effective technologies for on-site monitoring of pathogenic bacteria.
Despite recent advances in the miniaturization and automation of biosensors, technologies for on-site monitoring of environmental water are still at an early stage of development. Prevention of outbreaks caused by pathogens such as Legionella pneumophila would be facilitated by the development of sensitive and specific bioanalytical assays that can be easily integrated in miniaturized fluidic handling systems. In this work, we report on the integration of an amplification-free assay in digital microfluidics (DMF) for the detection of Legionella bacteria based on targeting 16s rRNA. We first review the design of the developed DMF devices, which provide the capability to store up to one hundred nL-size droplets simultaneously, and discuss the challenges involved with on-chip integration of the RNA-based assay. By optimizing the various steps of the assay, including magnetic capture, hybridization duration, washing steps, and assay temperature, a limit of detection as low as 1.8 attomoles of synthetic 16s rRNA was obtained, which compares advantageously to other amplification-free detection systems. Finally, we demonstrate the specificity of the developed assay by performing multiplex detection of 16s rRNAs from a pathogenic and a non-pathogenic species of Legionella. We believe the developed DMF devices combined with the proposed detection system offers new prospects for the deployment of rapid and cost-effective technologies for on-site monitoring of pathogenic bacteria.Despite recent advances in the miniaturization and automation of biosensors, technologies for on-site monitoring of environmental water are still at an early stage of development. Prevention of outbreaks caused by pathogens such as Legionella pneumophila would be facilitated by the development of sensitive and specific bioanalytical assays that can be easily integrated in miniaturized fluidic handling systems. In this work, we report on the integration of an amplification-free assay in digital microfluidics (DMF) for the detection of Legionella bacteria based on targeting 16s rRNA. We first review the design of the developed DMF devices, which provide the capability to store up to one hundred nL-size droplets simultaneously, and discuss the challenges involved with on-chip integration of the RNA-based assay. By optimizing the various steps of the assay, including magnetic capture, hybridization duration, washing steps, and assay temperature, a limit of detection as low as 1.8 attomoles of synthetic 16s rRNA was obtained, which compares advantageously to other amplification-free detection systems. Finally, we demonstrate the specificity of the developed assay by performing multiplex detection of 16s rRNAs from a pathogenic and a non-pathogenic species of Legionella. We believe the developed DMF devices combined with the proposed detection system offers new prospects for the deployment of rapid and cost-effective technologies for on-site monitoring of pathogenic bacteria.
Author Veres, Teodor
Foudeh, Amir M
Tabrizian, Maryam
Brassard, Daniel
Author_xml – sequence: 1
  fullname: Foudeh, Amir M
– sequence: 2
  fullname: Brassard, Daniel
– sequence: 3
  fullname: Tabrizian, Maryam
– sequence: 4
  fullname: Veres, Teodor
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25659351$$D View this record in MEDLINE/PubMed
BookMark eNqN0V9rFDEQAPAgFftHX_wAkjdFOJtkk93ksRzVCqeFos9hLpkckWx23eyCfntzvXoPIrQvmUn4TRJmzslJHjIS8pqzD5w15tLJ5BiXrcZn5IzLrlkxrs3JMTfdKTkv5QdjXFX1gpwK1SrTKH5GvtzBGD2F7Gm_pDmOCX9RjzO6OQ6ZDoFucFczTAneFnr39YouJeYd9XEXZ0i0j24aQlqij668JM8DpIKvHuIF-f7x-tv6ZrW5_fR5fbVZOanUvOpU2DLslBJBg-IsGMM1Q6l548F5rpUwW-WxZTqgACY6I40DDQG1wW7bXJB3h3vHafi5YJltH4vb_zHjsBTLO9UowUQrHqdtq6vTXD-FslZJyUylbx7osu3R23GKPUy_7d_GVvD-AGp3SpkwHAlndj81u5ab9f3Uritm_2BXe7sfwDxBTP8vuTmU5Mk5yODh-MAAsdaXOdq4D7YK6-4XOJznEepOcNEp3ejmD3ussmY
CitedBy_id crossref_primary_10_1021_acs_analchem_5b01942
crossref_primary_10_3390_agriculture13122226
crossref_primary_10_1039_C9CS00621D
crossref_primary_10_1016_j_snb_2019_127007
crossref_primary_10_1039_C6LC00387G
crossref_primary_10_1016_j_bios_2015_10_036
crossref_primary_10_1039_D3LC00781B
crossref_primary_10_1016_j_talanta_2020_120904
crossref_primary_10_1016_j_snb_2023_133409
crossref_primary_10_3390_bios14050228
crossref_primary_10_3390_s18092941
crossref_primary_10_1021_acs_analchem_7b01942
crossref_primary_10_3390_microorganisms12091855
crossref_primary_10_1177_2472630320931794
crossref_primary_10_1021_acs_analchem_6b02915
crossref_primary_10_1016_j_sna_2016_08_007
crossref_primary_10_1039_C5AN02367J
crossref_primary_10_1016_j_slasd_2023_12_005
crossref_primary_10_1016_j_trac_2022_116826
crossref_primary_10_1140_epjs_s11734_024_01112_7
crossref_primary_10_3390_s19051178
crossref_primary_10_1039_D1LC00609F
crossref_primary_10_1016_j_slast_2022_10_001
crossref_primary_10_1049_mnl_2019_0382
crossref_primary_10_1007_s13197_024_06058_1
crossref_primary_10_1088_1361_6439_aa7117
crossref_primary_10_3390_bios10090102
crossref_primary_10_3390_s151229848
crossref_primary_10_1016_j_bios_2020_112049
Cites_doi 10.1039/b803827a
10.1128/AEM.57.7.1950-1955.1991
10.1128/CMR.15.3.506-526.2002
10.1088/0960-1317/17/10/029
10.2807/ese.15.04.19472-en
10.1128/CMR.00077-09
10.1073/pnas.0910781107
10.1039/C4LC00592A
10.1016/j.bios.2013.08.032
10.1086/524016
10.1099/ijs.0.027193-0
10.1021/la7039509
10.1039/c2lc40630f
10.1021/ac200465m
10.1039/c002147d
10.1039/b807855f
10.1016/j.watres.2013.09.030
10.1007/s10544-006-8171-y
10.1146/annurev.micro.54.1.567
10.1016/S0956-5663(03)00273-2
10.1039/C4LC00348A
10.1021/ac3020627
10.1128/AEM.02878-08
10.1021/ac404085p
ContentType Journal Article
DBID -LJ
GXV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QL
7TM
C1K
7SP
7TB
7U5
8FD
FR3
L7M
DOI 10.1039/c4lc01468e
DatabaseName National Research Council Canada Archive
CISTI Source
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Environmental Sciences and Pollution Management
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Environmental Sciences and Pollution Management
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList MEDLINE
Solid State and Superconductivity Abstracts
Bacteriology Abstracts (Microbiology B)

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Sciences
EISSN 1473-0189
EndPage 1618
ExternalDocumentID 25659351
10_1039_C4LC01468E
oai_cisti_icist_nrc_cnrc_ca_cistinparc_21275838
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-LJ
0-7
0R~
29L
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
GXV
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
N9A
O9-
R56
R7B
RAOCF
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
0UZ
0VX
1TJ
53G
71~
AAYXX
ACHDF
ACRPL
ADNMO
AFFNX
AGQPQ
AHGXI
ALSGL
ANLMG
BBWZM
CAG
CITATION
COF
EEHRC
FEDTE
HVGLF
IDY
L-8
NDZJH
RCLXC
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QL
7TM
C1K
7SP
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c455t-75fb0e7552f8a510f99180e4813dacd18529b5de608fe2a027949ca8afe89e7b3
ISSN 1473-0197
1473-0189
IngestDate Fri Jul 11 01:49:47 EDT 2025
Fri Jul 11 12:44:56 EDT 2025
Fri Jul 11 11:52:49 EDT 2025
Mon Jul 21 05:52:20 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
Tue Jul 01 00:52:37 EDT 2025
Tue Sep 02 20:39:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-75fb0e7552f8a510f99180e4813dacd18529b5de608fe2a027949ca8afe89e7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25659351
PQID 1660654409
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1753520262
proquest_miscellaneous_1668262818
proquest_miscellaneous_1660654409
pubmed_primary_25659351
crossref_primary_10_1039_C4LC01468E
crossref_citationtrail_10_1039_C4LC01468E
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_21275838
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Lab on a chip
PublicationTitleAlternate Lab Chip
PublicationYear 2015
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhao (C4LC01468E-(cit25)/*[position()=1]) 2010
Foudeh (C4LC01468E-(cit14)/*[position()=1]) 2012; 12
Von Baum (C4LC01468E-(cit4)/*[position()=1]) 2010; 15
Sista (C4LC01468E-(cit26)/*[position()=1]) 2008; 8
CDC (C4LC01468E-(cit2)/*[position()=1]) 2011
World Health Organization (C4LC01468E-(cit1)/*[position()=1]) 2000
Luk (C4LC01468E-(cit31)/*[position()=1]) 2008; 24
Agresti (C4LC01468E-(cit12)/*[position()=1]) 2010; 107
Barbulovic-Nad (C4LC01468E-(cit17)/*[position()=1]) 2010; 10
Craun (C4LC01468E-(cit5)/*[position()=1]) 2010; 23
Nygård (C4LC01468E-(cit3)/*[position()=1]) 2008; 46
Miller (C4LC01468E-(cit16)/*[position()=1]) 2011
Chang (C4LC01468E-(cit19)/*[position()=1]) 2006; 8
Yizhong (C4LC01468E-(cit27)/*[position()=1]) 2007; 17
Gabig-Ciminska (C4LC01468E-(cit29)/*[position()=1]) 2004; 19
Swanson (C4LC01468E-(cit7)/*[position()=1]) 2000; 54
Wadowsky (C4LC01468E-(cit8)/*[position()=1]) 1991; 57
Yang (C4LC01468E-(cit10)/*[position()=1]) 2012; 62
Ng (C4LC01468E-(cit15)/*[position()=1]) 2012; 84
Brassard (C4LC01468E-(cit24)/*[position()=1]) 2011
Kusić (C4LC01468E-(cit11)/*[position()=1]) 2014; 48
Rival (C4LC01468E-(cit23)/*[position()=1]) 2014; 14
Delgado-Viscogliosi (C4LC01468E-(cit6)/*[position()=1]) 2009; 75
Brassard (C4LC01468E-(cit30)/*[position()=1]) 2008; 8
Kuhnemund (C4LC01468E-(cit20)/*[position()=1]) 2014; 14
Foudeh (C4LC01468E-(cit21)/*[position()=1]) 2014; 52
Malic (C4LC01468E-(cit18)/*[position()=1]) 2011; 83
Sista (C4LC01468E-(cit28)/*[position()=1]) 2008
Jebrail (C4LC01468E-(cit22)/*[position()=1]) 2014; 86
Fields (C4LC01468E-(cit9)/*[position()=1]) 2002; 15
Chai (C4LC01468E-(cit13)/*[position()=1]) 2013
References_xml – volume-title: World Water Day Report 2000
  year: 2000
  ident: C4LC01468E-(cit1)/*[position()=1]
– volume: 8
  start-page: 1342
  year: 2008
  ident: C4LC01468E-(cit30)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/b803827a
– volume: 57
  start-page: 1950
  year: 1991
  ident: C4LC01468E-(cit8)/*[position()=1]
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.57.7.1950-1955.1991
– volume: 15
  start-page: 506
  year: 2002
  ident: C4LC01468E-(cit9)/*[position()=1]
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.15.3.506-526.2002
– volume-title: Proceedings of the IEEE VLSI Test Symposium
  year: 2010
  ident: C4LC01468E-(cit25)/*[position()=1]
– volume: 17
  start-page: 2148
  year: 2007
  ident: C4LC01468E-(cit27)/*[position()=1]
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/17/10/029
– volume: 15
  start-page: 19472
  year: 2010
  ident: C4LC01468E-(cit4)/*[position()=1]
  publication-title: Euro Surveill.
  doi: 10.2807/ese.15.04.19472-en
– volume: 23
  start-page: 507
  year: 2010
  ident: C4LC01468E-(cit5)/*[position()=1]
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00077-09
– volume: 107
  start-page: 4004
  year: 2010
  ident: C4LC01468E-(cit12)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0910781107
– volume: 14
  start-page: 3739
  year: 2014
  ident: C4LC01468E-(cit23)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C4LC00592A
– volume: 52
  start-page: 129
  year: 2014
  ident: C4LC01468E-(cit21)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.08.032
– volume: 46
  start-page: 61
  year: 2008
  ident: C4LC01468E-(cit3)/*[position()=1]
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/524016
– volume: 62
  start-page: 284
  year: 2012
  ident: C4LC01468E-(cit10)/*[position()=1]
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.027193-0
– volume: 24
  start-page: 6382
  year: 2008
  ident: C4LC01468E-(cit31)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la7039509
– volume: 12
  start-page: 3249
  year: 2012
  ident: C4LC01468E-(cit14)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c2lc40630f
– volume: 83
  start-page: 5222
  year: 2011
  ident: C4LC01468E-(cit18)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac200465m
– volume: 10
  start-page: 1536
  year: 2010
  ident: C4LC01468E-(cit17)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c002147d
– volume: 8
  start-page: 2188
  year: 2008
  ident: C4LC01468E-(cit26)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/b807855f
– volume-title: IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS)
  year: 2011
  ident: C4LC01468E-(cit24)/*[position()=1]
– volume: 48
  start-page: 179
  year: 2014
  ident: C4LC01468E-(cit11)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.09.030
– volume: 8
  start-page: 215
  year: 2006
  ident: C4LC01468E-(cit19)/*[position()=1]
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-006-8171-y
– start-page: 8
  year: 2008
  ident: C4LC01468E-(cit28)/*[position()=1]
  publication-title: Lab Chip
– volume: 54
  start-page: 567
  year: 2000
  ident: C4LC01468E-(cit7)/*[position()=1]
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.54.1.567
– volume-title: Practical Considerations of Liquid Handling Devices in Drug Discovery
  year: 2013
  ident: C4LC01468E-(cit13)/*[position()=1]
– start-page: 1
  year: 2011
  ident: C4LC01468E-(cit16)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
– volume: 19
  start-page: 537
  year: 2004
  ident: C4LC01468E-(cit29)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/S0956-5663(03)00273-2
– volume: 14
  start-page: 2983
  year: 2014
  ident: C4LC01468E-(cit20)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C4LC00348A
– volume: 84
  start-page: 8805
  year: 2012
  ident: C4LC01468E-(cit15)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac3020627
– volume: 75
  start-page: 3502
  year: 2009
  ident: C4LC01468E-(cit6)/*[position()=1]
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02878-08
– volume-title: Centers for Disease Control and Prevention
  year: 2011
  ident: C4LC01468E-(cit2)/*[position()=1]
– volume: 86
  start-page: 3856
  year: 2014
  ident: C4LC01468E-(cit22)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac404085p
SSID ssj0015468
Score 2.304536
Snippet Despite recent advances in the miniaturization and automation of biosensors, technologies for on-site monitoring of environmental water are still at an early...
SourceID proquest
pubmed
crossref
nrccanada
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1609
SubjectTerms Amplification
Assaying
Bacteria
cost effectiveness analysis
Devices
Digital
DNA Probes - chemistry
Droplets
Equipment Design
gene targeting
lab on a chip
Lab-On-A-Chip Devices
Legionella
Legionella - isolation & purification
Legionella pneumophila
Limit of Detection
Microfluidics
Multiplexing
Nucleic Acid Amplification Techniques
Nucleic Acid Hybridization
particle size
RNA 16S
RNA analysis
RNA hybridization
RNA, Bacterial - analysis
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
RNA, Ribosomal, 16S - analysis
RNA, Ribosomal, 16S - chemistry
RNA, Ribosomal, 16S - genetics
temperature
Time Factors
Title Rapid and multiplex detection of Legionella's RNA using digital microfluidics
URI https://nrc-publications.canada.ca/eng/view/object/?id=370d531f-89c4-45ed-b088-8ac20ce4f8e5
https://www.ncbi.nlm.nih.gov/pubmed/25659351
https://www.proquest.com/docview/1660654409
https://www.proquest.com/docview/1668262818
https://www.proquest.com/docview/1753520262
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9NAEF_0Djn9IFo9rS8iCiIlZx67SfZjLT1OaSscrfRb2Fck0PZKrgXv_npnNs3joB6nX9KynYbQ-XVmZ3bmN4R8RApwE0FYwqUvXJoFwpU6My4Hgwn-UCSexkbh8SQ6m9HvczZvCBVsd8lGnqjrvX0l_6NVWAO9YpfsP2i2vikswHvQL1xBw3C9k47PxTq3VKt1XeDvnjYbo6pt4MhguTEWONm8_Pmk39va5IDOf-G0kN4S6_GyxTbXVdV73Rst8RxBYLf3unFVW21sHqa_zIsmkfq1gC24qIrksWe9SQjIIr_OyyzrWBRXYll99NMUpYmaGgiNi3b6wWet9ENpMWmMBVllke2Jaa-Vs4FqM8tacGrbTD_yeMv_IoP_XtvuhUiNquhCIeFNYhoPVp3aT36kp7PRKJ0O59P75DCAyAFs9WF_OP02qo-WGC37I6vnrjhrQ_6lufeNXcrRqlC2BE_8PQyx25HpE_J4F0c4_RIUT8k9s-qQB-Vk0asOORpUg_w65FGLc_IZGVvQOAAapwaNU4PGucicBjSfLh2AjGMh4-wg49yAzHMyOx1OB2fubqaGqyhjGzdmmfRMzFiQJQLscQbxQeIZmvihFkpjKz2XTJvISzITCC8Ae82VSERmEm5iGR6TgxU8w0viUKNipSIdcgluIAhlxDMdxlnAtKSGqi75XP2GqdoRzuPck0VqCx9Cng7oaGB_72GXfKhl1yXNyl6pfq2KWgz50RX6wzTHlxQkUmUvolxfrcFlpHaSQRImXfK-UmEKesDjMbEyF9vL1I8i7LSmHr9VBuJxZFC7RSZGyiQPxLrkRYmR-mEhwGA8ZP6rO3z7NXnY_OHekINNsTVvYQe8ke92mP4DCp2zdA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+and+multiplex+detection+of+Legionella%27s+RNA+using+digital+microfluidics&rft.jtitle=Lab+on+a+chip&rft.au=Foudeh%2C+Amir+M&rft.au=Brassard%2C+Daniel&rft.au=Tabrizian%2C+Maryam&rft.au=Veres%2C+Teodor&rft.date=2015-01-01&rft.issn=1473-0197&rft.eissn=1473-0189&rft.volume=15&rft.issue=6&rft.spage=1609&rft.epage=1618&rft_id=info:doi/10.1039%2Fc4lc01468e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-0197&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-0197&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-0197&client=summon