The GABA Transaminase, ABAT, Is Essential for Mitochondrial Nucleoside Metabolism

ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neu...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 21; no. 3; pp. 417 - 427
Main Authors Besse, Arnaud, Wu, Ping, Bruni, Francesco, Donti, Taraka, Graham, Brett H., Craigen, William J., McFarland, Robert, Moretti, Paolo, Lalani, Seema, Scott, Kenneth L., Taylor, Robert W., Bonnen, Penelope E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.03.2015
Subjects
Online AccessGet full text
ISSN1550-4131
1932-7420
1932-7420
DOI10.1016/j.cmet.2015.02.008

Cover

Loading…
Abstract ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects’ brains as well as decreased mtDNA levels in subjects’ fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS. [Display omitted] •ABAT converts dNDP to dNTP in the mitochondrial nucleoside salvage pathway•Inhibition of ABAT causes decreased copy number of mitochondrial genome•mtDNA depletion induced by ABAT inhibition is rescued by dNTP supplementation in vitro•ABAT causes human mitochondrial DNA depletion syndrome ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). Besse et al. report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause autosomal recessive mtDNA depletion syndrome.
AbstractList ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter gamma-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects’ brains as well as decreased mtDNA levels in subjects’ fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS.
ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects’ brains as well as decreased mtDNA levels in subjects’ fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS. [Display omitted] •ABAT converts dNDP to dNTP in the mitochondrial nucleoside salvage pathway•Inhibition of ABAT causes decreased copy number of mitochondrial genome•mtDNA depletion induced by ABAT inhibition is rescued by dNTP supplementation in vitro•ABAT causes human mitochondrial DNA depletion syndrome ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). Besse et al. report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause autosomal recessive mtDNA depletion syndrome.
ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects' brains as well as decreased mtDNA levels in subjects' fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS.
ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects' brains as well as decreased mtDNA levels in subjects' fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS.ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects' brains as well as decreased mtDNA levels in subjects' fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS.
Author Graham, Brett H.
Bruni, Francesco
Taylor, Robert W.
Lalani, Seema
Wu, Ping
McFarland, Robert
Scott, Kenneth L.
Moretti, Paolo
Besse, Arnaud
Donti, Taraka
Bonnen, Penelope E.
Craigen, William J.
AuthorAffiliation 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
3 Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
2 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
AuthorAffiliation_xml – name: 2 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
– name: 3 Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
– name: 1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
Author_xml – sequence: 1
  givenname: Arnaud
  surname: Besse
  fullname: Besse, Arnaud
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 2
  givenname: Ping
  surname: Wu
  fullname: Wu, Ping
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 3
  givenname: Francesco
  surname: Bruni
  fullname: Bruni, Francesco
  organization: Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
– sequence: 4
  givenname: Taraka
  surname: Donti
  fullname: Donti, Taraka
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 5
  givenname: Brett H.
  surname: Graham
  fullname: Graham, Brett H.
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 6
  givenname: William J.
  surname: Craigen
  fullname: Craigen, William J.
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 7
  givenname: Robert
  surname: McFarland
  fullname: McFarland, Robert
  organization: Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
– sequence: 8
  givenname: Paolo
  surname: Moretti
  fullname: Moretti, Paolo
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 9
  givenname: Seema
  surname: Lalani
  fullname: Lalani, Seema
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 10
  givenname: Kenneth L.
  surname: Scott
  fullname: Scott, Kenneth L.
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 11
  givenname: Robert W.
  surname: Taylor
  fullname: Taylor, Robert W.
  organization: Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
– sequence: 12
  givenname: Penelope E.
  surname: Bonnen
  fullname: Bonnen, Penelope E.
  email: pbonnen@bcm.edu
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25738457$$D View this record in MEDLINE/PubMed
BookMark eNp9UVtrFDEUDlLpzf4BH2QefeiOuUwyCYiwlrYWWkVYn0M2OXGzzExqki3475thW1Ef-nISzvkuh_OdoIMpToDQW4Jbgon4sG3tCKWlmPAW0xZj-QodE8Xoou8oPqh_zvGiI4wcoZOctxgzwRQ7REeU90x2vD9G31cbaK6Xn5fNKpkpmzFMJsN5Uzur8-YmN5c5w1SCGRofU3MXSrSbOLk0d77u7AAxBwfNHRSzjkPI4xv02pshw9nTe4p-XF2uLr4sbr9d31wsbxe247zUFZ31WDnPqOPdWtTimaRKYQnCyc4Y4b1Xa-CKOS56ppQVkkpHamFGslP0aa97v1uP4GzdMplB36cwmvRbRxP0v5MpbPTP-KC7nvcdI1Xg_ZNAir92kIseQ7YwDGaCuMuaCEEY44rgCn33t9cfk-c7VoDcA2yKOSfw2oZiSoizdRg0wXqOTG_1HJmeI9OY6hpZpdL_qM_qL5I-7klQL_wQIOlsA0wWXEhgi3YxvER_BP9VryY
CitedBy_id crossref_primary_10_1016_j_gde_2016_03_005
crossref_primary_10_1007_s11064_015_1589_y
crossref_primary_10_1016_j_eplepsyres_2017_07_003
crossref_primary_10_1074_jbc_R117_809194
crossref_primary_10_1093_brain_awv291
crossref_primary_10_1007_s10545_016_9951_z
crossref_primary_10_1016_j_jss_2018_11_047
crossref_primary_10_1038_s41398_023_02418_1
crossref_primary_10_1042_BCJ20230262
crossref_primary_10_1080_15257770_2015_1125001
crossref_primary_10_1007_s10695_022_01134_9
crossref_primary_10_1016_j_ajhg_2017_09_016
crossref_primary_10_1371_journal_pgen_1005779
crossref_primary_10_1007_s10545_016_9977_2
crossref_primary_10_1186_s13041_016_0273_8
crossref_primary_10_1038_s41598_024_81600_x
crossref_primary_10_1055_s_0042_1757447
crossref_primary_10_1177_0883073818823359
crossref_primary_10_3390_biomedicines10071665
crossref_primary_10_3389_fonc_2022_982426
crossref_primary_10_1016_S1474_4422_15_00148_9
crossref_primary_10_3389_fnins_2019_00394
crossref_primary_10_1007_s10545_017_0027_5
crossref_primary_10_1016_j_braindev_2016_08_005
crossref_primary_10_1080_1354750X_2023_2276670
crossref_primary_10_1016_j_pedneo_2018_03_006
crossref_primary_10_3390_ijms19051461
crossref_primary_10_3390_jcm11030632
crossref_primary_10_3390_ijms21228485
crossref_primary_10_1186_s41065_021_00177_x
crossref_primary_10_1016_j_bbadis_2017_02_017
crossref_primary_10_1016_j_jtcme_2023_06_002
crossref_primary_10_1038_s41420_022_01170_7
crossref_primary_10_1016_j_etap_2023_104348
crossref_primary_10_1002_humu_23898
crossref_primary_10_3389_fnut_2022_1076223
crossref_primary_10_1016_j_isci_2022_104184
crossref_primary_10_1016_j_mito_2020_01_004
crossref_primary_10_3390_ijms25052958
crossref_primary_10_1016_j_celrep_2021_109302
crossref_primary_10_1016_j_intimp_2022_108719
crossref_primary_10_1111_cge_13652
crossref_primary_10_1016_j_cels_2021_08_010
crossref_primary_10_1016_j_biocel_2021_106116
crossref_primary_10_1038_s41586_024_07260_z
crossref_primary_10_3389_fpsyt_2023_1102811
crossref_primary_10_1016_j_jpha_2024_02_010
crossref_primary_10_1172_jci_insight_128568
crossref_primary_10_1016_j_bbabio_2022_148554
crossref_primary_10_3390_ijms23042182
crossref_primary_10_1002_humu_23396
crossref_primary_10_2217_nnm_2023_0301
crossref_primary_10_1007_s00702_021_02335_x
crossref_primary_10_1016_j_ygeno_2021_07_006
crossref_primary_10_1126_scitranslmed_abl6992
crossref_primary_10_1002_jmd2_12018
crossref_primary_10_3389_fmolb_2017_00074
crossref_primary_10_1212_WNL_0000000000003936
crossref_primary_10_1016_j_molmet_2019_01_006
crossref_primary_10_3389_fncel_2021_641264
crossref_primary_10_1016_j_jgg_2019_03_009
crossref_primary_10_3390_ijms241713478
crossref_primary_10_1016_j_aquatox_2020_105482
crossref_primary_10_1186_s13046_025_03315_9
crossref_primary_10_1016_j_nbd_2019_104559
crossref_primary_10_1097_YPG_0000000000000264
crossref_primary_10_1016_j_ymgme_2016_07_007
crossref_primary_10_3390_ijms22126447
crossref_primary_10_3390_ijms160818054
crossref_primary_10_1002_ajmg_a_38658
crossref_primary_10_1111_epi_14032
crossref_primary_10_1038_s41388_020_1381_6
crossref_primary_10_1161_HYPERTENSIONAHA_118_11733
crossref_primary_10_1016_j_nmd_2022_05_008
crossref_primary_10_1038_s41467_020_19743_4
crossref_primary_10_1002_ccr3_3753
crossref_primary_10_1016_j_canlet_2016_05_001
crossref_primary_10_3390_ijms23094677
crossref_primary_10_1038_s41374_017_0004_5
crossref_primary_10_1042_BCJ20160594
crossref_primary_10_1212_WNL_0000000000006744
crossref_primary_10_1186_s12944_022_01654_6
crossref_primary_10_3390_ijms19072110
crossref_primary_10_1016_j_celrep_2017_11_065
crossref_primary_10_1038_s41598_017_04412_2
crossref_primary_10_1089_ars_2021_0091
crossref_primary_10_1038_s41582_018_0101_0
crossref_primary_10_1016_j_isci_2025_112024
crossref_primary_10_1038_s42255_023_00783_1
crossref_primary_10_1172_JCI145660
crossref_primary_10_1042_EBC20170101
crossref_primary_10_1002_ana_27071
crossref_primary_10_1038_s41467_022_29633_6
crossref_primary_10_3390_ijms20184523
crossref_primary_10_3390_ijms21165848
crossref_primary_10_1021_acs_jafc_7b00013
crossref_primary_10_3389_fncel_2022_869398
crossref_primary_10_1007_s12035_020_02271_z
crossref_primary_10_1016_j_ymgme_2016_03_004
Cites_doi 10.1074/jbc.M111.306423
10.1016/0022-2836(72)90511-6
10.1038/ng.806
10.1006/abbi.2001.2710
10.1042/BJ20060904
10.1101/gr.176601
10.1038/ng751
10.1038/nrd3628
10.1016/j.jpeds.2013.10.082
10.1016/j.ajhg.2013.07.017
10.1371/journal.pone.0064670
10.1093/hmg/ddg192
10.1371/journal.pgen.1002035
10.1016/S1474-4422(10)70116-2
10.1002/ana.20079
10.1046/j.1528-1157.2003.04203.x
10.1074/jbc.M803132200
10.1097/00007691-200308000-00007
10.1016/j.nmd.2010.03.017
10.1055/s-2008-1052362
10.1002/ana.21207
10.1186/gb-2011-12-7-r68
10.1086/301964
10.1242/dmm.013466
10.1007/s10545-009-9022-9
10.1038/nmeth0410-248
10.1371/journal.pcbi.1001025
10.1007/s10545-007-0574-2
10.1038/ng1765
10.1016/j.ymgme.2008.07.007
10.1016/j.ajhg.2013.07.016
10.1086/430843
10.1038/nrn1430
10.1016/j.bbadis.2011.01.013
10.1002/mrm.1910300604
10.1023/A:1005584929050
10.1086/519222
10.1111/j.1528-1167.2007.01133.x
10.1126/science.283.5402.689
10.1038/ng2040
10.1146/annurev-pharmtox-011613-135947
10.1093/hmg/ddi341
10.1016/S0091-679X(06)80004-X
10.1038/ng746
10.1038/ng.2501
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2015.02.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 427
ExternalDocumentID PMC4757431
25738457
10_1016_j_cmet_2015_02_008
S1550413115000601
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM098387
– fundername: NIAID NIH HHS
  grantid: P30 AI036211
– fundername: NIAID NIH HHS
  grantid: AI036211
– fundername: NCI NIH HHS
  grantid: P30 CA125123
– fundername: Wellcome Trust
  grantid: 096919/Z/11/Z
– fundername: NCRR NIH HHS
  grantid: S10 RR024574
– fundername: NCRR NIH HHS
  grantid: RR024574
– fundername: Medical Research Council
  grantid: G0800674
– fundername: NICHD NIH HHS
  grantid: U54 HD083092
– fundername: Medical Research Council
  grantid: G0601943
GroupedDBID ---
--K
0R~
0SF
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AIGII
AKBMS
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c455t-74dcf09df32d54b6d54f3829908e6d84aa6fff9be593d567399c6828d18283a83
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 18:16:39 EDT 2025
Fri Jul 11 02:34:20 EDT 2025
Mon Jul 21 05:57:05 EDT 2025
Tue Jul 01 03:58:14 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Fri Aug 02 08:58:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-74dcf09df32d54b6d54f3829908e6d84aa6fff9be593d567399c6828d18283a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413115000601
PMID 25738457
PQID 1661335910
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4757431
proquest_miscellaneous_1661335910
pubmed_primary_25738457
crossref_citationtrail_10_1016_j_cmet_2015_02_008
crossref_primary_10_1016_j_cmet_2015_02_008
elsevier_sciencedirect_doi_10_1016_j_cmet_2015_02_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-03
PublicationDateYYYYMMDD 2015-03-03
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gai, Ghezzi, Johnson, Biagosch, Shamseldin, Haack, Reyes, Tsukikawa, Sheldon, Srinivasan (bib14) 2013; 93
Tsuji, Aida, Obata, Tomiyasu, Furuya, Kurosawa, Errami, Gibson, Salomons, Jakobs, Osaka (bib45) 2010; 33
Al-Hussaini, Faqeih, El-Hattab, Alfadhel, Asery, Alsaleem, Bakhsh, Ali, Alasmari, Lone, Nahari, Eyaid, Al Balwi, Craig, Butterworth, He, Taylor (bib2) 2014; 164
Chambliss, Hinson, Trettel, Malaspina, Novelletto, Jakobs, Gibson (bib8) 1998; 63
Bourdon, Minai, Serre, Jais, Sarzi, Aubert, Chrétien, de Lonlay, Paquis-Flucklinger, Arakawa (bib6) 2007; 39
Ostergaard, Christensen, Kristensen, Mogensen, Duno, Shoubridge, Wibrand (bib31) 2007; 81
Tokarska-Schlattner, Boissan, Munier, Borot, Mailleau, Speer, Schlattner, Lacombe (bib44) 2008; 283
Spinazzola, Viscomi, Fernandez-Vizarra, Carrara, D’Adamo, Calvo, Marsano, Donnini, Weiher, Strisciuglio (bib41) 2006; 38
Bruni, Gramegna, Oliveira, Lightowlers, Chrzanowska-Lightowlers (bib7) 2013; 8
Gordon, Lyver, Lesuisse, Dancis, Pain (bib16) 2006; 400
Taanman, Muddle, Muntau (bib43) 2003; 12
DePristo, Banks, Poplin, Garimella, Maguire, Hartl, Philippakis, del Angel, Rivas, Hanna (bib10) 2011; 43
Naviaux, Nguyen (bib28) 2004; 55
Frahm, Merboldt, Hanicke (bib13) 1987; 72
Saada (bib37) 2008; 95
Miller, Wang, Ostergaard, Dan, Saada (bib27) 2011; 1812
Adzhubei, Schmidt, Peshkin, Ramensky, Gerasimova, Bork, Kondrashov, Sunyaev (bib1) 2010; 7
Donti, Stromberger, Ge, Eldin, Craigen, Graham (bib11) 2014; 7
Bainbridge, Wang, Wu, Newsham, Muzny, Jefferies, Albert, Burgess, Gibbs (bib3) 2011; 12
Jaeken, Casaer, de Cock, Corbeel, Eeckels, Eggermont, Schechter, Brucher (bib17) 1984; 15
Lindberger, Luhr, Johannessen, Larsson, Tomson (bib23) 2003; 25
Knerr, Pearl, Bottiglieri, Snead, Jakobs, Gibson (bib19) 2007; 30
Palmieri, Alberio, Pisano, Lodi, Meznaric-Petrusa, Zidar, Santoro, Scarcia, Fontanesi, Lamantea (bib32) 2005; 14
Elpeleg, Miller, Hershkovitz, Bitner-Glindzicz, Bondi-Rubinstein, Rahman, Pagnamenta, Eshhar, Saada (bib12) 2005; 76
Millan, Agid, Brüne, Bullmore, Carter, Clayton, Connor, Davis, Deakin, DeRubeis (bib26) 2012; 11
Wild, Ahn, Baulac, Bursztyn, Chiron, Gandolfo, Safran, Schiefer, Perucca (bib46) 2007; 48
Bonnen, Yarham, Besse, Wu, Faqeih, Al-Asmari, Saleh, Eyaid, Hadeel, He (bib5) 2013; 93
Sarzi, Goffart, Serre, Chrétien, Slama, Munnich, Spelbrink, Rötig (bib39) 2007; 62
González-Vioque, Torres-Torronteras, Andreu, Martí (bib15) 2011; 7
McFarland, Taylor, Turnbull (bib25) 2010; 9
Nishino, Spinazzola, Hirano (bib30) 1999; 283
Provencher (bib34) 1993; 30
Mandel, Szargel, Labay, Elpeleg, Saada, Shalata, Anbinder, Berkowitz, Hartman, Barak (bib24) 2001; 29
Davydov, Goode, Sirota, Cooper, Sidow, Batzoglou (bib9) 2010; 6
Saada, Shaag, Mandel, Nevo, Eriksson, Elpeleg (bib38) 2001; 29
Kowluru, Tannous, Chen (bib21) 2002; 398
Suomalainen, Isohanni (bib42) 2010; 20
Lacombe, Milon, Munier, Mehus, Lambeth (bib22) 2000; 32
Sills, Butler, Forrest, Ratnaraj, Patsalos, Brodie (bib40) 2003; 44
Bishop, Tchaikovskii, Hoffbrand, Fraser, Margolis (bib4) 2012; 287
Kornblum, Nicholls, Haack, Schöler, Peeva, Danhauser, Hallmann, Zsurka, Rorbach, Iuso (bib20) 2013; 45
Ng, Henikoff (bib29) 2001; 11
Rudolph, Möhler (bib36) 2014; 54
Rogawski, Löscher (bib35) 2004; 5
Pica-Mattoccia, Attardi (bib33) 1972; 64
Kirby, Thorburn, Turnbull, Taylor (bib18) 2007; 80
Naviaux (10.1016/j.cmet.2015.02.008_bib28) 2004; 55
Ng (10.1016/j.cmet.2015.02.008_bib29) 2001; 11
Davydov (10.1016/j.cmet.2015.02.008_bib9) 2010; 6
Kirby (10.1016/j.cmet.2015.02.008_bib18) 2007; 80
Saada (10.1016/j.cmet.2015.02.008_bib37) 2008; 95
Bruni (10.1016/j.cmet.2015.02.008_bib7) 2013; 8
McFarland (10.1016/j.cmet.2015.02.008_bib25) 2010; 9
Miller (10.1016/j.cmet.2015.02.008_bib27) 2011; 1812
Chambliss (10.1016/j.cmet.2015.02.008_bib8) 1998; 63
DePristo (10.1016/j.cmet.2015.02.008_bib10) 2011; 43
Frahm (10.1016/j.cmet.2015.02.008_bib13) 1987; 72
Taanman (10.1016/j.cmet.2015.02.008_bib43) 2003; 12
Kornblum (10.1016/j.cmet.2015.02.008_bib20) 2013; 45
Bourdon (10.1016/j.cmet.2015.02.008_bib6) 2007; 39
Rogawski (10.1016/j.cmet.2015.02.008_bib35) 2004; 5
Lacombe (10.1016/j.cmet.2015.02.008_bib22) 2000; 32
Wild (10.1016/j.cmet.2015.02.008_bib46) 2007; 48
Elpeleg (10.1016/j.cmet.2015.02.008_bib12) 2005; 76
Nishino (10.1016/j.cmet.2015.02.008_bib30) 1999; 283
Bonnen (10.1016/j.cmet.2015.02.008_bib5) 2013; 93
Al-Hussaini (10.1016/j.cmet.2015.02.008_bib2) 2014; 164
Saada (10.1016/j.cmet.2015.02.008_bib38) 2001; 29
Donti (10.1016/j.cmet.2015.02.008_bib11) 2014; 7
Gai (10.1016/j.cmet.2015.02.008_bib14) 2013; 93
González-Vioque (10.1016/j.cmet.2015.02.008_bib15) 2011; 7
Gordon (10.1016/j.cmet.2015.02.008_bib16) 2006; 400
Provencher (10.1016/j.cmet.2015.02.008_bib34) 1993; 30
Pica-Mattoccia (10.1016/j.cmet.2015.02.008_bib33) 1972; 64
Tsuji (10.1016/j.cmet.2015.02.008_bib45) 2010; 33
Suomalainen (10.1016/j.cmet.2015.02.008_bib42) 2010; 20
Lindberger (10.1016/j.cmet.2015.02.008_bib23) 2003; 25
Adzhubei (10.1016/j.cmet.2015.02.008_bib1) 2010; 7
Bishop (10.1016/j.cmet.2015.02.008_bib4) 2012; 287
Bainbridge (10.1016/j.cmet.2015.02.008_bib3) 2011; 12
Spinazzola (10.1016/j.cmet.2015.02.008_bib41) 2006; 38
Tokarska-Schlattner (10.1016/j.cmet.2015.02.008_bib44) 2008; 283
Jaeken (10.1016/j.cmet.2015.02.008_bib17) 1984; 15
Millan (10.1016/j.cmet.2015.02.008_bib26) 2012; 11
Ostergaard (10.1016/j.cmet.2015.02.008_bib31) 2007; 81
Palmieri (10.1016/j.cmet.2015.02.008_bib32) 2005; 14
Rudolph (10.1016/j.cmet.2015.02.008_bib36) 2014; 54
Sills (10.1016/j.cmet.2015.02.008_bib40) 2003; 44
Mandel (10.1016/j.cmet.2015.02.008_bib24) 2001; 29
Sarzi (10.1016/j.cmet.2015.02.008_bib39) 2007; 62
Knerr (10.1016/j.cmet.2015.02.008_bib19) 2007; 30
Kowluru (10.1016/j.cmet.2015.02.008_bib21) 2002; 398
References_xml – volume: 287
  start-page: 28943
  year: 2012
  end-page: 28955
  ident: bib4
  article-title: X-linked sideroblastic anemia due to carboxyl-terminal ALAS2 mutations that cause loss of binding to the β-subunit of succinyl-CoA synthetase (SUCLA2)
  publication-title: J. Biol. Chem.
– volume: 32
  start-page: 247
  year: 2000
  end-page: 258
  ident: bib22
  article-title: The human Nm23/nucleoside diphosphate kinases
  publication-title: J. Bioenerg. Biomembr.
– volume: 81
  start-page: 383
  year: 2007
  end-page: 387
  ident: bib31
  article-title: Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion
  publication-title: Am. J. Hum. Genet.
– volume: 93
  start-page: 471
  year: 2013
  end-page: 481
  ident: bib5
  article-title: Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance
  publication-title: Am. J. Hum. Genet.
– volume: 1812
  start-page: 625
  year: 2011
  end-page: 629
  ident: bib27
  article-title: The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion
  publication-title: Biochim. Biophys. Acta
– volume: 20
  start-page: 429
  year: 2010
  end-page: 437
  ident: bib42
  article-title: Mitochondrial DNA depletion syndromes—many genes, common mechanisms
  publication-title: Neuromuscul. Disord.
– volume: 283
  start-page: 26198
  year: 2008
  end-page: 26207
  ident: bib44
  article-title: The nucleoside diphosphate kinase D (NM23-H4) binds the inner mitochondrial membrane with high affinity to cardiolipin and couples nucleotide transfer with respiration
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: e1002035
  year: 2011
  ident: bib15
  article-title: Limited dCTP availability accounts for mitochondrial DNA depletion in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)
  publication-title: PLoS Genet.
– volume: 45
  start-page: 214
  year: 2013
  end-page: 219
  ident: bib20
  article-title: Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease
  publication-title: Nat. Genet.
– volume: 62
  start-page: 579
  year: 2007
  end-page: 587
  ident: bib39
  article-title: Twinkle helicase (PEO1) gene mutation causes mitochondrial DNA depletion
  publication-title: Ann. Neurol.
– volume: 44
  start-page: 886
  year: 2003
  end-page: 892
  ident: bib40
  article-title: Vigabatrin, but not gabapentin or topiramate, produces concentration-related effects on enzymes and intermediates of the GABA shunt in rat brain and retina
  publication-title: Epilepsia
– volume: 55
  start-page: 706
  year: 2004
  end-page: 712
  ident: bib28
  article-title: POLG mutations associated with Alpers’ syndrome and mitochondrial DNA depletion
  publication-title: Ann. Neurol.
– volume: 5
  start-page: 553
  year: 2004
  end-page: 564
  ident: bib35
  article-title: The neurobiology of antiepileptic drugs
  publication-title: Nat. Rev. Neurosci.
– volume: 7
  start-page: 248
  year: 2010
  end-page: 249
  ident: bib1
  article-title: A method and server for predicting damaging missense mutations
  publication-title: Nat. Methods
– volume: 80
  start-page: 93
  year: 2007
  end-page: 119
  ident: bib18
  article-title: Biochemical assays of respiratory chain complex activity
  publication-title: Methods Cell Biol.
– volume: 39
  start-page: 776
  year: 2007
  end-page: 780
  ident: bib6
  article-title: Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion
  publication-title: Nat. Genet.
– volume: 8
  start-page: e64670
  year: 2013
  ident: bib7
  article-title: REXO2 is an oligoribonuclease active in human mitochondria
  publication-title: PLoS ONE
– volume: 38
  start-page: 570
  year: 2006
  end-page: 575
  ident: bib41
  article-title: MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion
  publication-title: Nat. Genet.
– volume: 7
  start-page: 271
  year: 2014
  end-page: 280
  ident: bib11
  article-title: Screen for abnormal mitochondrial phenotypes in mouse embryonic stem cells identifies a model for succinyl-CoA ligase deficiency and mtDNA depletion
  publication-title: Dis. Model. Mech.
– volume: 398
  start-page: 160
  year: 2002
  end-page: 169
  ident: bib21
  article-title: Localization and characterization of the mitochondrial isoform of the nucleoside diphosphate kinase in the pancreatic beta cell: evidence for its complexation with mitochondrial succinyl-CoA synthetase
  publication-title: Arch. Biochem. Biophys.
– volume: 25
  start-page: 457
  year: 2003
  end-page: 462
  ident: bib23
  article-title: Serum concentrations and effects of gabapentin and vigabatrin: observations from a dose titration study
  publication-title: Ther. Drug Monit.
– volume: 11
  start-page: 141
  year: 2012
  end-page: 168
  ident: bib26
  article-title: Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy
  publication-title: Nat. Rev. Drug Discov.
– volume: 63
  start-page: 399
  year: 1998
  end-page: 408
  ident: bib8
  article-title: Two exon-skipping mutations as the molecular basis of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria)
  publication-title: Am. J. Hum. Genet.
– volume: 76
  start-page: 1081
  year: 2005
  end-page: 1086
  ident: bib12
  article-title: Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion
  publication-title: Am. J. Hum. Genet.
– volume: 64
  start-page: 465
  year: 1972
  end-page: 484
  ident: bib33
  article-title: Expression of the mitochondrial genome in HeLa cells. IX. Replication of mitochondrial DNA in relationship to cell cycle in HeLa cells
  publication-title: J. Mol. Biol.
– volume: 54
  start-page: 483
  year: 2014
  end-page: 507
  ident: bib36
  article-title: GABAA receptor subtypes: Therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 15
  start-page: 165
  year: 1984
  end-page: 169
  ident: bib17
  article-title: Gamma-aminobutyric acid-transaminase deficiency: a newly recognized inborn error of neurotransmitter metabolism
  publication-title: Neuropediatrics
– volume: 11
  start-page: 863
  year: 2001
  end-page: 874
  ident: bib29
  article-title: Predicting deleterious amino acid substitutions
  publication-title: Genome Res.
– volume: 400
  start-page: 163
  year: 2006
  end-page: 168
  ident: bib16
  article-title: GTP in the mitochondrial matrix plays a crucial role in organellar iron homoeostasis
  publication-title: Biochem. J.
– volume: 9
  start-page: 829
  year: 2010
  end-page: 840
  ident: bib25
  article-title: A neurological perspective on mitochondrial disease
  publication-title: Lancet Neurol.
– volume: 12
  start-page: R68
  year: 2011
  ident: bib3
  article-title: Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities
  publication-title: Genome Biol.
– volume: 29
  start-page: 342
  year: 2001
  end-page: 344
  ident: bib38
  article-title: Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy
  publication-title: Nat. Genet.
– volume: 283
  start-page: 689
  year: 1999
  end-page: 692
  ident: bib30
  article-title: Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder
  publication-title: Science
– volume: 95
  start-page: 169
  year: 2008
  end-page: 173
  ident: bib37
  article-title: Mitochondrial deoxyribonucleotide pools in deoxyguanosine kinase deficiency
  publication-title: Mol. Genet. Metab.
– volume: 6
  start-page: e1001025
  year: 2010
  ident: bib9
  article-title: Identifying a high fraction of the human genome to be under selective constraint using GERP++
  publication-title: PLoS Comput. Biol.
– volume: 29
  start-page: 337
  year: 2001
  end-page: 341
  ident: bib24
  article-title: The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA
  publication-title: Nat. Genet.
– volume: 30
  start-page: 672
  year: 1993
  end-page: 679
  ident: bib34
  article-title: Estimation of metabolite concentrations from localized in vivo proton NMR spectra
  publication-title: Magn. Reson. Med.
– volume: 43
  start-page: 491
  year: 2011
  end-page: 498
  ident: bib10
  article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data
  publication-title: Nat. Genet.
– volume: 12
  start-page: 1839
  year: 2003
  end-page: 1845
  ident: bib43
  article-title: Mitochondrial DNA depletion can be prevented by dGMP and dAMP supplementation in a resting culture of deoxyguanosine kinase-deficient fibroblasts
  publication-title: Hum. Mol. Genet.
– volume: 164
  year: 2014
  ident: bib2
  article-title: Clinical and molecular characteristics of mitochondrial DNA depletion syndrome associated with neonatal cholestasis and liver failure
  publication-title: J. Pediatr.
– volume: 93
  start-page: 482
  year: 2013
  end-page: 495
  ident: bib14
  article-title: Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy
  publication-title: Am. J. Hum. Genet.
– volume: 48
  start-page: 1318
  year: 2007
  end-page: 1327
  ident: bib46
  article-title: Vigabatrin and epilepsy: lessons learned
  publication-title: Epilepsia
– volume: 30
  start-page: 279
  year: 2007
  end-page: 294
  ident: bib19
  article-title: Therapeutic concepts in succinate semialdehyde dehydrogenase (SSADH; ALDH5a1) deficiency (gamma-hydroxybutyric aciduria). Hypotheses evolved from 25 years of patient evaluation, studies in Aldh5a1-/- mice and characterization of gamma-hydroxybutyric acid pharmacology
  publication-title: J. Inherit. Metab. Dis.
– volume: 14
  start-page: 3079
  year: 2005
  end-page: 3088
  ident: bib32
  article-title: Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy
  publication-title: Hum. Mol. Genet.
– volume: 33
  start-page: 85
  year: 2010
  end-page: 90
  ident: bib45
  article-title: A new case of GABA transaminase deficiency facilitated by proton MR spectroscopy
  publication-title: J. Inherit. Metab. Dis.
– volume: 72
  start-page: 502
  year: 1987
  end-page: 508
  ident: bib13
  article-title: Localized Proton Spectroscopy using stimulated echoes
  publication-title: J. Magn. Reson.
– volume: 287
  start-page: 28943
  year: 2012
  ident: 10.1016/j.cmet.2015.02.008_bib4
  article-title: X-linked sideroblastic anemia due to carboxyl-terminal ALAS2 mutations that cause loss of binding to the β-subunit of succinyl-CoA synthetase (SUCLA2)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.306423
– volume: 64
  start-page: 465
  year: 1972
  ident: 10.1016/j.cmet.2015.02.008_bib33
  article-title: Expression of the mitochondrial genome in HeLa cells. IX. Replication of mitochondrial DNA in relationship to cell cycle in HeLa cells
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(72)90511-6
– volume: 43
  start-page: 491
  year: 2011
  ident: 10.1016/j.cmet.2015.02.008_bib10
  article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data
  publication-title: Nat. Genet.
  doi: 10.1038/ng.806
– volume: 398
  start-page: 160
  year: 2002
  ident: 10.1016/j.cmet.2015.02.008_bib21
  article-title: Localization and characterization of the mitochondrial isoform of the nucleoside diphosphate kinase in the pancreatic beta cell: evidence for its complexation with mitochondrial succinyl-CoA synthetase
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.2001.2710
– volume: 400
  start-page: 163
  year: 2006
  ident: 10.1016/j.cmet.2015.02.008_bib16
  article-title: GTP in the mitochondrial matrix plays a crucial role in organellar iron homoeostasis
  publication-title: Biochem. J.
  doi: 10.1042/BJ20060904
– volume: 11
  start-page: 863
  year: 2001
  ident: 10.1016/j.cmet.2015.02.008_bib29
  article-title: Predicting deleterious amino acid substitutions
  publication-title: Genome Res.
  doi: 10.1101/gr.176601
– volume: 29
  start-page: 342
  year: 2001
  ident: 10.1016/j.cmet.2015.02.008_bib38
  article-title: Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy
  publication-title: Nat. Genet.
  doi: 10.1038/ng751
– volume: 11
  start-page: 141
  year: 2012
  ident: 10.1016/j.cmet.2015.02.008_bib26
  article-title: Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3628
– volume: 164
  year: 2014
  ident: 10.1016/j.cmet.2015.02.008_bib2
  article-title: Clinical and molecular characteristics of mitochondrial DNA depletion syndrome associated with neonatal cholestasis and liver failure
  publication-title: J. Pediatr.
  doi: 10.1016/j.jpeds.2013.10.082
– volume: 93
  start-page: 471
  year: 2013
  ident: 10.1016/j.cmet.2015.02.008_bib5
  article-title: Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2013.07.017
– volume: 8
  start-page: e64670
  year: 2013
  ident: 10.1016/j.cmet.2015.02.008_bib7
  article-title: REXO2 is an oligoribonuclease active in human mitochondria
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0064670
– volume: 12
  start-page: 1839
  year: 2003
  ident: 10.1016/j.cmet.2015.02.008_bib43
  article-title: Mitochondrial DNA depletion can be prevented by dGMP and dAMP supplementation in a resting culture of deoxyguanosine kinase-deficient fibroblasts
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddg192
– volume: 7
  start-page: e1002035
  year: 2011
  ident: 10.1016/j.cmet.2015.02.008_bib15
  article-title: Limited dCTP availability accounts for mitochondrial DNA depletion in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002035
– volume: 9
  start-page: 829
  year: 2010
  ident: 10.1016/j.cmet.2015.02.008_bib25
  article-title: A neurological perspective on mitochondrial disease
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(10)70116-2
– volume: 55
  start-page: 706
  year: 2004
  ident: 10.1016/j.cmet.2015.02.008_bib28
  article-title: POLG mutations associated with Alpers’ syndrome and mitochondrial DNA depletion
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20079
– volume: 44
  start-page: 886
  year: 2003
  ident: 10.1016/j.cmet.2015.02.008_bib40
  article-title: Vigabatrin, but not gabapentin or topiramate, produces concentration-related effects on enzymes and intermediates of the GABA shunt in rat brain and retina
  publication-title: Epilepsia
  doi: 10.1046/j.1528-1157.2003.04203.x
– volume: 283
  start-page: 26198
  year: 2008
  ident: 10.1016/j.cmet.2015.02.008_bib44
  article-title: The nucleoside diphosphate kinase D (NM23-H4) binds the inner mitochondrial membrane with high affinity to cardiolipin and couples nucleotide transfer with respiration
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M803132200
– volume: 25
  start-page: 457
  year: 2003
  ident: 10.1016/j.cmet.2015.02.008_bib23
  article-title: Serum concentrations and effects of gabapentin and vigabatrin: observations from a dose titration study
  publication-title: Ther. Drug Monit.
  doi: 10.1097/00007691-200308000-00007
– volume: 20
  start-page: 429
  year: 2010
  ident: 10.1016/j.cmet.2015.02.008_bib42
  article-title: Mitochondrial DNA depletion syndromes—many genes, common mechanisms
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/j.nmd.2010.03.017
– volume: 72
  start-page: 502
  year: 1987
  ident: 10.1016/j.cmet.2015.02.008_bib13
  article-title: Localized Proton Spectroscopy using stimulated echoes
  publication-title: J. Magn. Reson.
– volume: 15
  start-page: 165
  year: 1984
  ident: 10.1016/j.cmet.2015.02.008_bib17
  article-title: Gamma-aminobutyric acid-transaminase deficiency: a newly recognized inborn error of neurotransmitter metabolism
  publication-title: Neuropediatrics
  doi: 10.1055/s-2008-1052362
– volume: 62
  start-page: 579
  year: 2007
  ident: 10.1016/j.cmet.2015.02.008_bib39
  article-title: Twinkle helicase (PEO1) gene mutation causes mitochondrial DNA depletion
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21207
– volume: 12
  start-page: R68
  year: 2011
  ident: 10.1016/j.cmet.2015.02.008_bib3
  article-title: Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-7-r68
– volume: 63
  start-page: 399
  year: 1998
  ident: 10.1016/j.cmet.2015.02.008_bib8
  article-title: Two exon-skipping mutations as the molecular basis of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria)
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/301964
– volume: 7
  start-page: 271
  year: 2014
  ident: 10.1016/j.cmet.2015.02.008_bib11
  article-title: Screen for abnormal mitochondrial phenotypes in mouse embryonic stem cells identifies a model for succinyl-CoA ligase deficiency and mtDNA depletion
  publication-title: Dis. Model. Mech.
  doi: 10.1242/dmm.013466
– volume: 33
  start-page: 85
  year: 2010
  ident: 10.1016/j.cmet.2015.02.008_bib45
  article-title: A new case of GABA transaminase deficiency facilitated by proton MR spectroscopy
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-009-9022-9
– volume: 7
  start-page: 248
  year: 2010
  ident: 10.1016/j.cmet.2015.02.008_bib1
  article-title: A method and server for predicting damaging missense mutations
  publication-title: Nat. Methods
  doi: 10.1038/nmeth0410-248
– volume: 6
  start-page: e1001025
  year: 2010
  ident: 10.1016/j.cmet.2015.02.008_bib9
  article-title: Identifying a high fraction of the human genome to be under selective constraint using GERP++
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1001025
– volume: 30
  start-page: 279
  year: 2007
  ident: 10.1016/j.cmet.2015.02.008_bib19
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-007-0574-2
– volume: 38
  start-page: 570
  year: 2006
  ident: 10.1016/j.cmet.2015.02.008_bib41
  article-title: MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion
  publication-title: Nat. Genet.
  doi: 10.1038/ng1765
– volume: 95
  start-page: 169
  year: 2008
  ident: 10.1016/j.cmet.2015.02.008_bib37
  article-title: Mitochondrial deoxyribonucleotide pools in deoxyguanosine kinase deficiency
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2008.07.007
– volume: 93
  start-page: 482
  year: 2013
  ident: 10.1016/j.cmet.2015.02.008_bib14
  article-title: Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2013.07.016
– volume: 76
  start-page: 1081
  year: 2005
  ident: 10.1016/j.cmet.2015.02.008_bib12
  article-title: Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/430843
– volume: 5
  start-page: 553
  year: 2004
  ident: 10.1016/j.cmet.2015.02.008_bib35
  article-title: The neurobiology of antiepileptic drugs
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1430
– volume: 1812
  start-page: 625
  year: 2011
  ident: 10.1016/j.cmet.2015.02.008_bib27
  article-title: The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2011.01.013
– volume: 30
  start-page: 672
  year: 1993
  ident: 10.1016/j.cmet.2015.02.008_bib34
  article-title: Estimation of metabolite concentrations from localized in vivo proton NMR spectra
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910300604
– volume: 32
  start-page: 247
  year: 2000
  ident: 10.1016/j.cmet.2015.02.008_bib22
  article-title: The human Nm23/nucleoside diphosphate kinases
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1023/A:1005584929050
– volume: 81
  start-page: 383
  year: 2007
  ident: 10.1016/j.cmet.2015.02.008_bib31
  article-title: Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/519222
– volume: 48
  start-page: 1318
  year: 2007
  ident: 10.1016/j.cmet.2015.02.008_bib46
  article-title: Vigabatrin and epilepsy: lessons learned
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2007.01133.x
– volume: 283
  start-page: 689
  year: 1999
  ident: 10.1016/j.cmet.2015.02.008_bib30
  article-title: Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder
  publication-title: Science
  doi: 10.1126/science.283.5402.689
– volume: 39
  start-page: 776
  year: 2007
  ident: 10.1016/j.cmet.2015.02.008_bib6
  article-title: Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion
  publication-title: Nat. Genet.
  doi: 10.1038/ng2040
– volume: 54
  start-page: 483
  year: 2014
  ident: 10.1016/j.cmet.2015.02.008_bib36
  article-title: GABAA receptor subtypes: Therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-011613-135947
– volume: 14
  start-page: 3079
  year: 2005
  ident: 10.1016/j.cmet.2015.02.008_bib32
  article-title: Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddi341
– volume: 80
  start-page: 93
  year: 2007
  ident: 10.1016/j.cmet.2015.02.008_bib18
  article-title: Biochemical assays of respiratory chain complex activity
  publication-title: Methods Cell Biol.
  doi: 10.1016/S0091-679X(06)80004-X
– volume: 29
  start-page: 337
  year: 2001
  ident: 10.1016/j.cmet.2015.02.008_bib24
  article-title: The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA
  publication-title: Nat. Genet.
  doi: 10.1038/ng746
– volume: 45
  start-page: 214
  year: 2013
  ident: 10.1016/j.cmet.2015.02.008_bib20
  article-title: Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2501
SSID ssj0036393
Score 2.4925635
Snippet ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). We report an essential role for ABAT in a...
ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter gamma-aminobutyric acid (GABA). We report an essential role for ABAT...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 417
SubjectTerms 4-Aminobutyrate Transaminase - genetics
4-Aminobutyrate Transaminase - metabolism
Brain - metabolism
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Fibroblasts - metabolism
gamma-Aminobutyric Acid - genetics
gamma-Aminobutyric Acid - metabolism
Humans
Mitochondria - genetics
Mitochondria - metabolism
Mutation, Missense - genetics
Nucleosides - genetics
Nucleosides - metabolism
Title The GABA Transaminase, ABAT, Is Essential for Mitochondrial Nucleoside Metabolism
URI https://dx.doi.org/10.1016/j.cmet.2015.02.008
https://www.ncbi.nlm.nih.gov/pubmed/25738457
https://www.proquest.com/docview/1661335910
https://pubmed.ncbi.nlm.nih.gov/PMC4757431
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9xADBYhJdCX0jbX9ggTyFtj1vYcth83ITcbaA66b8N4Drol8YZ689B_X8nH0k1IHvpi7PEYBkkjfYOlTwB7aek5RlYbKZPzSDi8M5kNUep97uJQxCqm4uTxpTq9FecTOVmBw74WhtIqO9_f-vTGW3cjw06aw4fpdHhN4Fo0bDEtqwj6YWJqoSK-yUHvjTlG4CbJHidHNLsrnGlzvOy9p3zKRLa8nflLwek5-HyaQ_lPUDp-D-86NMlG7YI_wIqvPsJa21_yzzp8RyNgJ6ODEWtCkqG0l9rvMxy52WdnNTuqqfYITZAhdmVj3N3oDStHRskuiel4Rt082djP0VbupvX9BtweH90cnkZdD4XICinnUSacDXHhAk-dFKXCS-A5xaDcK5cLY1QIoSi9LLiTKkO8YhWewhyeO3KO-tuE1WpW-W1gJsu8KVPBFZ3ZEleIUtg0IOJ0iZVGDCDphadtRzBOfS7udJ9J9kuTwDUJXMepRoEP4Nvim4eWXuPV2bLXiV4yEo3-_9XvdnsFatw99EvEVH72WOsE4QnnEjHTALZahS7Wgc6M50JmA8iWVL2YQMzcy2-q6c-GoVtkkpDZp_9c72d4S09Nqhv_Aqvz34_-K2KfebkDb0YXVz8udhoj_wvnhAKR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIgQXVN6hLSwSN2rF9j5sH9OqJYEmEiKVclut9yGCWqfC6YF_z4wfUUNFD1wsy7srrWZmZ76Vv5kB-JiWnmNktZEyOY-EwzeT2RCl3ucuDkWsYkpOns7U-EJ8WcjFDpz0uTBEq-x8f-vTG2_dfRl20hxeL5fD7wSuRVMtpq0q8gAeIhpQxOuaLI57d8wxBDcse5wd0fQuc6YledkrT4TKRLaFO_N_Rae76PNvEuWtqHS2B087OMlG7Y6fwY6vnsOjtsHk7xfwDa2AfR4dj1gTkwzxXmp_xPDL_IhNanZaU_IR2iBD8MqmeLzRHVaOrJLNqNTxitp5sqlfo7FcLuurl3Bxdjo_GUddE4XICinXUSacDXHhAk-dFKXCR-A5BaHcK5cLY1QIoSi9LLiTKkPAYhVewxxePHKOCnwFu9Wq8m-AmSzzpkwFV3RpS1whSmHTgJDTJVYaMYCkF562XYVxanRxqXsq2U9NAtckcB2nGgU-gE-bNddtfY17Z8teJ3rLSjQGgHvXfegVqPH40D8RU_nVTa0TxCecSwRNA3jdKnSzD_RmPBcyG0C2perNBCrNvT1SLX80JbpFJgmavf3P_b6Hx-P59FyfT2Zf9-EJjTS8N34Au-tfN_4QgdC6fNcY-h_cMwQV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+GABA+transaminase%2C+ABAT%2C+is+essential+for+mitochondrial+nucleoside+metabolism&rft.jtitle=Cell+metabolism&rft.au=Besse%2C+Arnaud&rft.au=Wu%2C+Ping&rft.au=Bruni%2C+Francesco&rft.au=Donti%2C+Taraka&rft.date=2015-03-03&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=21&rft.issue=3&rft.spage=417&rft_id=info:doi/10.1016%2Fj.cmet.2015.02.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon