Statistical downscaling of precipitation using long short-term memory recurrent neural networks

Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied climatology Vol. 134; no. 3-4; pp. 1179 - 1196
Main Authors Misra, Saptarshi, Sarkar, Sudeshna, Mitra, Pabitra
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.11.2018
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.
AbstractList Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.
Audience Academic
Author Misra, Saptarshi
Mitra, Pabitra
Sarkar, Sudeshna
Author_xml – sequence: 1
  givenname: Saptarshi
  surname: Misra
  fullname: Misra, Saptarshi
  email: saptarshimisra2011@gmail.com
  organization: Department of Computer Science and Engineering, Indian Institute of Technology
– sequence: 2
  givenname: Sudeshna
  surname: Sarkar
  fullname: Sarkar, Sudeshna
  organization: Department of Computer Science and Engineering, Indian Institute of Technology
– sequence: 3
  givenname: Pabitra
  surname: Mitra
  fullname: Mitra, Pabitra
  organization: Department of Computer Science and Engineering, Indian Institute of Technology
BookMark eNp1kU1LxDAQhoMouK7-AG8FTx6qSdtNm6OIXyAIroK3MG2na3SbrEmK7r93Sj3oQQbeDJNnJmHeA7ZrnUXGjgU_E5yX54GEFykXZZrlnGSHzUSRF2lRVPkum9FFmZaqetlnByG8cc4zKcsZ08sI0YRoGlgnrfu0gRJjV4nrko3HxmzMCDibDGEsrx1JeHU-phF9n_TYO79NiBy8RxsTi4OnURbjp_Pv4ZDtdbAOePRzztnz9dXT5W16_3Bzd3lxnzbFYhHTMoMyq2UOdS1FJaHiSom2BqwzjlnBFUCLANB1teRKKg55JqHNlWoBF53M5-xkmrvx7mPAEPWbG7ylJ7VQspKStiKIOpuoFaxRG9u56KGhaLE3DW20M1S_WEhOkctx7OmfBmIifsUVDCHou-XjX1ZMbONdCB47vfGmB7_VguvRJD2ZpMkLPZpEMmfZ1BOItSv0v779b9M3C0KXrQ
CitedBy_id crossref_primary_10_1007_s41060_023_00397_6
crossref_primary_10_2208_jscejhe_76_2_I_373
crossref_primary_10_1002_joc_8458
crossref_primary_10_1016_j_seares_2024_102482
crossref_primary_10_1007_s00704_021_03801_y
crossref_primary_10_1016_j_jastp_2021_105614
crossref_primary_10_1002_joc_8134
crossref_primary_10_1016_j_jhydrol_2022_127454
crossref_primary_10_1029_2022EF003291
crossref_primary_10_1016_j_scitotenv_2021_149876
crossref_primary_10_1002_esp_5818
crossref_primary_10_5194_gmd_13_2109_2020
crossref_primary_10_5194_essd_14_4949_2022
crossref_primary_10_1016_j_advwatres_2021_103986
crossref_primary_10_2480_agrmet_D_20_00027
crossref_primary_10_1061__ASCE_WR_1943_5452_0001612
crossref_primary_10_1007_s11356_022_24422_6
crossref_primary_10_3390_s21041421
crossref_primary_10_1007_s00704_023_04439_8
crossref_primary_10_1007_s00703_021_00791_4
crossref_primary_10_1007_s00704_023_04592_0
crossref_primary_10_1061_JHYEFF_HEENG_6058
crossref_primary_10_1080_02626667_2022_2106142
crossref_primary_10_1088_1755_1315_851_1_012032
crossref_primary_10_1142_S2811032322500011
crossref_primary_10_1007_s00521_024_10012_9
crossref_primary_10_1007_s12517_020_05509_1
crossref_primary_10_3390_su13073645
crossref_primary_10_3390_rs16030442
crossref_primary_10_1016_j_jher_2022_06_001
crossref_primary_10_2208_journalofjsce_23_16152
crossref_primary_10_3390_ai2040036
crossref_primary_10_1016_j_jcp_2021_110484
crossref_primary_10_1016_j_uclim_2022_101097
crossref_primary_10_1007_s10489_024_05504_z
crossref_primary_10_1029_2022EA002221
crossref_primary_10_3390_su14106319
crossref_primary_10_1109_ACCESS_2021_3057500
crossref_primary_10_5194_gmd_15_251_2022
Cites_doi 10.1029/91WR02589
10.1007/BF00209515
10.1111/j.2517-6161.1996.tb02095.x
10.1007/978-1-4899-4541-9
10.1201/9781420057683
10.1162/neco.1997.9.8.1735
10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2
10.1145/800186.810616
10.21437/Interspeech.2010-343
10.1016/j.jhydrol.2004.09.008
10.2307/3001968
10.1126/science.1127647
10.1007/978-3-642-59992-7_1
10.1016/S0022-1694(98)00216-9
10.3354/cr011125
10.1007/s00477-010-0415-y
10.1177/030913339702100403
10.1016/S0022-1694(98)00186-3
10.3354/cr029255
10.1016/S0022-1694(99)00136-5
10.25080/Majora-92bf1922-003
10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2
10.1175/1520-0442(1990)003<1053:AMORGC>2.0.CO;2
10.1016/j.jhydrol.2016.04.009
10.1029/90WR02650
10.1029/93WR01066
10.1175/JCLI-D-11-00408.1
10.1029/2004WR003739
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1145/3097983.3098004
10.1016/S0022-1694(00)00348-6
10.1111/1467-9876.00136
10.1016/S0022-1694(97)00130-3
10.1002/hyp.1054
10.1002/joc.3370151003
10.1007/s00704-007-0299-z
10.1002/joc.1318
10.1109/TASL.2011.2134090
10.1175/2009JCLI2681.1.
10.1175/JCLI4253.1
10.1029/2008WR007487
10.1029/WR017i001p00182
10.1002/wrcr.20118
10.1109/MSP.2012.2205597
10.1029/93WR02983
ContentType Journal Article
Copyright Springer-Verlag GmbH Austria 2017
COPYRIGHT 2018 Springer
Theoretical and Applied Climatology is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Austria 2017
– notice: COPYRIGHT 2018 Springer
– notice: Theoretical and Applied Climatology is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
ISR
3V.
7QH
7TG
7TN
7UA
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
L6V
M2P
M7S
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00704-017-2307-2
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1434-4483
EndPage 1196
ExternalDocumentID A560606366
10_1007_s00704_017_2307_2
GrantInformation_xml – fundername: Ministry of Human Resource Development
  funderid: https://doi.org/10.13039/501100004541
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IFM
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
XXG
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8O
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
ZY4
~02
~8M
~EX
AACDK
AAEOY
AAHBH
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AFEUZ
AGQEE
AGRTI
AIGIU
CITATION
H13
7QH
7TG
7TN
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c455t-72a72b63abb6186a80991dbaeb20e2409aadeaaaffb609690a326ad399dae5f63
IEDL.DBID AGYKE
ISSN 0177-798X
IngestDate Wed Nov 06 05:57:55 EST 2024
Tue Nov 12 22:43:24 EST 2024
Thu Aug 01 19:32:13 EDT 2024
Fri Nov 22 03:14:58 EST 2024
Sat Dec 16 12:05:02 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3-4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-72a72b63abb6186a80991dbaeb20e2409aadeaaaffb609690a326ad399dae5f63
PQID 1968662301
PQPubID 48318
PageCount 18
ParticipantIDs proquest_journals_1968662301
gale_infotracacademiconefile_A560606366
gale_incontextgauss_ISR_A560606366
crossref_primary_10_1007_s00704_017_2307_2
springer_journals_10_1007_s00704_017_2307_2
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Theoretical and applied climatology
PublicationTitleAbbrev Theor Appl Climatol
PublicationYear 2018
Publisher Springer Vienna
Springer
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer
– name: Springer Nature B.V
References Shephard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference, (ACM’68), vol 517. ACM, New York, p 524, DOI https://doi.org/10.1145/800186.810616
RajeevanMBhateJKaleJDLalBHigh resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spellsCurr Sci2006913296306
HaylockMRCawleyGCHarphamCWilbyRLGoodessCMDownscaling heavy precipitation over the UK: a comparison of dynamical and statistical methods and their future scenariosInt J Climatol2006261397141510.1002/joc.1318
Corte-RealJZhangXWangXDownscaling GCM information to regional scales: A non-parametric multivariate regression approachClim Dyn19951141342410.1007/BF00209515
von StorchHInconsistencies at the interface of climate impact studies and global climate researchMeteorol Z19954 NF7280
Hanssen-BauerIAchbergerCBenestadRChenDForlandEStatistical downscaling of climate scenarios over ScandinaviaClim Res200529325526810.3354/cr029255
BreimanLFriedmanJHOlshenRAStoneCJClassification and regression trees1984MontereyBrooks/Cole Publishing
SharmaASeasonal to interannual rainfall probabilistic forecasts for improved water supply management. Part 1: a strategy for system predictor identificationJ Hydrol200023924925810.1016/S0022-1694(00)00348-6
Vandal T, Kodra E, Ganguly S, Michaelis A, Nemani R, Ganguly A R (2017) DeepSD: generating high resolution climate change projecions through single image super-resolution. KDD
HughesJPGuttorpPA class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomenaWater Resour Res19943051535154610.1029/93WR02983
Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. ICLR 2015
WilcoxonFIndividual comparisons by ranking methodsBiometrics19451808310.2307/3001968
Dibike Y B, Gacon P, Hilaire A S, Ouarda T, Nguyen V (2007) Uncertainty analysis of statistically downscaled temperature and precipitation regimes in Northern Canada. Theoretical and Applied Climatology. Springer
Liu JN, Hu Y, You JJ, Chan PW (2014) Deep neural network based feature representation for weather forecasting. In: Proceedings on the international conference on artificial intelligence (ICAI). The steering committee of the world congress in computer science, computer engineering and applied computing (WorldComp), 2014, p 1
Sutskever I, Vinyals O, Le Q V (2014) Sequence to sequence learning with neural networks. Adv Neural Inf Process Syst 3104–3112
YangCChandlerREIshamVSWheaterHSSpatial-temporal rainfall simulation using generalized linear modelsWater Resor Res200541W1141510.1029/2004WR003739
MandalSSrivastavRKSimonovicSPUse of beta regression for statistical downscaling of precipitation in the Campbell River basin, British ColumbiaJ Hydrol2016538496210.1016/j.jhydrol.2016.04.009
KalnayEThe NCEP/NCAR 40-years reanalysis projectBull Am Meteorol Soc199677343747110.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
HastieTJTibshiraniRJGeneralized additive models1990LondonChapman and Hall
WetterhallFHalldinSXuCStatistical precipitation downscaling in central Sweden with the analogue methodJ Hydrol200530617419010.1016/j.jhydrol.2004.09.008
WilbyRLHeyLELeaveslyGHA comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River Basin, ColoradoJ Hydrol1999225679110.1016/S0022-1694(99)00136-5
RichardsonCWStochastic precipitation of daily precipitation, temperature, and solar radiationWater Resour Res198117118219010.1029/WR017i001p00182
von Storch H (1999) The global and regional climate system. In: von Storch H, Floscr G (eds) Anthropogenic climate change. Springer, Berlin, pp 3–36
Bi E G, Gachon P, Vrac M, Monette F (2015) Which downscaled rainfall data for climate change impact studies in urban areas? Review of current approaches and trends. Theoretical and Applied Climatol. Springer
ConwayDJonesPDThe use of weather types and air flow indices for GCM downscalingJ Hydrol1998212/21334836110.1016/S0022-1694(98)00216-9
GopeSSarkarSMitraPGhoshSEarly prediction of extreme rainfall events: a deep learning approachICDM20162016154167
YeeTWWildCJVector generalized additive modelsJ R Stat Soc Ser B199658481493
Bengio Y, Goodfellow I, Courville A (2015) Deep learning. Book in Preparation for MIT Press
Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D, Bengio Y (2010) Theano: a CPU and GPU math expression compiler. Scipy, vol. 4, p. 3. Austin
Richardson C W, Wright D A (1984) A model for generating daily weather variables, USDA Agric. Res. Serv. Rep. ARS-8, US Dep. Agric. Res. Serv. Temple, Tex
PrudhommeCReynardNCrooksSDownscaling of global climate models for flood frequency analysis: where are we now?Hydrol Processes2002161137115010.1002/hyp.1054
Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall/CRC
von StorchHZoritaECubashUDownscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertimeJ Clim199361161117110.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2
HughesJPLettenmairDPGuttorpPA stochastic approach for assessing the effect of changes in synoptic circulation patterns on gauge precipitationWater Resour Res199329103303331510.1029/93WR01066
HintonGDengLYuDDahlGEMohamedAJaitlyNSeniorAVanhouckeVNguyenPSainathTNDeep neural networks for acoustic modeling in speech recognition: the shared views of four research groupsSignal Process Mag IEEE2012296829710.1109/MSP.2012.2205597
Kingma D, Ba J (2015) Adam: a method for stochastic optimization. ICLR
WilbyRLWigleyTMLDownscaling general circulation model output: a review of methods and limitationsProg Phys Geogr19972153054810.1177/030913339702100403
ZaytarMAEl AmraniCESequence to sequence weather forecasting with long short term memory recurrent neural networksInt J Comput Appl201614311
WilbyRHassanHHanakiKStatistical downscaling of hydrometeorological variables using general circulation model outputJ Hydrol19982051–211910.1016/S0022-1694(97)00130-3
KarlTRWangWCSchlesingerMEKnightRWPortmanDA method of relating general circulation model simulated climate to observed local climate. Part I: seasonal statisticsJ Clim199031053107910.1175/1520-0442(1990)003<1053:AMORGC>2.0.CO;2
BurgerGMurdockTQWernerATSobieSRCannonAJDownscaling extremes - an intercomparison of multiple statistical methods for present climateJ Clim2011254366438810.1175/JCLI-D-11-00408.1
HochreiterSSchmidhuberJLong short-term memoryNeural Comp1997981735178010.1162/neco.1997.9.8.1735
BardossyAPlateEJSpace-time model for daily rainfall using atmospheric circulation patternsWater Resour Res19922851247125910.1029/91WR02589
MurphyJMAn evaluation of statistical and dynamical techniques for downscaling local climateJ Clim19991282256228410.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2
HughesJPGuttorpPCharlesSPA non-homogeneous hidden Markov Model for precipitation occurenceJ R Stat Soc Ser C Appl Stat1999481153010.1111/1467-9876.00136
Hutchinson M F, Xu T (2013) Anusplin Version 4. 4 User Guide, 52p
PerkinsSEPitmanAJHolbrookNJMcAneney JEvaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functionsJ Clim200720174356437610.1175/JCLI4253.1
McQueenJSome methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley symposium on mathematical statistics and probability, vol 11967BerkeleyUniv. of Calif. Press282297
Mikolov T, Karafiat M, Burget L, Khudanpur S (2010) Recurrent neural network based language model. INTERSPEECH 2010
RajeDMujumdarPPA conditional random field-based downscaling method for assessment of climate change impact on multisite daily precipitation in the Mahanadi basinWater Resour Res200945W1040410.1029/2008WR007487
Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, Bouchard N, Warde-Farley D, Bengio Y (2012) Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning, NIPS 2012 Workshop
ChristensenJHClimate change 2007: the physical science basis-contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change2007CambridgeCambridge Univ. Press
WilksDSStatistical methods in the atmospheric sciences20062nd edn.AmsterdamAcademic627627
KannanSGhoshSA nonparametric kernel regression model for downscaling multisite daily precipitation in the Mahanadi basinWater Resour. Res. Res.2013491360138510.1002/wrcr.20118
BardossyADucksteinLBogardiIFuzzy rule-based classification of atmospheric circulation patternsInt J Climatol1995151087109710.1002/joc.3370151003
HayLEMcCabeGJWolockDMAyersMASimulation of precipitation by weather type analysisWater Resour Res199127449350110.1029/90WR02650
Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. SCIENCE, vol. 13, 2006
DahlGYuDDengLAceroAContext-dependent pre-trained deep neural networks for large-vocabulary speech recognitionIEEE Trans Audio Speech Lang Process2012201304210.1109/TASL.2011.2134090
DobsonAJAn introduction to generalized linear models20012nd edn.LondonChapman and Hall10.1201/9781420057683
KannanSGhoshSPrediction of daily rainfall state in a river basin using statistical downscaling from GCM outputStochastic Environ Res Risk Assess20112545747410.1007/s00477-010-0415-yhttps://doi.org/10.1007/s00477-010-0415-y https://doi.org/10.1007/s00477-010-0415-y
WilksDSMultisite downscaling of daily precipitation with a stochastic weather generatorClim Res19991112513610.3354/cr011125
WilksDSMultisite generalization of a daily stochastic precipitation generation modelJ Hydrol199821017819110.1016/S0022-1694(98)00186-3
JohnsonFSharmaAMeasurements of GCM skill in predicting variables relevant for hydroclimatological variablesJ Clim2009224373438210.1175/2009JCLI2681.1.
Intergovernmental Panel on Climate Change - Task Group on Scenarios for Climate Impact Assessment (1999) Guidel
2307_CR6
2307_CR7
S Mandal (2307_CR37) 2016; 538
MR Haylock (2307_CR21) 2006; 26
RL Wilby (2307_CR58) 1999; 225
D Raje (2307_CR43) 2009; 45
R Wilby (2307_CR56) 1998; 205
F Johnson (2307_CR30) 2009; 22
S Kannan (2307_CR33) 2013; 49
2307_CR46
2307_CR49
JP Hughes (2307_CR26) 1993; 29
2307_CR48
S Kannan (2307_CR32) 2011; 25
I Hanssen-Bauer (2307_CR18) 2005; 29
2307_CR4
2307_CR5
2307_CR1
F Wetterhall (2307_CR54) 2005; 306
MA Zaytar (2307_CR64) 2016; 143
S Hochreiter (2307_CR24) 1997; 9
S Gope (2307_CR17) 2016; 2016
DS Wilks (2307_CR59) 1998; 210
DS Wilks (2307_CR60) 1999; 11
JP Hughes (2307_CR27) 1999; 48
H von Storch (2307_CR53) 1993; 6
G Burger (2307_CR9) 2011; 25
2307_CR14
JM Murphy (2307_CR40) 1999; 12
2307_CR16
TJ Hastie (2307_CR19) 1990
2307_CR50
2307_CR52
A Bardossy (2307_CR2) 1992; 28
SE Perkins (2307_CR41) 2007; 20
TW Yee (2307_CR62) 1996; 58
CW Richardson (2307_CR45) 1981; 17
JP Hughes (2307_CR25) 1994; 30
E Kalnay (2307_CR31) 1996; 77
DS Wilks (2307_CR61) 2006
A Bardossy (2307_CR3) 1995; 15
A Sharma (2307_CR47) 2000; 239
2307_CR29
2307_CR28
C Yang (2307_CR63) 2005; 41
G Hinton (2307_CR23) 2012; 29
C Prudhomme (2307_CR42) 2002; 16
RL Wilby (2307_CR57) 1997; 21
2307_CR22
M Rajeevan (2307_CR44) 2006; 91
L Breiman (2307_CR8) 1984
F Wilcoxon (2307_CR55) 1945; 1
D Conway (2307_CR11) 1998; 212/213
J Corte-Real (2307_CR12) 1995; 11
TR Karl (2307_CR34) 1990; 3
2307_CR36
2307_CR35
AJ Dobson (2307_CR15) 2001
LE Hay (2307_CR20) 1991; 27
2307_CR39
J McQueen (2307_CR38) 1967
H von Storch (2307_CR51) 1995; 4 NF
JH Christensen (2307_CR10) 2007
G Dahl (2307_CR13) 2012; 20
References_xml – volume: 28
  start-page: 1247
  issue: 5
  year: 1992
  ident: 2307_CR2
  publication-title: Water Resour Res
  doi: 10.1029/91WR02589
  contributor:
    fullname: A Bardossy
– volume: 11
  start-page: 413
  year: 1995
  ident: 2307_CR12
  publication-title: Clim Dyn
  doi: 10.1007/BF00209515
  contributor:
    fullname: J Corte-Real
– volume-title: Classification and regression trees
  year: 1984
  ident: 2307_CR8
  contributor:
    fullname: L Breiman
– volume: 58
  start-page: 481
  year: 1996
  ident: 2307_CR62
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1996.tb02095.x
  contributor:
    fullname: TW Yee
– ident: 2307_CR16
  doi: 10.1007/978-1-4899-4541-9
– volume-title: An introduction to generalized linear models
  year: 2001
  ident: 2307_CR15
  doi: 10.1201/9781420057683
  contributor:
    fullname: AJ Dobson
– start-page: 627
  volume-title: Statistical methods in the atmospheric sciences
  year: 2006
  ident: 2307_CR61
  contributor:
    fullname: DS Wilks
– ident: 2307_CR36
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 2307_CR24
  publication-title: Neural Comp
  doi: 10.1162/neco.1997.9.8.1735
  contributor:
    fullname: S Hochreiter
– volume: 12
  start-page: 2256
  issue: 8
  year: 1999
  ident: 2307_CR40
  publication-title: J Clim
  doi: 10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2
  contributor:
    fullname: JM Murphy
– ident: 2307_CR48
  doi: 10.1145/800186.810616
– ident: 2307_CR39
  doi: 10.21437/Interspeech.2010-343
– volume: 306
  start-page: 174
  year: 2005
  ident: 2307_CR54
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.09.008
  contributor:
    fullname: F Wetterhall
– volume: 1
  start-page: 80
  year: 1945
  ident: 2307_CR55
  publication-title: Biometrics
  doi: 10.2307/3001968
  contributor:
    fullname: F Wilcoxon
– ident: 2307_CR22
  doi: 10.1126/science.1127647
– volume: 4 NF
  start-page: 72
  year: 1995
  ident: 2307_CR51
  publication-title: Meteorol Z
  contributor:
    fullname: H von Storch
– ident: 2307_CR52
  doi: 10.1007/978-3-642-59992-7_1
– volume: 212/213
  start-page: 348
  year: 1998
  ident: 2307_CR11
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(98)00216-9
  contributor:
    fullname: D Conway
– ident: 2307_CR46
– volume: 11
  start-page: 125
  year: 1999
  ident: 2307_CR60
  publication-title: Clim Res
  doi: 10.3354/cr011125
  contributor:
    fullname: DS Wilks
– volume: 25
  start-page: 457
  year: 2011
  ident: 2307_CR32
  publication-title: Stochastic Environ Res Risk Assess
  doi: 10.1007/s00477-010-0415-y
  contributor:
    fullname: S Kannan
– volume: 21
  start-page: 530
  year: 1997
  ident: 2307_CR57
  publication-title: Prog Phys Geogr
  doi: 10.1177/030913339702100403
  contributor:
    fullname: RL Wilby
– volume: 210
  start-page: 178
  year: 1998
  ident: 2307_CR59
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(98)00186-3
  contributor:
    fullname: DS Wilks
– volume: 29
  start-page: 255
  issue: 3
  year: 2005
  ident: 2307_CR18
  publication-title: Clim Res
  doi: 10.3354/cr029255
  contributor:
    fullname: I Hanssen-Bauer
– volume: 225
  start-page: 67
  year: 1999
  ident: 2307_CR58
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(99)00136-5
  contributor:
    fullname: RL Wilby
– ident: 2307_CR6
  doi: 10.25080/Majora-92bf1922-003
– volume-title: Climate change 2007: the physical science basis-contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change
  year: 2007
  ident: 2307_CR10
  contributor:
    fullname: JH Christensen
– volume: 6
  start-page: 1161
  year: 1993
  ident: 2307_CR53
  publication-title: J Clim
  doi: 10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2
  contributor:
    fullname: H von Storch
– volume: 3
  start-page: 1053
  year: 1990
  ident: 2307_CR34
  publication-title: J Clim
  doi: 10.1175/1520-0442(1990)003<1053:AMORGC>2.0.CO;2
  contributor:
    fullname: TR Karl
– ident: 2307_CR7
– volume: 538
  start-page: 49
  year: 2016
  ident: 2307_CR37
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.04.009
  contributor:
    fullname: S Mandal
– volume: 27
  start-page: 493
  issue: 4
  year: 1991
  ident: 2307_CR20
  publication-title: Water Resour Res
  doi: 10.1029/90WR02650
  contributor:
    fullname: LE Hay
– volume: 29
  start-page: 3303
  issue: 10
  year: 1993
  ident: 2307_CR26
  publication-title: Water Resour Res
  doi: 10.1029/93WR01066
  contributor:
    fullname: JP Hughes
– volume: 91
  start-page: 296
  issue: 3
  year: 2006
  ident: 2307_CR44
  publication-title: Curr Sci
  contributor:
    fullname: M Rajeevan
– volume: 25
  start-page: 4366
  year: 2011
  ident: 2307_CR9
  publication-title: J Clim
  doi: 10.1175/JCLI-D-11-00408.1
  contributor:
    fullname: G Burger
– volume: 41
  start-page: W11415
  year: 2005
  ident: 2307_CR63
  publication-title: Water Resor Res
  doi: 10.1029/2004WR003739
  contributor:
    fullname: C Yang
– volume: 143
  start-page: 11
  year: 2016
  ident: 2307_CR64
  publication-title: Int J Comput Appl
  contributor:
    fullname: MA Zaytar
– volume: 77
  start-page: 437
  issue: 3
  year: 1996
  ident: 2307_CR31
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  contributor:
    fullname: E Kalnay
– ident: 2307_CR50
  doi: 10.1145/3097983.3098004
– volume: 2016
  start-page: 154
  year: 2016
  ident: 2307_CR17
  publication-title: ICDM
  contributor:
    fullname: S Gope
– ident: 2307_CR1
– volume: 239
  start-page: 249
  year: 2000
  ident: 2307_CR47
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00348-6
  contributor:
    fullname: A Sharma
– ident: 2307_CR29
– volume-title: Generalized additive models
  year: 1990
  ident: 2307_CR19
  contributor:
    fullname: TJ Hastie
– ident: 2307_CR4
– volume: 48
  start-page: 15
  issue: 1
  year: 1999
  ident: 2307_CR27
  publication-title: J R Stat Soc Ser C Appl Stat
  doi: 10.1111/1467-9876.00136
  contributor:
    fullname: JP Hughes
– volume: 205
  start-page: 1
  issue: 1–2
  year: 1998
  ident: 2307_CR56
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(97)00130-3
  contributor:
    fullname: R Wilby
– volume: 16
  start-page: 1137
  year: 2002
  ident: 2307_CR42
  publication-title: Hydrol Processes
  doi: 10.1002/hyp.1054
  contributor:
    fullname: C Prudhomme
– volume: 15
  start-page: 1087
  year: 1995
  ident: 2307_CR3
  publication-title: Int J Climatol
  doi: 10.1002/joc.3370151003
  contributor:
    fullname: A Bardossy
– ident: 2307_CR14
  doi: 10.1007/s00704-007-0299-z
– ident: 2307_CR35
– volume: 26
  start-page: 1397
  year: 2006
  ident: 2307_CR21
  publication-title: Int J Climatol
  doi: 10.1002/joc.1318
  contributor:
    fullname: MR Haylock
– ident: 2307_CR28
– volume: 20
  start-page: 30
  issue: 1
  year: 2012
  ident: 2307_CR13
  publication-title: IEEE Trans Audio Speech Lang Process
  doi: 10.1109/TASL.2011.2134090
  contributor:
    fullname: G Dahl
– volume: 22
  start-page: 4373
  year: 2009
  ident: 2307_CR30
  publication-title: J Clim
  doi: 10.1175/2009JCLI2681.1.
  contributor:
    fullname: F Johnson
– volume: 20
  start-page: 4356
  issue: 17
  year: 2007
  ident: 2307_CR41
  publication-title: J Clim
  doi: 10.1175/JCLI4253.1
  contributor:
    fullname: SE Perkins
– ident: 2307_CR5
– volume: 45
  start-page: W10404
  year: 2009
  ident: 2307_CR43
  publication-title: Water Resour Res
  doi: 10.1029/2008WR007487
  contributor:
    fullname: D Raje
– volume: 17
  start-page: 182
  issue: 1
  year: 1981
  ident: 2307_CR45
  publication-title: Water Resour Res
  doi: 10.1029/WR017i001p00182
  contributor:
    fullname: CW Richardson
– volume: 49
  start-page: 1360
  year: 2013
  ident: 2307_CR33
  publication-title: Water Resour. Res. Res.
  doi: 10.1002/wrcr.20118
  contributor:
    fullname: S Kannan
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 2307_CR23
  publication-title: Signal Process Mag IEEE
  doi: 10.1109/MSP.2012.2205597
  contributor:
    fullname: G Hinton
– volume: 30
  start-page: 1535
  issue: 5
  year: 1994
  ident: 2307_CR25
  publication-title: Water Resour Res
  doi: 10.1029/93WR02983
  contributor:
    fullname: JP Hughes
– start-page: 282
  volume-title: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley symposium on mathematical statistics and probability, vol 1
  year: 1967
  ident: 2307_CR38
  contributor:
    fullname: J McQueen
– ident: 2307_CR49
SSID ssj0002667
Score 2.4996989
Snippet Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1179
SubjectTerms Analysis
Aquatic Pollution
Artificial neural networks
Atmospheric precipitations
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Climate change
Climate science
Climatology
Computer simulation
Datasets
Earth and Environmental Science
Earth Sciences
General circulation models
Global climate
Global temperature changes
Hydrologic models
Hydrology
Hydrometeorology
Long short-term memory
Mathematical models
Methods
Modelling
Natural language processing
Neural networks
Original Paper
Precipitation
Rain
Rainfall
Recurrent neural networks
Regional analysis
Regression
River basins
Rivers
Short term
Statistical analysis
Statistical models
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9cwED_0uxdfxJ9YnRLGmKAEu7Zp2ieZY2MbbMh08H0LlybZhNl-_fa7B_9779p0uslGobQ0CeGS3n1yufsEYJNAcbB5baVyeSqL2jcSVV1IssSpbbLgq8DJyccn5cFZcTRX8-hw62NY5aQTB0XtuoZ95J9oplQl2ep0-_Pil-RTo3h3NR6h8RDWMoIyagZrX_ZOvp5e62IyP2PCtNZS19V82tdMBxpRPURgaMnB0DK7YZlu6-f_NkoH-7P_BB5H4Ch2xpF-Cg98-wySY8K83XJwjYstsXv5gwDo8PYcDOPIgYaZqjl2ItMDNS26IBbMabGI9NyCY9_PxWVHt_6C4LhkdS1-cgzub7FkhzxTOAmmvqSm2jFwvH8BZ_t733cPZDxOQTaFUiupM9SZLXO0lknysSJwuO0s0to69WTYa0TnETEEW9LCpk6RoB06QjAOvQpl_hJmbdf6VyAc1XGFco3PaTmVlui1rbBOVaO9x5An8GESpVmMrBnmmh95kLshuRuWu8kS2GBhG2ajaDnc5Ryv-t4cfjs1O4TH6MrLMoH3sVDoVktsMGYPUH-YwOpGyfVp0Ez8H3vzd_Yk8HEayH8-39W31_c39gYeEYCqxtzEdZitllf-LYGUlX0XZ-IfaLDmvw
  priority: 102
  providerName: ProQuest
Title Statistical downscaling of precipitation using long short-term memory recurrent neural networks
URI https://link.springer.com/article/10.1007/s00704-017-2307-2
https://www.proquest.com/docview/1968662301
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7YULb0SgrCyEQAJ5lc07x912twXUChVWWk7WOLELaklWm-wBfj0zeaz64lBFykOxHcd2Zj6PZ74AvCVQbLWfahnmviuD1GQSwzSQpIldnXnWJJaDk49PoqNF8HkZLnfA25ouivNRvyLZCOptrBsT07DDRCzZd1mS2N0l1TNOBrA7OfzxZbaVv6Ry2iDpOJZxmiz7tczbCrmija7L5BuLo43OmT9s4wCrhqqQXU3OR5taj7K_N4kc7_A6j-BBB0HFpB0zj2HHFE_AOSb0XK4bI7t4J_YvfhGUba6egmJE2hA6U7aczdF0Qg8TpRUrZsdYdUTfgr3oz8RFSbvqJwF7yYJf_GZv3j9izaZ9JoMSTKJJRRWtC3r1DBbz2ff9I9n9mEFmQRjWMvYw9nTko9ZMt48JwcxxrpFm6a4hiJAi5gYRrdURTZFSFwkkYk5YKEcT2sh_DoOiLMwLEDnlyYMwz4xPEzM3QhPrBFM3zGJj0PoOfOg7SK1a_g21ZVpu2lBRGypuQ-U58Ia7UDGvRcGOM2e4qSr16dupmhCyo82PIgfed4lsWa8xwy4OgerDVFhXUu71Q0F1X3alSGIlEWFGd-zAx75rL93-X91e3in1K7hPyCxpgx73YFCvN-Y1oZ9aD-FeMj8c0qCfHkznw27w03E6O_l6SncX3uQfx0IChg
link.rule.ids 315,782,786,12772,21395,27931,27932,33380,33751,41088,41530,42157,42599,43607,43812,52118,52241,74042,74309
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCykuEFrAQAglk4eZhJydUVSxb6PYArbQ3axzbBakky2Z74N8z4ziFgkCRokSxLWvszHwez3xm7DmC4mCLxorKFVKUjW8FVE0p0BJL2-bB14GSkxfHan5aflhWy-RwG1JY5aQTo6J2fUs-8jc4U2qFtlruvV19F3RqFO2upiM0rrMbZaEkLb7q2ftLTYzGZ0yX1lropl5Ou5oykojqGH-hBYVCi_yKXfpTO_-1TRqtz2yb3U6wke-P43yHXfPdXZYtEPH26-gY5y_4wflXhJ_x7R4zhCIjCTNWc-RCxgdsmveBr4jRYpXIuTlFvp_x8x5vwxcE44KUNf9GEbg_-Jrc8UTgxIn4EpvqxrDx4T47nb07OZiLdJiCaMuq2gidg86tKsBaosiHGqHhnrOAK2vp0aw3AM4DQAhW4bKmkYDADhziFwe-Cqp4wLa6vvMPGXdYx5WVa32BiympwGtbQyOrVnsPocjYq0mUZjVyZphLduQod4NyNyR3k2fsGQnbEBdFR8EuZ3AxDObw8yezj2gMr0KpjL1MhUK_WUMLKXcA-0P0VVdK7k6DZtLfOJhfcydjr6eB_O3zv_r26P-NPWU35yeLI3N0ePxxh91CKFWPWYq7bGuzvvCPEa5s7JM4J38CavjoQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ta9YwED90gvhFfMXO6YKIghLW9S3tJxmbj5u6Ierg-RYuTbINZvv49NkH_3vv0nQ6RSmUliYhXK53vyR3vwA8J1DsTd4YWdo8lUXjWollU0jyxKlpM-9qz8nJh0fV_nHxfl7OY_zTEMMqJ5sYDLXtW14j3yJNqSvy1en2lo9hEZ_2Zm8W3yWfIMU7rfE4jetwQxWkipw1Pnt3aZXJEY2p00pJ1dTzaYczDYSiKsRiKMlh0TK74qP-tNR_bZkGTzS7A7cjhBQ745jfhWuuuwfJIaHffhkWycULsXt-RlA0vN0HzYgyEDJTNcvLyfRATYveiwWzWywiUbfgKPgTcd7TbTglYC7ZcItvHI37Qyx5aZ7JnASTYFJT3RhCPjyA49nbr7v7Mh6sINuiLFdSZagyU-VoDNPlY00wcdsapFl26sjFN4jWIaL3pqIpTpMigTy0hGUsutJX-UNY6_rOPQJhqY4tStu6nCZWaYVOmRqbtGyVc-jzBF5NotSLkT9DXzIlB7lrkrtmuessgWcsbM28FB2P8AleDIM--PJZ7xAyoyuvqgRexkK-Xy2xxZhHQP1hKqsrJTemQdPxzxz0Lz1K4PU0kL99_lff1v_f2CbcJHXUHw-OPjyGW4Sq6jFhcQPWVssL94SQy8o8DSr5Ey737G8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+downscaling+of+precipitation+using+long+short-term+memory+recurrent+neural+networks&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Misra%2C+Saptarshi&rft.au=Sarkar%2C+Sudeshna&rft.au=Mitra%2C+Pabitra&rft.date=2018-11-01&rft.pub=Springer+Vienna&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=134&rft.issue=3-4&rft.spage=1179&rft.epage=1196&rft_id=info:doi/10.1007%2Fs00704-017-2307-2&rft.externalDocID=10_1007_s00704_017_2307_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon