Statistical downscaling of precipitation using long short-term memory recurrent neural networks
Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose...
Saved in:
Published in | Theoretical and applied climatology Vol. 134; no. 3-4; pp. 1179 - 1196 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.11.2018
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes. |
---|---|
AbstractList | Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes. |
Audience | Academic |
Author | Misra, Saptarshi Mitra, Pabitra Sarkar, Sudeshna |
Author_xml | – sequence: 1 givenname: Saptarshi surname: Misra fullname: Misra, Saptarshi email: saptarshimisra2011@gmail.com organization: Department of Computer Science and Engineering, Indian Institute of Technology – sequence: 2 givenname: Sudeshna surname: Sarkar fullname: Sarkar, Sudeshna organization: Department of Computer Science and Engineering, Indian Institute of Technology – sequence: 3 givenname: Pabitra surname: Mitra fullname: Mitra, Pabitra organization: Department of Computer Science and Engineering, Indian Institute of Technology |
BookMark | eNp1kU1LxDAQhoMouK7-AG8FTx6qSdtNm6OIXyAIroK3MG2na3SbrEmK7r93Sj3oQQbeDJNnJmHeA7ZrnUXGjgU_E5yX54GEFykXZZrlnGSHzUSRF2lRVPkum9FFmZaqetlnByG8cc4zKcsZ08sI0YRoGlgnrfu0gRJjV4nrko3HxmzMCDibDGEsrx1JeHU-phF9n_TYO79NiBy8RxsTi4OnURbjp_Pv4ZDtdbAOePRzztnz9dXT5W16_3Bzd3lxnzbFYhHTMoMyq2UOdS1FJaHiSom2BqwzjlnBFUCLANB1teRKKg55JqHNlWoBF53M5-xkmrvx7mPAEPWbG7ylJ7VQspKStiKIOpuoFaxRG9u56KGhaLE3DW20M1S_WEhOkctx7OmfBmIifsUVDCHou-XjX1ZMbONdCB47vfGmB7_VguvRJD2ZpMkLPZpEMmfZ1BOItSv0v779b9M3C0KXrQ |
CitedBy_id | crossref_primary_10_1007_s41060_023_00397_6 crossref_primary_10_2208_jscejhe_76_2_I_373 crossref_primary_10_1002_joc_8458 crossref_primary_10_1016_j_seares_2024_102482 crossref_primary_10_1007_s00704_021_03801_y crossref_primary_10_1016_j_jastp_2021_105614 crossref_primary_10_1002_joc_8134 crossref_primary_10_1016_j_jhydrol_2022_127454 crossref_primary_10_1029_2022EF003291 crossref_primary_10_1016_j_scitotenv_2021_149876 crossref_primary_10_1002_esp_5818 crossref_primary_10_5194_gmd_13_2109_2020 crossref_primary_10_5194_essd_14_4949_2022 crossref_primary_10_1016_j_advwatres_2021_103986 crossref_primary_10_2480_agrmet_D_20_00027 crossref_primary_10_1061__ASCE_WR_1943_5452_0001612 crossref_primary_10_1007_s11356_022_24422_6 crossref_primary_10_3390_s21041421 crossref_primary_10_1007_s00704_023_04439_8 crossref_primary_10_1007_s00703_021_00791_4 crossref_primary_10_1007_s00704_023_04592_0 crossref_primary_10_1061_JHYEFF_HEENG_6058 crossref_primary_10_1080_02626667_2022_2106142 crossref_primary_10_1088_1755_1315_851_1_012032 crossref_primary_10_1142_S2811032322500011 crossref_primary_10_1007_s00521_024_10012_9 crossref_primary_10_1007_s12517_020_05509_1 crossref_primary_10_3390_su13073645 crossref_primary_10_3390_rs16030442 crossref_primary_10_1016_j_jher_2022_06_001 crossref_primary_10_2208_journalofjsce_23_16152 crossref_primary_10_3390_ai2040036 crossref_primary_10_1016_j_jcp_2021_110484 crossref_primary_10_1016_j_uclim_2022_101097 crossref_primary_10_1007_s10489_024_05504_z crossref_primary_10_1029_2022EA002221 crossref_primary_10_3390_su14106319 crossref_primary_10_1109_ACCESS_2021_3057500 crossref_primary_10_5194_gmd_15_251_2022 |
Cites_doi | 10.1029/91WR02589 10.1007/BF00209515 10.1111/j.2517-6161.1996.tb02095.x 10.1007/978-1-4899-4541-9 10.1201/9781420057683 10.1162/neco.1997.9.8.1735 10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2 10.1145/800186.810616 10.21437/Interspeech.2010-343 10.1016/j.jhydrol.2004.09.008 10.2307/3001968 10.1126/science.1127647 10.1007/978-3-642-59992-7_1 10.1016/S0022-1694(98)00216-9 10.3354/cr011125 10.1007/s00477-010-0415-y 10.1177/030913339702100403 10.1016/S0022-1694(98)00186-3 10.3354/cr029255 10.1016/S0022-1694(99)00136-5 10.25080/Majora-92bf1922-003 10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2 10.1175/1520-0442(1990)003<1053:AMORGC>2.0.CO;2 10.1016/j.jhydrol.2016.04.009 10.1029/90WR02650 10.1029/93WR01066 10.1175/JCLI-D-11-00408.1 10.1029/2004WR003739 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1145/3097983.3098004 10.1016/S0022-1694(00)00348-6 10.1111/1467-9876.00136 10.1016/S0022-1694(97)00130-3 10.1002/hyp.1054 10.1002/joc.3370151003 10.1007/s00704-007-0299-z 10.1002/joc.1318 10.1109/TASL.2011.2134090 10.1175/2009JCLI2681.1. 10.1175/JCLI4253.1 10.1029/2008WR007487 10.1029/WR017i001p00182 10.1002/wrcr.20118 10.1109/MSP.2012.2205597 10.1029/93WR02983 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Austria 2017 COPYRIGHT 2018 Springer Theoretical and Applied Climatology is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Austria 2017 – notice: COPYRIGHT 2018 Springer – notice: Theoretical and Applied Climatology is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION ISR 3V. 7QH 7TG 7TN 7UA 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G L6V M2P M7S P5Z P62 PCBAR PQEST PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s00704-017-2307-2 |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1434-4483 |
EndPage | 1196 |
ExternalDocumentID | A560606366 10_1007_s00704_017_2307_2 |
GrantInformation_xml | – fundername: Ministry of Human Resource Development funderid: https://doi.org/10.13039/501100004541 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDBF ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDH EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IFM IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 XXG Y6R YLTOR Z45 Z5O Z7R Z7U Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8O Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ZY4 ~02 ~8M ~EX AACDK AAEOY AAHBH AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AFEUZ AGQEE AGRTI AIGIU CITATION H13 7QH 7TG 7TN 7UA 7XB 8FK C1K F1W H96 KL. L.G PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c455t-72a72b63abb6186a80991dbaeb20e2409aadeaaaffb609690a326ad399dae5f63 |
IEDL.DBID | AGYKE |
ISSN | 0177-798X |
IngestDate | Wed Nov 06 05:57:55 EST 2024 Tue Nov 12 22:43:24 EST 2024 Thu Aug 01 19:32:13 EDT 2024 Fri Nov 22 03:14:58 EST 2024 Sat Dec 16 12:05:02 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-72a72b63abb6186a80991dbaeb20e2409aadeaaaffb609690a326ad399dae5f63 |
PQID | 1968662301 |
PQPubID | 48318 |
PageCount | 18 |
ParticipantIDs | proquest_journals_1968662301 gale_infotracacademiconefile_A560606366 gale_incontextgauss_ISR_A560606366 crossref_primary_10_1007_s00704_017_2307_2 springer_journals_10_1007_s00704_017_2307_2 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Wien |
PublicationTitle | Theoretical and applied climatology |
PublicationTitleAbbrev | Theor Appl Climatol |
PublicationYear | 2018 |
Publisher | Springer Vienna Springer Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer – name: Springer Nature B.V |
References | Shephard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference, (ACM’68), vol 517. ACM, New York, p 524, DOI https://doi.org/10.1145/800186.810616 RajeevanMBhateJKaleJDLalBHigh resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spellsCurr Sci2006913296306 HaylockMRCawleyGCHarphamCWilbyRLGoodessCMDownscaling heavy precipitation over the UK: a comparison of dynamical and statistical methods and their future scenariosInt J Climatol2006261397141510.1002/joc.1318 Corte-RealJZhangXWangXDownscaling GCM information to regional scales: A non-parametric multivariate regression approachClim Dyn19951141342410.1007/BF00209515 von StorchHInconsistencies at the interface of climate impact studies and global climate researchMeteorol Z19954 NF7280 Hanssen-BauerIAchbergerCBenestadRChenDForlandEStatistical downscaling of climate scenarios over ScandinaviaClim Res200529325526810.3354/cr029255 BreimanLFriedmanJHOlshenRAStoneCJClassification and regression trees1984MontereyBrooks/Cole Publishing SharmaASeasonal to interannual rainfall probabilistic forecasts for improved water supply management. Part 1: a strategy for system predictor identificationJ Hydrol200023924925810.1016/S0022-1694(00)00348-6 Vandal T, Kodra E, Ganguly S, Michaelis A, Nemani R, Ganguly A R (2017) DeepSD: generating high resolution climate change projecions through single image super-resolution. KDD HughesJPGuttorpPA class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomenaWater Resour Res19943051535154610.1029/93WR02983 Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. ICLR 2015 WilcoxonFIndividual comparisons by ranking methodsBiometrics19451808310.2307/3001968 Dibike Y B, Gacon P, Hilaire A S, Ouarda T, Nguyen V (2007) Uncertainty analysis of statistically downscaled temperature and precipitation regimes in Northern Canada. Theoretical and Applied Climatology. Springer Liu JN, Hu Y, You JJ, Chan PW (2014) Deep neural network based feature representation for weather forecasting. In: Proceedings on the international conference on artificial intelligence (ICAI). The steering committee of the world congress in computer science, computer engineering and applied computing (WorldComp), 2014, p 1 Sutskever I, Vinyals O, Le Q V (2014) Sequence to sequence learning with neural networks. Adv Neural Inf Process Syst 3104–3112 YangCChandlerREIshamVSWheaterHSSpatial-temporal rainfall simulation using generalized linear modelsWater Resor Res200541W1141510.1029/2004WR003739 MandalSSrivastavRKSimonovicSPUse of beta regression for statistical downscaling of precipitation in the Campbell River basin, British ColumbiaJ Hydrol2016538496210.1016/j.jhydrol.2016.04.009 KalnayEThe NCEP/NCAR 40-years reanalysis projectBull Am Meteorol Soc199677343747110.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 HastieTJTibshiraniRJGeneralized additive models1990LondonChapman and Hall WetterhallFHalldinSXuCStatistical precipitation downscaling in central Sweden with the analogue methodJ Hydrol200530617419010.1016/j.jhydrol.2004.09.008 WilbyRLHeyLELeaveslyGHA comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River Basin, ColoradoJ Hydrol1999225679110.1016/S0022-1694(99)00136-5 RichardsonCWStochastic precipitation of daily precipitation, temperature, and solar radiationWater Resour Res198117118219010.1029/WR017i001p00182 von Storch H (1999) The global and regional climate system. In: von Storch H, Floscr G (eds) Anthropogenic climate change. Springer, Berlin, pp 3–36 Bi E G, Gachon P, Vrac M, Monette F (2015) Which downscaled rainfall data for climate change impact studies in urban areas? Review of current approaches and trends. Theoretical and Applied Climatol. Springer ConwayDJonesPDThe use of weather types and air flow indices for GCM downscalingJ Hydrol1998212/21334836110.1016/S0022-1694(98)00216-9 GopeSSarkarSMitraPGhoshSEarly prediction of extreme rainfall events: a deep learning approachICDM20162016154167 YeeTWWildCJVector generalized additive modelsJ R Stat Soc Ser B199658481493 Bengio Y, Goodfellow I, Courville A (2015) Deep learning. Book in Preparation for MIT Press Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D, Bengio Y (2010) Theano: a CPU and GPU math expression compiler. Scipy, vol. 4, p. 3. Austin Richardson C W, Wright D A (1984) A model for generating daily weather variables, USDA Agric. Res. Serv. Rep. ARS-8, US Dep. Agric. Res. Serv. Temple, Tex PrudhommeCReynardNCrooksSDownscaling of global climate models for flood frequency analysis: where are we now?Hydrol Processes2002161137115010.1002/hyp.1054 Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall/CRC von StorchHZoritaECubashUDownscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertimeJ Clim199361161117110.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2 HughesJPLettenmairDPGuttorpPA stochastic approach for assessing the effect of changes in synoptic circulation patterns on gauge precipitationWater Resour Res199329103303331510.1029/93WR01066 HintonGDengLYuDDahlGEMohamedAJaitlyNSeniorAVanhouckeVNguyenPSainathTNDeep neural networks for acoustic modeling in speech recognition: the shared views of four research groupsSignal Process Mag IEEE2012296829710.1109/MSP.2012.2205597 Kingma D, Ba J (2015) Adam: a method for stochastic optimization. ICLR WilbyRLWigleyTMLDownscaling general circulation model output: a review of methods and limitationsProg Phys Geogr19972153054810.1177/030913339702100403 ZaytarMAEl AmraniCESequence to sequence weather forecasting with long short term memory recurrent neural networksInt J Comput Appl201614311 WilbyRHassanHHanakiKStatistical downscaling of hydrometeorological variables using general circulation model outputJ Hydrol19982051–211910.1016/S0022-1694(97)00130-3 KarlTRWangWCSchlesingerMEKnightRWPortmanDA method of relating general circulation model simulated climate to observed local climate. Part I: seasonal statisticsJ Clim199031053107910.1175/1520-0442(1990)003<1053:AMORGC>2.0.CO;2 BurgerGMurdockTQWernerATSobieSRCannonAJDownscaling extremes - an intercomparison of multiple statistical methods for present climateJ Clim2011254366438810.1175/JCLI-D-11-00408.1 HochreiterSSchmidhuberJLong short-term memoryNeural Comp1997981735178010.1162/neco.1997.9.8.1735 BardossyAPlateEJSpace-time model for daily rainfall using atmospheric circulation patternsWater Resour Res19922851247125910.1029/91WR02589 MurphyJMAn evaluation of statistical and dynamical techniques for downscaling local climateJ Clim19991282256228410.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2 HughesJPGuttorpPCharlesSPA non-homogeneous hidden Markov Model for precipitation occurenceJ R Stat Soc Ser C Appl Stat1999481153010.1111/1467-9876.00136 Hutchinson M F, Xu T (2013) Anusplin Version 4. 4 User Guide, 52p PerkinsSEPitmanAJHolbrookNJMcAneney JEvaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functionsJ Clim200720174356437610.1175/JCLI4253.1 McQueenJSome methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley symposium on mathematical statistics and probability, vol 11967BerkeleyUniv. of Calif. Press282297 Mikolov T, Karafiat M, Burget L, Khudanpur S (2010) Recurrent neural network based language model. INTERSPEECH 2010 RajeDMujumdarPPA conditional random field-based downscaling method for assessment of climate change impact on multisite daily precipitation in the Mahanadi basinWater Resour Res200945W1040410.1029/2008WR007487 Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, Bouchard N, Warde-Farley D, Bengio Y (2012) Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning, NIPS 2012 Workshop ChristensenJHClimate change 2007: the physical science basis-contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change2007CambridgeCambridge Univ. Press WilksDSStatistical methods in the atmospheric sciences20062nd edn.AmsterdamAcademic627627 KannanSGhoshSA nonparametric kernel regression model for downscaling multisite daily precipitation in the Mahanadi basinWater Resour. Res. Res.2013491360138510.1002/wrcr.20118 BardossyADucksteinLBogardiIFuzzy rule-based classification of atmospheric circulation patternsInt J Climatol1995151087109710.1002/joc.3370151003 HayLEMcCabeGJWolockDMAyersMASimulation of precipitation by weather type analysisWater Resour Res199127449350110.1029/90WR02650 Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. SCIENCE, vol. 13, 2006 DahlGYuDDengLAceroAContext-dependent pre-trained deep neural networks for large-vocabulary speech recognitionIEEE Trans Audio Speech Lang Process2012201304210.1109/TASL.2011.2134090 DobsonAJAn introduction to generalized linear models20012nd edn.LondonChapman and Hall10.1201/9781420057683 KannanSGhoshSPrediction of daily rainfall state in a river basin using statistical downscaling from GCM outputStochastic Environ Res Risk Assess20112545747410.1007/s00477-010-0415-yhttps://doi.org/10.1007/s00477-010-0415-y https://doi.org/10.1007/s00477-010-0415-y WilksDSMultisite downscaling of daily precipitation with a stochastic weather generatorClim Res19991112513610.3354/cr011125 WilksDSMultisite generalization of a daily stochastic precipitation generation modelJ Hydrol199821017819110.1016/S0022-1694(98)00186-3 JohnsonFSharmaAMeasurements of GCM skill in predicting variables relevant for hydroclimatological variablesJ Clim2009224373438210.1175/2009JCLI2681.1. Intergovernmental Panel on Climate Change - Task Group on Scenarios for Climate Impact Assessment (1999) Guidel 2307_CR6 2307_CR7 S Mandal (2307_CR37) 2016; 538 MR Haylock (2307_CR21) 2006; 26 RL Wilby (2307_CR58) 1999; 225 D Raje (2307_CR43) 2009; 45 R Wilby (2307_CR56) 1998; 205 F Johnson (2307_CR30) 2009; 22 S Kannan (2307_CR33) 2013; 49 2307_CR46 2307_CR49 JP Hughes (2307_CR26) 1993; 29 2307_CR48 S Kannan (2307_CR32) 2011; 25 I Hanssen-Bauer (2307_CR18) 2005; 29 2307_CR4 2307_CR5 2307_CR1 F Wetterhall (2307_CR54) 2005; 306 MA Zaytar (2307_CR64) 2016; 143 S Hochreiter (2307_CR24) 1997; 9 S Gope (2307_CR17) 2016; 2016 DS Wilks (2307_CR59) 1998; 210 DS Wilks (2307_CR60) 1999; 11 JP Hughes (2307_CR27) 1999; 48 H von Storch (2307_CR53) 1993; 6 G Burger (2307_CR9) 2011; 25 2307_CR14 JM Murphy (2307_CR40) 1999; 12 2307_CR16 TJ Hastie (2307_CR19) 1990 2307_CR50 2307_CR52 A Bardossy (2307_CR2) 1992; 28 SE Perkins (2307_CR41) 2007; 20 TW Yee (2307_CR62) 1996; 58 CW Richardson (2307_CR45) 1981; 17 JP Hughes (2307_CR25) 1994; 30 E Kalnay (2307_CR31) 1996; 77 DS Wilks (2307_CR61) 2006 A Bardossy (2307_CR3) 1995; 15 A Sharma (2307_CR47) 2000; 239 2307_CR29 2307_CR28 C Yang (2307_CR63) 2005; 41 G Hinton (2307_CR23) 2012; 29 C Prudhomme (2307_CR42) 2002; 16 RL Wilby (2307_CR57) 1997; 21 2307_CR22 M Rajeevan (2307_CR44) 2006; 91 L Breiman (2307_CR8) 1984 F Wilcoxon (2307_CR55) 1945; 1 D Conway (2307_CR11) 1998; 212/213 J Corte-Real (2307_CR12) 1995; 11 TR Karl (2307_CR34) 1990; 3 2307_CR36 2307_CR35 AJ Dobson (2307_CR15) 2001 LE Hay (2307_CR20) 1991; 27 2307_CR39 J McQueen (2307_CR38) 1967 H von Storch (2307_CR51) 1995; 4 NF JH Christensen (2307_CR10) 2007 G Dahl (2307_CR13) 2012; 20 |
References_xml | – volume: 28 start-page: 1247 issue: 5 year: 1992 ident: 2307_CR2 publication-title: Water Resour Res doi: 10.1029/91WR02589 contributor: fullname: A Bardossy – volume: 11 start-page: 413 year: 1995 ident: 2307_CR12 publication-title: Clim Dyn doi: 10.1007/BF00209515 contributor: fullname: J Corte-Real – volume-title: Classification and regression trees year: 1984 ident: 2307_CR8 contributor: fullname: L Breiman – volume: 58 start-page: 481 year: 1996 ident: 2307_CR62 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1996.tb02095.x contributor: fullname: TW Yee – ident: 2307_CR16 doi: 10.1007/978-1-4899-4541-9 – volume-title: An introduction to generalized linear models year: 2001 ident: 2307_CR15 doi: 10.1201/9781420057683 contributor: fullname: AJ Dobson – start-page: 627 volume-title: Statistical methods in the atmospheric sciences year: 2006 ident: 2307_CR61 contributor: fullname: DS Wilks – ident: 2307_CR36 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 2307_CR24 publication-title: Neural Comp doi: 10.1162/neco.1997.9.8.1735 contributor: fullname: S Hochreiter – volume: 12 start-page: 2256 issue: 8 year: 1999 ident: 2307_CR40 publication-title: J Clim doi: 10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2 contributor: fullname: JM Murphy – ident: 2307_CR48 doi: 10.1145/800186.810616 – ident: 2307_CR39 doi: 10.21437/Interspeech.2010-343 – volume: 306 start-page: 174 year: 2005 ident: 2307_CR54 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.09.008 contributor: fullname: F Wetterhall – volume: 1 start-page: 80 year: 1945 ident: 2307_CR55 publication-title: Biometrics doi: 10.2307/3001968 contributor: fullname: F Wilcoxon – ident: 2307_CR22 doi: 10.1126/science.1127647 – volume: 4 NF start-page: 72 year: 1995 ident: 2307_CR51 publication-title: Meteorol Z contributor: fullname: H von Storch – ident: 2307_CR52 doi: 10.1007/978-3-642-59992-7_1 – volume: 212/213 start-page: 348 year: 1998 ident: 2307_CR11 publication-title: J Hydrol doi: 10.1016/S0022-1694(98)00216-9 contributor: fullname: D Conway – ident: 2307_CR46 – volume: 11 start-page: 125 year: 1999 ident: 2307_CR60 publication-title: Clim Res doi: 10.3354/cr011125 contributor: fullname: DS Wilks – volume: 25 start-page: 457 year: 2011 ident: 2307_CR32 publication-title: Stochastic Environ Res Risk Assess doi: 10.1007/s00477-010-0415-y contributor: fullname: S Kannan – volume: 21 start-page: 530 year: 1997 ident: 2307_CR57 publication-title: Prog Phys Geogr doi: 10.1177/030913339702100403 contributor: fullname: RL Wilby – volume: 210 start-page: 178 year: 1998 ident: 2307_CR59 publication-title: J Hydrol doi: 10.1016/S0022-1694(98)00186-3 contributor: fullname: DS Wilks – volume: 29 start-page: 255 issue: 3 year: 2005 ident: 2307_CR18 publication-title: Clim Res doi: 10.3354/cr029255 contributor: fullname: I Hanssen-Bauer – volume: 225 start-page: 67 year: 1999 ident: 2307_CR58 publication-title: J Hydrol doi: 10.1016/S0022-1694(99)00136-5 contributor: fullname: RL Wilby – ident: 2307_CR6 doi: 10.25080/Majora-92bf1922-003 – volume-title: Climate change 2007: the physical science basis-contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change year: 2007 ident: 2307_CR10 contributor: fullname: JH Christensen – volume: 6 start-page: 1161 year: 1993 ident: 2307_CR53 publication-title: J Clim doi: 10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2 contributor: fullname: H von Storch – volume: 3 start-page: 1053 year: 1990 ident: 2307_CR34 publication-title: J Clim doi: 10.1175/1520-0442(1990)003<1053:AMORGC>2.0.CO;2 contributor: fullname: TR Karl – ident: 2307_CR7 – volume: 538 start-page: 49 year: 2016 ident: 2307_CR37 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.04.009 contributor: fullname: S Mandal – volume: 27 start-page: 493 issue: 4 year: 1991 ident: 2307_CR20 publication-title: Water Resour Res doi: 10.1029/90WR02650 contributor: fullname: LE Hay – volume: 29 start-page: 3303 issue: 10 year: 1993 ident: 2307_CR26 publication-title: Water Resour Res doi: 10.1029/93WR01066 contributor: fullname: JP Hughes – volume: 91 start-page: 296 issue: 3 year: 2006 ident: 2307_CR44 publication-title: Curr Sci contributor: fullname: M Rajeevan – volume: 25 start-page: 4366 year: 2011 ident: 2307_CR9 publication-title: J Clim doi: 10.1175/JCLI-D-11-00408.1 contributor: fullname: G Burger – volume: 41 start-page: W11415 year: 2005 ident: 2307_CR63 publication-title: Water Resor Res doi: 10.1029/2004WR003739 contributor: fullname: C Yang – volume: 143 start-page: 11 year: 2016 ident: 2307_CR64 publication-title: Int J Comput Appl contributor: fullname: MA Zaytar – volume: 77 start-page: 437 issue: 3 year: 1996 ident: 2307_CR31 publication-title: Bull Am Meteorol Soc doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 contributor: fullname: E Kalnay – ident: 2307_CR50 doi: 10.1145/3097983.3098004 – volume: 2016 start-page: 154 year: 2016 ident: 2307_CR17 publication-title: ICDM contributor: fullname: S Gope – ident: 2307_CR1 – volume: 239 start-page: 249 year: 2000 ident: 2307_CR47 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00348-6 contributor: fullname: A Sharma – ident: 2307_CR29 – volume-title: Generalized additive models year: 1990 ident: 2307_CR19 contributor: fullname: TJ Hastie – ident: 2307_CR4 – volume: 48 start-page: 15 issue: 1 year: 1999 ident: 2307_CR27 publication-title: J R Stat Soc Ser C Appl Stat doi: 10.1111/1467-9876.00136 contributor: fullname: JP Hughes – volume: 205 start-page: 1 issue: 1–2 year: 1998 ident: 2307_CR56 publication-title: J Hydrol doi: 10.1016/S0022-1694(97)00130-3 contributor: fullname: R Wilby – volume: 16 start-page: 1137 year: 2002 ident: 2307_CR42 publication-title: Hydrol Processes doi: 10.1002/hyp.1054 contributor: fullname: C Prudhomme – volume: 15 start-page: 1087 year: 1995 ident: 2307_CR3 publication-title: Int J Climatol doi: 10.1002/joc.3370151003 contributor: fullname: A Bardossy – ident: 2307_CR14 doi: 10.1007/s00704-007-0299-z – ident: 2307_CR35 – volume: 26 start-page: 1397 year: 2006 ident: 2307_CR21 publication-title: Int J Climatol doi: 10.1002/joc.1318 contributor: fullname: MR Haylock – ident: 2307_CR28 – volume: 20 start-page: 30 issue: 1 year: 2012 ident: 2307_CR13 publication-title: IEEE Trans Audio Speech Lang Process doi: 10.1109/TASL.2011.2134090 contributor: fullname: G Dahl – volume: 22 start-page: 4373 year: 2009 ident: 2307_CR30 publication-title: J Clim doi: 10.1175/2009JCLI2681.1. contributor: fullname: F Johnson – volume: 20 start-page: 4356 issue: 17 year: 2007 ident: 2307_CR41 publication-title: J Clim doi: 10.1175/JCLI4253.1 contributor: fullname: SE Perkins – ident: 2307_CR5 – volume: 45 start-page: W10404 year: 2009 ident: 2307_CR43 publication-title: Water Resour Res doi: 10.1029/2008WR007487 contributor: fullname: D Raje – volume: 17 start-page: 182 issue: 1 year: 1981 ident: 2307_CR45 publication-title: Water Resour Res doi: 10.1029/WR017i001p00182 contributor: fullname: CW Richardson – volume: 49 start-page: 1360 year: 2013 ident: 2307_CR33 publication-title: Water Resour. Res. Res. doi: 10.1002/wrcr.20118 contributor: fullname: S Kannan – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 2307_CR23 publication-title: Signal Process Mag IEEE doi: 10.1109/MSP.2012.2205597 contributor: fullname: G Hinton – volume: 30 start-page: 1535 issue: 5 year: 1994 ident: 2307_CR25 publication-title: Water Resour Res doi: 10.1029/93WR02983 contributor: fullname: JP Hughes – start-page: 282 volume-title: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley symposium on mathematical statistics and probability, vol 1 year: 1967 ident: 2307_CR38 contributor: fullname: J McQueen – ident: 2307_CR49 |
SSID | ssj0002667 |
Score | 2.4996989 |
Snippet | Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1179 |
SubjectTerms | Analysis Aquatic Pollution Artificial neural networks Atmospheric precipitations Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Climate change Climate science Climatology Computer simulation Datasets Earth and Environmental Science Earth Sciences General circulation models Global climate Global temperature changes Hydrologic models Hydrology Hydrometeorology Long short-term memory Mathematical models Methods Modelling Natural language processing Neural networks Original Paper Precipitation Rain Rainfall Recurrent neural networks Regional analysis Regression River basins Rivers Short term Statistical analysis Statistical models Waste Water Technology Water Management Water Pollution Control |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9cwED_0uxdfxJ9YnRLGmKAEu7Zp2ieZY2MbbMh08H0LlybZhNl-_fa7B_9779p0uslGobQ0CeGS3n1yufsEYJNAcbB5baVyeSqL2jcSVV1IssSpbbLgq8DJyccn5cFZcTRX8-hw62NY5aQTB0XtuoZ95J9oplQl2ep0-_Pil-RTo3h3NR6h8RDWMoIyagZrX_ZOvp5e62IyP2PCtNZS19V82tdMBxpRPURgaMnB0DK7YZlu6-f_NkoH-7P_BB5H4Ch2xpF-Cg98-wySY8K83XJwjYstsXv5gwDo8PYcDOPIgYaZqjl2ItMDNS26IBbMabGI9NyCY9_PxWVHt_6C4LhkdS1-cgzub7FkhzxTOAmmvqSm2jFwvH8BZ_t733cPZDxOQTaFUiupM9SZLXO0lknysSJwuO0s0to69WTYa0TnETEEW9LCpk6RoB06QjAOvQpl_hJmbdf6VyAc1XGFco3PaTmVlui1rbBOVaO9x5An8GESpVmMrBnmmh95kLshuRuWu8kS2GBhG2ajaDnc5Ryv-t4cfjs1O4TH6MrLMoH3sVDoVktsMGYPUH-YwOpGyfVp0Ez8H3vzd_Yk8HEayH8-39W31_c39gYeEYCqxtzEdZitllf-LYGUlX0XZ-IfaLDmvw priority: 102 providerName: ProQuest |
Title | Statistical downscaling of precipitation using long short-term memory recurrent neural networks |
URI | https://link.springer.com/article/10.1007/s00704-017-2307-2 https://www.proquest.com/docview/1968662301 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7YULb0SgrCyEQAJ5lc07x912twXUChVWWk7WOLELaklWm-wBfj0zeaz64lBFykOxHcd2Zj6PZ74AvCVQbLWfahnmviuD1GQSwzSQpIldnXnWJJaDk49PoqNF8HkZLnfA25ouivNRvyLZCOptrBsT07DDRCzZd1mS2N0l1TNOBrA7OfzxZbaVv6Ry2iDpOJZxmiz7tczbCrmija7L5BuLo43OmT9s4wCrhqqQXU3OR5taj7K_N4kc7_A6j-BBB0HFpB0zj2HHFE_AOSb0XK4bI7t4J_YvfhGUba6egmJE2hA6U7aczdF0Qg8TpRUrZsdYdUTfgr3oz8RFSbvqJwF7yYJf_GZv3j9izaZ9JoMSTKJJRRWtC3r1DBbz2ff9I9n9mEFmQRjWMvYw9nTko9ZMt48JwcxxrpFm6a4hiJAi5gYRrdURTZFSFwkkYk5YKEcT2sh_DoOiLMwLEDnlyYMwz4xPEzM3QhPrBFM3zGJj0PoOfOg7SK1a_g21ZVpu2lBRGypuQ-U58Ia7UDGvRcGOM2e4qSr16dupmhCyo82PIgfed4lsWa8xwy4OgerDVFhXUu71Q0F1X3alSGIlEWFGd-zAx75rL93-X91e3in1K7hPyCxpgx73YFCvN-Y1oZ9aD-FeMj8c0qCfHkznw27w03E6O_l6SncX3uQfx0IChg |
link.rule.ids | 315,782,786,12772,21395,27931,27932,33380,33751,41088,41530,42157,42599,43607,43812,52118,52241,74042,74309 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCykuEFrAQAglk4eZhJydUVSxb6PYArbQ3axzbBakky2Z74N8z4ziFgkCRokSxLWvszHwez3xm7DmC4mCLxorKFVKUjW8FVE0p0BJL2-bB14GSkxfHan5aflhWy-RwG1JY5aQTo6J2fUs-8jc4U2qFtlruvV19F3RqFO2upiM0rrMbZaEkLb7q2ftLTYzGZ0yX1lropl5Ou5oykojqGH-hBYVCi_yKXfpTO_-1TRqtz2yb3U6wke-P43yHXfPdXZYtEPH26-gY5y_4wflXhJ_x7R4zhCIjCTNWc-RCxgdsmveBr4jRYpXIuTlFvp_x8x5vwxcE44KUNf9GEbg_-Jrc8UTgxIn4EpvqxrDx4T47nb07OZiLdJiCaMuq2gidg86tKsBaosiHGqHhnrOAK2vp0aw3AM4DQAhW4bKmkYDADhziFwe-Cqp4wLa6vvMPGXdYx5WVa32BiympwGtbQyOrVnsPocjYq0mUZjVyZphLduQod4NyNyR3k2fsGQnbEBdFR8EuZ3AxDObw8yezj2gMr0KpjL1MhUK_WUMLKXcA-0P0VVdK7k6DZtLfOJhfcydjr6eB_O3zv_r26P-NPWU35yeLI3N0ePxxh91CKFWPWYq7bGuzvvCPEa5s7JM4J38CavjoQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ta9YwED90gvhFfMXO6YKIghLW9S3tJxmbj5u6Ierg-RYuTbINZvv49NkH_3vv0nQ6RSmUliYhXK53vyR3vwA8J1DsTd4YWdo8lUXjWollU0jyxKlpM-9qz8nJh0fV_nHxfl7OY_zTEMMqJ5sYDLXtW14j3yJNqSvy1en2lo9hEZ_2Zm8W3yWfIMU7rfE4jetwQxWkipw1Pnt3aZXJEY2p00pJ1dTzaYczDYSiKsRiKMlh0TK74qP-tNR_bZkGTzS7A7cjhBQ745jfhWuuuwfJIaHffhkWycULsXt-RlA0vN0HzYgyEDJTNcvLyfRATYveiwWzWywiUbfgKPgTcd7TbTglYC7ZcItvHI37Qyx5aZ7JnASTYFJT3RhCPjyA49nbr7v7Mh6sINuiLFdSZagyU-VoDNPlY00wcdsapFl26sjFN4jWIaL3pqIpTpMigTy0hGUsutJX-UNY6_rOPQJhqY4tStu6nCZWaYVOmRqbtGyVc-jzBF5NotSLkT9DXzIlB7lrkrtmuessgWcsbM28FB2P8AleDIM--PJZ7xAyoyuvqgRexkK-Xy2xxZhHQP1hKqsrJTemQdPxzxz0Lz1K4PU0kL99_lff1v_f2CbcJHXUHw-OPjyGW4Sq6jFhcQPWVssL94SQy8o8DSr5Ey737G8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+downscaling+of+precipitation+using+long+short-term+memory+recurrent+neural+networks&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Misra%2C+Saptarshi&rft.au=Sarkar%2C+Sudeshna&rft.au=Mitra%2C+Pabitra&rft.date=2018-11-01&rft.pub=Springer+Vienna&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=134&rft.issue=3-4&rft.spage=1179&rft.epage=1196&rft_id=info:doi/10.1007%2Fs00704-017-2307-2&rft.externalDocID=10_1007_s00704_017_2307_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon |