Plant phosphorus-acquisition and -use strategies affect soil carbon cycling
Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant‐soil systems. A comprehensive understanding of how plants with efficient P‐acquisition or ‐use...
Saved in:
Published in | Trends in ecology & evolution (Amsterdam) Vol. 36; no. 10; pp. 899 - 906 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant‐soil systems. A comprehensive understanding of how plants with efficient P‐acquisition or ‐use strategies influence carbon (C) and N cycling remains elusive. We highlight how P‐acquisition/-use strategies, particularly the release of carboxylates into the rhizosphere, accelerate soil organic matter (SOM) decomposition and soil N mineralisation by destabilising aggregates and organic‐mineral associations. We advocate studying the effects of P-acquisition/-use strategies on SOM formation, directly or through microbial turnover.
In response to low P availability, plants have evolved a variety of P‐acquisition/‐use strategies. These may affect N cycling by influencing SOM turnover.Two microbial strategies (N-mining and co-metabolism) have been proposed to explain microbially mediated priming effects. We suggest that priming should be explained from the perspective of the capacity of a plant to acquire or utilise P under low-P conditions.Efficient P‐acquisition/-use strategies may change N cycling by affecting SOM decomposition. For example, a highly efficient P-mobilising strategy, carboxylate release, may destabilise aggregates and organic‐mineral associations through chelation of metals (such as Fe, Al) and then accelerate SOM decomposition; flavonoids may work in a similar way.Efficient P‐acquisition/-use strategies may affect SOM formation directly or indirectly through microbial turnover. |
---|---|
AbstractList | Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant-soil systems. A comprehensive understanding of how plants with efficient P-acquisition or -use strategies influence carbon (C) and N cycling remains elusive. We highlight how P-acquisition/-use strategies, particularly the release of carboxylates into the rhizosphere, accelerate soil organic matter (SOM) decomposition and soil N mineralisation by destabilising aggregates and organic-mineral associations. We advocate studying the effects of P-acquisition/-use strategies on SOM formation, directly or through microbial turnover.Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant-soil systems. A comprehensive understanding of how plants with efficient P-acquisition or -use strategies influence carbon (C) and N cycling remains elusive. We highlight how P-acquisition/-use strategies, particularly the release of carboxylates into the rhizosphere, accelerate soil organic matter (SOM) decomposition and soil N mineralisation by destabilising aggregates and organic-mineral associations. We advocate studying the effects of P-acquisition/-use strategies on SOM formation, directly or through microbial turnover. Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant-soil systems. A comprehensive understanding of how plants with efficient P-acquisition or -use strategies influence carbon (C) and N cycling remains elusive. We highlight how P-acquisition/-use strategies, particularly the release of carboxylates into the rhizosphere, accelerate soil organic matter (SOM) decomposition and soil N mineralisation by destabilising aggregates and organic-mineral associations. We advocate studying the effects of P-acquisition/-use strategies on SOM formation, directly or through microbial turnover. Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant‐soil systems. A comprehensive understanding of how plants with efficient P‐acquisition or ‐use strategies influence carbon (C) and N cycling remains elusive. We highlight how P‐acquisition/-use strategies, particularly the release of carboxylates into the rhizosphere, accelerate soil organic matter (SOM) decomposition and soil N mineralisation by destabilising aggregates and organic‐mineral associations. We advocate studying the effects of P-acquisition/-use strategies on SOM formation, directly or through microbial turnover. In response to low P availability, plants have evolved a variety of P‐acquisition/‐use strategies. These may affect N cycling by influencing SOM turnover.Two microbial strategies (N-mining and co-metabolism) have been proposed to explain microbially mediated priming effects. We suggest that priming should be explained from the perspective of the capacity of a plant to acquire or utilise P under low-P conditions.Efficient P‐acquisition/-use strategies may change N cycling by affecting SOM decomposition. For example, a highly efficient P-mobilising strategy, carboxylate release, may destabilise aggregates and organic‐mineral associations through chelation of metals (such as Fe, Al) and then accelerate SOM decomposition; flavonoids may work in a similar way.Efficient P‐acquisition/-use strategies may affect SOM formation directly or indirectly through microbial turnover. |
Author | Cong, Wen-Feng Lambers, Hans Ding, Wenli |
Author_xml | – sequence: 1 givenname: Wenli surname: Ding fullname: Ding, Wenli organization: Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant–Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China – sequence: 2 givenname: Wen-Feng surname: Cong fullname: Cong, Wen-Feng email: wenfeng.cong@cau.edu.cn organization: Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant–Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China – sequence: 3 givenname: Hans surname: Lambers fullname: Lambers, Hans email: hans.lambers@uwa.edu.au organization: Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant–Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34246498$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtPwzAUhS1UREvhDzCgjCwJjp-xxIIqXgIJBpgtx7kBV2nS2g4S_x5XLQsDWLK9fOdenXOO0aQfekDorMRFiUtxuSyiBygIJmWBRYExP0CzspIkr2hFJ2iWIJVzyuQUHYewxOkopo7QlDLCBFPVDD2-dKaP2fpjCOn6MeTGbkYXXHRDn5m-yfIxQBaiNxHeHYTMtC3YmIXBdZk1vk6Y_bKd699P0GFrugCn-3-O3m5vXhf3-dPz3cPi-im3jPOYS8zqSiUHUDUKC5leaRugxrCaMGWYUpLxUjZUMsHTOq6YNTWhrWqSO0rn6GI3d-2HzQgh6pULFrrkBIYxaCJEibHgVP6Pco4FwZXACT3fo2O9gkavvVsZ_6V_skpAtQOsH0Lw0GrrotnmlMJxnS6x3tail3pbi97WorHQqZYkJb-kP9P_FF3tRJCy_HTgdbAOeguN86kB3QzuL_k3ZA-lGw |
CitedBy_id | crossref_primary_10_3390_jof9060684 crossref_primary_10_1016_j_jenvman_2024_123832 crossref_primary_10_1080_00380768_2023_2199777 crossref_primary_10_1016_j_jenvman_2022_116346 crossref_primary_10_1128_msystems_01107_21 crossref_primary_10_1016_j_cej_2023_143648 crossref_primary_10_1007_s11104_022_05670_4 crossref_primary_10_1016_j_geoderma_2022_116076 crossref_primary_10_1007_s11104_024_06660_4 crossref_primary_10_1016_j_ecofro_2025_01_015 crossref_primary_10_1007_s10533_025_01210_1 crossref_primary_10_1016_j_catena_2024_108226 crossref_primary_10_1111_nph_17906 crossref_primary_10_1111_pce_14951 crossref_primary_10_3390_plants12081592 crossref_primary_10_1007_s10653_024_02238_2 crossref_primary_10_1016_j_ecolind_2025_113341 crossref_primary_10_1111_1365_2435_14178 crossref_primary_10_1007_s11104_021_05132_3 crossref_primary_10_1007_s42729_025_02322_1 crossref_primary_10_1109_TGRS_2024_3511118 crossref_primary_10_1016_j_envres_2024_120030 crossref_primary_10_1016_j_ijbiomac_2023_123760 crossref_primary_10_1111_nph_19078 crossref_primary_10_1016_j_agee_2023_108553 crossref_primary_10_3389_fpls_2024_1346729 crossref_primary_10_1007_s11104_022_05347_y crossref_primary_10_1016_j_gecco_2024_e02863 crossref_primary_10_1016_j_scitotenv_2022_157430 crossref_primary_10_1016_j_ijbiomac_2023_124569 crossref_primary_10_1007_s11427_024_2876_0 crossref_primary_10_1016_j_agee_2024_109456 crossref_primary_10_1007_s11368_023_03639_z crossref_primary_10_1016_j_scitotenv_2022_155855 crossref_primary_10_1016_j_scitotenv_2024_171269 crossref_primary_10_2139_ssrn_3990653 crossref_primary_10_1016_j_agee_2022_108281 crossref_primary_10_1007_s11104_022_05343_2 crossref_primary_10_1007_s11104_025_07238_4 crossref_primary_10_1016_j_geoderma_2023_116336 crossref_primary_10_1016_j_still_2022_105492 crossref_primary_10_1016_j_geoderma_2025_117188 crossref_primary_10_1016_j_scitotenv_2024_170294 crossref_primary_10_1016_j_scienta_2024_113398 crossref_primary_10_1016_j_jenvman_2024_122925 crossref_primary_10_1111_1365_2435_70023 crossref_primary_10_1111_1365_2435_14193 crossref_primary_10_3390_agronomy14020389 crossref_primary_10_3390_land13101608 crossref_primary_10_1111_gcb_16685 crossref_primary_10_1016_j_tree_2021_10_006 crossref_primary_10_1002_adfm_202410544 crossref_primary_10_1007_s11104_024_06717_4 crossref_primary_10_1016_j_envexpbot_2024_105726 crossref_primary_10_1016_j_catena_2022_106808 crossref_primary_10_3390_toxics12100692 crossref_primary_10_1016_j_catena_2022_106809 crossref_primary_10_1080_10549811_2022_2150219 crossref_primary_10_1111_nph_20166 crossref_primary_10_1016_j_rhisph_2022_100610 crossref_primary_10_3389_fmicb_2023_1131836 crossref_primary_10_1007_s00425_024_04556_2 crossref_primary_10_1016_j_ejsobi_2024_103684 crossref_primary_10_1016_j_still_2024_106436 crossref_primary_10_1016_j_scienta_2023_112573 crossref_primary_10_3390_su15097584 crossref_primary_10_3389_fpls_2023_1089380 crossref_primary_10_1016_j_jia_2023_09_013 crossref_primary_10_1093_hr_uhae267 crossref_primary_10_1007_s11104_022_05487_1 crossref_primary_10_1007_s11427_024_2683_y crossref_primary_10_1016_j_scitotenv_2022_157456 crossref_primary_10_3390_f14091895 crossref_primary_10_1016_j_jenvman_2023_118529 crossref_primary_10_1111_pce_15472 crossref_primary_10_1016_j_jenvman_2023_118807 crossref_primary_10_1111_gcb_17486 crossref_primary_10_1111_sum_12957 crossref_primary_10_2139_ssrn_4111901 crossref_primary_10_1016_j_apsoil_2022_104594 crossref_primary_10_3389_fmicb_2024_1407760 crossref_primary_10_1111_1365_2745_14118 crossref_primary_10_1007_s00248_023_02258_y crossref_primary_10_1016_j_envres_2025_121320 crossref_primary_10_3389_fpls_2023_1225907 crossref_primary_10_1016_j_catena_2024_108020 crossref_primary_10_1007_s11104_022_05436_y crossref_primary_10_1016_j_tree_2021_10_013 crossref_primary_10_1016_j_plaphy_2025_109593 crossref_primary_10_1016_j_stress_2023_100341 crossref_primary_10_1016_j_rsci_2023_04_007 crossref_primary_10_1016_j_soilbio_2022_108722 crossref_primary_10_1016_j_envpol_2023_121295 crossref_primary_10_1016_j_geoderma_2023_116381 crossref_primary_10_1016_j_jenvman_2023_119121 crossref_primary_10_1038_s41598_024_61621_2 crossref_primary_10_1016_j_soilbio_2023_109039 crossref_primary_10_1016_j_catena_2023_107341 crossref_primary_10_1111_nph_18907 crossref_primary_10_1016_j_soilbio_2025_109797 crossref_primary_10_3390_f15020328 crossref_primary_10_1016_j_scitotenv_2024_171767 crossref_primary_10_1007_s11104_024_07188_3 crossref_primary_10_1016_j_rhisph_2023_100806 crossref_primary_10_1007_s10533_023_01019_w crossref_primary_10_1126_sciadv_add4468 crossref_primary_10_1111_gcb_16765 crossref_primary_10_1016_j_scitotenv_2024_175388 crossref_primary_10_3389_fpls_2022_924154 crossref_primary_10_1016_j_indcrop_2025_120687 crossref_primary_10_3390_d17030157 crossref_primary_10_1016_j_fecs_2023_100111 crossref_primary_10_1007_s11104_024_06848_8 crossref_primary_10_1007_s11104_022_05784_9 crossref_primary_10_1016_j_catena_2023_107274 crossref_primary_10_1016_j_foreco_2022_120722 crossref_primary_10_1080_00103624_2025_2458153 crossref_primary_10_12677_AEP_2022_126146 crossref_primary_10_3390_land11071001 crossref_primary_10_1002_ldr_5099 crossref_primary_10_1016_j_ecolind_2023_110017 crossref_primary_10_1016_j_fecs_2024_100241 crossref_primary_10_1007_s11104_023_06252_8 crossref_primary_10_1016_j_jenvman_2023_119941 crossref_primary_10_1029_2023JG007861 crossref_primary_10_3389_fpls_2021_759929 crossref_primary_10_7717_peerj_14271 crossref_primary_10_3390_f15030416 crossref_primary_10_1002_jeq2_20561 crossref_primary_10_3390_plants13010004 crossref_primary_10_1016_j_scitotenv_2022_159033 crossref_primary_10_1021_acs_jafc_4c06927 crossref_primary_10_1007_s11104_023_06136_x crossref_primary_10_1021_acs_jafc_3c04637 crossref_primary_10_1007_s11104_022_05564_5 crossref_primary_10_1016_j_scitotenv_2023_167630 crossref_primary_10_1016_j_farsys_2024_100083 crossref_primary_10_1016_j_scitotenv_2023_166383 crossref_primary_10_3389_fpls_2023_1297706 crossref_primary_10_1111_sum_12911 crossref_primary_10_1186_s40494_024_01142_3 |
Cites_doi | 10.1016/j.soilbio.2018.02.016 10.1111/pce.13124 10.2136/sssaj2004.0347 10.1111/nph.16760 10.1111/gcb.15319 10.1111/j.1469-8137.2012.04285.x 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.1007/s00374-008-0334-y 10.1111/pce.13762 10.1038/35095041 10.1104/pp.124.3.949 10.1038/nature10386 10.1016/S1360-1385(03)00184-5 10.1126/science.1136674 10.1890/14-2228.1 10.1111/gcb.15071 10.1111/nph.16554 10.1016/j.soilbio.2014.04.033 10.1111/nph.13613 10.1007/s00203-020-01915-x 10.1007/s11104-019-04156-0 10.1111/nph.15361 10.1007/s11104-017-3214-0 10.1016/j.tplants.2020.04.013 10.1007/s11104-005-2569-9 10.1016/j.soilbio.2020.107764 10.1111/gcb.13125 10.1111/gcb.14482 10.1111/nph.15074 10.1006/anbo.2000.1135 10.1111/1462-2920.12081 10.1111/gcb.14851 10.1007/s00374-011-0653-2 10.1111/nph.15833 10.1016/S1360-1385(02)02241-0 10.1111/pce.12240 10.1007/s11104-017-3534-0 10.1038/nclimate2549 10.1007/s11104-013-1899-2 10.3389/fmicb.2013.00216 10.1038/nmicrobiol.2017.105 10.1111/nph.13966 10.1093/aob/mcz082 10.1016/j.soilbio.2015.02.019 10.1111/j.1469-8137.1990.tb00924.x 10.1104/pp.111.175414 10.1016/j.soilbio.2021.108189 10.1093/aob/mcs130 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-# 10.1007/s11104-018-03927-5 10.1016/j.soilbio.2008.10.034 10.1111/1365-2745.13415 10.1038/nplants.2015.109 10.1126/science.aba0196 10.1111/nph.15688 10.1016/S0734-9750(99)00014-2 10.1111/1365-2745.13519 10.1111/j.1469-8137.2006.01776.x 10.1126/science.1084269 10.1093/aob/mcx127 10.1016/j.soilbio.2019.107641 10.1016/j.soilbio.2008.02.017 10.1111/1462-2920.14289 10.1016/j.pbi.2018.05.012 10.1126/science.1224304 10.1111/nph.17082 10.1007/s11104-020-04774-z 10.1002/1522-2624(200204)165:2<141::AID-JPLN141>3.0.CO;2-X 10.1016/S0038-0717(02)00126-8 10.3732/ajb.1200474 10.1016/j.soilbio.2018.03.002 10.1016/j.soilbio.2020.108039 10.1007/s00572-018-0871-7 10.1038/nclimate2580 10.1038/nature16069 10.1111/nph.14976 10.1111/gcb.14781 10.1016/j.geoderma.2020.114784 10.1016/j.tplants.2014.10.007 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.tree.2021.06.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1872-8383 |
EndPage | 906 |
ExternalDocumentID | 34246498 10_1016_j_tree_2021_06_005 S0169534721001786 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 42X 457 4G. 53G 5VS 7-5 71M 85S 8P~ 9JM 9JN 9M8 AABNK AABVA AACTN AADFP AADPK AAEDT AAEDW AAGJA AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AATLK AAXLA AAXUO ABEFU ABFNM ABFRF ABFYP ABGRD ABGSF ABJNI ABLJU ABLST ABMAC ABOYX ABQEM ABTAH ABUDA ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFDAS AFKWA AFMIJ AFTJW AFXIZ AFYLN AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY9 M41 MO0 MVM N9A NEJ O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SEN SES SEW SPCBC SSA SSB SSN SSO SSU SSY SSZ T5K TN5 UBC UQL WH7 WUQ XIH XSW YR2 YV5 YYP ZCA ZCG ZKB ZXP ZY4 ~02 ~G- AAHBH AAMRU AATTM AAXKI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEGFY AEIPS AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-704b89101e8d90678d97cde3aa4b249a49974517d37465aff594cab23f9d18733 |
IEDL.DBID | .~1 |
ISSN | 0169-5347 1872-8383 |
IngestDate | Thu Jul 10 23:32:37 EDT 2025 Thu Jul 10 22:56:11 EDT 2025 Thu Apr 03 07:03:24 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Tue Jul 01 01:56:38 EDT 2025 Fri Feb 23 02:40:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | priming phosphorus acquisition nitrogen mineralisation phosphorus utilisation soil organic matter decomposition |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-704b89101e8d90678d97cde3aa4b249a49974517d37465aff594cab23f9d18733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 34246498 |
PQID | 2550620860 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2661006537 proquest_miscellaneous_2550620860 pubmed_primary_34246498 crossref_citationtrail_10_1016_j_tree_2021_06_005 crossref_primary_10_1016_j_tree_2021_06_005 elsevier_sciencedirect_doi_10_1016_j_tree_2021_06_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in ecology & evolution (Amsterdam) |
PublicationTitleAlternate | Trends Ecol Evol |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yuan (bb0100) 2018; 121 Li (bb0025) 2016; 22 Zhu, Miller (bb0245) 2003; 8 Schmidt (bb0045) 2011; 478 Yuan, Chen (bb0030) 2015; 5 Cesco (bb0150) 2012; 48 Liang (bb0315) 2019; 25 Tian (bb0050) 2020; 108 Lambers (bb0075) 2015; 20 Parihar (bb0175) 2020; 202 Neumann, Martinoia (bb0380) 2002; 7 Liang (bb0310) 2017; 2 Poirier (bb0265) 2018; 120 Nuccio (bb0210) 2013; 15 Bago (bb0185) 2000; 124 Zhang (bb0220) 2019; 29 Xu (bb0105) 2019; 124 Luo (bb0235) 2020; 144 Lambers, Oliveira (bb0005) 2019 Sokol (bb0255) 2019; 221 Jiang (bb0335) 2019; 222 Kidd (bb0385) 2018; 424 Oldroyd, Leyser (bb0010) 2020; 368 Peng (bb0035) 2019; 436 Zhang (bb0225) 2018; 20 Lambers (bb0390) 2012; 196 Cao (bb0295) 2021; 383 Liu (bb0340) 2020; 151 Blagodatskaya, Kuzyakov (bb0405) 2008; 45 Smith, Read (bb0160) 2008 Cong (bb0365) 2020; 25 Wen (bb0275) 2017; 416 Galloway (bb0015) 2008; 320 Lambers (bb0055) 2013; 100 Six (bb0330) 2006; 70 Liang (bb0020) 2020; 26 Jobbágy, Jackson (bb0040) 2000; 10 Sokol (bb0300) 2019; 25 Oburger (bb0325) 2009; 41 Zhu (bb0320) 2020; 26 Lehmann, Kleber (bb0130) 2015; 528 Hodge (bb0205) 2001; 413 Yin (bb0350) 2018; 218 Lehmann (bb0250) 2017 Kuzyakov (bb0410) 2002; 165 Zhou (bb0120) 2020; 43 Neumann (bb0060) 2000; 85 Holz (bb0110) 2018; 121 Lynch (bb0370) 2011; 156 Clarholm (bb0070) 2015; 84 Wang (bb0090) 2021; 458 Zhang (bb0280) 2016; 209 Juszczuk (bb0140) 2004; 267 Joshi (bb0155) 2021; 459 Dijkstra (bb0355) 2021; 230 Wang (bb0345) 2016; 211 Cheng (bb0200) 2012; 337 Pang (bb0360) 2018; 45 Hayes (bb0395) 2018; 41 Dijkstra (bb0135) 2013; 4 Sulpice (bb0400) 2014; 37 Henneron (bb0095) 2020; 228 Keiluweit (bb0080) 2015; 5 Jakobsen, Rosendahl (bb0170) 1990; 115 Leifheit (bb0240) 2014; 374 Lambers (bb0290) 2015; 1 Zhu (bb0085) 2014; 76 Weisskopf (bb0065) 2006; 171 Angst (bb0305) 2021 Tomasi (bb0145) 2008; 40 Lambers (bb0375) 2012; 110 Kahle (bb0125) 2002; 165 McKay Fletcher (bb0115) 2020; 227 Johnson (bb0190) 2002; 34 Zhou (bb0230) 2020; 140 Thirkell (bb0180) 2020; 26 Wen (bb0285) 2019; 223 Luo (bb0260) 2015; 96 Tian (bb0270) 2021; 109 Brundrett, Tedersoo (bb0165) 2018; 220 Rodrı́guez, H. and Fraga, R. (bb0215) 1999; 17 Staddon (bb0195) 2003; 300 Johnson (10.1016/j.tree.2021.06.005_bb0190) 2002; 34 Zhang (10.1016/j.tree.2021.06.005_bb0220) 2019; 29 Kahle (10.1016/j.tree.2021.06.005_bb0125) 2002; 165 Luo (10.1016/j.tree.2021.06.005_bb0260) 2015; 96 Sokol (10.1016/j.tree.2021.06.005_bb0300) 2019; 25 Hodge (10.1016/j.tree.2021.06.005_bb0205) 2001; 413 Pang (10.1016/j.tree.2021.06.005_bb0360) 2018; 45 Neumann (10.1016/j.tree.2021.06.005_bb0060) 2000; 85 Zhu (10.1016/j.tree.2021.06.005_bb0320) 2020; 26 Cong (10.1016/j.tree.2021.06.005_bb0365) 2020; 25 Lynch (10.1016/j.tree.2021.06.005_bb0370) 2011; 156 Lambers (10.1016/j.tree.2021.06.005_bb0290) 2015; 1 Keiluweit (10.1016/j.tree.2021.06.005_bb0080) 2015; 5 Galloway (10.1016/j.tree.2021.06.005_bb0015) 2008; 320 Jakobsen (10.1016/j.tree.2021.06.005_bb0170) 1990; 115 Hayes (10.1016/j.tree.2021.06.005_bb0395) 2018; 41 Wen (10.1016/j.tree.2021.06.005_bb0275) 2017; 416 Blagodatskaya (10.1016/j.tree.2021.06.005_bb0405) 2008; 45 Henneron (10.1016/j.tree.2021.06.005_bb0095) 2020; 228 Luo (10.1016/j.tree.2021.06.005_bb0235) 2020; 144 Sulpice (10.1016/j.tree.2021.06.005_bb0400) 2014; 37 Wen (10.1016/j.tree.2021.06.005_bb0285) 2019; 223 Cao (10.1016/j.tree.2021.06.005_bb0295) 2021; 383 Lehmann (10.1016/j.tree.2021.06.005_bb0250) 2017 Liang (10.1016/j.tree.2021.06.005_bb0020) 2020; 26 Leifheit (10.1016/j.tree.2021.06.005_bb0240) 2014; 374 Peng (10.1016/j.tree.2021.06.005_bb0035) 2019; 436 Jobbágy (10.1016/j.tree.2021.06.005_bb0040) 2000; 10 Kuzyakov (10.1016/j.tree.2021.06.005_bb0410) 2002; 165 Oburger (10.1016/j.tree.2021.06.005_bb0325) 2009; 41 Six (10.1016/j.tree.2021.06.005_bb0330) 2006; 70 Lambers (10.1016/j.tree.2021.06.005_bb0075) 2015; 20 Wang (10.1016/j.tree.2021.06.005_bb0090) 2021; 458 Zhou (10.1016/j.tree.2021.06.005_bb0120) 2020; 43 Sokol (10.1016/j.tree.2021.06.005_bb0255) 2019; 221 Nuccio (10.1016/j.tree.2021.06.005_bb0210) 2013; 15 Schmidt (10.1016/j.tree.2021.06.005_bb0045) 2011; 478 Rodrı́guez, H. and Fraga, R. (10.1016/j.tree.2021.06.005_bb0215) 1999; 17 Tian (10.1016/j.tree.2021.06.005_bb0270) 2021; 109 Yuan (10.1016/j.tree.2021.06.005_bb0030) 2015; 5 Smith (10.1016/j.tree.2021.06.005_bb0160) 2008 Liang (10.1016/j.tree.2021.06.005_bb0310) 2017; 2 Lambers (10.1016/j.tree.2021.06.005_bb0375) 2012; 110 Cesco (10.1016/j.tree.2021.06.005_bb0150) 2012; 48 Kidd (10.1016/j.tree.2021.06.005_bb0385) 2018; 424 Bago (10.1016/j.tree.2021.06.005_bb0185) 2000; 124 Holz (10.1016/j.tree.2021.06.005_bb0110) 2018; 121 Juszczuk (10.1016/j.tree.2021.06.005_bb0140) 2004; 267 Liu (10.1016/j.tree.2021.06.005_bb0340) 2020; 151 Oldroyd (10.1016/j.tree.2021.06.005_bb0010) 2020; 368 Clarholm (10.1016/j.tree.2021.06.005_bb0070) 2015; 84 Yuan (10.1016/j.tree.2021.06.005_bb0100) 2018; 121 Tian (10.1016/j.tree.2021.06.005_bb0050) 2020; 108 Zhu (10.1016/j.tree.2021.06.005_bb0245) 2003; 8 Cheng (10.1016/j.tree.2021.06.005_bb0200) 2012; 337 Xu (10.1016/j.tree.2021.06.005_bb0105) 2019; 124 Wang (10.1016/j.tree.2021.06.005_bb0345) 2016; 211 Zhang (10.1016/j.tree.2021.06.005_bb0280) 2016; 209 Zhou (10.1016/j.tree.2021.06.005_bb0230) 2020; 140 Dijkstra (10.1016/j.tree.2021.06.005_bb0135) 2013; 4 Lehmann (10.1016/j.tree.2021.06.005_bb0130) 2015; 528 Thirkell (10.1016/j.tree.2021.06.005_bb0180) 2020; 26 Lambers (10.1016/j.tree.2021.06.005_bb0390) 2012; 196 McKay Fletcher (10.1016/j.tree.2021.06.005_bb0115) 2020; 227 Weisskopf (10.1016/j.tree.2021.06.005_bb0065) 2006; 171 Lambers (10.1016/j.tree.2021.06.005_bb0005) 2019 Zhu (10.1016/j.tree.2021.06.005_bb0085) 2014; 76 Jiang (10.1016/j.tree.2021.06.005_bb0335) 2019; 222 Tomasi (10.1016/j.tree.2021.06.005_bb0145) 2008; 40 Parihar (10.1016/j.tree.2021.06.005_bb0175) 2020; 202 Liang (10.1016/j.tree.2021.06.005_bb0315) 2019; 25 Staddon (10.1016/j.tree.2021.06.005_bb0195) 2003; 300 Angst (10.1016/j.tree.2021.06.005_bb0305) 2021 Zhang (10.1016/j.tree.2021.06.005_bb0225) 2018; 20 Brundrett (10.1016/j.tree.2021.06.005_bb0165) 2018; 220 Lambers (10.1016/j.tree.2021.06.005_bb0055) 2013; 100 Poirier (10.1016/j.tree.2021.06.005_bb0265) 2018; 120 Yin (10.1016/j.tree.2021.06.005_bb0350) 2018; 218 Li (10.1016/j.tree.2021.06.005_bb0025) 2016; 22 Neumann (10.1016/j.tree.2021.06.005_bb0380) 2002; 7 Joshi (10.1016/j.tree.2021.06.005_bb0155) 2021; 459 Dijkstra (10.1016/j.tree.2021.06.005_bb0355) 2021; 230 34740444 - Trends Ecol Evol. 2022 Jan;37(1):12-13 |
References_xml | – volume: 2 start-page: 17105 year: 2017 ident: bb0310 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. – volume: 171 start-page: 657 year: 2006 end-page: 668 ident: bb0065 article-title: Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage publication-title: New Phytol. – volume: 124 start-page: 1033 year: 2019 end-page: 1042 ident: bb0105 article-title: Rhizosphere priming of two near-isogenic wheat lines varying in citrate efflux under different levels of phosphorus supply publication-title: Ann. Bot. – volume: 222 start-page: 1223 year: 2019 end-page: 1229 ident: bb0335 article-title: Towards a more physiological representation of vegetation phosphorus processes in land surface models publication-title: New Phytol. – volume: 211 start-page: 864 year: 2016 end-page: 873 ident: bb0345 article-title: Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation publication-title: New Phytol. – volume: 26 start-page: 3585 year: 2020 end-page: 3600 ident: bb0020 article-title: Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis publication-title: Glob. Chang. Biol. – volume: 218 start-page: 1036 year: 2018 end-page: 1048 ident: bb0350 article-title: Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition publication-title: New Phytol. – volume: 8 start-page: 407 year: 2003 end-page: 409 ident: bb0245 article-title: Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems publication-title: Trends Plant Sci. – volume: 25 start-page: 12 year: 2019 end-page: 24 ident: bb0300 article-title: Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry publication-title: Glob. Chang. Biol. – volume: 416 start-page: 377 year: 2017 end-page: 389 ident: bb0275 article-title: Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation publication-title: Plant Soil – volume: 165 start-page: 382 year: 2002 end-page: 396 ident: bb0410 article-title: Review: factors affecting rhizosphere priming effects publication-title: J. Plant Nutr. Soil Sci. – volume: 165 start-page: 141 year: 2002 end-page: 149 ident: bb0125 article-title: Carbon storage in loess derived surface soils from Central Germany: influence of mineral phase variables publication-title: J. Plant Nutr. Soil Sci. – volume: 221 start-page: 233 year: 2019 end-page: 246 ident: bb0255 article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon publication-title: New Phytol. – start-page: 108189 year: 2021 ident: bb0305 article-title: Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter publication-title: Soil Biol. Biochem. – volume: 4 start-page: 216 year: 2013 ident: bb0135 article-title: Rhizosphere priming: a nutrient perspective publication-title: Front. Microbiol. – volume: 48 start-page: 123 year: 2012 end-page: 149 ident: bb0150 article-title: Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review publication-title: Biol. Fertil. Soils – volume: 368 year: 2020 ident: bb0010 article-title: A plant’s diet, surviving in a variable nutrient environment publication-title: Science – volume: 10 start-page: 423 year: 2000 end-page: 436 ident: bb0040 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. – volume: 424 start-page: 389 year: 2018 end-page: 403 ident: bb0385 article-title: The carboxylate composition of rhizosheath and root exudates from twelve species of grassland and crop legumes with special reference to the occurrence of citramalate publication-title: Plant Soil – volume: 267 start-page: 41 year: 2004 end-page: 49 ident: bb0140 article-title: Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants ( publication-title: Plant Soil – volume: 144 start-page: 107764 year: 2020 ident: bb0235 article-title: Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls publication-title: Soil Biol. Biochem. – year: 2019 ident: bb0005 article-title: Plant Physiological Ecology – volume: 25 start-page: 3578 year: 2019 end-page: 3590 ident: bb0315 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Glob. Chang. Biol. – volume: 1 start-page: 1 year: 2015 end-page: 9 ident: bb0290 article-title: Phosphorus nutrition in Proteaceae and beyond publication-title: Nat. Plants – volume: 7 start-page: 162 year: 2002 end-page: 167 ident: bb0380 article-title: Cluster roots – an underground adaptation for survival in extreme environments publication-title: Trends Plant Sci. – volume: 209 start-page: 823 year: 2016 end-page: 831 ident: bb0280 article-title: Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize publication-title: New Phytol. – volume: 202 start-page: 1581 year: 2020 end-page: 1596 ident: bb0175 article-title: The potential of arbuscular mycorrhizal fungi in C cycling: a review publication-title: Arch. Microbiol. – volume: 458 start-page: 277 year: 2021 end-page: 289 ident: bb0090 article-title: Differences in root exudate inputs and rhizosphere effects on soil N transformation between deciduous and evergreen trees publication-title: Plant Soil – volume: 34 start-page: 1521 year: 2002 end-page: 1524 ident: bb0190 article-title: Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of publication-title: Soil Biol. Biochem. – volume: 20 start-page: 2639 year: 2018 end-page: 2651 ident: bb0225 article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions publication-title: Environ. Microbiol. – volume: 228 start-page: 1269 year: 2020 end-page: 1282 ident: bb0095 article-title: Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies publication-title: New Phytol. – volume: 17 start-page: 319 year: 1999 end-page: 339 ident: bb0215 article-title: Phosphate solubilizing bacteria and their role in plant growth promotion publication-title: Biotechnol. Adv. – volume: 156 start-page: 1041 year: 2011 end-page: 1049 ident: bb0370 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops publication-title: Plant Physiol. – volume: 37 start-page: 1276 year: 2014 end-page: 1298 ident: bb0400 article-title: Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species publication-title: Plant Cell Environ. – volume: 383 start-page: 114784 year: 2021 ident: bb0295 article-title: Organic-C quality as a key driver of microbial nitrogen immobilization in soil: a meta-analysis publication-title: Geoderma – volume: 76 start-page: 183 year: 2014 end-page: 192 ident: bb0085 article-title: Rhizosphere priming effects on soil carbon and nitrogen mineralization publication-title: Soil Biol. Biochem. – volume: 227 start-page: 376 year: 2020 end-page: 391 ident: bb0115 article-title: Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake publication-title: New Phytol. – volume: 25 start-page: 967 year: 2020 end-page: 975 ident: bb0365 article-title: Tightening the phosphorus cycle through phosphorus-efficient crop genotypes publication-title: Trends Plant Sci. – volume: 5 start-page: 465 year: 2015 end-page: 469 ident: bb0030 article-title: Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes publication-title: Nat. Clim. Chang. – volume: 100 start-page: 263 year: 2013 end-page: 288 ident: bb0055 article-title: How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupins ( publication-title: Am. J. Bot. – volume: 121 start-page: 16 year: 2018 end-page: 23 ident: bb0100 article-title: Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots publication-title: Soil Biol. Biochem. – volume: 300 start-page: 1138 year: 2003 end-page: 1140 ident: bb0195 article-title: Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of publication-title: Science – volume: 337 start-page: 1084 year: 2012 end-page: 1087 ident: bb0200 article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO publication-title: Science – volume: 26 start-page: 6032 year: 2020 end-page: 6039 ident: bb0320 article-title: The soil microbial carbon pump: from conceptual insights to empirical assessments publication-title: Glob. Chang. Biol. – volume: 84 start-page: 168 year: 2015 end-page: 176 ident: bb0070 article-title: Organic acid induced release of nutrients from metal-stabilized soil organic matter – the unbutton model publication-title: Soil Biol. Biochem. – volume: 413 start-page: 297 year: 2001 end-page: 299 ident: bb0205 article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material publication-title: Nature – volume: 196 start-page: 1098 year: 2012 end-page: 1108 ident: bb0390 article-title: Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus use efficiency publication-title: New Phytol. – volume: 124 start-page: 949 year: 2000 ident: bb0185 article-title: Carbon metabolism and transport in arbuscular mycorrhizas publication-title: Plant Physiol. – volume: 20 start-page: 83 year: 2015 end-page: 90 ident: bb0075 article-title: Leaf manganese accumulation and phosphorus-acquisition efficiency publication-title: Trends Plant Sci. – volume: 121 start-page: 61 year: 2018 end-page: 69 ident: bb0110 article-title: Root hairs increase rhizosphere extension and carbon input to soil publication-title: Ann. Bot. – volume: 528 start-page: 60 year: 2015 end-page: 68 ident: bb0130 article-title: The contentious nature of soil organic matter publication-title: Nature – volume: 45 start-page: 248 year: 2018 end-page: 254 ident: bb0360 article-title: Phosphorus acquisition and utilisation in crop legumes under global change publication-title: Curr. Opin. Plant Biol. – volume: 5 start-page: 588 year: 2015 end-page: 595 ident: bb0080 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nat. Clim. Chang. – volume: 459 start-page: 423 year: 2021 end-page: 440 ident: bb0155 article-title: Low soil phosphorus availability triggers maize growth stage specific rhizosphere processes leading to mineralization of organic P publication-title: Plant Soil – volume: 320 start-page: 889 year: 2008 ident: bb0015 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science – volume: 120 start-page: 246 year: 2018 end-page: 259 ident: bb0265 article-title: The root of the matter: linking root traits and soil organic matter stabilization processes publication-title: Soil Biol. Biochem. – volume: 15 start-page: 1870 year: 2013 end-page: 1881 ident: bb0210 article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition publication-title: Environ. Microbiol. – volume: 109 start-page: 927 year: 2021 end-page: 938 ident: bb0270 article-title: Processes at the soil–root interface determine the different responses of nutrient limitation and metal toxicity in forbs and grasses to nitrogen enrichment publication-title: J. Ecol. – volume: 374 start-page: 523 year: 2014 end-page: 537 ident: bb0240 article-title: Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation – a meta-analysis publication-title: Plant Soil – start-page: 241 year: 2017 end-page: 262 ident: bb0250 article-title: Mycorrhizas and soil aggregation publication-title: Mycorrhizal Mediation of Soil – volume: 96 start-page: 2806 year: 2015 end-page: 2813 ident: bb0260 article-title: Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems publication-title: Ecology – volume: 478 start-page: 49 year: 2011 end-page: 56 ident: bb0045 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 29 start-page: 69 year: 2019 end-page: 75 ident: bb0220 article-title: The arbuscular mycorrhizal fungus publication-title: Mycorrhiza – volume: 230 start-page: 60 year: 2021 end-page: 65 ident: bb0355 article-title: Root effects on soil organic carbon: a double-edged sword publication-title: New Phytol. – volume: 151 start-page: 108039 year: 2020 ident: bb0340 article-title: Modeling the dynamics of protected and primed organic carbon in soil and aggregates under constant soil moisture following litter incorporation publication-title: Soil Biol. Biochem. – volume: 41 start-page: 605 year: 2018 end-page: 619 ident: bb0395 article-title: Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency publication-title: Plant Cell Environ. – volume: 41 start-page: 449 year: 2009 end-page: 457 ident: bb0325 article-title: Interactive effects of organic acids in the rhizosphere publication-title: Soil Biol. Biochem. – volume: 220 start-page: 1108 year: 2018 end-page: 1115 ident: bb0165 article-title: Evolutionary history of mycorrhizal symbioses and global host plant diversity publication-title: New Phytol. – volume: 108 start-page: 1874 year: 2020 end-page: 1887 ident: bb0050 article-title: Below-ground-mediated and phase-dependent processes drive nitrogen-evoked community changes in grasslands publication-title: J. Ecol. – volume: 40 start-page: 1971 year: 2008 end-page: 1974 ident: bb0145 article-title: Flavonoids of white lupin roots participate in phosphorus mobilization from soil publication-title: Soil Biol. Biochem. – volume: 22 start-page: 934 year: 2016 end-page: 943 ident: bb0025 article-title: Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis publication-title: Glob. Chang. Biol. – volume: 45 start-page: 115 year: 2008 end-page: 131 ident: bb0405 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review publication-title: Biol. Fertil. Soils – volume: 436 start-page: 245 year: 2019 end-page: 252 ident: bb0035 article-title: Effects of nitrogen-phosphorus imbalance on plant biomass production: a global perspective publication-title: Plant Soil – volume: 43 start-page: 1691 year: 2020 end-page: 1706 ident: bb0120 article-title: LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation publication-title: Plant Cell Environ. – volume: 115 start-page: 77 year: 1990 end-page: 83 ident: bb0170 article-title: Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants publication-title: New Phytol. – volume: 85 start-page: 909 year: 2000 end-page: 919 ident: bb0060 article-title: Physiological aspects of cluster root function and development in phosphorus-deficient white lupin ( publication-title: Ann. Bot. – volume: 70 start-page: 555 year: 2006 end-page: 569 ident: bb0330 article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems publication-title: Soil Sci. Soc. Am. J. – volume: 26 start-page: 1725 year: 2020 end-page: 1738 ident: bb0180 article-title: Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration publication-title: Glob. Chang. Biol. – volume: 223 start-page: 882 year: 2019 end-page: 895 ident: bb0285 article-title: Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species publication-title: New Phytol. – volume: 110 start-page: 329 year: 2012 end-page: 348 ident: bb0375 article-title: Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems publication-title: Ann. Bot. – volume: 140 start-page: 107641 year: 2020 ident: bb0230 article-title: Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter publication-title: Soil Biol. Biochem. – year: 2008 ident: bb0160 article-title: Mycorrhizal Symbiosis – volume: 120 start-page: 246 year: 2018 ident: 10.1016/j.tree.2021.06.005_bb0265 article-title: The root of the matter: linking root traits and soil organic matter stabilization processes publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.02.016 – volume: 41 start-page: 605 year: 2018 ident: 10.1016/j.tree.2021.06.005_bb0395 article-title: Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency publication-title: Plant Cell Environ. doi: 10.1111/pce.13124 – volume: 70 start-page: 555 year: 2006 ident: 10.1016/j.tree.2021.06.005_bb0330 article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2004.0347 – volume: 228 start-page: 1269 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0095 article-title: Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies publication-title: New Phytol. doi: 10.1111/nph.16760 – volume: 26 start-page: 6032 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0320 article-title: The soil microbial carbon pump: from conceptual insights to empirical assessments publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15319 – volume: 196 start-page: 1098 year: 2012 ident: 10.1016/j.tree.2021.06.005_bb0390 article-title: Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus use efficiency publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04285.x – volume: 10 start-page: 423 year: 2000 ident: 10.1016/j.tree.2021.06.005_bb0040 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – volume: 45 start-page: 115 year: 2008 ident: 10.1016/j.tree.2021.06.005_bb0405 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-008-0334-y – volume: 43 start-page: 1691 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0120 article-title: LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation publication-title: Plant Cell Environ. doi: 10.1111/pce.13762 – volume: 413 start-page: 297 year: 2001 ident: 10.1016/j.tree.2021.06.005_bb0205 article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material publication-title: Nature doi: 10.1038/35095041 – volume: 124 start-page: 949 year: 2000 ident: 10.1016/j.tree.2021.06.005_bb0185 article-title: Carbon metabolism and transport in arbuscular mycorrhizas publication-title: Plant Physiol. doi: 10.1104/pp.124.3.949 – volume: 478 start-page: 49 year: 2011 ident: 10.1016/j.tree.2021.06.005_bb0045 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature doi: 10.1038/nature10386 – volume: 8 start-page: 407 year: 2003 ident: 10.1016/j.tree.2021.06.005_bb0245 article-title: Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(03)00184-5 – volume: 320 start-page: 889 year: 2008 ident: 10.1016/j.tree.2021.06.005_bb0015 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science doi: 10.1126/science.1136674 – volume: 96 start-page: 2806 year: 2015 ident: 10.1016/j.tree.2021.06.005_bb0260 article-title: Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems publication-title: Ecology doi: 10.1890/14-2228.1 – volume: 26 start-page: 3585 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0020 article-title: Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15071 – volume: 227 start-page: 376 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0115 article-title: Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake publication-title: New Phytol. doi: 10.1111/nph.16554 – volume: 76 start-page: 183 year: 2014 ident: 10.1016/j.tree.2021.06.005_bb0085 article-title: Rhizosphere priming effects on soil carbon and nitrogen mineralization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.04.033 – volume: 209 start-page: 823 year: 2016 ident: 10.1016/j.tree.2021.06.005_bb0280 article-title: Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize publication-title: New Phytol. doi: 10.1111/nph.13613 – volume: 202 start-page: 1581 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0175 article-title: The potential of arbuscular mycorrhizal fungi in C cycling: a review publication-title: Arch. Microbiol. doi: 10.1007/s00203-020-01915-x – volume: 458 start-page: 277 year: 2021 ident: 10.1016/j.tree.2021.06.005_bb0090 article-title: Differences in root exudate inputs and rhizosphere effects on soil N transformation between deciduous and evergreen trees publication-title: Plant Soil doi: 10.1007/s11104-019-04156-0 – volume: 221 start-page: 233 year: 2019 ident: 10.1016/j.tree.2021.06.005_bb0255 article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon publication-title: New Phytol. doi: 10.1111/nph.15361 – volume: 416 start-page: 377 year: 2017 ident: 10.1016/j.tree.2021.06.005_bb0275 article-title: Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation publication-title: Plant Soil doi: 10.1007/s11104-017-3214-0 – volume: 25 start-page: 967 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0365 article-title: Tightening the phosphorus cycle through phosphorus-efficient crop genotypes publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.04.013 – volume: 267 start-page: 41 year: 2004 ident: 10.1016/j.tree.2021.06.005_bb0140 article-title: Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.) publication-title: Plant Soil doi: 10.1007/s11104-005-2569-9 – volume: 144 start-page: 107764 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0235 article-title: Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107764 – volume: 22 start-page: 934 year: 2016 ident: 10.1016/j.tree.2021.06.005_bb0025 article-title: Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13125 – volume: 25 start-page: 12 year: 2019 ident: 10.1016/j.tree.2021.06.005_bb0300 article-title: Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14482 – volume: 218 start-page: 1036 year: 2018 ident: 10.1016/j.tree.2021.06.005_bb0350 article-title: Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition publication-title: New Phytol. doi: 10.1111/nph.15074 – volume: 85 start-page: 909 year: 2000 ident: 10.1016/j.tree.2021.06.005_bb0060 article-title: Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.) publication-title: Ann. Bot. doi: 10.1006/anbo.2000.1135 – volume: 15 start-page: 1870 year: 2013 ident: 10.1016/j.tree.2021.06.005_bb0210 article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12081 – volume: 26 start-page: 1725 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0180 article-title: Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14851 – volume: 48 start-page: 123 year: 2012 ident: 10.1016/j.tree.2021.06.005_bb0150 article-title: Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-011-0653-2 – volume: 223 start-page: 882 year: 2019 ident: 10.1016/j.tree.2021.06.005_bb0285 article-title: Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species publication-title: New Phytol. doi: 10.1111/nph.15833 – volume: 7 start-page: 162 year: 2002 ident: 10.1016/j.tree.2021.06.005_bb0380 article-title: Cluster roots – an underground adaptation for survival in extreme environments publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(02)02241-0 – volume: 37 start-page: 1276 year: 2014 ident: 10.1016/j.tree.2021.06.005_bb0400 article-title: Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species publication-title: Plant Cell Environ. doi: 10.1111/pce.12240 – volume: 424 start-page: 389 year: 2018 ident: 10.1016/j.tree.2021.06.005_bb0385 article-title: The carboxylate composition of rhizosheath and root exudates from twelve species of grassland and crop legumes with special reference to the occurrence of citramalate publication-title: Plant Soil doi: 10.1007/s11104-017-3534-0 – volume: 5 start-page: 465 year: 2015 ident: 10.1016/j.tree.2021.06.005_bb0030 article-title: Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2549 – volume: 374 start-page: 523 year: 2014 ident: 10.1016/j.tree.2021.06.005_bb0240 article-title: Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation – a meta-analysis publication-title: Plant Soil doi: 10.1007/s11104-013-1899-2 – volume: 4 start-page: 216 year: 2013 ident: 10.1016/j.tree.2021.06.005_bb0135 article-title: Rhizosphere priming: a nutrient perspective publication-title: Front. Microbiol. doi: 10.3389/fmicb.2013.00216 – volume: 2 start-page: 17105 year: 2017 ident: 10.1016/j.tree.2021.06.005_bb0310 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.105 – volume: 211 start-page: 864 year: 2016 ident: 10.1016/j.tree.2021.06.005_bb0345 article-title: Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation publication-title: New Phytol. doi: 10.1111/nph.13966 – volume: 124 start-page: 1033 year: 2019 ident: 10.1016/j.tree.2021.06.005_bb0105 article-title: Rhizosphere priming of two near-isogenic wheat lines varying in citrate efflux under different levels of phosphorus supply publication-title: Ann. Bot. doi: 10.1093/aob/mcz082 – volume: 84 start-page: 168 year: 2015 ident: 10.1016/j.tree.2021.06.005_bb0070 article-title: Organic acid induced release of nutrients from metal-stabilized soil organic matter – the unbutton model publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.02.019 – volume: 115 start-page: 77 year: 1990 ident: 10.1016/j.tree.2021.06.005_bb0170 article-title: Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.1990.tb00924.x – volume: 156 start-page: 1041 year: 2011 ident: 10.1016/j.tree.2021.06.005_bb0370 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops publication-title: Plant Physiol. doi: 10.1104/pp.111.175414 – start-page: 241 year: 2017 ident: 10.1016/j.tree.2021.06.005_bb0250 article-title: Mycorrhizas and soil aggregation – start-page: 108189 year: 2021 ident: 10.1016/j.tree.2021.06.005_bb0305 article-title: Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108189 – volume: 110 start-page: 329 year: 2012 ident: 10.1016/j.tree.2021.06.005_bb0375 article-title: Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems publication-title: Ann. Bot. doi: 10.1093/aob/mcs130 – volume: 165 start-page: 382 year: 2002 ident: 10.1016/j.tree.2021.06.005_bb0410 article-title: Review: factors affecting rhizosphere priming effects publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-# – volume: 436 start-page: 245 year: 2019 ident: 10.1016/j.tree.2021.06.005_bb0035 article-title: Effects of nitrogen-phosphorus imbalance on plant biomass production: a global perspective publication-title: Plant Soil doi: 10.1007/s11104-018-03927-5 – year: 2008 ident: 10.1016/j.tree.2021.06.005_bb0160 – volume: 41 start-page: 449 year: 2009 ident: 10.1016/j.tree.2021.06.005_bb0325 article-title: Interactive effects of organic acids in the rhizosphere publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.034 – volume: 108 start-page: 1874 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0050 article-title: Below-ground-mediated and phase-dependent processes drive nitrogen-evoked community changes in grasslands publication-title: J. Ecol. doi: 10.1111/1365-2745.13415 – volume: 1 start-page: 1 year: 2015 ident: 10.1016/j.tree.2021.06.005_bb0290 article-title: Phosphorus nutrition in Proteaceae and beyond publication-title: Nat. Plants doi: 10.1038/nplants.2015.109 – volume: 368 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0010 article-title: A plant’s diet, surviving in a variable nutrient environment publication-title: Science doi: 10.1126/science.aba0196 – volume: 222 start-page: 1223 year: 2019 ident: 10.1016/j.tree.2021.06.005_bb0335 article-title: Towards a more physiological representation of vegetation phosphorus processes in land surface models publication-title: New Phytol. doi: 10.1111/nph.15688 – volume: 17 start-page: 319 year: 1999 ident: 10.1016/j.tree.2021.06.005_bb0215 article-title: Phosphate solubilizing bacteria and their role in plant growth promotion publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(99)00014-2 – volume: 109 start-page: 927 year: 2021 ident: 10.1016/j.tree.2021.06.005_bb0270 article-title: Processes at the soil–root interface determine the different responses of nutrient limitation and metal toxicity in forbs and grasses to nitrogen enrichment publication-title: J. Ecol. doi: 10.1111/1365-2745.13519 – volume: 171 start-page: 657 year: 2006 ident: 10.1016/j.tree.2021.06.005_bb0065 article-title: Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01776.x – volume: 300 start-page: 1138 year: 2003 ident: 10.1016/j.tree.2021.06.005_bb0195 article-title: Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C publication-title: Science doi: 10.1126/science.1084269 – volume: 121 start-page: 61 year: 2018 ident: 10.1016/j.tree.2021.06.005_bb0110 article-title: Root hairs increase rhizosphere extension and carbon input to soil publication-title: Ann. Bot. doi: 10.1093/aob/mcx127 – volume: 140 start-page: 107641 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0230 article-title: Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107641 – volume: 40 start-page: 1971 year: 2008 ident: 10.1016/j.tree.2021.06.005_bb0145 article-title: Flavonoids of white lupin roots participate in phosphorus mobilization from soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.02.017 – volume: 20 start-page: 2639 year: 2018 ident: 10.1016/j.tree.2021.06.005_bb0225 article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14289 – year: 2019 ident: 10.1016/j.tree.2021.06.005_bb0005 – volume: 45 start-page: 248 year: 2018 ident: 10.1016/j.tree.2021.06.005_bb0360 article-title: Phosphorus acquisition and utilisation in crop legumes under global change publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2018.05.012 – volume: 337 start-page: 1084 year: 2012 ident: 10.1016/j.tree.2021.06.005_bb0200 article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2 publication-title: Science doi: 10.1126/science.1224304 – volume: 230 start-page: 60 year: 2021 ident: 10.1016/j.tree.2021.06.005_bb0355 article-title: Root effects on soil organic carbon: a double-edged sword publication-title: New Phytol. doi: 10.1111/nph.17082 – volume: 459 start-page: 423 year: 2021 ident: 10.1016/j.tree.2021.06.005_bb0155 article-title: Low soil phosphorus availability triggers maize growth stage specific rhizosphere processes leading to mineralization of organic P publication-title: Plant Soil doi: 10.1007/s11104-020-04774-z – volume: 165 start-page: 141 year: 2002 ident: 10.1016/j.tree.2021.06.005_bb0125 article-title: Carbon storage in loess derived surface soils from Central Germany: influence of mineral phase variables publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/1522-2624(200204)165:2<141::AID-JPLN141>3.0.CO;2-X – volume: 34 start-page: 1521 year: 2002 ident: 10.1016/j.tree.2021.06.005_bb0190 article-title: Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00126-8 – volume: 100 start-page: 263 year: 2013 ident: 10.1016/j.tree.2021.06.005_bb0055 article-title: How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupins (Lupinus, Fabaceae) publication-title: Am. J. Bot. doi: 10.3732/ajb.1200474 – volume: 121 start-page: 16 year: 2018 ident: 10.1016/j.tree.2021.06.005_bb0100 article-title: Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.03.002 – volume: 151 start-page: 108039 year: 2020 ident: 10.1016/j.tree.2021.06.005_bb0340 article-title: Modeling the dynamics of protected and primed organic carbon in soil and aggregates under constant soil moisture following litter incorporation publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.108039 – volume: 29 start-page: 69 year: 2019 ident: 10.1016/j.tree.2021.06.005_bb0220 article-title: The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 43194 induces the gene expression of citrate synthase in the tricarboxylic acid cycle of the phosphate-solubilizing bacterium Rahnella aquatilis HX2 publication-title: Mycorrhiza doi: 10.1007/s00572-018-0871-7 – volume: 5 start-page: 588 year: 2015 ident: 10.1016/j.tree.2021.06.005_bb0080 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2580 – volume: 528 start-page: 60 year: 2015 ident: 10.1016/j.tree.2021.06.005_bb0130 article-title: The contentious nature of soil organic matter publication-title: Nature doi: 10.1038/nature16069 – volume: 220 start-page: 1108 year: 2018 ident: 10.1016/j.tree.2021.06.005_bb0165 article-title: Evolutionary history of mycorrhizal symbioses and global host plant diversity publication-title: New Phytol. doi: 10.1111/nph.14976 – volume: 25 start-page: 3578 year: 2019 ident: 10.1016/j.tree.2021.06.005_bb0315 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14781 – volume: 383 start-page: 114784 year: 2021 ident: 10.1016/j.tree.2021.06.005_bb0295 article-title: Organic-C quality as a key driver of microbial nitrogen immobilization in soil: a meta-analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114784 – volume: 20 start-page: 83 year: 2015 ident: 10.1016/j.tree.2021.06.005_bb0075 article-title: Leaf manganese accumulation and phosphorus-acquisition efficiency publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.10.007 – reference: 34740444 - Trends Ecol Evol. 2022 Jan;37(1):12-13 |
SSID | ssj0000949 |
Score | 2.664015 |
SecondaryResourceType | review_article |
Snippet | Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 899 |
SubjectTerms | Carbon Ecosystem evolution mineralization Nitrogen nitrogen mineralisation Phosphorus phosphorus acquisition phosphorus utilisation priming rhizosphere Soil soil carbon Soil Microbiology soil organic matter soil organic matter decomposition |
Title | Plant phosphorus-acquisition and -use strategies affect soil carbon cycling |
URI | https://dx.doi.org/10.1016/j.tree.2021.06.005 https://www.ncbi.nlm.nih.gov/pubmed/34246498 https://www.proquest.com/docview/2550620860 https://www.proquest.com/docview/2661006537 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdBLSR9pt4-gQm9F3bU1ku1jCBu2Dc2lDeQm9Np2S_Bu1_Yhl_z2jh5OKCR76MEgm5ERo5E0g775hpCPwpSNtLJmvgbDQLqaaeMkW3IpnA6VzWOS2LdzubiAr5fico-cjLkwAVaZ9_60p8fdOn-ZZm1ON6vV9HvgEREcMISJNeYD7TZAFaz8880dzAPDlybxezcsSOfEmYTxChe_GCOWReTwDCXs7j-cHnI-4yF0ekCeZu-RHqcBPiN7vn1OHqd6ktfYmtvcOpzfJbBhh7yCuxfkLFQp6unm17rDZzt0TNs_wyoht6huHWVD52nXjxQSVEfEB-3Wqytq9dagmL0OCZU_X5KL0_mPkwXLBRWYBSF6Vs3A1OgfFL52TTimXFNZ57nWYDAM0xj9VCCKyvEKpMDfiwasNiVfNq6oK84PyX67bv1rQkttPV_6GecOwPvCmHJpNDdCOnwr6wkpRk0qm9nGQ9GLKzXCyn6roH0VtK8itk5MyKfbPpvEtbFTWowTpP6xGIWHwc5-H8bZVLiUwv2Ibv166BRGVzNZYow32yGD_kzk860m5FUyhduxcihBQlO_-c-RvSVPwluCCr4j-_128O_R5enNUbTpI_Lo-MvZ4vwvb8z_TQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxKuwPI0EJ2R241eSAwcEW23ZthdaqTfjV2BRlV02idBe-FP8Qcax0woJ9oDUQyQnsSVr7MzMF38zg9BLYWgprSyIL7ghXLqCaOMkqZgUTofK5n2Q2NGxnJ3yj2fibAf9GmJhAq0y6f6o03ttnZ6MkzTHq8Vi_CnkERGMA4Tpa8zLxKyc-80PwG3N24MPsMivKN2fnryfkVRagFguREvyCTcFWMrMF64MCtuVuXWeac0NABINOCDnIssdy7kUuqpEya02lFWly4o8_AUFvX-Ng7oIZRPe_LzklQBeKmNC8ZKE6aVInUgqCyfNAEpp1icNDTXz_m4N_-Xt9lZv_za6ldxV_C5K5A7a8fVddD0WsNxAa2pTa296GTEHA5LKaO6heSiL1OLV12UD17priLbfu0WkimFdO0y6xuOmHXJWYN1TTHCzXJxjq9cGutlNiOD8ch-dXomY99Buvaz9Q4Sptp5VfsKY49z7zBhaGc2MkA7uaDFC2SBJZVN681Bl41wNPLZvKkhfBemrnswnRuj1xZhVTO6xtbcYFkj9sUUVWJ-t414Mq6ng2w0HMrr2y65RAOcmkgKonGzpAw5Un0A4H6EHcStczJVxyiUvi0f_ObPn6Mbs5OhQHR4czx-jm-FN5Ck-QbvtuvNPwd9qzbN-f2P0-ao_qN97gDmG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+phosphorus-acquisition+and+-use+strategies+affect+soil+carbon+cycling&rft.jtitle=Trends+in+ecology+%26+evolution+%28Amsterdam%29&rft.au=Ding%2C+Wenli&rft.au=Cong%2C+Wen-Feng&rft.au=Lambers%2C+Hans&rft.date=2021-10-01&rft.issn=0169-5347&rft.volume=36&rft.issue=10&rft.spage=899&rft.epage=906&rft_id=info:doi/10.1016%2Fj.tree.2021.06.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tree_2021_06_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-5347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-5347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-5347&client=summon |