Plant phosphorus-acquisition and -use strategies affect soil carbon cycling

Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant‐soil systems. A comprehensive understanding of how plants with efficient P‐acquisition or ‐use...

Full description

Saved in:
Bibliographic Details
Published inTrends in ecology & evolution (Amsterdam) Vol. 36; no. 10; pp. 899 - 906
Main Authors Ding, Wenli, Cong, Wen-Feng, Lambers, Hans
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant‐soil systems. A comprehensive understanding of how plants with efficient P‐acquisition or ‐use strategies influence carbon (C) and N cycling remains elusive. We highlight how P‐acquisition/-use strategies, particularly the release of carboxylates into the rhizosphere, accelerate soil organic matter (SOM) decomposition and soil N mineralisation by destabilising aggregates and organic‐mineral associations. We advocate studying the effects of P-acquisition/-use strategies on SOM formation, directly or through microbial turnover. In response to low P availability, plants have evolved a variety of P‐acquisition/‐use strategies. These may affect N cycling by influencing SOM turnover.Two microbial strategies (N-mining and co-metabolism) have been proposed to explain microbially mediated priming effects. We suggest that priming should be explained from the perspective of the capacity of a plant to acquire or utilise P under low-P conditions.Efficient P‐acquisition/-use strategies may change N cycling by affecting SOM decomposition. For example, a highly efficient P-mobilising strategy, carboxylate release, may destabilise aggregates and organic‐mineral associations through chelation of metals (such as Fe, Al) and then accelerate SOM decomposition; flavonoids may work in a similar way.Efficient P‐acquisition/-use strategies may affect SOM formation directly or indirectly through microbial turnover.
AbstractList Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant-soil systems. A comprehensive understanding of how plants with efficient P-acquisition or -use strategies influence carbon (C) and N cycling remains elusive. We highlight how P-acquisition/-use strategies, particularly the release of carboxylates into the rhizosphere, accelerate soil organic matter (SOM) decomposition and soil N mineralisation by destabilising aggregates and organic-mineral associations. We advocate studying the effects of P-acquisition/-use strategies on SOM formation, directly or through microbial turnover.Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant-soil systems. A comprehensive understanding of how plants with efficient P-acquisition or -use strategies influence carbon (C) and N cycling remains elusive. We highlight how P-acquisition/-use strategies, particularly the release of carboxylates into the rhizosphere, accelerate soil organic matter (SOM) decomposition and soil N mineralisation by destabilising aggregates and organic-mineral associations. We advocate studying the effects of P-acquisition/-use strategies on SOM formation, directly or through microbial turnover.
Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant-soil systems. A comprehensive understanding of how plants with efficient P-acquisition or -use strategies influence carbon (C) and N cycling remains elusive. We highlight how P-acquisition/-use strategies, particularly the release of carboxylates into the rhizosphere, accelerate soil organic matter (SOM) decomposition and soil N mineralisation by destabilising aggregates and organic-mineral associations. We advocate studying the effects of P-acquisition/-use strategies on SOM formation, directly or through microbial turnover.
Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to P limitation which affect N cycling in plant‐soil systems. A comprehensive understanding of how plants with efficient P‐acquisition or ‐use strategies influence carbon (C) and N cycling remains elusive. We highlight how P‐acquisition/-use strategies, particularly the release of carboxylates into the rhizosphere, accelerate soil organic matter (SOM) decomposition and soil N mineralisation by destabilising aggregates and organic‐mineral associations. We advocate studying the effects of P-acquisition/-use strategies on SOM formation, directly or through microbial turnover. In response to low P availability, plants have evolved a variety of P‐acquisition/‐use strategies. These may affect N cycling by influencing SOM turnover.Two microbial strategies (N-mining and co-metabolism) have been proposed to explain microbially mediated priming effects. We suggest that priming should be explained from the perspective of the capacity of a plant to acquire or utilise P under low-P conditions.Efficient P‐acquisition/-use strategies may change N cycling by affecting SOM decomposition. For example, a highly efficient P-mobilising strategy, carboxylate release, may destabilise aggregates and organic‐mineral associations through chelation of metals (such as Fe, Al) and then accelerate SOM decomposition; flavonoids may work in a similar way.Efficient P‐acquisition/-use strategies may affect SOM formation directly or indirectly through microbial turnover.
Author Cong, Wen-Feng
Lambers, Hans
Ding, Wenli
Author_xml – sequence: 1
  givenname: Wenli
  surname: Ding
  fullname: Ding, Wenli
  organization: Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant–Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China
– sequence: 2
  givenname: Wen-Feng
  surname: Cong
  fullname: Cong, Wen-Feng
  email: wenfeng.cong@cau.edu.cn
  organization: Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant–Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China
– sequence: 3
  givenname: Hans
  surname: Lambers
  fullname: Lambers, Hans
  email: hans.lambers@uwa.edu.au
  organization: Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant–Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34246498$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPwzAUhS1UREvhDzCgjCwJjp-xxIIqXgIJBpgtx7kBV2nS2g4S_x5XLQsDWLK9fOdenXOO0aQfekDorMRFiUtxuSyiBygIJmWBRYExP0CzspIkr2hFJ2iWIJVzyuQUHYewxOkopo7QlDLCBFPVDD2-dKaP2fpjCOn6MeTGbkYXXHRDn5m-yfIxQBaiNxHeHYTMtC3YmIXBdZk1vk6Y_bKd699P0GFrugCn-3-O3m5vXhf3-dPz3cPi-im3jPOYS8zqSiUHUDUKC5leaRugxrCaMGWYUpLxUjZUMsHTOq6YNTWhrWqSO0rn6GI3d-2HzQgh6pULFrrkBIYxaCJEibHgVP6Pco4FwZXACT3fo2O9gkavvVsZ_6V_skpAtQOsH0Lw0GrrotnmlMJxnS6x3tail3pbi97WorHQqZYkJb-kP9P_FF3tRJCy_HTgdbAOeguN86kB3QzuL_k3ZA-lGw
CitedBy_id crossref_primary_10_3390_jof9060684
crossref_primary_10_1016_j_jenvman_2024_123832
crossref_primary_10_1080_00380768_2023_2199777
crossref_primary_10_1016_j_jenvman_2022_116346
crossref_primary_10_1128_msystems_01107_21
crossref_primary_10_1016_j_cej_2023_143648
crossref_primary_10_1007_s11104_022_05670_4
crossref_primary_10_1016_j_geoderma_2022_116076
crossref_primary_10_1007_s11104_024_06660_4
crossref_primary_10_1016_j_ecofro_2025_01_015
crossref_primary_10_1007_s10533_025_01210_1
crossref_primary_10_1016_j_catena_2024_108226
crossref_primary_10_1111_nph_17906
crossref_primary_10_1111_pce_14951
crossref_primary_10_3390_plants12081592
crossref_primary_10_1007_s10653_024_02238_2
crossref_primary_10_1016_j_ecolind_2025_113341
crossref_primary_10_1111_1365_2435_14178
crossref_primary_10_1007_s11104_021_05132_3
crossref_primary_10_1007_s42729_025_02322_1
crossref_primary_10_1109_TGRS_2024_3511118
crossref_primary_10_1016_j_envres_2024_120030
crossref_primary_10_1016_j_ijbiomac_2023_123760
crossref_primary_10_1111_nph_19078
crossref_primary_10_1016_j_agee_2023_108553
crossref_primary_10_3389_fpls_2024_1346729
crossref_primary_10_1007_s11104_022_05347_y
crossref_primary_10_1016_j_gecco_2024_e02863
crossref_primary_10_1016_j_scitotenv_2022_157430
crossref_primary_10_1016_j_ijbiomac_2023_124569
crossref_primary_10_1007_s11427_024_2876_0
crossref_primary_10_1016_j_agee_2024_109456
crossref_primary_10_1007_s11368_023_03639_z
crossref_primary_10_1016_j_scitotenv_2022_155855
crossref_primary_10_1016_j_scitotenv_2024_171269
crossref_primary_10_2139_ssrn_3990653
crossref_primary_10_1016_j_agee_2022_108281
crossref_primary_10_1007_s11104_022_05343_2
crossref_primary_10_1007_s11104_025_07238_4
crossref_primary_10_1016_j_geoderma_2023_116336
crossref_primary_10_1016_j_still_2022_105492
crossref_primary_10_1016_j_geoderma_2025_117188
crossref_primary_10_1016_j_scitotenv_2024_170294
crossref_primary_10_1016_j_scienta_2024_113398
crossref_primary_10_1016_j_jenvman_2024_122925
crossref_primary_10_1111_1365_2435_70023
crossref_primary_10_1111_1365_2435_14193
crossref_primary_10_3390_agronomy14020389
crossref_primary_10_3390_land13101608
crossref_primary_10_1111_gcb_16685
crossref_primary_10_1016_j_tree_2021_10_006
crossref_primary_10_1002_adfm_202410544
crossref_primary_10_1007_s11104_024_06717_4
crossref_primary_10_1016_j_envexpbot_2024_105726
crossref_primary_10_1016_j_catena_2022_106808
crossref_primary_10_3390_toxics12100692
crossref_primary_10_1016_j_catena_2022_106809
crossref_primary_10_1080_10549811_2022_2150219
crossref_primary_10_1111_nph_20166
crossref_primary_10_1016_j_rhisph_2022_100610
crossref_primary_10_3389_fmicb_2023_1131836
crossref_primary_10_1007_s00425_024_04556_2
crossref_primary_10_1016_j_ejsobi_2024_103684
crossref_primary_10_1016_j_still_2024_106436
crossref_primary_10_1016_j_scienta_2023_112573
crossref_primary_10_3390_su15097584
crossref_primary_10_3389_fpls_2023_1089380
crossref_primary_10_1016_j_jia_2023_09_013
crossref_primary_10_1093_hr_uhae267
crossref_primary_10_1007_s11104_022_05487_1
crossref_primary_10_1007_s11427_024_2683_y
crossref_primary_10_1016_j_scitotenv_2022_157456
crossref_primary_10_3390_f14091895
crossref_primary_10_1016_j_jenvman_2023_118529
crossref_primary_10_1111_pce_15472
crossref_primary_10_1016_j_jenvman_2023_118807
crossref_primary_10_1111_gcb_17486
crossref_primary_10_1111_sum_12957
crossref_primary_10_2139_ssrn_4111901
crossref_primary_10_1016_j_apsoil_2022_104594
crossref_primary_10_3389_fmicb_2024_1407760
crossref_primary_10_1111_1365_2745_14118
crossref_primary_10_1007_s00248_023_02258_y
crossref_primary_10_1016_j_envres_2025_121320
crossref_primary_10_3389_fpls_2023_1225907
crossref_primary_10_1016_j_catena_2024_108020
crossref_primary_10_1007_s11104_022_05436_y
crossref_primary_10_1016_j_tree_2021_10_013
crossref_primary_10_1016_j_plaphy_2025_109593
crossref_primary_10_1016_j_stress_2023_100341
crossref_primary_10_1016_j_rsci_2023_04_007
crossref_primary_10_1016_j_soilbio_2022_108722
crossref_primary_10_1016_j_envpol_2023_121295
crossref_primary_10_1016_j_geoderma_2023_116381
crossref_primary_10_1016_j_jenvman_2023_119121
crossref_primary_10_1038_s41598_024_61621_2
crossref_primary_10_1016_j_soilbio_2023_109039
crossref_primary_10_1016_j_catena_2023_107341
crossref_primary_10_1111_nph_18907
crossref_primary_10_1016_j_soilbio_2025_109797
crossref_primary_10_3390_f15020328
crossref_primary_10_1016_j_scitotenv_2024_171767
crossref_primary_10_1007_s11104_024_07188_3
crossref_primary_10_1016_j_rhisph_2023_100806
crossref_primary_10_1007_s10533_023_01019_w
crossref_primary_10_1126_sciadv_add4468
crossref_primary_10_1111_gcb_16765
crossref_primary_10_1016_j_scitotenv_2024_175388
crossref_primary_10_3389_fpls_2022_924154
crossref_primary_10_1016_j_indcrop_2025_120687
crossref_primary_10_3390_d17030157
crossref_primary_10_1016_j_fecs_2023_100111
crossref_primary_10_1007_s11104_024_06848_8
crossref_primary_10_1007_s11104_022_05784_9
crossref_primary_10_1016_j_catena_2023_107274
crossref_primary_10_1016_j_foreco_2022_120722
crossref_primary_10_1080_00103624_2025_2458153
crossref_primary_10_12677_AEP_2022_126146
crossref_primary_10_3390_land11071001
crossref_primary_10_1002_ldr_5099
crossref_primary_10_1016_j_ecolind_2023_110017
crossref_primary_10_1016_j_fecs_2024_100241
crossref_primary_10_1007_s11104_023_06252_8
crossref_primary_10_1016_j_jenvman_2023_119941
crossref_primary_10_1029_2023JG007861
crossref_primary_10_3389_fpls_2021_759929
crossref_primary_10_7717_peerj_14271
crossref_primary_10_3390_f15030416
crossref_primary_10_1002_jeq2_20561
crossref_primary_10_3390_plants13010004
crossref_primary_10_1016_j_scitotenv_2022_159033
crossref_primary_10_1021_acs_jafc_4c06927
crossref_primary_10_1007_s11104_023_06136_x
crossref_primary_10_1021_acs_jafc_3c04637
crossref_primary_10_1007_s11104_022_05564_5
crossref_primary_10_1016_j_scitotenv_2023_167630
crossref_primary_10_1016_j_farsys_2024_100083
crossref_primary_10_1016_j_scitotenv_2023_166383
crossref_primary_10_3389_fpls_2023_1297706
crossref_primary_10_1111_sum_12911
crossref_primary_10_1186_s40494_024_01142_3
Cites_doi 10.1016/j.soilbio.2018.02.016
10.1111/pce.13124
10.2136/sssaj2004.0347
10.1111/nph.16760
10.1111/gcb.15319
10.1111/j.1469-8137.2012.04285.x
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.1007/s00374-008-0334-y
10.1111/pce.13762
10.1038/35095041
10.1104/pp.124.3.949
10.1038/nature10386
10.1016/S1360-1385(03)00184-5
10.1126/science.1136674
10.1890/14-2228.1
10.1111/gcb.15071
10.1111/nph.16554
10.1016/j.soilbio.2014.04.033
10.1111/nph.13613
10.1007/s00203-020-01915-x
10.1007/s11104-019-04156-0
10.1111/nph.15361
10.1007/s11104-017-3214-0
10.1016/j.tplants.2020.04.013
10.1007/s11104-005-2569-9
10.1016/j.soilbio.2020.107764
10.1111/gcb.13125
10.1111/gcb.14482
10.1111/nph.15074
10.1006/anbo.2000.1135
10.1111/1462-2920.12081
10.1111/gcb.14851
10.1007/s00374-011-0653-2
10.1111/nph.15833
10.1016/S1360-1385(02)02241-0
10.1111/pce.12240
10.1007/s11104-017-3534-0
10.1038/nclimate2549
10.1007/s11104-013-1899-2
10.3389/fmicb.2013.00216
10.1038/nmicrobiol.2017.105
10.1111/nph.13966
10.1093/aob/mcz082
10.1016/j.soilbio.2015.02.019
10.1111/j.1469-8137.1990.tb00924.x
10.1104/pp.111.175414
10.1016/j.soilbio.2021.108189
10.1093/aob/mcs130
10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
10.1007/s11104-018-03927-5
10.1016/j.soilbio.2008.10.034
10.1111/1365-2745.13415
10.1038/nplants.2015.109
10.1126/science.aba0196
10.1111/nph.15688
10.1016/S0734-9750(99)00014-2
10.1111/1365-2745.13519
10.1111/j.1469-8137.2006.01776.x
10.1126/science.1084269
10.1093/aob/mcx127
10.1016/j.soilbio.2019.107641
10.1016/j.soilbio.2008.02.017
10.1111/1462-2920.14289
10.1016/j.pbi.2018.05.012
10.1126/science.1224304
10.1111/nph.17082
10.1007/s11104-020-04774-z
10.1002/1522-2624(200204)165:2<141::AID-JPLN141>3.0.CO;2-X
10.1016/S0038-0717(02)00126-8
10.3732/ajb.1200474
10.1016/j.soilbio.2018.03.002
10.1016/j.soilbio.2020.108039
10.1007/s00572-018-0871-7
10.1038/nclimate2580
10.1038/nature16069
10.1111/nph.14976
10.1111/gcb.14781
10.1016/j.geoderma.2020.114784
10.1016/j.tplants.2014.10.007
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.tree.2021.06.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1872-8383
EndPage 906
ExternalDocumentID 34246498
10_1016_j_tree_2021_06_005
S0169534721001786
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29Q
4.4
42X
457
4G.
53G
5VS
7-5
71M
85S
8P~
9JM
9JN
9M8
AABNK
AABVA
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAGJA
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AATLK
AAXLA
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABGRD
ABGSF
ABJNI
ABLJU
ABLST
ABMAC
ABOYX
ABQEM
ABTAH
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFDAS
AFKWA
AFMIJ
AFTJW
AFXIZ
AFYLN
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY9
M41
MO0
MVM
N9A
NEJ
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSA
SSB
SSN
SSO
SSU
SSY
SSZ
T5K
TN5
UBC
UQL
WH7
WUQ
XIH
XSW
YR2
YV5
YYP
ZCA
ZCG
ZKB
ZXP
ZY4
~02
~G-
AAHBH
AAMRU
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c455t-704b89101e8d90678d97cde3aa4b249a49974517d37465aff594cab23f9d18733
IEDL.DBID .~1
ISSN 0169-5347
1872-8383
IngestDate Thu Jul 10 23:32:37 EDT 2025
Thu Jul 10 22:56:11 EDT 2025
Thu Apr 03 07:03:24 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
Tue Jul 01 01:56:38 EDT 2025
Fri Feb 23 02:40:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords priming
phosphorus acquisition
nitrogen mineralisation
phosphorus utilisation
soil organic matter decomposition
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-704b89101e8d90678d97cde3aa4b249a49974517d37465aff594cab23f9d18733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 34246498
PQID 2550620860
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2661006537
proquest_miscellaneous_2550620860
pubmed_primary_34246498
crossref_citationtrail_10_1016_j_tree_2021_06_005
crossref_primary_10_1016_j_tree_2021_06_005
elsevier_sciencedirect_doi_10_1016_j_tree_2021_06_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in ecology & evolution (Amsterdam)
PublicationTitleAlternate Trends Ecol Evol
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yuan (bb0100) 2018; 121
Li (bb0025) 2016; 22
Zhu, Miller (bb0245) 2003; 8
Schmidt (bb0045) 2011; 478
Yuan, Chen (bb0030) 2015; 5
Cesco (bb0150) 2012; 48
Liang (bb0315) 2019; 25
Tian (bb0050) 2020; 108
Lambers (bb0075) 2015; 20
Parihar (bb0175) 2020; 202
Neumann, Martinoia (bb0380) 2002; 7
Liang (bb0310) 2017; 2
Poirier (bb0265) 2018; 120
Nuccio (bb0210) 2013; 15
Bago (bb0185) 2000; 124
Zhang (bb0220) 2019; 29
Xu (bb0105) 2019; 124
Luo (bb0235) 2020; 144
Lambers, Oliveira (bb0005) 2019
Sokol (bb0255) 2019; 221
Jiang (bb0335) 2019; 222
Kidd (bb0385) 2018; 424
Oldroyd, Leyser (bb0010) 2020; 368
Peng (bb0035) 2019; 436
Zhang (bb0225) 2018; 20
Lambers (bb0390) 2012; 196
Cao (bb0295) 2021; 383
Liu (bb0340) 2020; 151
Blagodatskaya, Kuzyakov (bb0405) 2008; 45
Smith, Read (bb0160) 2008
Cong (bb0365) 2020; 25
Wen (bb0275) 2017; 416
Galloway (bb0015) 2008; 320
Lambers (bb0055) 2013; 100
Six (bb0330) 2006; 70
Liang (bb0020) 2020; 26
Jobbágy, Jackson (bb0040) 2000; 10
Sokol (bb0300) 2019; 25
Oburger (bb0325) 2009; 41
Zhu (bb0320) 2020; 26
Lehmann, Kleber (bb0130) 2015; 528
Hodge (bb0205) 2001; 413
Yin (bb0350) 2018; 218
Lehmann (bb0250) 2017
Kuzyakov (bb0410) 2002; 165
Zhou (bb0120) 2020; 43
Neumann (bb0060) 2000; 85
Holz (bb0110) 2018; 121
Lynch (bb0370) 2011; 156
Clarholm (bb0070) 2015; 84
Wang (bb0090) 2021; 458
Zhang (bb0280) 2016; 209
Juszczuk (bb0140) 2004; 267
Joshi (bb0155) 2021; 459
Dijkstra (bb0355) 2021; 230
Wang (bb0345) 2016; 211
Cheng (bb0200) 2012; 337
Pang (bb0360) 2018; 45
Hayes (bb0395) 2018; 41
Dijkstra (bb0135) 2013; 4
Sulpice (bb0400) 2014; 37
Henneron (bb0095) 2020; 228
Keiluweit (bb0080) 2015; 5
Jakobsen, Rosendahl (bb0170) 1990; 115
Leifheit (bb0240) 2014; 374
Lambers (bb0290) 2015; 1
Zhu (bb0085) 2014; 76
Weisskopf (bb0065) 2006; 171
Angst (bb0305) 2021
Tomasi (bb0145) 2008; 40
Lambers (bb0375) 2012; 110
Kahle (bb0125) 2002; 165
McKay Fletcher (bb0115) 2020; 227
Johnson (bb0190) 2002; 34
Zhou (bb0230) 2020; 140
Thirkell (bb0180) 2020; 26
Wen (bb0285) 2019; 223
Luo (bb0260) 2015; 96
Tian (bb0270) 2021; 109
Brundrett, Tedersoo (bb0165) 2018; 220
Rodrı́guez, H. and Fraga, R. (bb0215) 1999; 17
Staddon (bb0195) 2003; 300
Johnson (10.1016/j.tree.2021.06.005_bb0190) 2002; 34
Zhang (10.1016/j.tree.2021.06.005_bb0220) 2019; 29
Kahle (10.1016/j.tree.2021.06.005_bb0125) 2002; 165
Luo (10.1016/j.tree.2021.06.005_bb0260) 2015; 96
Sokol (10.1016/j.tree.2021.06.005_bb0300) 2019; 25
Hodge (10.1016/j.tree.2021.06.005_bb0205) 2001; 413
Pang (10.1016/j.tree.2021.06.005_bb0360) 2018; 45
Neumann (10.1016/j.tree.2021.06.005_bb0060) 2000; 85
Zhu (10.1016/j.tree.2021.06.005_bb0320) 2020; 26
Cong (10.1016/j.tree.2021.06.005_bb0365) 2020; 25
Lynch (10.1016/j.tree.2021.06.005_bb0370) 2011; 156
Lambers (10.1016/j.tree.2021.06.005_bb0290) 2015; 1
Keiluweit (10.1016/j.tree.2021.06.005_bb0080) 2015; 5
Galloway (10.1016/j.tree.2021.06.005_bb0015) 2008; 320
Jakobsen (10.1016/j.tree.2021.06.005_bb0170) 1990; 115
Hayes (10.1016/j.tree.2021.06.005_bb0395) 2018; 41
Wen (10.1016/j.tree.2021.06.005_bb0275) 2017; 416
Blagodatskaya (10.1016/j.tree.2021.06.005_bb0405) 2008; 45
Henneron (10.1016/j.tree.2021.06.005_bb0095) 2020; 228
Luo (10.1016/j.tree.2021.06.005_bb0235) 2020; 144
Sulpice (10.1016/j.tree.2021.06.005_bb0400) 2014; 37
Wen (10.1016/j.tree.2021.06.005_bb0285) 2019; 223
Cao (10.1016/j.tree.2021.06.005_bb0295) 2021; 383
Lehmann (10.1016/j.tree.2021.06.005_bb0250) 2017
Liang (10.1016/j.tree.2021.06.005_bb0020) 2020; 26
Leifheit (10.1016/j.tree.2021.06.005_bb0240) 2014; 374
Peng (10.1016/j.tree.2021.06.005_bb0035) 2019; 436
Jobbágy (10.1016/j.tree.2021.06.005_bb0040) 2000; 10
Kuzyakov (10.1016/j.tree.2021.06.005_bb0410) 2002; 165
Oburger (10.1016/j.tree.2021.06.005_bb0325) 2009; 41
Six (10.1016/j.tree.2021.06.005_bb0330) 2006; 70
Lambers (10.1016/j.tree.2021.06.005_bb0075) 2015; 20
Wang (10.1016/j.tree.2021.06.005_bb0090) 2021; 458
Zhou (10.1016/j.tree.2021.06.005_bb0120) 2020; 43
Sokol (10.1016/j.tree.2021.06.005_bb0255) 2019; 221
Nuccio (10.1016/j.tree.2021.06.005_bb0210) 2013; 15
Schmidt (10.1016/j.tree.2021.06.005_bb0045) 2011; 478
Rodrı́guez, H. and Fraga, R. (10.1016/j.tree.2021.06.005_bb0215) 1999; 17
Tian (10.1016/j.tree.2021.06.005_bb0270) 2021; 109
Yuan (10.1016/j.tree.2021.06.005_bb0030) 2015; 5
Smith (10.1016/j.tree.2021.06.005_bb0160) 2008
Liang (10.1016/j.tree.2021.06.005_bb0310) 2017; 2
Lambers (10.1016/j.tree.2021.06.005_bb0375) 2012; 110
Cesco (10.1016/j.tree.2021.06.005_bb0150) 2012; 48
Kidd (10.1016/j.tree.2021.06.005_bb0385) 2018; 424
Bago (10.1016/j.tree.2021.06.005_bb0185) 2000; 124
Holz (10.1016/j.tree.2021.06.005_bb0110) 2018; 121
Juszczuk (10.1016/j.tree.2021.06.005_bb0140) 2004; 267
Liu (10.1016/j.tree.2021.06.005_bb0340) 2020; 151
Oldroyd (10.1016/j.tree.2021.06.005_bb0010) 2020; 368
Clarholm (10.1016/j.tree.2021.06.005_bb0070) 2015; 84
Yuan (10.1016/j.tree.2021.06.005_bb0100) 2018; 121
Tian (10.1016/j.tree.2021.06.005_bb0050) 2020; 108
Zhu (10.1016/j.tree.2021.06.005_bb0245) 2003; 8
Cheng (10.1016/j.tree.2021.06.005_bb0200) 2012; 337
Xu (10.1016/j.tree.2021.06.005_bb0105) 2019; 124
Wang (10.1016/j.tree.2021.06.005_bb0345) 2016; 211
Zhang (10.1016/j.tree.2021.06.005_bb0280) 2016; 209
Zhou (10.1016/j.tree.2021.06.005_bb0230) 2020; 140
Dijkstra (10.1016/j.tree.2021.06.005_bb0135) 2013; 4
Lehmann (10.1016/j.tree.2021.06.005_bb0130) 2015; 528
Thirkell (10.1016/j.tree.2021.06.005_bb0180) 2020; 26
Lambers (10.1016/j.tree.2021.06.005_bb0390) 2012; 196
McKay Fletcher (10.1016/j.tree.2021.06.005_bb0115) 2020; 227
Weisskopf (10.1016/j.tree.2021.06.005_bb0065) 2006; 171
Lambers (10.1016/j.tree.2021.06.005_bb0005) 2019
Zhu (10.1016/j.tree.2021.06.005_bb0085) 2014; 76
Jiang (10.1016/j.tree.2021.06.005_bb0335) 2019; 222
Tomasi (10.1016/j.tree.2021.06.005_bb0145) 2008; 40
Parihar (10.1016/j.tree.2021.06.005_bb0175) 2020; 202
Liang (10.1016/j.tree.2021.06.005_bb0315) 2019; 25
Staddon (10.1016/j.tree.2021.06.005_bb0195) 2003; 300
Angst (10.1016/j.tree.2021.06.005_bb0305) 2021
Zhang (10.1016/j.tree.2021.06.005_bb0225) 2018; 20
Brundrett (10.1016/j.tree.2021.06.005_bb0165) 2018; 220
Lambers (10.1016/j.tree.2021.06.005_bb0055) 2013; 100
Poirier (10.1016/j.tree.2021.06.005_bb0265) 2018; 120
Yin (10.1016/j.tree.2021.06.005_bb0350) 2018; 218
Li (10.1016/j.tree.2021.06.005_bb0025) 2016; 22
Neumann (10.1016/j.tree.2021.06.005_bb0380) 2002; 7
Joshi (10.1016/j.tree.2021.06.005_bb0155) 2021; 459
Dijkstra (10.1016/j.tree.2021.06.005_bb0355) 2021; 230
34740444 - Trends Ecol Evol. 2022 Jan;37(1):12-13
References_xml – volume: 2
  start-page: 17105
  year: 2017
  ident: bb0310
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
– volume: 171
  start-page: 657
  year: 2006
  end-page: 668
  ident: bb0065
  article-title: Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage
  publication-title: New Phytol.
– volume: 124
  start-page: 1033
  year: 2019
  end-page: 1042
  ident: bb0105
  article-title: Rhizosphere priming of two near-isogenic wheat lines varying in citrate efflux under different levels of phosphorus supply
  publication-title: Ann. Bot.
– volume: 222
  start-page: 1223
  year: 2019
  end-page: 1229
  ident: bb0335
  article-title: Towards a more physiological representation of vegetation phosphorus processes in land surface models
  publication-title: New Phytol.
– volume: 211
  start-page: 864
  year: 2016
  end-page: 873
  ident: bb0345
  article-title: Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation
  publication-title: New Phytol.
– volume: 26
  start-page: 3585
  year: 2020
  end-page: 3600
  ident: bb0020
  article-title: Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis
  publication-title: Glob. Chang. Biol.
– volume: 218
  start-page: 1036
  year: 2018
  end-page: 1048
  ident: bb0350
  article-title: Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition
  publication-title: New Phytol.
– volume: 8
  start-page: 407
  year: 2003
  end-page: 409
  ident: bb0245
  article-title: Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems
  publication-title: Trends Plant Sci.
– volume: 25
  start-page: 12
  year: 2019
  end-page: 24
  ident: bb0300
  article-title: Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry
  publication-title: Glob. Chang. Biol.
– volume: 416
  start-page: 377
  year: 2017
  end-page: 389
  ident: bb0275
  article-title: Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation
  publication-title: Plant Soil
– volume: 165
  start-page: 382
  year: 2002
  end-page: 396
  ident: bb0410
  article-title: Review: factors affecting rhizosphere priming effects
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 165
  start-page: 141
  year: 2002
  end-page: 149
  ident: bb0125
  article-title: Carbon storage in loess derived surface soils from Central Germany: influence of mineral phase variables
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 221
  start-page: 233
  year: 2019
  end-page: 246
  ident: bb0255
  article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon
  publication-title: New Phytol.
– start-page: 108189
  year: 2021
  ident: bb0305
  article-title: Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter
  publication-title: Soil Biol. Biochem.
– volume: 4
  start-page: 216
  year: 2013
  ident: bb0135
  article-title: Rhizosphere priming: a nutrient perspective
  publication-title: Front. Microbiol.
– volume: 48
  start-page: 123
  year: 2012
  end-page: 149
  ident: bb0150
  article-title: Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review
  publication-title: Biol. Fertil. Soils
– volume: 368
  year: 2020
  ident: bb0010
  article-title: A plant’s diet, surviving in a variable nutrient environment
  publication-title: Science
– volume: 10
  start-page: 423
  year: 2000
  end-page: 436
  ident: bb0040
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecol. Appl.
– volume: 424
  start-page: 389
  year: 2018
  end-page: 403
  ident: bb0385
  article-title: The carboxylate composition of rhizosheath and root exudates from twelve species of grassland and crop legumes with special reference to the occurrence of citramalate
  publication-title: Plant Soil
– volume: 267
  start-page: 41
  year: 2004
  end-page: 49
  ident: bb0140
  article-title: Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (
  publication-title: Plant Soil
– volume: 144
  start-page: 107764
  year: 2020
  ident: bb0235
  article-title: Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls
  publication-title: Soil Biol. Biochem.
– year: 2019
  ident: bb0005
  article-title: Plant Physiological Ecology
– volume: 25
  start-page: 3578
  year: 2019
  end-page: 3590
  ident: bb0315
  article-title: Quantitative assessment of microbial necromass contribution to soil organic matter
  publication-title: Glob. Chang. Biol.
– volume: 1
  start-page: 1
  year: 2015
  end-page: 9
  ident: bb0290
  article-title: Phosphorus nutrition in Proteaceae and beyond
  publication-title: Nat. Plants
– volume: 7
  start-page: 162
  year: 2002
  end-page: 167
  ident: bb0380
  article-title: Cluster roots – an underground adaptation for survival in extreme environments
  publication-title: Trends Plant Sci.
– volume: 209
  start-page: 823
  year: 2016
  end-page: 831
  ident: bb0280
  article-title: Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize
  publication-title: New Phytol.
– volume: 202
  start-page: 1581
  year: 2020
  end-page: 1596
  ident: bb0175
  article-title: The potential of arbuscular mycorrhizal fungi in C cycling: a review
  publication-title: Arch. Microbiol.
– volume: 458
  start-page: 277
  year: 2021
  end-page: 289
  ident: bb0090
  article-title: Differences in root exudate inputs and rhizosphere effects on soil N transformation between deciduous and evergreen trees
  publication-title: Plant Soil
– volume: 34
  start-page: 1521
  year: 2002
  end-page: 1524
  ident: bb0190
  article-title: Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of
  publication-title: Soil Biol. Biochem.
– volume: 20
  start-page: 2639
  year: 2018
  end-page: 2651
  ident: bb0225
  article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions
  publication-title: Environ. Microbiol.
– volume: 228
  start-page: 1269
  year: 2020
  end-page: 1282
  ident: bb0095
  article-title: Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies
  publication-title: New Phytol.
– volume: 17
  start-page: 319
  year: 1999
  end-page: 339
  ident: bb0215
  article-title: Phosphate solubilizing bacteria and their role in plant growth promotion
  publication-title: Biotechnol. Adv.
– volume: 156
  start-page: 1041
  year: 2011
  end-page: 1049
  ident: bb0370
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiol.
– volume: 37
  start-page: 1276
  year: 2014
  end-page: 1298
  ident: bb0400
  article-title: Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species
  publication-title: Plant Cell Environ.
– volume: 383
  start-page: 114784
  year: 2021
  ident: bb0295
  article-title: Organic-C quality as a key driver of microbial nitrogen immobilization in soil: a meta-analysis
  publication-title: Geoderma
– volume: 76
  start-page: 183
  year: 2014
  end-page: 192
  ident: bb0085
  article-title: Rhizosphere priming effects on soil carbon and nitrogen mineralization
  publication-title: Soil Biol. Biochem.
– volume: 227
  start-page: 376
  year: 2020
  end-page: 391
  ident: bb0115
  article-title: Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake
  publication-title: New Phytol.
– volume: 25
  start-page: 967
  year: 2020
  end-page: 975
  ident: bb0365
  article-title: Tightening the phosphorus cycle through phosphorus-efficient crop genotypes
  publication-title: Trends Plant Sci.
– volume: 5
  start-page: 465
  year: 2015
  end-page: 469
  ident: bb0030
  article-title: Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes
  publication-title: Nat. Clim. Chang.
– volume: 100
  start-page: 263
  year: 2013
  end-page: 288
  ident: bb0055
  article-title: How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupins (
  publication-title: Am. J. Bot.
– volume: 121
  start-page: 16
  year: 2018
  end-page: 23
  ident: bb0100
  article-title: Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots
  publication-title: Soil Biol. Biochem.
– volume: 300
  start-page: 1138
  year: 2003
  end-page: 1140
  ident: bb0195
  article-title: Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of
  publication-title: Science
– volume: 337
  start-page: 1084
  year: 2012
  end-page: 1087
  ident: bb0200
  article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO
  publication-title: Science
– volume: 26
  start-page: 6032
  year: 2020
  end-page: 6039
  ident: bb0320
  article-title: The soil microbial carbon pump: from conceptual insights to empirical assessments
  publication-title: Glob. Chang. Biol.
– volume: 84
  start-page: 168
  year: 2015
  end-page: 176
  ident: bb0070
  article-title: Organic acid induced release of nutrients from metal-stabilized soil organic matter – the unbutton model
  publication-title: Soil Biol. Biochem.
– volume: 413
  start-page: 297
  year: 2001
  end-page: 299
  ident: bb0205
  article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material
  publication-title: Nature
– volume: 196
  start-page: 1098
  year: 2012
  end-page: 1108
  ident: bb0390
  article-title: Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus use efficiency
  publication-title: New Phytol.
– volume: 124
  start-page: 949
  year: 2000
  ident: bb0185
  article-title: Carbon metabolism and transport in arbuscular mycorrhizas
  publication-title: Plant Physiol.
– volume: 20
  start-page: 83
  year: 2015
  end-page: 90
  ident: bb0075
  article-title: Leaf manganese accumulation and phosphorus-acquisition efficiency
  publication-title: Trends Plant Sci.
– volume: 121
  start-page: 61
  year: 2018
  end-page: 69
  ident: bb0110
  article-title: Root hairs increase rhizosphere extension and carbon input to soil
  publication-title: Ann. Bot.
– volume: 528
  start-page: 60
  year: 2015
  end-page: 68
  ident: bb0130
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
– volume: 45
  start-page: 248
  year: 2018
  end-page: 254
  ident: bb0360
  article-title: Phosphorus acquisition and utilisation in crop legumes under global change
  publication-title: Curr. Opin. Plant Biol.
– volume: 5
  start-page: 588
  year: 2015
  end-page: 595
  ident: bb0080
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nat. Clim. Chang.
– volume: 459
  start-page: 423
  year: 2021
  end-page: 440
  ident: bb0155
  article-title: Low soil phosphorus availability triggers maize growth stage specific rhizosphere processes leading to mineralization of organic P
  publication-title: Plant Soil
– volume: 320
  start-page: 889
  year: 2008
  ident: bb0015
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
– volume: 120
  start-page: 246
  year: 2018
  end-page: 259
  ident: bb0265
  article-title: The root of the matter: linking root traits and soil organic matter stabilization processes
  publication-title: Soil Biol. Biochem.
– volume: 15
  start-page: 1870
  year: 2013
  end-page: 1881
  ident: bb0210
  article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition
  publication-title: Environ. Microbiol.
– volume: 109
  start-page: 927
  year: 2021
  end-page: 938
  ident: bb0270
  article-title: Processes at the soil–root interface determine the different responses of nutrient limitation and metal toxicity in forbs and grasses to nitrogen enrichment
  publication-title: J. Ecol.
– volume: 374
  start-page: 523
  year: 2014
  end-page: 537
  ident: bb0240
  article-title: Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation – a meta-analysis
  publication-title: Plant Soil
– start-page: 241
  year: 2017
  end-page: 262
  ident: bb0250
  article-title: Mycorrhizas and soil aggregation
  publication-title: Mycorrhizal Mediation of Soil
– volume: 96
  start-page: 2806
  year: 2015
  end-page: 2813
  ident: bb0260
  article-title: Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems
  publication-title: Ecology
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  ident: bb0045
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 29
  start-page: 69
  year: 2019
  end-page: 75
  ident: bb0220
  article-title: The arbuscular mycorrhizal fungus
  publication-title: Mycorrhiza
– volume: 230
  start-page: 60
  year: 2021
  end-page: 65
  ident: bb0355
  article-title: Root effects on soil organic carbon: a double-edged sword
  publication-title: New Phytol.
– volume: 151
  start-page: 108039
  year: 2020
  ident: bb0340
  article-title: Modeling the dynamics of protected and primed organic carbon in soil and aggregates under constant soil moisture following litter incorporation
  publication-title: Soil Biol. Biochem.
– volume: 41
  start-page: 605
  year: 2018
  end-page: 619
  ident: bb0395
  article-title: Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency
  publication-title: Plant Cell Environ.
– volume: 41
  start-page: 449
  year: 2009
  end-page: 457
  ident: bb0325
  article-title: Interactive effects of organic acids in the rhizosphere
  publication-title: Soil Biol. Biochem.
– volume: 220
  start-page: 1108
  year: 2018
  end-page: 1115
  ident: bb0165
  article-title: Evolutionary history of mycorrhizal symbioses and global host plant diversity
  publication-title: New Phytol.
– volume: 108
  start-page: 1874
  year: 2020
  end-page: 1887
  ident: bb0050
  article-title: Below-ground-mediated and phase-dependent processes drive nitrogen-evoked community changes in grasslands
  publication-title: J. Ecol.
– volume: 40
  start-page: 1971
  year: 2008
  end-page: 1974
  ident: bb0145
  article-title: Flavonoids of white lupin roots participate in phosphorus mobilization from soil
  publication-title: Soil Biol. Biochem.
– volume: 22
  start-page: 934
  year: 2016
  end-page: 943
  ident: bb0025
  article-title: Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis
  publication-title: Glob. Chang. Biol.
– volume: 45
  start-page: 115
  year: 2008
  end-page: 131
  ident: bb0405
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review
  publication-title: Biol. Fertil. Soils
– volume: 436
  start-page: 245
  year: 2019
  end-page: 252
  ident: bb0035
  article-title: Effects of nitrogen-phosphorus imbalance on plant biomass production: a global perspective
  publication-title: Plant Soil
– volume: 43
  start-page: 1691
  year: 2020
  end-page: 1706
  ident: bb0120
  article-title: LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation
  publication-title: Plant Cell Environ.
– volume: 115
  start-page: 77
  year: 1990
  end-page: 83
  ident: bb0170
  article-title: Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants
  publication-title: New Phytol.
– volume: 85
  start-page: 909
  year: 2000
  end-page: 919
  ident: bb0060
  article-title: Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (
  publication-title: Ann. Bot.
– volume: 70
  start-page: 555
  year: 2006
  end-page: 569
  ident: bb0330
  article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems
  publication-title: Soil Sci. Soc. Am. J.
– volume: 26
  start-page: 1725
  year: 2020
  end-page: 1738
  ident: bb0180
  article-title: Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration
  publication-title: Glob. Chang. Biol.
– volume: 223
  start-page: 882
  year: 2019
  end-page: 895
  ident: bb0285
  article-title: Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species
  publication-title: New Phytol.
– volume: 110
  start-page: 329
  year: 2012
  end-page: 348
  ident: bb0375
  article-title: Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems
  publication-title: Ann. Bot.
– volume: 140
  start-page: 107641
  year: 2020
  ident: bb0230
  article-title: Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter
  publication-title: Soil Biol. Biochem.
– year: 2008
  ident: bb0160
  article-title: Mycorrhizal Symbiosis
– volume: 120
  start-page: 246
  year: 2018
  ident: 10.1016/j.tree.2021.06.005_bb0265
  article-title: The root of the matter: linking root traits and soil organic matter stabilization processes
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.02.016
– volume: 41
  start-page: 605
  year: 2018
  ident: 10.1016/j.tree.2021.06.005_bb0395
  article-title: Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13124
– volume: 70
  start-page: 555
  year: 2006
  ident: 10.1016/j.tree.2021.06.005_bb0330
  article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2004.0347
– volume: 228
  start-page: 1269
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0095
  article-title: Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies
  publication-title: New Phytol.
  doi: 10.1111/nph.16760
– volume: 26
  start-page: 6032
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0320
  article-title: The soil microbial carbon pump: from conceptual insights to empirical assessments
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15319
– volume: 196
  start-page: 1098
  year: 2012
  ident: 10.1016/j.tree.2021.06.005_bb0390
  article-title: Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus use efficiency
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04285.x
– volume: 10
  start-page: 423
  year: 2000
  ident: 10.1016/j.tree.2021.06.005_bb0040
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– volume: 45
  start-page: 115
  year: 2008
  ident: 10.1016/j.tree.2021.06.005_bb0405
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-008-0334-y
– volume: 43
  start-page: 1691
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0120
  article-title: LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13762
– volume: 413
  start-page: 297
  year: 2001
  ident: 10.1016/j.tree.2021.06.005_bb0205
  article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material
  publication-title: Nature
  doi: 10.1038/35095041
– volume: 124
  start-page: 949
  year: 2000
  ident: 10.1016/j.tree.2021.06.005_bb0185
  article-title: Carbon metabolism and transport in arbuscular mycorrhizas
  publication-title: Plant Physiol.
  doi: 10.1104/pp.124.3.949
– volume: 478
  start-page: 49
  year: 2011
  ident: 10.1016/j.tree.2021.06.005_bb0045
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
  doi: 10.1038/nature10386
– volume: 8
  start-page: 407
  year: 2003
  ident: 10.1016/j.tree.2021.06.005_bb0245
  article-title: Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(03)00184-5
– volume: 320
  start-page: 889
  year: 2008
  ident: 10.1016/j.tree.2021.06.005_bb0015
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
  doi: 10.1126/science.1136674
– volume: 96
  start-page: 2806
  year: 2015
  ident: 10.1016/j.tree.2021.06.005_bb0260
  article-title: Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems
  publication-title: Ecology
  doi: 10.1890/14-2228.1
– volume: 26
  start-page: 3585
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0020
  article-title: Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15071
– volume: 227
  start-page: 376
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0115
  article-title: Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake
  publication-title: New Phytol.
  doi: 10.1111/nph.16554
– volume: 76
  start-page: 183
  year: 2014
  ident: 10.1016/j.tree.2021.06.005_bb0085
  article-title: Rhizosphere priming effects on soil carbon and nitrogen mineralization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.04.033
– volume: 209
  start-page: 823
  year: 2016
  ident: 10.1016/j.tree.2021.06.005_bb0280
  article-title: Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize
  publication-title: New Phytol.
  doi: 10.1111/nph.13613
– volume: 202
  start-page: 1581
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0175
  article-title: The potential of arbuscular mycorrhizal fungi in C cycling: a review
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-020-01915-x
– volume: 458
  start-page: 277
  year: 2021
  ident: 10.1016/j.tree.2021.06.005_bb0090
  article-title: Differences in root exudate inputs and rhizosphere effects on soil N transformation between deciduous and evergreen trees
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04156-0
– volume: 221
  start-page: 233
  year: 2019
  ident: 10.1016/j.tree.2021.06.005_bb0255
  article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon
  publication-title: New Phytol.
  doi: 10.1111/nph.15361
– volume: 416
  start-page: 377
  year: 2017
  ident: 10.1016/j.tree.2021.06.005_bb0275
  article-title: Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3214-0
– volume: 25
  start-page: 967
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0365
  article-title: Tightening the phosphorus cycle through phosphorus-efficient crop genotypes
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2020.04.013
– volume: 267
  start-page: 41
  year: 2004
  ident: 10.1016/j.tree.2021.06.005_bb0140
  article-title: Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.)
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-2569-9
– volume: 144
  start-page: 107764
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0235
  article-title: Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107764
– volume: 22
  start-page: 934
  year: 2016
  ident: 10.1016/j.tree.2021.06.005_bb0025
  article-title: Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13125
– volume: 25
  start-page: 12
  year: 2019
  ident: 10.1016/j.tree.2021.06.005_bb0300
  article-title: Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14482
– volume: 218
  start-page: 1036
  year: 2018
  ident: 10.1016/j.tree.2021.06.005_bb0350
  article-title: Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition
  publication-title: New Phytol.
  doi: 10.1111/nph.15074
– volume: 85
  start-page: 909
  year: 2000
  ident: 10.1016/j.tree.2021.06.005_bb0060
  article-title: Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.)
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.2000.1135
– volume: 15
  start-page: 1870
  year: 2013
  ident: 10.1016/j.tree.2021.06.005_bb0210
  article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12081
– volume: 26
  start-page: 1725
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0180
  article-title: Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14851
– volume: 48
  start-page: 123
  year: 2012
  ident: 10.1016/j.tree.2021.06.005_bb0150
  article-title: Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-011-0653-2
– volume: 223
  start-page: 882
  year: 2019
  ident: 10.1016/j.tree.2021.06.005_bb0285
  article-title: Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species
  publication-title: New Phytol.
  doi: 10.1111/nph.15833
– volume: 7
  start-page: 162
  year: 2002
  ident: 10.1016/j.tree.2021.06.005_bb0380
  article-title: Cluster roots – an underground adaptation for survival in extreme environments
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)02241-0
– volume: 37
  start-page: 1276
  year: 2014
  ident: 10.1016/j.tree.2021.06.005_bb0400
  article-title: Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12240
– volume: 424
  start-page: 389
  year: 2018
  ident: 10.1016/j.tree.2021.06.005_bb0385
  article-title: The carboxylate composition of rhizosheath and root exudates from twelve species of grassland and crop legumes with special reference to the occurrence of citramalate
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3534-0
– volume: 5
  start-page: 465
  year: 2015
  ident: 10.1016/j.tree.2021.06.005_bb0030
  article-title: Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2549
– volume: 374
  start-page: 523
  year: 2014
  ident: 10.1016/j.tree.2021.06.005_bb0240
  article-title: Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation – a meta-analysis
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1899-2
– volume: 4
  start-page: 216
  year: 2013
  ident: 10.1016/j.tree.2021.06.005_bb0135
  article-title: Rhizosphere priming: a nutrient perspective
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2013.00216
– volume: 2
  start-page: 17105
  year: 2017
  ident: 10.1016/j.tree.2021.06.005_bb0310
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.105
– volume: 211
  start-page: 864
  year: 2016
  ident: 10.1016/j.tree.2021.06.005_bb0345
  article-title: Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation
  publication-title: New Phytol.
  doi: 10.1111/nph.13966
– volume: 124
  start-page: 1033
  year: 2019
  ident: 10.1016/j.tree.2021.06.005_bb0105
  article-title: Rhizosphere priming of two near-isogenic wheat lines varying in citrate efflux under different levels of phosphorus supply
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcz082
– volume: 84
  start-page: 168
  year: 2015
  ident: 10.1016/j.tree.2021.06.005_bb0070
  article-title: Organic acid induced release of nutrients from metal-stabilized soil organic matter – the unbutton model
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.02.019
– volume: 115
  start-page: 77
  year: 1990
  ident: 10.1016/j.tree.2021.06.005_bb0170
  article-title: Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1990.tb00924.x
– volume: 156
  start-page: 1041
  year: 2011
  ident: 10.1016/j.tree.2021.06.005_bb0370
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175414
– start-page: 241
  year: 2017
  ident: 10.1016/j.tree.2021.06.005_bb0250
  article-title: Mycorrhizas and soil aggregation
– start-page: 108189
  year: 2021
  ident: 10.1016/j.tree.2021.06.005_bb0305
  article-title: Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2021.108189
– volume: 110
  start-page: 329
  year: 2012
  ident: 10.1016/j.tree.2021.06.005_bb0375
  article-title: Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs130
– volume: 165
  start-page: 382
  year: 2002
  ident: 10.1016/j.tree.2021.06.005_bb0410
  article-title: Review: factors affecting rhizosphere priming effects
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#
– volume: 436
  start-page: 245
  year: 2019
  ident: 10.1016/j.tree.2021.06.005_bb0035
  article-title: Effects of nitrogen-phosphorus imbalance on plant biomass production: a global perspective
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-03927-5
– year: 2008
  ident: 10.1016/j.tree.2021.06.005_bb0160
– volume: 41
  start-page: 449
  year: 2009
  ident: 10.1016/j.tree.2021.06.005_bb0325
  article-title: Interactive effects of organic acids in the rhizosphere
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.10.034
– volume: 108
  start-page: 1874
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0050
  article-title: Below-ground-mediated and phase-dependent processes drive nitrogen-evoked community changes in grasslands
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13415
– volume: 1
  start-page: 1
  year: 2015
  ident: 10.1016/j.tree.2021.06.005_bb0290
  article-title: Phosphorus nutrition in Proteaceae and beyond
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.109
– volume: 368
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0010
  article-title: A plant’s diet, surviving in a variable nutrient environment
  publication-title: Science
  doi: 10.1126/science.aba0196
– volume: 222
  start-page: 1223
  year: 2019
  ident: 10.1016/j.tree.2021.06.005_bb0335
  article-title: Towards a more physiological representation of vegetation phosphorus processes in land surface models
  publication-title: New Phytol.
  doi: 10.1111/nph.15688
– volume: 17
  start-page: 319
  year: 1999
  ident: 10.1016/j.tree.2021.06.005_bb0215
  article-title: Phosphate solubilizing bacteria and their role in plant growth promotion
  publication-title: Biotechnol. Adv.
  doi: 10.1016/S0734-9750(99)00014-2
– volume: 109
  start-page: 927
  year: 2021
  ident: 10.1016/j.tree.2021.06.005_bb0270
  article-title: Processes at the soil–root interface determine the different responses of nutrient limitation and metal toxicity in forbs and grasses to nitrogen enrichment
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13519
– volume: 171
  start-page: 657
  year: 2006
  ident: 10.1016/j.tree.2021.06.005_bb0065
  article-title: Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01776.x
– volume: 300
  start-page: 1138
  year: 2003
  ident: 10.1016/j.tree.2021.06.005_bb0195
  article-title: Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C
  publication-title: Science
  doi: 10.1126/science.1084269
– volume: 121
  start-page: 61
  year: 2018
  ident: 10.1016/j.tree.2021.06.005_bb0110
  article-title: Root hairs increase rhizosphere extension and carbon input to soil
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcx127
– volume: 140
  start-page: 107641
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0230
  article-title: Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.107641
– volume: 40
  start-page: 1971
  year: 2008
  ident: 10.1016/j.tree.2021.06.005_bb0145
  article-title: Flavonoids of white lupin roots participate in phosphorus mobilization from soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.02.017
– volume: 20
  start-page: 2639
  year: 2018
  ident: 10.1016/j.tree.2021.06.005_bb0225
  article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14289
– year: 2019
  ident: 10.1016/j.tree.2021.06.005_bb0005
– volume: 45
  start-page: 248
  year: 2018
  ident: 10.1016/j.tree.2021.06.005_bb0360
  article-title: Phosphorus acquisition and utilisation in crop legumes under global change
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2018.05.012
– volume: 337
  start-page: 1084
  year: 2012
  ident: 10.1016/j.tree.2021.06.005_bb0200
  article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2
  publication-title: Science
  doi: 10.1126/science.1224304
– volume: 230
  start-page: 60
  year: 2021
  ident: 10.1016/j.tree.2021.06.005_bb0355
  article-title: Root effects on soil organic carbon: a double-edged sword
  publication-title: New Phytol.
  doi: 10.1111/nph.17082
– volume: 459
  start-page: 423
  year: 2021
  ident: 10.1016/j.tree.2021.06.005_bb0155
  article-title: Low soil phosphorus availability triggers maize growth stage specific rhizosphere processes leading to mineralization of organic P
  publication-title: Plant Soil
  doi: 10.1007/s11104-020-04774-z
– volume: 165
  start-page: 141
  year: 2002
  ident: 10.1016/j.tree.2021.06.005_bb0125
  article-title: Carbon storage in loess derived surface soils from Central Germany: influence of mineral phase variables
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/1522-2624(200204)165:2<141::AID-JPLN141>3.0.CO;2-X
– volume: 34
  start-page: 1521
  year: 2002
  ident: 10.1016/j.tree.2021.06.005_bb0190
  article-title: Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00126-8
– volume: 100
  start-page: 263
  year: 2013
  ident: 10.1016/j.tree.2021.06.005_bb0055
  article-title: How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupins (Lupinus, Fabaceae)
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.1200474
– volume: 121
  start-page: 16
  year: 2018
  ident: 10.1016/j.tree.2021.06.005_bb0100
  article-title: Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.03.002
– volume: 151
  start-page: 108039
  year: 2020
  ident: 10.1016/j.tree.2021.06.005_bb0340
  article-title: Modeling the dynamics of protected and primed organic carbon in soil and aggregates under constant soil moisture following litter incorporation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.108039
– volume: 29
  start-page: 69
  year: 2019
  ident: 10.1016/j.tree.2021.06.005_bb0220
  article-title: The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 43194 induces the gene expression of citrate synthase in the tricarboxylic acid cycle of the phosphate-solubilizing bacterium Rahnella aquatilis HX2
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-018-0871-7
– volume: 5
  start-page: 588
  year: 2015
  ident: 10.1016/j.tree.2021.06.005_bb0080
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2580
– volume: 528
  start-page: 60
  year: 2015
  ident: 10.1016/j.tree.2021.06.005_bb0130
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
  doi: 10.1038/nature16069
– volume: 220
  start-page: 1108
  year: 2018
  ident: 10.1016/j.tree.2021.06.005_bb0165
  article-title: Evolutionary history of mycorrhizal symbioses and global host plant diversity
  publication-title: New Phytol.
  doi: 10.1111/nph.14976
– volume: 25
  start-page: 3578
  year: 2019
  ident: 10.1016/j.tree.2021.06.005_bb0315
  article-title: Quantitative assessment of microbial necromass contribution to soil organic matter
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14781
– volume: 383
  start-page: 114784
  year: 2021
  ident: 10.1016/j.tree.2021.06.005_bb0295
  article-title: Organic-C quality as a key driver of microbial nitrogen immobilization in soil: a meta-analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114784
– volume: 20
  start-page: 83
  year: 2015
  ident: 10.1016/j.tree.2021.06.005_bb0075
  article-title: Leaf manganese accumulation and phosphorus-acquisition efficiency
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.10.007
– reference: 34740444 - Trends Ecol Evol. 2022 Jan;37(1):12-13
SSID ssj0000949
Score 2.664015
SecondaryResourceType review_article
Snippet Increased anthropogenic nitrogen (N) deposition is driving N-limited ecosystems towards phosphorus (P) limitation. Plants have evolved strategies to respond to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 899
SubjectTerms Carbon
Ecosystem
evolution
mineralization
Nitrogen
nitrogen mineralisation
Phosphorus
phosphorus acquisition
phosphorus utilisation
priming
rhizosphere
Soil
soil carbon
Soil Microbiology
soil organic matter
soil organic matter decomposition
Title Plant phosphorus-acquisition and -use strategies affect soil carbon cycling
URI https://dx.doi.org/10.1016/j.tree.2021.06.005
https://www.ncbi.nlm.nih.gov/pubmed/34246498
https://www.proquest.com/docview/2550620860
https://www.proquest.com/docview/2661006537
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdBLSR9pt4-gQm9F3bU1ku1jCBu2Dc2lDeQm9Np2S_Bu1_Yhl_z2jh5OKCR76MEgm5ERo5E0g775hpCPwpSNtLJmvgbDQLqaaeMkW3IpnA6VzWOS2LdzubiAr5fico-cjLkwAVaZ9_60p8fdOn-ZZm1ON6vV9HvgEREcMISJNeYD7TZAFaz8880dzAPDlybxezcsSOfEmYTxChe_GCOWReTwDCXs7j-cHnI-4yF0ekCeZu-RHqcBPiN7vn1OHqd6ktfYmtvcOpzfJbBhh7yCuxfkLFQp6unm17rDZzt0TNs_wyoht6huHWVD52nXjxQSVEfEB-3Wqytq9dagmL0OCZU_X5KL0_mPkwXLBRWYBSF6Vs3A1OgfFL52TTimXFNZ57nWYDAM0xj9VCCKyvEKpMDfiwasNiVfNq6oK84PyX67bv1rQkttPV_6GecOwPvCmHJpNDdCOnwr6wkpRk0qm9nGQ9GLKzXCyn6roH0VtK8itk5MyKfbPpvEtbFTWowTpP6xGIWHwc5-H8bZVLiUwv2Ibv166BRGVzNZYow32yGD_kzk860m5FUyhduxcihBQlO_-c-RvSVPwluCCr4j-_128O_R5enNUbTpI_Lo-MvZ4vwvb8z_TQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxKuwPI0EJ2R241eSAwcEW23ZthdaqTfjV2BRlV02idBe-FP8Qcax0woJ9oDUQyQnsSVr7MzMF38zg9BLYWgprSyIL7ghXLqCaOMkqZgUTofK5n2Q2NGxnJ3yj2fibAf9GmJhAq0y6f6o03ttnZ6MkzTHq8Vi_CnkERGMA4Tpa8zLxKyc-80PwG3N24MPsMivKN2fnryfkVRagFguREvyCTcFWMrMF64MCtuVuXWeac0NABINOCDnIssdy7kUuqpEya02lFWly4o8_AUFvX-Ng7oIZRPe_LzklQBeKmNC8ZKE6aVInUgqCyfNAEpp1icNDTXz_m4N_-Xt9lZv_za6ldxV_C5K5A7a8fVddD0WsNxAa2pTa296GTEHA5LKaO6heSiL1OLV12UD17priLbfu0WkimFdO0y6xuOmHXJWYN1TTHCzXJxjq9cGutlNiOD8ch-dXomY99Buvaz9Q4Sptp5VfsKY49z7zBhaGc2MkA7uaDFC2SBJZVN681Bl41wNPLZvKkhfBemrnswnRuj1xZhVTO6xtbcYFkj9sUUVWJ-t414Mq6ng2w0HMrr2y65RAOcmkgKonGzpAw5Un0A4H6EHcStczJVxyiUvi0f_ObPn6Mbs5OhQHR4czx-jm-FN5Ck-QbvtuvNPwd9qzbN-f2P0-ao_qN97gDmG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+phosphorus-acquisition+and+-use+strategies+affect+soil+carbon+cycling&rft.jtitle=Trends+in+ecology+%26+evolution+%28Amsterdam%29&rft.au=Ding%2C+Wenli&rft.au=Cong%2C+Wen-Feng&rft.au=Lambers%2C+Hans&rft.date=2021-10-01&rft.issn=0169-5347&rft.volume=36&rft.issue=10&rft.spage=899&rft.epage=906&rft_id=info:doi/10.1016%2Fj.tree.2021.06.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tree_2021_06_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-5347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-5347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-5347&client=summon