Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity

The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the o...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 17; p. 9326
Main Authors Hasanuzzaman, Mirza, Raihan, Md. Rakib Hossain, Masud, Abdul Awal Chowdhury, Rahman, Khussboo, Nowroz, Farzana, Rahman, Mira, Nahar, Kamrun, Fujita, Masayuki
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.
AbstractList The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.
The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.
Author Nowroz, Farzana
Rahman, Mira
Masud, Abdul Awal Chowdhury
Rahman, Khussboo
Nahar, Kamrun
Hasanuzzaman, Mirza
Fujita, Masayuki
Raihan, Md. Rakib Hossain
AuthorAffiliation 3 Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Japan
1 Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; rakib.raihan1406185@sau.edu.bd (M.R.H.R.); chy.masud3844@sau.edu.bd (A.A.C.M.); khussboorahman1305594@sau.edu.bd (K.R.); farzana.nowroz@sau.edu.bd (F.N.); mirarahman73@gmail.com (M.R.)
2 Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; knahar84@yahoo.com
AuthorAffiliation_xml – name: 2 Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; knahar84@yahoo.com
– name: 3 Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Japan
– name: 1 Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; rakib.raihan1406185@sau.edu.bd (M.R.H.R.); chy.masud3844@sau.edu.bd (A.A.C.M.); khussboorahman1305594@sau.edu.bd (K.R.); farzana.nowroz@sau.edu.bd (F.N.); mirarahman73@gmail.com (M.R.)
Author_xml – sequence: 1
  givenname: Mirza
  orcidid: 0000-0002-0461-8743
  surname: Hasanuzzaman
  fullname: Hasanuzzaman, Mirza
– sequence: 2
  givenname: Md. Rakib Hossain
  orcidid: 0000-0003-1358-6859
  surname: Raihan
  fullname: Raihan, Md. Rakib Hossain
– sequence: 3
  givenname: Abdul Awal Chowdhury
  orcidid: 0000-0001-5308-9975
  surname: Masud
  fullname: Masud, Abdul Awal Chowdhury
– sequence: 4
  givenname: Khussboo
  orcidid: 0000-0002-0511-407X
  surname: Rahman
  fullname: Rahman, Khussboo
– sequence: 5
  givenname: Farzana
  surname: Nowroz
  fullname: Nowroz, Farzana
– sequence: 6
  givenname: Mira
  orcidid: 0000-0003-0666-8434
  surname: Rahman
  fullname: Rahman, Mira
– sequence: 7
  givenname: Kamrun
  surname: Nahar
  fullname: Nahar, Kamrun
– sequence: 8
  givenname: Masayuki
  surname: Fujita
  fullname: Fujita, Masayuki
BookMark eNptkUlPHDEQhS1ExJbc8gMs5ZIDA3a53cslEmJJkJBAELhaXqonHvXYk3b3aObf4zAoGhCnKlV99VRP75DshhiQkK-cnQjRsFM_mycAXjUCyh1ywAuACWNltbvV75PDlGaMgQDZ7JF9UUgGIMQBebrH6djpwcdAY0vvUdvBL5HertZTDPRhgdZjojo4ehYytfJOh4FeYIshIfWB3nV5kOgYHPb0QXc--GH9mXxqdZfwy2s9Io9Xl7_Pf01ubn9en5_dTGwh5TAprSyMBGPAQCN4C66ptXG2NbYWTGZbrYayKC1qWTiDCEZg7WTJQZeideKI_NjoLkYzR2cxDL3u1KL3c92vVdRevd0E_0dN41LVhWAVVFng-6tAH_-OmAY198lil01hHJMCWfEG6ooXGf32Dp3FsQ_Z3gsFoi65yNTxhrJ9TKnH9v8znKl_gantwDIO73Drh5c48ru--_joGSv_m58
CitedBy_id crossref_primary_10_2478_fhort_2024_0016
crossref_primary_10_1080_17429145_2024_2395884
crossref_primary_10_3389_fpls_2022_1038672
crossref_primary_10_1016_j_nutos_2025_01_012
crossref_primary_10_3390_antiox13050554
crossref_primary_10_3390_ph17121672
crossref_primary_10_1007_s10661_023_12028_5
crossref_primary_10_3390_ijms23158455
crossref_primary_10_1016_j_stress_2024_100558
crossref_primary_10_3390_ijms23094810
crossref_primary_10_3390_su14126973
crossref_primary_10_1007_s10725_024_01230_1
crossref_primary_10_1007_s11104_024_06770_z
crossref_primary_10_1016_j_postharvbio_2024_113146
crossref_primary_10_1111_ppl_13950
crossref_primary_10_3390_ijms25179347
crossref_primary_10_3390_molecules30061196
crossref_primary_10_1007_s12298_023_01349_x
crossref_primary_10_3390_plants13111569
crossref_primary_10_3389_fpls_2023_1295674
crossref_primary_10_3390_stresses4020012
crossref_primary_10_1016_j_stress_2024_100563
crossref_primary_10_3390_ijms24043693
crossref_primary_10_1007_s10725_023_01070_5
crossref_primary_10_3389_fpls_2024_1398846
crossref_primary_10_3390_antiox11040671
crossref_primary_10_3390_ijms26062801
crossref_primary_10_5433_1679_0359_2024v44n2p555
crossref_primary_10_3390_ijms252312537
crossref_primary_10_3390_horticulturae10080858
crossref_primary_10_1111_ppl_14258
crossref_primary_10_3390_agriculture13071358
crossref_primary_10_1080_87559129_2024_2430652
crossref_primary_10_17221_459_2024_PSE
crossref_primary_10_3390_plants12081605
crossref_primary_10_3389_fpls_2024_1440445
crossref_primary_10_3390_plants12183310
crossref_primary_10_3390_agronomy13010174
crossref_primary_10_3390_plants13101312
crossref_primary_10_1007_s11104_024_06535_8
crossref_primary_10_1007_s42729_024_01776_z
crossref_primary_10_1016_j_jplph_2023_154103
crossref_primary_10_3389_fpls_2022_1012145
crossref_primary_10_3390_agronomy14071462
crossref_primary_10_1007_s11104_024_06618_6
crossref_primary_10_7717_peerj_17191
crossref_primary_10_3390_ijms242316968
crossref_primary_10_1016_j_cropd_2024_100052
crossref_primary_10_7717_peerj_19132
crossref_primary_10_3390_agronomy14091877
crossref_primary_10_1007_s11105_024_01450_9
crossref_primary_10_1016_j_postharvbio_2022_111988
crossref_primary_10_3390_ijms25136877
crossref_primary_10_3390_agriculture12101544
crossref_primary_10_1111_ppl_14026
crossref_primary_10_1002_fes3_70004
crossref_primary_10_1016_j_scitotenv_2024_171432
crossref_primary_10_3390_ijms24129793
crossref_primary_10_1111_pbi_14305
crossref_primary_10_1007_s42976_024_00504_8
crossref_primary_10_3389_fpls_2023_1278850
crossref_primary_10_3934_agrfood_2024039
crossref_primary_10_3390_plants11040537
crossref_primary_10_3390_plants14040616
crossref_primary_10_3389_fpls_2025_1528354
crossref_primary_10_3390_antiox12030601
crossref_primary_10_1080_15226514_2022_2164248
crossref_primary_10_1093_treephys_tpae082
crossref_primary_10_1016_j_envexpbot_2023_105397
crossref_primary_10_3390_ijms24119517
crossref_primary_10_1093_plphys_kiae335
crossref_primary_10_1038_s41598_025_86276_5
crossref_primary_10_3390_seeds3020018
crossref_primary_10_3390_agronomy14051079
crossref_primary_10_1007_s12298_023_01279_8
crossref_primary_10_1016_j_biortech_2022_127397
crossref_primary_10_1007_s42729_024_01676_2
crossref_primary_10_1029_2023WR036809
crossref_primary_10_1371_journal_pone_0267127
crossref_primary_10_1016_j_envexpbot_2024_105759
crossref_primary_10_1007_s42452_024_06426_8
crossref_primary_10_1016_j_ijbiomac_2024_132683
crossref_primary_10_2478_foecol_2023_0017
crossref_primary_10_3390_horticulturae10020170
crossref_primary_10_1016_j_jtemin_2024_100123
crossref_primary_10_1111_pce_14745
crossref_primary_10_32615_ps_2024_012
crossref_primary_10_3390_plants12142594
crossref_primary_10_2478_ausae_2022_0005
crossref_primary_10_3390_plants12040834
crossref_primary_10_13005_ojc_390621
crossref_primary_10_3390_ijms242015437
crossref_primary_10_1007_s13399_023_05103_x
crossref_primary_10_1590_1519_6984_283432
crossref_primary_10_3389_fpls_2022_995855
crossref_primary_10_1007_s10722_024_02056_6
crossref_primary_10_3390_agronomy12061419
crossref_primary_10_1016_j_plaphy_2024_109408
crossref_primary_10_3389_fpls_2025_1497064
crossref_primary_10_1007_s10725_024_01151_z
crossref_primary_10_3390_agronomy13061502
crossref_primary_10_3390_life13010061
crossref_primary_10_1016_j_bcab_2023_102892
crossref_primary_10_1016_j_plaphy_2023_108261
crossref_primary_10_3390_molecules28083599
crossref_primary_10_3390_plants13233280
crossref_primary_10_1016_j_sajb_2024_09_024
crossref_primary_10_1155_sci5_6302968
crossref_primary_10_1186_s12870_024_05609_0
crossref_primary_10_3390_plants11223113
crossref_primary_10_1016_j_jenvman_2024_121289
crossref_primary_10_3390_ijms26010331
crossref_primary_10_1590_1519_6984_275700
crossref_primary_10_1016_j_jhazmat_2025_138035
crossref_primary_10_30970_sbi_1804_794
crossref_primary_10_3389_fpls_2023_1296286
crossref_primary_10_1016_j_sajb_2022_11_020
crossref_primary_10_3390_ijms23041995
crossref_primary_10_61186_JCT_14_1_17
crossref_primary_10_3390_plants12193402
crossref_primary_10_3934_agrfood_2022046
crossref_primary_10_3390_soilsystems8010011
crossref_primary_10_1111_ppl_14452
crossref_primary_10_3390_plants11010098
crossref_primary_10_3389_fpls_2024_1347861
crossref_primary_10_3390_horticulturae11020157
crossref_primary_10_1016_j_plaphy_2025_109742
crossref_primary_10_1016_j_scienta_2024_113634
crossref_primary_10_1016_j_scienta_2024_113754
crossref_primary_10_3389_fmicb_2023_1085787
crossref_primary_10_3389_fmicb_2023_1171104
crossref_primary_10_1016_j_heliyon_2024_e27724
crossref_primary_10_3390_agriculture14101731
crossref_primary_10_3390_agronomy12102343
crossref_primary_10_3390_ijms24031953
crossref_primary_10_3389_fmicb_2024_1423980
crossref_primary_10_1080_02648725_2022_2131958
crossref_primary_10_3389_fpls_2022_962182
crossref_primary_10_1093_jxb_erad086
crossref_primary_10_3390_metabo14080420
crossref_primary_10_1016_j_envexpbot_2024_106076
crossref_primary_10_3390_su151511590
crossref_primary_10_3389_fsufs_2022_768250
crossref_primary_10_1039_D4NJ05538A
crossref_primary_10_1016_j_sajb_2023_07_014
crossref_primary_10_1111_ppl_14460
crossref_primary_10_1186_s12870_024_04998_6
crossref_primary_10_1016_j_ceja_2024_100677
crossref_primary_10_1016_j_jafr_2025_101649
crossref_primary_10_1016_j_sajb_2024_01_068
crossref_primary_10_1080_23311932_2024_2348695
crossref_primary_10_1111_ppl_70116
crossref_primary_10_1016_j_plaphy_2023_108281
crossref_primary_10_1002_bit_28891
crossref_primary_10_3390_plants12223906
crossref_primary_10_47115_bsagriculture_1229854
crossref_primary_10_3389_fagro_2023_1216503
crossref_primary_10_3389_fpls_2024_1504540
crossref_primary_10_7759_cureus_53091
crossref_primary_10_1016_j_heliyon_2024_e36093
crossref_primary_10_1016_j_scitotenv_2024_175270
crossref_primary_10_1007_s41207_024_00633_w
crossref_primary_10_1007_s42773_024_00355_w
crossref_primary_10_1016_j_jplph_2022_153827
crossref_primary_10_3390_plants12091834
crossref_primary_10_1016_j_plana_2024_100068
crossref_primary_10_1007_s12298_023_01357_x
crossref_primary_10_1371_journal_pone_0317463
crossref_primary_10_3389_fmicb_2022_991781
crossref_primary_10_3389_fpls_2022_1030938
crossref_primary_10_3390_plants13010092
crossref_primary_10_3390_soilsystems6010018
crossref_primary_10_1016_j_jgeb_2024_100432
crossref_primary_10_1016_j_plaphy_2025_109613
crossref_primary_10_3390_ijms23126376
crossref_primary_10_1186_s12934_023_02080_8
crossref_primary_10_1016_j_cbi_2024_111147
crossref_primary_10_1186_s12870_024_05709_x
crossref_primary_10_1016_j_jplph_2024_154321
crossref_primary_10_3389_fpls_2022_953450
crossref_primary_10_1186_s12864_024_10114_7
crossref_primary_10_1016_j_envres_2024_119566
crossref_primary_10_3389_fpls_2023_1342219
crossref_primary_10_3390_antiox10122017
crossref_primary_10_1080_23311932_2025_2472246
crossref_primary_10_3389_fpls_2022_894710
crossref_primary_10_3390_plants11091185
crossref_primary_10_1071_CP22086
crossref_primary_10_3390_app12157493
crossref_primary_10_3390_f14081686
crossref_primary_10_1007_s12649_024_02589_y
crossref_primary_10_3389_fpls_2025_1541736
crossref_primary_10_3390_agriculture14122184
crossref_primary_10_1007_s00344_024_11325_8
crossref_primary_10_1016_j_plaphy_2024_108999
crossref_primary_10_21448_ijsm_1335099
crossref_primary_10_12944_CARJ_12_2_05
crossref_primary_10_1097_SHK_0000000000002338
crossref_primary_10_1016_j_envexpbot_2024_105707
crossref_primary_10_1016_j_scienta_2024_113704
crossref_primary_10_3390_plants12112167
crossref_primary_10_3390_app15052575
crossref_primary_10_1016_j_plaphy_2024_109175
crossref_primary_10_1038_s41598_025_89055_4
crossref_primary_10_3390_plants14010100
crossref_primary_10_1007_s42729_024_02063_7
crossref_primary_10_1038_s41598_023_45041_2
crossref_primary_10_1016_j_stress_2025_100782
crossref_primary_10_3390_app14051733
crossref_primary_10_1007_s10725_025_01298_3
crossref_primary_10_15835_nbha50312820
crossref_primary_10_1007_s11738_023_03615_7
crossref_primary_10_1007_s44447_025_00002_1
crossref_primary_10_1016_j_stress_2025_100789
crossref_primary_10_3390_agronomy14020356
crossref_primary_10_3390_antiox11122362
crossref_primary_10_1016_j_scienta_2024_113818
crossref_primary_10_3390_plants13060848
crossref_primary_10_1016_j_envexpbot_2024_106001
crossref_primary_10_3389_fpls_2023_1135240
crossref_primary_10_1039_D3FB00113J
crossref_primary_10_1016_j_plaphy_2024_108644
crossref_primary_10_1016_j_sajb_2024_06_042
crossref_primary_10_3389_fpls_2024_1423949
crossref_primary_10_1016_j_heliyon_2023_e22439
crossref_primary_10_3390_plants12051115
crossref_primary_10_1016_j_bcab_2025_103536
crossref_primary_10_1186_s12870_024_05130_4
crossref_primary_10_1016_j_plaphy_2022_08_002
crossref_primary_10_3389_fpls_2023_1241736
crossref_primary_10_3390_horticulturae10060612
crossref_primary_10_1016_j_sajb_2024_03_039
crossref_primary_10_3390_agriculture13091719
crossref_primary_10_1016_j_indcrop_2024_119854
crossref_primary_10_1007_s12374_023_09406_4
crossref_primary_10_1007_s42729_023_01331_2
crossref_primary_10_3390_agronomy14010104
crossref_primary_10_3390_toxics13010018
crossref_primary_10_3390_agronomy13020493
crossref_primary_10_1016_j_ijbiomac_2025_142385
crossref_primary_10_1080_23311932_2024_2389445
crossref_primary_10_1007_s11274_023_03806_x
crossref_primary_10_3390_antiox11071240
crossref_primary_10_1007_s11356_024_33999_z
crossref_primary_10_1016_j_pmpp_2024_102383
crossref_primary_10_1007_s00344_024_11409_5
crossref_primary_10_1038_s41598_023_38403_3
crossref_primary_10_1016_j_fbio_2024_104213
crossref_primary_10_1016_j_plaphy_2024_109075
crossref_primary_10_2478_foecol_2025_0004
crossref_primary_10_1128_spectrum_04381_22
crossref_primary_10_3390_s24134228
crossref_primary_10_3390_agronomy12051032
crossref_primary_10_1186_s12870_024_04966_0
crossref_primary_10_1016_j_sajb_2023_03_001
crossref_primary_10_1007_s11105_024_01488_9
crossref_primary_10_1016_j_chemosphere_2024_142431
crossref_primary_10_1016_j_envexpbot_2023_105515
crossref_primary_10_1016_j_jarmap_2024_100619
crossref_primary_10_3389_fpls_2024_1504970
crossref_primary_10_3390_plants12102059
crossref_primary_10_3390_plants12081666
crossref_primary_10_1016_j_scitotenv_2023_161557
crossref_primary_10_3390_horticulturae11010069
crossref_primary_10_3390_ijms23063279
crossref_primary_10_1007_s10725_024_01241_y
crossref_primary_10_3390_agronomy13123076
crossref_primary_10_1111_pce_15438
crossref_primary_10_1016_j_plaphy_2022_01_031
crossref_primary_10_1016_j_jhazmat_2024_136648
crossref_primary_10_3390_plants13121698
crossref_primary_10_3390_plants14020180
crossref_primary_10_1016_j_chemosphere_2022_137649
crossref_primary_10_1186_s12870_025_06388_y
crossref_primary_10_3389_ffunb_2024_1355999
crossref_primary_10_3390_agronomy14030423
crossref_primary_10_1186_s12870_021_03274_1
crossref_primary_10_1007_s00344_023_11175_w
crossref_primary_10_1007_s44371_024_00046_2
crossref_primary_10_3390_j7010006
crossref_primary_10_3389_fpls_2022_874579
crossref_primary_10_1016_j_jafr_2025_101842
crossref_primary_10_3390_horticulturae9070785
crossref_primary_10_1002_agj2_21534
crossref_primary_10_7717_peerj_17043
crossref_primary_10_1186_s12864_025_11368_5
crossref_primary_10_1007_s11356_024_34187_9
crossref_primary_10_3389_fpls_2021_807739
crossref_primary_10_56093_aaz_v63i4_155494
crossref_primary_10_1186_s12870_024_05270_7
crossref_primary_10_1007_s11103_022_01282_9
crossref_primary_10_3390_antiox11020244
crossref_primary_10_3390_ijms25074111
crossref_primary_10_1016_j_rhisph_2024_100987
crossref_primary_10_1016_j_jenvman_2023_119759
crossref_primary_10_1139_cjb_2024_0070
crossref_primary_10_3390_plants13243550
crossref_primary_10_1007_s42729_024_01903_w
crossref_primary_10_1016_j_plantsci_2025_112390
crossref_primary_10_1038_s41598_024_67198_0
crossref_primary_10_1111_tpj_16660
crossref_primary_10_3390_agronomy13010016
crossref_primary_10_3390_ijms25010070
crossref_primary_10_3390_ijms25179355
crossref_primary_10_3390_plants12183238
crossref_primary_10_1016_j_scitotenv_2024_176870
crossref_primary_10_1016_j_scienta_2024_113114
crossref_primary_10_1093_jxb_erae211
crossref_primary_10_1186_s12870_023_04486_3
crossref_primary_10_3390_ijms26010085
crossref_primary_10_1186_s12870_024_04812_3
crossref_primary_10_1007_s00344_024_11295_x
crossref_primary_10_1038_s41598_025_92555_y
crossref_primary_10_3390_horticulturae10060656
crossref_primary_10_1007_s11248_024_00398_6
crossref_primary_10_1007_s42729_024_01754_5
crossref_primary_10_3390_agriculture14050732
crossref_primary_10_1007_s10811_022_02813_z
crossref_primary_10_1016_j_jia_2024_07_013
crossref_primary_10_1016_j_jenvman_2024_123420
crossref_primary_10_1007_s00344_024_11367_y
crossref_primary_10_1016_j_crmicr_2024_100299
crossref_primary_10_1016_j_rsci_2022_05_002
crossref_primary_10_1016_j_stress_2025_100816
crossref_primary_10_1007_s10341_024_01132_6
crossref_primary_10_1016_j_plaphy_2024_108860
crossref_primary_10_1016_j_plaphy_2024_109030
crossref_primary_10_3389_fmicb_2023_1208743
crossref_primary_10_1016_j_chemosphere_2022_137070
crossref_primary_10_3389_fpls_2025_1545835
crossref_primary_10_1007_s42729_024_02003_5
crossref_primary_10_1007_s11356_024_32283_4
crossref_primary_10_3389_fpls_2024_1451469
crossref_primary_10_3390_agronomy12061384
crossref_primary_10_1007_s42976_025_00628_5
crossref_primary_10_1007_s12038_024_00424_z
crossref_primary_10_1007_s42729_024_02125_w
crossref_primary_10_29130_dubited_1171221
crossref_primary_10_1016_j_agwat_2023_108275
crossref_primary_10_1016_j_plaphy_2023_108328
crossref_primary_10_3389_fpls_2024_1458540
crossref_primary_10_3389_fpls_2023_1284480
Cites_doi 10.1105/tpc.112.107227
10.3390/plants10051025
10.1016/j.plaphy.2008.10.006
10.1155/2012/217037
10.1016/j.redox.2019.101136
10.3390/biom11040587
10.1016/j.tplants.2016.08.002
10.1007/s12298-017-0496-x
10.3390/plants8020037
10.1007/s12298-017-0467-2
10.3390/ijms21228695
10.3389/fpls.2017.01871
10.1046/j.1365-3040.2002.00782.x
10.1007/s00299-020-02513-3
10.1038/srep35392
10.1155/2014/757219
10.1016/j.sajb.2017.09.007
10.1007/978-3-319-90318-7
10.1007/s00344-020-10122-3
10.1016/j.plaphy.2020.10.040
10.1111/ppl.13056
10.1016/j.plaphy.2020.11.007
10.1371/journal.pone.0136960
10.1111/pce.12947
10.1073/pnas.0706547105
10.1016/j.jplph.2014.10.020
10.3390/plants8060151
10.1007/s12298-020-00810-5
10.3390/plants10050886
10.1007/978-1-4614-4747-4
10.1111/jac.12169
10.1016/j.plantsci.2020.110609
10.3389/fpls.2015.00023
10.5772/intechopen.77838
10.1016/j.jplph.2018.02.006
10.3390/antiox8090384
10.1007/s11738-018-2769-6
10.3389/fpls.2015.01004
10.1111/nph.13519
10.1016/j.plantsci.2020.110435
10.1007/978-3-030-06118-0
10.1016/j.ecoenv.2014.03.014
10.20944/preprints201911.0358.v1
10.1111/jipb.12892
10.1002/9781119324928
10.1007/s00122-008-0720-8
10.1089/ars.2017.7164
10.3390/plants10020388
10.1007/s11105-017-1041-3
10.1016/j.envexpbot.2019.01.010
10.3390/ijms20061312
10.1007/s12374-015-0103-z
10.1186/1471-2229-10-151
10.3390/ijms19124019
10.3390/antiox9080681
10.1016/j.jplph.2014.12.014
10.1111/pbi.12773
10.3389/fmicb.2020.547750
10.1016/j.jplph.2010.11.001
10.1016/j.tplants.2020.06.008
10.4067/S0718-58392019000300415
10.3390/ijms19071912
10.3389/fpls.2016.00609
10.1242/dev.164376
10.1080/00103624.2016.1269803
10.1007/s11816-018-0480-0
10.1007/s00344-014-9440-2
10.1515/biolog-2017-0169
10.1111/j.1365-313X.2008.03627.x
10.1111/nph.14920
10.1007/s00344-009-9088-5
10.1371/journal.pone.0054002
10.1007/978-981-10-5254-5
10.3390/biology9090297
10.3389/fpls.2016.00548
10.1016/j.bbamcr.2016.01.001
10.1007/978-3-319-75088-0
10.2174/1381612822666160629070914
10.1016/j.plgene.2019.100173
10.1007/s12298-020-00894-z
10.3389/fpls.2016.01104
10.1155/2015/858016
10.1080/13102818.2018.1556120
10.1007/s00344-020-10185-2
10.1007/s11240-014-0424-5
10.5772/intechopen.83521
10.1371/journal.pone.0087110
10.1080/15592324.2019.1600394
10.1146/annurev.arplant.59.032607.092911
10.1007/s00299-015-1770-4
10.1007/s00344-018-9849-0
10.1007/978-3-030-40277-8
10.1007/s11103-016-0488-1
10.1093/dnares/dsq011
10.1002/jsfa.10076
10.1371/journal.pone.0222659
10.1186/s42269-019-0156-0
10.1016/j.gene.2014.06.037
10.1590/1678-4499.2017185
10.1016/j.plaphy.2020.04.035
10.1104/pp.111.177071
10.1016/j.envexpbot.2015.08.002
10.1007/s11306-011-0296-1
10.3389/fpls.2015.00427
10.1093/jxb/erz302
10.1371/journal.pone.0032124
10.1016/j.plaphy.2021.04.024
10.3390/antiox10020277
10.1007/s11738-020-3032-5
10.1016/j.sajb.2016.03.011
10.1007/s00344-021-10381-8
10.1093/jxb/eru528
10.1016/j.cub.2020.02.002
10.1016/j.bcab.2017.11.003
10.1016/j.envexpbot.2017.02.010
10.1007/s00709-011-0365-3
10.1016/j.jplph.2015.02.006
10.3389/fpls.2019.00319
10.1371/journal.pone.0228241
10.1007/s12011-011-8958-4
10.1093/jxb/erp198
10.1007/s11356-014-3917-1
10.1007/s13580-019-00189-7
10.1007/s12298-016-0371-1
10.3390/agronomy10010127
10.1016/j.plaphy.2018.06.036
10.1007/978-81-322-3941-3
10.1016/j.pld.2019.10.002
10.1007/s00344-017-9737-z
10.14348/molcells.2016.2324
10.1016/j.indcrop.2019.04.055
10.1111/plb.13187
10.1104/pp.16.00359
10.1007/s12298-021-01009-y
10.1111/nph.15985
10.3389/fpls.2014.00151
10.1016/j.envexpbot.2013.12.006
10.1007/s00425-011-1379-y
10.1016/j.sajb.2016.11.003
10.1007/s11816-011-0189-9
10.1007/s10725-005-4928-1
10.1016/j.scienta.2019.108596
10.1155/2016/8231873
10.3390/antiox8090350
10.1104/pp.16.00166
10.1007/s10535-015-0523-0
10.1016/j.cub.2006.04.030
10.3390/plants10061040
10.1016/j.plantsci.2018.11.004
10.3390/antiox8120641
10.1111/nph.13507
10.1093/aob/mcv098
10.17221/22/2015-PSE
10.3390/biom11060788
10.1371/journal.pone.0248207
10.1016/j.plaphy.2018.10.025
10.3389/fpls.2018.00275
10.3389/fenvs.2014.00053
10.1007/s12298-016-0394-7
10.3390/plants8080247
10.3389/fpls.2017.01353
10.1104/pp.108.122325
10.1007/s13562-012-0107-4
10.1007/s00425-006-0417-7
10.3390/antiox10040611
10.1371/journal.pone.0126783
10.1007/s00344-015-9490-0
10.7717/peerj.10486
10.3389/fpls.2017.01372
10.1080/17429145.2020.1722266
10.1093/jxb/err280
10.3390/ijms20051176
10.1007/978-981-10-7479-0
10.1016/j.plaphy.2016.09.003
10.3390/antiox8040105
10.1093/jxb/ert430
10.1016/j.sjbs.2021.04.040
10.3390/ijms20102408
10.1371/journal.pgen.1004664
10.1016/j.plaphy.2020.02.030
10.1016/j.envpol.2017.05.083
10.3390/plants10010180
10.1007/s10343-018-0430-3
10.1089/ars.2008.2177
10.1093/jxb/ert085
10.1111/pce.13021
10.1007/s11738-017-2521-7
10.1016/j.envexpbot.2016.07.002
10.1371/journal.pone.0156398
10.1016/j.tplants.2019.05.010
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms22179326
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8430727
10_3390_ijms22179326
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c455t-6c54b52bb2b2931f2d98abdcfbc8305221fa2646cea54dbee2b3e8d5612a63fd3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:28:03 EDT 2025
Fri Jul 11 05:48:48 EDT 2025
Fri Jul 25 20:06:30 EDT 2025
Tue Jul 01 03:07:49 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-6c54b52bb2b2931f2d98abdcfbc8305221fa2646cea54dbee2b3e8d5612a63fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0461-8743
0000-0003-1358-6859
0000-0003-0666-8434
0000-0002-0511-407X
0000-0001-5308-9975
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22179326
PMID 34502233
PQID 2571238613
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8430727
proquest_miscellaneous_2571928714
proquest_journals_2571238613
crossref_primary_10_3390_ijms22179326
crossref_citationtrail_10_3390_ijms22179326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210828
PublicationDateYYYYMMDD 2021-08-28
PublicationDate_xml – month: 8
  year: 2021
  text: 20210828
  day: 28
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle International journal of molecular sciences
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
ref_137
ref_136
(ref_138) 2011; 10
ref_90
Hasanuzzaman (ref_99) 2011; 5
ref_130
ref_132
ref_96
ref_135
Iqbal (ref_106) 2015; 178
ref_134
Duan (ref_159) 2013; 25
Mishra (ref_184) 2013; 250
Higuchi (ref_169) 2006; 16
Shu (ref_51) 2017; 8
ref_127
Iqbal (ref_166) 2014; 100
Mittler (ref_40) 2008; 147
ref_122
ref_124
ref_123
Ryu (ref_150) 2015; 58
Hossain (ref_64) 2017; 113
(ref_178) 2005; 45
Yang (ref_195) 2014; 117
Javid (ref_172) 2011; 5
ref_76
ref_75
ref_73
ref_156
Ahmad (ref_133) 2020; 23
Ali (ref_93) 2021; 28
ref_160
(ref_44) 2016; 26
Raja (ref_28) 2017; 137
Ahammed (ref_113) 2018; 37
Derbali (ref_97) 2020; 15
Hasanuzzaman (ref_100) 2011; 143
ref_147
ref_81
ref_149
Tognetti (ref_161) 2017; 11
Wang (ref_171) 2015; 6
Kwon (ref_58) 2019; 60
Foyer (ref_36) 2009; 11
ref_85
ref_146
Xiong (ref_143) 2002; 25
Huang (ref_34) 2016; 171
Yang (ref_139) 2018; 217
Boughalleb (ref_78) 2017; 72
Yu (ref_152) 2019; 70
Jahan (ref_79) 2020; 168
Babu (ref_48) 2012; 22
Zhu (ref_74) 2019; 79
Nahar (ref_67) 2016; 7
Cabot (ref_153) 2009; 28
Tyagi (ref_186) 2018; 223
Gurmani (ref_154) 2011; 5
Borrelli (ref_71) 2018; 133
Kumar (ref_111) 2018; 13
Singh (ref_33) 2019; 18
Heyno (ref_30) 2011; 234
Talaat (ref_105) 2015; 34
Geilfus (ref_91) 2015; 208
Shafi (ref_192) 2017; 35
Tran (ref_170) 2007; 104
Das (ref_45) 2014; 2
Yan (ref_198) 2016; 109
Sun (ref_182) 2020; 30
Costan (ref_87) 2020; 100
ref_115
ref_116
Jing (ref_190) 2015; 6
ref_118
Rahman (ref_70) 2016; 22
Mazher (ref_57) 2007; 3
Shakirova (ref_32) 2016; 122
Manai (ref_102) 2014; 14
Hasanuzzaman (ref_145) 2018; 12
Ma (ref_155) 2012; 63
Reumann (ref_38) 2016; 1863
Hasanuzzaman (ref_114) 2018; 70
Huang (ref_142) 2019; 224
Guan (ref_191) 2015; 175
ref_107
Zheng (ref_179) 2018; 24
Kumari (ref_104) 2015; 34
Chawla (ref_101) 2013; 22
Bela (ref_126) 2015; 176
Abderrahim (ref_108) 2016; 105
Park (ref_162) 2011; 156
ref_13
Farooq (ref_84) 2017; 203
ref_11
Mittler (ref_10) 2017; 22
Islam (ref_89) 2018; 77
Kurusu (ref_141) 2015; 6
Kaur (ref_110) 2017; 39
ref_19
ref_18
Hossain (ref_6) 2016; 7
ref_17
ref_16
ref_15
Kumar (ref_39) 2015; 116
Bao (ref_163) 2020; 62
Bistgani (ref_55) 2019; 135
Saxena (ref_200) 2020; 42
ref_25
ref_24
Derbali (ref_98) 2021; 164
Bose (ref_66) 2014; 65
ref_21
ref_20
Lehmann (ref_47) 2012; 8
ref_29
Wu (ref_54) 2015; 61
ref_27
Zhang (ref_144) 2016; 91
Jayakannan (ref_177) 2015; 66
Eltayeb (ref_193) 2007; 225
Liebthal (ref_125) 2018; 28
Nazar (ref_176) 2011; 168
Rossi (ref_77) 2017; 229
Mohsin (ref_120) 2020; 26
Qiu (ref_173) 2014; 104
Yu (ref_22) 2020; 25
Singh (ref_148) 2017; 8
Wang (ref_3) 2019; 10
Mohsin (ref_60) 2020; 152
Choudhary (ref_12) 2020; 42
Munns (ref_14) 2008; 59
Rao (ref_157) 2010; 17
Golldack (ref_140) 2014; 5
Ramadan (ref_82) 2019; 43
Sehar (ref_80) 2019; 161
Yadu (ref_109) 2017; 23
ref_53
ref_52
Liu (ref_174) 2019; 280
Singh (ref_196) 2014; 547
ref_180
Ali (ref_129) 2021; 158
Noreen (ref_83) 2021; 158
ref_59
Magome (ref_164) 2008; 56
ref_181
Jiang (ref_131) 2021; 27
Lu (ref_158) 2009; 47
Podgorska (ref_26) 2017; 8
ref_61
Osman (ref_121) 2021; 40
Parvin (ref_56) 2020; 150
Kerchev (ref_35) 2016; 171
Jayakannan (ref_175) 2013; 64
ref_165
ref_63
Arefian (ref_112) 2018; 37
ref_62
ref_167
Zhang (ref_88) 2017; 48
Villalta (ref_72) 2008; 116
Wutipraditkul (ref_103) 2015; 59
Rahman (ref_69) 2016; 7
Filiz (ref_189) 2018; 33
Siddiqui (ref_92) 2020; 39
Khanam (ref_86) 2018; 40
Nxele (ref_95) 2017; 108
Cunha (ref_128) 2016; 131
Joshi (ref_168) 2018; 41
Zeng (ref_65) 2018; 16
ref_194
Rossatto (ref_185) 2017; 23
Negi (ref_197) 2015; 34
ref_199
Witzel (ref_187) 2009; 60
ref_37
Liu (ref_119) 2020; 39
Dietz (ref_31) 2016; 39
Mekawya (ref_68) 2018; 130
Yang (ref_151) 2019; 24
Munns (ref_9) 2015; 208
ref_46
ref_183
Liu (ref_50) 2018; 9
ref_188
ref_42
ref_41
ref_1
ref_2
Mailloux (ref_23) 2016; 22
Kapoor (ref_117) 2020; 26
Anjum (ref_43) 2015; 22
ref_49
ref_8
ref_5
ref_4
ref_7
References_xml – volume: 25
  start-page: 324
  year: 2013
  ident: ref_159
  article-title: Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.107227
– ident: ref_122
  doi: 10.3390/plants10051025
– volume: 47
  start-page: 132
  year: 2009
  ident: ref_158
  article-title: Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO induced antioxidant enzyme activities
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2008.10.006
– ident: ref_29
  doi: 10.1155/2012/217037
– ident: ref_42
  doi: 10.1016/j.redox.2019.101136
– ident: ref_123
  doi: 10.3390/biom11040587
– volume: 22
  start-page: 11
  year: 2017
  ident: ref_10
  article-title: ROS are good
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.08.002
– volume: 24
  start-page: 231
  year: 2018
  ident: ref_179
  article-title: Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-017-0496-x
– ident: ref_37
  doi: 10.3390/plants8020037
– volume: 23
  start-page: 865
  year: 2017
  ident: ref_185
  article-title: Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-017-0467-2
– ident: ref_24
  doi: 10.3390/ijms21228695
– volume: 8
  start-page: 1871
  year: 2017
  ident: ref_148
  article-title: Editorial: Phytohormones and the regulation of stress tolerance in plants: Current status and future directions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01871
– volume: 25
  start-page: 131
  year: 2002
  ident: ref_143
  article-title: Molecular and genetic aspects of plant responses to osmotic stress
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2002.00782.x
– volume: 39
  start-page: 567
  year: 2020
  ident: ref_119
  article-title: Hydrogen peroxide alleviates salinity-induced damage through enhancing proline accumulation in wheat seedlings
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-020-02513-3
– ident: ref_181
  doi: 10.1038/srep35392
– ident: ref_73
  doi: 10.1155/2014/757219
– volume: 113
  start-page: 346
  year: 2017
  ident: ref_64
  article-title: Use of iso-osmotic solution to understand salt stress responses in lentil (Lens culinaris Medik.)
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2017.09.007
– ident: ref_147
  doi: 10.1007/978-3-319-90318-7
– ident: ref_4
– volume: 39
  start-page: 1488
  year: 2020
  ident: ref_92
  article-title: Melatonin and gibberellic acid promote growth and chlorophyll biosynthesis by regulating antioxidant and methylglyoxal detoxification system in tomato seedlings under salinity
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-020-10122-3
– volume: 3
  start-page: 386
  year: 2007
  ident: ref_57
  article-title: Responses of ornamental and woody trees to salinity
  publication-title: World J. Agric. Sci.
– volume: 158
  start-page: 208
  year: 2021
  ident: ref_129
  article-title: Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.10.040
– volume: 168
  start-page: 490
  year: 2020
  ident: ref_79
  article-title: Treatment of nitric oxide supplemented with nitrogen and sulfur regulates photosynthetic performance and stomatal behavior in mustard under salt stress
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.13056
– volume: 14
  start-page: 433
  year: 2014
  ident: ref_102
  article-title: Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 158
  start-page: 244
  year: 2021
  ident: ref_83
  article-title: Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.11.007
– ident: ref_127
  doi: 10.1371/journal.pone.0136960
– volume: 41
  start-page: 936
  year: 2018
  ident: ref_168
  article-title: Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12947
– volume: 104
  start-page: 20623
  year: 2007
  ident: ref_170
  article-title: Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0706547105
– volume: 175
  start-page: 183
  year: 2015
  ident: ref_191
  article-title: A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2014.10.020
– ident: ref_62
  doi: 10.3390/plants8060151
– volume: 26
  start-page: 1139
  year: 2020
  ident: ref_120
  article-title: Tebuconazole and trifloxystrobin regulate the physiology, antioxidant defense and methylglyoxal detoxification systems in conferring salt stress tolerance in Triticum aestivum L.
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-020-00810-5
– ident: ref_137
  doi: 10.3390/plants10050886
– ident: ref_5
  doi: 10.1007/978-1-4614-4747-4
– volume: 203
  start-page: 81
  year: 2017
  ident: ref_84
  article-title: Draught stress in grain legume during reproduction and grain filling
  publication-title: J. Agron. Crop. Sci.
  doi: 10.1111/jac.12169
– ident: ref_199
  doi: 10.1016/j.plantsci.2020.110609
– volume: 6
  start-page: 23
  year: 2015
  ident: ref_190
  article-title: Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00023
– ident: ref_21
  doi: 10.5772/intechopen.77838
– volume: 223
  start-page: 19
  year: 2018
  ident: ref_186
  article-title: Gene architecture and expression analyses provide insights into the role of glutathione peroxidases (GPXs) in bread wheat (Triticum aestivum L.)
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2018.02.006
– ident: ref_8
  doi: 10.3390/antiox8090384
– volume: 10
  start-page: 5972
  year: 2011
  ident: ref_138
  article-title: Antioxidative and proline potentials as a protective mechanism in soybean plants under salinity stress
  publication-title: Afr. J. Biotechnol.
– volume: 40
  start-page: 188
  year: 2018
  ident: ref_86
  article-title: Plant growth regulators ameliorate the ill effect of salt stress through improved growth, photosynthesis, antioxidant system, yield and quality attributes in Mentha piperita L.
  publication-title: Acta Physiol. Plant
  doi: 10.1007/s11738-018-2769-6
– volume: 6
  start-page: 1004
  year: 2015
  ident: ref_171
  article-title: Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.01004
– volume: 208
  start-page: 668
  year: 2015
  ident: ref_9
  article-title: Salinity tolerance of crops—What is the cost?
  publication-title: New Phytol.
  doi: 10.1111/nph.13519
– ident: ref_52
  doi: 10.1016/j.plantsci.2020.110435
– ident: ref_15
  doi: 10.1007/978-3-030-06118-0
– volume: 104
  start-page: 202
  year: 2014
  ident: ref_173
  article-title: Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2014.03.014
– ident: ref_116
  doi: 10.20944/preprints201911.0358.v1
– volume: 62
  start-page: 118
  year: 2020
  ident: ref_163
  article-title: New insights into gibberellin signaling in regulating flowering in Arabidopsis
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12892
– ident: ref_46
  doi: 10.1002/9781119324928
– volume: 116
  start-page: 869
  year: 2008
  ident: ref_72
  article-title: Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in tomato
  publication-title: Theor. Appl. Gene
  doi: 10.1007/s00122-008-0720-8
– volume: 28
  start-page: 609
  year: 2018
  ident: ref_125
  article-title: Peroxiredoxins and redox signaling in plants
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2017.7164
– ident: ref_130
  doi: 10.3390/plants10020388
– volume: 35
  start-page: 504
  year: 2017
  ident: ref_192
  article-title: Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance
  publication-title: Plant Mol. Biol. Rep.
  doi: 10.1007/s11105-017-1041-3
– volume: 22
  start-page: 159
  year: 2012
  ident: ref_48
  article-title: The effect of salinity on growth, hormones and mineral elements in leaf and fruit of tomato cultivar PKM1
  publication-title: J. Anim. Plant Sci.
– volume: 161
  start-page: 277
  year: 2019
  ident: ref_80
  article-title: Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2019.01.010
– ident: ref_18
  doi: 10.3390/ijms20061312
– ident: ref_49
– volume: 58
  start-page: 147
  year: 2015
  ident: ref_150
  article-title: Plant hormones in salt stress tolerance
  publication-title: J. Plant Biol.
  doi: 10.1007/s12374-015-0103-z
– ident: ref_183
  doi: 10.1186/1471-2229-10-151
– ident: ref_17
  doi: 10.3390/ijms19124019
– ident: ref_2
  doi: 10.3390/antiox9080681
– volume: 176
  start-page: 192
  year: 2015
  ident: ref_126
  article-title: Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2014.12.014
– volume: 16
  start-page: 310
  year: 2018
  ident: ref_65
  article-title: Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12773
– ident: ref_59
  doi: 10.3389/fmicb.2020.547750
– volume: 168
  start-page: 807
  year: 2011
  ident: ref_176
  article-title: Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2010.11.001
– volume: 25
  start-page: 1117
  year: 2020
  ident: ref_22
  article-title: How plant hormones mediate salt stress responses
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2020.06.008
– volume: 79
  start-page: 415
  year: 2019
  ident: ref_74
  article-title: Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress
  publication-title: Chilean J. Agric. Res.
  doi: 10.4067/S0718-58392019000300415
– ident: ref_20
  doi: 10.3390/ijms19071912
– volume: 7
  start-page: 609
  year: 2016
  ident: ref_69
  article-title: Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00609
– volume: 5
  start-page: 1278
  year: 2011
  ident: ref_154
  article-title: Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.)
  publication-title: Aust. J. Crop. Sci.
– ident: ref_16
  doi: 10.1242/dev.164376
– volume: 48
  start-page: 624
  year: 2017
  ident: ref_88
  article-title: Effects of salinity stress at different growth stages on tomato growth, yield and water use efficiency
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103624.2016.1269803
– volume: 12
  start-page: 77
  year: 2018
  ident: ref_145
  article-title: Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions
  publication-title: Plant Biotechnol. Rep.
  doi: 10.1007/s11816-018-0480-0
– volume: 34
  start-page: 35
  year: 2015
  ident: ref_105
  article-title: Effective microorganisms improve growth performance and modulate the ROS-scavenging system in common bean (Phaseolus vulgaris L.) plants exposed to salinity stress
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-014-9440-2
– volume: 72
  start-page: 1454
  year: 2017
  ident: ref_78
  article-title: Effect of NaCl stress on physiological, antioxidant enzymes and anatomical responses of Astragalus gombiformis
  publication-title: Biologia
  doi: 10.1515/biolog-2017-0169
– volume: 56
  start-page: 613
  year: 2008
  ident: ref_164
  article-title: The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03627.x
– volume: 217
  start-page: 523
  year: 2018
  ident: ref_139
  article-title: Elucidating the molecular mechanisms mediating plant salt-stress responses
  publication-title: New Phytol.
  doi: 10.1111/nph.14920
– volume: 28
  start-page: 187
  year: 2009
  ident: ref_153
  article-title: Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L.
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-009-9088-5
– ident: ref_194
  doi: 10.1371/journal.pone.0054002
– ident: ref_146
  doi: 10.1007/978-981-10-5254-5
– ident: ref_76
  doi: 10.3390/biology9090297
– volume: 7
  start-page: 548
  year: 2016
  ident: ref_6
  article-title: Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00548
– volume: 1863
  start-page: 790
  year: 2016
  ident: ref_38
  article-title: Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s)
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2016.01.001
– ident: ref_124
  doi: 10.1007/978-3-319-75088-0
– volume: 22
  start-page: 4763
  year: 2016
  ident: ref_23
  article-title: Application of mitochondria-targeted pharmaceuticals for the treatment of heart disease
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612822666160629070914
– volume: 18
  start-page: 100
  year: 2019
  ident: ref_33
  article-title: Reactive oxygen species-mediated signaling during abiotic stress
  publication-title: Plant Gene
  doi: 10.1016/j.plgene.2019.100173
– volume: 26
  start-page: 1950
  year: 2016
  ident: ref_44
  article-title: Production of reactive oxygen species by photosystem II as a response to light and temperature stress
  publication-title: Front. Plant Sci.
– volume: 26
  start-page: 2125
  year: 2020
  ident: ref_117
  article-title: Exogenous kinetin and putrescine synergistically mitigate salt stress in Luffa acutangula by modulating physiology and antioxidant defense
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-020-00894-z
– volume: 7
  start-page: 1104
  year: 2016
  ident: ref_67
  article-title: Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01104
– ident: ref_94
  doi: 10.1155/2015/858016
– volume: 33
  start-page: 128
  year: 2018
  ident: ref_189
  article-title: Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: Microarray data evaluation
  publication-title: Biotechnol. Biotechnol. Equip.
  doi: 10.1080/13102818.2018.1556120
– volume: 40
  start-page: 1245
  year: 2021
  ident: ref_121
  article-title: Ameliorative impact of an extract of the halophyte Arthrocnemum macrostachyum on growth and biochemical parameters of soybean under salinity stress
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-020-10185-2
– volume: 117
  start-page: 99
  year: 2014
  ident: ref_195
  article-title: Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species
  publication-title: Plant Cell Tissue Organ. Cult.
  doi: 10.1007/s11240-014-0424-5
– ident: ref_1
  doi: 10.5772/intechopen.83521
– ident: ref_165
  doi: 10.1371/journal.pone.0087110
– ident: ref_160
  doi: 10.1080/15592324.2019.1600394
– volume: 59
  start-page: 651
  year: 2008
  ident: ref_14
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 34
  start-page: 1109
  year: 2015
  ident: ref_197
  article-title: Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-015-1770-4
– volume: 37
  start-page: 1349
  year: 2018
  ident: ref_113
  article-title: Epigallocatechin-3-gallate alleviates salinity-retarded seed germination and oxidative stress in tomato
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-018-9849-0
– ident: ref_90
  doi: 10.1007/978-3-030-40277-8
– volume: 91
  start-page: 651
  year: 2016
  ident: ref_144
  article-title: The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-016-0488-1
– volume: 17
  start-page: 139
  year: 2010
  ident: ref_157
  article-title: In silico analysis reveals 75 members of mitogen-activated protein kinase gene family in rice
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsq011
– volume: 100
  start-page: 732
  year: 2020
  ident: ref_87
  article-title: Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf-life of fruit produced hydroponically
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.10076
– ident: ref_53
  doi: 10.1371/journal.pone.0222659
– volume: 43
  start-page: 118
  year: 2019
  ident: ref_82
  article-title: Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions
  publication-title: Bull. Natl. Res. Cent.
  doi: 10.1186/s42269-019-0156-0
– volume: 547
  start-page: 119
  year: 2014
  ident: ref_196
  article-title: Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea)
  publication-title: Gene
  doi: 10.1016/j.gene.2014.06.037
– volume: 77
  start-page: 385
  year: 2018
  ident: ref_89
  article-title: Nutrient and salinity concentrations effects on quality and storability of cherry tomato fruits grown by hydroponic system
  publication-title: Bragantia
  doi: 10.1590/1678-4499.2017185
– volume: 152
  start-page: 221
  year: 2020
  ident: ref_60
  article-title: Pretreatment of wheat (Triticum aestivum L.) seedlings with 2,4-D improves tolerance to salinity-induced oxidative stress and methylglyoxal toxicity by modulating ion homeostasis, antioxidant defenses, and glyoxalase systems
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.04.035
– volume: 156
  start-page: 537
  year: 2011
  ident: ref_162
  article-title: Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.177071
– volume: 122
  start-page: 19
  year: 2016
  ident: ref_32
  article-title: Salicylic acid-induced protection against cadmium toxicity in wheat plants
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2015.08.002
– volume: 8
  start-page: 143
  year: 2012
  ident: ref_47
  article-title: Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0296-1
– volume: 6
  start-page: 427
  year: 2015
  ident: ref_141
  article-title: Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00427
– volume: 70
  start-page: 5457
  year: 2019
  ident: ref_152
  article-title: CEPR2 phosphorylates and accelerates the degradation of PYR/PYLs in Arabidopsis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz302
– ident: ref_167
  doi: 10.1371/journal.pone.0032124
– volume: 164
  start-page: 222
  year: 2021
  ident: ref_98
  article-title: Post-stress restorative response of two quinoa genotypes differing in their salt resistance after salinity release
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2021.04.024
– ident: ref_13
  doi: 10.3390/antiox10020277
– volume: 42
  start-page: 45
  year: 2020
  ident: ref_200
  article-title: Ectopic overexpression of cytosolic ascorbate peroxidase gene (Apx1) improves salinity stress tolerance in Brassica juncea by strengthening antioxidative defense mechanism
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-020-3032-5
– volume: 105
  start-page: 306
  year: 2016
  ident: ref_108
  article-title: Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L.
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2016.03.011
– ident: ref_134
  doi: 10.1007/s00344-021-10381-8
– volume: 66
  start-page: 1865
  year: 2015
  ident: ref_177
  article-title: The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru528
– volume: 30
  start-page: 1579
  year: 2020
  ident: ref_182
  article-title: PIN-LIKES coordinate brassinosteroid signaling with nuclear auxin input in Arabidopsis thaliana
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.02.002
– volume: 13
  start-page: 12
  year: 2018
  ident: ref_111
  article-title: Differential behavior of the antioxidant system in response to salinity induced oxidative stress in salt-tolerant and salt-sensitive cultivars of Brassica juncea L.
  publication-title: Biocatal. Agric. Biotechnol.
  doi: 10.1016/j.bcab.2017.11.003
– volume: 137
  start-page: 142
  year: 2017
  ident: ref_28
  article-title: Abiotic stress: Interplay between ROS, hormones and MAPKs
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2017.02.010
– volume: 250
  start-page: 3
  year: 2013
  ident: ref_184
  article-title: Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings
  publication-title: Protoplasma
  doi: 10.1007/s00709-011-0365-3
– volume: 178
  start-page: 84
  year: 2015
  ident: ref_106
  article-title: Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea)
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2015.02.006
– volume: 10
  start-page: 319
  year: 2019
  ident: ref_3
  article-title: Modulation of ethylene and ascorbic acid on reactive oxygen species scavenging in plant salt response
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00319
– ident: ref_136
  doi: 10.1371/journal.pone.0228241
– volume: 143
  start-page: 1704
  year: 2011
  ident: ref_100
  article-title: Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/s12011-011-8958-4
– volume: 60
  start-page: 3545
  year: 2009
  ident: ref_187
  article-title: Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp198
– volume: 22
  start-page: 4099
  year: 2015
  ident: ref_43
  article-title: Lipids and proteins—Major targets of oxidative modifications in abiotic stressed plants
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3917-1
– volume: 60
  start-page: 831
  year: 2019
  ident: ref_58
  article-title: Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus)
  publication-title: Hortic. Environ. Biotechnol.
  doi: 10.1007/s13580-019-00189-7
– volume: 22
  start-page: 291
  year: 2016
  ident: ref_70
  article-title: Manganese-induced salt stress tolerance in rice seedlings: Regulation of ion homeostasis, antioxidant defense and glyoxalase systems
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-016-0371-1
– ident: ref_75
  doi: 10.3390/agronomy10010127
– volume: 130
  start-page: 94
  year: 2018
  ident: ref_68
  article-title: Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.06.036
– ident: ref_7
  doi: 10.1007/978-81-322-3941-3
– volume: 42
  start-page: 33
  year: 2020
  ident: ref_12
  article-title: ROS and oxidative burst: Roots in plant development
  publication-title: Plant Divers.
  doi: 10.1016/j.pld.2019.10.002
– volume: 37
  start-page: 391
  year: 2018
  ident: ref_112
  article-title: Comparative analysis of the reaction to salinity of different chickpea (Cicer arietinum L.) genotypes: A biochemical, enzymatic and transcriptional study
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-017-9737-z
– volume: 39
  start-page: 20
  year: 2016
  ident: ref_31
  article-title: Thiol-based peroxidases and ascorbate peroxidases: Why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast?
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2016.2324
– volume: 135
  start-page: 311
  year: 2019
  ident: ref_55
  article-title: Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2019.04.055
– volume: 23
  start-page: 113
  year: 2020
  ident: ref_133
  article-title: Seed priming with gibberellic acid induces high salinity tolerance in Pisum sativum through antioxidant system, secondary metabolites and upregulation of antiporter genes
  publication-title: Plant Biol.
  doi: 10.1111/plb.13187
– volume: 171
  start-page: 1704
  year: 2016
  ident: ref_35
  article-title: Lack of GLYCOLATE OXIDASE1, but not GLYCOLATE OXIDASE2, attenuates the photorespiratory phenotype of CATALASE2- deficient Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00359
– volume: 27
  start-page: 1245
  year: 2021
  ident: ref_131
  article-title: Conservation and divergence of the TaSOS1 gene family in salt stress response in wheat (Triticum aestivum L.)
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-021-01009-y
– volume: 224
  start-page: 177
  year: 2019
  ident: ref_142
  article-title: Calcium signals in guard cells enhance the efficiency by which abscisic acid triggers stomatal closure
  publication-title: New Phytol.
  doi: 10.1111/nph.15985
– volume: 5
  start-page: 151
  year: 2014
  ident: ref_140
  article-title: Tolerance to drought and salt stress in plants: Unraveling the signaling networks
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00151
– volume: 100
  start-page: 34
  year: 2014
  ident: ref_166
  article-title: A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2013.12.006
– volume: 234
  start-page: 35
  year: 2011
  ident: ref_30
  article-title: Oxygen activation at the plasma membrane: Relation between superoxide and hydroxyl radical production by isolated membranes
  publication-title: Planta
  doi: 10.1007/s00425-011-1379-y
– volume: 108
  start-page: 261
  year: 2017
  ident: ref_95
  article-title: Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2016.11.003
– volume: 5
  start-page: 353
  year: 2011
  ident: ref_99
  article-title: Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings
  publication-title: Plant Biotechnol. Rep.
  doi: 10.1007/s11816-011-0189-9
– volume: 5
  start-page: 726
  year: 2011
  ident: ref_172
  article-title: The role of phytohormones in alleviating salt stress in crop plants
  publication-title: Aust. J. Crop. Sci.
– volume: 45
  start-page: 215
  year: 2005
  ident: ref_178
  article-title: Response of barley grains to the interactive effect of salinity and salicylic acid
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-005-4928-1
– ident: ref_156
  doi: 10.1016/j.scienta.2019.108596
– ident: ref_107
  doi: 10.1155/2016/8231873
– ident: ref_61
  doi: 10.3390/antiox8090350
– volume: 171
  start-page: 1551
  year: 2016
  ident: ref_34
  article-title: The roles of mitochondrial reactive oxygen species in cellular signaling and stress responses in plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00166
– volume: 59
  start-page: 547
  year: 2015
  ident: ref_103
  article-title: Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine
  publication-title: Biol. Plant
  doi: 10.1007/s10535-015-0523-0
– volume: 16
  start-page: 1116
  year: 2006
  ident: ref_169
  article-title: Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.04.030
– ident: ref_135
  doi: 10.3390/plants10061040
– volume: 280
  start-page: 1
  year: 2019
  ident: ref_174
  article-title: The moss jasmonate ZIM-domain protein PnJAZ1 confers salinity tolerance via crosstalk with the abscisic acid signalling pathway
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.11.004
– ident: ref_25
  doi: 10.3390/antiox8120641
– volume: 208
  start-page: 803
  year: 2015
  ident: ref_91
  article-title: Chloride-inducible transient apoplastic alkalinazations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba
  publication-title: New Phytol.
  doi: 10.1111/nph.13507
– volume: 116
  start-page: 663
  year: 2015
  ident: ref_39
  article-title: Seed birth to death: Dual functions of reactive oxygen species in seed physiology
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcv098
– volume: 61
  start-page: 220
  year: 2015
  ident: ref_54
  article-title: Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.)
  publication-title: Plant Soil Environ.
  doi: 10.17221/22/2015-PSE
– ident: ref_149
  doi: 10.3390/biom11060788
– ident: ref_96
  doi: 10.1371/journal.pone.0248207
– volume: 133
  start-page: 57
  year: 2018
  ident: ref_71
  article-title: Analysis of metabolic and mineral changes in response to salt stress in durum wheat (Triticum turgidum ssp. durum) genotypes, which differ in salinity tolerance
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.10.025
– volume: 9
  start-page: 275
  year: 2018
  ident: ref_50
  article-title: Salinity inhibits rice seed germination by reducing α-Amylase activity via decreased bioactive gibberellin content
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00275
– volume: 2
  start-page: 53
  year: 2014
  ident: ref_45
  article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2014.00053
– volume: 23
  start-page: 43
  year: 2017
  ident: ref_109
  article-title: Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L.
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-016-0394-7
– ident: ref_41
– ident: ref_115
  doi: 10.3390/plants8080247
– volume: 8
  start-page: 1353
  year: 2017
  ident: ref_26
  article-title: Extra-cellular but extra-ordinarily important for cells: Apoplastic reactive oxygen species metabolism
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01353
– volume: 147
  start-page: 978
  year: 2008
  ident: ref_40
  article-title: Unraveling the tapestry of networks involving reactive oxygen species in plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.122325
– volume: 22
  start-page: 27
  year: 2013
  ident: ref_101
  article-title: Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.)
  publication-title: J. Plant Biochem. Biotechnol.
  doi: 10.1007/s13562-012-0107-4
– volume: 225
  start-page: 1255
  year: 2007
  ident: ref_193
  article-title: Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses
  publication-title: Planta
  doi: 10.1007/s00425-006-0417-7
– ident: ref_63
  doi: 10.3390/antiox10040611
– ident: ref_188
  doi: 10.1371/journal.pone.0126783
– volume: 34
  start-page: 558
  year: 2015
  ident: ref_104
  article-title: Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill)
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-015-9490-0
– ident: ref_118
  doi: 10.7717/peerj.10486
– volume: 8
  start-page: 1372
  year: 2017
  ident: ref_51
  article-title: Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01372
– volume: 15
  start-page: 27
  year: 2020
  ident: ref_97
  article-title: Physiological and biochemical markers for screening salt tolerant quinoa genotypes at early seedling stage
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2020.1722266
– volume: 63
  start-page: 305
  year: 2012
  ident: ref_155
  article-title: NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err280
– ident: ref_132
  doi: 10.3390/ijms20051176
– ident: ref_11
  doi: 10.1007/978-981-10-7479-0
– volume: 109
  start-page: 20
  year: 2016
  ident: ref_198
  article-title: Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.09.003
– ident: ref_27
  doi: 10.3390/antiox8040105
– volume: 65
  start-page: 1241
  year: 2014
  ident: ref_66
  article-title: ROS homeostasis in halophytes in the context of salinity stress tolerance
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert430
– volume: 28
  start-page: 3204
  year: 2021
  ident: ref_93
  article-title: Wuxal amino (Bio stimulant) improved growth and physiological performance of tomato plants under salinity stress through adaptive mechanisms and antioxidant potential
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2021.04.040
– ident: ref_19
  doi: 10.3390/ijms20102408
– ident: ref_180
  doi: 10.1371/journal.pgen.1004664
– volume: 150
  start-page: 109
  year: 2020
  ident: ref_56
  article-title: Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.02.030
– volume: 229
  start-page: 132
  year: 2017
  ident: ref_77
  article-title: Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.05.083
– ident: ref_81
  doi: 10.3390/plants10010180
– volume: 70
  start-page: 185
  year: 2018
  ident: ref_114
  article-title: Exogenous silicon protects Brassica napus plants from salinity-induced oxidative stress through the modulation of AsA-GSH pathway, thiol-dependent antioxidant enzymes and glyoxalase systems
  publication-title: Gesunde Pflanz.
  doi: 10.1007/s10343-018-0430-3
– volume: 11
  start-page: 861
  year: 2009
  ident: ref_36
  article-title: Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2008.2177
– volume: 64
  start-page: 2255
  year: 2013
  ident: ref_175
  article-title: Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert085
– volume: 11
  start-page: 2586
  year: 2017
  ident: ref_161
  article-title: Redox regulation at the site of primary growth: Auxin, cytokinin and ROS crosstalk
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13021
– volume: 39
  start-page: 221
  year: 2017
  ident: ref_110
  article-title: Mitigation of salinity-induced oxidative damage in wheat (Triticum aestivum L.) seedlings by exogenous application of phenolic acids
  publication-title: Acta Physiol. Plant
  doi: 10.1007/s11738-017-2521-7
– volume: 131
  start-page: 58
  year: 2016
  ident: ref_128
  article-title: Salinity and osmotic stress trigger different antioxidant responses related to cytosolic ascorbate peroxidase knockdown in rice roots
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2016.07.002
– ident: ref_85
  doi: 10.1371/journal.pone.0156398
– volume: 24
  start-page: 672
  year: 2019
  ident: ref_151
  article-title: SnRK2s at the crossroads of growth and stress responses
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2019.05.010
SSID ssj0023259
Score 2.7012458
SecondaryResourceType review_article
Snippet The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 9326
SubjectTerms Abiotic stress
Agricultural production
Antioxidants
Biosynthesis
Chloroplasts
Cytochrome
Defense
Enzymes
Equilibrium
Free radicals
Gene expression
Metabolism
Mitochondria
Oxidation
Oxidative stress
Polyamines
Reactive oxygen species
Respiration
Review
Salinity
Salt
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86EXwRP3E6JYI-SdmWNm36JEMdQ1BhOtlbSZoEJ9rNtYPtv_eu7b4etK8JhN5d7u6XXO5HyJXwhYFIoBxAKCEAFNxz2hgnaOow4Fw2ef4W5unZ7_S8xz7vlwduaVlWOfeJuaPWwxjPyOtgWuBkBUSf29GPg6xReLtaUmhski1sXYYlXUF_CbhclpOlNSEGOT4P_aLw3QWYXx98fqeMoXViW4XVkLTMM9erJFfCTnuP7Jb5Im0VCt4nGyY5INsFg-TskLx3Cy55kC4dWto1Mvdf9GU6A8ugObu8SalMNG1hXeN0oEGU9N5YgK-GDhKKrEVZSvEt2Zi-Snwomc2OSK_98HbXcUqqBCf2OM8cP-ae4kwppiB-Ny3ToZBKx1bFAnY0_KmVkPr4sZHc08oYplwjNFJjSt-12j0mlWSYmBNCJX7KuEFDW8-yBqgskKA4IbT2Y8ur5GYurSgu-4gjncVXBHgCZRutyrZKrhezR0X_jD_m1eaCj8pdlEZLnVfJ5WIY7B8vNWRihpNiToiwz6uSYE1hi_Wwg_b6SDL4yDtpCw9cHAtO_1_8jOwwrGRpgE8RNVLJxhNzDqlIpi5ye_sFHf3gWQ
  priority: 102
  providerName: ProQuest
Title Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity
URI https://www.proquest.com/docview/2571238613
https://www.proquest.com/docview/2571928714
https://pubmed.ncbi.nlm.nih.gov/PMC8430727
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD6iVJN4QbANUS6VJ21PU6B149h9QIhbhybRTd2K-hbZsS2KSgptkNp_zzlJW1ptSOQhL3ES5dy_2D4fwFcVKYeZwASIUJoIUMjnrHOBrNumFELXRb4X5qYdXXfDnz3RW4M52-hMgOP_Qjvik-qOBkeTp-kpOvwJIU6E7Mf9-4cx52RpPCpBGXOSJBe9CRfzCVg25LRp9MMjoABdLIH_5-7V5PRaca6ul1xKQK0t2JxVjuysUPU2rLn0I3wouCSnn-C2U7DKo5zZ0LOO03kkY78mU7QRlvPMuzHTqWVntMJx0rcoVHbpPAJZx_opI_6ibMxoV9mI_dG0ZTKbfoZu6-rvxXUwI00IklCILIgSERrBjeEGM3ndc9tU2tjEm0Shb-OXeo1FUJQ4LUJrnOOm4ZQlkkwdNbxt7MB6OkzdLjBNh3ENWbM-9LyGypMaVaiUtVHiRQW-z6UVJ7OO4kRsMYgRWZBs42XZVuDbYvRj0UnjjXEHc8HHc3OIMbBgilVYe1Tgy-IyegJNb-jUDZ-LMU0CgGEF5IrCFu-jXtqrV9L-Xd5TW4UY7Ljce8fT92GD08KWGoYYdQDr2ejZHWJlkpkqlGRP4lm1flShfH7V_t2pUq4Q1dwcXwB75-lX
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviKfYUsBI9ISiJk6cOAeEKkq1pQ-k0qK9BTsei60g2zap6P4pfiMzyWa3e4Bbc7VlSzOf5xGP5wN4q1ON5AlsQBlKTgkKnzmHGGSRyzOlTKTatzCHR-nwNPk8UqMV-NO_heGyyt4mtobaTUr-R75F0CIjq8n7fDi_CJg1im9XewqNDhb7OP1NKVv9fm-H9Lsp5e6nk4_DYMYqEJSJUk2QliqxSlorLbm6yEuXa2Nd6W2pCfxSRt5QlJCWaFTiLKK0MWrHLJImjb2Lad07cJccb8gnKhstErxYtuRsEfm8IFV52hXax3Eebo3PftW0dMbh0rILXMS1y1WZN9zc7kN4MItPxXYHqEewgtVjuNcxVk6fwLfjjruetCkmXhyjae2l-HI9JSSKls0ea2EqJ7a5jvJ67Eh1Ygc9pcsoxpVglqSmFvx27VJ8Nfwws5k-hdNbEeIzWK0mFT4HYfizGGeh84mXIUEkMwQUrZ1LS68G8K6XVlHO-pYzfcbPgvIXlm1xU7YD2JzPPu_6dfxj3kYv-GJ2autigbEBvJkP03njSxRT4eSqm5NzmpkMIFtS2Hw_7ti9PFKNf7Sdu3VCJlVm6__f_DXcH54cHhQHe0f7L2BNchVNSPZMb8Bqc3mFLykMauyrFnsCvt822P8CMCEevQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAviKdYKNRI9ISi3Thx7BxQVbFdtfQBKhTtLdixrW5VsqVJ1e5f49cxk8du9wC35mrLlsbfvOIZfwDvVaIcegITYIaSYoJCOmedC2RoUymEDkXdC3N4lOyexJ_HYrwCf7peGCqr7GxibajtNKd_5H2EFhpZhd6n79uyiK_D0dbF74AYpOimtaPTaCCy72bXmL6VH_eGeNabnI92vn_aDVqGgSCPhaiCJBexEdwYbtDthZ7bVGljc29yhYrAeeg1RgxJ7rSIrXGOm8gpS4ySOom8jXDde3BfRiIkHZPjRbIX8ZqoLUT_FyQiTZqi-yhKB_3J2a8Sl5YUOi27w0WMu1yhecvljR7DozZWZdsNuJ7AiiuewoOGvXL2DH4cNzz2eLJs6tmx07XtZF9uZohKVjPbu5LpwrJtqqm8mVg8RjZ0HlNnxyYFI8akqmTUx3bJvmlq0qxmz-HkToT4AlaLaeFeAtP0GRfJgfWx5wOEi9QIGqWsTXIvevChk1aWt2-YE5XGeYa5DMk2uy3bHmzOZ180b3f8Y956J_is1eAyW-CtB-_mw6h7dKGiCze9auaklHLGPZBLBzbfj17vXh4pJqf1K94qRvPK5av_b74BDxHm2cHe0f5rWONUUDNA06bWYbW6vHJvMCKqzNsaegx-3jXW_wIWjCLz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Reactive+Oxygen+Species+and+Antioxidant+Defense+in+Plants+under+Salinity&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Hasanuzzaman%2C+Mirza&rft.au=Raihan%2C+Md+Rakib+Hossain&rft.au=Masud%2C+Abdul+Awal+Chowdhury&rft.au=Rahman%2C+Khussboo&rft.date=2021-08-28&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=17&rft_id=info:doi/10.3390%2Fijms22179326&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon