Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity
The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the o...
Saved in:
Published in | International journal of molecular sciences Vol. 22; no. 17; p. 9326 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
28.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity. |
---|---|
AbstractList | The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity. The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity. |
Author | Nowroz, Farzana Rahman, Mira Masud, Abdul Awal Chowdhury Rahman, Khussboo Nahar, Kamrun Hasanuzzaman, Mirza Fujita, Masayuki Raihan, Md. Rakib Hossain |
AuthorAffiliation | 3 Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Japan 1 Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; rakib.raihan1406185@sau.edu.bd (M.R.H.R.); chy.masud3844@sau.edu.bd (A.A.C.M.); khussboorahman1305594@sau.edu.bd (K.R.); farzana.nowroz@sau.edu.bd (F.N.); mirarahman73@gmail.com (M.R.) 2 Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; knahar84@yahoo.com |
AuthorAffiliation_xml | – name: 2 Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; knahar84@yahoo.com – name: 3 Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Japan – name: 1 Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; rakib.raihan1406185@sau.edu.bd (M.R.H.R.); chy.masud3844@sau.edu.bd (A.A.C.M.); khussboorahman1305594@sau.edu.bd (K.R.); farzana.nowroz@sau.edu.bd (F.N.); mirarahman73@gmail.com (M.R.) |
Author_xml | – sequence: 1 givenname: Mirza orcidid: 0000-0002-0461-8743 surname: Hasanuzzaman fullname: Hasanuzzaman, Mirza – sequence: 2 givenname: Md. Rakib Hossain orcidid: 0000-0003-1358-6859 surname: Raihan fullname: Raihan, Md. Rakib Hossain – sequence: 3 givenname: Abdul Awal Chowdhury orcidid: 0000-0001-5308-9975 surname: Masud fullname: Masud, Abdul Awal Chowdhury – sequence: 4 givenname: Khussboo orcidid: 0000-0002-0511-407X surname: Rahman fullname: Rahman, Khussboo – sequence: 5 givenname: Farzana surname: Nowroz fullname: Nowroz, Farzana – sequence: 6 givenname: Mira orcidid: 0000-0003-0666-8434 surname: Rahman fullname: Rahman, Mira – sequence: 7 givenname: Kamrun surname: Nahar fullname: Nahar, Kamrun – sequence: 8 givenname: Masayuki surname: Fujita fullname: Fujita, Masayuki |
BookMark | eNptkUlPHDEQhS1ExJbc8gMs5ZIDA3a53cslEmJJkJBAELhaXqonHvXYk3b3aObf4zAoGhCnKlV99VRP75DshhiQkK-cnQjRsFM_mycAXjUCyh1ywAuACWNltbvV75PDlGaMgQDZ7JF9UUgGIMQBebrH6djpwcdAY0vvUdvBL5HertZTDPRhgdZjojo4ehYytfJOh4FeYIshIfWB3nV5kOgYHPb0QXc--GH9mXxqdZfwy2s9Io9Xl7_Pf01ubn9en5_dTGwh5TAprSyMBGPAQCN4C66ptXG2NbYWTGZbrYayKC1qWTiDCEZg7WTJQZeideKI_NjoLkYzR2cxDL3u1KL3c92vVdRevd0E_0dN41LVhWAVVFng-6tAH_-OmAY198lil01hHJMCWfEG6ooXGf32Dp3FsQ_Z3gsFoi65yNTxhrJ9TKnH9v8znKl_gantwDIO73Drh5c48ru--_joGSv_m58 |
CitedBy_id | crossref_primary_10_2478_fhort_2024_0016 crossref_primary_10_1080_17429145_2024_2395884 crossref_primary_10_3389_fpls_2022_1038672 crossref_primary_10_1016_j_nutos_2025_01_012 crossref_primary_10_3390_antiox13050554 crossref_primary_10_3390_ph17121672 crossref_primary_10_1007_s10661_023_12028_5 crossref_primary_10_3390_ijms23158455 crossref_primary_10_1016_j_stress_2024_100558 crossref_primary_10_3390_ijms23094810 crossref_primary_10_3390_su14126973 crossref_primary_10_1007_s10725_024_01230_1 crossref_primary_10_1007_s11104_024_06770_z crossref_primary_10_1016_j_postharvbio_2024_113146 crossref_primary_10_1111_ppl_13950 crossref_primary_10_3390_ijms25179347 crossref_primary_10_3390_molecules30061196 crossref_primary_10_1007_s12298_023_01349_x crossref_primary_10_3390_plants13111569 crossref_primary_10_3389_fpls_2023_1295674 crossref_primary_10_3390_stresses4020012 crossref_primary_10_1016_j_stress_2024_100563 crossref_primary_10_3390_ijms24043693 crossref_primary_10_1007_s10725_023_01070_5 crossref_primary_10_3389_fpls_2024_1398846 crossref_primary_10_3390_antiox11040671 crossref_primary_10_3390_ijms26062801 crossref_primary_10_5433_1679_0359_2024v44n2p555 crossref_primary_10_3390_ijms252312537 crossref_primary_10_3390_horticulturae10080858 crossref_primary_10_1111_ppl_14258 crossref_primary_10_3390_agriculture13071358 crossref_primary_10_1080_87559129_2024_2430652 crossref_primary_10_17221_459_2024_PSE crossref_primary_10_3390_plants12081605 crossref_primary_10_3389_fpls_2024_1440445 crossref_primary_10_3390_plants12183310 crossref_primary_10_3390_agronomy13010174 crossref_primary_10_3390_plants13101312 crossref_primary_10_1007_s11104_024_06535_8 crossref_primary_10_1007_s42729_024_01776_z crossref_primary_10_1016_j_jplph_2023_154103 crossref_primary_10_3389_fpls_2022_1012145 crossref_primary_10_3390_agronomy14071462 crossref_primary_10_1007_s11104_024_06618_6 crossref_primary_10_7717_peerj_17191 crossref_primary_10_3390_ijms242316968 crossref_primary_10_1016_j_cropd_2024_100052 crossref_primary_10_7717_peerj_19132 crossref_primary_10_3390_agronomy14091877 crossref_primary_10_1007_s11105_024_01450_9 crossref_primary_10_1016_j_postharvbio_2022_111988 crossref_primary_10_3390_ijms25136877 crossref_primary_10_3390_agriculture12101544 crossref_primary_10_1111_ppl_14026 crossref_primary_10_1002_fes3_70004 crossref_primary_10_1016_j_scitotenv_2024_171432 crossref_primary_10_3390_ijms24129793 crossref_primary_10_1111_pbi_14305 crossref_primary_10_1007_s42976_024_00504_8 crossref_primary_10_3389_fpls_2023_1278850 crossref_primary_10_3934_agrfood_2024039 crossref_primary_10_3390_plants11040537 crossref_primary_10_3390_plants14040616 crossref_primary_10_3389_fpls_2025_1528354 crossref_primary_10_3390_antiox12030601 crossref_primary_10_1080_15226514_2022_2164248 crossref_primary_10_1093_treephys_tpae082 crossref_primary_10_1016_j_envexpbot_2023_105397 crossref_primary_10_3390_ijms24119517 crossref_primary_10_1093_plphys_kiae335 crossref_primary_10_1038_s41598_025_86276_5 crossref_primary_10_3390_seeds3020018 crossref_primary_10_3390_agronomy14051079 crossref_primary_10_1007_s12298_023_01279_8 crossref_primary_10_1016_j_biortech_2022_127397 crossref_primary_10_1007_s42729_024_01676_2 crossref_primary_10_1029_2023WR036809 crossref_primary_10_1371_journal_pone_0267127 crossref_primary_10_1016_j_envexpbot_2024_105759 crossref_primary_10_1007_s42452_024_06426_8 crossref_primary_10_1016_j_ijbiomac_2024_132683 crossref_primary_10_2478_foecol_2023_0017 crossref_primary_10_3390_horticulturae10020170 crossref_primary_10_1016_j_jtemin_2024_100123 crossref_primary_10_1111_pce_14745 crossref_primary_10_32615_ps_2024_012 crossref_primary_10_3390_plants12142594 crossref_primary_10_2478_ausae_2022_0005 crossref_primary_10_3390_plants12040834 crossref_primary_10_13005_ojc_390621 crossref_primary_10_3390_ijms242015437 crossref_primary_10_1007_s13399_023_05103_x crossref_primary_10_1590_1519_6984_283432 crossref_primary_10_3389_fpls_2022_995855 crossref_primary_10_1007_s10722_024_02056_6 crossref_primary_10_3390_agronomy12061419 crossref_primary_10_1016_j_plaphy_2024_109408 crossref_primary_10_3389_fpls_2025_1497064 crossref_primary_10_1007_s10725_024_01151_z crossref_primary_10_3390_agronomy13061502 crossref_primary_10_3390_life13010061 crossref_primary_10_1016_j_bcab_2023_102892 crossref_primary_10_1016_j_plaphy_2023_108261 crossref_primary_10_3390_molecules28083599 crossref_primary_10_3390_plants13233280 crossref_primary_10_1016_j_sajb_2024_09_024 crossref_primary_10_1155_sci5_6302968 crossref_primary_10_1186_s12870_024_05609_0 crossref_primary_10_3390_plants11223113 crossref_primary_10_1016_j_jenvman_2024_121289 crossref_primary_10_3390_ijms26010331 crossref_primary_10_1590_1519_6984_275700 crossref_primary_10_1016_j_jhazmat_2025_138035 crossref_primary_10_30970_sbi_1804_794 crossref_primary_10_3389_fpls_2023_1296286 crossref_primary_10_1016_j_sajb_2022_11_020 crossref_primary_10_3390_ijms23041995 crossref_primary_10_61186_JCT_14_1_17 crossref_primary_10_3390_plants12193402 crossref_primary_10_3934_agrfood_2022046 crossref_primary_10_3390_soilsystems8010011 crossref_primary_10_1111_ppl_14452 crossref_primary_10_3390_plants11010098 crossref_primary_10_3389_fpls_2024_1347861 crossref_primary_10_3390_horticulturae11020157 crossref_primary_10_1016_j_plaphy_2025_109742 crossref_primary_10_1016_j_scienta_2024_113634 crossref_primary_10_1016_j_scienta_2024_113754 crossref_primary_10_3389_fmicb_2023_1085787 crossref_primary_10_3389_fmicb_2023_1171104 crossref_primary_10_1016_j_heliyon_2024_e27724 crossref_primary_10_3390_agriculture14101731 crossref_primary_10_3390_agronomy12102343 crossref_primary_10_3390_ijms24031953 crossref_primary_10_3389_fmicb_2024_1423980 crossref_primary_10_1080_02648725_2022_2131958 crossref_primary_10_3389_fpls_2022_962182 crossref_primary_10_1093_jxb_erad086 crossref_primary_10_3390_metabo14080420 crossref_primary_10_1016_j_envexpbot_2024_106076 crossref_primary_10_3390_su151511590 crossref_primary_10_3389_fsufs_2022_768250 crossref_primary_10_1039_D4NJ05538A crossref_primary_10_1016_j_sajb_2023_07_014 crossref_primary_10_1111_ppl_14460 crossref_primary_10_1186_s12870_024_04998_6 crossref_primary_10_1016_j_ceja_2024_100677 crossref_primary_10_1016_j_jafr_2025_101649 crossref_primary_10_1016_j_sajb_2024_01_068 crossref_primary_10_1080_23311932_2024_2348695 crossref_primary_10_1111_ppl_70116 crossref_primary_10_1016_j_plaphy_2023_108281 crossref_primary_10_1002_bit_28891 crossref_primary_10_3390_plants12223906 crossref_primary_10_47115_bsagriculture_1229854 crossref_primary_10_3389_fagro_2023_1216503 crossref_primary_10_3389_fpls_2024_1504540 crossref_primary_10_7759_cureus_53091 crossref_primary_10_1016_j_heliyon_2024_e36093 crossref_primary_10_1016_j_scitotenv_2024_175270 crossref_primary_10_1007_s41207_024_00633_w crossref_primary_10_1007_s42773_024_00355_w crossref_primary_10_1016_j_jplph_2022_153827 crossref_primary_10_3390_plants12091834 crossref_primary_10_1016_j_plana_2024_100068 crossref_primary_10_1007_s12298_023_01357_x crossref_primary_10_1371_journal_pone_0317463 crossref_primary_10_3389_fmicb_2022_991781 crossref_primary_10_3389_fpls_2022_1030938 crossref_primary_10_3390_plants13010092 crossref_primary_10_3390_soilsystems6010018 crossref_primary_10_1016_j_jgeb_2024_100432 crossref_primary_10_1016_j_plaphy_2025_109613 crossref_primary_10_3390_ijms23126376 crossref_primary_10_1186_s12934_023_02080_8 crossref_primary_10_1016_j_cbi_2024_111147 crossref_primary_10_1186_s12870_024_05709_x crossref_primary_10_1016_j_jplph_2024_154321 crossref_primary_10_3389_fpls_2022_953450 crossref_primary_10_1186_s12864_024_10114_7 crossref_primary_10_1016_j_envres_2024_119566 crossref_primary_10_3389_fpls_2023_1342219 crossref_primary_10_3390_antiox10122017 crossref_primary_10_1080_23311932_2025_2472246 crossref_primary_10_3389_fpls_2022_894710 crossref_primary_10_3390_plants11091185 crossref_primary_10_1071_CP22086 crossref_primary_10_3390_app12157493 crossref_primary_10_3390_f14081686 crossref_primary_10_1007_s12649_024_02589_y crossref_primary_10_3389_fpls_2025_1541736 crossref_primary_10_3390_agriculture14122184 crossref_primary_10_1007_s00344_024_11325_8 crossref_primary_10_1016_j_plaphy_2024_108999 crossref_primary_10_21448_ijsm_1335099 crossref_primary_10_12944_CARJ_12_2_05 crossref_primary_10_1097_SHK_0000000000002338 crossref_primary_10_1016_j_envexpbot_2024_105707 crossref_primary_10_1016_j_scienta_2024_113704 crossref_primary_10_3390_plants12112167 crossref_primary_10_3390_app15052575 crossref_primary_10_1016_j_plaphy_2024_109175 crossref_primary_10_1038_s41598_025_89055_4 crossref_primary_10_3390_plants14010100 crossref_primary_10_1007_s42729_024_02063_7 crossref_primary_10_1038_s41598_023_45041_2 crossref_primary_10_1016_j_stress_2025_100782 crossref_primary_10_3390_app14051733 crossref_primary_10_1007_s10725_025_01298_3 crossref_primary_10_15835_nbha50312820 crossref_primary_10_1007_s11738_023_03615_7 crossref_primary_10_1007_s44447_025_00002_1 crossref_primary_10_1016_j_stress_2025_100789 crossref_primary_10_3390_agronomy14020356 crossref_primary_10_3390_antiox11122362 crossref_primary_10_1016_j_scienta_2024_113818 crossref_primary_10_3390_plants13060848 crossref_primary_10_1016_j_envexpbot_2024_106001 crossref_primary_10_3389_fpls_2023_1135240 crossref_primary_10_1039_D3FB00113J crossref_primary_10_1016_j_plaphy_2024_108644 crossref_primary_10_1016_j_sajb_2024_06_042 crossref_primary_10_3389_fpls_2024_1423949 crossref_primary_10_1016_j_heliyon_2023_e22439 crossref_primary_10_3390_plants12051115 crossref_primary_10_1016_j_bcab_2025_103536 crossref_primary_10_1186_s12870_024_05130_4 crossref_primary_10_1016_j_plaphy_2022_08_002 crossref_primary_10_3389_fpls_2023_1241736 crossref_primary_10_3390_horticulturae10060612 crossref_primary_10_1016_j_sajb_2024_03_039 crossref_primary_10_3390_agriculture13091719 crossref_primary_10_1016_j_indcrop_2024_119854 crossref_primary_10_1007_s12374_023_09406_4 crossref_primary_10_1007_s42729_023_01331_2 crossref_primary_10_3390_agronomy14010104 crossref_primary_10_3390_toxics13010018 crossref_primary_10_3390_agronomy13020493 crossref_primary_10_1016_j_ijbiomac_2025_142385 crossref_primary_10_1080_23311932_2024_2389445 crossref_primary_10_1007_s11274_023_03806_x crossref_primary_10_3390_antiox11071240 crossref_primary_10_1007_s11356_024_33999_z crossref_primary_10_1016_j_pmpp_2024_102383 crossref_primary_10_1007_s00344_024_11409_5 crossref_primary_10_1038_s41598_023_38403_3 crossref_primary_10_1016_j_fbio_2024_104213 crossref_primary_10_1016_j_plaphy_2024_109075 crossref_primary_10_2478_foecol_2025_0004 crossref_primary_10_1128_spectrum_04381_22 crossref_primary_10_3390_s24134228 crossref_primary_10_3390_agronomy12051032 crossref_primary_10_1186_s12870_024_04966_0 crossref_primary_10_1016_j_sajb_2023_03_001 crossref_primary_10_1007_s11105_024_01488_9 crossref_primary_10_1016_j_chemosphere_2024_142431 crossref_primary_10_1016_j_envexpbot_2023_105515 crossref_primary_10_1016_j_jarmap_2024_100619 crossref_primary_10_3389_fpls_2024_1504970 crossref_primary_10_3390_plants12102059 crossref_primary_10_3390_plants12081666 crossref_primary_10_1016_j_scitotenv_2023_161557 crossref_primary_10_3390_horticulturae11010069 crossref_primary_10_3390_ijms23063279 crossref_primary_10_1007_s10725_024_01241_y crossref_primary_10_3390_agronomy13123076 crossref_primary_10_1111_pce_15438 crossref_primary_10_1016_j_plaphy_2022_01_031 crossref_primary_10_1016_j_jhazmat_2024_136648 crossref_primary_10_3390_plants13121698 crossref_primary_10_3390_plants14020180 crossref_primary_10_1016_j_chemosphere_2022_137649 crossref_primary_10_1186_s12870_025_06388_y crossref_primary_10_3389_ffunb_2024_1355999 crossref_primary_10_3390_agronomy14030423 crossref_primary_10_1186_s12870_021_03274_1 crossref_primary_10_1007_s00344_023_11175_w crossref_primary_10_1007_s44371_024_00046_2 crossref_primary_10_3390_j7010006 crossref_primary_10_3389_fpls_2022_874579 crossref_primary_10_1016_j_jafr_2025_101842 crossref_primary_10_3390_horticulturae9070785 crossref_primary_10_1002_agj2_21534 crossref_primary_10_7717_peerj_17043 crossref_primary_10_1186_s12864_025_11368_5 crossref_primary_10_1007_s11356_024_34187_9 crossref_primary_10_3389_fpls_2021_807739 crossref_primary_10_56093_aaz_v63i4_155494 crossref_primary_10_1186_s12870_024_05270_7 crossref_primary_10_1007_s11103_022_01282_9 crossref_primary_10_3390_antiox11020244 crossref_primary_10_3390_ijms25074111 crossref_primary_10_1016_j_rhisph_2024_100987 crossref_primary_10_1016_j_jenvman_2023_119759 crossref_primary_10_1139_cjb_2024_0070 crossref_primary_10_3390_plants13243550 crossref_primary_10_1007_s42729_024_01903_w crossref_primary_10_1016_j_plantsci_2025_112390 crossref_primary_10_1038_s41598_024_67198_0 crossref_primary_10_1111_tpj_16660 crossref_primary_10_3390_agronomy13010016 crossref_primary_10_3390_ijms25010070 crossref_primary_10_3390_ijms25179355 crossref_primary_10_3390_plants12183238 crossref_primary_10_1016_j_scitotenv_2024_176870 crossref_primary_10_1016_j_scienta_2024_113114 crossref_primary_10_1093_jxb_erae211 crossref_primary_10_1186_s12870_023_04486_3 crossref_primary_10_3390_ijms26010085 crossref_primary_10_1186_s12870_024_04812_3 crossref_primary_10_1007_s00344_024_11295_x crossref_primary_10_1038_s41598_025_92555_y crossref_primary_10_3390_horticulturae10060656 crossref_primary_10_1007_s11248_024_00398_6 crossref_primary_10_1007_s42729_024_01754_5 crossref_primary_10_3390_agriculture14050732 crossref_primary_10_1007_s10811_022_02813_z crossref_primary_10_1016_j_jia_2024_07_013 crossref_primary_10_1016_j_jenvman_2024_123420 crossref_primary_10_1007_s00344_024_11367_y crossref_primary_10_1016_j_crmicr_2024_100299 crossref_primary_10_1016_j_rsci_2022_05_002 crossref_primary_10_1016_j_stress_2025_100816 crossref_primary_10_1007_s10341_024_01132_6 crossref_primary_10_1016_j_plaphy_2024_108860 crossref_primary_10_1016_j_plaphy_2024_109030 crossref_primary_10_3389_fmicb_2023_1208743 crossref_primary_10_1016_j_chemosphere_2022_137070 crossref_primary_10_3389_fpls_2025_1545835 crossref_primary_10_1007_s42729_024_02003_5 crossref_primary_10_1007_s11356_024_32283_4 crossref_primary_10_3389_fpls_2024_1451469 crossref_primary_10_3390_agronomy12061384 crossref_primary_10_1007_s42976_025_00628_5 crossref_primary_10_1007_s12038_024_00424_z crossref_primary_10_1007_s42729_024_02125_w crossref_primary_10_29130_dubited_1171221 crossref_primary_10_1016_j_agwat_2023_108275 crossref_primary_10_1016_j_plaphy_2023_108328 crossref_primary_10_3389_fpls_2024_1458540 crossref_primary_10_3389_fpls_2023_1284480 |
Cites_doi | 10.1105/tpc.112.107227 10.3390/plants10051025 10.1016/j.plaphy.2008.10.006 10.1155/2012/217037 10.1016/j.redox.2019.101136 10.3390/biom11040587 10.1016/j.tplants.2016.08.002 10.1007/s12298-017-0496-x 10.3390/plants8020037 10.1007/s12298-017-0467-2 10.3390/ijms21228695 10.3389/fpls.2017.01871 10.1046/j.1365-3040.2002.00782.x 10.1007/s00299-020-02513-3 10.1038/srep35392 10.1155/2014/757219 10.1016/j.sajb.2017.09.007 10.1007/978-3-319-90318-7 10.1007/s00344-020-10122-3 10.1016/j.plaphy.2020.10.040 10.1111/ppl.13056 10.1016/j.plaphy.2020.11.007 10.1371/journal.pone.0136960 10.1111/pce.12947 10.1073/pnas.0706547105 10.1016/j.jplph.2014.10.020 10.3390/plants8060151 10.1007/s12298-020-00810-5 10.3390/plants10050886 10.1007/978-1-4614-4747-4 10.1111/jac.12169 10.1016/j.plantsci.2020.110609 10.3389/fpls.2015.00023 10.5772/intechopen.77838 10.1016/j.jplph.2018.02.006 10.3390/antiox8090384 10.1007/s11738-018-2769-6 10.3389/fpls.2015.01004 10.1111/nph.13519 10.1016/j.plantsci.2020.110435 10.1007/978-3-030-06118-0 10.1016/j.ecoenv.2014.03.014 10.20944/preprints201911.0358.v1 10.1111/jipb.12892 10.1002/9781119324928 10.1007/s00122-008-0720-8 10.1089/ars.2017.7164 10.3390/plants10020388 10.1007/s11105-017-1041-3 10.1016/j.envexpbot.2019.01.010 10.3390/ijms20061312 10.1007/s12374-015-0103-z 10.1186/1471-2229-10-151 10.3390/ijms19124019 10.3390/antiox9080681 10.1016/j.jplph.2014.12.014 10.1111/pbi.12773 10.3389/fmicb.2020.547750 10.1016/j.jplph.2010.11.001 10.1016/j.tplants.2020.06.008 10.4067/S0718-58392019000300415 10.3390/ijms19071912 10.3389/fpls.2016.00609 10.1242/dev.164376 10.1080/00103624.2016.1269803 10.1007/s11816-018-0480-0 10.1007/s00344-014-9440-2 10.1515/biolog-2017-0169 10.1111/j.1365-313X.2008.03627.x 10.1111/nph.14920 10.1007/s00344-009-9088-5 10.1371/journal.pone.0054002 10.1007/978-981-10-5254-5 10.3390/biology9090297 10.3389/fpls.2016.00548 10.1016/j.bbamcr.2016.01.001 10.1007/978-3-319-75088-0 10.2174/1381612822666160629070914 10.1016/j.plgene.2019.100173 10.1007/s12298-020-00894-z 10.3389/fpls.2016.01104 10.1155/2015/858016 10.1080/13102818.2018.1556120 10.1007/s00344-020-10185-2 10.1007/s11240-014-0424-5 10.5772/intechopen.83521 10.1371/journal.pone.0087110 10.1080/15592324.2019.1600394 10.1146/annurev.arplant.59.032607.092911 10.1007/s00299-015-1770-4 10.1007/s00344-018-9849-0 10.1007/978-3-030-40277-8 10.1007/s11103-016-0488-1 10.1093/dnares/dsq011 10.1002/jsfa.10076 10.1371/journal.pone.0222659 10.1186/s42269-019-0156-0 10.1016/j.gene.2014.06.037 10.1590/1678-4499.2017185 10.1016/j.plaphy.2020.04.035 10.1104/pp.111.177071 10.1016/j.envexpbot.2015.08.002 10.1007/s11306-011-0296-1 10.3389/fpls.2015.00427 10.1093/jxb/erz302 10.1371/journal.pone.0032124 10.1016/j.plaphy.2021.04.024 10.3390/antiox10020277 10.1007/s11738-020-3032-5 10.1016/j.sajb.2016.03.011 10.1007/s00344-021-10381-8 10.1093/jxb/eru528 10.1016/j.cub.2020.02.002 10.1016/j.bcab.2017.11.003 10.1016/j.envexpbot.2017.02.010 10.1007/s00709-011-0365-3 10.1016/j.jplph.2015.02.006 10.3389/fpls.2019.00319 10.1371/journal.pone.0228241 10.1007/s12011-011-8958-4 10.1093/jxb/erp198 10.1007/s11356-014-3917-1 10.1007/s13580-019-00189-7 10.1007/s12298-016-0371-1 10.3390/agronomy10010127 10.1016/j.plaphy.2018.06.036 10.1007/978-81-322-3941-3 10.1016/j.pld.2019.10.002 10.1007/s00344-017-9737-z 10.14348/molcells.2016.2324 10.1016/j.indcrop.2019.04.055 10.1111/plb.13187 10.1104/pp.16.00359 10.1007/s12298-021-01009-y 10.1111/nph.15985 10.3389/fpls.2014.00151 10.1016/j.envexpbot.2013.12.006 10.1007/s00425-011-1379-y 10.1016/j.sajb.2016.11.003 10.1007/s11816-011-0189-9 10.1007/s10725-005-4928-1 10.1016/j.scienta.2019.108596 10.1155/2016/8231873 10.3390/antiox8090350 10.1104/pp.16.00166 10.1007/s10535-015-0523-0 10.1016/j.cub.2006.04.030 10.3390/plants10061040 10.1016/j.plantsci.2018.11.004 10.3390/antiox8120641 10.1111/nph.13507 10.1093/aob/mcv098 10.17221/22/2015-PSE 10.3390/biom11060788 10.1371/journal.pone.0248207 10.1016/j.plaphy.2018.10.025 10.3389/fpls.2018.00275 10.3389/fenvs.2014.00053 10.1007/s12298-016-0394-7 10.3390/plants8080247 10.3389/fpls.2017.01353 10.1104/pp.108.122325 10.1007/s13562-012-0107-4 10.1007/s00425-006-0417-7 10.3390/antiox10040611 10.1371/journal.pone.0126783 10.1007/s00344-015-9490-0 10.7717/peerj.10486 10.3389/fpls.2017.01372 10.1080/17429145.2020.1722266 10.1093/jxb/err280 10.3390/ijms20051176 10.1007/978-981-10-7479-0 10.1016/j.plaphy.2016.09.003 10.3390/antiox8040105 10.1093/jxb/ert430 10.1016/j.sjbs.2021.04.040 10.3390/ijms20102408 10.1371/journal.pgen.1004664 10.1016/j.plaphy.2020.02.030 10.1016/j.envpol.2017.05.083 10.3390/plants10010180 10.1007/s10343-018-0430-3 10.1089/ars.2008.2177 10.1093/jxb/ert085 10.1111/pce.13021 10.1007/s11738-017-2521-7 10.1016/j.envexpbot.2016.07.002 10.1371/journal.pone.0156398 10.1016/j.tplants.2019.05.010 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms22179326 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC8430727 10_3390_ijms22179326 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c455t-6c54b52bb2b2931f2d98abdcfbc8305221fa2646cea54dbee2b3e8d5612a63fd3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:28:03 EDT 2025 Fri Jul 11 05:48:48 EDT 2025 Fri Jul 25 20:06:30 EDT 2025 Tue Jul 01 03:07:49 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-6c54b52bb2b2931f2d98abdcfbc8305221fa2646cea54dbee2b3e8d5612a63fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0461-8743 0000-0003-1358-6859 0000-0003-0666-8434 0000-0002-0511-407X 0000-0001-5308-9975 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22179326 |
PMID | 34502233 |
PQID | 2571238613 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8430727 proquest_miscellaneous_2571928714 proquest_journals_2571238613 crossref_primary_10_3390_ijms22179326 crossref_citationtrail_10_3390_ijms22179326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210828 |
PublicationDateYYYYMMDD | 2021-08-28 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210828 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 ref_137 ref_136 (ref_138) 2011; 10 ref_90 Hasanuzzaman (ref_99) 2011; 5 ref_130 ref_132 ref_96 ref_135 Iqbal (ref_106) 2015; 178 ref_134 Duan (ref_159) 2013; 25 Mishra (ref_184) 2013; 250 Higuchi (ref_169) 2006; 16 Shu (ref_51) 2017; 8 ref_127 Iqbal (ref_166) 2014; 100 Mittler (ref_40) 2008; 147 ref_122 ref_124 ref_123 Ryu (ref_150) 2015; 58 Hossain (ref_64) 2017; 113 (ref_178) 2005; 45 Yang (ref_195) 2014; 117 Javid (ref_172) 2011; 5 ref_76 ref_75 ref_73 ref_156 Ahmad (ref_133) 2020; 23 Ali (ref_93) 2021; 28 ref_160 (ref_44) 2016; 26 Raja (ref_28) 2017; 137 Ahammed (ref_113) 2018; 37 Derbali (ref_97) 2020; 15 Hasanuzzaman (ref_100) 2011; 143 ref_147 ref_81 ref_149 Tognetti (ref_161) 2017; 11 Wang (ref_171) 2015; 6 Kwon (ref_58) 2019; 60 Foyer (ref_36) 2009; 11 ref_85 ref_146 Xiong (ref_143) 2002; 25 Huang (ref_34) 2016; 171 Yang (ref_139) 2018; 217 Boughalleb (ref_78) 2017; 72 Yu (ref_152) 2019; 70 Jahan (ref_79) 2020; 168 Babu (ref_48) 2012; 22 Zhu (ref_74) 2019; 79 Nahar (ref_67) 2016; 7 Cabot (ref_153) 2009; 28 Tyagi (ref_186) 2018; 223 Gurmani (ref_154) 2011; 5 Borrelli (ref_71) 2018; 133 Kumar (ref_111) 2018; 13 Singh (ref_33) 2019; 18 Heyno (ref_30) 2011; 234 Talaat (ref_105) 2015; 34 Geilfus (ref_91) 2015; 208 Shafi (ref_192) 2017; 35 Tran (ref_170) 2007; 104 Das (ref_45) 2014; 2 Yan (ref_198) 2016; 109 Sun (ref_182) 2020; 30 Costan (ref_87) 2020; 100 ref_115 ref_116 Jing (ref_190) 2015; 6 ref_118 Rahman (ref_70) 2016; 22 Mazher (ref_57) 2007; 3 Shakirova (ref_32) 2016; 122 Manai (ref_102) 2014; 14 Hasanuzzaman (ref_145) 2018; 12 Ma (ref_155) 2012; 63 Reumann (ref_38) 2016; 1863 Hasanuzzaman (ref_114) 2018; 70 Huang (ref_142) 2019; 224 Guan (ref_191) 2015; 175 ref_107 Zheng (ref_179) 2018; 24 Kumari (ref_104) 2015; 34 Chawla (ref_101) 2013; 22 Bela (ref_126) 2015; 176 Abderrahim (ref_108) 2016; 105 Park (ref_162) 2011; 156 ref_13 Farooq (ref_84) 2017; 203 ref_11 Mittler (ref_10) 2017; 22 Islam (ref_89) 2018; 77 Kurusu (ref_141) 2015; 6 Kaur (ref_110) 2017; 39 ref_19 ref_18 Hossain (ref_6) 2016; 7 ref_17 ref_16 ref_15 Kumar (ref_39) 2015; 116 Bao (ref_163) 2020; 62 Bistgani (ref_55) 2019; 135 Saxena (ref_200) 2020; 42 ref_25 ref_24 Derbali (ref_98) 2021; 164 Bose (ref_66) 2014; 65 ref_21 ref_20 Lehmann (ref_47) 2012; 8 ref_29 Wu (ref_54) 2015; 61 ref_27 Zhang (ref_144) 2016; 91 Jayakannan (ref_177) 2015; 66 Eltayeb (ref_193) 2007; 225 Liebthal (ref_125) 2018; 28 Nazar (ref_176) 2011; 168 Rossi (ref_77) 2017; 229 Mohsin (ref_120) 2020; 26 Qiu (ref_173) 2014; 104 Yu (ref_22) 2020; 25 Singh (ref_148) 2017; 8 Wang (ref_3) 2019; 10 Mohsin (ref_60) 2020; 152 Choudhary (ref_12) 2020; 42 Munns (ref_14) 2008; 59 Rao (ref_157) 2010; 17 Golldack (ref_140) 2014; 5 Ramadan (ref_82) 2019; 43 Sehar (ref_80) 2019; 161 Yadu (ref_109) 2017; 23 ref_53 ref_52 Liu (ref_174) 2019; 280 Singh (ref_196) 2014; 547 ref_180 Ali (ref_129) 2021; 158 Noreen (ref_83) 2021; 158 ref_59 Magome (ref_164) 2008; 56 ref_181 Jiang (ref_131) 2021; 27 Lu (ref_158) 2009; 47 Podgorska (ref_26) 2017; 8 ref_61 Osman (ref_121) 2021; 40 Parvin (ref_56) 2020; 150 Kerchev (ref_35) 2016; 171 Jayakannan (ref_175) 2013; 64 ref_165 ref_63 Arefian (ref_112) 2018; 37 ref_62 ref_167 Zhang (ref_88) 2017; 48 Villalta (ref_72) 2008; 116 Wutipraditkul (ref_103) 2015; 59 Rahman (ref_69) 2016; 7 Filiz (ref_189) 2018; 33 Siddiqui (ref_92) 2020; 39 Khanam (ref_86) 2018; 40 Nxele (ref_95) 2017; 108 Cunha (ref_128) 2016; 131 Joshi (ref_168) 2018; 41 Zeng (ref_65) 2018; 16 ref_194 Rossatto (ref_185) 2017; 23 Negi (ref_197) 2015; 34 ref_199 Witzel (ref_187) 2009; 60 ref_37 Liu (ref_119) 2020; 39 Dietz (ref_31) 2016; 39 Mekawya (ref_68) 2018; 130 Yang (ref_151) 2019; 24 Munns (ref_9) 2015; 208 ref_46 ref_183 Liu (ref_50) 2018; 9 ref_188 ref_42 ref_41 ref_1 ref_2 Mailloux (ref_23) 2016; 22 Kapoor (ref_117) 2020; 26 Anjum (ref_43) 2015; 22 ref_49 ref_8 ref_5 ref_4 ref_7 |
References_xml | – volume: 25 start-page: 324 year: 2013 ident: ref_159 article-title: Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings publication-title: Plant Cell doi: 10.1105/tpc.112.107227 – ident: ref_122 doi: 10.3390/plants10051025 – volume: 47 start-page: 132 year: 2009 ident: ref_158 article-title: Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO induced antioxidant enzyme activities publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2008.10.006 – ident: ref_29 doi: 10.1155/2012/217037 – ident: ref_42 doi: 10.1016/j.redox.2019.101136 – ident: ref_123 doi: 10.3390/biom11040587 – volume: 22 start-page: 11 year: 2017 ident: ref_10 article-title: ROS are good publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.002 – volume: 24 start-page: 231 year: 2018 ident: ref_179 article-title: Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-017-0496-x – ident: ref_37 doi: 10.3390/plants8020037 – volume: 23 start-page: 865 year: 2017 ident: ref_185 article-title: Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-017-0467-2 – ident: ref_24 doi: 10.3390/ijms21228695 – volume: 8 start-page: 1871 year: 2017 ident: ref_148 article-title: Editorial: Phytohormones and the regulation of stress tolerance in plants: Current status and future directions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01871 – volume: 25 start-page: 131 year: 2002 ident: ref_143 article-title: Molecular and genetic aspects of plant responses to osmotic stress publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2002.00782.x – volume: 39 start-page: 567 year: 2020 ident: ref_119 article-title: Hydrogen peroxide alleviates salinity-induced damage through enhancing proline accumulation in wheat seedlings publication-title: Plant Cell Rep. doi: 10.1007/s00299-020-02513-3 – ident: ref_181 doi: 10.1038/srep35392 – ident: ref_73 doi: 10.1155/2014/757219 – volume: 113 start-page: 346 year: 2017 ident: ref_64 article-title: Use of iso-osmotic solution to understand salt stress responses in lentil (Lens culinaris Medik.) publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2017.09.007 – ident: ref_147 doi: 10.1007/978-3-319-90318-7 – ident: ref_4 – volume: 39 start-page: 1488 year: 2020 ident: ref_92 article-title: Melatonin and gibberellic acid promote growth and chlorophyll biosynthesis by regulating antioxidant and methylglyoxal detoxification system in tomato seedlings under salinity publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-020-10122-3 – volume: 3 start-page: 386 year: 2007 ident: ref_57 article-title: Responses of ornamental and woody trees to salinity publication-title: World J. Agric. Sci. – volume: 158 start-page: 208 year: 2021 ident: ref_129 article-title: Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.10.040 – volume: 168 start-page: 490 year: 2020 ident: ref_79 article-title: Treatment of nitric oxide supplemented with nitrogen and sulfur regulates photosynthetic performance and stomatal behavior in mustard under salt stress publication-title: Physiol. Plant doi: 10.1111/ppl.13056 – volume: 14 start-page: 433 year: 2014 ident: ref_102 article-title: Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants publication-title: J. Soil Sci. Plant Nutr. – volume: 158 start-page: 244 year: 2021 ident: ref_83 article-title: Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.11.007 – ident: ref_127 doi: 10.1371/journal.pone.0136960 – volume: 41 start-page: 936 year: 2018 ident: ref_168 article-title: Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition publication-title: Plant Cell Environ. doi: 10.1111/pce.12947 – volume: 104 start-page: 20623 year: 2007 ident: ref_170 article-title: Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0706547105 – volume: 175 start-page: 183 year: 2015 ident: ref_191 article-title: A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2014.10.020 – ident: ref_62 doi: 10.3390/plants8060151 – volume: 26 start-page: 1139 year: 2020 ident: ref_120 article-title: Tebuconazole and trifloxystrobin regulate the physiology, antioxidant defense and methylglyoxal detoxification systems in conferring salt stress tolerance in Triticum aestivum L. publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-020-00810-5 – ident: ref_137 doi: 10.3390/plants10050886 – ident: ref_5 doi: 10.1007/978-1-4614-4747-4 – volume: 203 start-page: 81 year: 2017 ident: ref_84 article-title: Draught stress in grain legume during reproduction and grain filling publication-title: J. Agron. Crop. Sci. doi: 10.1111/jac.12169 – ident: ref_199 doi: 10.1016/j.plantsci.2020.110609 – volume: 6 start-page: 23 year: 2015 ident: ref_190 article-title: Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00023 – ident: ref_21 doi: 10.5772/intechopen.77838 – volume: 223 start-page: 19 year: 2018 ident: ref_186 article-title: Gene architecture and expression analyses provide insights into the role of glutathione peroxidases (GPXs) in bread wheat (Triticum aestivum L.) publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2018.02.006 – ident: ref_8 doi: 10.3390/antiox8090384 – volume: 10 start-page: 5972 year: 2011 ident: ref_138 article-title: Antioxidative and proline potentials as a protective mechanism in soybean plants under salinity stress publication-title: Afr. J. Biotechnol. – volume: 40 start-page: 188 year: 2018 ident: ref_86 article-title: Plant growth regulators ameliorate the ill effect of salt stress through improved growth, photosynthesis, antioxidant system, yield and quality attributes in Mentha piperita L. publication-title: Acta Physiol. Plant doi: 10.1007/s11738-018-2769-6 – volume: 6 start-page: 1004 year: 2015 ident: ref_171 article-title: Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.01004 – volume: 208 start-page: 668 year: 2015 ident: ref_9 article-title: Salinity tolerance of crops—What is the cost? publication-title: New Phytol. doi: 10.1111/nph.13519 – ident: ref_52 doi: 10.1016/j.plantsci.2020.110435 – ident: ref_15 doi: 10.1007/978-3-030-06118-0 – volume: 104 start-page: 202 year: 2014 ident: ref_173 article-title: Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2014.03.014 – ident: ref_116 doi: 10.20944/preprints201911.0358.v1 – volume: 62 start-page: 118 year: 2020 ident: ref_163 article-title: New insights into gibberellin signaling in regulating flowering in Arabidopsis publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12892 – ident: ref_46 doi: 10.1002/9781119324928 – volume: 116 start-page: 869 year: 2008 ident: ref_72 article-title: Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in tomato publication-title: Theor. Appl. Gene doi: 10.1007/s00122-008-0720-8 – volume: 28 start-page: 609 year: 2018 ident: ref_125 article-title: Peroxiredoxins and redox signaling in plants publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7164 – ident: ref_130 doi: 10.3390/plants10020388 – volume: 35 start-page: 504 year: 2017 ident: ref_192 article-title: Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance publication-title: Plant Mol. Biol. Rep. doi: 10.1007/s11105-017-1041-3 – volume: 22 start-page: 159 year: 2012 ident: ref_48 article-title: The effect of salinity on growth, hormones and mineral elements in leaf and fruit of tomato cultivar PKM1 publication-title: J. Anim. Plant Sci. – volume: 161 start-page: 277 year: 2019 ident: ref_80 article-title: Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.01.010 – ident: ref_18 doi: 10.3390/ijms20061312 – ident: ref_49 – volume: 58 start-page: 147 year: 2015 ident: ref_150 article-title: Plant hormones in salt stress tolerance publication-title: J. Plant Biol. doi: 10.1007/s12374-015-0103-z – ident: ref_183 doi: 10.1186/1471-2229-10-151 – ident: ref_17 doi: 10.3390/ijms19124019 – ident: ref_2 doi: 10.3390/antiox9080681 – volume: 176 start-page: 192 year: 2015 ident: ref_126 article-title: Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2014.12.014 – volume: 16 start-page: 310 year: 2018 ident: ref_65 article-title: Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12773 – ident: ref_59 doi: 10.3389/fmicb.2020.547750 – volume: 168 start-page: 807 year: 2011 ident: ref_176 article-title: Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2010.11.001 – volume: 25 start-page: 1117 year: 2020 ident: ref_22 article-title: How plant hormones mediate salt stress responses publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.06.008 – volume: 79 start-page: 415 year: 2019 ident: ref_74 article-title: Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress publication-title: Chilean J. Agric. Res. doi: 10.4067/S0718-58392019000300415 – ident: ref_20 doi: 10.3390/ijms19071912 – volume: 7 start-page: 609 year: 2016 ident: ref_69 article-title: Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00609 – volume: 5 start-page: 1278 year: 2011 ident: ref_154 article-title: Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativa L.) publication-title: Aust. J. Crop. Sci. – ident: ref_16 doi: 10.1242/dev.164376 – volume: 48 start-page: 624 year: 2017 ident: ref_88 article-title: Effects of salinity stress at different growth stages on tomato growth, yield and water use efficiency publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103624.2016.1269803 – volume: 12 start-page: 77 year: 2018 ident: ref_145 article-title: Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions publication-title: Plant Biotechnol. Rep. doi: 10.1007/s11816-018-0480-0 – volume: 34 start-page: 35 year: 2015 ident: ref_105 article-title: Effective microorganisms improve growth performance and modulate the ROS-scavenging system in common bean (Phaseolus vulgaris L.) plants exposed to salinity stress publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-014-9440-2 – volume: 72 start-page: 1454 year: 2017 ident: ref_78 article-title: Effect of NaCl stress on physiological, antioxidant enzymes and anatomical responses of Astragalus gombiformis publication-title: Biologia doi: 10.1515/biolog-2017-0169 – volume: 56 start-page: 613 year: 2008 ident: ref_164 article-title: The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03627.x – volume: 217 start-page: 523 year: 2018 ident: ref_139 article-title: Elucidating the molecular mechanisms mediating plant salt-stress responses publication-title: New Phytol. doi: 10.1111/nph.14920 – volume: 28 start-page: 187 year: 2009 ident: ref_153 article-title: Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-009-9088-5 – ident: ref_194 doi: 10.1371/journal.pone.0054002 – ident: ref_146 doi: 10.1007/978-981-10-5254-5 – ident: ref_76 doi: 10.3390/biology9090297 – volume: 7 start-page: 548 year: 2016 ident: ref_6 article-title: Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00548 – volume: 1863 start-page: 790 year: 2016 ident: ref_38 article-title: Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s) publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2016.01.001 – ident: ref_124 doi: 10.1007/978-3-319-75088-0 – volume: 22 start-page: 4763 year: 2016 ident: ref_23 article-title: Application of mitochondria-targeted pharmaceuticals for the treatment of heart disease publication-title: Curr. Pharm. Des. doi: 10.2174/1381612822666160629070914 – volume: 18 start-page: 100 year: 2019 ident: ref_33 article-title: Reactive oxygen species-mediated signaling during abiotic stress publication-title: Plant Gene doi: 10.1016/j.plgene.2019.100173 – volume: 26 start-page: 1950 year: 2016 ident: ref_44 article-title: Production of reactive oxygen species by photosystem II as a response to light and temperature stress publication-title: Front. Plant Sci. – volume: 26 start-page: 2125 year: 2020 ident: ref_117 article-title: Exogenous kinetin and putrescine synergistically mitigate salt stress in Luffa acutangula by modulating physiology and antioxidant defense publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-020-00894-z – volume: 7 start-page: 1104 year: 2016 ident: ref_67 article-title: Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01104 – ident: ref_94 doi: 10.1155/2015/858016 – volume: 33 start-page: 128 year: 2018 ident: ref_189 article-title: Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: Microarray data evaluation publication-title: Biotechnol. Biotechnol. Equip. doi: 10.1080/13102818.2018.1556120 – volume: 40 start-page: 1245 year: 2021 ident: ref_121 article-title: Ameliorative impact of an extract of the halophyte Arthrocnemum macrostachyum on growth and biochemical parameters of soybean under salinity stress publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-020-10185-2 – volume: 117 start-page: 99 year: 2014 ident: ref_195 article-title: Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species publication-title: Plant Cell Tissue Organ. Cult. doi: 10.1007/s11240-014-0424-5 – ident: ref_1 doi: 10.5772/intechopen.83521 – ident: ref_165 doi: 10.1371/journal.pone.0087110 – ident: ref_160 doi: 10.1080/15592324.2019.1600394 – volume: 59 start-page: 651 year: 2008 ident: ref_14 article-title: Mechanisms of salinity tolerance publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 34 start-page: 1109 year: 2015 ident: ref_197 article-title: Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco publication-title: Plant Cell Rep. doi: 10.1007/s00299-015-1770-4 – volume: 37 start-page: 1349 year: 2018 ident: ref_113 article-title: Epigallocatechin-3-gallate alleviates salinity-retarded seed germination and oxidative stress in tomato publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-018-9849-0 – ident: ref_90 doi: 10.1007/978-3-030-40277-8 – volume: 91 start-page: 651 year: 2016 ident: ref_144 article-title: The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses publication-title: Plant Mol. Biol. doi: 10.1007/s11103-016-0488-1 – volume: 17 start-page: 139 year: 2010 ident: ref_157 article-title: In silico analysis reveals 75 members of mitogen-activated protein kinase gene family in rice publication-title: DNA Res. doi: 10.1093/dnares/dsq011 – volume: 100 start-page: 732 year: 2020 ident: ref_87 article-title: Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf-life of fruit produced hydroponically publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.10076 – ident: ref_53 doi: 10.1371/journal.pone.0222659 – volume: 43 start-page: 118 year: 2019 ident: ref_82 article-title: Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions publication-title: Bull. Natl. Res. Cent. doi: 10.1186/s42269-019-0156-0 – volume: 547 start-page: 119 year: 2014 ident: ref_196 article-title: Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea) publication-title: Gene doi: 10.1016/j.gene.2014.06.037 – volume: 77 start-page: 385 year: 2018 ident: ref_89 article-title: Nutrient and salinity concentrations effects on quality and storability of cherry tomato fruits grown by hydroponic system publication-title: Bragantia doi: 10.1590/1678-4499.2017185 – volume: 152 start-page: 221 year: 2020 ident: ref_60 article-title: Pretreatment of wheat (Triticum aestivum L.) seedlings with 2,4-D improves tolerance to salinity-induced oxidative stress and methylglyoxal toxicity by modulating ion homeostasis, antioxidant defenses, and glyoxalase systems publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.04.035 – volume: 156 start-page: 537 year: 2011 ident: ref_162 article-title: Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.111.177071 – volume: 122 start-page: 19 year: 2016 ident: ref_32 article-title: Salicylic acid-induced protection against cadmium toxicity in wheat plants publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2015.08.002 – volume: 8 start-page: 143 year: 2012 ident: ref_47 article-title: Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress publication-title: Metabolomics doi: 10.1007/s11306-011-0296-1 – volume: 6 start-page: 427 year: 2015 ident: ref_141 article-title: Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00427 – volume: 70 start-page: 5457 year: 2019 ident: ref_152 article-title: CEPR2 phosphorylates and accelerates the degradation of PYR/PYLs in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz302 – ident: ref_167 doi: 10.1371/journal.pone.0032124 – volume: 164 start-page: 222 year: 2021 ident: ref_98 article-title: Post-stress restorative response of two quinoa genotypes differing in their salt resistance after salinity release publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2021.04.024 – ident: ref_13 doi: 10.3390/antiox10020277 – volume: 42 start-page: 45 year: 2020 ident: ref_200 article-title: Ectopic overexpression of cytosolic ascorbate peroxidase gene (Apx1) improves salinity stress tolerance in Brassica juncea by strengthening antioxidative defense mechanism publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-020-3032-5 – volume: 105 start-page: 306 year: 2016 ident: ref_108 article-title: Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2016.03.011 – ident: ref_134 doi: 10.1007/s00344-021-10381-8 – volume: 66 start-page: 1865 year: 2015 ident: ref_177 article-title: The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru528 – volume: 30 start-page: 1579 year: 2020 ident: ref_182 article-title: PIN-LIKES coordinate brassinosteroid signaling with nuclear auxin input in Arabidopsis thaliana publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.02.002 – volume: 13 start-page: 12 year: 2018 ident: ref_111 article-title: Differential behavior of the antioxidant system in response to salinity induced oxidative stress in salt-tolerant and salt-sensitive cultivars of Brassica juncea L. publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2017.11.003 – volume: 137 start-page: 142 year: 2017 ident: ref_28 article-title: Abiotic stress: Interplay between ROS, hormones and MAPKs publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2017.02.010 – volume: 250 start-page: 3 year: 2013 ident: ref_184 article-title: Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings publication-title: Protoplasma doi: 10.1007/s00709-011-0365-3 – volume: 178 start-page: 84 year: 2015 ident: ref_106 article-title: Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea) publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.02.006 – volume: 10 start-page: 319 year: 2019 ident: ref_3 article-title: Modulation of ethylene and ascorbic acid on reactive oxygen species scavenging in plant salt response publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00319 – ident: ref_136 doi: 10.1371/journal.pone.0228241 – volume: 143 start-page: 1704 year: 2011 ident: ref_100 article-title: Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-011-8958-4 – volume: 60 start-page: 3545 year: 2009 ident: ref_187 article-title: Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp198 – volume: 22 start-page: 4099 year: 2015 ident: ref_43 article-title: Lipids and proteins—Major targets of oxidative modifications in abiotic stressed plants publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3917-1 – volume: 60 start-page: 831 year: 2019 ident: ref_58 article-title: Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus) publication-title: Hortic. Environ. Biotechnol. doi: 10.1007/s13580-019-00189-7 – volume: 22 start-page: 291 year: 2016 ident: ref_70 article-title: Manganese-induced salt stress tolerance in rice seedlings: Regulation of ion homeostasis, antioxidant defense and glyoxalase systems publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-016-0371-1 – ident: ref_75 doi: 10.3390/agronomy10010127 – volume: 130 start-page: 94 year: 2018 ident: ref_68 article-title: Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.06.036 – ident: ref_7 doi: 10.1007/978-81-322-3941-3 – volume: 42 start-page: 33 year: 2020 ident: ref_12 article-title: ROS and oxidative burst: Roots in plant development publication-title: Plant Divers. doi: 10.1016/j.pld.2019.10.002 – volume: 37 start-page: 391 year: 2018 ident: ref_112 article-title: Comparative analysis of the reaction to salinity of different chickpea (Cicer arietinum L.) genotypes: A biochemical, enzymatic and transcriptional study publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-017-9737-z – volume: 39 start-page: 20 year: 2016 ident: ref_31 article-title: Thiol-based peroxidases and ascorbate peroxidases: Why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? publication-title: Mol. Cells doi: 10.14348/molcells.2016.2324 – volume: 135 start-page: 311 year: 2019 ident: ref_55 article-title: Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2019.04.055 – volume: 23 start-page: 113 year: 2020 ident: ref_133 article-title: Seed priming with gibberellic acid induces high salinity tolerance in Pisum sativum through antioxidant system, secondary metabolites and upregulation of antiporter genes publication-title: Plant Biol. doi: 10.1111/plb.13187 – volume: 171 start-page: 1704 year: 2016 ident: ref_35 article-title: Lack of GLYCOLATE OXIDASE1, but not GLYCOLATE OXIDASE2, attenuates the photorespiratory phenotype of CATALASE2- deficient Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.16.00359 – volume: 27 start-page: 1245 year: 2021 ident: ref_131 article-title: Conservation and divergence of the TaSOS1 gene family in salt stress response in wheat (Triticum aestivum L.) publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-021-01009-y – volume: 224 start-page: 177 year: 2019 ident: ref_142 article-title: Calcium signals in guard cells enhance the efficiency by which abscisic acid triggers stomatal closure publication-title: New Phytol. doi: 10.1111/nph.15985 – volume: 5 start-page: 151 year: 2014 ident: ref_140 article-title: Tolerance to drought and salt stress in plants: Unraveling the signaling networks publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00151 – volume: 100 start-page: 34 year: 2014 ident: ref_166 article-title: A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2013.12.006 – volume: 234 start-page: 35 year: 2011 ident: ref_30 article-title: Oxygen activation at the plasma membrane: Relation between superoxide and hydroxyl radical production by isolated membranes publication-title: Planta doi: 10.1007/s00425-011-1379-y – volume: 108 start-page: 261 year: 2017 ident: ref_95 article-title: Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2016.11.003 – volume: 5 start-page: 353 year: 2011 ident: ref_99 article-title: Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings publication-title: Plant Biotechnol. Rep. doi: 10.1007/s11816-011-0189-9 – volume: 5 start-page: 726 year: 2011 ident: ref_172 article-title: The role of phytohormones in alleviating salt stress in crop plants publication-title: Aust. J. Crop. Sci. – volume: 45 start-page: 215 year: 2005 ident: ref_178 article-title: Response of barley grains to the interactive effect of salinity and salicylic acid publication-title: Plant Growth Regul. doi: 10.1007/s10725-005-4928-1 – ident: ref_156 doi: 10.1016/j.scienta.2019.108596 – ident: ref_107 doi: 10.1155/2016/8231873 – ident: ref_61 doi: 10.3390/antiox8090350 – volume: 171 start-page: 1551 year: 2016 ident: ref_34 article-title: The roles of mitochondrial reactive oxygen species in cellular signaling and stress responses in plants publication-title: Plant Physiol. doi: 10.1104/pp.16.00166 – volume: 59 start-page: 547 year: 2015 ident: ref_103 article-title: Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine publication-title: Biol. Plant doi: 10.1007/s10535-015-0523-0 – volume: 16 start-page: 1116 year: 2006 ident: ref_169 article-title: Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.04.030 – ident: ref_135 doi: 10.3390/plants10061040 – volume: 280 start-page: 1 year: 2019 ident: ref_174 article-title: The moss jasmonate ZIM-domain protein PnJAZ1 confers salinity tolerance via crosstalk with the abscisic acid signalling pathway publication-title: Plant Sci. doi: 10.1016/j.plantsci.2018.11.004 – ident: ref_25 doi: 10.3390/antiox8120641 – volume: 208 start-page: 803 year: 2015 ident: ref_91 article-title: Chloride-inducible transient apoplastic alkalinazations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba publication-title: New Phytol. doi: 10.1111/nph.13507 – volume: 116 start-page: 663 year: 2015 ident: ref_39 article-title: Seed birth to death: Dual functions of reactive oxygen species in seed physiology publication-title: Ann. Bot. doi: 10.1093/aob/mcv098 – volume: 61 start-page: 220 year: 2015 ident: ref_54 article-title: Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.) publication-title: Plant Soil Environ. doi: 10.17221/22/2015-PSE – ident: ref_149 doi: 10.3390/biom11060788 – ident: ref_96 doi: 10.1371/journal.pone.0248207 – volume: 133 start-page: 57 year: 2018 ident: ref_71 article-title: Analysis of metabolic and mineral changes in response to salt stress in durum wheat (Triticum turgidum ssp. durum) genotypes, which differ in salinity tolerance publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.10.025 – volume: 9 start-page: 275 year: 2018 ident: ref_50 article-title: Salinity inhibits rice seed germination by reducing α-Amylase activity via decreased bioactive gibberellin content publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00275 – volume: 2 start-page: 53 year: 2014 ident: ref_45 article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2014.00053 – volume: 23 start-page: 43 year: 2017 ident: ref_109 article-title: Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-016-0394-7 – ident: ref_41 – ident: ref_115 doi: 10.3390/plants8080247 – volume: 8 start-page: 1353 year: 2017 ident: ref_26 article-title: Extra-cellular but extra-ordinarily important for cells: Apoplastic reactive oxygen species metabolism publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01353 – volume: 147 start-page: 978 year: 2008 ident: ref_40 article-title: Unraveling the tapestry of networks involving reactive oxygen species in plants publication-title: Plant Physiol. doi: 10.1104/pp.108.122325 – volume: 22 start-page: 27 year: 2013 ident: ref_101 article-title: Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.) publication-title: J. Plant Biochem. Biotechnol. doi: 10.1007/s13562-012-0107-4 – volume: 225 start-page: 1255 year: 2007 ident: ref_193 article-title: Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses publication-title: Planta doi: 10.1007/s00425-006-0417-7 – ident: ref_63 doi: 10.3390/antiox10040611 – ident: ref_188 doi: 10.1371/journal.pone.0126783 – volume: 34 start-page: 558 year: 2015 ident: ref_104 article-title: Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill) publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-015-9490-0 – ident: ref_118 doi: 10.7717/peerj.10486 – volume: 8 start-page: 1372 year: 2017 ident: ref_51 article-title: Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01372 – volume: 15 start-page: 27 year: 2020 ident: ref_97 article-title: Physiological and biochemical markers for screening salt tolerant quinoa genotypes at early seedling stage publication-title: J. Plant Interact. doi: 10.1080/17429145.2020.1722266 – volume: 63 start-page: 305 year: 2012 ident: ref_155 article-title: NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/err280 – ident: ref_132 doi: 10.3390/ijms20051176 – ident: ref_11 doi: 10.1007/978-981-10-7479-0 – volume: 109 start-page: 20 year: 2016 ident: ref_198 article-title: Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.09.003 – ident: ref_27 doi: 10.3390/antiox8040105 – volume: 65 start-page: 1241 year: 2014 ident: ref_66 article-title: ROS homeostasis in halophytes in the context of salinity stress tolerance publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert430 – volume: 28 start-page: 3204 year: 2021 ident: ref_93 article-title: Wuxal amino (Bio stimulant) improved growth and physiological performance of tomato plants under salinity stress through adaptive mechanisms and antioxidant potential publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2021.04.040 – ident: ref_19 doi: 10.3390/ijms20102408 – ident: ref_180 doi: 10.1371/journal.pgen.1004664 – volume: 150 start-page: 109 year: 2020 ident: ref_56 article-title: Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.02.030 – volume: 229 start-page: 132 year: 2017 ident: ref_77 article-title: Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.05.083 – ident: ref_81 doi: 10.3390/plants10010180 – volume: 70 start-page: 185 year: 2018 ident: ref_114 article-title: Exogenous silicon protects Brassica napus plants from salinity-induced oxidative stress through the modulation of AsA-GSH pathway, thiol-dependent antioxidant enzymes and glyoxalase systems publication-title: Gesunde Pflanz. doi: 10.1007/s10343-018-0430-3 – volume: 11 start-page: 861 year: 2009 ident: ref_36 article-title: Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2008.2177 – volume: 64 start-page: 2255 year: 2013 ident: ref_175 article-title: Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert085 – volume: 11 start-page: 2586 year: 2017 ident: ref_161 article-title: Redox regulation at the site of primary growth: Auxin, cytokinin and ROS crosstalk publication-title: Plant Cell Environ. doi: 10.1111/pce.13021 – volume: 39 start-page: 221 year: 2017 ident: ref_110 article-title: Mitigation of salinity-induced oxidative damage in wheat (Triticum aestivum L.) seedlings by exogenous application of phenolic acids publication-title: Acta Physiol. Plant doi: 10.1007/s11738-017-2521-7 – volume: 131 start-page: 58 year: 2016 ident: ref_128 article-title: Salinity and osmotic stress trigger different antioxidant responses related to cytosolic ascorbate peroxidase knockdown in rice roots publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.07.002 – ident: ref_85 doi: 10.1371/journal.pone.0156398 – volume: 24 start-page: 672 year: 2019 ident: ref_151 article-title: SnRK2s at the crossroads of growth and stress responses publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2019.05.010 |
SSID | ssj0023259 |
Score | 2.7012458 |
SecondaryResourceType | review_article |
Snippet | The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 9326 |
SubjectTerms | Abiotic stress Agricultural production Antioxidants Biosynthesis Chloroplasts Cytochrome Defense Enzymes Equilibrium Free radicals Gene expression Metabolism Mitochondria Oxidation Oxidative stress Polyamines Reactive oxygen species Respiration Review Salinity Salt |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86EXwRP3E6JYI-SdmWNm36JEMdQ1BhOtlbSZoEJ9rNtYPtv_eu7b4etK8JhN5d7u6XXO5HyJXwhYFIoBxAKCEAFNxz2hgnaOow4Fw2ef4W5unZ7_S8xz7vlwduaVlWOfeJuaPWwxjPyOtgWuBkBUSf29GPg6xReLtaUmhski1sXYYlXUF_CbhclpOlNSEGOT4P_aLw3QWYXx98fqeMoXViW4XVkLTMM9erJFfCTnuP7Jb5Im0VCt4nGyY5INsFg-TskLx3Cy55kC4dWto1Mvdf9GU6A8ugObu8SalMNG1hXeN0oEGU9N5YgK-GDhKKrEVZSvEt2Zi-Snwomc2OSK_98HbXcUqqBCf2OM8cP-ae4kwppiB-Ny3ToZBKx1bFAnY0_KmVkPr4sZHc08oYplwjNFJjSt-12j0mlWSYmBNCJX7KuEFDW8-yBqgskKA4IbT2Y8ur5GYurSgu-4gjncVXBHgCZRutyrZKrhezR0X_jD_m1eaCj8pdlEZLnVfJ5WIY7B8vNWRihpNiToiwz6uSYE1hi_Wwg_b6SDL4yDtpCw9cHAtO_1_8jOwwrGRpgE8RNVLJxhNzDqlIpi5ye_sFHf3gWQ priority: 102 providerName: ProQuest |
Title | Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity |
URI | https://www.proquest.com/docview/2571238613 https://www.proquest.com/docview/2571928714 https://pubmed.ncbi.nlm.nih.gov/PMC8430727 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD6iVJN4QbANUS6VJ21PU6B149h9QIhbhybRTd2K-hbZsS2KSgptkNp_zzlJW1ptSOQhL3ES5dy_2D4fwFcVKYeZwASIUJoIUMjnrHOBrNumFELXRb4X5qYdXXfDnz3RW4M52-hMgOP_Qjvik-qOBkeTp-kpOvwJIU6E7Mf9-4cx52RpPCpBGXOSJBe9CRfzCVg25LRp9MMjoABdLIH_5-7V5PRaca6ul1xKQK0t2JxVjuysUPU2rLn0I3wouCSnn-C2U7DKo5zZ0LOO03kkY78mU7QRlvPMuzHTqWVntMJx0rcoVHbpPAJZx_opI_6ibMxoV9mI_dG0ZTKbfoZu6-rvxXUwI00IklCILIgSERrBjeEGM3ndc9tU2tjEm0Shb-OXeo1FUJQ4LUJrnOOm4ZQlkkwdNbxt7MB6OkzdLjBNh3ENWbM-9LyGypMaVaiUtVHiRQW-z6UVJ7OO4kRsMYgRWZBs42XZVuDbYvRj0UnjjXEHc8HHc3OIMbBgilVYe1Tgy-IyegJNb-jUDZ-LMU0CgGEF5IrCFu-jXtqrV9L-Xd5TW4UY7Ljce8fT92GD08KWGoYYdQDr2ejZHWJlkpkqlGRP4lm1flShfH7V_t2pUq4Q1dwcXwB75-lX |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviKfYUsBI9ISiJk6cOAeEKkq1pQ-k0qK9BTsei60g2zap6P4pfiMzyWa3e4Bbc7VlSzOf5xGP5wN4q1ON5AlsQBlKTgkKnzmHGGSRyzOlTKTatzCHR-nwNPk8UqMV-NO_heGyyt4mtobaTUr-R75F0CIjq8n7fDi_CJg1im9XewqNDhb7OP1NKVv9fm-H9Lsp5e6nk4_DYMYqEJSJUk2QliqxSlorLbm6yEuXa2Nd6W2pCfxSRt5QlJCWaFTiLKK0MWrHLJImjb2Lad07cJccb8gnKhstErxYtuRsEfm8IFV52hXax3Eebo3PftW0dMbh0rILXMS1y1WZN9zc7kN4MItPxXYHqEewgtVjuNcxVk6fwLfjjruetCkmXhyjae2l-HI9JSSKls0ea2EqJ7a5jvJ67Eh1Ygc9pcsoxpVglqSmFvx27VJ8Nfwws5k-hdNbEeIzWK0mFT4HYfizGGeh84mXIUEkMwQUrZ1LS68G8K6XVlHO-pYzfcbPgvIXlm1xU7YD2JzPPu_6dfxj3kYv-GJ2autigbEBvJkP03njSxRT4eSqm5NzmpkMIFtS2Hw_7ti9PFKNf7Sdu3VCJlVm6__f_DXcH54cHhQHe0f7L2BNchVNSPZMb8Bqc3mFLykMauyrFnsCvt822P8CMCEevQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAviKdYKNRI9ISi3Thx7BxQVbFdtfQBKhTtLdixrW5VsqVJ1e5f49cxk8du9wC35mrLlsbfvOIZfwDvVaIcegITYIaSYoJCOmedC2RoUymEDkXdC3N4lOyexJ_HYrwCf7peGCqr7GxibajtNKd_5H2EFhpZhd6n79uyiK_D0dbF74AYpOimtaPTaCCy72bXmL6VH_eGeNabnI92vn_aDVqGgSCPhaiCJBexEdwYbtDthZ7bVGljc29yhYrAeeg1RgxJ7rSIrXGOm8gpS4ySOom8jXDde3BfRiIkHZPjRbIX8ZqoLUT_FyQiTZqi-yhKB_3J2a8Sl5YUOi27w0WMu1yhecvljR7DozZWZdsNuJ7AiiuewoOGvXL2DH4cNzz2eLJs6tmx07XtZF9uZohKVjPbu5LpwrJtqqm8mVg8RjZ0HlNnxyYFI8akqmTUx3bJvmlq0qxmz-HkToT4AlaLaeFeAtP0GRfJgfWx5wOEi9QIGqWsTXIvevChk1aWt2-YE5XGeYa5DMk2uy3bHmzOZ180b3f8Y956J_is1eAyW-CtB-_mw6h7dKGiCze9auaklHLGPZBLBzbfj17vXh4pJqf1K94qRvPK5av_b74BDxHm2cHe0f5rWONUUDNA06bWYbW6vHJvMCKqzNsaegx-3jXW_wIWjCLz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Reactive+Oxygen+Species+and+Antioxidant+Defense+in+Plants+under+Salinity&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Hasanuzzaman%2C+Mirza&rft.au=Raihan%2C+Md+Rakib+Hossain&rft.au=Masud%2C+Abdul+Awal+Chowdhury&rft.au=Rahman%2C+Khussboo&rft.date=2021-08-28&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=17&rft_id=info:doi/10.3390%2Fijms22179326&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |