Spatiotemporal evolutionary and mechanism analysis of grassland GPP in China
•Both GPP and GPPmax in Chinese grasslands showed increases at different space–time scales.•Trend analysis and breakpoint tests were used for the first time to monitor GPP change simultaneously in Chinese grasslands.•GPPmax × CUP is a robust indicator to explain annual-scale variation in GPP. At the...
Saved in:
Published in | Ecological indicators Vol. 143; p. 109323 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1470-160X |
DOI | 10.1016/j.ecolind.2022.109323 |
Cover
Loading…
Abstract | •Both GPP and GPPmax in Chinese grasslands showed increases at different space–time scales.•Trend analysis and breakpoint tests were used for the first time to monitor GPP change simultaneously in Chinese grasslands.•GPPmax × CUP is a robust indicator to explain annual-scale variation in GPP.
At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO2 through photosynthesis and sequester carbon in plant bodies. How to accurately assess the spatiotemporal evolution of ecosystem carbon indicators has become a critical issue to be addressed. Chinese grasslands are located in a typical arid and semi-arid climate zone and are sensitive to global changes, which will inevitably have serious impacts on the function and structure of Chinese grasslands. Based on this, our paper takes Chinese grassland ecosystems as the research area, and used multi-source GPP dataset from terrestrial ecosystem model simulations and remote sensing satellite observations to quantitatively analyze the spatiotemporal evolution patterns of GPP in Chinese grasslands over the past 40 years. We combined trend analysis and breakpoint test, and then to analyze the mechanism components of GPP space–time variability. The main results are as follows: (1) The model and remote sensing estimated GPP results showed that more than 80% of Chinese grasslands show a significant increasing trend over the past 40 years, with growth rates ranging from 0.68 to 3.13 g C/m−2 year−1. (2) GPPmax also shows that more than 80% of Chinese grasslands are growing rapidly, with an overall growth rate of more than 0.1 g C/m−2 year−1 in each region. The overall long-term trends and interannual variability of multi-source GPP and GPPmax are generally consistent, yet vegetation dynamics in local areas are still uncertain. (3) The breakpoint test showed that ‘monotonically increasing’ was the largest breakpoint type of GPP in Chinese grasslands (33.09%), and the direction of change of GPP in Chinese grasslands before and after the breakpoint was also increasing. (4) GPPmax × CUP explained 91% of the temporal variability of annual-scale GPP in Chinese grasslands from a mechanistic view, and we found that the peak photosynthetic growth and the length of the phenological period synergistically controlled the interannual variability of GPP in Chinese grasslands. Under the scenario of rapid global change, our study accurately assessed the long-term dynamics of GPP and its mechanism-driven of grassland ecosystems in China, which is helpful for estimating and predicting the carbon budget of grassland ecosystems in China, and has important guiding significance for policy formulation to mitigate climate change. |
---|---|
AbstractList | •Both GPP and GPPmax in Chinese grasslands showed increases at different space–time scales.•Trend analysis and breakpoint tests were used for the first time to monitor GPP change simultaneously in Chinese grasslands.•GPPmax × CUP is a robust indicator to explain annual-scale variation in GPP.
At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO2 through photosynthesis and sequester carbon in plant bodies. How to accurately assess the spatiotemporal evolution of ecosystem carbon indicators has become a critical issue to be addressed. Chinese grasslands are located in a typical arid and semi-arid climate zone and are sensitive to global changes, which will inevitably have serious impacts on the function and structure of Chinese grasslands. Based on this, our paper takes Chinese grassland ecosystems as the research area, and used multi-source GPP dataset from terrestrial ecosystem model simulations and remote sensing satellite observations to quantitatively analyze the spatiotemporal evolution patterns of GPP in Chinese grasslands over the past 40 years. We combined trend analysis and breakpoint test, and then to analyze the mechanism components of GPP space–time variability. The main results are as follows: (1) The model and remote sensing estimated GPP results showed that more than 80% of Chinese grasslands show a significant increasing trend over the past 40 years, with growth rates ranging from 0.68 to 3.13 g C/m−2 year−1. (2) GPPmax also shows that more than 80% of Chinese grasslands are growing rapidly, with an overall growth rate of more than 0.1 g C/m−2 year−1 in each region. The overall long-term trends and interannual variability of multi-source GPP and GPPmax are generally consistent, yet vegetation dynamics in local areas are still uncertain. (3) The breakpoint test showed that ‘monotonically increasing’ was the largest breakpoint type of GPP in Chinese grasslands (33.09%), and the direction of change of GPP in Chinese grasslands before and after the breakpoint was also increasing. (4) GPPmax × CUP explained 91% of the temporal variability of annual-scale GPP in Chinese grasslands from a mechanistic view, and we found that the peak photosynthetic growth and the length of the phenological period synergistically controlled the interannual variability of GPP in Chinese grasslands. Under the scenario of rapid global change, our study accurately assessed the long-term dynamics of GPP and its mechanism-driven of grassland ecosystems in China, which is helpful for estimating and predicting the carbon budget of grassland ecosystems in China, and has important guiding significance for policy formulation to mitigate climate change. At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO2 through photosynthesis and sequester carbon in plant bodies. How to accurately assess the spatiotemporal evolution of ecosystem carbon indicators has become a critical issue to be addressed. Chinese grasslands are located in a typical arid and semi-arid climate zone and are sensitive to global changes, which will inevitably have serious impacts on the function and structure of Chinese grasslands. Based on this, our paper takes Chinese grassland ecosystems as the research area, and used multi-source GPP dataset from terrestrial ecosystem model simulations and remote sensing satellite observations to quantitatively analyze the spatiotemporal evolution patterns of GPP in Chinese grasslands over the past 40 years. We combined trend analysis and breakpoint test, and then to analyze the mechanism components of GPP space–time variability. The main results are as follows: (1) The model and remote sensing estimated GPP results showed that more than 80% of Chinese grasslands show a significant increasing trend over the past 40 years, with growth rates ranging from 0.68 to 3.13 g C/m−2 year−1. (2) GPPmax also shows that more than 80% of Chinese grasslands are growing rapidly, with an overall growth rate of more than 0.1 g C/m−2 year−1 in each region. The overall long-term trends and interannual variability of multi-source GPP and GPPmax are generally consistent, yet vegetation dynamics in local areas are still uncertain. (3) The breakpoint test showed that ‘monotonically increasing’ was the largest breakpoint type of GPP in Chinese grasslands (33.09%), and the direction of change of GPP in Chinese grasslands before and after the breakpoint was also increasing. (4) GPPmax × CUP explained 91% of the temporal variability of annual-scale GPP in Chinese grasslands from a mechanistic view, and we found that the peak photosynthetic growth and the length of the phenological period synergistically controlled the interannual variability of GPP in Chinese grasslands. Under the scenario of rapid global change, our study accurately assessed the long-term dynamics of GPP and its mechanism-driven of grassland ecosystems in China, which is helpful for estimating and predicting the carbon budget of grassland ecosystems in China, and has important guiding significance for policy formulation to mitigate climate change. At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO₂ through photosynthesis and sequester carbon in plant bodies. How to accurately assess the spatiotemporal evolution of ecosystem carbon indicators has become a critical issue to be addressed. Chinese grasslands are located in a typical arid and semi-arid climate zone and are sensitive to global changes, which will inevitably have serious impacts on the function and structure of Chinese grasslands. Based on this, our paper takes Chinese grassland ecosystems as the research area, and used multi-source GPP dataset from terrestrial ecosystem model simulations and remote sensing satellite observations to quantitatively analyze the spatiotemporal evolution patterns of GPP in Chinese grasslands over the past 40 years. We combined trend analysis and breakpoint test, and then to analyze the mechanism components of GPP space–time variability. The main results are as follows: (1) The model and remote sensing estimated GPP results showed that more than 80% of Chinese grasslands show a significant increasing trend over the past 40 years, with growth rates ranging from 0.68 to 3.13 g C/m⁻² year⁻¹. (2) GPPₘₐₓ also shows that more than 80% of Chinese grasslands are growing rapidly, with an overall growth rate of more than 0.1 g C/m⁻² year⁻¹ in each region. The overall long-term trends and interannual variability of multi-source GPP and GPPₘₐₓ are generally consistent, yet vegetation dynamics in local areas are still uncertain. (3) The breakpoint test showed that ‘monotonically increasing’ was the largest breakpoint type of GPP in Chinese grasslands (33.09%), and the direction of change of GPP in Chinese grasslands before and after the breakpoint was also increasing. (4) GPPₘₐₓ × CUP explained 91% of the temporal variability of annual-scale GPP in Chinese grasslands from a mechanistic view, and we found that the peak photosynthetic growth and the length of the phenological period synergistically controlled the interannual variability of GPP in Chinese grasslands. Under the scenario of rapid global change, our study accurately assessed the long-term dynamics of GPP and its mechanism-driven of grassland ecosystems in China, which is helpful for estimating and predicting the carbon budget of grassland ecosystems in China, and has important guiding significance for policy formulation to mitigate climate change. |
ArticleNumber | 109323 |
Author | Meng, Xiaoyu He, Panxing Liu, Huixia Ma, Xiaoliang Sun, Zongjiu Han, Zhiming |
Author_xml | – sequence: 1 givenname: Panxing surname: He fullname: He, Panxing email: hepanxing@163.com organization: Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, College of Grassland Science, Xinjiang Agricultural University, Urumqi 830000, China – sequence: 2 givenname: Xiaoliang surname: Ma fullname: Ma, Xiaoliang email: maxl19@lzu.edu.cn organization: State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China – sequence: 3 givenname: Xiaoyu surname: Meng fullname: Meng, Xiaoyu email: mengxiaoyu@henu.edu.cn organization: Key Research Insititute of Yellow River Civilization and Sustainable Development, Collaborative Innovation Center on Yellow River Civilization, Henan University, Kaifeng 475000, China – sequence: 4 givenname: Zhiming surname: Han fullname: Han, Zhiming email: m15029258074@163.com organization: College of Resources and Environment, Northwest A&F University, Yangling 712100, China – sequence: 5 givenname: Huixia surname: Liu fullname: Liu, Huixia email: 158755032@qq.com organization: Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, College of Grassland Science, Xinjiang Agricultural University, Urumqi 830000, China – sequence: 6 givenname: Zongjiu surname: Sun fullname: Sun, Zongjiu email: nmszj@21cn.com organization: Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, College of Grassland Science, Xinjiang Agricultural University, Urumqi 830000, China |
BookMark | eNqFkE9r3DAQxXVIIX-aj1DwsZfdSpYtS_RQypKkgYUE2kJvYjweJ1pkaSt5A_n20dahh1xyEnp6743md85OQgzE2CfB14IL9WW3JozehWFd87oumpG1PGFnoun4Sij-55Sd57zjxWuMOmPbn3uYXZxp2scEvqKn6A9FCJCeKwhDNRE-QnB5Kjfwz9nlKo7VQ4Kc_fH95v6-cqHaPLoAH9mHEXymy9fzgv2-vvq1-bHa3t3cbr5vV9i07bxSuu8NGU7IiTozoGg7VRtURqEWAnQ3Yq-xET22hEKIQZMc-QDIu0YSygt2u_QOEXZ2n9xUfmsjOPtPiOnBQpoderKgG-qoHgfRyUapUfNeEhCh0oaEotL1eenap_j3QHm2k8tIvixH8ZBt3QktZck2xdouVkwx50Tj_9GC2yN9u7Ov9O2Rvl3ol9zXNzl085F6mBM4_27625KmQvTJUbIZHQWkwSXCuazs3ml4AeRIqR4 |
CitedBy_id | crossref_primary_10_1080_10106049_2025_2451162 crossref_primary_10_3390_rs15153864 crossref_primary_10_1016_j_jclepro_2023_137690 crossref_primary_10_3390_land13050572 crossref_primary_10_3390_land13091346 crossref_primary_10_3390_rs17050811 crossref_primary_10_3389_fenvs_2022_928351 crossref_primary_10_3390_rs15184489 crossref_primary_10_1002_ldr_5379 crossref_primary_10_12677_gser_2024_132044 crossref_primary_10_1016_j_atech_2025_100771 crossref_primary_10_1038_s41598_023_49763_1 crossref_primary_10_3390_rs16111994 crossref_primary_10_1007_s40333_024_0090_3 |
Cites_doi | 10.1098/rstb.2016.0135 10.5194/gmd-6-2121-2013 10.1016/j.rse.2019.111383 10.1038/s41893-017-0004-x 10.1007/s00484-020-01974-1 10.1016/j.agrformet.2014.03.007 10.1002/2016JD025871 10.5194/gmd-11-121-2018 10.1016/j.agrformet.2012.06.009 10.1175/JCLI-D-11-00401.1 10.1002/ldr.3351 10.1029/2011GL048738 10.1073/pnas.1413090112 10.1111/j.1365-2486.2006.01305.x 10.1007/s11427-021-2045-5 10.1002/2017GB005733 10.1088/1748-9326/12/1/010301 10.1016/j.rse.2018.05.018 10.1016/j.rse.2009.08.014 10.3390/rs5031117 10.1098/rstb.2007.2029 10.3390/rs70810243 10.1016/j.scitotenv.2019.05.022 10.1016/j.rse.2010.01.022 10.1073/pnas.1210423110 10.1002/joc.4420 10.2307/2333282 10.1109/JSTARS.2021.3076075 10.1016/j.agrformet.2019.107896 10.1029/2004GB002395 10.1126/science.268.5211.654 10.1038/nclimate3092 10.1038/nature22030 10.1038/srep41366 10.1016/j.agrformet.2019.107774 10.1126/science.1184984 10.1007/s10021-012-9539-x 10.5194/gmd-7-2875-2014 10.1007/s11430-007-0049-1 10.1016/j.rse.2012.02.022 10.1029/2011JD016276 10.5194/bg-11-2027-2014 10.1016/j.gecco.2021.e01574 10.1016/j.scitotenv.2020.140297 10.1029/94GB00850 10.1016/j.scitotenv.2019.01.324 10.1029/2012JG001960 10.1016/j.agrformet.2006.12.001 10.1111/gcb.12207 10.3390/rs11212475 10.1038/s43017-019-0001-x 10.1038/nature07944 10.1002/2014GB004826 10.1038/348711a0 10.1038/s41559-018-0714-0 10.5194/essd-12-3269-2020 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ecolind.2022.109323 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
ExternalDocumentID | oai_doaj_org_article_a84e7e2fd173466f80b3eaeec689e16e 10_1016_j_ecolind_2022_109323 S1470160X22007956 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AFJKZ AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSH SSJ SSZ T5K ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c455t-68bb9e90ec0ee79dc157629c696c811a87fcb8c41bc5ec111d8e3f0dac0743ec3 |
IEDL.DBID | DOA |
ISSN | 1470-160X |
IngestDate | Wed Aug 27 01:25:27 EDT 2025 Thu Jul 10 18:55:50 EDT 2025 Tue Jul 01 04:26:57 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Sun Apr 06 06:54:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chinese grasslands GPPmax × CUP Interannual variability Spatiotemporal evolutionary Gross primary productivity |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-68bb9e90ec0ee79dc157629c696c811a87fcb8c41bc5ec111d8e3f0dac0743ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/a84e7e2fd173466f80b3eaeec689e16e |
PQID | 2718333464 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a84e7e2fd173466f80b3eaeec689e16e proquest_miscellaneous_2718333464 crossref_primary_10_1016_j_ecolind_2022_109323 crossref_citationtrail_10_1016_j_ecolind_2022_109323 elsevier_sciencedirect_doi_10_1016_j_ecolind_2022_109323 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 20221001 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Ecological indicators |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zhang, Yu, Chen, Zhang, Wang, Zhang, He, Han, Chen, Han, Li, Sha, Shi, Wang, Wang, Xiang, Yan, Zhang, Zona, Arain, Maximov, Oechel, Kosugi (b0265) 2020; 280 He, Sun, Xu, Liu, Yao, Ma (b0075) 2021; 6 Frankenberg, Fisher, Worden, Badgley, Saatchi, Lee, Toon, Butz, Jung, Kuze, Yokota (b0060) 2011; 38 Chen, Huang, Gao, Wang (b0025) 2019; 663 Xiao, Chevallier, Gomez, Guanter, Hicke, Huete, Ichii, Ni, Pang, Rahman, Sun, Yuan, Zhang, Zhang (b0230) 2019; 233 Zscheischler, Michalak, Schwalm, Mahecha, Huntzinger, Reichstein, Berthier, Ciais, Cook, El-Masri, Huang, Ito, Jain, King, Lei, Lu, Mao, Peng, Poulter, Ricciuto, Shi, Tao, Tian, Viovy, Wang, Wei, Yang, Zeng (b0285) 2014; 28 Tong, Brandt, Yue, Horion, Wang, Keersmaecker, Tian, Schurgers, Xiao, Luo, Chen, Myneni, Shi, Chen, Fensholt (b0180) 2018; 1 Smith, Wårlind, Arneth, Hickler, Leadley, Siltberg, Zaehle (b0165) 2014; 11 Cheng, Huang, Ji, Lin (b0030) 2017; 122 Wu, Wang, Fu, Feng, Chen (b0220) 2019; 678 Marengo, Espinoza (b0130) 2016; 36 Schaefer, Schwalm, Williams, Arain, Barr, Chen, Davis, Dimitrov, Hilton, Hollinger, Humphreys, Poulter, Raczka, Richardson, Sahoo, Thornton, Vargas, Verbeeck, Anderson, Baker, Black, Bolstad, Chen, Curtis, Desai, Dietze, Dragoni, Gough, Grant, Gu, Jain, Kucharik, Law, Liu, Lokipitiya, Margolis, Matamala, McCaughey, Monson, Munger, Oechel, Peng, Price, Ricciuto, Riley, Roulet, Tian, Tonitto, Torn, Weng, Zhou (b0160) 2012; 117 Yuan, Cai, Xia, Chen, Liu, Dong, Merbold, Law, Arain, Beringer, Bernhofer, Black, Blanken, Cescatti, Chen, Francois, Gianelle, Janssens, Jung, Kato, Kiely, Liu, Marcolla, Montagnani, Raschi, Roupsard, Varlagin, Wohlfahrt (b0250) 2014; 192-193 Zaehle, Sitch, Smith, Hatterman (b0260) 2005; 19 Yuan, Liu, Zhou, Zhou, Tieszen, Baldocchi, Bernhofer, Gholz, Goldstein, Goulden, Hollinger, Hu, Law, Stoy, Vesala, Wofsy (b0240) 2007; 143 Friedlingstein, O'Sullivan, Jones, Andrew, Hauck, Olsen, Peters, Peters, Pongratz, Sitch, Le Quéré, Canadell, Ciais, Jackson, Alin, Aragão, Arneth, Arora, Bates, Becker, Benoit-Cattin, Bittig, Bopp, Bultan, Chandra, Chevallier, Chini, Evans, Florentie, Forster, Gasser, Gehlen, Gilfillan, Gkritzalis, Gregor, Gruber, Harris, Hartung, Haverd, Houghton, Ilyina, Jain, Joetzjer, Kadono, Kato, Kitidis, Korsbakken, Landschützer, Lefèvre, Lenton, Lienert, Liu, Lombardozzi, Marland, Metzl, Munro, Nabel, Nakaoka, Niwa, O'Brien, Ono, Palmer, Pierrot, Poulter, Resplandy, Robertson, Rödenbeck, Schwinger, Séférian, Skjelvan, Smith, Sutton, Tanhua, Tans, Tian, Tilbrook, van der Werf, Vuichard, Walker, Wanninkhof, Watson, Willis, Wiltshire, Yuan, Yue, Zaehle (b0065) 2020; 12 Guimberteau, Zhu, Maignan, Huang, Yue, Dantec-Nédélec, Ottlé, Jornet-Puig, Bastos, Laurent, Goll, Bowring, Chang, Guenet, Tifafi, Peng, Krinner, Ducharne, Wang, Wang, Wang, Wang, Yin, Lauerwald, Joetzjer, Qiu, Kim, Ciais (b0070) 2018; 11 Yang, Shi, Sun, Chang, Zhu, Chen, Wang, Guo, Zhang, Yu, Zhao, Xu, Zhu, Shen, Wang, Peng, Zhao, Wang, Hu, Chen, Huang, Wen, Wang, Zhu, Niu, Tang, Liu, Fang (b0235) 2022; 65 Dejong, Verbesselt, Zeileis, Schaepman (b0045) 2013; 5 Huang, Xia, Wang, Ahlström, Chen, Cook, Cui, Fang, Fisher, Huntzinger, Li, Michalak, Qiao, Schaefer, Schwalm, Wang, Wei, Xu, Yan, Bian, Luo (b0085) 2018; 2 Sun, Li, Zhou, Jiang, Yuan (b0170) 2020; 284 Liu, Lei (b0120) 2015; 7 Kendall, Gibbons (b0105) 1957; 44 Cong, Piao, Chen, Wang, Lin, Chen, Han, Zhou, Zhang (b0035) 2012; 165 Wang, Sun, Zhang, Xiao, Zhu, Wang, Yu, Xiang (b0205) 2021; 14 Wei, Liu, Huntzinger, Michalak, Viovy, Post, Schwalm, Schaefer, Jacobson, Lu, Tian, Ricciuto, Cook, Mao, Shi (b0215) 2014; 7 Zhou, Yu, Schwalm, Ciais, Zhang, Fisher, Michalak, Wang, Poulter, Huntzinger, Niu, Mao, Jain, Ricciuto, Shi, Ito, Wei, Huang, Wang (b0275) 2017; 31 Bondeau, Smith, Zaehle, Schaphoff, Lucht, Cramer, Gerten, Lotze-campen, Müller, Reichstein, Smith (b0015) 2007; 13 Wang, Xie, Wang, Dong, Bie (b0200) 2019; 11 Piao, Fang, Ciais, Peylin, Huang, Sitch, Wang (b0145) 2009; 458 Fang, Guo, Piao, Chen (b0050) 2007; 50 Ummenhofer, C., Meehl, G., 2017. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160135. Jain, Meiyappan, Song, House (b0095) 2013; 19 Rosenzweig, Arnell, Ebi, Lotze-Campen, Raes, Rapley, Smith, Cramer, Frieler, Reyer, Schewe, van Vuuren, Warszawski (b0155) 2017; 12 Campbell, Berry, Seibt, Smith, Montzka, Launois, Belviso, Bopp, Laine (b0020) 2017; 544 Mao, Thornton, Shi, Zhao, Post (b0125) 2012; 25 Beer, Reichstein, Tomelleri, Ciais, Jung, Carvalhais, Rödenbeck, Arain, Baldocchi, Bonan, Bondeau, Cescatti, Lasslop, Lindroth, Lomas, Luyssaert, Margolis, Oleson, Roupsard, Veenendaal, Viovy, Williams, Woodward, Papale (b0010) 2010; 329 Niu, Xiao, Zhang, Qin, Dang, Wang, Zou, Doughty, Brandt, Tong, Horion, Fensholt, Chen, Myneni, Xu, Di, Zhou (b0135) 2019; 30 Huntzinger, Schwalm, Michalak, Schaefer, King, Wei, Jacobson, Liu, Cook, Post, Berthier, Hayes, Huang, Ito, Lei, Lu, Mao, Peng, Peng, Poulter, Riccuito, Shi, Tian, Wang, Zeng, Zhao, Zhu (b0090) 2013; 6 Liu, Y., Zhou, R., Ren, H., Zhang, W., Zhang, Z.X., Zhang, Z.Y., Wen, Z.M., 2021. Evaluating the dynamics of grassland net primary productivity in response to climate change in China. Global Ecology and Conservation 28, e01574. Verbesselt, Hyndman, Newnham, Culvenor (b0190) 2010; 114 Tian, Chen, Zhang, Liu, Sun, Chappelka, Ren, Xu, Lu, Pan, Chen, Hui, McNulty, Lockaby, Vance (b0175) 2012; 15 Yuan, Zhao, Lin, Wang, Li, She, Qu (b0255) 2020; 738 Culotta (b0040) 1995; 268 Zhou, Zhang, Ciais, Xiao, Luo, Caylor, Huang, Wang (b0280) 2017; 7 Adams, Faure, Faure-Denard, McGlade, Woodward (b0005) 1990; 348 Li, Huang, Wigmosta, Ke, Coleman, Leung, Wang, Ricciuto (b0110) 2011; 116 Xia, Niu, Ciais, Janssens, Chen, Ammann, Arain, Blanken, Cescatti, Bonal, Buchmann, Curtis, Chen, Dong, Flanagan, Frankenberg, Georgiadis, Gough, Hui, Kiely, Li, Lund, Magliulo, Marcolla, Merbold, Montagnani, Moors, Olesen, Piao, Raschi, Roupsard, Suyker, Urbaniak, Vaccari, Varlagin, Vesala, Wilkinson, Weng, Wohlfahrt, Yan, Luo (b0225) 2015; 112 Pan, Feng, Fu, Wang, Ji, Pan (b0140) 2018; 214 Zhang, Zhang, Dong, Xiao (b0270) 2013; 110 Yuan, Liu, Yu, Bonnefond, Chen, Davis, Desai, Goldstein, Gianelle, Rossi, Suyker, Verma (b0245) 2010; 114 Feng, Fu, Piao, Wang, Ciais, Zeng, Lü, Zeng, Li, Jiang, Wu (b0055) 2016; 6 Warnant, François, Strivay, Gérard (b0210) 1994; 8 Kang, Han, Zhang, Sun (b0100) 2007; 362 Verbesselt, Zeileis, Herold (b0195) 2012; 123 Piao, Wang, Park, Chen, Lian, He, Bjerke, Chen, Ciais, Tømmervik, Nemani, Myneni (b0150) 2020; 1 Huang, Dai, Wang, Li, Feng, Du (b0080) 2020; 64 Huang (10.1016/j.ecolind.2022.109323_b0085) 2018; 2 10.1016/j.ecolind.2022.109323_b0115 Rosenzweig (10.1016/j.ecolind.2022.109323_b0155) 2017; 12 Zhou (10.1016/j.ecolind.2022.109323_b0280) 2017; 7 Huang (10.1016/j.ecolind.2022.109323_b0080) 2020; 64 Dejong (10.1016/j.ecolind.2022.109323_b0045) 2013; 5 Frankenberg (10.1016/j.ecolind.2022.109323_b0060) 2011; 38 Beer (10.1016/j.ecolind.2022.109323_b0010) 2010; 329 Sun (10.1016/j.ecolind.2022.109323_b0170) 2020; 284 Zhang (10.1016/j.ecolind.2022.109323_b0265) 2020; 280 Zaehle (10.1016/j.ecolind.2022.109323_b0260) 2005; 19 Piao (10.1016/j.ecolind.2022.109323_b0145) 2009; 458 Yuan (10.1016/j.ecolind.2022.109323_b0245) 2010; 114 Campbell (10.1016/j.ecolind.2022.109323_b0020) 2017; 544 He (10.1016/j.ecolind.2022.109323_b0075) 2021; 6 Chen (10.1016/j.ecolind.2022.109323_b0025) 2019; 663 Friedlingstein (10.1016/j.ecolind.2022.109323_b0065) 2020; 12 Wang (10.1016/j.ecolind.2022.109323_b0205) 2021; 14 Liu (10.1016/j.ecolind.2022.109323_b0120) 2015; 7 Zhang (10.1016/j.ecolind.2022.109323_b0270) 2013; 110 10.1016/j.ecolind.2022.109323_b0185 Yuan (10.1016/j.ecolind.2022.109323_b0255) 2020; 738 Bondeau (10.1016/j.ecolind.2022.109323_b0015) 2007; 13 Smith (10.1016/j.ecolind.2022.109323_b0165) 2014; 11 Yang (10.1016/j.ecolind.2022.109323_b0235) 2022; 65 Niu (10.1016/j.ecolind.2022.109323_b0135) 2019; 30 Jain (10.1016/j.ecolind.2022.109323_b0095) 2013; 19 Wu (10.1016/j.ecolind.2022.109323_b0220) 2019; 678 Verbesselt (10.1016/j.ecolind.2022.109323_b0190) 2010; 114 Xia (10.1016/j.ecolind.2022.109323_b0225) 2015; 112 Zhou (10.1016/j.ecolind.2022.109323_b0275) 2017; 31 Wang (10.1016/j.ecolind.2022.109323_b0200) 2019; 11 Marengo (10.1016/j.ecolind.2022.109323_b0130) 2016; 36 Tong (10.1016/j.ecolind.2022.109323_b0180) 2018; 1 Huntzinger (10.1016/j.ecolind.2022.109323_b0090) 2013; 6 Culotta (10.1016/j.ecolind.2022.109323_b0040) 1995; 268 Schaefer (10.1016/j.ecolind.2022.109323_b0160) 2012; 117 Wei (10.1016/j.ecolind.2022.109323_b0215) 2014; 7 Zscheischler (10.1016/j.ecolind.2022.109323_b0285) 2014; 28 Xiao (10.1016/j.ecolind.2022.109323_b0230) 2019; 233 Mao (10.1016/j.ecolind.2022.109323_b0125) 2012; 25 Cong (10.1016/j.ecolind.2022.109323_b0035) 2012; 165 Kendall (10.1016/j.ecolind.2022.109323_b0105) 1957; 44 Guimberteau (10.1016/j.ecolind.2022.109323_b0070) 2018; 11 Adams (10.1016/j.ecolind.2022.109323_b0005) 1990; 348 Kang (10.1016/j.ecolind.2022.109323_b0100) 2007; 362 Verbesselt (10.1016/j.ecolind.2022.109323_b0195) 2012; 123 Piao (10.1016/j.ecolind.2022.109323_b0150) 2020; 1 Pan (10.1016/j.ecolind.2022.109323_b0140) 2018; 214 Feng (10.1016/j.ecolind.2022.109323_b0055) 2016; 6 Yuan (10.1016/j.ecolind.2022.109323_b0250) 2014; 192-193 Cheng (10.1016/j.ecolind.2022.109323_b0030) 2017; 122 Li (10.1016/j.ecolind.2022.109323_b0110) 2011; 116 Fang (10.1016/j.ecolind.2022.109323_b0050) 2007; 50 Warnant (10.1016/j.ecolind.2022.109323_b0210) 1994; 8 Yuan (10.1016/j.ecolind.2022.109323_b0240) 2007; 143 Tian (10.1016/j.ecolind.2022.109323_b0175) 2012; 15 |
References_xml | – volume: 6 start-page: 1 year: 2021 end-page: 13 ident: b0075 article-title: Combining gradual and abrupt analysis to detect variation of vegetation greenness on the loess areas of China publication-title: Front. Earth Sci. – volume: 28 start-page: 585 year: 2014 end-page: 600 ident: b0285 article-title: Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data publication-title: Global Biogeochem. Cycles – volume: 38 start-page: n/a year: 2011 end-page: n/a ident: b0060 article-title: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity publication-title: Geophys. Res. Lett. – volume: 192-193 start-page: 108 year: 2014 end-page: 120 ident: b0250 article-title: Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database publication-title: Agric. For. Meteorol. – volume: 143 start-page: 189 year: 2007 end-page: 207 ident: b0240 article-title: Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes publication-title: Agric. For. Meteorol. – volume: 544 start-page: 84 year: 2017 end-page: 87 ident: b0020 article-title: Large historical growth in global terrestrial gross primary production publication-title: Nature – volume: 31 start-page: 1639 year: 2017 end-page: 1655 ident: b0275 article-title: Response of water use efficiency to global environmental change based on output from terrestrial biosphere models: drivers of WUE variability publication-title: Global Biogeochem. Cycles – volume: 114 start-page: 106 year: 2010 end-page: 115 ident: b0190 article-title: Detecting trend and seasonal changes in satellite image time series publication-title: Remote Sens. Environ. – volume: 12 start-page: 010301 year: 2017 ident: b0155 article-title: Assessing inter-sectoral climate change risks: the role of ISIMIP publication-title: Environ. Res. Lett. – volume: 14 start-page: 5596 year: 2021 end-page: 5612 ident: b0205 article-title: New global MuSyQ GPP/NPP remote sensing products from 1981 to 2018 publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 19 start-page: 1 year: 2005 end-page: 16 ident: b0260 article-title: Effects of parameter uncertainty on the modeling of terrestrial biosphere dynamics publication-title: Global Biogeochem. Cycles – volume: 12 start-page: 3269 year: 2020 end-page: 3340 ident: b0065 article-title: Global carbon budget 2020 publication-title: Earth Syst. Sci. Data – volume: 64 start-page: 1865 year: 2020 end-page: 1876 ident: b0080 article-title: Phenological changes in herbaceous plants in China's grasslands and their responses to climate change: a meta-analysis publication-title: Int. J. Biometeorol. – volume: 8 start-page: 255 year: 1994 end-page: 270 ident: b0210 article-title: CARAIB: A global model of terrestrial biological productivity publication-title: Global Biogeochem. Cycles – volume: 738 start-page: 140297 year: 2020 ident: b0255 article-title: Impacts of preseason drought on vegetation spring phenology across the Northeast China Transect publication-title: Sci. Total Environ. – volume: 458 start-page: 1009 year: 2009 end-page: 1013 ident: b0145 article-title: The carbon balance of terrestrial ecosystems in China publication-title: Nature – volume: 348 start-page: 711 year: 1990 end-page: 714 ident: b0005 article-title: Increases in terrestrial carbon storage from the Last Glacial Maximum to the Present publication-title: Nature – volume: 233 start-page: 111383 year: 2019 ident: b0230 article-title: Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years publication-title: Remote Sens. Environ. – volume: 1 start-page: 14 year: 2020 end-page: 27 ident: b0150 article-title: Characteristics, drivers and feedbacks of global greening publication-title: Nature Rev. Earth Environ. – volume: 19 start-page: 2893 year: 2013 end-page: 2906 ident: b0095 article-title: CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land cover data publication-title: Glob. Change Biol. – volume: 114 start-page: 1416 year: 2010 end-page: 1431 ident: b0245 article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meterology data publication-title: Remote Sens. Environ. – volume: 116 year: 2011 ident: b0110 article-title: Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed publication-title: J. Geophys. Res.: Atmos. – volume: 329 start-page: 834 year: 2010 end-page: 838 ident: b0010 article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate publication-title: Science – volume: 15 start-page: 674 year: 2012 end-page: 694 ident: b0175 article-title: Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the Southern United States publication-title: Ecosystems – volume: 25 start-page: 5327 year: 2012 end-page: 5342 ident: b0125 article-title: Remote sensing evaluation of CLM4 GPP for the period 2000–09 publication-title: J. Clim. – volume: 30 start-page: 1620 year: 2019 end-page: 1631 ident: b0135 article-title: Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China publication-title: Land Degrad. Dev. – reference: Ummenhofer, C., Meehl, G., 2017. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160135. – volume: 11 start-page: 2027 year: 2014 end-page: 2054 ident: b0165 article-title: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model publication-title: Biogeosciences – volume: 678 start-page: 565 year: 2019 end-page: 573 ident: b0220 article-title: Socio-ecological changes on the Loess Plateau of China after Grain to Green Program publication-title: Sci. Total Environ. – volume: 50 start-page: 1341 year: 2007 end-page: 1350 ident: b0050 article-title: Terrestrial vegetation carbon sinks in China, 1981–2000 publication-title: Sci. China, Ser. D Earth Sci. – volume: 362 start-page: 997 year: 2007 end-page: 1008 ident: b0100 article-title: Grassland ecosystems in China: review of current knowledge and research advancement publication-title: Philos. Trans. R. Soc. London Series B, Biol. Sci. – volume: 1 start-page: 44 year: 2018 end-page: 50 ident: b0180 article-title: Increased vegetation growth and carbon stock in China karst via ecological engineering publication-title: Nat. Sustainability – volume: 7 start-page: 2875 year: 2014 end-page: 2893 ident: b0215 article-title: The north american carbon program multi-scale synthesis and terrestrial model intercomparison project-part 2: environmental driver data publication-title: Geosci. Model Dev. – volume: 65 start-page: 861 year: 2022 end-page: 895 ident: b0235 article-title: Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality publication-title: Sci. China Life Sci. – volume: 123 start-page: 98 year: 2012 end-page: 108 ident: b0195 article-title: Near real-time disturbance detection using satellite image time series publication-title: Remote Sens. Environ. – volume: 7 start-page: 41366 year: 2017 ident: b0280 article-title: Dominant role of plant physiology in trend and variability of gross primary productivity in North America publication-title: Sci. Rep. – volume: 7 start-page: 10243 year: 2015 end-page: 10268 ident: b0120 article-title: Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011 publication-title: Remote Sensing – volume: 5 start-page: 1117 year: 2013 end-page: 1133 ident: b0045 article-title: Shifts in global vegetation activity trends publication-title: Remote Sensing – reference: Liu, Y., Zhou, R., Ren, H., Zhang, W., Zhang, Z.X., Zhang, Z.Y., Wen, Z.M., 2021. Evaluating the dynamics of grassland net primary productivity in response to climate change in China. Global Ecology and Conservation 28, e01574. – volume: 122 start-page: 2239 year: 2017 end-page: 2253 ident: b0030 article-title: Uncertainties of soil moisture in historical simulations and future projections: uncertainties of Soil Moisture publication-title: J. Geophys. Res.: Atmospheres – volume: 110 start-page: 4309 year: 2013 end-page: 4314 ident: b0270 article-title: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011 publication-title: Proc. Natl. Acad. Sci. – volume: 6 start-page: 1019 year: 2016 end-page: 1022 ident: b0055 article-title: Revegetation in China’s Loess Plateau is approaching sustainable water resource limits publication-title: Nat. Clim. Change – volume: 6 start-page: 2121 year: 2013 end-page: 2133 ident: b0090 article-title: The north american carbon program multi-acale aynthesis and terrestrial model intercomparison project-part 1: overview and experimental design publication-title: Geosci. Model Dev. – volume: 117 start-page: n/a year: 2012 end-page: n/a ident: b0160 article-title: A model-data comparison of gross primary productivity: results from the North American Carbon Program site synthesis publication-title: J. Geophys. Res. Biogeosci. – volume: 44 start-page: 298 year: 1957 ident: b0105 article-title: Rank correlation method publication-title: Biometrika – volume: 112 start-page: 2788 year: 2015 end-page: 2793 ident: b0225 article-title: Joint control of terrestrial gross primary productivity by plant phenology and physiology publication-title: Proc. Natl. Acad. Sci. – volume: 11 start-page: 2475 year: 2019 ident: b0200 article-title: Detecting patterns of vegetation gradual changes (2001–2017) in Shiyang River Basin, based on a novel framework publication-title: Remote Sensing – volume: 36 start-page: 1033 year: 2016 end-page: 1050 ident: b0130 article-title: Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts publication-title: Int. J. Climatol. – volume: 268 start-page: 654 year: 1995 end-page: 656 ident: b0040 article-title: Will plants profit from high CO2? publication-title: Science – volume: 11 start-page: 121 year: 2018 end-page: 163 ident: b0070 article-title: ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation publication-title: Geosci. Model Dev. – volume: 13 start-page: 679 year: 2007 end-page: 706 ident: b0015 article-title: Modelling the role of agriculture for the 20th century global terrestrial carbon balance publication-title: Glob. Change Biol. – volume: 2 start-page: 1897 year: 2018 end-page: 1905 ident: b0085 article-title: Enhanced peak growth of global vegetation and its key mechanisms publication-title: Nat. Ecol. Evol. – volume: 214 start-page: 59 year: 2018 end-page: 72 ident: b0140 article-title: Increasing global vegetation browning hidden in overall vegetation greening: insights from time-varying trends publication-title: Remote Sens. Environ. – volume: 663 start-page: 45 year: 2019 end-page: 59 ident: b0025 article-title: Impact of physiological and phenological change on carbon uptake on the Tibetan Plateau revealed through GPP estimation based on spaceborne solar-induced fluorescence publication-title: Sci. Total Environ. – volume: 165 start-page: 104 year: 2012 end-page: 113 ident: b0035 article-title: Spring vegetation green-up date in China inferred from SPOT NDVI data: a multiple model analysis publication-title: Agric. For. Meteorol. – volume: 284 start-page: 107896 year: 2020 ident: b0170 article-title: Delayed autumn leaf senescence date prolongs the growing season length of herbaceous plants on the Qinghai-Tibetan Plateau publication-title: Agric. For. Meteorol. – volume: 280 year: 2020 ident: b0265 article-title: Attribute parameter characterized the seasonal variation of gross primary productivity (alpha(GPP)): spatiotemporal variation and influencing factors publication-title: Agric. For. Meteorol. – ident: 10.1016/j.ecolind.2022.109323_b0185 doi: 10.1098/rstb.2016.0135 – volume: 6 start-page: 2121 year: 2013 ident: 10.1016/j.ecolind.2022.109323_b0090 article-title: The north american carbon program multi-acale aynthesis and terrestrial model intercomparison project-part 1: overview and experimental design publication-title: Geosci. Model Dev. doi: 10.5194/gmd-6-2121-2013 – volume: 233 start-page: 111383 year: 2019 ident: 10.1016/j.ecolind.2022.109323_b0230 article-title: Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111383 – volume: 1 start-page: 44 issue: 1 year: 2018 ident: 10.1016/j.ecolind.2022.109323_b0180 article-title: Increased vegetation growth and carbon stock in China karst via ecological engineering publication-title: Nat. Sustainability doi: 10.1038/s41893-017-0004-x – volume: 64 start-page: 1865 issue: 11 year: 2020 ident: 10.1016/j.ecolind.2022.109323_b0080 article-title: Phenological changes in herbaceous plants in China's grasslands and their responses to climate change: a meta-analysis publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-020-01974-1 – volume: 192-193 start-page: 108 year: 2014 ident: 10.1016/j.ecolind.2022.109323_b0250 article-title: Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.03.007 – volume: 122 start-page: 2239 year: 2017 ident: 10.1016/j.ecolind.2022.109323_b0030 article-title: Uncertainties of soil moisture in historical simulations and future projections: uncertainties of Soil Moisture publication-title: J. Geophys. Res.: Atmospheres doi: 10.1002/2016JD025871 – volume: 11 start-page: 121 year: 2018 ident: 10.1016/j.ecolind.2022.109323_b0070 article-title: ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation publication-title: Geosci. Model Dev. doi: 10.5194/gmd-11-121-2018 – volume: 165 start-page: 104 year: 2012 ident: 10.1016/j.ecolind.2022.109323_b0035 article-title: Spring vegetation green-up date in China inferred from SPOT NDVI data: a multiple model analysis publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.06.009 – volume: 25 start-page: 5327 year: 2012 ident: 10.1016/j.ecolind.2022.109323_b0125 article-title: Remote sensing evaluation of CLM4 GPP for the period 2000–09 publication-title: J. Clim. doi: 10.1175/JCLI-D-11-00401.1 – volume: 30 start-page: 1620 issue: 13 year: 2019 ident: 10.1016/j.ecolind.2022.109323_b0135 article-title: Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China publication-title: Land Degrad. Dev. doi: 10.1002/ldr.3351 – volume: 38 start-page: n/a issue: 17 year: 2011 ident: 10.1016/j.ecolind.2022.109323_b0060 article-title: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL048738 – volume: 112 start-page: 2788 issue: 9 year: 2015 ident: 10.1016/j.ecolind.2022.109323_b0225 article-title: Joint control of terrestrial gross primary productivity by plant phenology and physiology publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1413090112 – volume: 13 start-page: 679 issue: 3 year: 2007 ident: 10.1016/j.ecolind.2022.109323_b0015 article-title: Modelling the role of agriculture for the 20th century global terrestrial carbon balance publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2006.01305.x – volume: 65 start-page: 861 issue: 5 year: 2022 ident: 10.1016/j.ecolind.2022.109323_b0235 article-title: Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality publication-title: Sci. China Life Sci. doi: 10.1007/s11427-021-2045-5 – volume: 31 start-page: 1639 issue: 11 year: 2017 ident: 10.1016/j.ecolind.2022.109323_b0275 article-title: Response of water use efficiency to global environmental change based on output from terrestrial biosphere models: drivers of WUE variability publication-title: Global Biogeochem. Cycles doi: 10.1002/2017GB005733 – volume: 12 start-page: 010301 issue: 1 year: 2017 ident: 10.1016/j.ecolind.2022.109323_b0155 article-title: Assessing inter-sectoral climate change risks: the role of ISIMIP publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/12/1/010301 – volume: 214 start-page: 59 year: 2018 ident: 10.1016/j.ecolind.2022.109323_b0140 article-title: Increasing global vegetation browning hidden in overall vegetation greening: insights from time-varying trends publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.05.018 – volume: 114 start-page: 106 issue: 1 year: 2010 ident: 10.1016/j.ecolind.2022.109323_b0190 article-title: Detecting trend and seasonal changes in satellite image time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.014 – volume: 5 start-page: 1117 year: 2013 ident: 10.1016/j.ecolind.2022.109323_b0045 article-title: Shifts in global vegetation activity trends publication-title: Remote Sensing doi: 10.3390/rs5031117 – volume: 362 start-page: 997 issue: 1482 year: 2007 ident: 10.1016/j.ecolind.2022.109323_b0100 article-title: Grassland ecosystems in China: review of current knowledge and research advancement publication-title: Philos. Trans. R. Soc. London Series B, Biol. Sci. doi: 10.1098/rstb.2007.2029 – volume: 7 start-page: 10243 year: 2015 ident: 10.1016/j.ecolind.2022.109323_b0120 article-title: Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011 publication-title: Remote Sensing doi: 10.3390/rs70810243 – volume: 678 start-page: 565 year: 2019 ident: 10.1016/j.ecolind.2022.109323_b0220 article-title: Socio-ecological changes on the Loess Plateau of China after Grain to Green Program publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.05.022 – volume: 114 start-page: 1416 year: 2010 ident: 10.1016/j.ecolind.2022.109323_b0245 article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meterology data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.01.022 – volume: 110 start-page: 4309 issue: 11 year: 2013 ident: 10.1016/j.ecolind.2022.109323_b0270 article-title: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1210423110 – volume: 36 start-page: 1033 issue: 3 year: 2016 ident: 10.1016/j.ecolind.2022.109323_b0130 article-title: Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts publication-title: Int. J. Climatol. doi: 10.1002/joc.4420 – volume: 44 start-page: 298 year: 1957 ident: 10.1016/j.ecolind.2022.109323_b0105 article-title: Rank correlation method publication-title: Biometrika doi: 10.2307/2333282 – volume: 14 start-page: 5596 year: 2021 ident: 10.1016/j.ecolind.2022.109323_b0205 article-title: New global MuSyQ GPP/NPP remote sensing products from 1981 to 2018 publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3076075 – volume: 284 start-page: 107896 year: 2020 ident: 10.1016/j.ecolind.2022.109323_b0170 article-title: Delayed autumn leaf senescence date prolongs the growing season length of herbaceous plants on the Qinghai-Tibetan Plateau publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.107896 – volume: 6 start-page: 1 year: 2021 ident: 10.1016/j.ecolind.2022.109323_b0075 article-title: Combining gradual and abrupt analysis to detect variation of vegetation greenness on the loess areas of China publication-title: Front. Earth Sci. – volume: 19 start-page: 1 year: 2005 ident: 10.1016/j.ecolind.2022.109323_b0260 article-title: Effects of parameter uncertainty on the modeling of terrestrial biosphere dynamics publication-title: Global Biogeochem. Cycles doi: 10.1029/2004GB002395 – volume: 268 start-page: 654 issue: 5211 year: 1995 ident: 10.1016/j.ecolind.2022.109323_b0040 article-title: Will plants profit from high CO2? publication-title: Science doi: 10.1126/science.268.5211.654 – volume: 6 start-page: 1019 issue: 11 year: 2016 ident: 10.1016/j.ecolind.2022.109323_b0055 article-title: Revegetation in China’s Loess Plateau is approaching sustainable water resource limits publication-title: Nat. Clim. Change doi: 10.1038/nclimate3092 – volume: 544 start-page: 84 issue: 7648 year: 2017 ident: 10.1016/j.ecolind.2022.109323_b0020 article-title: Large historical growth in global terrestrial gross primary production publication-title: Nature doi: 10.1038/nature22030 – volume: 7 start-page: 41366 year: 2017 ident: 10.1016/j.ecolind.2022.109323_b0280 article-title: Dominant role of plant physiology in trend and variability of gross primary productivity in North America publication-title: Sci. Rep. doi: 10.1038/srep41366 – volume: 280 year: 2020 ident: 10.1016/j.ecolind.2022.109323_b0265 article-title: Attribute parameter characterized the seasonal variation of gross primary productivity (alpha(GPP)): spatiotemporal variation and influencing factors publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.107774 – volume: 329 start-page: 834 issue: 5993 year: 2010 ident: 10.1016/j.ecolind.2022.109323_b0010 article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate publication-title: Science doi: 10.1126/science.1184984 – volume: 15 start-page: 674 issue: 4 year: 2012 ident: 10.1016/j.ecolind.2022.109323_b0175 article-title: Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the Southern United States publication-title: Ecosystems doi: 10.1007/s10021-012-9539-x – volume: 7 start-page: 2875 year: 2014 ident: 10.1016/j.ecolind.2022.109323_b0215 article-title: The north american carbon program multi-scale synthesis and terrestrial model intercomparison project-part 2: environmental driver data publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-2875-2014 – volume: 50 start-page: 1341 issue: 9 year: 2007 ident: 10.1016/j.ecolind.2022.109323_b0050 article-title: Terrestrial vegetation carbon sinks in China, 1981–2000 publication-title: Sci. China, Ser. D Earth Sci. doi: 10.1007/s11430-007-0049-1 – volume: 123 start-page: 98 year: 2012 ident: 10.1016/j.ecolind.2022.109323_b0195 article-title: Near real-time disturbance detection using satellite image time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.02.022 – volume: 116 issue: D24 year: 2011 ident: 10.1016/j.ecolind.2022.109323_b0110 article-title: Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/2011JD016276 – volume: 11 start-page: 2027 year: 2014 ident: 10.1016/j.ecolind.2022.109323_b0165 article-title: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model publication-title: Biogeosciences doi: 10.5194/bg-11-2027-2014 – ident: 10.1016/j.ecolind.2022.109323_b0115 doi: 10.1016/j.gecco.2021.e01574 – volume: 738 start-page: 140297 year: 2020 ident: 10.1016/j.ecolind.2022.109323_b0255 article-title: Impacts of preseason drought on vegetation spring phenology across the Northeast China Transect publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140297 – volume: 8 start-page: 255 issue: 3 year: 1994 ident: 10.1016/j.ecolind.2022.109323_b0210 article-title: CARAIB: A global model of terrestrial biological productivity publication-title: Global Biogeochem. Cycles doi: 10.1029/94GB00850 – volume: 663 start-page: 45 year: 2019 ident: 10.1016/j.ecolind.2022.109323_b0025 article-title: Impact of physiological and phenological change on carbon uptake on the Tibetan Plateau revealed through GPP estimation based on spaceborne solar-induced fluorescence publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.324 – volume: 117 start-page: n/a issue: G3 year: 2012 ident: 10.1016/j.ecolind.2022.109323_b0160 article-title: A model-data comparison of gross primary productivity: results from the North American Carbon Program site synthesis publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2012JG001960 – volume: 143 start-page: 189 issue: 3-4 year: 2007 ident: 10.1016/j.ecolind.2022.109323_b0240 article-title: Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2006.12.001 – volume: 19 start-page: 2893 issue: 9 year: 2013 ident: 10.1016/j.ecolind.2022.109323_b0095 article-title: CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land cover data publication-title: Glob. Change Biol. doi: 10.1111/gcb.12207 – volume: 11 start-page: 2475 year: 2019 ident: 10.1016/j.ecolind.2022.109323_b0200 article-title: Detecting patterns of vegetation gradual changes (2001–2017) in Shiyang River Basin, based on a novel framework publication-title: Remote Sensing doi: 10.3390/rs11212475 – volume: 1 start-page: 14 issue: 1 year: 2020 ident: 10.1016/j.ecolind.2022.109323_b0150 article-title: Characteristics, drivers and feedbacks of global greening publication-title: Nature Rev. Earth Environ. doi: 10.1038/s43017-019-0001-x – volume: 458 start-page: 1009 issue: 7241 year: 2009 ident: 10.1016/j.ecolind.2022.109323_b0145 article-title: The carbon balance of terrestrial ecosystems in China publication-title: Nature doi: 10.1038/nature07944 – volume: 28 start-page: 585 issue: 6 year: 2014 ident: 10.1016/j.ecolind.2022.109323_b0285 article-title: Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data publication-title: Global Biogeochem. Cycles doi: 10.1002/2014GB004826 – volume: 348 start-page: 711 issue: 6303 year: 1990 ident: 10.1016/j.ecolind.2022.109323_b0005 article-title: Increases in terrestrial carbon storage from the Last Glacial Maximum to the Present publication-title: Nature doi: 10.1038/348711a0 – volume: 2 start-page: 1897 issue: 12 year: 2018 ident: 10.1016/j.ecolind.2022.109323_b0085 article-title: Enhanced peak growth of global vegetation and its key mechanisms publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0714-0 – volume: 12 start-page: 3269 issue: 4 year: 2020 ident: 10.1016/j.ecolind.2022.109323_b0065 article-title: Global carbon budget 2020 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-12-3269-2020 |
SSID | ssj0016996 |
Score | 2.4302323 |
Snippet | •Both GPP and GPPmax in Chinese grasslands showed increases at different space–time scales.•Trend analysis and breakpoint tests were used for the first time to... At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO₂ through... At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO2 through... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109323 |
SubjectTerms | carbon carbon dioxide carbon sequestration China Chinese grasslands climate change data collection ecological models global carbon budget GPPmax × CUP grasslands Gross primary productivity Interannual variability issues and policy phenology photosynthesis satellites semiarid zones Spatiotemporal evolutionary temporal variation terrestrial ecosystems |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp1xKX6HbJkWBXr1rWbJkHdOQB6UtgTSwN6HHODgk3rC7KfTS396RLG_YXAI9StbDzIzmYc98IuRLGSQyNrjC81AXQno8UsqHonTozjGvHE-QQj9-yotr8W1ez3fIyVgLE9Mqs-4fdHrS1rlnlqk5e-i62RUTKsKjzav4uQ3d_FjBLlSU8unfTZoHk1oPFUaqLOLopyqe2e0UIzx05iJgaFUlYKWKb9mnBOO_ZaaeKexkhc5ek1fZfaTHwxu-ITvQvyX7p0_VavgwH9fVO_L9KuVLZ_ipOwq_s6DZ5R9q-0DvIRb-dqt7bA3gJHTR0psletQx45GeX17Srqfpku335Prs9NfJRZGvTyi8qOt1IRvnNOgSfAmgdPAMY4tKe6mRI4zZRrXeNV4w52vwqPNCA7wtg_XRrQDP98luv-jhA6ExqKjRkbEtxMo47SxGkY7JUHLu6xAmRIxEMz5ji8crLu7MmER2azKtTaS1GWg9IdPNtIcBXOOlCV8jRzaDIzZ26lgsb0wWDmMbAQqqNjDFhZRtUzoOFsDLRgOTMCHNyE-zJWq4VPfS_kcj_w0ew_hvxfaweFyZCm0857if-Pj_y38ie7E15AoekN318hEO0edZu89JqP8BzWIAWw priority: 102 providerName: Elsevier |
Title | Spatiotemporal evolutionary and mechanism analysis of grassland GPP in China |
URI | https://dx.doi.org/10.1016/j.ecolind.2022.109323 https://www.proquest.com/docview/2718333464 https://doaj.org/article/a84e7e2fd173466f80b3eaeec689e16e |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggXhXLY2UkrtnaceLEx4JalldVCSrtzbLHE7RVm0W7WyQu_HbGsdNSLnvhmKetmbHnG3nmG8beiKBJscEXoEJdVBpoSTUQCuEJzklovBoohb6c6PlZ9XFRL_5q9RVzwhI9cBLcgWsrbLDsgmxUpXXXCq_QIYJuDUqNcfclnzcGU_n8QBuT6ooaUUgtFje1OwfnM4rrCMJFmtCyHOiUSnXLKw3k_bec0z_b9OB7jh-yBxk08sM02UfsDvaP2f7RTY0aPcyLdPOEff46ZEln0qkLjj-zebn1L-76wC8xlvsuN5d0lShJ-Krj39eEo2OeI39_esqXPR9aaz9lZ8dH397Ni9w0oYCqrreFbr03aASCQGxMAEkRRWlAG9KDlK5tOvAtVNJDjUA7XWhRdSI4iGACQe2zvX7V4zPGYyhRE3xxHcZ6OOMdxY5e6iCUgjqECatGoVnIjOKxscWFHVPHzm2WtY2ytknWEza7_uxHotTY9cHbqJHrlyMj9nCD7MRmO7G77GTC2lGfNoOLBBroV8td478e9W9p8cUTFdfj6mpjS_LsStF41fP_MccX7H4cNuUKvmR72_UVviLMs_VTdnf2W07ZvcMPn-Yn08HY_wAQ7AJY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELdYedhepn2hdYzNk_YaGseOEz8CgpVRKiRA6pvljwsKghS1BWn__c6JU9S9IO0xdmxHd-f7iO9-JuRn6iUy1tvEcZ8nQjrcUoXzSWrRnWOusLyFFDqfyvG1-D3LZ1vkqK-FCWmVUfd3Or3V1rFlFKk5eqjr0SUTRYBHm2Xhdxu6-a_IdkCnygdk--D0bDxdHyZIpboioyJNwoDnQp7R7T4GeejPBczQLGuxlTK-YaJaJP8NS_WPzm4N0ck78jZ6kPSg-8j3ZAuaD2Tn-LlgDTvjjl1-JJPLNmU6IlDdUXiKsmYWf6hpPL2HUPtbL-_xqcMnofOK3izQqQ5Jj_TXxQWtG9res_2JXJ8cXx2Nk3iDQuJEnq8SWVqrQKXgUoBCeccwvMiUkwqZwpgpi8rZ0glmXQ4O1Z4vgVepNy54FuD4Dhk08wY-Exriihx9GVNBKI5T1mAgaZn0Kecu935IRE807SK8eLjl4k73eWS3OtJaB1rrjtZDsr8e9tDha7w04DBwZP1ygMduG-aLGx3lQ5tSQAFZ5VnBhZRVmVoOBsDJUgGTMCRlz0-9IW04Vf3S-j96_mvcieF4xTQwf1zqDM0857ie-PL_038nr8dX5xM9OZ2e7ZI3oadLHfxKBqvFI-yhC7Sy36KI_wWjUQSa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+evolutionary+and+mechanism+analysis+of+grassland+GPP+in+China&rft.jtitle=Ecological+indicators&rft.au=Panxing+He&rft.au=Xiaoliang+Ma&rft.au=Xiaoyu+Meng&rft.au=Zhiming+Han&rft.date=2022-10-01&rft.pub=Elsevier&rft.issn=1470-160X&rft.volume=143&rft.spage=109323&rft_id=info:doi/10.1016%2Fj.ecolind.2022.109323&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a84e7e2fd173466f80b3eaeec689e16e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |