Spatiotemporal evolutionary and mechanism analysis of grassland GPP in China

•Both GPP and GPPmax in Chinese grasslands showed increases at different space–time scales.•Trend analysis and breakpoint tests were used for the first time to monitor GPP change simultaneously in Chinese grasslands.•GPPmax × CUP is a robust indicator to explain annual-scale variation in GPP. At the...

Full description

Saved in:
Bibliographic Details
Published inEcological indicators Vol. 143; p. 109323
Main Authors He, Panxing, Ma, Xiaoliang, Meng, Xiaoyu, Han, Zhiming, Liu, Huixia, Sun, Zongjiu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Elsevier
Subjects
Online AccessGet full text
ISSN1470-160X
DOI10.1016/j.ecolind.2022.109323

Cover

Loading…
Abstract •Both GPP and GPPmax in Chinese grasslands showed increases at different space–time scales.•Trend analysis and breakpoint tests were used for the first time to monitor GPP change simultaneously in Chinese grasslands.•GPPmax × CUP is a robust indicator to explain annual-scale variation in GPP. At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO2 through photosynthesis and sequester carbon in plant bodies. How to accurately assess the spatiotemporal evolution of ecosystem carbon indicators has become a critical issue to be addressed. Chinese grasslands are located in a typical arid and semi-arid climate zone and are sensitive to global changes, which will inevitably have serious impacts on the function and structure of Chinese grasslands. Based on this, our paper takes Chinese grassland ecosystems as the research area, and used multi-source GPP dataset from terrestrial ecosystem model simulations and remote sensing satellite observations to quantitatively analyze the spatiotemporal evolution patterns of GPP in Chinese grasslands over the past 40 years. We combined trend analysis and breakpoint test, and then to analyze the mechanism components of GPP space–time variability. The main results are as follows: (1) The model and remote sensing estimated GPP results showed that more than 80% of Chinese grasslands show a significant increasing trend over the past 40 years, with growth rates ranging from 0.68 to 3.13 g C/m−2 year−1. (2) GPPmax also shows that more than 80% of Chinese grasslands are growing rapidly, with an overall growth rate of more than 0.1 g C/m−2 year−1 in each region. The overall long-term trends and interannual variability of multi-source GPP and GPPmax are generally consistent, yet vegetation dynamics in local areas are still uncertain. (3) The breakpoint test showed that ‘monotonically increasing’ was the largest breakpoint type of GPP in Chinese grasslands (33.09%), and the direction of change of GPP in Chinese grasslands before and after the breakpoint was also increasing. (4) GPPmax × CUP explained 91% of the temporal variability of annual-scale GPP in Chinese grasslands from a mechanistic view, and we found that the peak photosynthetic growth and the length of the phenological period synergistically controlled the interannual variability of GPP in Chinese grasslands. Under the scenario of rapid global change, our study accurately assessed the long-term dynamics of GPP and its mechanism-driven of grassland ecosystems in China, which is helpful for estimating and predicting the carbon budget of grassland ecosystems in China, and has important guiding significance for policy formulation to mitigate climate change.
AbstractList •Both GPP and GPPmax in Chinese grasslands showed increases at different space–time scales.•Trend analysis and breakpoint tests were used for the first time to monitor GPP change simultaneously in Chinese grasslands.•GPPmax × CUP is a robust indicator to explain annual-scale variation in GPP. At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO2 through photosynthesis and sequester carbon in plant bodies. How to accurately assess the spatiotemporal evolution of ecosystem carbon indicators has become a critical issue to be addressed. Chinese grasslands are located in a typical arid and semi-arid climate zone and are sensitive to global changes, which will inevitably have serious impacts on the function and structure of Chinese grasslands. Based on this, our paper takes Chinese grassland ecosystems as the research area, and used multi-source GPP dataset from terrestrial ecosystem model simulations and remote sensing satellite observations to quantitatively analyze the spatiotemporal evolution patterns of GPP in Chinese grasslands over the past 40 years. We combined trend analysis and breakpoint test, and then to analyze the mechanism components of GPP space–time variability. The main results are as follows: (1) The model and remote sensing estimated GPP results showed that more than 80% of Chinese grasslands show a significant increasing trend over the past 40 years, with growth rates ranging from 0.68 to 3.13 g C/m−2 year−1. (2) GPPmax also shows that more than 80% of Chinese grasslands are growing rapidly, with an overall growth rate of more than 0.1 g C/m−2 year−1 in each region. The overall long-term trends and interannual variability of multi-source GPP and GPPmax are generally consistent, yet vegetation dynamics in local areas are still uncertain. (3) The breakpoint test showed that ‘monotonically increasing’ was the largest breakpoint type of GPP in Chinese grasslands (33.09%), and the direction of change of GPP in Chinese grasslands before and after the breakpoint was also increasing. (4) GPPmax × CUP explained 91% of the temporal variability of annual-scale GPP in Chinese grasslands from a mechanistic view, and we found that the peak photosynthetic growth and the length of the phenological period synergistically controlled the interannual variability of GPP in Chinese grasslands. Under the scenario of rapid global change, our study accurately assessed the long-term dynamics of GPP and its mechanism-driven of grassland ecosystems in China, which is helpful for estimating and predicting the carbon budget of grassland ecosystems in China, and has important guiding significance for policy formulation to mitigate climate change.
At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO2 through photosynthesis and sequester carbon in plant bodies. How to accurately assess the spatiotemporal evolution of ecosystem carbon indicators has become a critical issue to be addressed. Chinese grasslands are located in a typical arid and semi-arid climate zone and are sensitive to global changes, which will inevitably have serious impacts on the function and structure of Chinese grasslands. Based on this, our paper takes Chinese grassland ecosystems as the research area, and used multi-source GPP dataset from terrestrial ecosystem model simulations and remote sensing satellite observations to quantitatively analyze the spatiotemporal evolution patterns of GPP in Chinese grasslands over the past 40 years. We combined trend analysis and breakpoint test, and then to analyze the mechanism components of GPP space–time variability. The main results are as follows: (1) The model and remote sensing estimated GPP results showed that more than 80% of Chinese grasslands show a significant increasing trend over the past 40 years, with growth rates ranging from 0.68 to 3.13 g C/m−2 year−1. (2) GPPmax also shows that more than 80% of Chinese grasslands are growing rapidly, with an overall growth rate of more than 0.1 g C/m−2 year−1 in each region. The overall long-term trends and interannual variability of multi-source GPP and GPPmax are generally consistent, yet vegetation dynamics in local areas are still uncertain. (3) The breakpoint test showed that ‘monotonically increasing’ was the largest breakpoint type of GPP in Chinese grasslands (33.09%), and the direction of change of GPP in Chinese grasslands before and after the breakpoint was also increasing. (4) GPPmax × CUP explained 91% of the temporal variability of annual-scale GPP in Chinese grasslands from a mechanistic view, and we found that the peak photosynthetic growth and the length of the phenological period synergistically controlled the interannual variability of GPP in Chinese grasslands. Under the scenario of rapid global change, our study accurately assessed the long-term dynamics of GPP and its mechanism-driven of grassland ecosystems in China, which is helpful for estimating and predicting the carbon budget of grassland ecosystems in China, and has important guiding significance for policy formulation to mitigate climate change.
At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO₂ through photosynthesis and sequester carbon in plant bodies. How to accurately assess the spatiotemporal evolution of ecosystem carbon indicators has become a critical issue to be addressed. Chinese grasslands are located in a typical arid and semi-arid climate zone and are sensitive to global changes, which will inevitably have serious impacts on the function and structure of Chinese grasslands. Based on this, our paper takes Chinese grassland ecosystems as the research area, and used multi-source GPP dataset from terrestrial ecosystem model simulations and remote sensing satellite observations to quantitatively analyze the spatiotemporal evolution patterns of GPP in Chinese grasslands over the past 40 years. We combined trend analysis and breakpoint test, and then to analyze the mechanism components of GPP space–time variability. The main results are as follows: (1) The model and remote sensing estimated GPP results showed that more than 80% of Chinese grasslands show a significant increasing trend over the past 40 years, with growth rates ranging from 0.68 to 3.13 g C/m⁻² year⁻¹. (2) GPPₘₐₓ also shows that more than 80% of Chinese grasslands are growing rapidly, with an overall growth rate of more than 0.1 g C/m⁻² year⁻¹ in each region. The overall long-term trends and interannual variability of multi-source GPP and GPPₘₐₓ are generally consistent, yet vegetation dynamics in local areas are still uncertain. (3) The breakpoint test showed that ‘monotonically increasing’ was the largest breakpoint type of GPP in Chinese grasslands (33.09%), and the direction of change of GPP in Chinese grasslands before and after the breakpoint was also increasing. (4) GPPₘₐₓ × CUP explained 91% of the temporal variability of annual-scale GPP in Chinese grasslands from a mechanistic view, and we found that the peak photosynthetic growth and the length of the phenological period synergistically controlled the interannual variability of GPP in Chinese grasslands. Under the scenario of rapid global change, our study accurately assessed the long-term dynamics of GPP and its mechanism-driven of grassland ecosystems in China, which is helpful for estimating and predicting the carbon budget of grassland ecosystems in China, and has important guiding significance for policy formulation to mitigate climate change.
ArticleNumber 109323
Author Meng, Xiaoyu
He, Panxing
Liu, Huixia
Ma, Xiaoliang
Sun, Zongjiu
Han, Zhiming
Author_xml – sequence: 1
  givenname: Panxing
  surname: He
  fullname: He, Panxing
  email: hepanxing@163.com
  organization: Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, College of Grassland Science, Xinjiang Agricultural University, Urumqi 830000, China
– sequence: 2
  givenname: Xiaoliang
  surname: Ma
  fullname: Ma, Xiaoliang
  email: maxl19@lzu.edu.cn
  organization: State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
– sequence: 3
  givenname: Xiaoyu
  surname: Meng
  fullname: Meng, Xiaoyu
  email: mengxiaoyu@henu.edu.cn
  organization: Key Research Insititute of Yellow River Civilization and Sustainable Development, Collaborative Innovation Center on Yellow River Civilization, Henan University, Kaifeng 475000, China
– sequence: 4
  givenname: Zhiming
  surname: Han
  fullname: Han, Zhiming
  email: m15029258074@163.com
  organization: College of Resources and Environment, Northwest A&F University, Yangling 712100, China
– sequence: 5
  givenname: Huixia
  surname: Liu
  fullname: Liu, Huixia
  email: 158755032@qq.com
  organization: Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, College of Grassland Science, Xinjiang Agricultural University, Urumqi 830000, China
– sequence: 6
  givenname: Zongjiu
  surname: Sun
  fullname: Sun, Zongjiu
  email: nmszj@21cn.com
  organization: Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, College of Grassland Science, Xinjiang Agricultural University, Urumqi 830000, China
BookMark eNqFkE9r3DAQxXVIIX-aj1DwsZfdSpYtS_RQypKkgYUE2kJvYjweJ1pkaSt5A_n20dahh1xyEnp6743md85OQgzE2CfB14IL9WW3JozehWFd87oumpG1PGFnoun4Sij-55Sd57zjxWuMOmPbn3uYXZxp2scEvqKn6A9FCJCeKwhDNRE-QnB5Kjfwz9nlKo7VQ4Kc_fH95v6-cqHaPLoAH9mHEXymy9fzgv2-vvq1-bHa3t3cbr5vV9i07bxSuu8NGU7IiTozoGg7VRtURqEWAnQ3Yq-xET22hEKIQZMc-QDIu0YSygt2u_QOEXZ2n9xUfmsjOPtPiOnBQpoderKgG-qoHgfRyUapUfNeEhCh0oaEotL1eenap_j3QHm2k8tIvixH8ZBt3QktZck2xdouVkwx50Tj_9GC2yN9u7Ov9O2Rvl3ol9zXNzl085F6mBM4_27625KmQvTJUbIZHQWkwSXCuazs3ml4AeRIqR4
CitedBy_id crossref_primary_10_1080_10106049_2025_2451162
crossref_primary_10_3390_rs15153864
crossref_primary_10_1016_j_jclepro_2023_137690
crossref_primary_10_3390_land13050572
crossref_primary_10_3390_land13091346
crossref_primary_10_3390_rs17050811
crossref_primary_10_3389_fenvs_2022_928351
crossref_primary_10_3390_rs15184489
crossref_primary_10_1002_ldr_5379
crossref_primary_10_12677_gser_2024_132044
crossref_primary_10_1016_j_atech_2025_100771
crossref_primary_10_1038_s41598_023_49763_1
crossref_primary_10_3390_rs16111994
crossref_primary_10_1007_s40333_024_0090_3
Cites_doi 10.1098/rstb.2016.0135
10.5194/gmd-6-2121-2013
10.1016/j.rse.2019.111383
10.1038/s41893-017-0004-x
10.1007/s00484-020-01974-1
10.1016/j.agrformet.2014.03.007
10.1002/2016JD025871
10.5194/gmd-11-121-2018
10.1016/j.agrformet.2012.06.009
10.1175/JCLI-D-11-00401.1
10.1002/ldr.3351
10.1029/2011GL048738
10.1073/pnas.1413090112
10.1111/j.1365-2486.2006.01305.x
10.1007/s11427-021-2045-5
10.1002/2017GB005733
10.1088/1748-9326/12/1/010301
10.1016/j.rse.2018.05.018
10.1016/j.rse.2009.08.014
10.3390/rs5031117
10.1098/rstb.2007.2029
10.3390/rs70810243
10.1016/j.scitotenv.2019.05.022
10.1016/j.rse.2010.01.022
10.1073/pnas.1210423110
10.1002/joc.4420
10.2307/2333282
10.1109/JSTARS.2021.3076075
10.1016/j.agrformet.2019.107896
10.1029/2004GB002395
10.1126/science.268.5211.654
10.1038/nclimate3092
10.1038/nature22030
10.1038/srep41366
10.1016/j.agrformet.2019.107774
10.1126/science.1184984
10.1007/s10021-012-9539-x
10.5194/gmd-7-2875-2014
10.1007/s11430-007-0049-1
10.1016/j.rse.2012.02.022
10.1029/2011JD016276
10.5194/bg-11-2027-2014
10.1016/j.gecco.2021.e01574
10.1016/j.scitotenv.2020.140297
10.1029/94GB00850
10.1016/j.scitotenv.2019.01.324
10.1029/2012JG001960
10.1016/j.agrformet.2006.12.001
10.1111/gcb.12207
10.3390/rs11212475
10.1038/s43017-019-0001-x
10.1038/nature07944
10.1002/2014GB004826
10.1038/348711a0
10.1038/s41559-018-0714-0
10.5194/essd-12-3269-2020
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.ecolind.2022.109323
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
ExternalDocumentID oai_doaj_org_article_a84e7e2fd173466f80b3eaeec689e16e
10_1016_j_ecolind_2022_109323
S1470160X22007956
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSH
SSJ
SSZ
T5K
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c455t-68bb9e90ec0ee79dc157629c696c811a87fcb8c41bc5ec111d8e3f0dac0743ec3
IEDL.DBID DOA
ISSN 1470-160X
IngestDate Wed Aug 27 01:25:27 EDT 2025
Thu Jul 10 18:55:50 EDT 2025
Tue Jul 01 04:26:57 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Sun Apr 06 06:54:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Chinese grasslands
GPPmax × CUP
Interannual variability
Spatiotemporal evolutionary
Gross primary productivity
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-68bb9e90ec0ee79dc157629c696c811a87fcb8c41bc5ec111d8e3f0dac0743ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/a84e7e2fd173466f80b3eaeec689e16e
PQID 2718333464
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_a84e7e2fd173466f80b3eaeec689e16e
proquest_miscellaneous_2718333464
crossref_primary_10_1016_j_ecolind_2022_109323
crossref_citationtrail_10_1016_j_ecolind_2022_109323
elsevier_sciencedirect_doi_10_1016_j_ecolind_2022_109323
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Ecological indicators
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhang, Yu, Chen, Zhang, Wang, Zhang, He, Han, Chen, Han, Li, Sha, Shi, Wang, Wang, Xiang, Yan, Zhang, Zona, Arain, Maximov, Oechel, Kosugi (b0265) 2020; 280
He, Sun, Xu, Liu, Yao, Ma (b0075) 2021; 6
Frankenberg, Fisher, Worden, Badgley, Saatchi, Lee, Toon, Butz, Jung, Kuze, Yokota (b0060) 2011; 38
Chen, Huang, Gao, Wang (b0025) 2019; 663
Xiao, Chevallier, Gomez, Guanter, Hicke, Huete, Ichii, Ni, Pang, Rahman, Sun, Yuan, Zhang, Zhang (b0230) 2019; 233
Zscheischler, Michalak, Schwalm, Mahecha, Huntzinger, Reichstein, Berthier, Ciais, Cook, El-Masri, Huang, Ito, Jain, King, Lei, Lu, Mao, Peng, Poulter, Ricciuto, Shi, Tao, Tian, Viovy, Wang, Wei, Yang, Zeng (b0285) 2014; 28
Tong, Brandt, Yue, Horion, Wang, Keersmaecker, Tian, Schurgers, Xiao, Luo, Chen, Myneni, Shi, Chen, Fensholt (b0180) 2018; 1
Smith, Wårlind, Arneth, Hickler, Leadley, Siltberg, Zaehle (b0165) 2014; 11
Cheng, Huang, Ji, Lin (b0030) 2017; 122
Wu, Wang, Fu, Feng, Chen (b0220) 2019; 678
Marengo, Espinoza (b0130) 2016; 36
Schaefer, Schwalm, Williams, Arain, Barr, Chen, Davis, Dimitrov, Hilton, Hollinger, Humphreys, Poulter, Raczka, Richardson, Sahoo, Thornton, Vargas, Verbeeck, Anderson, Baker, Black, Bolstad, Chen, Curtis, Desai, Dietze, Dragoni, Gough, Grant, Gu, Jain, Kucharik, Law, Liu, Lokipitiya, Margolis, Matamala, McCaughey, Monson, Munger, Oechel, Peng, Price, Ricciuto, Riley, Roulet, Tian, Tonitto, Torn, Weng, Zhou (b0160) 2012; 117
Yuan, Cai, Xia, Chen, Liu, Dong, Merbold, Law, Arain, Beringer, Bernhofer, Black, Blanken, Cescatti, Chen, Francois, Gianelle, Janssens, Jung, Kato, Kiely, Liu, Marcolla, Montagnani, Raschi, Roupsard, Varlagin, Wohlfahrt (b0250) 2014; 192-193
Zaehle, Sitch, Smith, Hatterman (b0260) 2005; 19
Yuan, Liu, Zhou, Zhou, Tieszen, Baldocchi, Bernhofer, Gholz, Goldstein, Goulden, Hollinger, Hu, Law, Stoy, Vesala, Wofsy (b0240) 2007; 143
Friedlingstein, O'Sullivan, Jones, Andrew, Hauck, Olsen, Peters, Peters, Pongratz, Sitch, Le Quéré, Canadell, Ciais, Jackson, Alin, Aragão, Arneth, Arora, Bates, Becker, Benoit-Cattin, Bittig, Bopp, Bultan, Chandra, Chevallier, Chini, Evans, Florentie, Forster, Gasser, Gehlen, Gilfillan, Gkritzalis, Gregor, Gruber, Harris, Hartung, Haverd, Houghton, Ilyina, Jain, Joetzjer, Kadono, Kato, Kitidis, Korsbakken, Landschützer, Lefèvre, Lenton, Lienert, Liu, Lombardozzi, Marland, Metzl, Munro, Nabel, Nakaoka, Niwa, O'Brien, Ono, Palmer, Pierrot, Poulter, Resplandy, Robertson, Rödenbeck, Schwinger, Séférian, Skjelvan, Smith, Sutton, Tanhua, Tans, Tian, Tilbrook, van der Werf, Vuichard, Walker, Wanninkhof, Watson, Willis, Wiltshire, Yuan, Yue, Zaehle (b0065) 2020; 12
Guimberteau, Zhu, Maignan, Huang, Yue, Dantec-Nédélec, Ottlé, Jornet-Puig, Bastos, Laurent, Goll, Bowring, Chang, Guenet, Tifafi, Peng, Krinner, Ducharne, Wang, Wang, Wang, Wang, Yin, Lauerwald, Joetzjer, Qiu, Kim, Ciais (b0070) 2018; 11
Yang, Shi, Sun, Chang, Zhu, Chen, Wang, Guo, Zhang, Yu, Zhao, Xu, Zhu, Shen, Wang, Peng, Zhao, Wang, Hu, Chen, Huang, Wen, Wang, Zhu, Niu, Tang, Liu, Fang (b0235) 2022; 65
Dejong, Verbesselt, Zeileis, Schaepman (b0045) 2013; 5
Huang, Xia, Wang, Ahlström, Chen, Cook, Cui, Fang, Fisher, Huntzinger, Li, Michalak, Qiao, Schaefer, Schwalm, Wang, Wei, Xu, Yan, Bian, Luo (b0085) 2018; 2
Sun, Li, Zhou, Jiang, Yuan (b0170) 2020; 284
Liu, Lei (b0120) 2015; 7
Kendall, Gibbons (b0105) 1957; 44
Cong, Piao, Chen, Wang, Lin, Chen, Han, Zhou, Zhang (b0035) 2012; 165
Wang, Sun, Zhang, Xiao, Zhu, Wang, Yu, Xiang (b0205) 2021; 14
Wei, Liu, Huntzinger, Michalak, Viovy, Post, Schwalm, Schaefer, Jacobson, Lu, Tian, Ricciuto, Cook, Mao, Shi (b0215) 2014; 7
Zhou, Yu, Schwalm, Ciais, Zhang, Fisher, Michalak, Wang, Poulter, Huntzinger, Niu, Mao, Jain, Ricciuto, Shi, Ito, Wei, Huang, Wang (b0275) 2017; 31
Bondeau, Smith, Zaehle, Schaphoff, Lucht, Cramer, Gerten, Lotze-campen, Müller, Reichstein, Smith (b0015) 2007; 13
Wang, Xie, Wang, Dong, Bie (b0200) 2019; 11
Piao, Fang, Ciais, Peylin, Huang, Sitch, Wang (b0145) 2009; 458
Fang, Guo, Piao, Chen (b0050) 2007; 50
Ummenhofer, C., Meehl, G., 2017. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160135.
Jain, Meiyappan, Song, House (b0095) 2013; 19
Rosenzweig, Arnell, Ebi, Lotze-Campen, Raes, Rapley, Smith, Cramer, Frieler, Reyer, Schewe, van Vuuren, Warszawski (b0155) 2017; 12
Campbell, Berry, Seibt, Smith, Montzka, Launois, Belviso, Bopp, Laine (b0020) 2017; 544
Mao, Thornton, Shi, Zhao, Post (b0125) 2012; 25
Beer, Reichstein, Tomelleri, Ciais, Jung, Carvalhais, Rödenbeck, Arain, Baldocchi, Bonan, Bondeau, Cescatti, Lasslop, Lindroth, Lomas, Luyssaert, Margolis, Oleson, Roupsard, Veenendaal, Viovy, Williams, Woodward, Papale (b0010) 2010; 329
Niu, Xiao, Zhang, Qin, Dang, Wang, Zou, Doughty, Brandt, Tong, Horion, Fensholt, Chen, Myneni, Xu, Di, Zhou (b0135) 2019; 30
Huntzinger, Schwalm, Michalak, Schaefer, King, Wei, Jacobson, Liu, Cook, Post, Berthier, Hayes, Huang, Ito, Lei, Lu, Mao, Peng, Peng, Poulter, Riccuito, Shi, Tian, Wang, Zeng, Zhao, Zhu (b0090) 2013; 6
Liu, Y., Zhou, R., Ren, H., Zhang, W., Zhang, Z.X., Zhang, Z.Y., Wen, Z.M., 2021. Evaluating the dynamics of grassland net primary productivity in response to climate change in China. Global Ecology and Conservation 28, e01574.
Verbesselt, Hyndman, Newnham, Culvenor (b0190) 2010; 114
Tian, Chen, Zhang, Liu, Sun, Chappelka, Ren, Xu, Lu, Pan, Chen, Hui, McNulty, Lockaby, Vance (b0175) 2012; 15
Yuan, Zhao, Lin, Wang, Li, She, Qu (b0255) 2020; 738
Culotta (b0040) 1995; 268
Zhou, Zhang, Ciais, Xiao, Luo, Caylor, Huang, Wang (b0280) 2017; 7
Adams, Faure, Faure-Denard, McGlade, Woodward (b0005) 1990; 348
Li, Huang, Wigmosta, Ke, Coleman, Leung, Wang, Ricciuto (b0110) 2011; 116
Xia, Niu, Ciais, Janssens, Chen, Ammann, Arain, Blanken, Cescatti, Bonal, Buchmann, Curtis, Chen, Dong, Flanagan, Frankenberg, Georgiadis, Gough, Hui, Kiely, Li, Lund, Magliulo, Marcolla, Merbold, Montagnani, Moors, Olesen, Piao, Raschi, Roupsard, Suyker, Urbaniak, Vaccari, Varlagin, Vesala, Wilkinson, Weng, Wohlfahrt, Yan, Luo (b0225) 2015; 112
Pan, Feng, Fu, Wang, Ji, Pan (b0140) 2018; 214
Zhang, Zhang, Dong, Xiao (b0270) 2013; 110
Yuan, Liu, Yu, Bonnefond, Chen, Davis, Desai, Goldstein, Gianelle, Rossi, Suyker, Verma (b0245) 2010; 114
Feng, Fu, Piao, Wang, Ciais, Zeng, Lü, Zeng, Li, Jiang, Wu (b0055) 2016; 6
Warnant, François, Strivay, Gérard (b0210) 1994; 8
Kang, Han, Zhang, Sun (b0100) 2007; 362
Verbesselt, Zeileis, Herold (b0195) 2012; 123
Piao, Wang, Park, Chen, Lian, He, Bjerke, Chen, Ciais, Tømmervik, Nemani, Myneni (b0150) 2020; 1
Huang, Dai, Wang, Li, Feng, Du (b0080) 2020; 64
Huang (10.1016/j.ecolind.2022.109323_b0085) 2018; 2
10.1016/j.ecolind.2022.109323_b0115
Rosenzweig (10.1016/j.ecolind.2022.109323_b0155) 2017; 12
Zhou (10.1016/j.ecolind.2022.109323_b0280) 2017; 7
Huang (10.1016/j.ecolind.2022.109323_b0080) 2020; 64
Dejong (10.1016/j.ecolind.2022.109323_b0045) 2013; 5
Frankenberg (10.1016/j.ecolind.2022.109323_b0060) 2011; 38
Beer (10.1016/j.ecolind.2022.109323_b0010) 2010; 329
Sun (10.1016/j.ecolind.2022.109323_b0170) 2020; 284
Zhang (10.1016/j.ecolind.2022.109323_b0265) 2020; 280
Zaehle (10.1016/j.ecolind.2022.109323_b0260) 2005; 19
Piao (10.1016/j.ecolind.2022.109323_b0145) 2009; 458
Yuan (10.1016/j.ecolind.2022.109323_b0245) 2010; 114
Campbell (10.1016/j.ecolind.2022.109323_b0020) 2017; 544
He (10.1016/j.ecolind.2022.109323_b0075) 2021; 6
Chen (10.1016/j.ecolind.2022.109323_b0025) 2019; 663
Friedlingstein (10.1016/j.ecolind.2022.109323_b0065) 2020; 12
Wang (10.1016/j.ecolind.2022.109323_b0205) 2021; 14
Liu (10.1016/j.ecolind.2022.109323_b0120) 2015; 7
Zhang (10.1016/j.ecolind.2022.109323_b0270) 2013; 110
10.1016/j.ecolind.2022.109323_b0185
Yuan (10.1016/j.ecolind.2022.109323_b0255) 2020; 738
Bondeau (10.1016/j.ecolind.2022.109323_b0015) 2007; 13
Smith (10.1016/j.ecolind.2022.109323_b0165) 2014; 11
Yang (10.1016/j.ecolind.2022.109323_b0235) 2022; 65
Niu (10.1016/j.ecolind.2022.109323_b0135) 2019; 30
Jain (10.1016/j.ecolind.2022.109323_b0095) 2013; 19
Wu (10.1016/j.ecolind.2022.109323_b0220) 2019; 678
Verbesselt (10.1016/j.ecolind.2022.109323_b0190) 2010; 114
Xia (10.1016/j.ecolind.2022.109323_b0225) 2015; 112
Zhou (10.1016/j.ecolind.2022.109323_b0275) 2017; 31
Wang (10.1016/j.ecolind.2022.109323_b0200) 2019; 11
Marengo (10.1016/j.ecolind.2022.109323_b0130) 2016; 36
Tong (10.1016/j.ecolind.2022.109323_b0180) 2018; 1
Huntzinger (10.1016/j.ecolind.2022.109323_b0090) 2013; 6
Culotta (10.1016/j.ecolind.2022.109323_b0040) 1995; 268
Schaefer (10.1016/j.ecolind.2022.109323_b0160) 2012; 117
Wei (10.1016/j.ecolind.2022.109323_b0215) 2014; 7
Zscheischler (10.1016/j.ecolind.2022.109323_b0285) 2014; 28
Xiao (10.1016/j.ecolind.2022.109323_b0230) 2019; 233
Mao (10.1016/j.ecolind.2022.109323_b0125) 2012; 25
Cong (10.1016/j.ecolind.2022.109323_b0035) 2012; 165
Kendall (10.1016/j.ecolind.2022.109323_b0105) 1957; 44
Guimberteau (10.1016/j.ecolind.2022.109323_b0070) 2018; 11
Adams (10.1016/j.ecolind.2022.109323_b0005) 1990; 348
Kang (10.1016/j.ecolind.2022.109323_b0100) 2007; 362
Verbesselt (10.1016/j.ecolind.2022.109323_b0195) 2012; 123
Piao (10.1016/j.ecolind.2022.109323_b0150) 2020; 1
Pan (10.1016/j.ecolind.2022.109323_b0140) 2018; 214
Feng (10.1016/j.ecolind.2022.109323_b0055) 2016; 6
Yuan (10.1016/j.ecolind.2022.109323_b0250) 2014; 192-193
Cheng (10.1016/j.ecolind.2022.109323_b0030) 2017; 122
Li (10.1016/j.ecolind.2022.109323_b0110) 2011; 116
Fang (10.1016/j.ecolind.2022.109323_b0050) 2007; 50
Warnant (10.1016/j.ecolind.2022.109323_b0210) 1994; 8
Yuan (10.1016/j.ecolind.2022.109323_b0240) 2007; 143
Tian (10.1016/j.ecolind.2022.109323_b0175) 2012; 15
References_xml – volume: 6
  start-page: 1
  year: 2021
  end-page: 13
  ident: b0075
  article-title: Combining gradual and abrupt analysis to detect variation of vegetation greenness on the loess areas of China
  publication-title: Front. Earth Sci.
– volume: 28
  start-page: 585
  year: 2014
  end-page: 600
  ident: b0285
  article-title: Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data
  publication-title: Global Biogeochem. Cycles
– volume: 38
  start-page: n/a
  year: 2011
  end-page: n/a
  ident: b0060
  article-title: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity
  publication-title: Geophys. Res. Lett.
– volume: 192-193
  start-page: 108
  year: 2014
  end-page: 120
  ident: b0250
  article-title: Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database
  publication-title: Agric. For. Meteorol.
– volume: 143
  start-page: 189
  year: 2007
  end-page: 207
  ident: b0240
  article-title: Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes
  publication-title: Agric. For. Meteorol.
– volume: 544
  start-page: 84
  year: 2017
  end-page: 87
  ident: b0020
  article-title: Large historical growth in global terrestrial gross primary production
  publication-title: Nature
– volume: 31
  start-page: 1639
  year: 2017
  end-page: 1655
  ident: b0275
  article-title: Response of water use efficiency to global environmental change based on output from terrestrial biosphere models: drivers of WUE variability
  publication-title: Global Biogeochem. Cycles
– volume: 114
  start-page: 106
  year: 2010
  end-page: 115
  ident: b0190
  article-title: Detecting trend and seasonal changes in satellite image time series
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 010301
  year: 2017
  ident: b0155
  article-title: Assessing inter-sectoral climate change risks: the role of ISIMIP
  publication-title: Environ. Res. Lett.
– volume: 14
  start-page: 5596
  year: 2021
  end-page: 5612
  ident: b0205
  article-title: New global MuSyQ GPP/NPP remote sensing products from 1981 to 2018
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 19
  start-page: 1
  year: 2005
  end-page: 16
  ident: b0260
  article-title: Effects of parameter uncertainty on the modeling of terrestrial biosphere dynamics
  publication-title: Global Biogeochem. Cycles
– volume: 12
  start-page: 3269
  year: 2020
  end-page: 3340
  ident: b0065
  article-title: Global carbon budget 2020
  publication-title: Earth Syst. Sci. Data
– volume: 64
  start-page: 1865
  year: 2020
  end-page: 1876
  ident: b0080
  article-title: Phenological changes in herbaceous plants in China's grasslands and their responses to climate change: a meta-analysis
  publication-title: Int. J. Biometeorol.
– volume: 8
  start-page: 255
  year: 1994
  end-page: 270
  ident: b0210
  article-title: CARAIB: A global model of terrestrial biological productivity
  publication-title: Global Biogeochem. Cycles
– volume: 738
  start-page: 140297
  year: 2020
  ident: b0255
  article-title: Impacts of preseason drought on vegetation spring phenology across the Northeast China Transect
  publication-title: Sci. Total Environ.
– volume: 458
  start-page: 1009
  year: 2009
  end-page: 1013
  ident: b0145
  article-title: The carbon balance of terrestrial ecosystems in China
  publication-title: Nature
– volume: 348
  start-page: 711
  year: 1990
  end-page: 714
  ident: b0005
  article-title: Increases in terrestrial carbon storage from the Last Glacial Maximum to the Present
  publication-title: Nature
– volume: 233
  start-page: 111383
  year: 2019
  ident: b0230
  article-title: Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years
  publication-title: Remote Sens. Environ.
– volume: 1
  start-page: 14
  year: 2020
  end-page: 27
  ident: b0150
  article-title: Characteristics, drivers and feedbacks of global greening
  publication-title: Nature Rev. Earth Environ.
– volume: 19
  start-page: 2893
  year: 2013
  end-page: 2906
  ident: b0095
  article-title: CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land cover data
  publication-title: Glob. Change Biol.
– volume: 114
  start-page: 1416
  year: 2010
  end-page: 1431
  ident: b0245
  article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meterology data
  publication-title: Remote Sens. Environ.
– volume: 116
  year: 2011
  ident: b0110
  article-title: Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed
  publication-title: J. Geophys. Res.: Atmos.
– volume: 329
  start-page: 834
  year: 2010
  end-page: 838
  ident: b0010
  article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate
  publication-title: Science
– volume: 15
  start-page: 674
  year: 2012
  end-page: 694
  ident: b0175
  article-title: Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the Southern United States
  publication-title: Ecosystems
– volume: 25
  start-page: 5327
  year: 2012
  end-page: 5342
  ident: b0125
  article-title: Remote sensing evaluation of CLM4 GPP for the period 2000–09
  publication-title: J. Clim.
– volume: 30
  start-page: 1620
  year: 2019
  end-page: 1631
  ident: b0135
  article-title: Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China
  publication-title: Land Degrad. Dev.
– reference: Ummenhofer, C., Meehl, G., 2017. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160135.
– volume: 11
  start-page: 2027
  year: 2014
  end-page: 2054
  ident: b0165
  article-title: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model
  publication-title: Biogeosciences
– volume: 678
  start-page: 565
  year: 2019
  end-page: 573
  ident: b0220
  article-title: Socio-ecological changes on the Loess Plateau of China after Grain to Green Program
  publication-title: Sci. Total Environ.
– volume: 50
  start-page: 1341
  year: 2007
  end-page: 1350
  ident: b0050
  article-title: Terrestrial vegetation carbon sinks in China, 1981–2000
  publication-title: Sci. China, Ser. D Earth Sci.
– volume: 362
  start-page: 997
  year: 2007
  end-page: 1008
  ident: b0100
  article-title: Grassland ecosystems in China: review of current knowledge and research advancement
  publication-title: Philos. Trans. R. Soc. London Series B, Biol. Sci.
– volume: 1
  start-page: 44
  year: 2018
  end-page: 50
  ident: b0180
  article-title: Increased vegetation growth and carbon stock in China karst via ecological engineering
  publication-title: Nat. Sustainability
– volume: 7
  start-page: 2875
  year: 2014
  end-page: 2893
  ident: b0215
  article-title: The north american carbon program multi-scale synthesis and terrestrial model intercomparison project-part 2: environmental driver data
  publication-title: Geosci. Model Dev.
– volume: 65
  start-page: 861
  year: 2022
  end-page: 895
  ident: b0235
  article-title: Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality
  publication-title: Sci. China Life Sci.
– volume: 123
  start-page: 98
  year: 2012
  end-page: 108
  ident: b0195
  article-title: Near real-time disturbance detection using satellite image time series
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 41366
  year: 2017
  ident: b0280
  article-title: Dominant role of plant physiology in trend and variability of gross primary productivity in North America
  publication-title: Sci. Rep.
– volume: 7
  start-page: 10243
  year: 2015
  end-page: 10268
  ident: b0120
  article-title: Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011
  publication-title: Remote Sensing
– volume: 5
  start-page: 1117
  year: 2013
  end-page: 1133
  ident: b0045
  article-title: Shifts in global vegetation activity trends
  publication-title: Remote Sensing
– reference: Liu, Y., Zhou, R., Ren, H., Zhang, W., Zhang, Z.X., Zhang, Z.Y., Wen, Z.M., 2021. Evaluating the dynamics of grassland net primary productivity in response to climate change in China. Global Ecology and Conservation 28, e01574.
– volume: 122
  start-page: 2239
  year: 2017
  end-page: 2253
  ident: b0030
  article-title: Uncertainties of soil moisture in historical simulations and future projections: uncertainties of Soil Moisture
  publication-title: J. Geophys. Res.: Atmospheres
– volume: 110
  start-page: 4309
  year: 2013
  end-page: 4314
  ident: b0270
  article-title: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011
  publication-title: Proc. Natl. Acad. Sci.
– volume: 6
  start-page: 1019
  year: 2016
  end-page: 1022
  ident: b0055
  article-title: Revegetation in China’s Loess Plateau is approaching sustainable water resource limits
  publication-title: Nat. Clim. Change
– volume: 6
  start-page: 2121
  year: 2013
  end-page: 2133
  ident: b0090
  article-title: The north american carbon program multi-acale aynthesis and terrestrial model intercomparison project-part 1: overview and experimental design
  publication-title: Geosci. Model Dev.
– volume: 117
  start-page: n/a
  year: 2012
  end-page: n/a
  ident: b0160
  article-title: A model-data comparison of gross primary productivity: results from the North American Carbon Program site synthesis
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 44
  start-page: 298
  year: 1957
  ident: b0105
  article-title: Rank correlation method
  publication-title: Biometrika
– volume: 112
  start-page: 2788
  year: 2015
  end-page: 2793
  ident: b0225
  article-title: Joint control of terrestrial gross primary productivity by plant phenology and physiology
  publication-title: Proc. Natl. Acad. Sci.
– volume: 11
  start-page: 2475
  year: 2019
  ident: b0200
  article-title: Detecting patterns of vegetation gradual changes (2001–2017) in Shiyang River Basin, based on a novel framework
  publication-title: Remote Sensing
– volume: 36
  start-page: 1033
  year: 2016
  end-page: 1050
  ident: b0130
  article-title: Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts
  publication-title: Int. J. Climatol.
– volume: 268
  start-page: 654
  year: 1995
  end-page: 656
  ident: b0040
  article-title: Will plants profit from high CO2?
  publication-title: Science
– volume: 11
  start-page: 121
  year: 2018
  end-page: 163
  ident: b0070
  article-title: ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation
  publication-title: Geosci. Model Dev.
– volume: 13
  start-page: 679
  year: 2007
  end-page: 706
  ident: b0015
  article-title: Modelling the role of agriculture for the 20th century global terrestrial carbon balance
  publication-title: Glob. Change Biol.
– volume: 2
  start-page: 1897
  year: 2018
  end-page: 1905
  ident: b0085
  article-title: Enhanced peak growth of global vegetation and its key mechanisms
  publication-title: Nat. Ecol. Evol.
– volume: 214
  start-page: 59
  year: 2018
  end-page: 72
  ident: b0140
  article-title: Increasing global vegetation browning hidden in overall vegetation greening: insights from time-varying trends
  publication-title: Remote Sens. Environ.
– volume: 663
  start-page: 45
  year: 2019
  end-page: 59
  ident: b0025
  article-title: Impact of physiological and phenological change on carbon uptake on the Tibetan Plateau revealed through GPP estimation based on spaceborne solar-induced fluorescence
  publication-title: Sci. Total Environ.
– volume: 165
  start-page: 104
  year: 2012
  end-page: 113
  ident: b0035
  article-title: Spring vegetation green-up date in China inferred from SPOT NDVI data: a multiple model analysis
  publication-title: Agric. For. Meteorol.
– volume: 284
  start-page: 107896
  year: 2020
  ident: b0170
  article-title: Delayed autumn leaf senescence date prolongs the growing season length of herbaceous plants on the Qinghai-Tibetan Plateau
  publication-title: Agric. For. Meteorol.
– volume: 280
  year: 2020
  ident: b0265
  article-title: Attribute parameter characterized the seasonal variation of gross primary productivity (alpha(GPP)): spatiotemporal variation and influencing factors
  publication-title: Agric. For. Meteorol.
– ident: 10.1016/j.ecolind.2022.109323_b0185
  doi: 10.1098/rstb.2016.0135
– volume: 6
  start-page: 2121
  year: 2013
  ident: 10.1016/j.ecolind.2022.109323_b0090
  article-title: The north american carbon program multi-acale aynthesis and terrestrial model intercomparison project-part 1: overview and experimental design
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-6-2121-2013
– volume: 233
  start-page: 111383
  year: 2019
  ident: 10.1016/j.ecolind.2022.109323_b0230
  article-title: Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111383
– volume: 1
  start-page: 44
  issue: 1
  year: 2018
  ident: 10.1016/j.ecolind.2022.109323_b0180
  article-title: Increased vegetation growth and carbon stock in China karst via ecological engineering
  publication-title: Nat. Sustainability
  doi: 10.1038/s41893-017-0004-x
– volume: 64
  start-page: 1865
  issue: 11
  year: 2020
  ident: 10.1016/j.ecolind.2022.109323_b0080
  article-title: Phenological changes in herbaceous plants in China's grasslands and their responses to climate change: a meta-analysis
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-020-01974-1
– volume: 192-193
  start-page: 108
  year: 2014
  ident: 10.1016/j.ecolind.2022.109323_b0250
  article-title: Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.03.007
– volume: 122
  start-page: 2239
  year: 2017
  ident: 10.1016/j.ecolind.2022.109323_b0030
  article-title: Uncertainties of soil moisture in historical simulations and future projections: uncertainties of Soil Moisture
  publication-title: J. Geophys. Res.: Atmospheres
  doi: 10.1002/2016JD025871
– volume: 11
  start-page: 121
  year: 2018
  ident: 10.1016/j.ecolind.2022.109323_b0070
  article-title: ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-11-121-2018
– volume: 165
  start-page: 104
  year: 2012
  ident: 10.1016/j.ecolind.2022.109323_b0035
  article-title: Spring vegetation green-up date in China inferred from SPOT NDVI data: a multiple model analysis
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.06.009
– volume: 25
  start-page: 5327
  year: 2012
  ident: 10.1016/j.ecolind.2022.109323_b0125
  article-title: Remote sensing evaluation of CLM4 GPP for the period 2000–09
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-11-00401.1
– volume: 30
  start-page: 1620
  issue: 13
  year: 2019
  ident: 10.1016/j.ecolind.2022.109323_b0135
  article-title: Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3351
– volume: 38
  start-page: n/a
  issue: 17
  year: 2011
  ident: 10.1016/j.ecolind.2022.109323_b0060
  article-title: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL048738
– volume: 112
  start-page: 2788
  issue: 9
  year: 2015
  ident: 10.1016/j.ecolind.2022.109323_b0225
  article-title: Joint control of terrestrial gross primary productivity by plant phenology and physiology
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1413090112
– volume: 13
  start-page: 679
  issue: 3
  year: 2007
  ident: 10.1016/j.ecolind.2022.109323_b0015
  article-title: Modelling the role of agriculture for the 20th century global terrestrial carbon balance
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2006.01305.x
– volume: 65
  start-page: 861
  issue: 5
  year: 2022
  ident: 10.1016/j.ecolind.2022.109323_b0235
  article-title: Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-021-2045-5
– volume: 31
  start-page: 1639
  issue: 11
  year: 2017
  ident: 10.1016/j.ecolind.2022.109323_b0275
  article-title: Response of water use efficiency to global environmental change based on output from terrestrial biosphere models: drivers of WUE variability
  publication-title: Global Biogeochem. Cycles
  doi: 10.1002/2017GB005733
– volume: 12
  start-page: 010301
  issue: 1
  year: 2017
  ident: 10.1016/j.ecolind.2022.109323_b0155
  article-title: Assessing inter-sectoral climate change risks: the role of ISIMIP
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/12/1/010301
– volume: 214
  start-page: 59
  year: 2018
  ident: 10.1016/j.ecolind.2022.109323_b0140
  article-title: Increasing global vegetation browning hidden in overall vegetation greening: insights from time-varying trends
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.018
– volume: 114
  start-page: 106
  issue: 1
  year: 2010
  ident: 10.1016/j.ecolind.2022.109323_b0190
  article-title: Detecting trend and seasonal changes in satellite image time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.014
– volume: 5
  start-page: 1117
  year: 2013
  ident: 10.1016/j.ecolind.2022.109323_b0045
  article-title: Shifts in global vegetation activity trends
  publication-title: Remote Sensing
  doi: 10.3390/rs5031117
– volume: 362
  start-page: 997
  issue: 1482
  year: 2007
  ident: 10.1016/j.ecolind.2022.109323_b0100
  article-title: Grassland ecosystems in China: review of current knowledge and research advancement
  publication-title: Philos. Trans. R. Soc. London Series B, Biol. Sci.
  doi: 10.1098/rstb.2007.2029
– volume: 7
  start-page: 10243
  year: 2015
  ident: 10.1016/j.ecolind.2022.109323_b0120
  article-title: Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011
  publication-title: Remote Sensing
  doi: 10.3390/rs70810243
– volume: 678
  start-page: 565
  year: 2019
  ident: 10.1016/j.ecolind.2022.109323_b0220
  article-title: Socio-ecological changes on the Loess Plateau of China after Grain to Green Program
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.05.022
– volume: 114
  start-page: 1416
  year: 2010
  ident: 10.1016/j.ecolind.2022.109323_b0245
  article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meterology data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.01.022
– volume: 110
  start-page: 4309
  issue: 11
  year: 2013
  ident: 10.1016/j.ecolind.2022.109323_b0270
  article-title: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1210423110
– volume: 36
  start-page: 1033
  issue: 3
  year: 2016
  ident: 10.1016/j.ecolind.2022.109323_b0130
  article-title: Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4420
– volume: 44
  start-page: 298
  year: 1957
  ident: 10.1016/j.ecolind.2022.109323_b0105
  article-title: Rank correlation method
  publication-title: Biometrika
  doi: 10.2307/2333282
– volume: 14
  start-page: 5596
  year: 2021
  ident: 10.1016/j.ecolind.2022.109323_b0205
  article-title: New global MuSyQ GPP/NPP remote sensing products from 1981 to 2018
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3076075
– volume: 284
  start-page: 107896
  year: 2020
  ident: 10.1016/j.ecolind.2022.109323_b0170
  article-title: Delayed autumn leaf senescence date prolongs the growing season length of herbaceous plants on the Qinghai-Tibetan Plateau
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107896
– volume: 6
  start-page: 1
  year: 2021
  ident: 10.1016/j.ecolind.2022.109323_b0075
  article-title: Combining gradual and abrupt analysis to detect variation of vegetation greenness on the loess areas of China
  publication-title: Front. Earth Sci.
– volume: 19
  start-page: 1
  year: 2005
  ident: 10.1016/j.ecolind.2022.109323_b0260
  article-title: Effects of parameter uncertainty on the modeling of terrestrial biosphere dynamics
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/2004GB002395
– volume: 268
  start-page: 654
  issue: 5211
  year: 1995
  ident: 10.1016/j.ecolind.2022.109323_b0040
  article-title: Will plants profit from high CO2?
  publication-title: Science
  doi: 10.1126/science.268.5211.654
– volume: 6
  start-page: 1019
  issue: 11
  year: 2016
  ident: 10.1016/j.ecolind.2022.109323_b0055
  article-title: Revegetation in China’s Loess Plateau is approaching sustainable water resource limits
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3092
– volume: 544
  start-page: 84
  issue: 7648
  year: 2017
  ident: 10.1016/j.ecolind.2022.109323_b0020
  article-title: Large historical growth in global terrestrial gross primary production
  publication-title: Nature
  doi: 10.1038/nature22030
– volume: 7
  start-page: 41366
  year: 2017
  ident: 10.1016/j.ecolind.2022.109323_b0280
  article-title: Dominant role of plant physiology in trend and variability of gross primary productivity in North America
  publication-title: Sci. Rep.
  doi: 10.1038/srep41366
– volume: 280
  year: 2020
  ident: 10.1016/j.ecolind.2022.109323_b0265
  article-title: Attribute parameter characterized the seasonal variation of gross primary productivity (alpha(GPP)): spatiotemporal variation and influencing factors
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107774
– volume: 329
  start-page: 834
  issue: 5993
  year: 2010
  ident: 10.1016/j.ecolind.2022.109323_b0010
  article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate
  publication-title: Science
  doi: 10.1126/science.1184984
– volume: 15
  start-page: 674
  issue: 4
  year: 2012
  ident: 10.1016/j.ecolind.2022.109323_b0175
  article-title: Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the Southern United States
  publication-title: Ecosystems
  doi: 10.1007/s10021-012-9539-x
– volume: 7
  start-page: 2875
  year: 2014
  ident: 10.1016/j.ecolind.2022.109323_b0215
  article-title: The north american carbon program multi-scale synthesis and terrestrial model intercomparison project-part 2: environmental driver data
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-2875-2014
– volume: 50
  start-page: 1341
  issue: 9
  year: 2007
  ident: 10.1016/j.ecolind.2022.109323_b0050
  article-title: Terrestrial vegetation carbon sinks in China, 1981–2000
  publication-title: Sci. China, Ser. D Earth Sci.
  doi: 10.1007/s11430-007-0049-1
– volume: 123
  start-page: 98
  year: 2012
  ident: 10.1016/j.ecolind.2022.109323_b0195
  article-title: Near real-time disturbance detection using satellite image time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.022
– volume: 116
  issue: D24
  year: 2011
  ident: 10.1016/j.ecolind.2022.109323_b0110
  article-title: Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/2011JD016276
– volume: 11
  start-page: 2027
  year: 2014
  ident: 10.1016/j.ecolind.2022.109323_b0165
  article-title: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-2027-2014
– ident: 10.1016/j.ecolind.2022.109323_b0115
  doi: 10.1016/j.gecco.2021.e01574
– volume: 738
  start-page: 140297
  year: 2020
  ident: 10.1016/j.ecolind.2022.109323_b0255
  article-title: Impacts of preseason drought on vegetation spring phenology across the Northeast China Transect
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140297
– volume: 8
  start-page: 255
  issue: 3
  year: 1994
  ident: 10.1016/j.ecolind.2022.109323_b0210
  article-title: CARAIB: A global model of terrestrial biological productivity
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/94GB00850
– volume: 663
  start-page: 45
  year: 2019
  ident: 10.1016/j.ecolind.2022.109323_b0025
  article-title: Impact of physiological and phenological change on carbon uptake on the Tibetan Plateau revealed through GPP estimation based on spaceborne solar-induced fluorescence
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.324
– volume: 117
  start-page: n/a
  issue: G3
  year: 2012
  ident: 10.1016/j.ecolind.2022.109323_b0160
  article-title: A model-data comparison of gross primary productivity: results from the North American Carbon Program site synthesis
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2012JG001960
– volume: 143
  start-page: 189
  issue: 3-4
  year: 2007
  ident: 10.1016/j.ecolind.2022.109323_b0240
  article-title: Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.12.001
– volume: 19
  start-page: 2893
  issue: 9
  year: 2013
  ident: 10.1016/j.ecolind.2022.109323_b0095
  article-title: CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land cover data
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12207
– volume: 11
  start-page: 2475
  year: 2019
  ident: 10.1016/j.ecolind.2022.109323_b0200
  article-title: Detecting patterns of vegetation gradual changes (2001–2017) in Shiyang River Basin, based on a novel framework
  publication-title: Remote Sensing
  doi: 10.3390/rs11212475
– volume: 1
  start-page: 14
  issue: 1
  year: 2020
  ident: 10.1016/j.ecolind.2022.109323_b0150
  article-title: Characteristics, drivers and feedbacks of global greening
  publication-title: Nature Rev. Earth Environ.
  doi: 10.1038/s43017-019-0001-x
– volume: 458
  start-page: 1009
  issue: 7241
  year: 2009
  ident: 10.1016/j.ecolind.2022.109323_b0145
  article-title: The carbon balance of terrestrial ecosystems in China
  publication-title: Nature
  doi: 10.1038/nature07944
– volume: 28
  start-page: 585
  issue: 6
  year: 2014
  ident: 10.1016/j.ecolind.2022.109323_b0285
  article-title: Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data
  publication-title: Global Biogeochem. Cycles
  doi: 10.1002/2014GB004826
– volume: 348
  start-page: 711
  issue: 6303
  year: 1990
  ident: 10.1016/j.ecolind.2022.109323_b0005
  article-title: Increases in terrestrial carbon storage from the Last Glacial Maximum to the Present
  publication-title: Nature
  doi: 10.1038/348711a0
– volume: 2
  start-page: 1897
  issue: 12
  year: 2018
  ident: 10.1016/j.ecolind.2022.109323_b0085
  article-title: Enhanced peak growth of global vegetation and its key mechanisms
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-018-0714-0
– volume: 12
  start-page: 3269
  issue: 4
  year: 2020
  ident: 10.1016/j.ecolind.2022.109323_b0065
  article-title: Global carbon budget 2020
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-12-3269-2020
SSID ssj0016996
Score 2.4302323
Snippet •Both GPP and GPPmax in Chinese grasslands showed increases at different space–time scales.•Trend analysis and breakpoint tests were used for the first time to...
At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO₂ through...
At the ecosystem level, Gross Primary Productivity (GPP) was defined as the organic compounds formed by plants that absorb atmospheric CO2 through...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109323
SubjectTerms carbon
carbon dioxide
carbon sequestration
China
Chinese grasslands
climate change
data collection
ecological models
global carbon budget
GPPmax × CUP
grasslands
Gross primary productivity
Interannual variability
issues and policy
phenology
photosynthesis
satellites
semiarid zones
Spatiotemporal evolutionary
temporal variation
terrestrial ecosystems
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp1xKX6HbJkWBXr1rWbJkHdOQB6UtgTSwN6HHODgk3rC7KfTS396RLG_YXAI9StbDzIzmYc98IuRLGSQyNrjC81AXQno8UsqHonTozjGvHE-QQj9-yotr8W1ez3fIyVgLE9Mqs-4fdHrS1rlnlqk5e-i62RUTKsKjzav4uQ3d_FjBLlSU8unfTZoHk1oPFUaqLOLopyqe2e0UIzx05iJgaFUlYKWKb9mnBOO_ZaaeKexkhc5ek1fZfaTHwxu-ITvQvyX7p0_VavgwH9fVO_L9KuVLZ_ipOwq_s6DZ5R9q-0DvIRb-dqt7bA3gJHTR0psletQx45GeX17Srqfpku335Prs9NfJRZGvTyi8qOt1IRvnNOgSfAmgdPAMY4tKe6mRI4zZRrXeNV4w52vwqPNCA7wtg_XRrQDP98luv-jhA6ExqKjRkbEtxMo47SxGkY7JUHLu6xAmRIxEMz5ji8crLu7MmER2azKtTaS1GWg9IdPNtIcBXOOlCV8jRzaDIzZ26lgsb0wWDmMbAQqqNjDFhZRtUzoOFsDLRgOTMCHNyE-zJWq4VPfS_kcj_w0ew_hvxfaweFyZCm0857if-Pj_y38ie7E15AoekN318hEO0edZu89JqP8BzWIAWw
  priority: 102
  providerName: Elsevier
Title Spatiotemporal evolutionary and mechanism analysis of grassland GPP in China
URI https://dx.doi.org/10.1016/j.ecolind.2022.109323
https://www.proquest.com/docview/2718333464
https://doaj.org/article/a84e7e2fd173466f80b3eaeec689e16e
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggXhXLY2UkrtnaceLEx4JalldVCSrtzbLHE7RVm0W7WyQu_HbGsdNSLnvhmKetmbHnG3nmG8beiKBJscEXoEJdVBpoSTUQCuEJzklovBoohb6c6PlZ9XFRL_5q9RVzwhI9cBLcgWsrbLDsgmxUpXXXCq_QIYJuDUqNcfclnzcGU_n8QBuT6ooaUUgtFje1OwfnM4rrCMJFmtCyHOiUSnXLKw3k_bec0z_b9OB7jh-yBxk08sM02UfsDvaP2f7RTY0aPcyLdPOEff46ZEln0qkLjj-zebn1L-76wC8xlvsuN5d0lShJ-Krj39eEo2OeI39_esqXPR9aaz9lZ8dH397Ni9w0oYCqrreFbr03aASCQGxMAEkRRWlAG9KDlK5tOvAtVNJDjUA7XWhRdSI4iGACQe2zvX7V4zPGYyhRE3xxHcZ6OOMdxY5e6iCUgjqECatGoVnIjOKxscWFHVPHzm2WtY2ytknWEza7_uxHotTY9cHbqJHrlyMj9nCD7MRmO7G77GTC2lGfNoOLBBroV8td478e9W9p8cUTFdfj6mpjS_LsStF41fP_MccX7H4cNuUKvmR72_UVviLMs_VTdnf2W07ZvcMPn-Yn08HY_wAQ7AJY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELdYedhepn2hdYzNk_YaGseOEz8CgpVRKiRA6pvljwsKghS1BWn__c6JU9S9IO0xdmxHd-f7iO9-JuRn6iUy1tvEcZ8nQjrcUoXzSWrRnWOusLyFFDqfyvG1-D3LZ1vkqK-FCWmVUfd3Or3V1rFlFKk5eqjr0SUTRYBHm2Xhdxu6-a_IdkCnygdk--D0bDxdHyZIpboioyJNwoDnQp7R7T4GeejPBczQLGuxlTK-YaJaJP8NS_WPzm4N0ck78jZ6kPSg-8j3ZAuaD2Tn-LlgDTvjjl1-JJPLNmU6IlDdUXiKsmYWf6hpPL2HUPtbL-_xqcMnofOK3izQqQ5Jj_TXxQWtG9res_2JXJ8cXx2Nk3iDQuJEnq8SWVqrQKXgUoBCeccwvMiUkwqZwpgpi8rZ0glmXQ4O1Z4vgVepNy54FuD4Dhk08wY-Exriihx9GVNBKI5T1mAgaZn0Kecu935IRE807SK8eLjl4k73eWS3OtJaB1rrjtZDsr8e9tDha7w04DBwZP1ygMduG-aLGx3lQ5tSQAFZ5VnBhZRVmVoOBsDJUgGTMCRlz0-9IW04Vf3S-j96_mvcieF4xTQwf1zqDM0857ie-PL_038nr8dX5xM9OZ2e7ZI3oadLHfxKBqvFI-yhC7Sy36KI_wWjUQSa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+evolutionary+and+mechanism+analysis+of+grassland+GPP+in+China&rft.jtitle=Ecological+indicators&rft.au=Panxing+He&rft.au=Xiaoliang+Ma&rft.au=Xiaoyu+Meng&rft.au=Zhiming+Han&rft.date=2022-10-01&rft.pub=Elsevier&rft.issn=1470-160X&rft.volume=143&rft.spage=109323&rft_id=info:doi/10.1016%2Fj.ecolind.2022.109323&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a84e7e2fd173466f80b3eaeec689e16e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon