A Study of One-Class Classification Algorithms for Wearable Fall Sensors

In recent years, the popularity of wearable devices has fostered the investigation of automatic fall detection systems based on the analysis of the signals captured by transportable inertial sensors. Due to the complexity and variety of human movements, the detection algorithms that offer the best p...

Full description

Saved in:
Bibliographic Details
Published inBiosensors (Basel) Vol. 11; no. 8; p. 284
Main Authors Santoyo-Ramón, José Antonio, Casilari, Eduardo, Cano-García, José Manuel
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the popularity of wearable devices has fostered the investigation of automatic fall detection systems based on the analysis of the signals captured by transportable inertial sensors. Due to the complexity and variety of human movements, the detection algorithms that offer the best performance when discriminating falls from conventional Activities of Daily Living (ADLs) are those built on machine learning and deep learning mechanisms. In this regard, supervised machine learning binary classification methods have been massively employed by the related literature. However, the learning phase of these algorithms requires mobility patterns caused by falls, which are very difficult to obtain in realistic application scenarios. An interesting alternative is offered by One-Class Classifiers (OCCs), which can be exclusively trained and configured with movement traces of a single type (ADLs). In this paper, a systematic study of the performance of various typical OCCs (for diverse sets of input features and hyperparameters) is performed when applied to nine public repositories of falls and ADLs. The results show the potentials of these classifiers, which are capable of achieving performance metrics very similar to those of supervised algorithms (with values for the specificity and the sensitivity higher than 95%). However, the study warns of the need to have a wide variety of types of ADLs when training OCCs, since activities with a high degree of mobility can significantly increase the frequency of false alarms (ADLs identified as falls) if not considered in the data subsets used for training.
AbstractList In recent years, the popularity of wearable devices has fostered the investigation of automatic fall detection systems based on the analysis of the signals captured by transportable inertial sensors. Due to the complexity and variety of human movements, the detection algorithms that offer the best performance when discriminating falls from conventional Activities of Daily Living (ADLs) are those built on machine learning and deep learning mechanisms. In this regard, supervised machine learning binary classification methods have been massively employed by the related literature. However, the learning phase of these algorithms requires mobility patterns caused by falls, which are very difficult to obtain in realistic application scenarios. An interesting alternative is offered by One-Class Classifiers (OCCs), which can be exclusively trained and configured with movement traces of a single type (ADLs). In this paper, a systematic study of the performance of various typical OCCs (for diverse sets of input features and hyperparameters) is performed when applied to nine public repositories of falls and ADLs. The results show the potentials of these classifiers, which are capable of achieving performance metrics very similar to those of supervised algorithms (with values for the specificity and the sensitivity higher than 95%). However, the study warns of the need to have a wide variety of types of ADLs when training OCCs, since activities with a high degree of mobility can significantly increase the frequency of false alarms (ADLs identified as falls) if not considered in the data subsets used for training.
Author Santoyo-Ramón, José Antonio
Cano-García, José Manuel
Casilari, Eduardo
AuthorAffiliation 1 Departamento de Tecnología Electrónica, Universidad de Málaga, 29071 Málaga, Spain; jasantoyo@uma.es
2 Departamento de Tecnología Electrónica, Universidad de Málaga, Instituto TELMA, 29071 Málaga, Spain; jcgarcia@uma.es
AuthorAffiliation_xml – name: 2 Departamento de Tecnología Electrónica, Universidad de Málaga, Instituto TELMA, 29071 Málaga, Spain; jcgarcia@uma.es
– name: 1 Departamento de Tecnología Electrónica, Universidad de Málaga, 29071 Málaga, Spain; jasantoyo@uma.es
Author_xml – sequence: 1
  givenname: José Antonio
  orcidid: 0000-0003-4252-1077
  surname: Santoyo-Ramón
  fullname: Santoyo-Ramón, José Antonio
– sequence: 2
  givenname: Eduardo
  orcidid: 0000-0003-2573-1048
  surname: Casilari
  fullname: Casilari, Eduardo
– sequence: 3
  givenname: José Manuel
  orcidid: 0000-0002-8211-7602
  surname: Cano-García
  fullname: Cano-García, José Manuel
BookMark eNpdkU1r3DAQhkVJaT6aW3-AoZce6layxpJ9KSxL8wGBHNLSoxjLo40WrZRKdiD_vu5uKEnnoBHSw8Pwzik7iikSYx8E_yJlz78OPhUheMebDt6wk4brvlZSw9GL-zE7L2XLl9Kge6nfsWMJIBXv9Am7WlV30zw-VclVt5HqdcBSqv3pnbc4-RSrVdik7Kf7XalcytUvwoxDoOoCQ6juKJaUy3v21mEodP7cz9jPi-8_1lf1ze3l9Xp1U1to26lWrbaKdDsoHGyLQo_oUCkaetGKXgCQUhJQC-gG5xptx94tiGitQGFHJc_Y9cE7Jtyah-x3mJ9MQm_2DylvDObJ20BmlM6RGxqy1IHmDdLQOugJhFV8BL64vh1cD_Owo9FSnDKGV9LXP9Hfm016NJ3sQUOzCD49C3L6PVOZzM4XSyFgpDQX07QKeliShgX9-B-6TXOOS1R7SotGK71Qnw-UzamUTO7fMIKbvxs3Lzcu_wCgPZ8b
CitedBy_id crossref_primary_10_3390_s22072547
crossref_primary_10_1016_j_measurement_2024_114992
crossref_primary_10_3390_electronics11071030
crossref_primary_10_3390_bios11110428
crossref_primary_10_1016_j_compeleceng_2022_108518
crossref_primary_10_3390_s21248270
Cites_doi 10.1145/1864431.1864480
10.1109/ACCESS.2020.2969453
10.1016/j.eswa.2017.06.011
10.3390/s18072060
10.1371/journal.pone.0168069
10.1371/journal.pone.0180318
10.3389/frobt.2020.00071
10.1016/j.dib.2019.103839
10.1109/TKDE.2007.1042
10.3390/s17061229
10.1109/ICCVW.2015.60
10.1016/j.medengphy.2010.11.003
10.1007/s12652-015-0337-0
10.1007/s12652-017-0592-3
10.1016/j.asoc.2017.01.034
10.3390/s140406474
10.1016/j.autcon.2016.04.007
10.1007/s11517-016-1504-y
10.1109/JSEN.2020.3018335
10.3390/s150817827
10.3390/s20051466
10.1145/2713168.2713198
10.3390/s140610691
10.1016/j.patcog.2015.03.009
10.1016/j.cels.2017.10.001
10.1109/ACCESS.2020.3021943
10.3390/s17071513
10.3390/s141019806
10.1007/s11517-017-1632-z
10.1109/EMBC.2016.7591534
10.1017/S026988891300043X
10.1109/ComComAp.2012.6154019
10.1155/2020/6622285
10.1016/j.irbm.2008.08.002
10.1007/978-1-4419-9326-7_1
10.5220/0006554400770082
10.1109/ACCESS.2019.2922708
10.1016/j.measurement.2019.03.079
10.3390/s19091988
10.1016/j.gaitpost.2008.01.003
10.1371/journal.pone.0037062
10.1109/IE.2011.11
10.1017/CBO9780511722233
10.1007/978-3-540-37258-5_104
10.1007/s00391-012-0403-6
10.3390/s17010198
10.1109/BIBE.2013.6701629
10.1016/j.medengphy.2016.10.014
10.1371/journal.pone.0094811
10.1002/sim.4509
10.3390/s16010117
10.3390/technologies7030059
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7QL
7T5
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/bios11080284
DatabaseName CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-6374
ExternalDocumentID oai_doaj_org_article_d3ffefb2ece84702aeb5f49e41c60d40
10_3390_bios11080284
GroupedDBID .4S
.DC
2XV
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RPM
TUS
UKHRP
7QL
7T5
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
H94
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c455t-657c6e75b6abc5a17dafa66eb91519144e6634a7148bff27cd9fdaf15c1a1cd63
IEDL.DBID RPM
ISSN 2079-6374
IngestDate Tue Oct 22 15:14:16 EDT 2024
Tue Sep 17 21:20:49 EDT 2024
Fri Oct 25 09:53:55 EDT 2024
Thu Oct 10 20:46:39 EDT 2024
Thu Sep 26 21:46:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-657c6e75b6abc5a17dafa66eb91519144e6634a7148bff27cd9fdaf15c1a1cd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8211-7602
0000-0003-2573-1048
0000-0003-4252-1077
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394742/
PMID 34436087
PQID 2564712767
PQPubID 2032424
ParticipantIDs doaj_primary_oai_doaj_org_article_d3ffefb2ece84702aeb5f49e41c60d40
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8394742
proquest_miscellaneous_2564946084
proquest_journals_2564712767
crossref_primary_10_3390_bios11080284
PublicationCentury 2000
PublicationDate 20210819
PublicationDateYYYYMMDD 2021-08-19
PublicationDate_xml – month: 8
  year: 2021
  text: 20210819
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Biosensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_32) 2019; 140
Vallabh (ref_52) 2018; 9
Delahoz (ref_58) 2014; 14
ref_13
ref_12
Micucci (ref_29) 2017; 8
ref_11
Khan (ref_27) 2017; 87
ref_53
ref_19
ref_16
Wang (ref_59) 2020; 7
Lozano (ref_56) 2009; 32
Casilari (ref_5) 2015; 15
Medrano (ref_15) 2017; 55
Cotechini (ref_41) 2019; 23
ref_60
Khan (ref_23) 2017; 55
Liu (ref_55) 2012; 31
ref_25
ref_24
ref_21
ref_64
ref_63
Barshan (ref_42) 2014; 14
Saleh (ref_43) 2021; 21
ref_28
Noury (ref_51) 2008; 29
Aziz (ref_6) 2017; 55
Yang (ref_26) 2016; 68
Becker (ref_50) 2012; 45
Zhang (ref_18) 2006; 6
ref_36
ref_35
ref_34
ref_31
ref_30
Casilari (ref_33) 2020; 2020
Banos (ref_49) 2014; 14
Khan (ref_10) 2014; 29
ref_39
ref_38
Khan (ref_17) 2017; 39
Khan (ref_22) 2014; Volume 8868
Klenk (ref_7) 2011; 33
Kangas (ref_37) 2008; 28
Nho (ref_14) 2020; 8
Yin (ref_20) 2008; 20
Wong (ref_57) 2015; 48
ref_47
ref_46
ref_45
ref_44
ref_40
ref_1
ref_3
Fulcher (ref_54) 2017; 5
ref_2
Islam (ref_62) 2020; 8
ref_48
ref_9
ref_8
Ren (ref_61) 2019; 7
ref_4
References_xml – ident: ref_24
  doi: 10.1145/1864431.1864480
– volume: 8
  start-page: 40389
  year: 2020
  ident: ref_14
  article-title: Cluster-analysis-based user-adaptive fall detection using fusion of heart rate sensor and accelerometer in a wearable device
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969453
  contributor:
    fullname: Nho
– volume: 87
  start-page: 280
  year: 2017
  ident: ref_27
  article-title: Detecting unseen falls from wearable devices using channel-wise ensemble of autoencoders
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.06.011
  contributor:
    fullname: Khan
– ident: ref_63
  doi: 10.3390/s18072060
– ident: ref_46
  doi: 10.1371/journal.pone.0168069
– ident: ref_39
– ident: ref_1
– ident: ref_9
  doi: 10.1371/journal.pone.0180318
– volume: 7
  start-page: 71
  year: 2020
  ident: ref_59
  article-title: Elderly fall detection systems: A literature survey
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2020.00071
  contributor:
    fullname: Wang
– volume: 23
  start-page: 103839
  year: 2019
  ident: ref_41
  article-title: A dataset for the development and optimization of fall detection algorithms based on wearable sensors
  publication-title: Data Br.
  doi: 10.1016/j.dib.2019.103839
  contributor:
    fullname: Cotechini
– volume: 20
  start-page: 1082
  year: 2008
  ident: ref_20
  article-title: Sensor-based abnormal human-activity detection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.1042
  contributor:
    fullname: Yin
– ident: ref_53
  doi: 10.3390/s17061229
– ident: ref_13
  doi: 10.1109/ICCVW.2015.60
– volume: 6
  start-page: 277
  year: 2006
  ident: ref_18
  article-title: Fall detection by embedding an accelerometer in cellphone and using KFD algorithm
  publication-title: Int. J. Comput. Sci. Netw. Secur.
  contributor:
    fullname: Zhang
– volume: 33
  start-page: 368
  year: 2011
  ident: ref_7
  article-title: Comparison of acceleration signals of simulated and real-world backward falls
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.11.003
  contributor:
    fullname: Klenk
– volume: 8
  start-page: 87
  year: 2017
  ident: ref_29
  article-title: Falls as anomalies? An experimental evaluation using smartphone accelerometer data
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-015-0337-0
  contributor:
    fullname: Micucci
– ident: ref_48
– volume: 9
  start-page: 1809
  year: 2018
  ident: ref_52
  article-title: Fall detection monitoring systems: A comprehensive review
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-017-0592-3
  contributor:
    fullname: Vallabh
– volume: 55
  start-page: 168
  year: 2017
  ident: ref_23
  article-title: Detecting falls with X-factor hidden markov models
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2017.01.034
  contributor:
    fullname: Khan
– volume: 14
  start-page: 6474
  year: 2014
  ident: ref_49
  article-title: Window size impact in human activity recognition
  publication-title: Sensors
  doi: 10.3390/s140406474
  contributor:
    fullname: Banos
– volume: 68
  start-page: 194
  year: 2016
  ident: ref_26
  article-title: Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.04.007
  contributor:
    fullname: Yang
– volume: 55
  start-page: 45
  year: 2017
  ident: ref_6
  article-title: A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-016-1504-y
  contributor:
    fullname: Aziz
– volume: 21
  start-page: 1849
  year: 2021
  ident: ref_43
  article-title: FallAllD: An open dataset of human falls and activities of daily living for classical and deep learning applications
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3018335
  contributor:
    fullname: Saleh
– volume: 15
  start-page: 17827
  year: 2015
  ident: ref_5
  article-title: Analysis of android device-based solutions for fall detection
  publication-title: Sensors
  doi: 10.3390/s150817827
  contributor:
    fullname: Casilari
– ident: ref_16
  doi: 10.3390/s20051466
– ident: ref_28
  doi: 10.1145/2713168.2713198
– volume: 14
  start-page: 10691
  year: 2014
  ident: ref_42
  article-title: Detecting falls with wearable sensors using machine learning techniques
  publication-title: Sensors
  doi: 10.3390/s140610691
  contributor:
    fullname: Barshan
– volume: 48
  start-page: 2839
  year: 2015
  ident: ref_57
  article-title: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.03.009
  contributor:
    fullname: Wong
– ident: ref_30
– volume: 5
  start-page: 527
  year: 2017
  ident: ref_54
  article-title: hctsa: A computational framework for automated time-series phenotyping using massive feature extraction
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.10.001
  contributor:
    fullname: Fulcher
– ident: ref_3
– volume: 8
  start-page: 166117
  year: 2020
  ident: ref_62
  article-title: Deep learning based systems developed for fall detection: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021943
  contributor:
    fullname: Islam
– ident: ref_40
  doi: 10.3390/s17071513
– volume: 32
  start-page: 569
  year: 2009
  ident: ref_56
  article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Lozano
– volume: 14
  start-page: 19806
  year: 2014
  ident: ref_58
  article-title: Survey on fall detection and fall prevention using wearable and external sensors
  publication-title: Sensors
  doi: 10.3390/s141019806
  contributor:
    fullname: Delahoz
– volume: 55
  start-page: 1849
  year: 2017
  ident: ref_15
  article-title: Combining novelty detectors to improve accelerometer-based fall detection
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-017-1632-z
  contributor:
    fullname: Medrano
– ident: ref_34
  doi: 10.1109/EMBC.2016.7591534
– ident: ref_44
– volume: 29
  start-page: 345
  year: 2014
  ident: ref_10
  article-title: One-class classification: Taxonomy of study and review of techniques
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988891300043X
  contributor:
    fullname: Khan
– ident: ref_38
  doi: 10.1109/ComComAp.2012.6154019
– volume: 2020
  start-page: 6622285
  year: 2020
  ident: ref_33
  article-title: On the heterogeneity of existing repositories of movements intended for the evaluation of fall detection systems
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2020/6622285
  contributor:
    fullname: Casilari
– volume: 29
  start-page: 340
  year: 2008
  ident: ref_51
  article-title: A proposal for the classification and evaluation of fall detectors
  publication-title: IRBM
  doi: 10.1016/j.irbm.2008.08.002
  contributor:
    fullname: Noury
– ident: ref_64
  doi: 10.1007/978-1-4419-9326-7_1
– ident: ref_31
  doi: 10.5220/0006554400770082
– volume: 7
  start-page: 77702
  year: 2019
  ident: ref_61
  article-title: Research of fall detection and fall prevention technologies: A systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922708
  contributor:
    fullname: Ren
– volume: 140
  start-page: 215
  year: 2019
  ident: ref_32
  article-title: Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.03.079
  contributor:
    fullname: Chen
– ident: ref_47
  doi: 10.3390/s19091988
– volume: 28
  start-page: 285
  year: 2008
  ident: ref_37
  article-title: Comparison of low-complexity fall detection algorithms for body attached accelerometers
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.01.003
  contributor:
    fullname: Kangas
– ident: ref_8
  doi: 10.1371/journal.pone.0037062
– ident: ref_35
  doi: 10.1109/IE.2011.11
– ident: ref_2
– ident: ref_4
  doi: 10.1017/CBO9780511722233
– ident: ref_19
  doi: 10.1007/978-3-540-37258-5_104
– volume: Volume 8868
  start-page: 1
  year: 2014
  ident: ref_22
  article-title: X-factor HMMs for Detecting Falls in the Absence of Fall-specific training data
  publication-title: International Workshop on Ambient Assisted Living
  contributor:
    fullname: Khan
– volume: 45
  start-page: 707
  year: 2012
  ident: ref_50
  article-title: Proposal for a multiphase fall model based on real-world fall recordings with body-fixed sens
  publication-title: Z. Gerontol. Geriatr.
  doi: 10.1007/s00391-012-0403-6
  contributor:
    fullname: Becker
– ident: ref_12
– ident: ref_45
  doi: 10.3390/s17010198
– ident: ref_25
  doi: 10.1109/BIBE.2013.6701629
– volume: 39
  start-page: 12
  year: 2017
  ident: ref_17
  article-title: Review of fall detection techniques: A data availability perspective
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2016.10.014
  contributor:
    fullname: Khan
– ident: ref_21
  doi: 10.1371/journal.pone.0094811
– ident: ref_36
– volume: 31
  start-page: 2676
  year: 2012
  ident: ref_55
  article-title: Classification accuracy and cut point selection
  publication-title: Stat. Med.
  doi: 10.1002/sim.4509
  contributor:
    fullname: Liu
– ident: ref_11
  doi: 10.3390/s16010117
– ident: ref_60
  doi: 10.3390/technologies7030059
SSID ssj0000747937
Score 2.3013432
Snippet In recent years, the popularity of wearable devices has fostered the investigation of automatic fall detection systems based on the analysis of the signals...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 284
SubjectTerms accelerometers
Activities of daily living
Algorithms
Classification
Classifiers
dataset
Datasets
Deep learning
Fall detection
fall detection system
False alarms
Heart rate
Human motion
Inertial sensing devices
inertial sensors
Learning algorithms
Machine learning
Mobility
Motion perception
Older people
one-class classifiers
Performance measurement
Sensors
Training
Wearable technology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQTxEoyEgwRk1SP-qxIKqKAQao6Bb5SSuVBPUx8PdcO2mVTCwsGWIPzr227znJyTFCd-lASihcJuZuIGICDCKWFoirTp1iiqdW6eD2-cLGE_I8pdPGUV9eE1bZA1eB65m-c9apzGoLG2mSSauoI8KSVLPEkIqtJ6JBpsIezP0bI14p3fvA63tqXq685B3qKWnVoGDV38KXbXVko9yMjtBhjRPxsBrfMdqzxQk6aLgHnqLxEHsV4A8uHX4tbBzOt8Th6vU_IeR4uPgsgf_PvlYY4Cn-gIntf5bCI7lY4DfgsOVydYYmo6f3x3FcH4wQa0Lp2stVNLOcKiaVpjLlRjrJmFUC6rcAimQBRxDIARko5zKujXDQJaU6lak2rH-OOkVZ2AuEgaAYKpxShhLCuZJUDlzCTdKHqBsrI3S_DVX-Xflf5MAbfEjzZkgj9ODjuOvjXavDDchlXucy_yuXEepus5DXS2mVAyaDAppxxiN0u2uGReC_bMjClpuqjyAs8ePgrey1BtRuKeazYKcNEJFwkl3-xxNcof3Mi168Z67oos56ubHXgFrW6iZM0F8_5_Ae
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT-swELZYLu8dENvTK5uMBMeIOPXSnFBBVBUHOACit8grIJWkNOXAv2fGTUtz4ZJDbCXOjO1vxv7ymZAz1tMagMslKvTyhEMGkWgPiatlwUijmDc2qn3eyeETvx2JUbPgVje0ysWcGCdqV1lcI78AaIZ5NFNSXU4-Ejw1CndXmyM01skmy1KJvVqN1HKNBcXhAX7nfPcuZPcX5q2qkfgOqMpbSBQF-1tRZpsjuQI6g22y1USLtD937w5Z8-Uu-buiIbhHhn2KXMAvWgV6X_oknnJJ4xVZQNHwtD9-gW-Zvb7XFIJU-gzdG3-ZogM9HtMHyGSrab1PngY3j9fDpDkeIbFciBmSVqz0ShipjRWaKaeDltKbHFA8h0TJQzTBwRO8Z0LIlHV5gCpMWKaZdbL7j2yUVen_EwppihN5MMYJzpUyWuheSJVLu8EH53WHnC9MVUzmKhgFZA9o0mLVpB1yhXZc1kHt6nijmr4UzVAoXDfAU03mrQdoTDPtjQg895xZmTqedsjRwgtFM6Dq4sf9HXK6LIahgPsbuvTV57xOzmWK7VAt77Ua1C4p316jqDYEilzx7OD3lx-SPxmSWlATNz8iG7Pppz-GqGRmTmLX-wYIWuYT
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BlSo4VH2ACKXVIpWjWz_2ER-qKq0aRT3AAaJys_YJkYLdOkGCf8_MxkGxyqkXH7y71mpm1_N99rczAJ-yodYYuFyiwrBMODKIRHskrjYLRhqVeWNjts8zOZnyX1fiagvW1UY7Ay6epXZUT2razj_f_334hhv-KzFOpOxfzKxZkJodQyXfhhc5HQIiEV8H9OM7WdEXJLVSvv8zaBdeFpwXMiVh3UZ4iln8e9CzL5zciETj1_Cqg5BstPL5G9jy9VvY20gs-A4mI0YCwQfWBHZe-ySWvmTxStKg6A02ml837Wx5c7tgiFzZb1zzdI6KjfV8zi6Q3jbtYh-m45-XPyZJVzMhsVyIJSlZrPRKGKmNFTpTTgctpTclhvYS2ZNHiMHRPXxoQsiVdWXALpmwmc6sk8UB7NRN7Q-BIXdxogzGOMG5UkYLPQypcmkRfHBeD-B0barqzyo1RoWUgqxbbVp3AN_Jjk99KKF1vNG011W3PypXBHyqyb31GC_TXHsjAi89z6xMHU8HcLz2QrVeJBXCNYytuZJqACdPzbg_6KeHrn1zt-pTcnQtzkP1vNebUL-lnt3ETNuIHrni-dF_j3wPuzmJYCiHbnkMO8v2zn9AFLM0H-MCfQTT3fYF
  priority: 102
  providerName: Scholars Portal
Title A Study of One-Class Classification Algorithms for Wearable Fall Sensors
URI https://www.proquest.com/docview/2564712767
https://search.proquest.com/docview/2564946084
https://pubmed.ncbi.nlm.nih.gov/PMC8394742
https://doaj.org/article/d3ffefb2ece84702aeb5f49e41c60d40
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xuJQDKrQVARotUjma-LEP-xgQUYTEQ6WouVn7JJESGyXhwL_v7MZB9rWXPXjX1mpm1t989rezAL-SXEoELhMJlxcRRQYRSYvEVSdOcSUSq3So9vnAxy_0bsImO8C2e2GCaF-r2VU1X1xVs2nQVr4t9GCrExs83d8gqFOkdINd2MUAbVH08PoV_mOR2IjcM6T0AzWrV17tjlDqj-HJKM147DV0LSQKBfs7WWZXI9kCndFXOGyyRTLczOoIdmx1DAetGoLfYDwkXgv4QWpHHisbhVMuSWi9CigYngznr_Vytp4uVgSTVPIXw9tvmSIjOZ-TZ2Sy9XL1HV5Gt39uxlFzPEKkKWNrL1rR3AqmuFSayUQY6STnVhWI4gUSJYvZBEVP0Fw5lwptCodDEqYTmWjDsx-wV9WVPQGCNMWwwillGKVCKMlk7mJh4sxZZ6zsweXWVOXbpgpGiezBW7dsW7cH196On2N87epwoV6-lo0HS5M5fKpKrbYIjXEqrWKOFpYmmseGxj0433qhbBbUqsTMDGE0FVz04OKzG5eC_78hK1u_b8YUFF2L8xAd73Um1O3BGAtFtZuYOv3vO8_gS-r1Lr5cbnEOe-vlu_2JCcta9TFMJ6IP-9e3D0-_-4H2Y3tP834I3X_44_Na
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12069,21401,24331,27937,27938,31732,31733,33757,33758,43323,43818,53805,53807,74080,74637
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB1BORQOCCiogQKLBEertrMf8QkFRBRoGg60am7WfiaRgl3i9MC_Z2bjpPGFiw_elb2e2d03s_v8FuBjNtAagcslKgyKhGMGkWiPiavNgpFGZd7YqPY5leNr_mMmZu2CW9PSKndzYpyoXW1pjfwcoRnn0VxJ9fn2T0KnRtHuanuExkN4RDpc1M_VTO3XWEgcHuF3y3fvY3Z_bpZ1Q8R3RFXeQaIo2N-JMrscyQPQGT2Dp220yIZb9z6HB756AU8ONARPYDxkxAX8y-rAflY-iadcsnglFlA0PBuu5vgtm8XvhmGQym6we9MvU2ykVyv2CzPZet28hOvRt6uv46Q9HiGxXIgNkVas9EoYqY0VOlNOBy2lNwWieIGJksdogqMn-MCEkCvrioBVMmEznVkn-6_gqKorfwoM0xQnimCME5wrZbTQg5Aql_aDD87rHnzamaq83apglJg9kEnLQ5P24AvZcV-HtKvjjXo9L9uhULp-wKea3FuP0Jjm2hsReOF5ZmXqeNqDs50XynZANeW9-3vwYV-MQ4H2N3Tl67ttnYLLlNqhOt7rNKhbUi0XUVQbA0WueP76_y9_D8fjq8tJOfk-vXgDj3MiuJA-bnEGR5v1nX-LEcrGvIvd8B_rwej6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB61IFXlgGgLIkDpItGjFT_2EZ9QKEQpoBTRonKz9glIwYY4HPj3zDqbEF-4-OBd2euZ2Z2Z3c_fABwmPSnRcZlIuF4eUcwgImkxcdWJU1yJxCrdsH2O-PCant2wm4B_qgOscr4mNgu1qbTfI--ia8Z1NBVcdF2ARVyeDI4enyJfQcqftIZyGh9hVVCeYSK2enw6urxa7Lh4qnh0xjP0e4a5flfdV7WHwaOPpS2_1ND3t2LONmJyyQUNNmA9xI6kP1P2F_hgy6-wtsQo-A2GfeKRgS-kcuRPaaOm5iVprh4T1KiB9Me3-DXTu4eaYMhK_qOx-x-oyECOx-Qv5rXVpN6E68Hpv1_DKBRLiDRlbOohLJpbwRSXSjOZCCOd5NyqHH16jmmTxdiCol5oTzmXCm1yh10SphOZaMOzLVgpq9JuA8GkxbDcKWUYpUIoyWTPxcLEmbPOWNmBn3NRFY8zTowCcwkv0mJZpB049nJc9PFM1s2NanJbhIlRmMzhU1VqtUVHGafSKuZobmmieWxo3IG9uRaKML3q4s0YOnCwaMaJ4U87ZGmr51mfnPLYj0O0tNcaULulvL9rKLYxbKSCpjvvv_wHfEIbLC5-j8534XPq0S6eLDffg5Xp5Nl-x3BlqvaDHb4CjvnunQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+of+One-Class+Classification+Algorithms+for+Wearable+Fall+Sensors&rft.jtitle=Biosensors+%28Basel%29&rft.au=Santoyo-Ram%C3%B3n%2C+Jos%C3%A9+Antonio&rft.au=Casilari%2C+Eduardo&rft.au=Cano-Garc%C3%ADa%2C+Jos%C3%A9+Manuel&rft.date=2021-08-19&rft.pub=MDPI&rft.eissn=2079-6374&rft.volume=11&rft.issue=8&rft_id=info:doi/10.3390%2Fbios11080284&rft_id=info%3Apmid%2F34436087&rft.externalDBID=PMC8394742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6374&client=summon