A Study of One-Class Classification Algorithms for Wearable Fall Sensors
In recent years, the popularity of wearable devices has fostered the investigation of automatic fall detection systems based on the analysis of the signals captured by transportable inertial sensors. Due to the complexity and variety of human movements, the detection algorithms that offer the best p...
Saved in:
Published in | Biosensors (Basel) Vol. 11; no. 8; p. 284 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
19.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the popularity of wearable devices has fostered the investigation of automatic fall detection systems based on the analysis of the signals captured by transportable inertial sensors. Due to the complexity and variety of human movements, the detection algorithms that offer the best performance when discriminating falls from conventional Activities of Daily Living (ADLs) are those built on machine learning and deep learning mechanisms. In this regard, supervised machine learning binary classification methods have been massively employed by the related literature. However, the learning phase of these algorithms requires mobility patterns caused by falls, which are very difficult to obtain in realistic application scenarios. An interesting alternative is offered by One-Class Classifiers (OCCs), which can be exclusively trained and configured with movement traces of a single type (ADLs). In this paper, a systematic study of the performance of various typical OCCs (for diverse sets of input features and hyperparameters) is performed when applied to nine public repositories of falls and ADLs. The results show the potentials of these classifiers, which are capable of achieving performance metrics very similar to those of supervised algorithms (with values for the specificity and the sensitivity higher than 95%). However, the study warns of the need to have a wide variety of types of ADLs when training OCCs, since activities with a high degree of mobility can significantly increase the frequency of false alarms (ADLs identified as falls) if not considered in the data subsets used for training. |
---|---|
AbstractList | In recent years, the popularity of wearable devices has fostered the investigation of automatic fall detection systems based on the analysis of the signals captured by transportable inertial sensors. Due to the complexity and variety of human movements, the detection algorithms that offer the best performance when discriminating falls from conventional Activities of Daily Living (ADLs) are those built on machine learning and deep learning mechanisms. In this regard, supervised machine learning binary classification methods have been massively employed by the related literature. However, the learning phase of these algorithms requires mobility patterns caused by falls, which are very difficult to obtain in realistic application scenarios. An interesting alternative is offered by One-Class Classifiers (OCCs), which can be exclusively trained and configured with movement traces of a single type (ADLs). In this paper, a systematic study of the performance of various typical OCCs (for diverse sets of input features and hyperparameters) is performed when applied to nine public repositories of falls and ADLs. The results show the potentials of these classifiers, which are capable of achieving performance metrics very similar to those of supervised algorithms (with values for the specificity and the sensitivity higher than 95%). However, the study warns of the need to have a wide variety of types of ADLs when training OCCs, since activities with a high degree of mobility can significantly increase the frequency of false alarms (ADLs identified as falls) if not considered in the data subsets used for training. |
Author | Santoyo-Ramón, José Antonio Cano-García, José Manuel Casilari, Eduardo |
AuthorAffiliation | 1 Departamento de Tecnología Electrónica, Universidad de Málaga, 29071 Málaga, Spain; jasantoyo@uma.es 2 Departamento de Tecnología Electrónica, Universidad de Málaga, Instituto TELMA, 29071 Málaga, Spain; jcgarcia@uma.es |
AuthorAffiliation_xml | – name: 2 Departamento de Tecnología Electrónica, Universidad de Málaga, Instituto TELMA, 29071 Málaga, Spain; jcgarcia@uma.es – name: 1 Departamento de Tecnología Electrónica, Universidad de Málaga, 29071 Málaga, Spain; jasantoyo@uma.es |
Author_xml | – sequence: 1 givenname: José Antonio orcidid: 0000-0003-4252-1077 surname: Santoyo-Ramón fullname: Santoyo-Ramón, José Antonio – sequence: 2 givenname: Eduardo orcidid: 0000-0003-2573-1048 surname: Casilari fullname: Casilari, Eduardo – sequence: 3 givenname: José Manuel orcidid: 0000-0002-8211-7602 surname: Cano-García fullname: Cano-García, José Manuel |
BookMark | eNpdkU1r3DAQhkVJaT6aW3-AoZce6layxpJ9KSxL8wGBHNLSoxjLo40WrZRKdiD_vu5uKEnnoBHSw8Pwzik7iikSYx8E_yJlz78OPhUheMebDt6wk4brvlZSw9GL-zE7L2XLl9Kge6nfsWMJIBXv9Am7WlV30zw-VclVt5HqdcBSqv3pnbc4-RSrVdik7Kf7XalcytUvwoxDoOoCQ6juKJaUy3v21mEodP7cz9jPi-8_1lf1ze3l9Xp1U1to26lWrbaKdDsoHGyLQo_oUCkaetGKXgCQUhJQC-gG5xptx94tiGitQGFHJc_Y9cE7Jtyah-x3mJ9MQm_2DylvDObJ20BmlM6RGxqy1IHmDdLQOugJhFV8BL64vh1cD_Owo9FSnDKGV9LXP9Hfm016NJ3sQUOzCD49C3L6PVOZzM4XSyFgpDQX07QKeliShgX9-B-6TXOOS1R7SotGK71Qnw-UzamUTO7fMIKbvxs3Lzcu_wCgPZ8b |
CitedBy_id | crossref_primary_10_3390_s22072547 crossref_primary_10_1016_j_measurement_2024_114992 crossref_primary_10_3390_electronics11071030 crossref_primary_10_3390_bios11110428 crossref_primary_10_1016_j_compeleceng_2022_108518 crossref_primary_10_3390_s21248270 |
Cites_doi | 10.1145/1864431.1864480 10.1109/ACCESS.2020.2969453 10.1016/j.eswa.2017.06.011 10.3390/s18072060 10.1371/journal.pone.0168069 10.1371/journal.pone.0180318 10.3389/frobt.2020.00071 10.1016/j.dib.2019.103839 10.1109/TKDE.2007.1042 10.3390/s17061229 10.1109/ICCVW.2015.60 10.1016/j.medengphy.2010.11.003 10.1007/s12652-015-0337-0 10.1007/s12652-017-0592-3 10.1016/j.asoc.2017.01.034 10.3390/s140406474 10.1016/j.autcon.2016.04.007 10.1007/s11517-016-1504-y 10.1109/JSEN.2020.3018335 10.3390/s150817827 10.3390/s20051466 10.1145/2713168.2713198 10.3390/s140610691 10.1016/j.patcog.2015.03.009 10.1016/j.cels.2017.10.001 10.1109/ACCESS.2020.3021943 10.3390/s17071513 10.3390/s141019806 10.1007/s11517-017-1632-z 10.1109/EMBC.2016.7591534 10.1017/S026988891300043X 10.1109/ComComAp.2012.6154019 10.1155/2020/6622285 10.1016/j.irbm.2008.08.002 10.1007/978-1-4419-9326-7_1 10.5220/0006554400770082 10.1109/ACCESS.2019.2922708 10.1016/j.measurement.2019.03.079 10.3390/s19091988 10.1016/j.gaitpost.2008.01.003 10.1371/journal.pone.0037062 10.1109/IE.2011.11 10.1017/CBO9780511722233 10.1007/978-3-540-37258-5_104 10.1007/s00391-012-0403-6 10.3390/s17010198 10.1109/BIBE.2013.6701629 10.1016/j.medengphy.2016.10.014 10.1371/journal.pone.0094811 10.1002/sim.4509 10.3390/s16010117 10.3390/technologies7030059 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7QL 7T5 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/bios11080284 |
DatabaseName | CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-6374 |
ExternalDocumentID | oai_doaj_org_article_d3ffefb2ece84702aeb5f49e41c60d40 10_3390_bios11080284 |
GroupedDBID | .4S .DC 2XV 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAYXX ABUWG ADBBV AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO KQ8 LK8 M1P M48 M7P MODMG M~E OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RIG RPM TUS UKHRP 7QL 7T5 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c455t-657c6e75b6abc5a17dafa66eb91519144e6634a7148bff27cd9fdaf15c1a1cd63 |
IEDL.DBID | RPM |
ISSN | 2079-6374 |
IngestDate | Tue Oct 22 15:14:16 EDT 2024 Tue Sep 17 21:20:49 EDT 2024 Fri Oct 25 09:53:55 EDT 2024 Thu Oct 10 20:46:39 EDT 2024 Thu Sep 26 21:46:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-657c6e75b6abc5a17dafa66eb91519144e6634a7148bff27cd9fdaf15c1a1cd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8211-7602 0000-0003-2573-1048 0000-0003-4252-1077 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394742/ |
PMID | 34436087 |
PQID | 2564712767 |
PQPubID | 2032424 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d3ffefb2ece84702aeb5f49e41c60d40 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8394742 proquest_miscellaneous_2564946084 proquest_journals_2564712767 crossref_primary_10_3390_bios11080284 |
PublicationCentury | 2000 |
PublicationDate | 20210819 |
PublicationDateYYYYMMDD | 2021-08-19 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210819 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Biosensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Chen (ref_32) 2019; 140 Vallabh (ref_52) 2018; 9 Delahoz (ref_58) 2014; 14 ref_13 ref_12 Micucci (ref_29) 2017; 8 ref_11 Khan (ref_27) 2017; 87 ref_53 ref_19 ref_16 Wang (ref_59) 2020; 7 Lozano (ref_56) 2009; 32 Casilari (ref_5) 2015; 15 Medrano (ref_15) 2017; 55 Cotechini (ref_41) 2019; 23 ref_60 Khan (ref_23) 2017; 55 Liu (ref_55) 2012; 31 ref_25 ref_24 ref_21 ref_64 ref_63 Barshan (ref_42) 2014; 14 Saleh (ref_43) 2021; 21 ref_28 Noury (ref_51) 2008; 29 Aziz (ref_6) 2017; 55 Yang (ref_26) 2016; 68 Becker (ref_50) 2012; 45 Zhang (ref_18) 2006; 6 ref_36 ref_35 ref_34 ref_31 ref_30 Casilari (ref_33) 2020; 2020 Banos (ref_49) 2014; 14 Khan (ref_10) 2014; 29 ref_39 ref_38 Khan (ref_17) 2017; 39 Khan (ref_22) 2014; Volume 8868 Klenk (ref_7) 2011; 33 Kangas (ref_37) 2008; 28 Nho (ref_14) 2020; 8 Yin (ref_20) 2008; 20 Wong (ref_57) 2015; 48 ref_47 ref_46 ref_45 ref_44 ref_40 ref_1 ref_3 Fulcher (ref_54) 2017; 5 ref_2 Islam (ref_62) 2020; 8 ref_48 ref_9 ref_8 Ren (ref_61) 2019; 7 ref_4 |
References_xml | – ident: ref_24 doi: 10.1145/1864431.1864480 – volume: 8 start-page: 40389 year: 2020 ident: ref_14 article-title: Cluster-analysis-based user-adaptive fall detection using fusion of heart rate sensor and accelerometer in a wearable device publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2969453 contributor: fullname: Nho – volume: 87 start-page: 280 year: 2017 ident: ref_27 article-title: Detecting unseen falls from wearable devices using channel-wise ensemble of autoencoders publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.06.011 contributor: fullname: Khan – ident: ref_63 doi: 10.3390/s18072060 – ident: ref_46 doi: 10.1371/journal.pone.0168069 – ident: ref_39 – ident: ref_1 – ident: ref_9 doi: 10.1371/journal.pone.0180318 – volume: 7 start-page: 71 year: 2020 ident: ref_59 article-title: Elderly fall detection systems: A literature survey publication-title: Front. Robot. AI doi: 10.3389/frobt.2020.00071 contributor: fullname: Wang – volume: 23 start-page: 103839 year: 2019 ident: ref_41 article-title: A dataset for the development and optimization of fall detection algorithms based on wearable sensors publication-title: Data Br. doi: 10.1016/j.dib.2019.103839 contributor: fullname: Cotechini – volume: 20 start-page: 1082 year: 2008 ident: ref_20 article-title: Sensor-based abnormal human-activity detection publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.1042 contributor: fullname: Yin – ident: ref_53 doi: 10.3390/s17061229 – ident: ref_13 doi: 10.1109/ICCVW.2015.60 – volume: 6 start-page: 277 year: 2006 ident: ref_18 article-title: Fall detection by embedding an accelerometer in cellphone and using KFD algorithm publication-title: Int. J. Comput. Sci. Netw. Secur. contributor: fullname: Zhang – volume: 33 start-page: 368 year: 2011 ident: ref_7 article-title: Comparison of acceleration signals of simulated and real-world backward falls publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.11.003 contributor: fullname: Klenk – volume: 8 start-page: 87 year: 2017 ident: ref_29 article-title: Falls as anomalies? An experimental evaluation using smartphone accelerometer data publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-015-0337-0 contributor: fullname: Micucci – ident: ref_48 – volume: 9 start-page: 1809 year: 2018 ident: ref_52 article-title: Fall detection monitoring systems: A comprehensive review publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-017-0592-3 contributor: fullname: Vallabh – volume: 55 start-page: 168 year: 2017 ident: ref_23 article-title: Detecting falls with X-factor hidden markov models publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2017.01.034 contributor: fullname: Khan – volume: 14 start-page: 6474 year: 2014 ident: ref_49 article-title: Window size impact in human activity recognition publication-title: Sensors doi: 10.3390/s140406474 contributor: fullname: Banos – volume: 68 start-page: 194 year: 2016 ident: ref_26 article-title: Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.04.007 contributor: fullname: Yang – volume: 55 start-page: 45 year: 2017 ident: ref_6 article-title: A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-016-1504-y contributor: fullname: Aziz – volume: 21 start-page: 1849 year: 2021 ident: ref_43 article-title: FallAllD: An open dataset of human falls and activities of daily living for classical and deep learning applications publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3018335 contributor: fullname: Saleh – volume: 15 start-page: 17827 year: 2015 ident: ref_5 article-title: Analysis of android device-based solutions for fall detection publication-title: Sensors doi: 10.3390/s150817827 contributor: fullname: Casilari – ident: ref_16 doi: 10.3390/s20051466 – ident: ref_28 doi: 10.1145/2713168.2713198 – volume: 14 start-page: 10691 year: 2014 ident: ref_42 article-title: Detecting falls with wearable sensors using machine learning techniques publication-title: Sensors doi: 10.3390/s140610691 contributor: fullname: Barshan – volume: 48 start-page: 2839 year: 2015 ident: ref_57 article-title: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.03.009 contributor: fullname: Wong – ident: ref_30 – volume: 5 start-page: 527 year: 2017 ident: ref_54 article-title: hctsa: A computational framework for automated time-series phenotyping using massive feature extraction publication-title: Cell Syst. doi: 10.1016/j.cels.2017.10.001 contributor: fullname: Fulcher – ident: ref_3 – volume: 8 start-page: 166117 year: 2020 ident: ref_62 article-title: Deep learning based systems developed for fall detection: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021943 contributor: fullname: Islam – ident: ref_40 doi: 10.3390/s17071513 – volume: 32 start-page: 569 year: 2009 ident: ref_56 article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Lozano – volume: 14 start-page: 19806 year: 2014 ident: ref_58 article-title: Survey on fall detection and fall prevention using wearable and external sensors publication-title: Sensors doi: 10.3390/s141019806 contributor: fullname: Delahoz – volume: 55 start-page: 1849 year: 2017 ident: ref_15 article-title: Combining novelty detectors to improve accelerometer-based fall detection publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-017-1632-z contributor: fullname: Medrano – ident: ref_34 doi: 10.1109/EMBC.2016.7591534 – ident: ref_44 – volume: 29 start-page: 345 year: 2014 ident: ref_10 article-title: One-class classification: Taxonomy of study and review of techniques publication-title: Knowl. Eng. Rev. doi: 10.1017/S026988891300043X contributor: fullname: Khan – ident: ref_38 doi: 10.1109/ComComAp.2012.6154019 – volume: 2020 start-page: 6622285 year: 2020 ident: ref_33 article-title: On the heterogeneity of existing repositories of movements intended for the evaluation of fall detection systems publication-title: J. Healthc. Eng. doi: 10.1155/2020/6622285 contributor: fullname: Casilari – volume: 29 start-page: 340 year: 2008 ident: ref_51 article-title: A proposal for the classification and evaluation of fall detectors publication-title: IRBM doi: 10.1016/j.irbm.2008.08.002 contributor: fullname: Noury – ident: ref_64 doi: 10.1007/978-1-4419-9326-7_1 – ident: ref_31 doi: 10.5220/0006554400770082 – volume: 7 start-page: 77702 year: 2019 ident: ref_61 article-title: Research of fall detection and fall prevention technologies: A systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922708 contributor: fullname: Ren – volume: 140 start-page: 215 year: 2019 ident: ref_32 article-title: Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch publication-title: Measurement doi: 10.1016/j.measurement.2019.03.079 contributor: fullname: Chen – ident: ref_47 doi: 10.3390/s19091988 – volume: 28 start-page: 285 year: 2008 ident: ref_37 article-title: Comparison of low-complexity fall detection algorithms for body attached accelerometers publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.01.003 contributor: fullname: Kangas – ident: ref_8 doi: 10.1371/journal.pone.0037062 – ident: ref_35 doi: 10.1109/IE.2011.11 – ident: ref_2 – ident: ref_4 doi: 10.1017/CBO9780511722233 – ident: ref_19 doi: 10.1007/978-3-540-37258-5_104 – volume: Volume 8868 start-page: 1 year: 2014 ident: ref_22 article-title: X-factor HMMs for Detecting Falls in the Absence of Fall-specific training data publication-title: International Workshop on Ambient Assisted Living contributor: fullname: Khan – volume: 45 start-page: 707 year: 2012 ident: ref_50 article-title: Proposal for a multiphase fall model based on real-world fall recordings with body-fixed sens publication-title: Z. Gerontol. Geriatr. doi: 10.1007/s00391-012-0403-6 contributor: fullname: Becker – ident: ref_12 – ident: ref_45 doi: 10.3390/s17010198 – ident: ref_25 doi: 10.1109/BIBE.2013.6701629 – volume: 39 start-page: 12 year: 2017 ident: ref_17 article-title: Review of fall detection techniques: A data availability perspective publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2016.10.014 contributor: fullname: Khan – ident: ref_21 doi: 10.1371/journal.pone.0094811 – ident: ref_36 – volume: 31 start-page: 2676 year: 2012 ident: ref_55 article-title: Classification accuracy and cut point selection publication-title: Stat. Med. doi: 10.1002/sim.4509 contributor: fullname: Liu – ident: ref_11 doi: 10.3390/s16010117 – ident: ref_60 doi: 10.3390/technologies7030059 |
SSID | ssj0000747937 |
Score | 2.3013432 |
Snippet | In recent years, the popularity of wearable devices has fostered the investigation of automatic fall detection systems based on the analysis of the signals... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 284 |
SubjectTerms | accelerometers Activities of daily living Algorithms Classification Classifiers dataset Datasets Deep learning Fall detection fall detection system False alarms Heart rate Human motion Inertial sensing devices inertial sensors Learning algorithms Machine learning Mobility Motion perception Older people one-class classifiers Performance measurement Sensors Training Wearable technology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQTxEoyEgwRk1SP-qxIKqKAQao6Bb5SSuVBPUx8PdcO2mVTCwsGWIPzr227znJyTFCd-lASihcJuZuIGICDCKWFoirTp1iiqdW6eD2-cLGE_I8pdPGUV9eE1bZA1eB65m-c9apzGoLG2mSSauoI8KSVLPEkIqtJ6JBpsIezP0bI14p3fvA63tqXq685B3qKWnVoGDV38KXbXVko9yMjtBhjRPxsBrfMdqzxQk6aLgHnqLxEHsV4A8uHX4tbBzOt8Th6vU_IeR4uPgsgf_PvlYY4Cn-gIntf5bCI7lY4DfgsOVydYYmo6f3x3FcH4wQa0Lp2stVNLOcKiaVpjLlRjrJmFUC6rcAimQBRxDIARko5zKujXDQJaU6lak2rH-OOkVZ2AuEgaAYKpxShhLCuZJUDlzCTdKHqBsrI3S_DVX-Xflf5MAbfEjzZkgj9ODjuOvjXavDDchlXucy_yuXEepus5DXS2mVAyaDAppxxiN0u2uGReC_bMjClpuqjyAs8ePgrey1BtRuKeazYKcNEJFwkl3-xxNcof3Mi168Z67oos56ubHXgFrW6iZM0F8_5_Ae priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT-swELZYLu8dENvTK5uMBMeIOPXSnFBBVBUHOACit8grIJWkNOXAv2fGTUtz4ZJDbCXOjO1vxv7ymZAz1tMagMslKvTyhEMGkWgPiatlwUijmDc2qn3eyeETvx2JUbPgVje0ysWcGCdqV1lcI78AaIZ5NFNSXU4-Ejw1CndXmyM01skmy1KJvVqN1HKNBcXhAX7nfPcuZPcX5q2qkfgOqMpbSBQF-1tRZpsjuQI6g22y1USLtD937w5Z8-Uu-buiIbhHhn2KXMAvWgV6X_oknnJJ4xVZQNHwtD9-gW-Zvb7XFIJU-gzdG3-ZogM9HtMHyGSrab1PngY3j9fDpDkeIbFciBmSVqz0ShipjRWaKaeDltKbHFA8h0TJQzTBwRO8Z0LIlHV5gCpMWKaZdbL7j2yUVen_EwppihN5MMYJzpUyWuheSJVLu8EH53WHnC9MVUzmKhgFZA9o0mLVpB1yhXZc1kHt6nijmr4UzVAoXDfAU03mrQdoTDPtjQg895xZmTqedsjRwgtFM6Dq4sf9HXK6LIahgPsbuvTV57xOzmWK7VAt77Ua1C4p316jqDYEilzx7OD3lx-SPxmSWlATNz8iG7Pppz-GqGRmTmLX-wYIWuYT priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BlSo4VH2ACKXVIpWjWz_2ER-qKq0aRT3AAaJys_YJkYLdOkGCf8_MxkGxyqkXH7y71mpm1_N99rczAJ-yodYYuFyiwrBMODKIRHskrjYLRhqVeWNjts8zOZnyX1fiagvW1UY7Ay6epXZUT2razj_f_334hhv-KzFOpOxfzKxZkJodQyXfhhc5HQIiEV8H9OM7WdEXJLVSvv8zaBdeFpwXMiVh3UZ4iln8e9CzL5zciETj1_Cqg5BstPL5G9jy9VvY20gs-A4mI0YCwQfWBHZe-ySWvmTxStKg6A02ml837Wx5c7tgiFzZb1zzdI6KjfV8zi6Q3jbtYh-m45-XPyZJVzMhsVyIJSlZrPRKGKmNFTpTTgctpTclhvYS2ZNHiMHRPXxoQsiVdWXALpmwmc6sk8UB7NRN7Q-BIXdxogzGOMG5UkYLPQypcmkRfHBeD-B0barqzyo1RoWUgqxbbVp3AN_Jjk99KKF1vNG011W3PypXBHyqyb31GC_TXHsjAi89z6xMHU8HcLz2QrVeJBXCNYytuZJqACdPzbg_6KeHrn1zt-pTcnQtzkP1vNebUL-lnt3ETNuIHrni-dF_j3wPuzmJYCiHbnkMO8v2zn9AFLM0H-MCfQTT3fYF priority: 102 providerName: Scholars Portal |
Title | A Study of One-Class Classification Algorithms for Wearable Fall Sensors |
URI | https://www.proquest.com/docview/2564712767 https://search.proquest.com/docview/2564946084 https://pubmed.ncbi.nlm.nih.gov/PMC8394742 https://doaj.org/article/d3ffefb2ece84702aeb5f49e41c60d40 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xuJQDKrQVARotUjma-LEP-xgQUYTEQ6WouVn7JJESGyXhwL_v7MZB9rWXPXjX1mpm1t989rezAL-SXEoELhMJlxcRRQYRSYvEVSdOcSUSq3So9vnAxy_0bsImO8C2e2GCaF-r2VU1X1xVs2nQVr4t9GCrExs83d8gqFOkdINd2MUAbVH08PoV_mOR2IjcM6T0AzWrV17tjlDqj-HJKM147DV0LSQKBfs7WWZXI9kCndFXOGyyRTLczOoIdmx1DAetGoLfYDwkXgv4QWpHHisbhVMuSWi9CigYngznr_Vytp4uVgSTVPIXw9tvmSIjOZ-TZ2Sy9XL1HV5Gt39uxlFzPEKkKWNrL1rR3AqmuFSayUQY6STnVhWI4gUSJYvZBEVP0Fw5lwptCodDEqYTmWjDsx-wV9WVPQGCNMWwwillGKVCKMlk7mJh4sxZZ6zsweXWVOXbpgpGiezBW7dsW7cH196On2N87epwoV6-lo0HS5M5fKpKrbYIjXEqrWKOFpYmmseGxj0433qhbBbUqsTMDGE0FVz04OKzG5eC_78hK1u_b8YUFF2L8xAd73Um1O3BGAtFtZuYOv3vO8_gS-r1Lr5cbnEOe-vlu_2JCcta9TFMJ6IP-9e3D0-_-4H2Y3tP834I3X_44_Na |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12069,21401,24331,27937,27938,31732,31733,33757,33758,43323,43818,53805,53807,74080,74637 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB1BORQOCCiogQKLBEertrMf8QkFRBRoGg60am7WfiaRgl3i9MC_Z2bjpPGFiw_elb2e2d03s_v8FuBjNtAagcslKgyKhGMGkWiPiavNgpFGZd7YqPY5leNr_mMmZu2CW9PSKndzYpyoXW1pjfwcoRnn0VxJ9fn2T0KnRtHuanuExkN4RDpc1M_VTO3XWEgcHuF3y3fvY3Z_bpZ1Q8R3RFXeQaIo2N-JMrscyQPQGT2Dp220yIZb9z6HB756AU8ONARPYDxkxAX8y-rAflY-iadcsnglFlA0PBuu5vgtm8XvhmGQym6we9MvU2ykVyv2CzPZet28hOvRt6uv46Q9HiGxXIgNkVas9EoYqY0VOlNOBy2lNwWieIGJksdogqMn-MCEkCvrioBVMmEznVkn-6_gqKorfwoM0xQnimCME5wrZbTQg5Aql_aDD87rHnzamaq83apglJg9kEnLQ5P24AvZcV-HtKvjjXo9L9uhULp-wKea3FuP0Jjm2hsReOF5ZmXqeNqDs50XynZANeW9-3vwYV-MQ4H2N3Tl67ttnYLLlNqhOt7rNKhbUi0XUVQbA0WueP76_y9_D8fjq8tJOfk-vXgDj3MiuJA-bnEGR5v1nX-LEcrGvIvd8B_rwej6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB61IFXlgGgLIkDpItGjFT_2EZ9QKEQpoBTRonKz9glIwYY4HPj3zDqbEF-4-OBd2euZ2Z2Z3c_fABwmPSnRcZlIuF4eUcwgImkxcdWJU1yJxCrdsH2O-PCant2wm4B_qgOscr4mNgu1qbTfI--ia8Z1NBVcdF2ARVyeDI4enyJfQcqftIZyGh9hVVCeYSK2enw6urxa7Lh4qnh0xjP0e4a5flfdV7WHwaOPpS2_1ND3t2LONmJyyQUNNmA9xI6kP1P2F_hgy6-wtsQo-A2GfeKRgS-kcuRPaaOm5iVprh4T1KiB9Me3-DXTu4eaYMhK_qOx-x-oyECOx-Qv5rXVpN6E68Hpv1_DKBRLiDRlbOohLJpbwRSXSjOZCCOd5NyqHH16jmmTxdiCol5oTzmXCm1yh10SphOZaMOzLVgpq9JuA8GkxbDcKWUYpUIoyWTPxcLEmbPOWNmBn3NRFY8zTowCcwkv0mJZpB049nJc9PFM1s2NanJbhIlRmMzhU1VqtUVHGafSKuZobmmieWxo3IG9uRaKML3q4s0YOnCwaMaJ4U87ZGmr51mfnPLYj0O0tNcaULulvL9rKLYxbKSCpjvvv_wHfEIbLC5-j8534XPq0S6eLDffg5Xp5Nl-x3BlqvaDHb4CjvnunQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+of+One-Class+Classification+Algorithms+for+Wearable+Fall+Sensors&rft.jtitle=Biosensors+%28Basel%29&rft.au=Santoyo-Ram%C3%B3n%2C+Jos%C3%A9+Antonio&rft.au=Casilari%2C+Eduardo&rft.au=Cano-Garc%C3%ADa%2C+Jos%C3%A9+Manuel&rft.date=2021-08-19&rft.pub=MDPI&rft.eissn=2079-6374&rft.volume=11&rft.issue=8&rft_id=info:doi/10.3390%2Fbios11080284&rft_id=info%3Apmid%2F34436087&rft.externalDBID=PMC8394742 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6374&client=summon |