Emerging Role of Circular RNA–Protein Interactions

Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-t...

Full description

Saved in:
Bibliographic Details
Published inNon-coding RNA Vol. 7; no. 3; p. 48
Main Authors Das, Arundhati, Sinha, Tanvi, Shyamal, Sharmishtha, Panda, Amaresh Chandra
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 04.08.2021
MDPI
Subjects
Online AccessGet full text
ISSN2311-553X
2311-553X
DOI10.3390/ncrna7030048

Cover

Loading…
Abstract Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-throughput RNA–protein interaction data revealed the interaction of RBPs with the coding and noncoding RNAs, including recently discovered circRNAs. RBPs are a large family of proteins known to play a critical role in gene expression by modulating RNA splicing, nuclear export, mRNA stability, localization, and translation. However, the interaction of RBPs with circRNAs and their implications on circRNA biogenesis and function has been emerging in the last few years. Recent studies suggest that circRNA interaction with target proteins modulates the interaction of the protein with downstream target mRNAs or proteins. This review outlines the emerging mechanisms of circRNA–protein interactions and their functional role in cell physiology.
AbstractList Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-throughput RNA–protein interaction data revealed the interaction of RBPs with the coding and noncoding RNAs, including recently discovered circRNAs. RBPs are a large family of proteins known to play a critical role in gene expression by modulating RNA splicing, nuclear export, mRNA stability, localization, and translation. However, the interaction of RBPs with circRNAs and their implications on circRNA biogenesis and function has been emerging in the last few years. Recent studies suggest that circRNA interaction with target proteins modulates the interaction of the protein with downstream target mRNAs or proteins. This review outlines the emerging mechanisms of circRNA–protein interactions and their functional role in cell physiology.
Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-throughput RNA-protein interaction data revealed the interaction of RBPs with the coding and noncoding RNAs, including recently discovered circRNAs. RBPs are a large family of proteins known to play a critical role in gene expression by modulating RNA splicing, nuclear export, mRNA stability, localization, and translation. However, the interaction of RBPs with circRNAs and their implications on circRNA biogenesis and function has been emerging in the last few years. Recent studies suggest that circRNA interaction with target proteins modulates the interaction of the protein with downstream target mRNAs or proteins. This review outlines the emerging mechanisms of circRNA-protein interactions and their functional role in cell physiology.Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-throughput RNA-protein interaction data revealed the interaction of RBPs with the coding and noncoding RNAs, including recently discovered circRNAs. RBPs are a large family of proteins known to play a critical role in gene expression by modulating RNA splicing, nuclear export, mRNA stability, localization, and translation. However, the interaction of RBPs with circRNAs and their implications on circRNA biogenesis and function has been emerging in the last few years. Recent studies suggest that circRNA interaction with target proteins modulates the interaction of the protein with downstream target mRNAs or proteins. This review outlines the emerging mechanisms of circRNA-protein interactions and their functional role in cell physiology.
Author Das, Arundhati
Sinha, Tanvi
Panda, Amaresh Chandra
Shyamal, Sharmishtha
AuthorAffiliation 1 Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; arundhati.s@ils.res.in (A.D.); tanvi@ils.res.in (T.S.); sharmishtha@ils.res.in (S.S.)
2 School of Biotechnology, KIIT University, Bhubaneswar 751024, India
AuthorAffiliation_xml – name: 2 School of Biotechnology, KIIT University, Bhubaneswar 751024, India
– name: 1 Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; arundhati.s@ils.res.in (A.D.); tanvi@ils.res.in (T.S.); sharmishtha@ils.res.in (S.S.)
Author_xml – sequence: 1
  givenname: Arundhati
  surname: Das
  fullname: Das, Arundhati
– sequence: 2
  givenname: Tanvi
  surname: Sinha
  fullname: Sinha, Tanvi
– sequence: 3
  givenname: Sharmishtha
  surname: Shyamal
  fullname: Shyamal, Sharmishtha
– sequence: 4
  givenname: Amaresh Chandra
  orcidid: 0000-0003-3189-8995
  surname: Panda
  fullname: Panda, Amaresh Chandra
BookMark eNptkc9qVDEUh4O02Fq78wEuuHHh2PzPzUYoQ9WB0kpRcBeSc3PHDJmkJvcK7nwH39AnMeNUaIurhOQ73-Gc3zN0kHLyCL0g-A1jGp8lKMkqzDDm_RN0TBkhCyHYl4N79yN0WusGY0y4klLip-iIcc61FOoY8YutL-uQ1t1Njr7LY7cMBeZoS3dzdf7756-PJU8-pG6VJl8sTCGn-hwdjjZWf3p3nqDP7y4-LT8sLq_fr5bnlwvgQkwLSZyi2CnFiLaSE3CgtbODdVxTBSCBqx6oBuoodYQTrEbmnJPQa90zz07Qau8dst2Y2xK2tvww2Qbz9yGXtbFlChC9ASGt1SBH0IILCtpRRYfWeNCO9QKa6-3edTu7rR_Ap6nY-ED68CeFr2adv5ueaaG5bIJXd4KSv82-TmYbKvgYbfJ5roaKtluOOe8b-vIRuslzCyruKCV546huFN1TUHKtxY8GwmR3C279QzQEm13G5n7Grej1o6J_E_wX_wNZCakN
CitedBy_id crossref_primary_10_1016_j_omtn_2024_102234
crossref_primary_10_3390_ijms24043181
crossref_primary_10_3390_ijms241411861
crossref_primary_10_1016_j_ijbiomac_2024_134805
crossref_primary_10_3390_biom13121750
crossref_primary_10_1002_1878_0261_70005
crossref_primary_10_3390_cells11111833
crossref_primary_10_3390_ncrna8030038
crossref_primary_10_3390_cells12242813
crossref_primary_10_1016_j_ymeth_2022_06_014
crossref_primary_10_3390_biom14040384
crossref_primary_10_3390_ijms24119127
crossref_primary_10_3390_ijms232416065
crossref_primary_10_1016_j_ijbiomac_2024_137614
crossref_primary_10_1002_wrna_1820
crossref_primary_10_1093_nar_gkae693
crossref_primary_10_1002_rmv_2530
crossref_primary_10_3389_fmolb_2022_886366
crossref_primary_10_3390_cells13110898
crossref_primary_10_1016_j_prp_2024_155626
crossref_primary_10_1111_cas_15899
crossref_primary_10_1080_10495398_2023_2196311
crossref_primary_10_3389_fphar_2023_1194719
crossref_primary_10_3389_fmolb_2021_762185
crossref_primary_10_1002_wrna_1715
crossref_primary_10_3389_fmolb_2022_1015990
crossref_primary_10_1016_j_prp_2023_154592
crossref_primary_10_3390_microorganisms10091852
crossref_primary_10_1186_s12967_023_04020_x
crossref_primary_10_1038_s41467_023_38747_4
crossref_primary_10_1038_s41592_022_01487_2
crossref_primary_10_1002_wrna_1872
crossref_primary_10_1007_s11033_023_08993_2
crossref_primary_10_1016_j_biopha_2022_113935
crossref_primary_10_1038_s41380_025_02925_1
crossref_primary_10_12677_md_2024_143049
crossref_primary_10_3389_fcell_2022_942762
crossref_primary_10_3390_medicina57101053
crossref_primary_10_1186_s12859_024_05985_2
crossref_primary_10_2147_JHC_S376063
crossref_primary_10_1016_j_tranon_2024_102262
crossref_primary_10_1186_s12864_023_09414_1
crossref_primary_10_37349_emed_2023_00159
crossref_primary_10_1007_s11033_022_07502_1
crossref_primary_10_3390_ijms24033050
crossref_primary_10_1186_s12964_023_01051_1
Cites_doi 10.1093/nar/gkw027
10.1002/jcb.29631
10.1038/s41467-020-19381-w
10.1038/nature21715
10.2147/OTT.S131597
10.1101/gr.202895.115
10.1016/j.celrep.2014.12.002
10.1080/15476286.2015.1020271
10.1016/j.gpb.2019.03.004
10.1016/j.molcel.2014.08.019
10.1038/s41467-019-12651-2
10.1038/cr.2017.31
10.1093/nar/gku406
10.3389/fmolb.2019.00146
10.1096/fasebj.7.1.7678559
10.1016/j.molcel.2017.02.021
10.1101/gad.251926.114
10.1038/s41418-018-0115-6
10.3390/ijms19020480
10.1038/ncomms12429
10.1016/j.canlet.2019.05.036
10.1016/j.cell.2014.09.001
10.1016/j.cell.2015.02.014
10.1016/j.cellsig.2021.110014
10.1038/nature11993
10.3390/cancers12030697
10.1093/nar/gkaa1246
10.3389/fgene.2019.01184
10.1038/ncomms14741
10.1002/wrna.1386
10.1073/pnas.73.11.3852
10.1073/pnas.1617467114
10.1186/s12943-019-1046-7
10.3390/ijms21124302
10.7554/eLife.63088
10.1371/journal.pone.0030733
10.1186/s13059-020-02018-y
10.7150/thno.42174
10.1101/gad.270421.115
10.1038/280339a0
10.1186/1471-2105-12-489
10.1016/j.ebiom.2019.06.030
10.1093/nar/gkz1117
10.1038/srep12453
10.1080/15476286.2017.1279788
10.15252/emmm.201910835
10.3390/cancers11020194
10.1038/s41418-018-0220-6
10.1038/nrg3520
10.1016/j.molcel.2013.08.017
10.1186/s13059-014-0409-z
10.1038/s41388-018-0369-y
10.1038/cddis.2017.556
10.1016/j.ymthe.2020.12.004
10.1038/emboj.2013.133
10.1038/nsmb.2959
10.1093/nar/gkv020
10.1002/jcp.29589
10.1093/nar/gkab523
10.1016/j.molcel.2017.02.017
10.1186/s13059-018-1594-y
10.1261/rna.070565.119
10.7150/thno.21648
10.3390/ijms20163988
10.1007/978-981-13-1426-1
10.1038/nprot.2007.249
10.3389/fgene.2020.632861
10.1186/s12943-019-1006-2
10.1093/carcin/bgy061
10.1093/nar/gkt1248
10.1038/nature11928
10.1038/cr.2015.82
10.1371/journal.pone.0151753
10.1080/15476286.2015.1128065
10.1016/j.biopha.2018.12.052
10.1038/cdd.2016.133
10.1038/s41419-019-2028-9
10.1038/s41467-017-01216-w
10.7554/eLife.07540
10.1016/j.molcel.2017.05.023
10.1093/nar/gkaa035
10.1007/978-981-13-1426-1_9
10.1261/rna.035667.112
10.1161/CIRCRESAHA.117.311335
10.1093/bib/bbz175
10.1161/CIRCRESAHA.116.309568
10.1016/j.cmet.2019.05.009
10.1038/nbt.3441
10.7150/thno.19764
10.1016/j.molcel.2018.01.005
10.1016/j.celrep.2016.03.058
10.7150/thno.32796
10.1186/s13073-019-0614-1
10.21769/BioProtoc.4088
10.1016/j.bbagrm.2019.02.011
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/ncrna7030048
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2311-553X
ExternalDocumentID oai_doaj_org_article_c56aa9c6fc95452c9b272d319d9b385c
PMC8395946
10_3390_ncrna7030048
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
KQ8
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c455t-61b720b77319a641cbc99badab4927cc6c478c29c2b22b14107f3bbb6c89983e3
IEDL.DBID DOA
ISSN 2311-553X
IngestDate Wed Aug 27 01:08:44 EDT 2025
Thu Aug 21 18:09:26 EDT 2025
Fri Jul 11 12:07:16 EDT 2025
Fri Jul 25 12:00:56 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Tue Jul 01 01:10:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-61b720b77319a641cbc99badab4927cc6c478c29c2b22b14107f3bbb6c89983e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3189-8995
OpenAccessLink https://doaj.org/article/c56aa9c6fc95452c9b272d319d9b385c
PMID 34449657
PQID 2576460429
PQPubID 2059547
ParticipantIDs doaj_primary_oai_doaj_org_article_c56aa9c6fc95452c9b272d319d9b385c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8395946
proquest_miscellaneous_2566040448
proquest_journals_2576460429
crossref_citationtrail_10_3390_ncrna7030048
crossref_primary_10_3390_ncrna7030048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210804
PublicationDateYYYYMMDD 2021-08-04
PublicationDate_xml – month: 8
  year: 2021
  text: 20210804
  day: 4
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Non-coding RNA
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Memczak (ref_10) 2013; 495
Dai (ref_37) 2018; 39
Du (ref_63) 2017; 24
Du (ref_64) 2017; 38
Li (ref_40) 2015; 22
Suresh (ref_90) 2015; 43
Shi (ref_77) 2017; 8
Barrett (ref_20) 2015; 4
ref_13
Chen (ref_55) 2018; 19
Guo (ref_6) 2014; 15
ref_99
Panda (ref_95) 2017; 8
Hellman (ref_85) 2007; 2
Cocquerelle (ref_3) 1993; 7
Zhang (ref_39) 2013; 51
Andrews (ref_47) 2014; 15
ref_15
Das (ref_41) 2020; 1863
Li (ref_92) 2014; 42
Pamudurti (ref_49) 2017; 66
Wu (ref_8) 2020; 21
Guria (ref_19) 2019; 6
Sanger (ref_1) 1976; 73
Li (ref_71) 2019; 30
Yuan (ref_88) 2020; 11
Du (ref_59) 2018; 37
ref_29
Zhou (ref_74) 2018; 8
Legnini (ref_48) 2017; 66
Feng (ref_79) 2019; 10
Zhang (ref_18) 2016; 15
Yang (ref_50) 2017; 27
Zhang (ref_86) 2019; 25
Liang (ref_22) 2014; 28
Zhang (ref_21) 2014; 159
Tsitsipatis (ref_69) 2021; 49
Meyer (ref_23) 2014; 56
Conn (ref_24) 2015; 160
Chen (ref_73) 2019; 26
Lee (ref_82) 2018; 69
Jeck (ref_5) 2013; 19
ref_80
Ding (ref_60) 2019; 18
Aktas (ref_28) 2017; 544
Zeng (ref_58) 2017; 7
ref_89
Starke (ref_17) 2015; 10
Paz (ref_91) 2014; 42
Li (ref_46) 2015; 25
Fang (ref_66) 2019; 459
Pagliarini (ref_30) 2020; 48
Dong (ref_38) 2019; 45
Zhu (ref_51) 2019; 9
Gupta (ref_25) 2018; 122
Errichelli (ref_35) 2017; 8
Zhao (ref_62) 2020; 121
Ju (ref_87) 2019; 10
Fang (ref_67) 2018; 25
ref_53
ref_52
Hansen (ref_11) 2013; 495
Zhang (ref_97) 2016; 26
Hsu (ref_2) 1979; 280
Zhang (ref_54) 2021; 84
Wu (ref_76) 2021; 29
Vromman (ref_94) 2020; 22
Huang (ref_81) 2013; 32
Fei (ref_34) 2017; 114
Fanale (ref_45) 2018; 1087
Dudekula (ref_93) 2016; 13
Lee (ref_42) 2019; 111
Huang (ref_16) 2020; 10
Xia (ref_9) 2017; 18
Liu (ref_68) 2018; 53
Ma (ref_78) 2019; 17
Khan (ref_27) 2016; 119
Ji (ref_84) 2016; 34
Xu (ref_12) 2015; 5
Stoll (ref_72) 2020; 11
Knupp (ref_31) 2021; 49
Holdt (ref_57) 2016; 7
Li (ref_33) 2017; 67
Das (ref_83) 2021; 11
Abdelmohsen (ref_43) 2017; 14
Liu (ref_65) 2020; 235
Li (ref_70) 2019; 11
Tang (ref_14) 2017; 10
Yu (ref_36) 2017; 8
Pandey (ref_75) 2020; 48
Wang (ref_61) 2019; 18
Zheng (ref_98) 2019; 11
Stagsted (ref_32) 2021; 10
Wu (ref_96) 2019; 17
Chen (ref_56) 2019; 10
Kramer (ref_26) 2015; 29
Du (ref_44) 2016; 44
ref_4
Chen (ref_7) 2015; 12
References_xml – volume: 44
  start-page: 2846
  year: 2016
  ident: ref_44
  article-title: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw027
– volume: 121
  start-page: 3516
  year: 2020
  ident: ref_62
  article-title: Circular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.29631
– volume: 11
  start-page: 5611
  year: 2020
  ident: ref_72
  article-title: A circular RNA generated from an intron of the insulin gene controls insulin secretion
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19381-w
– volume: 544
  start-page: 115
  year: 2017
  ident: ref_28
  article-title: DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome
  publication-title: Nature
  doi: 10.1038/nature21715
– volume: 10
  start-page: 2045
  year: 2017
  ident: ref_14
  article-title: Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7
  publication-title: Onco Targets Ther.
  doi: 10.2147/OTT.S131597
– volume: 26
  start-page: 1277
  year: 2016
  ident: ref_97
  article-title: Diverse alternative back-splicing and alternative splicing landscape of circular RNAs
  publication-title: Genome Res.
  doi: 10.1101/gr.202895.115
– volume: 10
  start-page: 103
  year: 2015
  ident: ref_17
  article-title: Exon circularization requires canonical splice signals
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.002
– volume: 12
  start-page: 381
  year: 2015
  ident: ref_7
  article-title: Regulation of circRNA biogenesis
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2015.1020271
– volume: 17
  start-page: 522
  year: 2019
  ident: ref_96
  article-title: CircAST: Full-length Assembly and Quantification of Alternatively Spliced Isoforms in Circular RNAs
  publication-title: Genomics Proteomics Bioinform.
  doi: 10.1016/j.gpb.2019.03.004
– volume: 56
  start-page: 55
  year: 2014
  ident: ref_23
  article-title: circRNA biogenesis competes with pre-mRNA splicing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.08.019
– volume: 10
  start-page: 4695
  year: 2019
  ident: ref_56
  article-title: N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12651-2
– volume: 27
  start-page: 626
  year: 2017
  ident: ref_50
  article-title: Extensive translation of circular RNAs driven by N(6)-methyladenosine
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.31
– volume: 42
  start-page: W361
  year: 2014
  ident: ref_91
  article-title: RBPmap: A web server for mapping binding sites of RNA-binding proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku406
– volume: 6
  start-page: 146
  year: 2019
  ident: ref_19
  article-title: Circular RNAs-The Road Less Traveled
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2019.00146
– volume: 7
  start-page: 155
  year: 1993
  ident: ref_3
  article-title: Mis-splicing yields circular RNA molecules
  publication-title: FASEB J.
  doi: 10.1096/fasebj.7.1.7678559
– volume: 66
  start-page: 9
  year: 2017
  ident: ref_49
  article-title: Translation of CircRNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.02.021
– volume: 28
  start-page: 2233
  year: 2014
  ident: ref_22
  article-title: Short intronic repeat sequences facilitate circular RNA production
  publication-title: Genes Dev.
  doi: 10.1101/gad.251926.114
– volume: 25
  start-page: 2195
  year: 2018
  ident: ref_67
  article-title: Enhanced breast cancer progression by mutant p53 is inhibited by the circular RNA circ-Ccnb1
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-018-0115-6
– ident: ref_53
  doi: 10.3390/ijms19020480
– volume: 7
  start-page: 12429
  year: 2016
  ident: ref_57
  article-title: Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12429
– volume: 459
  start-page: 216
  year: 2019
  ident: ref_66
  article-title: The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.05.036
– volume: 159
  start-page: 134
  year: 2014
  ident: ref_21
  article-title: Complementary sequence-mediated exon circularization
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.001
– volume: 160
  start-page: 1125
  year: 2015
  ident: ref_24
  article-title: The RNA binding protein quaking regulates formation of circRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.014
– volume: 84
  start-page: 110014
  year: 2021
  ident: ref_54
  article-title: Circular RNA circE2F2 promotes malignant progression of ovarian cancer cells by upregulating the expression of E2F2 protein via binding to HuR protein
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2021.110014
– volume: 495
  start-page: 384
  year: 2013
  ident: ref_11
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
  doi: 10.1038/nature11993
– ident: ref_29
  doi: 10.3390/cancers12030697
– volume: 49
  start-page: 1631
  year: 2021
  ident: ref_69
  article-title: AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1246
– volume: 10
  start-page: 1184
  year: 2019
  ident: ref_87
  article-title: CircSLNN: Identifying RBP-Binding Sites on circRNAs via Sequence Labeling Neural Networks
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.01184
– volume: 8
  start-page: 14741
  year: 2017
  ident: ref_35
  article-title: FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14741
– volume: 8
  start-page: e1386
  year: 2017
  ident: ref_95
  article-title: Emerging roles and context of circular RNAs
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1386
– volume: 73
  start-page: 3852
  year: 1976
  ident: ref_1
  article-title: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.73.11.3852
– volume: 114
  start-page: E5207
  year: 2017
  ident: ref_34
  article-title: Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1617467114
– volume: 18
  start-page: 119
  year: 2019
  ident: ref_61
  article-title: Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-1046-7
– ident: ref_80
  doi: 10.3390/ijms21124302
– volume: 10
  start-page: e63088
  year: 2021
  ident: ref_32
  article-title: The RNA-binding protein SFPQ preserves long-intron splicing and regulates circRNA biogenesis in mammals
  publication-title: Elife
  doi: 10.7554/eLife.63088
– ident: ref_4
  doi: 10.1371/journal.pone.0030733
– volume: 21
  start-page: 101
  year: 2020
  ident: ref_8
  article-title: CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02018-y
– volume: 10
  start-page: 3503
  year: 2020
  ident: ref_16
  article-title: Circular RNA-protein interactions: Functions, mechanisms, and identification
  publication-title: Theranostics
  doi: 10.7150/thno.42174
– volume: 29
  start-page: 2168
  year: 2015
  ident: ref_26
  article-title: Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins
  publication-title: Genes Dev.
  doi: 10.1101/gad.270421.115
– volume: 280
  start-page: 339
  year: 1979
  ident: ref_2
  article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells
  publication-title: Nature
  doi: 10.1038/280339a0
– ident: ref_89
  doi: 10.1186/1471-2105-12-489
– volume: 45
  start-page: 155
  year: 2019
  ident: ref_38
  article-title: The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.06.030
– volume: 48
  start-page: 633
  year: 2020
  ident: ref_30
  article-title: Sam68 binds Alu-rich introns in SMN and promotes pre-mRNA circularization
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz1117
– volume: 5
  start-page: 12453
  year: 2015
  ident: ref_12
  article-title: The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep12453
– volume: 14
  start-page: 361
  year: 2017
  ident: ref_43
  article-title: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2017.1279788
– volume: 11
  start-page: e10835
  year: 2019
  ident: ref_70
  article-title: Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201910835
– ident: ref_52
  doi: 10.3390/cancers11020194
– volume: 26
  start-page: 1346
  year: 2019
  ident: ref_73
  article-title: Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-018-0220-6
– volume: 15
  start-page: 193
  year: 2014
  ident: ref_47
  article-title: Emerging evidence for functional peptides encoded by short open reading frames
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3520
– volume: 51
  start-page: 792
  year: 2013
  ident: ref_39
  article-title: Circular intronic long noncoding RNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.08.017
– volume: 15
  start-page: 409
  year: 2014
  ident: ref_6
  article-title: Expanded identification and characterization of mammalian circular RNAs
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0409-z
– volume: 37
  start-page: 5829
  year: 2018
  ident: ref_59
  article-title: A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0369-y
– volume: 18
  start-page: 984
  year: 2017
  ident: ref_9
  article-title: Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes
  publication-title: Brief. Bioinform.
– volume: 8
  start-page: e3171
  year: 2017
  ident: ref_77
  article-title: Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.556
– volume: 29
  start-page: 1138
  year: 2021
  ident: ref_76
  article-title: YAP Circular RNA, circYap, Attenuates Cardiac Fibrosis via Binding with Tropomyosin-4 and Gamma-Actin Decreasing Actin Polymerization
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2020.12.004
– volume: 17
  start-page: 388
  year: 2019
  ident: ref_78
  article-title: circRNA of AR-suppressed PABPC1 91 bp enhances the cytotoxicity of natural killer cells against hepatocellular carcinoma via upregulating UL16 binding protein 1
  publication-title: Oncol. Lett.
– volume: 32
  start-page: 2204
  year: 2013
  ident: ref_81
  article-title: XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.133
– volume: 38
  start-page: 1402
  year: 2017
  ident: ref_64
  article-title: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses
  publication-title: Eur. Heart J.
– volume: 22
  start-page: 256
  year: 2015
  ident: ref_40
  article-title: Exon-intron circular RNAs regulate transcription in the nucleus
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2959
– volume: 43
  start-page: 1370
  year: 2015
  ident: ref_90
  article-title: RPI-Pred: Predicting ncRNA-protein interaction using sequence and structural information
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv020
– volume: 235
  start-page: 6929
  year: 2020
  ident: ref_65
  article-title: CircBACH1 (hsa_circ_0061395) promotes hepatocellular carcinoma growth by regulating p27 repression via HuR
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.29589
– volume: 49
  start-page: 6849
  year: 2021
  ident: ref_31
  article-title: NOVA2 regulates neural circRNA biogenesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab523
– volume: 66
  start-page: 22
  year: 2017
  ident: ref_48
  article-title: Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.02.017
– volume: 53
  start-page: 1752
  year: 2018
  ident: ref_68
  article-title: Circular RNAMTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis
  publication-title: Int. J. Oncol.
– volume: 19
  start-page: 218
  year: 2018
  ident: ref_55
  article-title: A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1594-y
– volume: 25
  start-page: 1604
  year: 2019
  ident: ref_86
  article-title: CRIP: Predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks
  publication-title: RNA
  doi: 10.1261/rna.070565.119
– volume: 8
  start-page: 575
  year: 2018
  ident: ref_74
  article-title: circRNA Mediates Silica-Induced Macrophage Activation Via HECTD1/ZC3H12A-Dependent Ubiquitination
  publication-title: Theranostics
  doi: 10.7150/thno.21648
– ident: ref_99
  doi: 10.3390/ijms20163988
– ident: ref_15
  doi: 10.1007/978-981-13-1426-1
– volume: 2
  start-page: 1849
  year: 2007
  ident: ref_85
  article-title: Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.249
– volume: 11
  start-page: 632861
  year: 2020
  ident: ref_88
  article-title: DeCban: Prediction of circRNA-RBP Interaction Sites by Using Double Embeddings and Cross-Branch Attention Networks
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.632861
– volume: 18
  start-page: 45
  year: 2019
  ident: ref_60
  article-title: Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-1006-2
– volume: 39
  start-page: 981
  year: 2018
  ident: ref_37
  article-title: RNA-binding protein trinucleotide repeat-containing 6A regulates the formation of circular RNA circ0006916, with important functions in lung cancer cells
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgy061
– volume: 42
  start-page: D92
  year: 2014
  ident: ref_92
  article-title: starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1248
– volume: 495
  start-page: 333
  year: 2013
  ident: ref_10
  article-title: Circular RNAs are a large class of animal RNAs with regulatory potency
  publication-title: Nature
  doi: 10.1038/nature11928
– volume: 25
  start-page: 981
  year: 2015
  ident: ref_46
  article-title: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.82
– ident: ref_13
  doi: 10.1371/journal.pone.0151753
– volume: 13
  start-page: 34
  year: 2016
  ident: ref_93
  article-title: CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2015.1128065
– volume: 111
  start-page: 198
  year: 2019
  ident: ref_42
  article-title: The roles of circular RNAs in human development and diseases
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.12.052
– volume: 24
  start-page: 357
  year: 2017
  ident: ref_63
  article-title: Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2016.133
– volume: 10
  start-page: 792
  year: 2019
  ident: ref_79
  article-title: Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-2028-9
– volume: 8
  start-page: 1149
  year: 2017
  ident: ref_36
  article-title: The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01216-w
– volume: 4
  start-page: e07540
  year: 2015
  ident: ref_20
  article-title: Circular RNA biogenesis can proceed through an exon-containing lariat precursor
  publication-title: Elife
  doi: 10.7554/eLife.07540
– volume: 67
  start-page: 214
  year: 2017
  ident: ref_33
  article-title: Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.05.023
– volume: 48
  start-page: 3789
  year: 2020
  ident: ref_75
  article-title: circSamd4 represses myogenic transcriptional activity of PUR proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa035
– volume: 1087
  start-page: 109
  year: 2018
  ident: ref_45
  article-title: Circular RNA in Exosomes
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-13-1426-1_9
– volume: 19
  start-page: 141
  year: 2013
  ident: ref_5
  article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats
  publication-title: RNA
  doi: 10.1261/rna.035667.112
– volume: 122
  start-page: 246
  year: 2018
  ident: ref_25
  article-title: Quaking Inhibits Doxorubicin-Mediated Cardiotoxicity Through Regulation of Cardiac Circular RNA Expression
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.311335
– volume: 22
  start-page: 288
  year: 2020
  ident: ref_94
  article-title: Closing the circle: Current state and perspectives of circular RNA databases
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz175
– volume: 119
  start-page: 996
  year: 2016
  ident: ref_27
  article-title: RBM20 Regulates Circular RNA Production From the Titin Gene
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.309568
– volume: 30
  start-page: 157
  year: 2019
  ident: ref_71
  article-title: CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.05.009
– volume: 34
  start-page: 410
  year: 2016
  ident: ref_84
  article-title: Transcriptome-scale RNase-footprinting of RNA-protein complexes
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.3441
– volume: 7
  start-page: 3842
  year: 2017
  ident: ref_58
  article-title: A Circular RNA Binds To and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair
  publication-title: Theranostics
  doi: 10.7150/thno.19764
– volume: 69
  start-page: 354
  year: 2018
  ident: ref_82
  article-title: Advances in CLIP Technologies for Studies of Protein-RNA Interactions
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.01.005
– volume: 15
  start-page: 611
  year: 2016
  ident: ref_18
  article-title: The Biogenesis of Nascent Circular RNAs
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.03.058
– volume: 9
  start-page: 3526
  year: 2019
  ident: ref_51
  article-title: Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma
  publication-title: Theranostics
  doi: 10.7150/thno.32796
– volume: 11
  start-page: 2
  year: 2019
  ident: ref_98
  article-title: Reconstruction of full-length circular RNAs enables isoform-level quantification
  publication-title: Genome Med.
  doi: 10.1186/s13073-019-0614-1
– volume: 11
  start-page: e4088
  year: 2021
  ident: ref_83
  article-title: Antisense Oligo Pulldown of Circular RNA for Downstream Analysis
  publication-title: Bio Protoc.
  doi: 10.21769/BioProtoc.4088
– volume: 1863
  start-page: 194372
  year: 2020
  ident: ref_41
  article-title: Circular RNAs in myogenesis
  publication-title: Biochim. Biophys. Acta Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2019.02.011
SSID ssj0001476660
Score 2.4446492
SecondaryResourceType review_article
Snippet Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 48
SubjectTerms Binding sites
Biosynthesis
circRNA
Circular RNA
decoy
Gene expression
Localization
MicroRNAs
miRNA
mRNA stability
Nuclear transport
Physiology
Protein interaction
Proteins
Review
RNA transport
RNA-binding protein
splicing
translation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagvXBBhYJYKMhIwAVFTR3_xCe0rVpVSKyqFZV6i-yxAyuVpOxuD73xDrwhT8KM17vdHOAajxRn_jwz_jLD2DtpndZRYZKjQltIh5buMS4ogg_CWcyKyjQl4stEn1_Kz1fqKhfcFhlWufaJyVGHHqhGfkiBsdTkPj_d_CxoahTdruYRGg_ZLrrgGjV89_h0cjG9r7JIg_F5uUK8V5jfH3aAEiI1L2nkz9ZZlFr2D-LMIUpy69g522OPc7zIxysBP2EPYveU7Y87zJV_3PEPPCE4U2l8n0mqMNHQIT7tryPvW34ymyecKZ9Oxn9-_b6gpgyzjqcy4OqPhsUzdnl2-vXkvMhTEQqQSi0x1_NGlN4YNB6n5RF4sNa74Ly0wgBokKYGYUF4ITzBOE1bee81UGpVxeo52-n6Lr5gvI1RGUlfWNcyHnlb-6gF0F10wDgtjNjHNX8ayC3DaXLFdYOpA3Gz2ebmiL3fUN-sWmX8g-6YWL2hoQbX6UE__9Zke2lAaecs6BYsTUEH64URAT85WF_VCkbsYC2oJlvdornXkRF7u1lGe6FLENfF_pZoUB9kKWkfZiDgwYaGK93se-q8jdGkslK__P_LX7FHgpAvBCyRB2xnOb-NrzF0Wfo3WT__Ag8k8Ys
  priority: 102
  providerName: ProQuest
Title Emerging Role of Circular RNA–Protein Interactions
URI https://www.proquest.com/docview/2576460429
https://www.proquest.com/docview/2566040448
https://pubmed.ncbi.nlm.nih.gov/PMC8395946
https://doaj.org/article/c56aa9c6fc95452c9b272d319d9b385c
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlvfRSkqahm6ZBhbaXsMSR9WMdd9MsodAlLA3kZjRjmS6k3pBsDr3lHfKGeZLOyM5iH0ovPRmsOUgzI8980ucZIT5pH6yNhkCOqeqxDrTTgfKCcQWVCp5QUZa6RHyf2_NL_e3KXPVafTEnrC0P3CruGI0NwaOt0XM7bPSgnKrIcSoPeWGQv74U83pgKp2uaEd5edYy3XPC9ccNkmXYvTNu9dOLQalU_yC_HLIje-Fmti1ed3minLTz2xEvYvNG7E4awsi_fssvMjE305H4rtB8ssTNhuRidR3lqpany9vEL5WL-eTp4fGCizEsG5mO_9o_Ge7eisvZ2Y_T83HXDWGM2pg1YTxwKgPnaO3B6hME9B5CFUB75RAtaleg8qhAKWD6pqtzALDIkCqP-Z7YalZNfCdkHaNxmldYFDqegC8gWoV8B11RflaNxNGzfkrsSoVzx4rrkiADa7Psa3MkPm-kb9oSGX-Rm7KqNzJc2Dq9IHOXnbnLf5l7JA6eDVV2u-2uZNCkLYfWkfi4GaZ9wpcfoYmre5Yhf9CZ5nm4gYEHExqONMufqeI2ZZHGa7v_P1bwXrxSzIth2ok-EFvr2_v4gRKbNRyKl5Pp1-mMntOz-cXiMPn0H8e9--E
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuCCiIhUKNRLmgqKnj2PEBoW1ptaXtqlq1Um8h_gmsVJKyuxXqjXfgPXgonqQz-dluDnDrNbYSZzxjzzcezwfwVuhMSh8jyIldHogMLd2gXxA443imERWFFUvE8UgOz8Tn8_h8Bf60d2EorbJdE6uF2pWWYuRb5BgLScvnx8sfAbFG0elqS6FRq8Whv_6JkG324eATzu8m5_t7p7vDoGEVCKyI4zliJaN4aJRC5cuk2LbGam0ylxmhubJWWqESy7XlhnNDaZAqj4wx0hI0iXyE770HqyJCV6EHqzt7o5PxbVRHKMQDYZ1hH0U63CosagSZVUgUQ0t7X0UR0PFru1mZS9vc_iN42PinbFAr1GNY8cUTWBsUiM2_X7N3rMoYrULxayAookUkR2xcXnhW5mx3Mq3yWtl4NPj76_cJFYGYFKwKO9Y3KGZP4exO5PUMekVZ-OfAcu9jJegPk0T4baMT4yW3dPbt0C90fXjfyie1TYlyYsq4SBGqkDTTZWn2YXPR-7IuzfGPfjsk6kUfKqhdPSinX9PGPlMbyyzTVuZWE-u61YYr7vCXnTZREts-rLcTlTZWPktvdbIPbxbNaJ906JIVvryiPqgPIhQ0DtWZ4M6Aui3F5FtV6Ru911gL-eL_H9-A-8PT46P06GB0-BIecMq6oaQWsQ69-fTKv0K3aW5eN7rK4Mtdm8cNRXkuOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYS4IKAgFgoYiXJB0aaOY8cHhLY_q5bCarWiUm8hdhxYqSRldyvUG-_A2_A4PAkzTrLdHODWa2wlznjGnhl_ng_gldCZlC7GICfOi0BkaOkG_YIgNznPNEZFoWeJ-DiWR6fi_Vl8tgG_27swBKts10S_UOeVpRz5gBxjIWn5HBQNLGJyMHp38T0gBik6aW3pNGoVOXFXPzB8W7w9PsC53uF8dPhp_yhoGAYCK-J4iXGTUTw0SqEiZlLsWmO1NlmeGaG5slZaoRLLteWGc0OQSFVExhhpKUyJXITvvQWbiq6P9mBz73A8mV5neITC2CCs0fZRpMNBaVE7yMRCohta2wc9XUDHx-0iNNe2vNE9uNv4qmxYK9d92HDlA9galhinf7tir5lHj_q0_BYIym4R4RGbVueOVQXbn809xpVNx8M_P39NqCDErGQ-BVnfplg8hNMbkdcj6JVV6R4DK5yLlaA_TBLhdo1OjJPc0jl4jj5i3oc3rXxS25QrJ9aM8xTDFpJmui7NPuysel_UZTr-0W-PRL3qQ8W1_YNq_iVtbDW1scwybWVhNTGwW2244jn-cq5NlMS2D9vtRKWNxS_Sa_3sw8tVM9oqHcBkpasuqQ_qgwgFjUN1JrgzoG5LOfvqq36jJxtrIZ_8_-Mv4DaaRfrheHzyFO5wAuAQvkVsQ285v3TP0INamueNqjL4fNPW8RcdzzJ3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Role+of+Circular+RNA%E2%80%93Protein+Interactions&rft.jtitle=Non-coding+RNA&rft.au=Das%2C+Arundhati&rft.au=Sinha%2C+Tanvi&rft.au=Shyamal%2C+Sharmishtha&rft.au=Panda%2C+Amaresh+Chandra&rft.date=2021-08-04&rft.pub=MDPI&rft.eissn=2311-553X&rft.volume=7&rft.issue=3&rft_id=info:doi/10.3390%2Fncrna7030048&rft_id=info%3Apmid%2F34449657&rft.externalDocID=PMC8395946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-553X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-553X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-553X&client=summon