Emerging Role of Circular RNA–Protein Interactions
Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-t...
Saved in:
Published in | Non-coding RNA Vol. 7; no. 3; p. 48 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
04.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2311-553X 2311-553X |
DOI | 10.3390/ncrna7030048 |
Cover
Loading…
Abstract | Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-throughput RNA–protein interaction data revealed the interaction of RBPs with the coding and noncoding RNAs, including recently discovered circRNAs. RBPs are a large family of proteins known to play a critical role in gene expression by modulating RNA splicing, nuclear export, mRNA stability, localization, and translation. However, the interaction of RBPs with circRNAs and their implications on circRNA biogenesis and function has been emerging in the last few years. Recent studies suggest that circRNA interaction with target proteins modulates the interaction of the protein with downstream target mRNAs or proteins. This review outlines the emerging mechanisms of circRNA–protein interactions and their functional role in cell physiology. |
---|---|
AbstractList | Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-throughput RNA–protein interaction data revealed the interaction of RBPs with the coding and noncoding RNAs, including recently discovered circRNAs. RBPs are a large family of proteins known to play a critical role in gene expression by modulating RNA splicing, nuclear export, mRNA stability, localization, and translation. However, the interaction of RBPs with circRNAs and their implications on circRNA biogenesis and function has been emerging in the last few years. Recent studies suggest that circRNA interaction with target proteins modulates the interaction of the protein with downstream target mRNAs or proteins. This review outlines the emerging mechanisms of circRNA–protein interactions and their functional role in cell physiology. Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-throughput RNA-protein interaction data revealed the interaction of RBPs with the coding and noncoding RNAs, including recently discovered circRNAs. RBPs are a large family of proteins known to play a critical role in gene expression by modulating RNA splicing, nuclear export, mRNA stability, localization, and translation. However, the interaction of RBPs with circRNAs and their implications on circRNA biogenesis and function has been emerging in the last few years. Recent studies suggest that circRNA interaction with target proteins modulates the interaction of the protein with downstream target mRNAs or proteins. This review outlines the emerging mechanisms of circRNA-protein interactions and their functional role in cell physiology.Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-throughput RNA-protein interaction data revealed the interaction of RBPs with the coding and noncoding RNAs, including recently discovered circRNAs. RBPs are a large family of proteins known to play a critical role in gene expression by modulating RNA splicing, nuclear export, mRNA stability, localization, and translation. However, the interaction of RBPs with circRNAs and their implications on circRNA biogenesis and function has been emerging in the last few years. Recent studies suggest that circRNA interaction with target proteins modulates the interaction of the protein with downstream target mRNAs or proteins. This review outlines the emerging mechanisms of circRNA-protein interactions and their functional role in cell physiology. |
Author | Das, Arundhati Sinha, Tanvi Panda, Amaresh Chandra Shyamal, Sharmishtha |
AuthorAffiliation | 1 Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; arundhati.s@ils.res.in (A.D.); tanvi@ils.res.in (T.S.); sharmishtha@ils.res.in (S.S.) 2 School of Biotechnology, KIIT University, Bhubaneswar 751024, India |
AuthorAffiliation_xml | – name: 2 School of Biotechnology, KIIT University, Bhubaneswar 751024, India – name: 1 Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; arundhati.s@ils.res.in (A.D.); tanvi@ils.res.in (T.S.); sharmishtha@ils.res.in (S.S.) |
Author_xml | – sequence: 1 givenname: Arundhati surname: Das fullname: Das, Arundhati – sequence: 2 givenname: Tanvi surname: Sinha fullname: Sinha, Tanvi – sequence: 3 givenname: Sharmishtha surname: Shyamal fullname: Shyamal, Sharmishtha – sequence: 4 givenname: Amaresh Chandra orcidid: 0000-0003-3189-8995 surname: Panda fullname: Panda, Amaresh Chandra |
BookMark | eNptkc9qVDEUh4O02Fq78wEuuHHh2PzPzUYoQ9WB0kpRcBeSc3PHDJmkJvcK7nwH39AnMeNUaIurhOQ73-Gc3zN0kHLyCL0g-A1jGp8lKMkqzDDm_RN0TBkhCyHYl4N79yN0WusGY0y4klLip-iIcc61FOoY8YutL-uQ1t1Njr7LY7cMBeZoS3dzdf7756-PJU8-pG6VJl8sTCGn-hwdjjZWf3p3nqDP7y4-LT8sLq_fr5bnlwvgQkwLSZyi2CnFiLaSE3CgtbODdVxTBSCBqx6oBuoodYQTrEbmnJPQa90zz07Qau8dst2Y2xK2tvww2Qbz9yGXtbFlChC9ASGt1SBH0IILCtpRRYfWeNCO9QKa6-3edTu7rR_Ap6nY-ED68CeFr2adv5ueaaG5bIJXd4KSv82-TmYbKvgYbfJ5roaKtluOOe8b-vIRuslzCyruKCV546huFN1TUHKtxY8GwmR3C279QzQEm13G5n7Grej1o6J_E_wX_wNZCakN |
CitedBy_id | crossref_primary_10_1016_j_omtn_2024_102234 crossref_primary_10_3390_ijms24043181 crossref_primary_10_3390_ijms241411861 crossref_primary_10_1016_j_ijbiomac_2024_134805 crossref_primary_10_3390_biom13121750 crossref_primary_10_1002_1878_0261_70005 crossref_primary_10_3390_cells11111833 crossref_primary_10_3390_ncrna8030038 crossref_primary_10_3390_cells12242813 crossref_primary_10_1016_j_ymeth_2022_06_014 crossref_primary_10_3390_biom14040384 crossref_primary_10_3390_ijms24119127 crossref_primary_10_3390_ijms232416065 crossref_primary_10_1016_j_ijbiomac_2024_137614 crossref_primary_10_1002_wrna_1820 crossref_primary_10_1093_nar_gkae693 crossref_primary_10_1002_rmv_2530 crossref_primary_10_3389_fmolb_2022_886366 crossref_primary_10_3390_cells13110898 crossref_primary_10_1016_j_prp_2024_155626 crossref_primary_10_1111_cas_15899 crossref_primary_10_1080_10495398_2023_2196311 crossref_primary_10_3389_fphar_2023_1194719 crossref_primary_10_3389_fmolb_2021_762185 crossref_primary_10_1002_wrna_1715 crossref_primary_10_3389_fmolb_2022_1015990 crossref_primary_10_1016_j_prp_2023_154592 crossref_primary_10_3390_microorganisms10091852 crossref_primary_10_1186_s12967_023_04020_x crossref_primary_10_1038_s41467_023_38747_4 crossref_primary_10_1038_s41592_022_01487_2 crossref_primary_10_1002_wrna_1872 crossref_primary_10_1007_s11033_023_08993_2 crossref_primary_10_1016_j_biopha_2022_113935 crossref_primary_10_1038_s41380_025_02925_1 crossref_primary_10_12677_md_2024_143049 crossref_primary_10_3389_fcell_2022_942762 crossref_primary_10_3390_medicina57101053 crossref_primary_10_1186_s12859_024_05985_2 crossref_primary_10_2147_JHC_S376063 crossref_primary_10_1016_j_tranon_2024_102262 crossref_primary_10_1186_s12864_023_09414_1 crossref_primary_10_37349_emed_2023_00159 crossref_primary_10_1007_s11033_022_07502_1 crossref_primary_10_3390_ijms24033050 crossref_primary_10_1186_s12964_023_01051_1 |
Cites_doi | 10.1093/nar/gkw027 10.1002/jcb.29631 10.1038/s41467-020-19381-w 10.1038/nature21715 10.2147/OTT.S131597 10.1101/gr.202895.115 10.1016/j.celrep.2014.12.002 10.1080/15476286.2015.1020271 10.1016/j.gpb.2019.03.004 10.1016/j.molcel.2014.08.019 10.1038/s41467-019-12651-2 10.1038/cr.2017.31 10.1093/nar/gku406 10.3389/fmolb.2019.00146 10.1096/fasebj.7.1.7678559 10.1016/j.molcel.2017.02.021 10.1101/gad.251926.114 10.1038/s41418-018-0115-6 10.3390/ijms19020480 10.1038/ncomms12429 10.1016/j.canlet.2019.05.036 10.1016/j.cell.2014.09.001 10.1016/j.cell.2015.02.014 10.1016/j.cellsig.2021.110014 10.1038/nature11993 10.3390/cancers12030697 10.1093/nar/gkaa1246 10.3389/fgene.2019.01184 10.1038/ncomms14741 10.1002/wrna.1386 10.1073/pnas.73.11.3852 10.1073/pnas.1617467114 10.1186/s12943-019-1046-7 10.3390/ijms21124302 10.7554/eLife.63088 10.1371/journal.pone.0030733 10.1186/s13059-020-02018-y 10.7150/thno.42174 10.1101/gad.270421.115 10.1038/280339a0 10.1186/1471-2105-12-489 10.1016/j.ebiom.2019.06.030 10.1093/nar/gkz1117 10.1038/srep12453 10.1080/15476286.2017.1279788 10.15252/emmm.201910835 10.3390/cancers11020194 10.1038/s41418-018-0220-6 10.1038/nrg3520 10.1016/j.molcel.2013.08.017 10.1186/s13059-014-0409-z 10.1038/s41388-018-0369-y 10.1038/cddis.2017.556 10.1016/j.ymthe.2020.12.004 10.1038/emboj.2013.133 10.1038/nsmb.2959 10.1093/nar/gkv020 10.1002/jcp.29589 10.1093/nar/gkab523 10.1016/j.molcel.2017.02.017 10.1186/s13059-018-1594-y 10.1261/rna.070565.119 10.7150/thno.21648 10.3390/ijms20163988 10.1007/978-981-13-1426-1 10.1038/nprot.2007.249 10.3389/fgene.2020.632861 10.1186/s12943-019-1006-2 10.1093/carcin/bgy061 10.1093/nar/gkt1248 10.1038/nature11928 10.1038/cr.2015.82 10.1371/journal.pone.0151753 10.1080/15476286.2015.1128065 10.1016/j.biopha.2018.12.052 10.1038/cdd.2016.133 10.1038/s41419-019-2028-9 10.1038/s41467-017-01216-w 10.7554/eLife.07540 10.1016/j.molcel.2017.05.023 10.1093/nar/gkaa035 10.1007/978-981-13-1426-1_9 10.1261/rna.035667.112 10.1161/CIRCRESAHA.117.311335 10.1093/bib/bbz175 10.1161/CIRCRESAHA.116.309568 10.1016/j.cmet.2019.05.009 10.1038/nbt.3441 10.7150/thno.19764 10.1016/j.molcel.2018.01.005 10.1016/j.celrep.2016.03.058 10.7150/thno.32796 10.1186/s13073-019-0614-1 10.21769/BioProtoc.4088 10.1016/j.bbagrm.2019.02.011 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/ncrna7030048 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2311-553X |
ExternalDocumentID | oai_doaj_org_article_c56aa9c6fc95452c9b272d319d9b385c PMC8395946 10_3390_ncrna7030048 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO KQ8 LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c455t-61b720b77319a641cbc99badab4927cc6c478c29c2b22b14107f3bbb6c89983e3 |
IEDL.DBID | DOA |
ISSN | 2311-553X |
IngestDate | Wed Aug 27 01:08:44 EDT 2025 Thu Aug 21 18:09:26 EDT 2025 Fri Jul 11 12:07:16 EDT 2025 Fri Jul 25 12:00:56 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 Tue Jul 01 01:10:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-61b720b77319a641cbc99badab4927cc6c478c29c2b22b14107f3bbb6c89983e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3189-8995 |
OpenAccessLink | https://doaj.org/article/c56aa9c6fc95452c9b272d319d9b385c |
PMID | 34449657 |
PQID | 2576460429 |
PQPubID | 2059547 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c56aa9c6fc95452c9b272d319d9b385c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8395946 proquest_miscellaneous_2566040448 proquest_journals_2576460429 crossref_citationtrail_10_3390_ncrna7030048 crossref_primary_10_3390_ncrna7030048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210804 |
PublicationDateYYYYMMDD | 2021-08-04 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210804 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Non-coding RNA |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Memczak (ref_10) 2013; 495 Dai (ref_37) 2018; 39 Du (ref_63) 2017; 24 Du (ref_64) 2017; 38 Li (ref_40) 2015; 22 Suresh (ref_90) 2015; 43 Shi (ref_77) 2017; 8 Barrett (ref_20) 2015; 4 ref_13 Chen (ref_55) 2018; 19 Guo (ref_6) 2014; 15 ref_99 Panda (ref_95) 2017; 8 Hellman (ref_85) 2007; 2 Cocquerelle (ref_3) 1993; 7 Zhang (ref_39) 2013; 51 Andrews (ref_47) 2014; 15 ref_15 Das (ref_41) 2020; 1863 Li (ref_92) 2014; 42 Pamudurti (ref_49) 2017; 66 Wu (ref_8) 2020; 21 Guria (ref_19) 2019; 6 Sanger (ref_1) 1976; 73 Li (ref_71) 2019; 30 Yuan (ref_88) 2020; 11 Du (ref_59) 2018; 37 ref_29 Zhou (ref_74) 2018; 8 Legnini (ref_48) 2017; 66 Feng (ref_79) 2019; 10 Zhang (ref_18) 2016; 15 Yang (ref_50) 2017; 27 Zhang (ref_86) 2019; 25 Liang (ref_22) 2014; 28 Zhang (ref_21) 2014; 159 Tsitsipatis (ref_69) 2021; 49 Meyer (ref_23) 2014; 56 Conn (ref_24) 2015; 160 Chen (ref_73) 2019; 26 Lee (ref_82) 2018; 69 Jeck (ref_5) 2013; 19 ref_80 Ding (ref_60) 2019; 18 Aktas (ref_28) 2017; 544 Zeng (ref_58) 2017; 7 ref_89 Starke (ref_17) 2015; 10 Paz (ref_91) 2014; 42 Li (ref_46) 2015; 25 Fang (ref_66) 2019; 459 Pagliarini (ref_30) 2020; 48 Dong (ref_38) 2019; 45 Zhu (ref_51) 2019; 9 Gupta (ref_25) 2018; 122 Errichelli (ref_35) 2017; 8 Zhao (ref_62) 2020; 121 Ju (ref_87) 2019; 10 Fang (ref_67) 2018; 25 ref_53 ref_52 Hansen (ref_11) 2013; 495 Zhang (ref_97) 2016; 26 Hsu (ref_2) 1979; 280 Zhang (ref_54) 2021; 84 Wu (ref_76) 2021; 29 Vromman (ref_94) 2020; 22 Huang (ref_81) 2013; 32 Fei (ref_34) 2017; 114 Fanale (ref_45) 2018; 1087 Dudekula (ref_93) 2016; 13 Lee (ref_42) 2019; 111 Huang (ref_16) 2020; 10 Xia (ref_9) 2017; 18 Liu (ref_68) 2018; 53 Ma (ref_78) 2019; 17 Khan (ref_27) 2016; 119 Ji (ref_84) 2016; 34 Xu (ref_12) 2015; 5 Stoll (ref_72) 2020; 11 Knupp (ref_31) 2021; 49 Holdt (ref_57) 2016; 7 Li (ref_33) 2017; 67 Das (ref_83) 2021; 11 Abdelmohsen (ref_43) 2017; 14 Liu (ref_65) 2020; 235 Li (ref_70) 2019; 11 Tang (ref_14) 2017; 10 Yu (ref_36) 2017; 8 Pandey (ref_75) 2020; 48 Wang (ref_61) 2019; 18 Zheng (ref_98) 2019; 11 Stagsted (ref_32) 2021; 10 Wu (ref_96) 2019; 17 Chen (ref_56) 2019; 10 Kramer (ref_26) 2015; 29 Du (ref_44) 2016; 44 ref_4 Chen (ref_7) 2015; 12 |
References_xml | – volume: 44 start-page: 2846 year: 2016 ident: ref_44 article-title: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw027 – volume: 121 start-page: 3516 year: 2020 ident: ref_62 article-title: Circular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.29631 – volume: 11 start-page: 5611 year: 2020 ident: ref_72 article-title: A circular RNA generated from an intron of the insulin gene controls insulin secretion publication-title: Nat. Commun. doi: 10.1038/s41467-020-19381-w – volume: 544 start-page: 115 year: 2017 ident: ref_28 article-title: DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome publication-title: Nature doi: 10.1038/nature21715 – volume: 10 start-page: 2045 year: 2017 ident: ref_14 article-title: Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7 publication-title: Onco Targets Ther. doi: 10.2147/OTT.S131597 – volume: 26 start-page: 1277 year: 2016 ident: ref_97 article-title: Diverse alternative back-splicing and alternative splicing landscape of circular RNAs publication-title: Genome Res. doi: 10.1101/gr.202895.115 – volume: 10 start-page: 103 year: 2015 ident: ref_17 article-title: Exon circularization requires canonical splice signals publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.002 – volume: 12 start-page: 381 year: 2015 ident: ref_7 article-title: Regulation of circRNA biogenesis publication-title: RNA Biol. doi: 10.1080/15476286.2015.1020271 – volume: 17 start-page: 522 year: 2019 ident: ref_96 article-title: CircAST: Full-length Assembly and Quantification of Alternatively Spliced Isoforms in Circular RNAs publication-title: Genomics Proteomics Bioinform. doi: 10.1016/j.gpb.2019.03.004 – volume: 56 start-page: 55 year: 2014 ident: ref_23 article-title: circRNA biogenesis competes with pre-mRNA splicing publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.08.019 – volume: 10 start-page: 4695 year: 2019 ident: ref_56 article-title: N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis publication-title: Nat. Commun. doi: 10.1038/s41467-019-12651-2 – volume: 27 start-page: 626 year: 2017 ident: ref_50 article-title: Extensive translation of circular RNAs driven by N(6)-methyladenosine publication-title: Cell Res. doi: 10.1038/cr.2017.31 – volume: 42 start-page: W361 year: 2014 ident: ref_91 article-title: RBPmap: A web server for mapping binding sites of RNA-binding proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku406 – volume: 6 start-page: 146 year: 2019 ident: ref_19 article-title: Circular RNAs-The Road Less Traveled publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2019.00146 – volume: 7 start-page: 155 year: 1993 ident: ref_3 article-title: Mis-splicing yields circular RNA molecules publication-title: FASEB J. doi: 10.1096/fasebj.7.1.7678559 – volume: 66 start-page: 9 year: 2017 ident: ref_49 article-title: Translation of CircRNAs publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.02.021 – volume: 28 start-page: 2233 year: 2014 ident: ref_22 article-title: Short intronic repeat sequences facilitate circular RNA production publication-title: Genes Dev. doi: 10.1101/gad.251926.114 – volume: 25 start-page: 2195 year: 2018 ident: ref_67 article-title: Enhanced breast cancer progression by mutant p53 is inhibited by the circular RNA circ-Ccnb1 publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0115-6 – ident: ref_53 doi: 10.3390/ijms19020480 – volume: 7 start-page: 12429 year: 2016 ident: ref_57 article-title: Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans publication-title: Nat. Commun. doi: 10.1038/ncomms12429 – volume: 459 start-page: 216 year: 2019 ident: ref_66 article-title: The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.05.036 – volume: 159 start-page: 134 year: 2014 ident: ref_21 article-title: Complementary sequence-mediated exon circularization publication-title: Cell doi: 10.1016/j.cell.2014.09.001 – volume: 160 start-page: 1125 year: 2015 ident: ref_24 article-title: The RNA binding protein quaking regulates formation of circRNAs publication-title: Cell doi: 10.1016/j.cell.2015.02.014 – volume: 84 start-page: 110014 year: 2021 ident: ref_54 article-title: Circular RNA circE2F2 promotes malignant progression of ovarian cancer cells by upregulating the expression of E2F2 protein via binding to HuR protein publication-title: Cell Signal. doi: 10.1016/j.cellsig.2021.110014 – volume: 495 start-page: 384 year: 2013 ident: ref_11 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – ident: ref_29 doi: 10.3390/cancers12030697 – volume: 49 start-page: 1631 year: 2021 ident: ref_69 article-title: AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1246 – volume: 10 start-page: 1184 year: 2019 ident: ref_87 article-title: CircSLNN: Identifying RBP-Binding Sites on circRNAs via Sequence Labeling Neural Networks publication-title: Front. Genet. doi: 10.3389/fgene.2019.01184 – volume: 8 start-page: 14741 year: 2017 ident: ref_35 article-title: FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons publication-title: Nat. Commun. doi: 10.1038/ncomms14741 – volume: 8 start-page: e1386 year: 2017 ident: ref_95 article-title: Emerging roles and context of circular RNAs publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1386 – volume: 73 start-page: 3852 year: 1976 ident: ref_1 article-title: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.73.11.3852 – volume: 114 start-page: E5207 year: 2017 ident: ref_34 article-title: Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1617467114 – volume: 18 start-page: 119 year: 2019 ident: ref_61 article-title: Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression publication-title: Mol. Cancer doi: 10.1186/s12943-019-1046-7 – ident: ref_80 doi: 10.3390/ijms21124302 – volume: 10 start-page: e63088 year: 2021 ident: ref_32 article-title: The RNA-binding protein SFPQ preserves long-intron splicing and regulates circRNA biogenesis in mammals publication-title: Elife doi: 10.7554/eLife.63088 – ident: ref_4 doi: 10.1371/journal.pone.0030733 – volume: 21 start-page: 101 year: 2020 ident: ref_8 article-title: CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes publication-title: Genome Biol. doi: 10.1186/s13059-020-02018-y – volume: 10 start-page: 3503 year: 2020 ident: ref_16 article-title: Circular RNA-protein interactions: Functions, mechanisms, and identification publication-title: Theranostics doi: 10.7150/thno.42174 – volume: 29 start-page: 2168 year: 2015 ident: ref_26 article-title: Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins publication-title: Genes Dev. doi: 10.1101/gad.270421.115 – volume: 280 start-page: 339 year: 1979 ident: ref_2 article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells publication-title: Nature doi: 10.1038/280339a0 – ident: ref_89 doi: 10.1186/1471-2105-12-489 – volume: 45 start-page: 155 year: 2019 ident: ref_38 article-title: The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.06.030 – volume: 48 start-page: 633 year: 2020 ident: ref_30 article-title: Sam68 binds Alu-rich introns in SMN and promotes pre-mRNA circularization publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz1117 – volume: 5 start-page: 12453 year: 2015 ident: ref_12 article-title: The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells publication-title: Sci. Rep. doi: 10.1038/srep12453 – volume: 14 start-page: 361 year: 2017 ident: ref_43 article-title: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1 publication-title: RNA Biol. doi: 10.1080/15476286.2017.1279788 – volume: 11 start-page: e10835 year: 2019 ident: ref_70 article-title: Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201910835 – ident: ref_52 doi: 10.3390/cancers11020194 – volume: 26 start-page: 1346 year: 2019 ident: ref_73 article-title: Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0220-6 – volume: 15 start-page: 193 year: 2014 ident: ref_47 article-title: Emerging evidence for functional peptides encoded by short open reading frames publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3520 – volume: 51 start-page: 792 year: 2013 ident: ref_39 article-title: Circular intronic long noncoding RNAs publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.08.017 – volume: 15 start-page: 409 year: 2014 ident: ref_6 article-title: Expanded identification and characterization of mammalian circular RNAs publication-title: Genome Biol. doi: 10.1186/s13059-014-0409-z – volume: 37 start-page: 5829 year: 2018 ident: ref_59 article-title: A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy publication-title: Oncogene doi: 10.1038/s41388-018-0369-y – volume: 18 start-page: 984 year: 2017 ident: ref_9 article-title: Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes publication-title: Brief. Bioinform. – volume: 8 start-page: e3171 year: 2017 ident: ref_77 article-title: Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.556 – volume: 29 start-page: 1138 year: 2021 ident: ref_76 article-title: YAP Circular RNA, circYap, Attenuates Cardiac Fibrosis via Binding with Tropomyosin-4 and Gamma-Actin Decreasing Actin Polymerization publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2020.12.004 – volume: 17 start-page: 388 year: 2019 ident: ref_78 article-title: circRNA of AR-suppressed PABPC1 91 bp enhances the cytotoxicity of natural killer cells against hepatocellular carcinoma via upregulating UL16 binding protein 1 publication-title: Oncol. Lett. – volume: 32 start-page: 2204 year: 2013 ident: ref_81 article-title: XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling publication-title: EMBO J. doi: 10.1038/emboj.2013.133 – volume: 38 start-page: 1402 year: 2017 ident: ref_64 article-title: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses publication-title: Eur. Heart J. – volume: 22 start-page: 256 year: 2015 ident: ref_40 article-title: Exon-intron circular RNAs regulate transcription in the nucleus publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2959 – volume: 43 start-page: 1370 year: 2015 ident: ref_90 article-title: RPI-Pred: Predicting ncRNA-protein interaction using sequence and structural information publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv020 – volume: 235 start-page: 6929 year: 2020 ident: ref_65 article-title: CircBACH1 (hsa_circ_0061395) promotes hepatocellular carcinoma growth by regulating p27 repression via HuR publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29589 – volume: 49 start-page: 6849 year: 2021 ident: ref_31 article-title: NOVA2 regulates neural circRNA biogenesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab523 – volume: 66 start-page: 22 year: 2017 ident: ref_48 article-title: Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.02.017 – volume: 53 start-page: 1752 year: 2018 ident: ref_68 article-title: Circular RNAMTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis publication-title: Int. J. Oncol. – volume: 19 start-page: 218 year: 2018 ident: ref_55 article-title: A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1 publication-title: Genome Biol. doi: 10.1186/s13059-018-1594-y – volume: 25 start-page: 1604 year: 2019 ident: ref_86 article-title: CRIP: Predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks publication-title: RNA doi: 10.1261/rna.070565.119 – volume: 8 start-page: 575 year: 2018 ident: ref_74 article-title: circRNA Mediates Silica-Induced Macrophage Activation Via HECTD1/ZC3H12A-Dependent Ubiquitination publication-title: Theranostics doi: 10.7150/thno.21648 – ident: ref_99 doi: 10.3390/ijms20163988 – ident: ref_15 doi: 10.1007/978-981-13-1426-1 – volume: 2 start-page: 1849 year: 2007 ident: ref_85 article-title: Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.249 – volume: 11 start-page: 632861 year: 2020 ident: ref_88 article-title: DeCban: Prediction of circRNA-RBP Interaction Sites by Using Double Embeddings and Cross-Branch Attention Networks publication-title: Front. Genet. doi: 10.3389/fgene.2020.632861 – volume: 18 start-page: 45 year: 2019 ident: ref_60 article-title: Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4 publication-title: Mol. Cancer doi: 10.1186/s12943-019-1006-2 – volume: 39 start-page: 981 year: 2018 ident: ref_37 article-title: RNA-binding protein trinucleotide repeat-containing 6A regulates the formation of circular RNA circ0006916, with important functions in lung cancer cells publication-title: Carcinogenesis doi: 10.1093/carcin/bgy061 – volume: 42 start-page: D92 year: 2014 ident: ref_92 article-title: starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1248 – volume: 495 start-page: 333 year: 2013 ident: ref_10 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature doi: 10.1038/nature11928 – volume: 25 start-page: 981 year: 2015 ident: ref_46 article-title: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis publication-title: Cell Res. doi: 10.1038/cr.2015.82 – ident: ref_13 doi: 10.1371/journal.pone.0151753 – volume: 13 start-page: 34 year: 2016 ident: ref_93 article-title: CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs publication-title: RNA Biol. doi: 10.1080/15476286.2015.1128065 – volume: 111 start-page: 198 year: 2019 ident: ref_42 article-title: The roles of circular RNAs in human development and diseases publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.12.052 – volume: 24 start-page: 357 year: 2017 ident: ref_63 article-title: Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity publication-title: Cell Death Differ. doi: 10.1038/cdd.2016.133 – volume: 10 start-page: 792 year: 2019 ident: ref_79 article-title: Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP publication-title: Cell Death Dis. doi: 10.1038/s41419-019-2028-9 – volume: 8 start-page: 1149 year: 2017 ident: ref_36 article-title: The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency publication-title: Nat. Commun. doi: 10.1038/s41467-017-01216-w – volume: 4 start-page: e07540 year: 2015 ident: ref_20 article-title: Circular RNA biogenesis can proceed through an exon-containing lariat precursor publication-title: Elife doi: 10.7554/eLife.07540 – volume: 67 start-page: 214 year: 2017 ident: ref_33 article-title: Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.05.023 – volume: 48 start-page: 3789 year: 2020 ident: ref_75 article-title: circSamd4 represses myogenic transcriptional activity of PUR proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa035 – volume: 1087 start-page: 109 year: 2018 ident: ref_45 article-title: Circular RNA in Exosomes publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-13-1426-1_9 – volume: 19 start-page: 141 year: 2013 ident: ref_5 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats publication-title: RNA doi: 10.1261/rna.035667.112 – volume: 122 start-page: 246 year: 2018 ident: ref_25 article-title: Quaking Inhibits Doxorubicin-Mediated Cardiotoxicity Through Regulation of Cardiac Circular RNA Expression publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.311335 – volume: 22 start-page: 288 year: 2020 ident: ref_94 article-title: Closing the circle: Current state and perspectives of circular RNA databases publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz175 – volume: 119 start-page: 996 year: 2016 ident: ref_27 article-title: RBM20 Regulates Circular RNA Production From the Titin Gene publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.309568 – volume: 30 start-page: 157 year: 2019 ident: ref_71 article-title: CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.05.009 – volume: 34 start-page: 410 year: 2016 ident: ref_84 article-title: Transcriptome-scale RNase-footprinting of RNA-protein complexes publication-title: Nat. Biotechnol doi: 10.1038/nbt.3441 – volume: 7 start-page: 3842 year: 2017 ident: ref_58 article-title: A Circular RNA Binds To and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair publication-title: Theranostics doi: 10.7150/thno.19764 – volume: 69 start-page: 354 year: 2018 ident: ref_82 article-title: Advances in CLIP Technologies for Studies of Protein-RNA Interactions publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.01.005 – volume: 15 start-page: 611 year: 2016 ident: ref_18 article-title: The Biogenesis of Nascent Circular RNAs publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.03.058 – volume: 9 start-page: 3526 year: 2019 ident: ref_51 article-title: Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma publication-title: Theranostics doi: 10.7150/thno.32796 – volume: 11 start-page: 2 year: 2019 ident: ref_98 article-title: Reconstruction of full-length circular RNAs enables isoform-level quantification publication-title: Genome Med. doi: 10.1186/s13073-019-0614-1 – volume: 11 start-page: e4088 year: 2021 ident: ref_83 article-title: Antisense Oligo Pulldown of Circular RNA for Downstream Analysis publication-title: Bio Protoc. doi: 10.21769/BioProtoc.4088 – volume: 1863 start-page: 194372 year: 2020 ident: ref_41 article-title: Circular RNAs in myogenesis publication-title: Biochim. Biophys. Acta Gene Regul. Mech. doi: 10.1016/j.bbagrm.2019.02.011 |
SSID | ssj0001476660 |
Score | 2.4446492 |
SecondaryResourceType | review_article |
Snippet | Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 48 |
SubjectTerms | Binding sites Biosynthesis circRNA Circular RNA decoy Gene expression Localization MicroRNAs miRNA mRNA stability Nuclear transport Physiology Protein interaction Proteins Review RNA transport RNA-binding protein splicing translation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagvXBBhYJYKMhIwAVFTR3_xCe0rVpVSKyqFZV6i-yxAyuVpOxuD73xDrwhT8KM17vdHOAajxRn_jwz_jLD2DtpndZRYZKjQltIh5buMS4ogg_CWcyKyjQl4stEn1_Kz1fqKhfcFhlWufaJyVGHHqhGfkiBsdTkPj_d_CxoahTdruYRGg_ZLrrgGjV89_h0cjG9r7JIg_F5uUK8V5jfH3aAEiI1L2nkz9ZZlFr2D-LMIUpy69g522OPc7zIxysBP2EPYveU7Y87zJV_3PEPPCE4U2l8n0mqMNHQIT7tryPvW34ymyecKZ9Oxn9-_b6gpgyzjqcy4OqPhsUzdnl2-vXkvMhTEQqQSi0x1_NGlN4YNB6n5RF4sNa74Ly0wgBokKYGYUF4ITzBOE1bee81UGpVxeo52-n6Lr5gvI1RGUlfWNcyHnlb-6gF0F10wDgtjNjHNX8ayC3DaXLFdYOpA3Gz2ebmiL3fUN-sWmX8g-6YWL2hoQbX6UE__9Zke2lAaecs6BYsTUEH64URAT85WF_VCkbsYC2oJlvdornXkRF7u1lGe6FLENfF_pZoUB9kKWkfZiDgwYaGK93se-q8jdGkslK__P_LX7FHgpAvBCyRB2xnOb-NrzF0Wfo3WT__Ag8k8Ys priority: 102 providerName: ProQuest |
Title | Emerging Role of Circular RNA–Protein Interactions |
URI | https://www.proquest.com/docview/2576460429 https://www.proquest.com/docview/2566040448 https://pubmed.ncbi.nlm.nih.gov/PMC8395946 https://doaj.org/article/c56aa9c6fc95452c9b272d319d9b385c |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlvfRSkqahm6ZBhbaXsMSR9WMdd9MsodAlLA3kZjRjmS6k3pBsDr3lHfKGeZLOyM5iH0ovPRmsOUgzI8980ucZIT5pH6yNhkCOqeqxDrTTgfKCcQWVCp5QUZa6RHyf2_NL_e3KXPVafTEnrC0P3CruGI0NwaOt0XM7bPSgnKrIcSoPeWGQv74U83pgKp2uaEd5edYy3XPC9ccNkmXYvTNu9dOLQalU_yC_HLIje-Fmti1ed3minLTz2xEvYvNG7E4awsi_fssvMjE305H4rtB8ssTNhuRidR3lqpany9vEL5WL-eTp4fGCizEsG5mO_9o_Ge7eisvZ2Y_T83HXDWGM2pg1YTxwKgPnaO3B6hME9B5CFUB75RAtaleg8qhAKWD6pqtzALDIkCqP-Z7YalZNfCdkHaNxmldYFDqegC8gWoV8B11RflaNxNGzfkrsSoVzx4rrkiADa7Psa3MkPm-kb9oSGX-Rm7KqNzJc2Dq9IHOXnbnLf5l7JA6eDVV2u-2uZNCkLYfWkfi4GaZ9wpcfoYmre5Yhf9CZ5nm4gYEHExqONMufqeI2ZZHGa7v_P1bwXrxSzIth2ok-EFvr2_v4gRKbNRyKl5Pp1-mMntOz-cXiMPn0H8e9--E |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuCCiIhUKNRLmgqKnj2PEBoW1ptaXtqlq1Um8h_gmsVJKyuxXqjXfgPXgonqQz-dluDnDrNbYSZzxjzzcezwfwVuhMSh8jyIldHogMLd2gXxA443imERWFFUvE8UgOz8Tn8_h8Bf60d2EorbJdE6uF2pWWYuRb5BgLScvnx8sfAbFG0elqS6FRq8Whv_6JkG324eATzu8m5_t7p7vDoGEVCKyI4zliJaN4aJRC5cuk2LbGam0ylxmhubJWWqESy7XlhnNDaZAqj4wx0hI0iXyE770HqyJCV6EHqzt7o5PxbVRHKMQDYZ1hH0U63CosagSZVUgUQ0t7X0UR0PFru1mZS9vc_iN42PinbFAr1GNY8cUTWBsUiM2_X7N3rMoYrULxayAookUkR2xcXnhW5mx3Mq3yWtl4NPj76_cJFYGYFKwKO9Y3KGZP4exO5PUMekVZ-OfAcu9jJegPk0T4baMT4yW3dPbt0C90fXjfyie1TYlyYsq4SBGqkDTTZWn2YXPR-7IuzfGPfjsk6kUfKqhdPSinX9PGPlMbyyzTVuZWE-u61YYr7vCXnTZREts-rLcTlTZWPktvdbIPbxbNaJ906JIVvryiPqgPIhQ0DtWZ4M6Aui3F5FtV6Ru911gL-eL_H9-A-8PT46P06GB0-BIecMq6oaQWsQ69-fTKv0K3aW5eN7rK4Mtdm8cNRXkuOQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYS4IKAgFgoYiXJB0aaOY8cHhLY_q5bCarWiUm8hdhxYqSRldyvUG-_A2_A4PAkzTrLdHODWa2wlznjGnhl_ng_gldCZlC7GICfOi0BkaOkG_YIgNznPNEZFoWeJ-DiWR6fi_Vl8tgG_27swBKts10S_UOeVpRz5gBxjIWn5HBQNLGJyMHp38T0gBik6aW3pNGoVOXFXPzB8W7w9PsC53uF8dPhp_yhoGAYCK-J4iXGTUTw0SqEiZlLsWmO1NlmeGaG5slZaoRLLteWGc0OQSFVExhhpKUyJXITvvQWbiq6P9mBz73A8mV5neITC2CCs0fZRpMNBaVE7yMRCohta2wc9XUDHx-0iNNe2vNE9uNv4qmxYK9d92HDlA9galhinf7tir5lHj_q0_BYIym4R4RGbVueOVQXbn809xpVNx8M_P39NqCDErGQ-BVnfplg8hNMbkdcj6JVV6R4DK5yLlaA_TBLhdo1OjJPc0jl4jj5i3oc3rXxS25QrJ9aM8xTDFpJmui7NPuysel_UZTr-0W-PRL3qQ8W1_YNq_iVtbDW1scwybWVhNTGwW2244jn-cq5NlMS2D9vtRKWNxS_Sa_3sw8tVM9oqHcBkpasuqQ_qgwgFjUN1JrgzoG5LOfvqq36jJxtrIZ_8_-Mv4DaaRfrheHzyFO5wAuAQvkVsQ285v3TP0INamueNqjL4fNPW8RcdzzJ3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Role+of+Circular+RNA%E2%80%93Protein+Interactions&rft.jtitle=Non-coding+RNA&rft.au=Das%2C+Arundhati&rft.au=Sinha%2C+Tanvi&rft.au=Shyamal%2C+Sharmishtha&rft.au=Panda%2C+Amaresh+Chandra&rft.date=2021-08-04&rft.pub=MDPI&rft.eissn=2311-553X&rft.volume=7&rft.issue=3&rft_id=info:doi/10.3390%2Fncrna7030048&rft_id=info%3Apmid%2F34449657&rft.externalDocID=PMC8395946 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-553X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-553X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-553X&client=summon |