Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids
[Display omitted] Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nuc...
Saved in:
Published in | Advanced drug delivery reviews Vol. 184; p. 114197 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases. |
---|---|
AbstractList | Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would otherwise not be possible with traditional therapies. Due to their ability to transport genomes to cells, Viral vectors have been a platform of choice in gene delivery applications. However, since their delivery is not precision based, the application has led to off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are being developed. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for gene delivery, efficiently and precisely. We also discuss synthesis strategies via microfluidics used for high throughput fabrication of such non-viral gene delivery vehicles. Finally, the application of these vehicles for the delivery of different genetic materials such as peptides and RNA for different diseases ranging from more common diseases to rare diseases are explored. Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases.Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases. [Display omitted] Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases. Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases. |
ArticleNumber | 114197 |
Author | Willemen, Niels Prakash, Gyan Shokr, Ahmed Hassan, Shabir Bashir, Showkeen Muzamil Shin, Su Ryon |
AuthorAffiliation | 1. Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115 – USA 2 Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Cambridge MA 02139 – USA 5. Department of Biology, Khalifa University, Abu Dhabi, P.O 127788, United Arab Emirates 3. Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands 4. Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar -190006, Jammu and Kashmir, India |
AuthorAffiliation_xml | – name: 3. Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands – name: 4. Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar -190006, Jammu and Kashmir, India – name: 1. Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115 – USA – name: 5. Department of Biology, Khalifa University, Abu Dhabi, P.O 127788, United Arab Emirates – name: 2 Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Cambridge MA 02139 – USA |
Author_xml | – sequence: 1 givenname: Gyan orcidid: 0000-0003-4725-9178 surname: Prakash fullname: Prakash, Gyan organization: Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA – sequence: 2 givenname: Ahmed surname: Shokr fullname: Shokr, Ahmed organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA – sequence: 3 givenname: Niels orcidid: 0000-0003-1061-3313 surname: Willemen fullname: Willemen, Niels organization: Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands – sequence: 4 givenname: Showkeen Muzamil surname: Bashir fullname: Bashir, Showkeen Muzamil organization: Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190006, Jammu and Kashmir, India – sequence: 5 givenname: Su Ryon surname: Shin fullname: Shin, Su Ryon email: sshin4@bwh.harvard.edu organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA – sequence: 6 givenname: Shabir surname: Hassan fullname: Hassan, Shabir email: shassan@bwh.harvard.edu, shassan@bwh.harvard.edu organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35288219$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVFrFDEUhYNU7Lb6B3yQefRltkkmmZmACFKqFioiKPgWMjd37F1mkzWZWei_N-u2oj706T7c850D55yxkxADMvZS8LXgor3YrJ33aS25lGshlDDdE7YSfSfrXhp1wlZFZGrFzfdTdpbzhnMhu5Y_Y6eNln0vhVmxL58IUhynhTxBNbohEbiZYqjiWE20I18FF-LOpZlgwlyNMVXzLVYeJ9pjujvowlJeBXdAPj9nT0c3ZXxxf8_Zt_dXXy8_1jefP1xfvrupQWk913oE12HburbVvBs4yK4bEEbjnVDNoNG1euQehGmUHyQYLnnPtQLQGvteNefs7dF3twxb9IBhTm6yu0Rbl-5sdGT__QS6tT_i3hreaKFkMXh9b5DizwXzbLeUAafJBYxLtrJtjJTSyL5IX_2d9Sfkocci6I-CUmbOCUcLNP_usUTTZAW3h8nsxh4ms4fJ7HGygsr_0Af3R6E3RwhLw3vCZDMQBkBPCWG2PtJj-C9pS7EB |
CitedBy_id | crossref_primary_10_1002_adhm_202203033 crossref_primary_10_1126_sciadv_adc9375 crossref_primary_10_3390_biomedicines11071783 crossref_primary_10_1016_j_ijpx_2024_100283 crossref_primary_10_1016_j_apmt_2024_102442 crossref_primary_10_1038_s41467_023_42189_3 crossref_primary_10_1016_j_biomaterials_2023_122253 crossref_primary_10_1002_marc_202300670 crossref_primary_10_1021_acsbiomaterials_4c02052 crossref_primary_10_1080_08982104_2024_2378962 crossref_primary_10_3390_micro3040058 crossref_primary_10_1021_acs_jafc_4c03307 crossref_primary_10_1039_D3NA01125A crossref_primary_10_3390_molecules27144602 crossref_primary_10_1016_j_apsb_2023_02_014 crossref_primary_10_1021_acsami_3c00494 crossref_primary_10_1186_s12943_023_01925_5 crossref_primary_10_3390_pharmaceutics14091940 crossref_primary_10_1016_j_omtm_2023_101134 crossref_primary_10_1002_adhm_202402219 crossref_primary_10_1039_D3TB00346A crossref_primary_10_1007_s13206_024_00182_y crossref_primary_10_1016_j_jpha_2024_100996 crossref_primary_10_1016_j_apsb_2022_11_004 crossref_primary_10_1021_acsami_4c22581 crossref_primary_10_1007_s12274_023_6031_1 crossref_primary_10_1002_adma_202306246 crossref_primary_10_1016_j_inoche_2024_112954 crossref_primary_10_1016_j_jddst_2022_103964 crossref_primary_10_3390_jpm14111092 crossref_primary_10_1002_advs_202405406 crossref_primary_10_1039_D2LC00240J crossref_primary_10_1002_adhm_202400366 crossref_primary_10_1016_j_nantod_2025_102653 crossref_primary_10_1063_5_0228447 crossref_primary_10_1007_s10544_023_00649_z crossref_primary_10_1007_s13346_023_01398_5 crossref_primary_10_1038_s43586_024_00348_w crossref_primary_10_1016_j_ces_2022_118080 crossref_primary_10_3390_pharmaceutics16040514 crossref_primary_10_1016_j_nantod_2024_102314 crossref_primary_10_1016_j_tifs_2025_104937 crossref_primary_10_3390_pharmaceutics15102490 crossref_primary_10_1002_mog2_67 crossref_primary_10_1021_acsami_4c08896 crossref_primary_10_2147_IJN_S457302 crossref_primary_10_3390_nano14020160 crossref_primary_10_1039_D3LC00821E crossref_primary_10_1016_j_drudis_2023_103507 crossref_primary_10_1016_j_mattod_2024_01_004 |
Cites_doi | 10.1016/j.jconrel.2015.08.007 10.1038/d41573-020-00007-1 10.1093/nar/gkq347 10.1021/acs.nanolett.1c01353 10.1038/srep05128 10.1016/S0939-6411(02)00130-3 10.3389/fimmu.2019.00594 10.1016/j.cej.2019.04.051 10.1038/nnano.2017.134 10.1038/s41591-019-0401-y 10.1039/C7LC01313B 10.1038/s41586-021-03534-y 10.1038/s41586-020-2622-0 10.1038/nrd.2017.243 10.1038/s41586-020-1978-5 10.1016/j.addr.2012.09.037 10.1126/sciadv.aaz6893 10.1038/nbt.4005 10.1038/s41587-020-0561-9 10.1038/nbt.3290 10.1038/gt.2016.72 10.1038/s41587-021-00933-4 10.1016/0169-409X(94)90016-7 10.1007/s00542-012-1452-x 10.1016/j.nantod.2017.06.008 10.1016/j.cell.2020.05.037 10.1039/C5RA04690D 10.1089/nat.2018.0721 10.1136/gutjnl-2019-318269 10.15252/emmm.201607485 10.2217/nnm-2018-0040 10.1038/aps.2017.2 10.1126/science.aay3638 10.1021/la204833h 10.1016/j.canlet.2019.04.040 10.1038/srep25876 10.3389/fchem.2020.589959 10.1038/s41565-019-0591-y 10.1038/nrd2742 10.1002/9781118444726.ch4 10.1038/mtna.2016.43 10.1038/s41565-020-0669-6 10.1200/JCO.2020.38.15_suppl.3136 10.1038/s41551-019-0357-8 10.1002/adhm.202001244 10.1007/978-3-319-26920-7_1 10.1126/sciadv.aax5032 10.1126/science.aau1549 10.1016/j.cis.2003.10.023 10.1093/nar/gkx135 10.1016/j.ces.2008.08.005 10.1208/s12249-019-1325-z 10.1016/j.chembiol.2012.07.011 10.1016/j.cherd.2019.11.031 10.1158/1078-0432.CCR-15-0866 10.1016/j.celrep.2018.02.014 10.1016/j.ces.2009.01.067 10.1016/j.addr.2020.12.014 10.1021/acs.molpharmaceut.9b01182 10.1200/JCO.2013.55.0376 10.1021/acs.molpharmaceut.0c00913 10.1016/j.addr.2018.03.008 10.3390/vaccines7040122 10.1016/j.ijpharm.2020.119266 10.1038/s41573-019-0017-4 10.2217/nnm.16.5 10.1021/ja301621z 10.1126/science.aat5011 10.1126/sciadv.abc9450 10.1126/science.aav8692 10.1016/j.jcf.2019.12.012 10.1038/s41467-018-06936-1 10.1016/j.ijpharm.2019.06.033 10.1016/j.ijpharm.2020.119167 10.1126/science.1095833 10.1016/j.ejpb.2007.08.001 10.1016/S0142-9612(02)00578-1 10.1186/s12967-019-1804-8 10.1038/s41578-021-00281-4 10.1038/nnano.2011.166 10.1021/ie300592u 10.1186/s12645-019-0055-y 10.1016/j.jconrel.2016.05.059 10.1016/j.biomaterials.2021.120826 10.1016/S1525-0016(16)35855-5 10.1016/j.addr.2012.09.021 10.1016/j.ymthe.2019.02.019 10.1039/D1LC00812A 10.1038/s41467-018-05041-7 10.3109/1061186X.2011.645161 10.1038/s41563-020-00886-0 10.1093/nar/gkv1222 10.1038/s41587-020-0642-9 10.1007/s13346-021-00929-2 10.1016/j.jconrel.2016.03.019 10.1007/s00439-017-1779-6 10.1038/s41578-021-00358-0 10.3390/pharmaceutics12111095 10.1016/j.colsurfb.2012.01.018 10.1016/j.jconrel.2020.12.013 10.3390/pharmaceutics13020206 10.1021/acs.nanolett.9b04246 10.1016/j.addr.2020.06.026 10.3389/fphar.2021.644718 10.1016/j.annonc.2020.08.209 10.1158/1078-0432.CCR-20-0414 10.1021/acsomega.8b00341 10.1016/j.ymthe.2017.03.035 10.1007/s10404-017-2016-2 10.1038/gt.2016.46 10.1089/oli.2008.0164 10.1158/1538-7445.AM2011-2829 10.1073/pnas.1606050113 10.1158/1538-7445.AM2020-CT032 10.1038/nature18300 10.1016/j.cell.2017.03.016 10.1007/s11095-017-2134-2 10.1111/imcb.12194 10.1021/acs.molpharmaceut.8b01290 10.1002/adma.201601900 10.1146/annurev-biochem-013118-111730 10.1016/S0378-5173(02)00081-9 10.1016/j.ymthe.2018.11.018 10.3390/cancers11081198 10.1039/D1NR06195J 10.1016/S0021-9258(19)70482-7 10.1126/science.abm0594 10.1038/nature21428 10.1016/j.jconrel.2014.06.007 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.addr.2022.114197 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1872-8294 |
EndPage | 114197 |
ExternalDocumentID | PMC9035142 35288219 10_1016_j_addr_2022_114197 S0169409X22000874 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R21 EB026824 – fundername: NIAMS NIH HHS grantid: R01 AR074234 – fundername: NIAMS NIH HHS grantid: R01 AR077132 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO ABFNM ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HX~ HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SPT SSP SSU SSZ T5K TEORI WUQ Y6R ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c455t-5fca7e66a66507b0c277becf9da143b5ea65f0dc1934db2c90208054cc55e8843 |
IEDL.DBID | .~1 |
ISSN | 0169-409X 1872-8294 |
IngestDate | Thu Aug 21 18:37:01 EDT 2025 Fri Jul 11 15:27:19 EDT 2025 Mon Jul 21 06:01:52 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 Tue Jul 01 03:36:08 EDT 2025 Fri Feb 23 02:40:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gene delivery CRISPR-delivery Non-viral vectors Lipid nanoparticles Microfluidics |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-5fca7e66a66507b0c277becf9da143b5ea65f0dc1934db2c90208054cc55e8843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1061-3313 0000-0003-4725-9178 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0169409X22000874 |
PMID | 35288219 |
PQID | 2639222928 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9035142 proquest_miscellaneous_2639222928 pubmed_primary_35288219 crossref_citationtrail_10_1016_j_addr_2022_114197 crossref_primary_10_1016_j_addr_2022_114197 elsevier_sciencedirect_doi_10_1016_j_addr_2022_114197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Advanced drug delivery reviews |
PublicationTitleAlternate | Adv Drug Deliv Rev |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rosenblum (b0090) 2020; 6 Loquai (b0585) 2020; 38 Let’s talk about lipid nanoparticles. J.D. Gillmore et al., CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis Moss, Popova, Hadrup, Astakhova, Taskova (b0365) 2019; 16 Landrum, Lee, Benson, Brown, Chao, Chitipiralla, Gu, Hart, Hoffman, Hoover, Jang, Katz, Ovetsky, Riley, Sethi, Tully, Villamarin-Salomon, Rubinstein, Maglott (b0435) 2016; 44 Hartmann, Schüßler‐Lenz, Bondanza, Buchholz (b0460) 2017; 9 Joseph, Bunjes (b0240) 2013 Baeza Garcia (b0645) 2018; 9 Chen, Love, Chen, Eltoukhy, Kastrup, Sahay, Jeon, Dong, Whitehead, Anderson (b0305) 2012; 134 Wiesinger, März, Kummer, Schuler, Dörrie, Schuler-Thurner, Schaft (b0470) 2019; 11 Kimura, Maeki, Sato, Note, Ishida, Tani, Harashima, Tokeshi (b0310) 2018; 3 DeRosa (b0600) 2016; 23 Kim, Eygeris, Gupta, Sahay (b0085) 2021; 170 Pardi, Hogan, Porter, Weissman (b0565) 2018; 17 Versteeg, Almutairi, Hotez, Pollet (b0640) 2019; 7 Fiedler, Lazzaro, Lutz, Rauch, Heidenreich (b0560) 2016 Roces, Lou, Jain, Abraham, Thomas, Halbert, Perrie (b0250) 2020; 12 Chen, Tam, Lin, Sung, Tam, Cullis (b0185) 2016; 235 Allen, Cullis (b0495) 2004; 303 Liu, Xie, Zhang, Zhang (b0245) 2012; 20 Shao, Gavriilidis, Angeli (b0325) 2009; 64 Beltrán-Gracia, López-Camacho, Higuera-Ciapara, Velázquez-Fernández, Vallejo-Cardona (b0490) 2019; 10 (2012) S21. Anzalone, Koblan, Liu (b0010) 2020; 38 (2016). doi: 10.1007/978-3-319-26920-7_1. Cheng (b0110) 2020; 15 Lorenz, Bojko, Bunjes, Dietzel (b0260) 2018; 18 Kranz, Diken, Haas, Kreiter, Loquai, Reuter, Meng, Fritz, Vascotto, Hefesha, Grunwitz, Vormehr, Hüsemann, Selmi, Kuhn, Buck, Derhovanessian, Rae, Attig, Diekmann, Jabulowsky, Heesch, Hassel, Langguth, Grabbe, Huber, Türeci, Sahin (b0100) 2016; 534 Shim (b0130) 2017; 38 Melzig, Finke, Schilde, Vierheller, Dietzel, Kwade (b0340) 2019; 371 Zhang, Maruggi, Shan, Li (b0630) 2019; 10 Kupetz, Bunjes (b0225) 2014; 189 Erfle, Riewe, Bunjes, Dietzel (b0320) 2017; 21 Mukalel, Riley, Zhang, Mitchell (b0395) 2019; 458 Hendel (b0415) 2015; 33 Hou, Zaks, Langer, Dong (b0385) 2021; 6 Suzuki, Onuma, Sato, Sato, Hashiba, Maeki, Tokeshi, Kayesh, Kohara, Tsukiyama-Kohara, Harashima (b0370) 2021; 330 Corbett, Edwards, Leist, Abiona, Boyoglu-Barnum, Gillespie, Himansu, Schäfer, Ziwawo, DiPiazza, Dinnon, Elbashir, Shaw, Woods, Fritch, Martinez, Bock, Minai, Nagata, Hutchinson, Wu, Henry, Bahl, Garcia-Dominguez, Ma, Renzi, Kong, Schmidt, Wang, Zhang, Phung, Chang, Loomis, Altaras, Narayanan, Metkar, Presnyak, Liu, Louder, Shi, Leung, Yang, West, Gully, Stevens, Wang, Wrapp, Doria-Rose, Stewart-Jones, Bennett, Alvarado, Nason, Ruckwardt, McLellan, Denison, Chappell, Moore, Morabito, Mascola, Baric, Carfi, Graham (b0050) 2020; 586 Billingsley (b0465) 2020; 20 Bulcha, Wang, Ma, Tai, Gao (b0060) 2021; 6 Aldosari, Alfagih, Almurshedi (b0045) 2021; 13 Schmidt (b0535) 2020; 31 Shepherd, Issadore, Mitchell (b0270) 2021; 274 Behlke (b0410) 2008; 18 Tadros, Izquierdo, Esquena, Solans (b0210) 2004; 108-109 Tam (b0575) 2016; 113 Egorov, Pieters, Korach-Rechtman, Shklover, Schroeder (b0665) 2021; 11 Tian, Liang, Cui, Liang, Wang, Lv, Cheng, Zhang (b0505) 2021; 12 Van Hoecke, Roose (b0555) 2019; 17 Doudna (b0005) 2020; 578 Finn (b0065) 2018; 22 Lee, Zhang, Tam, Quick, Tam, Lin, Chen, Liu, Nair, Zlatev, Rajeev, Manoharan, Rennie, Cullis (b0510) 2016; 5 Kulkarni, Cullis, van der Meel (b0155) 2018; 28 Christopher Boyd, Guo, Huang, Kerem, Oren, Walker, Hart (b0025) 2020; 19 Krienke, Kolb, Diken, Streuber, Kirchhoff, Bukur, Akilli-Öztürk, Kranz, Berger, Petschenka, Diken, Kreiter, Yogev, Waisman, Karikó, Türeci, Sahin (b0105) 2021; 371 Setten, Rossi, Han (b0500) 2019; 18 Wang, Glass, Xu (b0055) 2017; 24 Guo (b0175) 2019; 97 Nakamura, Kawai, Sato, Maeki, Tokeshi, Harashima (b0190) 2020; 17 (2021) 99. Arbab, Shen, Mok, Wilson, Matuszek, Cassa, Liu (b0445) 2020; 182 Cabral (b0200) 2011 Schubert (b0280) 2003; 55 Cully (b0485) 2020; 19 Wang, Miao, Satterlee, Huang (b0145) 2015; 87 Wei, Quan, Zhou, Zhan (b0215) 2018 Wang, Hashemi, Stratton, Arinzeh (b0660) 2021; 10 Song (b0080) 2020; 4 Knott, Doudna (b0015) 2018; 361 Liu, Bi, Wang, Liu, Jiang, Xu, Zhang (b0670) 2021; 13 Zhigaltsev, Belliveau, Hafez, Leung, Huft, Hansen, Cullis (b0265) 2012; 28 Tian, Cai, Liu, Sun (b0275) 2022; 22 Stenson (b0440) 2017; 136 Schultheis (b0525) 2014; 32 Jimeno (b0530) 2020; 80 Shrimal, Jadeja, Patel (b0375) 2020; 153 Rothgangl, Dennis, Lin, Oka, Witzigmann, Villiger, Qi, Hruzova, Kissling, Lenggenhager, Borrelli, Egli, Frey, Bakker, Walker, Kadina, Victorov, Pacesa, Kreutzer, Kontarakis, Moor, Jinek, Weissman, Stoffel, van Boxtel, Holden, Pardi, Thöny, Häberle, Tam, Semple, Schwank (b0450) 2021; 39 Pardi, Tuyishime, Muramatsu, Kariko, Mui, Tam, Madden, Hope, Weissman (b0570) 2015; 217 Magadum, Kaur, Zangi (b0595) 2019; 27 Kim, Luk, Wolfe, Kim (b0020) 2019; 88 Rurik, Tombácz, Yadegari, Méndez Fernández, Shewale, Li, Kimura, Soliman, Papp, Tam, Mui, Albelda, Puré, June, Aghajanian, Weissman, Parhiz, Epstein (b0475) 2022; 375 Semple (b0520) 2011; 71 Sahu, Haque, Weidensee, Weinmann, Kormann (b0590) 2019; 27 51. Results of a Phase I Trial of SGT-53: A Systemically Administered, Tumor-Targeting Immunoliposome Nanocomplex Incorporating a Plasmid Encoding wtp53. Dietzel, A. A brief introduction to microfluidics, in Webb (b0255) 2020; 582 Carugo, Bottaro, Owen, Stride, Nastruzzi (b0345) 2016; 6 (2020) 910–910. Whitehead, Langer, Anderson (b0170) 2009; 8 Cheung, Al-Jamal (b0315) 2019; 566 Nelson, Sorensen, Mintri, Rabideau, Zheng, Besin, Khatwani, Su, Miracco, Issa, Hoge, Stanton, Joyal (b0420) 2020; 6 Yamamoto (b0515) 2015; 21 Maeki, Kimura, Sato, Harashima, Tokeshi (b0140) 2018; 128 Mehnert, Mäder (b0230) 2012; 64 Sarker (b0550) 2020; 26 Hou, Xie, Huang, Zhu (b0235) 2003; 24 Wu (b0030) 2019; 25 Tomeh, Zhao (b0120) 2020; 17 Riewe, Erfle, Melzig, Kwade, Dietzel, Bunjes (b0355) 2020; 579 Deleavey, Damha (b0405) 2012; 19 Sato, Note, Maeki, Kaji, Baba, Tokeshi, Harashima (b0195) 2016; 229 Allen, Cullis (b0150) 2013; 65 Hoshyar, Gray, Han, Bao (b0220) 2016; 11 Phua, Staats, Leong, Nair (b0580) 2014; 4 Allen (b0180) 1994; 13 Witzigmann (b0160) 2020; 159 Richner, Himansu, Dowd, Butler, Salazar, Fox, Julander, Tang, Shresta, Pierson, Ciaramella, Diamond (b0040) 2017; 169 Yin (b0400) 2017; 35 Ma, Dichwalkar, Chang, Cossette, Garafola, Zhang, Fichter, Wang, Liang, Silva, Kumari, Mehta, Abraham, Thai, Li, Wittrup, Irvine (b0480) 2019; 365 Gaumet, Vargas, Gurny, Delie (b0205) 2008; 69 Bahl (b0430) 2017; 25 High-dose AAV gene therapy deaths. Gallego-Perez (b0650) 2017; 12 Svitkin (b0610) 2017; 45 Maeki, Saito, Sato, Yasui, Kaji, Ishida, Tani, Baba, Harashima, Tokeshi (b0300) 2015; 5 Hu, Yuan, Zhang, Fang (b0285) 2002; 239 Shepherd, Warzecha, Yadavali, El-Mayta, Alameh, Wang, Weissman, Wilson, Issadore, Mitchell (b0360) 2021; 21 Fraley, Subramani, Berg, Papahadjopoulos (b0165) 1980; 255 Jin (b0655) 2016; 28 Veiga (b0095) 2018; 9 Hassan, Prakash, Bal Ozturk, Saghazadeh, Farhan Sohail, Seo, Remzi Dokmeci, Zhang, Khademhosseini (b0390) 2017; 15 Cao, Xu, Wang, Ling, Dong, Xia, Sun (b0380) 2019; 20 Xu, Tan, Yun, Shen, Zhang, Tu, Zhao, Tian, Yang, Yao (b0330) 2012; 51 Titze-de-Almeida, David, Titze-de-Almeida (b0125) 2017; 34 Pardi, Hogan, Pelc, Muramatsu, Andersen, DeMaso, Dowd, Sutherland, Scearce, Parks, Wagner, Granados, Greenhouse, Walker, Willis, Yu, McGee, Sempowski, Mui, Tam, Huang, Vanlandingham, Holmes, Balachandran, Sahu, Lifton, Higgs, Hensley, Madden, Hope, Karikó, Santra, Graham, Lewis, Pierson, Haynes, Weissman (b0425) 2017; 543 Akinc (b0620) 2019; 14 Liu (b0115) 2021; 20 Huang (b0135) 2020; 6 Zhang, Yun, Shen, Chen, Yao, Chen, Chen (b0350) 2008; 63 Anderson (b0615) 2010; 38 Musunuru, Chadwick, Mizoguchi, Garcia, DeNizio, Reiss, Wang, Iyer, Dutta, Clendaniel, Amaonye, Beach, Berth, Biswas, Braun, Chen, Colace, Ganey, Gangopadhyay, Garrity, Kasiewicz, Lavoie, Madsen, Matsumoto, Mazzola, Nasrullah, Nneji, Ren, Sanjeev, Shay, Stahley, Fan, Tam, Gaudelli, Ciaramella, Stolz, Malyala, Cheng, Rajeev, Rohde, Bellinger, Kathiresan (b0070) 2021; 593 Richter, Krah, Büttgenbach (b0335) 2012; 18 Guevara, Persano, Persano (b0455) 2020; 8 Dong, Ng, Shen, Kim, Tan (b0295) 2012; 94 Berraondo, Martini, Avila, Fontanellas (b0605) 2019; 68 Amoasii, Hildyard, Li, Sanchez-Ortiz, Mireault, Caballero, Harron, Stathopoulou, Massey, Shelton, Bassel-Duby, Piercy, Olson (b0035) 2018; 362 Hartmann (10.1016/j.addr.2022.114197_b0460) 2017; 9 Hassan (10.1016/j.addr.2022.114197_b0390) 2017; 15 Loquai (10.1016/j.addr.2022.114197_b0585) 2020; 38 Guevara (10.1016/j.addr.2022.114197_b0455) 2020; 8 Anderson (10.1016/j.addr.2022.114197_b0615) 2010; 38 Moss (10.1016/j.addr.2022.114197_b0365) 2019; 16 Tam (10.1016/j.addr.2022.114197_b0575) 2016; 113 Egorov (10.1016/j.addr.2022.114197_b0665) 2021; 11 Erfle (10.1016/j.addr.2022.114197_b0320) 2017; 21 Maeki (10.1016/j.addr.2022.114197_b0300) 2015; 5 Versteeg (10.1016/j.addr.2022.114197_b0640) 2019; 7 Knott (10.1016/j.addr.2022.114197_b0015) 2018; 361 10.1016/j.addr.2022.114197_b0625 Riewe (10.1016/j.addr.2022.114197_b0355) 2020; 579 Kim (10.1016/j.addr.2022.114197_b0020) 2019; 88 Phua (10.1016/j.addr.2022.114197_b0580) 2014; 4 Lee (10.1016/j.addr.2022.114197_b0510) 2016; 5 Wu (10.1016/j.addr.2022.114197_b0030) 2019; 25 Chen (10.1016/j.addr.2022.114197_b0185) 2016; 235 Hou (10.1016/j.addr.2022.114197_b0235) 2003; 24 Magadum (10.1016/j.addr.2022.114197_b0595) 2019; 27 Wang (10.1016/j.addr.2022.114197_b0055) 2017; 24 10.1016/j.addr.2022.114197_b0290 Dong (10.1016/j.addr.2022.114197_b0295) 2012; 94 Schubert (10.1016/j.addr.2022.114197_b0280) 2003; 55 Bulcha (10.1016/j.addr.2022.114197_b0060) 2021; 6 Akinc (10.1016/j.addr.2022.114197_b0620) 2019; 14 Titze-de-Almeida (10.1016/j.addr.2022.114197_b0125) 2017; 34 Berraondo (10.1016/j.addr.2022.114197_b0605) 2019; 68 Tian (10.1016/j.addr.2022.114197_b0275) 2022; 22 Guo (10.1016/j.addr.2022.114197_b0175) 2019; 97 Finn (10.1016/j.addr.2022.114197_b0065) 2018; 22 Veiga (10.1016/j.addr.2022.114197_b0095) 2018; 9 Jimeno (10.1016/j.addr.2022.114197_b0530) 2020; 80 Rothgangl (10.1016/j.addr.2022.114197_b0450) 2021; 39 Doudna (10.1016/j.addr.2022.114197_b0005) 2020; 578 Melzig (10.1016/j.addr.2022.114197_b0340) 2019; 371 Corbett (10.1016/j.addr.2022.114197_b0050) 2020; 586 Allen (10.1016/j.addr.2022.114197_b0150) 2013; 65 Schmidt (10.1016/j.addr.2022.114197_b0535) 2020; 31 Whitehead (10.1016/j.addr.2022.114197_b0170) 2009; 8 Shepherd (10.1016/j.addr.2022.114197_b0270) 2021; 274 Krienke (10.1016/j.addr.2022.114197_b0105) 2021; 371 Ma (10.1016/j.addr.2022.114197_b0480) 2019; 365 Kim (10.1016/j.addr.2022.114197_b0085) 2021; 170 Nelson (10.1016/j.addr.2022.114197_b0420) 2020; 6 Lorenz (10.1016/j.addr.2022.114197_b0260) 2018; 18 Hu (10.1016/j.addr.2022.114197_b0285) 2002; 239 Liu (10.1016/j.addr.2022.114197_b0115) 2021; 20 Landrum (10.1016/j.addr.2022.114197_b0435) 2016; 44 Yamamoto (10.1016/j.addr.2022.114197_b0515) 2015; 21 Hendel (10.1016/j.addr.2022.114197_b0415) 2015; 33 Gallego-Perez (10.1016/j.addr.2022.114197_b0650) 2017; 12 10.1016/j.addr.2022.114197_b0075 Tian (10.1016/j.addr.2022.114197_b0505) 2021; 12 Richter (10.1016/j.addr.2022.114197_b0335) 2012; 18 Rurik (10.1016/j.addr.2022.114197_b0475) 2022; 375 Huang (10.1016/j.addr.2022.114197_b0135) 2020; 6 10.1016/j.addr.2022.114197_b0635 Stenson (10.1016/j.addr.2022.114197_b0440) 2017; 136 Beltrán-Gracia (10.1016/j.addr.2022.114197_b0490) 2019; 10 Christopher Boyd (10.1016/j.addr.2022.114197_b0025) 2020; 19 Gaumet (10.1016/j.addr.2022.114197_b0205) 2008; 69 Wei (10.1016/j.addr.2022.114197_b0215) 2018 Pardi (10.1016/j.addr.2022.114197_b0570) 2015; 217 Webb (10.1016/j.addr.2022.114197_b0255) 2020; 582 Cheng (10.1016/j.addr.2022.114197_b0110) 2020; 15 Rosenblum (10.1016/j.addr.2022.114197_b0090) 2020; 6 Nakamura (10.1016/j.addr.2022.114197_b0190) 2020; 17 Cully (10.1016/j.addr.2022.114197_b0485) 2020; 19 Fiedler (10.1016/j.addr.2022.114197_b0560) 2016 Liu (10.1016/j.addr.2022.114197_b0670) 2021; 13 Kimura (10.1016/j.addr.2022.114197_b0310) 2018; 3 Van Hoecke (10.1016/j.addr.2022.114197_b0555) 2019; 17 10.1016/j.addr.2022.114197_b0540 Wang (10.1016/j.addr.2022.114197_b0660) 2021; 10 Richner (10.1016/j.addr.2022.114197_b0040) 2017; 169 Billingsley (10.1016/j.addr.2022.114197_b0465) 2020; 20 Fraley (10.1016/j.addr.2022.114197_b0165) 1980; 255 Liu (10.1016/j.addr.2022.114197_b0245) 2012; 20 Deleavey (10.1016/j.addr.2022.114197_b0405) 2012; 19 Suzuki (10.1016/j.addr.2022.114197_b0370) 2021; 330 Tomeh (10.1016/j.addr.2022.114197_b0120) 2020; 17 Joseph (10.1016/j.addr.2022.114197_b0240) 2013 Cheung (10.1016/j.addr.2022.114197_b0315) 2019; 566 Arbab (10.1016/j.addr.2022.114197_b0445) 2020; 182 Carugo (10.1016/j.addr.2022.114197_b0345) 2016; 6 Kupetz (10.1016/j.addr.2022.114197_b0225) 2014; 189 Wiesinger (10.1016/j.addr.2022.114197_b0470) 2019; 11 Behlke (10.1016/j.addr.2022.114197_b0410) 2008; 18 Pardi (10.1016/j.addr.2022.114197_b0565) 2018; 17 Kranz (10.1016/j.addr.2022.114197_b0100) 2016; 534 Svitkin (10.1016/j.addr.2022.114197_b0610) 2017; 45 Sato (10.1016/j.addr.2022.114197_b0195) 2016; 229 Cabral (10.1016/j.addr.2022.114197_b0200) 2011 Sahu (10.1016/j.addr.2022.114197_b0590) 2019; 27 Mehnert (10.1016/j.addr.2022.114197_b0230) 2012; 64 Song (10.1016/j.addr.2022.114197_b0080) 2020; 4 Musunuru (10.1016/j.addr.2022.114197_b0070) 2021; 593 Maeki (10.1016/j.addr.2022.114197_b0140) 2018; 128 Anzalone (10.1016/j.addr.2022.114197_b0010) 2020; 38 Cao (10.1016/j.addr.2022.114197_b0380) 2019; 20 Pardi (10.1016/j.addr.2022.114197_b0425) 2017; 543 Bahl (10.1016/j.addr.2022.114197_b0430) 2017; 25 Jin (10.1016/j.addr.2022.114197_b0655) 2016; 28 DeRosa (10.1016/j.addr.2022.114197_b0600) 2016; 23 Shim (10.1016/j.addr.2022.114197_b0130) 2017; 38 Yin (10.1016/j.addr.2022.114197_b0400) 2017; 35 Chen (10.1016/j.addr.2022.114197_b0305) 2012; 134 Setten (10.1016/j.addr.2022.114197_b0500) 2019; 18 Baeza Garcia (10.1016/j.addr.2022.114197_b0645) 2018; 9 Wang (10.1016/j.addr.2022.114197_b0145) 2015; 87 Xu (10.1016/j.addr.2022.114197_b0330) 2012; 51 Shao (10.1016/j.addr.2022.114197_b0325) 2009; 64 Zhang (10.1016/j.addr.2022.114197_b0350) 2008; 63 Kulkarni (10.1016/j.addr.2022.114197_b0155) 2018; 28 Mukalel (10.1016/j.addr.2022.114197_b0395) 2019; 458 Schultheis (10.1016/j.addr.2022.114197_b0525) 2014; 32 Allen (10.1016/j.addr.2022.114197_b0495) 2004; 303 Tadros (10.1016/j.addr.2022.114197_b0210) 2004; 108-109 Hou (10.1016/j.addr.2022.114197_b0385) 2021; 6 Semple (10.1016/j.addr.2022.114197_b0520) 2011; 71 Shepherd (10.1016/j.addr.2022.114197_b0360) 2021; 21 Roces (10.1016/j.addr.2022.114197_b0250) 2020; 12 Zhigaltsev (10.1016/j.addr.2022.114197_b0265) 2012; 28 Allen (10.1016/j.addr.2022.114197_b0180) 1994; 13 Sarker (10.1016/j.addr.2022.114197_b0550) 2020; 26 Witzigmann (10.1016/j.addr.2022.114197_b0160) 2020; 159 Zhang (10.1016/j.addr.2022.114197_b0630) 2019; 10 Amoasii (10.1016/j.addr.2022.114197_b0035) 2018; 362 Hoshyar (10.1016/j.addr.2022.114197_b0220) 2016; 11 Aldosari (10.1016/j.addr.2022.114197_b0045) 2021; 13 Shrimal (10.1016/j.addr.2022.114197_b0375) 2020; 153 |
References_xml | – volume: 159 start-page: 344 year: 2020 end-page: 363 ident: b0160 article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver publication-title: Adv. Drug Deliv. Rev. – volume: 27 start-page: 785 year: 2019 end-page: 793 ident: b0595 article-title: mRNA-Based Protein Replacement Therapy for the Heart publication-title: Mol. Ther. – year: 2018 ident: b0215 article-title: Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application publication-title: Nanomedicine – volume: 20 start-page: 1578 year: 2020 end-page: 1589 ident: b0465 article-title: Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering publication-title: Nano Lett. – volume: 64 start-page: 83 year: 2012 end-page: 101 ident: b0230 article-title: Solid lipid nanoparticles: Production, characterization and applications publication-title: Adv. Drug Deliv. Rev. – volume: 31 start-page: S276 year: 2020 ident: b0535 article-title: 88MO T-cell responses induced by an individualized neoantigen specific immune therapy in post (neo)adjuvant patients with triple negative breast cancer publication-title: Ann. Oncol. – volume: 274 start-page: 120826 year: 2021 ident: b0270 article-title: Microfluidic formulation of nanoparticles for biomedical applications publication-title: Biomaterials – volume: 21 start-page: 5671 year: 2021 end-page: 5680 ident: b0360 article-title: Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device publication-title: Nano Lett. – volume: 362 start-page: 86 year: 2018 end-page: 91 ident: b0035 article-title: Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy publication-title: Science – volume: 19 start-page: 91 year: 2020 ident: b0485 article-title: Driving CARs to last publication-title: Nat. Rev. Drug Discov. – volume: 113 start-page: E6639 year: 2016 end-page: E6648 ident: b0575 article-title: Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination publication-title: Proc. Natl. Acad. Sci. – volume: 38 start-page: 824 year: 2020 end-page: 844 ident: b0010 article-title: Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors publication-title: Nat. Biotechnol. – volume: 38 start-page: 738 year: 2017 end-page: 753 ident: b0130 article-title: Therapeutic gene editing: delivery and regulatory perspectives publication-title: Acta Pharmacol. Sin. – volume: 28 start-page: 3633 year: 2012 end-page: 3640 ident: b0265 article-title: Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing publication-title: Langmuir – volume: 153 start-page: 728 year: 2020 end-page: 756 ident: b0375 article-title: A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach publication-title: Chem. Eng. Res. Des. – volume: 16 start-page: 2265 year: 2019 end-page: 2277 ident: b0365 article-title: Lipid Nanoparticles for Delivery of Therapeutic RNA Oligonucleotides publication-title: Mol. Pharm. – volume: 7 start-page: 122 year: 2019 ident: b0640 article-title: Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections publication-title: Vaccines – volume: 136 start-page: 665 year: 2017 end-page: 677 ident: b0440 article-title: The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies publication-title: Hum. Genet. – volume: 6 start-page: 1 year: 2021 end-page: 24 ident: b0060 article-title: Viral vector platforms within the gene therapy landscape publication-title: Signal Transduct. Target. Ther. – volume: 11 start-page: 1198 year: 2019 ident: b0470 article-title: Clinical-Scale Production of CAR-T Cells for the Treatment of Melanoma Patients by mRNA Transfection of a CSPG4-Specific CAR under Full GMP Compliance publication-title: Cancers – volume: 97 start-page: 92 year: 2019 end-page: 96 ident: b0175 article-title: Transfection reagent Lipofectamine triggers type I interferon signaling activation in macrophages publication-title: Immunol. Cell Biol. – reference: Dietzel, A. A brief introduction to microfluidics, in: – volume: 15 start-page: 91 year: 2017 end-page: 106 ident: b0390 article-title: Evolution and clinical translation of drug delivery nanomaterials publication-title: Nano Today – volume: 10 start-page: 594 year: 2019 ident: b0630 article-title: Advances in mRNA Vaccines for Infectious Diseases publication-title: Front. Immunol. – start-page: 61 year: 2016 end-page: 85 ident: b0560 article-title: mRNA Cancer Vaccines publication-title: Current Strategies in Cancer Gene Therapy – volume: 87 start-page: 68 year: 2015 end-page: 80 ident: b0145 article-title: Delivery of oligonucleotides with lipid nanoparticles publication-title: Recent Dev. Oligonucleotide Based Ther. – volume: 14 start-page: 1084 year: 2019 end-page: 1087 ident: b0620 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat. Nanotechnol. – volume: 371 start-page: 145 year: 2021 end-page: 153 ident: b0105 article-title: A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis publication-title: Science – volume: 365 start-page: 162 year: 2019 end-page: 168 ident: b0480 article-title: Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor publication-title: Science – volume: 6 year: 2020 ident: b0420 article-title: Impact of mRNA chemistry and manufacturing process on innate immune activation publication-title: Sci. Adv. – volume: 18 start-page: 421 year: 2019 end-page: 446 ident: b0500 article-title: The current state and future directions of RNAi-based therapeutics publication-title: Nat. Rev. Drug Discov. – volume: 23 start-page: 699 year: 2016 end-page: 707 ident: b0600 article-title: Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system publication-title: Gene Ther. – volume: 586 start-page: 567 year: 2020 end-page: 571 ident: b0050 article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness publication-title: Nature – volume: 9 start-page: 4493 year: 2018 ident: b0095 article-title: Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes publication-title: Nat. Commun. – volume: 534 start-page: 396 year: 2016 end-page: 401 ident: b0100 article-title: Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy publication-title: Nature – volume: 51 start-page: 11373 year: 2012 end-page: 11380 ident: b0330 article-title: Formulation of poorly water-soluble compound loaded solid lipid nanoparticles in a microchannel system fabricated by mechanical microcutting method: Puerarin as a model drug publication-title: Ind. Eng. Chem. Res. – volume: 20 start-page: 701 year: 2021 end-page: 710 ident: b0115 article-title: Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing publication-title: Nat. Mater. – volume: 593 start-page: 429 year: 2021 end-page: 434 ident: b0070 article-title: In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates publication-title: Nature – volume: 578 start-page: 229 year: 2020 end-page: 236 ident: b0005 article-title: The promise and challenge of therapeutic genome editing publication-title: Nature – volume: 255 start-page: 10431 year: 1980 end-page: 10435 ident: b0165 article-title: Introduction of liposome-encapsulated SV40 DNA into cells publication-title: J. Biol. Chem. – volume: 26 start-page: 3936 year: 2020 end-page: 3946 ident: b0550 article-title: MTL-CEBPA, a Small Activating RNA Therapeutic Upregulating C/EBP-α, in Patients with Advanced Liver Cancer: A First-in-Human, Multicenter, Open-Label. Phase I Trial publication-title: Clin. Cancer Res. – volume: 182 start-page: 463 year: 2020 end-page: 480.e30 ident: b0445 article-title: Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning publication-title: Cell – volume: 108-109 start-page: 303 year: 2004 end-page: 318 ident: b0210 article-title: Formation and stability of nano-emulsions publication-title: Adv. Colloid Interface Sci. – volume: 27 start-page: 803 year: 2019 end-page: 823 ident: b0590 article-title: Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases publication-title: Mol. Ther. – volume: 17 start-page: 261 year: 2018 end-page: 279 ident: b0565 article-title: mRNA vaccines — a new era in vaccinology publication-title: Nat. Rev. Drug Discov. – volume: 12 start-page: 1095 year: 2020 ident: b0250 article-title: Manufacturing Considerations for the Development of Lipid Nanoparticles Using Microfluidics publication-title: Pharmaceutics – reference: Let’s talk about lipid nanoparticles. – volume: 217 start-page: 345 year: 2015 end-page: 351 ident: b0570 article-title: Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes publication-title: J. Controlled Release – volume: 15 start-page: 313 year: 2020 end-page: 320 ident: b0110 article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing publication-title: Nat. Nanotechnol. – year: 2011 ident: b0200 article-title: Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size publication-title: Nat. Nanotechnol. – volume: 582 year: 2020 ident: b0255 article-title: Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: A case study using protein-loaded liposomes publication-title: Int. J. Pharm. – volume: 18 start-page: 305 year: 2008 end-page: 320 ident: b0410 article-title: Chemical Modification of siRNAs for In Vivo Use publication-title: Oligonucleotides – reference: High-dose AAV gene therapy deaths. – volume: 11 start-page: 673 year: 2016 end-page: 692 ident: b0220 article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction publication-title: Nanomedicine – reference: (2016). doi: 10.1007/978-3-319-26920-7_1. – volume: 458 start-page: 102 year: 2019 end-page: 112 ident: b0395 article-title: Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy publication-title: Cancer Lett. – volume: 24 start-page: 1781 year: 2003 end-page: 1785 ident: b0235 article-title: The production and characteristics of solid lipid nanoparticles (SLNs) publication-title: Biomaterials – volume: 371 start-page: 554 year: 2019 end-page: 564 ident: b0340 article-title: Fluid mechanics and process design of high-pressure antisolvent precipitation of fenofibrate nanoparticles using a customized microsystem publication-title: Chem. Eng. J. – volume: 80 start-page: CT032 year: 2020 ident: b0530 article-title: Abstract CT032: A phase 1/2, open-label, multicenter, dose escalation and efficacy study of mRNA-2416, a lipid nanoparticle encapsulated mRNA encoding human OX40L, for intratumoral injection alone or in combination with durvalumab for patients with advanced malignancies publication-title: Cancer Res. – volume: 39 start-page: 949 year: 2021 end-page: 957 ident: b0450 article-title: In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels publication-title: Nat. Biotechnol. – volume: 12 start-page: 974 year: 2017 end-page: 979 ident: b0650 article-title: Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue publication-title: Nat. Nanotechnol. – volume: 19 start-page: S54 year: 2020 end-page: S59 ident: b0025 article-title: New approaches to genetic therapies for cystic fibrosis publication-title: J. Cyst. Fibros. – volume: 64 start-page: 2749 year: 2009 end-page: 2761 ident: b0325 article-title: Flow regimes for adiabatic gas-liquid flow in microchannels publication-title: Chem. Eng. Sci. – volume: 33 start-page: 985 year: 2015 end-page: 989 ident: b0415 article-title: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells publication-title: Nat. Biotechnol. – volume: 6 start-page: eaax5032 year: 2020 ident: b0135 article-title: Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer publication-title: Sci. Adv. – reference: 51. Results of a Phase I Trial of SGT-53: A Systemically Administered, Tumor-Targeting Immunoliposome Nanocomplex Incorporating a Plasmid Encoding wtp53. – volume: 24 start-page: 144 year: 2017 end-page: 150 ident: b0055 article-title: Non-viral delivery of genome-editing nucleases for gene therapy publication-title: Gene Ther. – volume: 12 year: 2021 ident: b0505 article-title: Insight Into the Prospects for RNAi Therapy of Cancer publication-title: Front. Pharmacol. – volume: 9 start-page: 2714 year: 2018 ident: b0645 article-title: Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection publication-title: Nat. Commun. – volume: 17 start-page: 4421 year: 2020 end-page: 4434 ident: b0120 article-title: Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems publication-title: Mol. Pharm. – volume: 38 start-page: 5884 year: 2010 end-page: 5892 ident: b0615 article-title: Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation publication-title: Nucleic Acids Res. – volume: 6 year: 2016 ident: b0345 article-title: Liposome production by microfluidics: Potential and limiting factors publication-title: Sci. Rep. – volume: 21 start-page: 4845 year: 2015 end-page: 4855 ident: b0515 article-title: siRNA Lipid Nanoparticle Potently Silences Clusterin and Delays Progression When Combined with Androgen Receptor Cotargeting in Enzalutamide-Resistant Prostate Cancer publication-title: Clin. Cancer Res. – volume: 55 start-page: 125 year: 2003 end-page: 131 ident: b0280 article-title: Solvent injection as a new approach for manufacturing lipid nanoparticles - Evaluation of the method and process parameters publication-title: Eur. J. Pharm. Biopharm. – volume: 13 start-page: 19352 year: 2021 end-page: 19366 ident: b0670 article-title: Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis publication-title: Nanoscale – volume: 34 start-page: 1339 year: 2017 end-page: 1363 ident: b0125 article-title: The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market publication-title: Pharm. Res. – volume: 8 start-page: 129 year: 2009 end-page: 138 ident: b0170 article-title: Knocking down barriers: advances in siRNA delivery publication-title: Nat. Rev. Drug Discov. – reference: (2020) 910–910. – volume: 6 start-page: eabc9450 year: 2020 ident: b0090 article-title: CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy publication-title: Sci. Adv. – volume: 8 year: 2020 ident: b0455 article-title: Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy publication-title: Front. Chem. – volume: 20 year: 2019 ident: b0380 article-title: Nanoparticles: Oral Delivery for Protein and Peptide Drugs publication-title: AAPS PharmSciTech – reference: J.D. Gillmore et al., CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis, – volume: 69 start-page: 1 year: 2008 end-page: 9 ident: b0205 article-title: Nanoparticles for drug delivery: The need for precision in reporting particle size parameters publication-title: Eur. J. Pharm. Biopharm. – volume: 25 start-page: 1316 year: 2017 end-page: 1327 ident: b0430 article-title: Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses publication-title: Mol. Ther. – volume: 71 start-page: 2829 year: 2011 ident: b0520 article-title: Abstract 2829: Preclinical characterization of TKM-080301, a lipid nanoparticle formulation of a small interfering RNA directed against polo-like kinase 1 publication-title: Cancer Res. – volume: 18 start-page: 1109 year: 2012 end-page: 1118 ident: b0335 article-title: Novel 3D manufacturing method combining microelectrial discharge machining and electrochemical polishing publication-title: Microsyst. Technol. – volume: 21 year: 2017 ident: b0320 article-title: Optically monitored segmented flow for controlled ultra-fast mixing and nanoparticle precipitation publication-title: Microfluid. Nanofluidics – volume: 566 start-page: 687 year: 2019 end-page: 696 ident: b0315 article-title: Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content publication-title: Int. J. Pharm. – volume: 18 start-page: 627 year: 2018 end-page: 638 ident: b0260 article-title: An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles publication-title: Lab. Chip – volume: 22 start-page: 512 year: 2022 end-page: 529 ident: b0275 article-title: Microfluidic Technologies for Nanoparticle Formation publication-title: Lab. Chip – volume: 63 start-page: 5600 year: 2008 end-page: 5605 ident: b0350 article-title: Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction publication-title: Chem. Eng. Sci. – volume: 9 start-page: 1183 year: 2017 end-page: 1197 ident: b0460 article-title: Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts publication-title: EMBO Mol. Med. – volume: 35 start-page: 1179 year: 2017 end-page: 1187 ident: b0400 article-title: Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing publication-title: Nat. Biotechnol. – volume: 17 start-page: 54 year: 2019 ident: b0555 article-title: How mRNA therapeutics are entering the monoclonal antibody field publication-title: J. Transl. Med. – volume: 10 start-page: 11 year: 2019 ident: b0490 article-title: Nanomedicine review: clinical developments in liposomal applications publication-title: Cancer Nanotechnol. – volume: 169 start-page: 176 year: 2017 ident: b0040 article-title: Modified mRNA Vaccines Protect against Zika Virus Infection publication-title: Cell – volume: 128 start-page: 84 year: 2018 end-page: 100 ident: b0140 article-title: Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems publication-title: Adv. Drug Deliv. Rev. – volume: 10 start-page: 2001244 year: 2021 ident: b0660 article-title: The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior publication-title: Adv. Healthc. Mater. – volume: 22 start-page: 2227 year: 2018 end-page: 2235 ident: b0065 article-title: A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing publication-title: Cell Rep. – volume: 38 start-page: 3136 year: 2020 ident: b0585 article-title: A shared tumor-antigen RNA-lipoplex vaccine with/without anti-PD1 in patients with checkpoint-inhibition experienced melanoma publication-title: J. Clin. Oncol. – volume: 5 start-page: 46181 year: 2015 end-page: 46185 ident: b0300 article-title: A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure publication-title: RSC Adv. – volume: 134 start-page: 6948 year: 2012 end-page: 6951 ident: b0305 article-title: Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 209 year: 2012 end-page: 223 ident: b0245 article-title: A mini review of nanosuspensions development publication-title: J. Drug Target. – volume: 239 start-page: 121 year: 2002 end-page: 128 ident: b0285 article-title: Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization publication-title: Int. J. Pharm. – volume: 303 start-page: 1818 year: 2004 end-page: 1822 ident: b0495 article-title: Drug Delivery Systems: Entering the Mainstream publication-title: Science – volume: 25 start-page: 776 year: 2019 end-page: 783 ident: b0030 article-title: Highly efficient therapeutic gene editing of human hematopoietic stem cells publication-title: Nat. Med. – volume: 88 start-page: 191 year: 2019 end-page: 220 ident: b0020 article-title: Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases publication-title: Annu. Rev. Biochem. – volume: 189 start-page: 54 year: 2014 end-page: 64 ident: b0225 article-title: Lipid nanoparticles: Drug localization is substance-specific and achievable load depends on the size and physical state of the particles publication-title: J. Controlled Release – volume: 44 start-page: D862 year: 2016 end-page: D868 ident: b0435 article-title: ClinVar: public archive of interpretations of clinically relevant variants publication-title: Nucleic Acids Res. – volume: 45 start-page: 6023 year: 2017 end-page: 6036 ident: b0610 article-title: N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density publication-title: Nucleic Acids Res. – volume: 68 start-page: 1323 year: 2019 end-page: 1330 ident: b0605 article-title: Messenger RNA therapy for rare genetic metabolic diseases publication-title: Gut – year: 2013 ident: b0240 article-title: Solid Lipid Nanoparticles for Drug Delivery publication-title: Drug Delivery Strategies Poorly Water-Soluble Drugs – volume: 330 start-page: 61 year: 2021 end-page: 71 ident: b0370 article-title: Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition publication-title: J. Controlled Release – volume: 28 start-page: 7365 year: 2016 end-page: 7374 ident: b0655 article-title: Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells publication-title: Adv. Mater. – volume: 13 start-page: 285 year: 1994 end-page: 309 ident: b0180 article-title: The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system publication-title: Adv. Drug Deliv. Rev. – volume: 229 start-page: 48 year: 2016 end-page: 57 ident: b0195 article-title: Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery publication-title: J. Controlled Release – volume: 3 start-page: 5044 year: 2018 end-page: 5051 ident: b0310 article-title: Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 nm for Drug Delivery publication-title: ACS Omega – volume: 235 start-page: 236 year: 2016 end-page: 244 ident: b0185 article-title: Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA publication-title: J. Controlled Release – volume: 28 start-page: 146 year: 2018 end-page: 157 ident: b0155 article-title: Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility publication-title: Nucleic Acid Ther. – volume: 4 start-page: 125 year: 2020 end-page: 130 ident: b0080 article-title: Adenine base editing in an adult mouse model of tyrosinaemia publication-title: Nat. Biomed. Eng. – volume: 65 start-page: 36 year: 2013 end-page: 48 ident: b0150 article-title: Liposomal drug delivery systems: From concept to clinical applications publication-title: Adv. Drug Deliv. Perspect. Prospects – volume: 17 start-page: 944 year: 2020 end-page: 953 ident: b0190 article-title: The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution publication-title: Mol. Pharm. – volume: 170 start-page: 83 year: 2021 end-page: 112 ident: b0085 article-title: Self-assembled mRNA vaccines publication-title: Adv. Drug Deliv. Rev. – volume: 11 start-page: 345 year: 2021 end-page: 352 ident: b0665 article-title: Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems publication-title: Drug Deliv. Transl. Res. – volume: 579 start-page: 119167 year: 2020 ident: b0355 article-title: Antisolvent precipitation of lipid nanoparticles in microfluidic systems – A comparative study publication-title: Int. J. Pharm. – reference: (2012) S21. – volume: 94 start-page: 68 year: 2012 end-page: 72 ident: b0295 article-title: Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers publication-title: Colloids Surf. B Biointerfaces – volume: 19 start-page: 937 year: 2012 end-page: 954 ident: b0405 article-title: Designing Chemically Modified Oligonucleotides for Targeted Gene Silencing publication-title: Chem. Biol. – volume: 32 start-page: 4141 year: 2014 end-page: 4148 ident: b0525 article-title: First-in-Human Phase I Study of the Liposomal RNA Interference Therapeutic Atu027 in Patients With Advanced Solid Tumors publication-title: J. Clin. Oncol. – volume: 4 start-page: 5128 year: 2014 ident: b0580 article-title: Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity publication-title: Sci. Rep. – volume: 543 start-page: 248 year: 2017 end-page: 251 ident: b0425 article-title: Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination publication-title: Nature – volume: 5 start-page: e348 year: 2016 ident: b0510 article-title: A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo publication-title: Mol. Ther. - Nucleic Acids – volume: 375 start-page: 91 year: 2022 end-page: 96 ident: b0475 article-title: CAR T cells produced in vivo to treat cardiac injury publication-title: Science – reference: (2021) 99. – volume: 6 start-page: 1078 year: 2021 end-page: 1094 ident: b0385 article-title: Lipid nanoparticles for mRNA delivery publication-title: Nat. Rev. Mater. – volume: 361 start-page: 866 year: 2018 end-page: 869 ident: b0015 article-title: CRISPR-Cas guides the future of genetic engineering publication-title: Science – volume: 13 start-page: 206 year: 2021 ident: b0045 article-title: Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines publication-title: Pharmaceutics – volume: 217 start-page: 345 year: 2015 ident: 10.1016/j.addr.2022.114197_b0570 article-title: Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2015.08.007 – volume: 19 start-page: 91 year: 2020 ident: 10.1016/j.addr.2022.114197_b0485 article-title: Driving CARs to last publication-title: Nat. Rev. Drug Discov. doi: 10.1038/d41573-020-00007-1 – volume: 38 start-page: 5884 year: 2010 ident: 10.1016/j.addr.2022.114197_b0615 article-title: Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq347 – volume: 21 start-page: 5671 issue: 13 year: 2021 ident: 10.1016/j.addr.2022.114197_b0360 article-title: Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c01353 – volume: 4 start-page: 5128 year: 2014 ident: 10.1016/j.addr.2022.114197_b0580 article-title: Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity publication-title: Sci. Rep. doi: 10.1038/srep05128 – volume: 55 start-page: 125 issue: 1 year: 2003 ident: 10.1016/j.addr.2022.114197_b0280 article-title: Solvent injection as a new approach for manufacturing lipid nanoparticles - Evaluation of the method and process parameters publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(02)00130-3 – volume: 10 start-page: 594 year: 2019 ident: 10.1016/j.addr.2022.114197_b0630 article-title: Advances in mRNA Vaccines for Infectious Diseases publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00594 – volume: 371 start-page: 554 year: 2019 ident: 10.1016/j.addr.2022.114197_b0340 article-title: Fluid mechanics and process design of high-pressure antisolvent precipitation of fenofibrate nanoparticles using a customized microsystem publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.051 – volume: 12 start-page: 974 year: 2017 ident: 10.1016/j.addr.2022.114197_b0650 article-title: Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.134 – volume: 25 start-page: 776 year: 2019 ident: 10.1016/j.addr.2022.114197_b0030 article-title: Highly efficient therapeutic gene editing of human hematopoietic stem cells publication-title: Nat. Med. doi: 10.1038/s41591-019-0401-y – volume: 18 start-page: 627 issue: 4 year: 2018 ident: 10.1016/j.addr.2022.114197_b0260 article-title: An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles publication-title: Lab. Chip doi: 10.1039/C7LC01313B – volume: 593 start-page: 429 issue: 7859 year: 2021 ident: 10.1016/j.addr.2022.114197_b0070 article-title: In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates publication-title: Nature doi: 10.1038/s41586-021-03534-y – volume: 586 start-page: 567 issue: 7830 year: 2020 ident: 10.1016/j.addr.2022.114197_b0050 article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness publication-title: Nature doi: 10.1038/s41586-020-2622-0 – volume: 17 start-page: 261 issue: 4 year: 2018 ident: 10.1016/j.addr.2022.114197_b0565 article-title: mRNA vaccines — a new era in vaccinology publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.243 – volume: 578 start-page: 229 issue: 7794 year: 2020 ident: 10.1016/j.addr.2022.114197_b0005 article-title: The promise and challenge of therapeutic genome editing publication-title: Nature doi: 10.1038/s41586-020-1978-5 – volume: 65 start-page: 36 year: 2013 ident: 10.1016/j.addr.2022.114197_b0150 article-title: Liposomal drug delivery systems: From concept to clinical applications publication-title: Adv. Drug Deliv. Perspect. Prospects doi: 10.1016/j.addr.2012.09.037 – volume: 6 issue: 26 year: 2020 ident: 10.1016/j.addr.2022.114197_b0420 article-title: Impact of mRNA chemistry and manufacturing process on innate immune activation publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz6893 – volume: 35 start-page: 1179 year: 2017 ident: 10.1016/j.addr.2022.114197_b0400 article-title: Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4005 – volume: 38 start-page: 824 year: 2020 ident: 10.1016/j.addr.2022.114197_b0010 article-title: Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0561-9 – volume: 33 start-page: 985 year: 2015 ident: 10.1016/j.addr.2022.114197_b0415 article-title: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3290 – start-page: 61 year: 2016 ident: 10.1016/j.addr.2022.114197_b0560 article-title: mRNA Cancer Vaccines – volume: 87 start-page: 68 year: 2015 ident: 10.1016/j.addr.2022.114197_b0145 article-title: Delivery of oligonucleotides with lipid nanoparticles publication-title: Recent Dev. Oligonucleotide Based Ther. – volume: 24 start-page: 144 year: 2017 ident: 10.1016/j.addr.2022.114197_b0055 article-title: Non-viral delivery of genome-editing nucleases for gene therapy publication-title: Gene Ther. doi: 10.1038/gt.2016.72 – volume: 39 start-page: 949 issue: 8 year: 2021 ident: 10.1016/j.addr.2022.114197_b0450 article-title: In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00933-4 – volume: 13 start-page: 285 issue: 3 year: 1994 ident: 10.1016/j.addr.2022.114197_b0180 article-title: The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/0169-409X(94)90016-7 – volume: 18 start-page: 1109 issue: 7-8 year: 2012 ident: 10.1016/j.addr.2022.114197_b0335 article-title: Novel 3D manufacturing method combining microelectrial discharge machining and electrochemical polishing publication-title: Microsyst. Technol. doi: 10.1007/s00542-012-1452-x – volume: 15 start-page: 91 year: 2017 ident: 10.1016/j.addr.2022.114197_b0390 article-title: Evolution and clinical translation of drug delivery nanomaterials publication-title: Nano Today doi: 10.1016/j.nantod.2017.06.008 – volume: 182 start-page: 463 issue: 2 year: 2020 ident: 10.1016/j.addr.2022.114197_b0445 article-title: Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning publication-title: Cell doi: 10.1016/j.cell.2020.05.037 – volume: 5 start-page: 46181 issue: 57 year: 2015 ident: 10.1016/j.addr.2022.114197_b0300 article-title: A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure publication-title: RSC Adv. doi: 10.1039/C5RA04690D – volume: 28 start-page: 146 year: 2018 ident: 10.1016/j.addr.2022.114197_b0155 article-title: Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility publication-title: Nucleic Acid Ther. doi: 10.1089/nat.2018.0721 – volume: 68 start-page: 1323 issue: 7 year: 2019 ident: 10.1016/j.addr.2022.114197_b0605 article-title: Messenger RNA therapy for rare genetic metabolic diseases publication-title: Gut doi: 10.1136/gutjnl-2019-318269 – volume: 9 start-page: 1183 issue: 9 year: 2017 ident: 10.1016/j.addr.2022.114197_b0460 article-title: Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201607485 – year: 2018 ident: 10.1016/j.addr.2022.114197_b0215 article-title: Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application publication-title: Nanomedicine doi: 10.2217/nnm-2018-0040 – volume: 38 start-page: 738 year: 2017 ident: 10.1016/j.addr.2022.114197_b0130 article-title: Therapeutic gene editing: delivery and regulatory perspectives publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2017.2 – volume: 371 start-page: 145 issue: 6525 year: 2021 ident: 10.1016/j.addr.2022.114197_b0105 article-title: A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis publication-title: Science doi: 10.1126/science.aay3638 – volume: 28 start-page: 3633 issue: 7 year: 2012 ident: 10.1016/j.addr.2022.114197_b0265 article-title: Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing publication-title: Langmuir doi: 10.1021/la204833h – volume: 458 start-page: 102 year: 2019 ident: 10.1016/j.addr.2022.114197_b0395 article-title: Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.04.040 – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.addr.2022.114197_b0345 article-title: Liposome production by microfluidics: Potential and limiting factors publication-title: Sci. Rep. doi: 10.1038/srep25876 – volume: 8 year: 2020 ident: 10.1016/j.addr.2022.114197_b0455 article-title: Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy publication-title: Front. Chem. doi: 10.3389/fchem.2020.589959 – volume: 14 start-page: 1084 year: 2019 ident: 10.1016/j.addr.2022.114197_b0620 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0591-y – volume: 8 start-page: 129 year: 2009 ident: 10.1016/j.addr.2022.114197_b0170 article-title: Knocking down barriers: advances in siRNA delivery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2742 – year: 2013 ident: 10.1016/j.addr.2022.114197_b0240 article-title: Solid Lipid Nanoparticles for Drug Delivery publication-title: Drug Delivery Strategies Poorly Water-Soluble Drugs doi: 10.1002/9781118444726.ch4 – volume: 5 start-page: e348 year: 2016 ident: 10.1016/j.addr.2022.114197_b0510 article-title: A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo publication-title: Mol. Ther. - Nucleic Acids doi: 10.1038/mtna.2016.43 – volume: 15 start-page: 313 year: 2020 ident: 10.1016/j.addr.2022.114197_b0110 article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0669-6 – volume: 38 start-page: 3136 year: 2020 ident: 10.1016/j.addr.2022.114197_b0585 article-title: A shared tumor-antigen RNA-lipoplex vaccine with/without anti-PD1 in patients with checkpoint-inhibition experienced melanoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2020.38.15_suppl.3136 – volume: 4 start-page: 125 year: 2020 ident: 10.1016/j.addr.2022.114197_b0080 article-title: Adenine base editing in an adult mouse model of tyrosinaemia publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0357-8 – volume: 10 start-page: 2001244 year: 2021 ident: 10.1016/j.addr.2022.114197_b0660 article-title: The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202001244 – volume: 6 start-page: 1 year: 2021 ident: 10.1016/j.addr.2022.114197_b0060 article-title: Viral vector platforms within the gene therapy landscape publication-title: Signal Transduct. Target. Ther. – ident: 10.1016/j.addr.2022.114197_b0290 doi: 10.1007/978-3-319-26920-7_1 – volume: 6 start-page: eaax5032 year: 2020 ident: 10.1016/j.addr.2022.114197_b0135 article-title: Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer publication-title: Sci. Adv. doi: 10.1126/sciadv.aax5032 – volume: 362 start-page: 86 issue: 6410 year: 2018 ident: 10.1016/j.addr.2022.114197_b0035 article-title: Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy publication-title: Science doi: 10.1126/science.aau1549 – volume: 108-109 start-page: 303 year: 2004 ident: 10.1016/j.addr.2022.114197_b0210 article-title: Formation and stability of nano-emulsions publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2003.10.023 – volume: 45 start-page: 6023 year: 2017 ident: 10.1016/j.addr.2022.114197_b0610 article-title: N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx135 – volume: 63 start-page: 5600 issue: 23 year: 2008 ident: 10.1016/j.addr.2022.114197_b0350 article-title: Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.08.005 – volume: 20 issue: 5 year: 2019 ident: 10.1016/j.addr.2022.114197_b0380 article-title: Nanoparticles: Oral Delivery for Protein and Peptide Drugs publication-title: AAPS PharmSciTech doi: 10.1208/s12249-019-1325-z – volume: 19 start-page: 937 year: 2012 ident: 10.1016/j.addr.2022.114197_b0405 article-title: Designing Chemically Modified Oligonucleotides for Targeted Gene Silencing publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2012.07.011 – ident: 10.1016/j.addr.2022.114197_b0625 – volume: 153 start-page: 728 year: 2020 ident: 10.1016/j.addr.2022.114197_b0375 article-title: A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.11.031 – volume: 21 start-page: 4845 year: 2015 ident: 10.1016/j.addr.2022.114197_b0515 article-title: siRNA Lipid Nanoparticle Potently Silences Clusterin and Delays Progression When Combined with Androgen Receptor Cotargeting in Enzalutamide-Resistant Prostate Cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-0866 – volume: 22 start-page: 2227 year: 2018 ident: 10.1016/j.addr.2022.114197_b0065 article-title: A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.02.014 – volume: 64 start-page: 2749 issue: 11 year: 2009 ident: 10.1016/j.addr.2022.114197_b0325 article-title: Flow regimes for adiabatic gas-liquid flow in microchannels publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.01.067 – volume: 170 start-page: 83 year: 2021 ident: 10.1016/j.addr.2022.114197_b0085 article-title: Self-assembled mRNA vaccines publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.12.014 – volume: 17 start-page: 944 issue: 3 year: 2020 ident: 10.1016/j.addr.2022.114197_b0190 article-title: The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.9b01182 – volume: 32 start-page: 4141 year: 2014 ident: 10.1016/j.addr.2022.114197_b0525 article-title: First-in-Human Phase I Study of the Liposomal RNA Interference Therapeutic Atu027 in Patients With Advanced Solid Tumors publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2013.55.0376 – volume: 17 start-page: 4421 year: 2020 ident: 10.1016/j.addr.2022.114197_b0120 article-title: Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.0c00913 – volume: 128 start-page: 84 year: 2018 ident: 10.1016/j.addr.2022.114197_b0140 article-title: Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2018.03.008 – volume: 7 start-page: 122 year: 2019 ident: 10.1016/j.addr.2022.114197_b0640 article-title: Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections publication-title: Vaccines doi: 10.3390/vaccines7040122 – volume: 582 year: 2020 ident: 10.1016/j.addr.2022.114197_b0255 article-title: Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: A case study using protein-loaded liposomes publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119266 – volume: 18 start-page: 421 year: 2019 ident: 10.1016/j.addr.2022.114197_b0500 article-title: The current state and future directions of RNAi-based therapeutics publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0017-4 – volume: 11 start-page: 673 issue: 6 year: 2016 ident: 10.1016/j.addr.2022.114197_b0220 article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction publication-title: Nanomedicine doi: 10.2217/nnm.16.5 – volume: 134 start-page: 6948 issue: 16 year: 2012 ident: 10.1016/j.addr.2022.114197_b0305 article-title: Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301621z – volume: 361 start-page: 866 issue: 6405 year: 2018 ident: 10.1016/j.addr.2022.114197_b0015 article-title: CRISPR-Cas guides the future of genetic engineering publication-title: Science doi: 10.1126/science.aat5011 – volume: 6 start-page: eabc9450 year: 2020 ident: 10.1016/j.addr.2022.114197_b0090 article-title: CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy publication-title: Sci. Adv. doi: 10.1126/sciadv.abc9450 – volume: 365 start-page: 162 issue: 6449 year: 2019 ident: 10.1016/j.addr.2022.114197_b0480 article-title: Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor publication-title: Science doi: 10.1126/science.aav8692 – volume: 19 start-page: S54 year: 2020 ident: 10.1016/j.addr.2022.114197_b0025 article-title: New approaches to genetic therapies for cystic fibrosis publication-title: J. Cyst. Fibros. doi: 10.1016/j.jcf.2019.12.012 – volume: 9 start-page: 4493 year: 2018 ident: 10.1016/j.addr.2022.114197_b0095 article-title: Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes publication-title: Nat. Commun. doi: 10.1038/s41467-018-06936-1 – volume: 566 start-page: 687 year: 2019 ident: 10.1016/j.addr.2022.114197_b0315 article-title: Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.06.033 – volume: 579 start-page: 119167 year: 2020 ident: 10.1016/j.addr.2022.114197_b0355 article-title: Antisolvent precipitation of lipid nanoparticles in microfluidic systems – A comparative study publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119167 – volume: 303 start-page: 1818 issue: 5665 year: 2004 ident: 10.1016/j.addr.2022.114197_b0495 article-title: Drug Delivery Systems: Entering the Mainstream publication-title: Science doi: 10.1126/science.1095833 – volume: 69 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.addr.2022.114197_b0205 article-title: Nanoparticles for drug delivery: The need for precision in reporting particle size parameters publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2007.08.001 – volume: 24 start-page: 1781 issue: 10 year: 2003 ident: 10.1016/j.addr.2022.114197_b0235 article-title: The production and characteristics of solid lipid nanoparticles (SLNs) publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00578-1 – volume: 17 start-page: 54 year: 2019 ident: 10.1016/j.addr.2022.114197_b0555 article-title: How mRNA therapeutics are entering the monoclonal antibody field publication-title: J. Transl. Med. doi: 10.1186/s12967-019-1804-8 – ident: 10.1016/j.addr.2022.114197_b0635 doi: 10.1038/s41578-021-00281-4 – year: 2011 ident: 10.1016/j.addr.2022.114197_b0200 article-title: Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.166 – volume: 51 start-page: 11373 issue: 35 year: 2012 ident: 10.1016/j.addr.2022.114197_b0330 article-title: Formulation of poorly water-soluble compound loaded solid lipid nanoparticles in a microchannel system fabricated by mechanical microcutting method: Puerarin as a model drug publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300592u – volume: 10 start-page: 11 year: 2019 ident: 10.1016/j.addr.2022.114197_b0490 article-title: Nanomedicine review: clinical developments in liposomal applications publication-title: Cancer Nanotechnol. doi: 10.1186/s12645-019-0055-y – volume: 235 start-page: 236 year: 2016 ident: 10.1016/j.addr.2022.114197_b0185 article-title: Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2016.05.059 – volume: 274 start-page: 120826 year: 2021 ident: 10.1016/j.addr.2022.114197_b0270 article-title: Microfluidic formulation of nanoparticles for biomedical applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120826 – ident: 10.1016/j.addr.2022.114197_b0540 doi: 10.1016/S1525-0016(16)35855-5 – volume: 64 start-page: 83 year: 2012 ident: 10.1016/j.addr.2022.114197_b0230 article-title: Solid lipid nanoparticles: Production, characterization and applications publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.021 – volume: 27 start-page: 803 year: 2019 ident: 10.1016/j.addr.2022.114197_b0590 article-title: Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2019.02.019 – volume: 22 start-page: 512 issue: 3 year: 2022 ident: 10.1016/j.addr.2022.114197_b0275 article-title: Microfluidic Technologies for Nanoparticle Formation publication-title: Lab. Chip doi: 10.1039/D1LC00812A – volume: 9 start-page: 2714 year: 2018 ident: 10.1016/j.addr.2022.114197_b0645 article-title: Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection publication-title: Nat. Commun. doi: 10.1038/s41467-018-05041-7 – volume: 20 start-page: 209 issue: 3 year: 2012 ident: 10.1016/j.addr.2022.114197_b0245 article-title: A mini review of nanosuspensions development publication-title: J. Drug Target. doi: 10.3109/1061186X.2011.645161 – volume: 20 start-page: 701 year: 2021 ident: 10.1016/j.addr.2022.114197_b0115 article-title: Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing publication-title: Nat. Mater. doi: 10.1038/s41563-020-00886-0 – volume: 44 start-page: D862 issue: D1 year: 2016 ident: 10.1016/j.addr.2022.114197_b0435 article-title: ClinVar: public archive of interpretations of clinically relevant variants publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1222 – ident: 10.1016/j.addr.2022.114197_b0075 doi: 10.1038/s41587-020-0642-9 – volume: 11 start-page: 345 year: 2021 ident: 10.1016/j.addr.2022.114197_b0665 article-title: Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems publication-title: Drug Deliv. Transl. Res. doi: 10.1007/s13346-021-00929-2 – volume: 229 start-page: 48 year: 2016 ident: 10.1016/j.addr.2022.114197_b0195 article-title: Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2016.03.019 – volume: 136 start-page: 665 year: 2017 ident: 10.1016/j.addr.2022.114197_b0440 article-title: The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies publication-title: Hum. Genet. doi: 10.1007/s00439-017-1779-6 – volume: 6 start-page: 1078 year: 2021 ident: 10.1016/j.addr.2022.114197_b0385 article-title: Lipid nanoparticles for mRNA delivery publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00358-0 – volume: 12 start-page: 1095 issue: 11 year: 2020 ident: 10.1016/j.addr.2022.114197_b0250 article-title: Manufacturing Considerations for the Development of Lipid Nanoparticles Using Microfluidics publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12111095 – volume: 94 start-page: 68 year: 2012 ident: 10.1016/j.addr.2022.114197_b0295 article-title: Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2012.01.018 – volume: 330 start-page: 61 year: 2021 ident: 10.1016/j.addr.2022.114197_b0370 article-title: Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2020.12.013 – volume: 13 start-page: 206 year: 2021 ident: 10.1016/j.addr.2022.114197_b0045 article-title: Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13020206 – volume: 20 start-page: 1578 year: 2020 ident: 10.1016/j.addr.2022.114197_b0465 article-title: Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04246 – volume: 159 start-page: 344 year: 2020 ident: 10.1016/j.addr.2022.114197_b0160 article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.06.026 – volume: 12 year: 2021 ident: 10.1016/j.addr.2022.114197_b0505 article-title: Insight Into the Prospects for RNAi Therapy of Cancer publication-title: Front. Pharmacol. doi: 10.3389/fphar.2021.644718 – volume: 31 start-page: S276 year: 2020 ident: 10.1016/j.addr.2022.114197_b0535 article-title: 88MO T-cell responses induced by an individualized neoantigen specific immune therapy in post (neo)adjuvant patients with triple negative breast cancer publication-title: Ann. Oncol. doi: 10.1016/j.annonc.2020.08.209 – volume: 26 start-page: 3936 year: 2020 ident: 10.1016/j.addr.2022.114197_b0550 article-title: MTL-CEBPA, a Small Activating RNA Therapeutic Upregulating C/EBP-α, in Patients with Advanced Liver Cancer: A First-in-Human, Multicenter, Open-Label. Phase I Trial publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-20-0414 – volume: 3 start-page: 5044 issue: 5 year: 2018 ident: 10.1016/j.addr.2022.114197_b0310 article-title: Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 nm for Drug Delivery publication-title: ACS Omega doi: 10.1021/acsomega.8b00341 – volume: 25 start-page: 1316 year: 2017 ident: 10.1016/j.addr.2022.114197_b0430 article-title: Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.03.035 – volume: 21 issue: 12 year: 2017 ident: 10.1016/j.addr.2022.114197_b0320 article-title: Optically monitored segmented flow for controlled ultra-fast mixing and nanoparticle precipitation publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-017-2016-2 – volume: 23 start-page: 699 year: 2016 ident: 10.1016/j.addr.2022.114197_b0600 article-title: Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system publication-title: Gene Ther. doi: 10.1038/gt.2016.46 – volume: 18 start-page: 305 issue: 4 year: 2008 ident: 10.1016/j.addr.2022.114197_b0410 article-title: Chemical Modification of siRNAs for In Vivo Use publication-title: Oligonucleotides doi: 10.1089/oli.2008.0164 – volume: 71 start-page: 2829 year: 2011 ident: 10.1016/j.addr.2022.114197_b0520 article-title: Abstract 2829: Preclinical characterization of TKM-080301, a lipid nanoparticle formulation of a small interfering RNA directed against polo-like kinase 1 publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2011-2829 – volume: 113 start-page: E6639 year: 2016 ident: 10.1016/j.addr.2022.114197_b0575 article-title: Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1606050113 – volume: 80 start-page: CT032 year: 2020 ident: 10.1016/j.addr.2022.114197_b0530 publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2020-CT032 – volume: 534 start-page: 396 issue: 7607 year: 2016 ident: 10.1016/j.addr.2022.114197_b0100 article-title: Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy publication-title: Nature doi: 10.1038/nature18300 – volume: 169 start-page: 176 issue: 1 year: 2017 ident: 10.1016/j.addr.2022.114197_b0040 article-title: Modified mRNA Vaccines Protect against Zika Virus Infection publication-title: Cell doi: 10.1016/j.cell.2017.03.016 – volume: 34 start-page: 1339 year: 2017 ident: 10.1016/j.addr.2022.114197_b0125 article-title: The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market publication-title: Pharm. Res. doi: 10.1007/s11095-017-2134-2 – volume: 97 start-page: 92 year: 2019 ident: 10.1016/j.addr.2022.114197_b0175 article-title: Transfection reagent Lipofectamine triggers type I interferon signaling activation in macrophages publication-title: Immunol. Cell Biol. doi: 10.1111/imcb.12194 – volume: 16 start-page: 2265 year: 2019 ident: 10.1016/j.addr.2022.114197_b0365 article-title: Lipid Nanoparticles for Delivery of Therapeutic RNA Oligonucleotides publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.8b01290 – volume: 28 start-page: 7365 year: 2016 ident: 10.1016/j.addr.2022.114197_b0655 article-title: Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells publication-title: Adv. Mater. doi: 10.1002/adma.201601900 – volume: 88 start-page: 191 year: 2019 ident: 10.1016/j.addr.2022.114197_b0020 article-title: Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-013118-111730 – volume: 239 start-page: 121 issue: 1-2 year: 2002 ident: 10.1016/j.addr.2022.114197_b0285 article-title: Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(02)00081-9 – volume: 27 start-page: 785 year: 2019 ident: 10.1016/j.addr.2022.114197_b0595 article-title: mRNA-Based Protein Replacement Therapy for the Heart publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.11.018 – volume: 11 start-page: 1198 issue: 8 year: 2019 ident: 10.1016/j.addr.2022.114197_b0470 article-title: Clinical-Scale Production of CAR-T Cells for the Treatment of Melanoma Patients by mRNA Transfection of a CSPG4-Specific CAR under Full GMP Compliance publication-title: Cancers doi: 10.3390/cancers11081198 – volume: 13 start-page: 19352 issue: 46 year: 2021 ident: 10.1016/j.addr.2022.114197_b0670 article-title: Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis publication-title: Nanoscale doi: 10.1039/D1NR06195J – volume: 255 start-page: 10431 year: 1980 ident: 10.1016/j.addr.2022.114197_b0165 article-title: Introduction of liposome-encapsulated SV40 DNA into cells publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)70482-7 – volume: 375 start-page: 91 issue: 6576 year: 2022 ident: 10.1016/j.addr.2022.114197_b0475 article-title: CAR T cells produced in vivo to treat cardiac injury publication-title: Science doi: 10.1126/science.abm0594 – volume: 543 start-page: 248 issue: 7644 year: 2017 ident: 10.1016/j.addr.2022.114197_b0425 article-title: Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination publication-title: Nature doi: 10.1038/nature21428 – volume: 189 start-page: 54 year: 2014 ident: 10.1016/j.addr.2022.114197_b0225 article-title: Lipid nanoparticles: Drug localization is substance-specific and achievable load depends on the size and physical state of the particles publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2014.06.007 |
SSID | ssj0012760 |
Score | 2.581204 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with... Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies.... Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would otherwise not be possible with traditional... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114197 |
SubjectTerms | COVID-19 COVID-19 Vaccines CRISPR-delivery Gene delivery Humans Lipid nanoparticles Lipids Liposomes Microfluidics Nanoparticles Non-viral vectors Nucleic Acids Rare Diseases SARS-CoV-2 |
Title | Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids |
URI | https://dx.doi.org/10.1016/j.addr.2022.114197 https://www.ncbi.nlm.nih.gov/pubmed/35288219 https://www.proquest.com/docview/2639222928 https://pubmed.ncbi.nlm.nih.gov/PMC9035142 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWqIiQuCMpX-KiMhHqhSzZee-09VhVVALUqopVys-yxLRZFm6hJDrnw2_HE3pQA6oHj7o4lyzO2n9dv3hDyrnIBysqbwkINRYyQUCgeHyVTdQOhUVBi7vD5RT2-5p8nYrJHTvtcGKRV5rU_remb1Tq_GebRHM7bdvgNdUTi6WTCMNtESdQE5VxilH_4uaV5jJjcZAqjcYHWOXEmcbzi5EZNUMZQMneEwk__3pz-Bp9_cih_25TOHpGHGU3Sk9Thx2TPdwfkfqovuT4gR5dJmHp9TK9u86wWx_SIXt5KVq-fkK_nyMsL01XrWqDB2Jv8K4_OAp2289bRznTxfJ1pdDRCXRqhI3V-isSONdp1KI0cmxto3eIpuT77eHU6LnKxhQK4EMtCBDDS17WpI2aTtgQmZfRvaJyJkMoKb2oRSgcR8HFnGTRY3TPiPQAhvFK8ekb2u1nnXxDaeN8YC0xZsLyspHJVrVTFgVmmRsAGZNSPsoasRI4FMaa6p5z90OgZjZ7RyTMD8n7bZp50OO60Fr3z9E406bhR3Nnube9pHacZ3p2Yzs9WC80iksPS50wNyPPk-W0_UCBHxZV_QOROTGwNUMJ790vXft9IeTd4kcvZy__s7yvyAJ8SAfM12V_erPybCJKW9nAzCw7JvZNPX8YXvwBoehL1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lLG9jK37SvelwejLauLIli0_lrKSrk3oWAp5E9JJph7BCU3ykP--ulhOl230YY-270Do9PGT9bvfAXxJbIlx4nRkMMPIj5Aykql_zLnMCiwLiTHlDg9H2eA6_T4Rkz04bXNhiFYZ1v5mTd-s1uFNL_Rmb15VvZ-kI-JPJxNO2SYyTx_BPqlTiQ7sn5xfDEbbywSeb5KFyT4ih5A709C8_PwmWVDOSTW3T9pP_96f_saff9Iof9uXzp7DswAo2UnT5hew5-oDeNyUmFwfwNFVo029Pmbj-1SrxTE7Ylf3qtXrl_BjSNS8crqqbIWs1OY2_M1js5JNq3llWa1rf8QOTDrm0S7z6JFZNyVux5rsalJH9u4aK7t4Bddn38angyjUW4gwFWIZiRJ17rJMZx625SZGnuc-xGVhtUdVRjidiTK26DFfag3Hggp8esiHKISTMk1eQ6ee1e4tsMK5Qhvk0qBJ4ySXNsmkTFLkhss-8i70215WGMTIqSbGVLWss1-KIqMoMqqJTBe-bn3mjRTHg9aiDZ7aGVDK7xUP-n1uI638TKPrE1272WqhuAdzVP2cyy68aSK_bQdp5Ei_-Hch3xkTWwNS8d79Ulc3GzXvgu5yU374n-39BE8G4-GlujwfXbyDp_Sl4WO-h87yduU-eMy0NB_DnLgDxH0Vpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+fabrication+of+lipid+nanoparticles+for+the+delivery+of+nucleic+acids&rft.jtitle=Advanced+drug+delivery+reviews&rft.au=Prakash%2C+Gyan&rft.au=Shokr%2C+Ahmed&rft.au=Willemen%2C+Niels&rft.au=Bashir%2C+Showkeen+Muzamil&rft.date=2022-05-01&rft.issn=0169-409X&rft.volume=184&rft.spage=114197&rft_id=info:doi/10.1016%2Fj.addr.2022.114197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_addr_2022_114197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-409X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-409X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-409X&client=summon |