Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids

[Display omitted] Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nuc...

Full description

Saved in:
Bibliographic Details
Published inAdvanced drug delivery reviews Vol. 184; p. 114197
Main Authors Prakash, Gyan, Shokr, Ahmed, Willemen, Niels, Bashir, Showkeen Muzamil, Shin, Su Ryon, Hassan, Shabir
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases.
AbstractList Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would otherwise not be possible with traditional therapies. Due to their ability to transport genomes to cells, Viral vectors have been a platform of choice in gene delivery applications. However, since their delivery is not precision based, the application has led to off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are being developed. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for gene delivery, efficiently and precisely. We also discuss synthesis strategies via microfluidics used for high throughput fabrication of such non-viral gene delivery vehicles. Finally, the application of these vehicles for the delivery of different genetic materials such as peptides and RNA for different diseases ranging from more common diseases to rare diseases are explored.
Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases.Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases.
[Display omitted] Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases.
Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases.
ArticleNumber 114197
Author Willemen, Niels
Prakash, Gyan
Shokr, Ahmed
Hassan, Shabir
Bashir, Showkeen Muzamil
Shin, Su Ryon
AuthorAffiliation 1. Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115 – USA
2 Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Cambridge MA 02139 – USA
5. Department of Biology, Khalifa University, Abu Dhabi, P.O 127788, United Arab Emirates
3. Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
4. Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar -190006, Jammu and Kashmir, India
AuthorAffiliation_xml – name: 3. Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
– name: 4. Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar -190006, Jammu and Kashmir, India
– name: 1. Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115 – USA
– name: 5. Department of Biology, Khalifa University, Abu Dhabi, P.O 127788, United Arab Emirates
– name: 2 Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Cambridge MA 02139 – USA
Author_xml – sequence: 1
  givenname: Gyan
  orcidid: 0000-0003-4725-9178
  surname: Prakash
  fullname: Prakash, Gyan
  organization: Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
– sequence: 2
  givenname: Ahmed
  surname: Shokr
  fullname: Shokr, Ahmed
  organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
– sequence: 3
  givenname: Niels
  orcidid: 0000-0003-1061-3313
  surname: Willemen
  fullname: Willemen, Niels
  organization: Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
– sequence: 4
  givenname: Showkeen Muzamil
  surname: Bashir
  fullname: Bashir, Showkeen Muzamil
  organization: Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190006, Jammu and Kashmir, India
– sequence: 5
  givenname: Su Ryon
  surname: Shin
  fullname: Shin, Su Ryon
  email: sshin4@bwh.harvard.edu
  organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
– sequence: 6
  givenname: Shabir
  surname: Hassan
  fullname: Hassan, Shabir
  email: shassan@bwh.harvard.edu, shassan@bwh.harvard.edu
  organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35288219$$D View this record in MEDLINE/PubMed
BookMark eNp9kVFrFDEUhYNU7Lb6B3yQefRltkkmmZmACFKqFioiKPgWMjd37F1mkzWZWei_N-u2oj706T7c850D55yxkxADMvZS8LXgor3YrJ33aS25lGshlDDdE7YSfSfrXhp1wlZFZGrFzfdTdpbzhnMhu5Y_Y6eNln0vhVmxL58IUhynhTxBNbohEbiZYqjiWE20I18FF-LOpZlgwlyNMVXzLVYeJ9pjujvowlJeBXdAPj9nT0c3ZXxxf8_Zt_dXXy8_1jefP1xfvrupQWk913oE12HburbVvBs4yK4bEEbjnVDNoNG1euQehGmUHyQYLnnPtQLQGvteNefs7dF3twxb9IBhTm6yu0Rbl-5sdGT__QS6tT_i3hreaKFkMXh9b5DizwXzbLeUAafJBYxLtrJtjJTSyL5IX_2d9Sfkocci6I-CUmbOCUcLNP_usUTTZAW3h8nsxh4ms4fJ7HGygsr_0Af3R6E3RwhLw3vCZDMQBkBPCWG2PtJj-C9pS7EB
CitedBy_id crossref_primary_10_1002_adhm_202203033
crossref_primary_10_1126_sciadv_adc9375
crossref_primary_10_3390_biomedicines11071783
crossref_primary_10_1016_j_ijpx_2024_100283
crossref_primary_10_1016_j_apmt_2024_102442
crossref_primary_10_1038_s41467_023_42189_3
crossref_primary_10_1016_j_biomaterials_2023_122253
crossref_primary_10_1002_marc_202300670
crossref_primary_10_1021_acsbiomaterials_4c02052
crossref_primary_10_1080_08982104_2024_2378962
crossref_primary_10_3390_micro3040058
crossref_primary_10_1021_acs_jafc_4c03307
crossref_primary_10_1039_D3NA01125A
crossref_primary_10_3390_molecules27144602
crossref_primary_10_1016_j_apsb_2023_02_014
crossref_primary_10_1021_acsami_3c00494
crossref_primary_10_1186_s12943_023_01925_5
crossref_primary_10_3390_pharmaceutics14091940
crossref_primary_10_1016_j_omtm_2023_101134
crossref_primary_10_1002_adhm_202402219
crossref_primary_10_1039_D3TB00346A
crossref_primary_10_1007_s13206_024_00182_y
crossref_primary_10_1016_j_jpha_2024_100996
crossref_primary_10_1016_j_apsb_2022_11_004
crossref_primary_10_1021_acsami_4c22581
crossref_primary_10_1007_s12274_023_6031_1
crossref_primary_10_1002_adma_202306246
crossref_primary_10_1016_j_inoche_2024_112954
crossref_primary_10_1016_j_jddst_2022_103964
crossref_primary_10_3390_jpm14111092
crossref_primary_10_1002_advs_202405406
crossref_primary_10_1039_D2LC00240J
crossref_primary_10_1002_adhm_202400366
crossref_primary_10_1016_j_nantod_2025_102653
crossref_primary_10_1063_5_0228447
crossref_primary_10_1007_s10544_023_00649_z
crossref_primary_10_1007_s13346_023_01398_5
crossref_primary_10_1038_s43586_024_00348_w
crossref_primary_10_1016_j_ces_2022_118080
crossref_primary_10_3390_pharmaceutics16040514
crossref_primary_10_1016_j_nantod_2024_102314
crossref_primary_10_1016_j_tifs_2025_104937
crossref_primary_10_3390_pharmaceutics15102490
crossref_primary_10_1002_mog2_67
crossref_primary_10_1021_acsami_4c08896
crossref_primary_10_2147_IJN_S457302
crossref_primary_10_3390_nano14020160
crossref_primary_10_1039_D3LC00821E
crossref_primary_10_1016_j_drudis_2023_103507
crossref_primary_10_1016_j_mattod_2024_01_004
Cites_doi 10.1016/j.jconrel.2015.08.007
10.1038/d41573-020-00007-1
10.1093/nar/gkq347
10.1021/acs.nanolett.1c01353
10.1038/srep05128
10.1016/S0939-6411(02)00130-3
10.3389/fimmu.2019.00594
10.1016/j.cej.2019.04.051
10.1038/nnano.2017.134
10.1038/s41591-019-0401-y
10.1039/C7LC01313B
10.1038/s41586-021-03534-y
10.1038/s41586-020-2622-0
10.1038/nrd.2017.243
10.1038/s41586-020-1978-5
10.1016/j.addr.2012.09.037
10.1126/sciadv.aaz6893
10.1038/nbt.4005
10.1038/s41587-020-0561-9
10.1038/nbt.3290
10.1038/gt.2016.72
10.1038/s41587-021-00933-4
10.1016/0169-409X(94)90016-7
10.1007/s00542-012-1452-x
10.1016/j.nantod.2017.06.008
10.1016/j.cell.2020.05.037
10.1039/C5RA04690D
10.1089/nat.2018.0721
10.1136/gutjnl-2019-318269
10.15252/emmm.201607485
10.2217/nnm-2018-0040
10.1038/aps.2017.2
10.1126/science.aay3638
10.1021/la204833h
10.1016/j.canlet.2019.04.040
10.1038/srep25876
10.3389/fchem.2020.589959
10.1038/s41565-019-0591-y
10.1038/nrd2742
10.1002/9781118444726.ch4
10.1038/mtna.2016.43
10.1038/s41565-020-0669-6
10.1200/JCO.2020.38.15_suppl.3136
10.1038/s41551-019-0357-8
10.1002/adhm.202001244
10.1007/978-3-319-26920-7_1
10.1126/sciadv.aax5032
10.1126/science.aau1549
10.1016/j.cis.2003.10.023
10.1093/nar/gkx135
10.1016/j.ces.2008.08.005
10.1208/s12249-019-1325-z
10.1016/j.chembiol.2012.07.011
10.1016/j.cherd.2019.11.031
10.1158/1078-0432.CCR-15-0866
10.1016/j.celrep.2018.02.014
10.1016/j.ces.2009.01.067
10.1016/j.addr.2020.12.014
10.1021/acs.molpharmaceut.9b01182
10.1200/JCO.2013.55.0376
10.1021/acs.molpharmaceut.0c00913
10.1016/j.addr.2018.03.008
10.3390/vaccines7040122
10.1016/j.ijpharm.2020.119266
10.1038/s41573-019-0017-4
10.2217/nnm.16.5
10.1021/ja301621z
10.1126/science.aat5011
10.1126/sciadv.abc9450
10.1126/science.aav8692
10.1016/j.jcf.2019.12.012
10.1038/s41467-018-06936-1
10.1016/j.ijpharm.2019.06.033
10.1016/j.ijpharm.2020.119167
10.1126/science.1095833
10.1016/j.ejpb.2007.08.001
10.1016/S0142-9612(02)00578-1
10.1186/s12967-019-1804-8
10.1038/s41578-021-00281-4
10.1038/nnano.2011.166
10.1021/ie300592u
10.1186/s12645-019-0055-y
10.1016/j.jconrel.2016.05.059
10.1016/j.biomaterials.2021.120826
10.1016/S1525-0016(16)35855-5
10.1016/j.addr.2012.09.021
10.1016/j.ymthe.2019.02.019
10.1039/D1LC00812A
10.1038/s41467-018-05041-7
10.3109/1061186X.2011.645161
10.1038/s41563-020-00886-0
10.1093/nar/gkv1222
10.1038/s41587-020-0642-9
10.1007/s13346-021-00929-2
10.1016/j.jconrel.2016.03.019
10.1007/s00439-017-1779-6
10.1038/s41578-021-00358-0
10.3390/pharmaceutics12111095
10.1016/j.colsurfb.2012.01.018
10.1016/j.jconrel.2020.12.013
10.3390/pharmaceutics13020206
10.1021/acs.nanolett.9b04246
10.1016/j.addr.2020.06.026
10.3389/fphar.2021.644718
10.1016/j.annonc.2020.08.209
10.1158/1078-0432.CCR-20-0414
10.1021/acsomega.8b00341
10.1016/j.ymthe.2017.03.035
10.1007/s10404-017-2016-2
10.1038/gt.2016.46
10.1089/oli.2008.0164
10.1158/1538-7445.AM2011-2829
10.1073/pnas.1606050113
10.1158/1538-7445.AM2020-CT032
10.1038/nature18300
10.1016/j.cell.2017.03.016
10.1007/s11095-017-2134-2
10.1111/imcb.12194
10.1021/acs.molpharmaceut.8b01290
10.1002/adma.201601900
10.1146/annurev-biochem-013118-111730
10.1016/S0378-5173(02)00081-9
10.1016/j.ymthe.2018.11.018
10.3390/cancers11081198
10.1039/D1NR06195J
10.1016/S0021-9258(19)70482-7
10.1126/science.abm0594
10.1038/nature21428
10.1016/j.jconrel.2014.06.007
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.addr.2022.114197
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1872-8294
EndPage 114197
ExternalDocumentID PMC9035142
35288219
10_1016_j_addr_2022_114197
S0169409X22000874
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R21 EB026824
– fundername: NIAMS NIH HHS
  grantid: R01 AR074234
– fundername: NIAMS NIH HHS
  grantid: R01 AR077132
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HX~
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SPT
SSP
SSU
SSZ
T5K
TEORI
WUQ
Y6R
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c455t-5fca7e66a66507b0c277becf9da143b5ea65f0dc1934db2c90208054cc55e8843
IEDL.DBID .~1
ISSN 0169-409X
1872-8294
IngestDate Thu Aug 21 18:37:01 EDT 2025
Fri Jul 11 15:27:19 EDT 2025
Mon Jul 21 06:01:52 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Tue Jul 01 03:36:08 EDT 2025
Fri Feb 23 02:40:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gene delivery
CRISPR-delivery
Non-viral vectors
Lipid nanoparticles
Microfluidics
Language English
License This is an open access article under the CC BY license.
Copyright © 2022. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-5fca7e66a66507b0c277becf9da143b5ea65f0dc1934db2c90208054cc55e8843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1061-3313
0000-0003-4725-9178
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0169409X22000874
PMID 35288219
PQID 2639222928
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9035142
proquest_miscellaneous_2639222928
pubmed_primary_35288219
crossref_citationtrail_10_1016_j_addr_2022_114197
crossref_primary_10_1016_j_addr_2022_114197
elsevier_sciencedirect_doi_10_1016_j_addr_2022_114197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Advanced drug delivery reviews
PublicationTitleAlternate Adv Drug Deliv Rev
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rosenblum (b0090) 2020; 6
Loquai (b0585) 2020; 38
Let’s talk about lipid nanoparticles.
J.D. Gillmore et al., CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis
Moss, Popova, Hadrup, Astakhova, Taskova (b0365) 2019; 16
Landrum, Lee, Benson, Brown, Chao, Chitipiralla, Gu, Hart, Hoffman, Hoover, Jang, Katz, Ovetsky, Riley, Sethi, Tully, Villamarin-Salomon, Rubinstein, Maglott (b0435) 2016; 44
Hartmann, Schüßler‐Lenz, Bondanza, Buchholz (b0460) 2017; 9
Joseph, Bunjes (b0240) 2013
Baeza Garcia (b0645) 2018; 9
Chen, Love, Chen, Eltoukhy, Kastrup, Sahay, Jeon, Dong, Whitehead, Anderson (b0305) 2012; 134
Wiesinger, März, Kummer, Schuler, Dörrie, Schuler-Thurner, Schaft (b0470) 2019; 11
Kimura, Maeki, Sato, Note, Ishida, Tani, Harashima, Tokeshi (b0310) 2018; 3
DeRosa (b0600) 2016; 23
Kim, Eygeris, Gupta, Sahay (b0085) 2021; 170
Pardi, Hogan, Porter, Weissman (b0565) 2018; 17
Versteeg, Almutairi, Hotez, Pollet (b0640) 2019; 7
Fiedler, Lazzaro, Lutz, Rauch, Heidenreich (b0560) 2016
Roces, Lou, Jain, Abraham, Thomas, Halbert, Perrie (b0250) 2020; 12
Chen, Tam, Lin, Sung, Tam, Cullis (b0185) 2016; 235
Allen, Cullis (b0495) 2004; 303
Liu, Xie, Zhang, Zhang (b0245) 2012; 20
Shao, Gavriilidis, Angeli (b0325) 2009; 64
Beltrán-Gracia, López-Camacho, Higuera-Ciapara, Velázquez-Fernández, Vallejo-Cardona (b0490) 2019; 10
(2012) S21.
Anzalone, Koblan, Liu (b0010) 2020; 38
(2016). doi: 10.1007/978-3-319-26920-7_1.
Cheng (b0110) 2020; 15
Lorenz, Bojko, Bunjes, Dietzel (b0260) 2018; 18
Kranz, Diken, Haas, Kreiter, Loquai, Reuter, Meng, Fritz, Vascotto, Hefesha, Grunwitz, Vormehr, Hüsemann, Selmi, Kuhn, Buck, Derhovanessian, Rae, Attig, Diekmann, Jabulowsky, Heesch, Hassel, Langguth, Grabbe, Huber, Türeci, Sahin (b0100) 2016; 534
Shim (b0130) 2017; 38
Melzig, Finke, Schilde, Vierheller, Dietzel, Kwade (b0340) 2019; 371
Zhang, Maruggi, Shan, Li (b0630) 2019; 10
Kupetz, Bunjes (b0225) 2014; 189
Erfle, Riewe, Bunjes, Dietzel (b0320) 2017; 21
Mukalel, Riley, Zhang, Mitchell (b0395) 2019; 458
Hendel (b0415) 2015; 33
Hou, Zaks, Langer, Dong (b0385) 2021; 6
Suzuki, Onuma, Sato, Sato, Hashiba, Maeki, Tokeshi, Kayesh, Kohara, Tsukiyama-Kohara, Harashima (b0370) 2021; 330
Corbett, Edwards, Leist, Abiona, Boyoglu-Barnum, Gillespie, Himansu, Schäfer, Ziwawo, DiPiazza, Dinnon, Elbashir, Shaw, Woods, Fritch, Martinez, Bock, Minai, Nagata, Hutchinson, Wu, Henry, Bahl, Garcia-Dominguez, Ma, Renzi, Kong, Schmidt, Wang, Zhang, Phung, Chang, Loomis, Altaras, Narayanan, Metkar, Presnyak, Liu, Louder, Shi, Leung, Yang, West, Gully, Stevens, Wang, Wrapp, Doria-Rose, Stewart-Jones, Bennett, Alvarado, Nason, Ruckwardt, McLellan, Denison, Chappell, Moore, Morabito, Mascola, Baric, Carfi, Graham (b0050) 2020; 586
Billingsley (b0465) 2020; 20
Bulcha, Wang, Ma, Tai, Gao (b0060) 2021; 6
Aldosari, Alfagih, Almurshedi (b0045) 2021; 13
Schmidt (b0535) 2020; 31
Shepherd, Issadore, Mitchell (b0270) 2021; 274
Behlke (b0410) 2008; 18
Tadros, Izquierdo, Esquena, Solans (b0210) 2004; 108-109
Tam (b0575) 2016; 113
Egorov, Pieters, Korach-Rechtman, Shklover, Schroeder (b0665) 2021; 11
Tian, Liang, Cui, Liang, Wang, Lv, Cheng, Zhang (b0505) 2021; 12
Van Hoecke, Roose (b0555) 2019; 17
Doudna (b0005) 2020; 578
Finn (b0065) 2018; 22
Lee, Zhang, Tam, Quick, Tam, Lin, Chen, Liu, Nair, Zlatev, Rajeev, Manoharan, Rennie, Cullis (b0510) 2016; 5
Kulkarni, Cullis, van der Meel (b0155) 2018; 28
Christopher Boyd, Guo, Huang, Kerem, Oren, Walker, Hart (b0025) 2020; 19
Krienke, Kolb, Diken, Streuber, Kirchhoff, Bukur, Akilli-Öztürk, Kranz, Berger, Petschenka, Diken, Kreiter, Yogev, Waisman, Karikó, Türeci, Sahin (b0105) 2021; 371
Setten, Rossi, Han (b0500) 2019; 18
Wang, Glass, Xu (b0055) 2017; 24
Guo (b0175) 2019; 97
Nakamura, Kawai, Sato, Maeki, Tokeshi, Harashima (b0190) 2020; 17
(2021) 99.
Arbab, Shen, Mok, Wilson, Matuszek, Cassa, Liu (b0445) 2020; 182
Cabral (b0200) 2011
Schubert (b0280) 2003; 55
Cully (b0485) 2020; 19
Wang, Miao, Satterlee, Huang (b0145) 2015; 87
Wei, Quan, Zhou, Zhan (b0215) 2018
Wang, Hashemi, Stratton, Arinzeh (b0660) 2021; 10
Song (b0080) 2020; 4
Knott, Doudna (b0015) 2018; 361
Liu, Bi, Wang, Liu, Jiang, Xu, Zhang (b0670) 2021; 13
Zhigaltsev, Belliveau, Hafez, Leung, Huft, Hansen, Cullis (b0265) 2012; 28
Tian, Cai, Liu, Sun (b0275) 2022; 22
Stenson (b0440) 2017; 136
Schultheis (b0525) 2014; 32
Jimeno (b0530) 2020; 80
Shrimal, Jadeja, Patel (b0375) 2020; 153
Rothgangl, Dennis, Lin, Oka, Witzigmann, Villiger, Qi, Hruzova, Kissling, Lenggenhager, Borrelli, Egli, Frey, Bakker, Walker, Kadina, Victorov, Pacesa, Kreutzer, Kontarakis, Moor, Jinek, Weissman, Stoffel, van Boxtel, Holden, Pardi, Thöny, Häberle, Tam, Semple, Schwank (b0450) 2021; 39
Pardi, Tuyishime, Muramatsu, Kariko, Mui, Tam, Madden, Hope, Weissman (b0570) 2015; 217
Magadum, Kaur, Zangi (b0595) 2019; 27
Kim, Luk, Wolfe, Kim (b0020) 2019; 88
Rurik, Tombácz, Yadegari, Méndez Fernández, Shewale, Li, Kimura, Soliman, Papp, Tam, Mui, Albelda, Puré, June, Aghajanian, Weissman, Parhiz, Epstein (b0475) 2022; 375
Semple (b0520) 2011; 71
Sahu, Haque, Weidensee, Weinmann, Kormann (b0590) 2019; 27
51. Results of a Phase I Trial of SGT-53: A Systemically Administered, Tumor-Targeting Immunoliposome Nanocomplex Incorporating a Plasmid Encoding wtp53.
Dietzel, A. A brief introduction to microfluidics, in
Webb (b0255) 2020; 582
Carugo, Bottaro, Owen, Stride, Nastruzzi (b0345) 2016; 6
(2020) 910–910.
Whitehead, Langer, Anderson (b0170) 2009; 8
Cheung, Al-Jamal (b0315) 2019; 566
Nelson, Sorensen, Mintri, Rabideau, Zheng, Besin, Khatwani, Su, Miracco, Issa, Hoge, Stanton, Joyal (b0420) 2020; 6
Yamamoto (b0515) 2015; 21
Maeki, Kimura, Sato, Harashima, Tokeshi (b0140) 2018; 128
Mehnert, Mäder (b0230) 2012; 64
Sarker (b0550) 2020; 26
Hou, Xie, Huang, Zhu (b0235) 2003; 24
Wu (b0030) 2019; 25
Tomeh, Zhao (b0120) 2020; 17
Riewe, Erfle, Melzig, Kwade, Dietzel, Bunjes (b0355) 2020; 579
Deleavey, Damha (b0405) 2012; 19
Sato, Note, Maeki, Kaji, Baba, Tokeshi, Harashima (b0195) 2016; 229
Allen, Cullis (b0150) 2013; 65
Hoshyar, Gray, Han, Bao (b0220) 2016; 11
Phua, Staats, Leong, Nair (b0580) 2014; 4
Allen (b0180) 1994; 13
Witzigmann (b0160) 2020; 159
Richner, Himansu, Dowd, Butler, Salazar, Fox, Julander, Tang, Shresta, Pierson, Ciaramella, Diamond (b0040) 2017; 169
Yin (b0400) 2017; 35
Ma, Dichwalkar, Chang, Cossette, Garafola, Zhang, Fichter, Wang, Liang, Silva, Kumari, Mehta, Abraham, Thai, Li, Wittrup, Irvine (b0480) 2019; 365
Gaumet, Vargas, Gurny, Delie (b0205) 2008; 69
Bahl (b0430) 2017; 25
High-dose AAV gene therapy deaths.
Gallego-Perez (b0650) 2017; 12
Svitkin (b0610) 2017; 45
Maeki, Saito, Sato, Yasui, Kaji, Ishida, Tani, Baba, Harashima, Tokeshi (b0300) 2015; 5
Hu, Yuan, Zhang, Fang (b0285) 2002; 239
Shepherd, Warzecha, Yadavali, El-Mayta, Alameh, Wang, Weissman, Wilson, Issadore, Mitchell (b0360) 2021; 21
Fraley, Subramani, Berg, Papahadjopoulos (b0165) 1980; 255
Jin (b0655) 2016; 28
Veiga (b0095) 2018; 9
Hassan, Prakash, Bal Ozturk, Saghazadeh, Farhan Sohail, Seo, Remzi Dokmeci, Zhang, Khademhosseini (b0390) 2017; 15
Cao, Xu, Wang, Ling, Dong, Xia, Sun (b0380) 2019; 20
Xu, Tan, Yun, Shen, Zhang, Tu, Zhao, Tian, Yang, Yao (b0330) 2012; 51
Titze-de-Almeida, David, Titze-de-Almeida (b0125) 2017; 34
Pardi, Hogan, Pelc, Muramatsu, Andersen, DeMaso, Dowd, Sutherland, Scearce, Parks, Wagner, Granados, Greenhouse, Walker, Willis, Yu, McGee, Sempowski, Mui, Tam, Huang, Vanlandingham, Holmes, Balachandran, Sahu, Lifton, Higgs, Hensley, Madden, Hope, Karikó, Santra, Graham, Lewis, Pierson, Haynes, Weissman (b0425) 2017; 543
Akinc (b0620) 2019; 14
Liu (b0115) 2021; 20
Huang (b0135) 2020; 6
Zhang, Yun, Shen, Chen, Yao, Chen, Chen (b0350) 2008; 63
Anderson (b0615) 2010; 38
Musunuru, Chadwick, Mizoguchi, Garcia, DeNizio, Reiss, Wang, Iyer, Dutta, Clendaniel, Amaonye, Beach, Berth, Biswas, Braun, Chen, Colace, Ganey, Gangopadhyay, Garrity, Kasiewicz, Lavoie, Madsen, Matsumoto, Mazzola, Nasrullah, Nneji, Ren, Sanjeev, Shay, Stahley, Fan, Tam, Gaudelli, Ciaramella, Stolz, Malyala, Cheng, Rajeev, Rohde, Bellinger, Kathiresan (b0070) 2021; 593
Richter, Krah, Büttgenbach (b0335) 2012; 18
Guevara, Persano, Persano (b0455) 2020; 8
Dong, Ng, Shen, Kim, Tan (b0295) 2012; 94
Berraondo, Martini, Avila, Fontanellas (b0605) 2019; 68
Amoasii, Hildyard, Li, Sanchez-Ortiz, Mireault, Caballero, Harron, Stathopoulou, Massey, Shelton, Bassel-Duby, Piercy, Olson (b0035) 2018; 362
Hartmann (10.1016/j.addr.2022.114197_b0460) 2017; 9
Hassan (10.1016/j.addr.2022.114197_b0390) 2017; 15
Loquai (10.1016/j.addr.2022.114197_b0585) 2020; 38
Guevara (10.1016/j.addr.2022.114197_b0455) 2020; 8
Anderson (10.1016/j.addr.2022.114197_b0615) 2010; 38
Moss (10.1016/j.addr.2022.114197_b0365) 2019; 16
Tam (10.1016/j.addr.2022.114197_b0575) 2016; 113
Egorov (10.1016/j.addr.2022.114197_b0665) 2021; 11
Erfle (10.1016/j.addr.2022.114197_b0320) 2017; 21
Maeki (10.1016/j.addr.2022.114197_b0300) 2015; 5
Versteeg (10.1016/j.addr.2022.114197_b0640) 2019; 7
Knott (10.1016/j.addr.2022.114197_b0015) 2018; 361
10.1016/j.addr.2022.114197_b0625
Riewe (10.1016/j.addr.2022.114197_b0355) 2020; 579
Kim (10.1016/j.addr.2022.114197_b0020) 2019; 88
Phua (10.1016/j.addr.2022.114197_b0580) 2014; 4
Lee (10.1016/j.addr.2022.114197_b0510) 2016; 5
Wu (10.1016/j.addr.2022.114197_b0030) 2019; 25
Chen (10.1016/j.addr.2022.114197_b0185) 2016; 235
Hou (10.1016/j.addr.2022.114197_b0235) 2003; 24
Magadum (10.1016/j.addr.2022.114197_b0595) 2019; 27
Wang (10.1016/j.addr.2022.114197_b0055) 2017; 24
10.1016/j.addr.2022.114197_b0290
Dong (10.1016/j.addr.2022.114197_b0295) 2012; 94
Schubert (10.1016/j.addr.2022.114197_b0280) 2003; 55
Bulcha (10.1016/j.addr.2022.114197_b0060) 2021; 6
Akinc (10.1016/j.addr.2022.114197_b0620) 2019; 14
Titze-de-Almeida (10.1016/j.addr.2022.114197_b0125) 2017; 34
Berraondo (10.1016/j.addr.2022.114197_b0605) 2019; 68
Tian (10.1016/j.addr.2022.114197_b0275) 2022; 22
Guo (10.1016/j.addr.2022.114197_b0175) 2019; 97
Finn (10.1016/j.addr.2022.114197_b0065) 2018; 22
Veiga (10.1016/j.addr.2022.114197_b0095) 2018; 9
Jimeno (10.1016/j.addr.2022.114197_b0530) 2020; 80
Rothgangl (10.1016/j.addr.2022.114197_b0450) 2021; 39
Doudna (10.1016/j.addr.2022.114197_b0005) 2020; 578
Melzig (10.1016/j.addr.2022.114197_b0340) 2019; 371
Corbett (10.1016/j.addr.2022.114197_b0050) 2020; 586
Allen (10.1016/j.addr.2022.114197_b0150) 2013; 65
Schmidt (10.1016/j.addr.2022.114197_b0535) 2020; 31
Whitehead (10.1016/j.addr.2022.114197_b0170) 2009; 8
Shepherd (10.1016/j.addr.2022.114197_b0270) 2021; 274
Krienke (10.1016/j.addr.2022.114197_b0105) 2021; 371
Ma (10.1016/j.addr.2022.114197_b0480) 2019; 365
Kim (10.1016/j.addr.2022.114197_b0085) 2021; 170
Nelson (10.1016/j.addr.2022.114197_b0420) 2020; 6
Lorenz (10.1016/j.addr.2022.114197_b0260) 2018; 18
Hu (10.1016/j.addr.2022.114197_b0285) 2002; 239
Liu (10.1016/j.addr.2022.114197_b0115) 2021; 20
Landrum (10.1016/j.addr.2022.114197_b0435) 2016; 44
Yamamoto (10.1016/j.addr.2022.114197_b0515) 2015; 21
Hendel (10.1016/j.addr.2022.114197_b0415) 2015; 33
Gallego-Perez (10.1016/j.addr.2022.114197_b0650) 2017; 12
10.1016/j.addr.2022.114197_b0075
Tian (10.1016/j.addr.2022.114197_b0505) 2021; 12
Richter (10.1016/j.addr.2022.114197_b0335) 2012; 18
Rurik (10.1016/j.addr.2022.114197_b0475) 2022; 375
Huang (10.1016/j.addr.2022.114197_b0135) 2020; 6
10.1016/j.addr.2022.114197_b0635
Stenson (10.1016/j.addr.2022.114197_b0440) 2017; 136
Beltrán-Gracia (10.1016/j.addr.2022.114197_b0490) 2019; 10
Christopher Boyd (10.1016/j.addr.2022.114197_b0025) 2020; 19
Gaumet (10.1016/j.addr.2022.114197_b0205) 2008; 69
Wei (10.1016/j.addr.2022.114197_b0215) 2018
Pardi (10.1016/j.addr.2022.114197_b0570) 2015; 217
Webb (10.1016/j.addr.2022.114197_b0255) 2020; 582
Cheng (10.1016/j.addr.2022.114197_b0110) 2020; 15
Rosenblum (10.1016/j.addr.2022.114197_b0090) 2020; 6
Nakamura (10.1016/j.addr.2022.114197_b0190) 2020; 17
Cully (10.1016/j.addr.2022.114197_b0485) 2020; 19
Fiedler (10.1016/j.addr.2022.114197_b0560) 2016
Liu (10.1016/j.addr.2022.114197_b0670) 2021; 13
Kimura (10.1016/j.addr.2022.114197_b0310) 2018; 3
Van Hoecke (10.1016/j.addr.2022.114197_b0555) 2019; 17
10.1016/j.addr.2022.114197_b0540
Wang (10.1016/j.addr.2022.114197_b0660) 2021; 10
Richner (10.1016/j.addr.2022.114197_b0040) 2017; 169
Billingsley (10.1016/j.addr.2022.114197_b0465) 2020; 20
Fraley (10.1016/j.addr.2022.114197_b0165) 1980; 255
Liu (10.1016/j.addr.2022.114197_b0245) 2012; 20
Deleavey (10.1016/j.addr.2022.114197_b0405) 2012; 19
Suzuki (10.1016/j.addr.2022.114197_b0370) 2021; 330
Tomeh (10.1016/j.addr.2022.114197_b0120) 2020; 17
Joseph (10.1016/j.addr.2022.114197_b0240) 2013
Cheung (10.1016/j.addr.2022.114197_b0315) 2019; 566
Arbab (10.1016/j.addr.2022.114197_b0445) 2020; 182
Carugo (10.1016/j.addr.2022.114197_b0345) 2016; 6
Kupetz (10.1016/j.addr.2022.114197_b0225) 2014; 189
Wiesinger (10.1016/j.addr.2022.114197_b0470) 2019; 11
Behlke (10.1016/j.addr.2022.114197_b0410) 2008; 18
Pardi (10.1016/j.addr.2022.114197_b0565) 2018; 17
Kranz (10.1016/j.addr.2022.114197_b0100) 2016; 534
Svitkin (10.1016/j.addr.2022.114197_b0610) 2017; 45
Sato (10.1016/j.addr.2022.114197_b0195) 2016; 229
Cabral (10.1016/j.addr.2022.114197_b0200) 2011
Sahu (10.1016/j.addr.2022.114197_b0590) 2019; 27
Mehnert (10.1016/j.addr.2022.114197_b0230) 2012; 64
Song (10.1016/j.addr.2022.114197_b0080) 2020; 4
Musunuru (10.1016/j.addr.2022.114197_b0070) 2021; 593
Maeki (10.1016/j.addr.2022.114197_b0140) 2018; 128
Anzalone (10.1016/j.addr.2022.114197_b0010) 2020; 38
Cao (10.1016/j.addr.2022.114197_b0380) 2019; 20
Pardi (10.1016/j.addr.2022.114197_b0425) 2017; 543
Bahl (10.1016/j.addr.2022.114197_b0430) 2017; 25
Jin (10.1016/j.addr.2022.114197_b0655) 2016; 28
DeRosa (10.1016/j.addr.2022.114197_b0600) 2016; 23
Shim (10.1016/j.addr.2022.114197_b0130) 2017; 38
Yin (10.1016/j.addr.2022.114197_b0400) 2017; 35
Chen (10.1016/j.addr.2022.114197_b0305) 2012; 134
Setten (10.1016/j.addr.2022.114197_b0500) 2019; 18
Baeza Garcia (10.1016/j.addr.2022.114197_b0645) 2018; 9
Wang (10.1016/j.addr.2022.114197_b0145) 2015; 87
Xu (10.1016/j.addr.2022.114197_b0330) 2012; 51
Shao (10.1016/j.addr.2022.114197_b0325) 2009; 64
Zhang (10.1016/j.addr.2022.114197_b0350) 2008; 63
Kulkarni (10.1016/j.addr.2022.114197_b0155) 2018; 28
Mukalel (10.1016/j.addr.2022.114197_b0395) 2019; 458
Schultheis (10.1016/j.addr.2022.114197_b0525) 2014; 32
Allen (10.1016/j.addr.2022.114197_b0495) 2004; 303
Tadros (10.1016/j.addr.2022.114197_b0210) 2004; 108-109
Hou (10.1016/j.addr.2022.114197_b0385) 2021; 6
Semple (10.1016/j.addr.2022.114197_b0520) 2011; 71
Shepherd (10.1016/j.addr.2022.114197_b0360) 2021; 21
Roces (10.1016/j.addr.2022.114197_b0250) 2020; 12
Zhigaltsev (10.1016/j.addr.2022.114197_b0265) 2012; 28
Allen (10.1016/j.addr.2022.114197_b0180) 1994; 13
Sarker (10.1016/j.addr.2022.114197_b0550) 2020; 26
Witzigmann (10.1016/j.addr.2022.114197_b0160) 2020; 159
Zhang (10.1016/j.addr.2022.114197_b0630) 2019; 10
Amoasii (10.1016/j.addr.2022.114197_b0035) 2018; 362
Hoshyar (10.1016/j.addr.2022.114197_b0220) 2016; 11
Aldosari (10.1016/j.addr.2022.114197_b0045) 2021; 13
Shrimal (10.1016/j.addr.2022.114197_b0375) 2020; 153
References_xml – volume: 159
  start-page: 344
  year: 2020
  end-page: 363
  ident: b0160
  article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver
  publication-title: Adv. Drug Deliv. Rev.
– volume: 27
  start-page: 785
  year: 2019
  end-page: 793
  ident: b0595
  article-title: mRNA-Based Protein Replacement Therapy for the Heart
  publication-title: Mol. Ther.
– year: 2018
  ident: b0215
  article-title: Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application
  publication-title: Nanomedicine
– volume: 20
  start-page: 1578
  year: 2020
  end-page: 1589
  ident: b0465
  article-title: Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering
  publication-title: Nano Lett.
– volume: 64
  start-page: 83
  year: 2012
  end-page: 101
  ident: b0230
  article-title: Solid lipid nanoparticles: Production, characterization and applications
  publication-title: Adv. Drug Deliv. Rev.
– volume: 31
  start-page: S276
  year: 2020
  ident: b0535
  article-title: 88MO T-cell responses induced by an individualized neoantigen specific immune therapy in post (neo)adjuvant patients with triple negative breast cancer
  publication-title: Ann. Oncol.
– volume: 274
  start-page: 120826
  year: 2021
  ident: b0270
  article-title: Microfluidic formulation of nanoparticles for biomedical applications
  publication-title: Biomaterials
– volume: 21
  start-page: 5671
  year: 2021
  end-page: 5680
  ident: b0360
  article-title: Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device
  publication-title: Nano Lett.
– volume: 362
  start-page: 86
  year: 2018
  end-page: 91
  ident: b0035
  article-title: Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy
  publication-title: Science
– volume: 19
  start-page: 91
  year: 2020
  ident: b0485
  article-title: Driving CARs to last
  publication-title: Nat. Rev. Drug Discov.
– volume: 113
  start-page: E6639
  year: 2016
  end-page: E6648
  ident: b0575
  article-title: Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination
  publication-title: Proc. Natl. Acad. Sci.
– volume: 38
  start-page: 824
  year: 2020
  end-page: 844
  ident: b0010
  article-title: Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors
  publication-title: Nat. Biotechnol.
– volume: 38
  start-page: 738
  year: 2017
  end-page: 753
  ident: b0130
  article-title: Therapeutic gene editing: delivery and regulatory perspectives
  publication-title: Acta Pharmacol. Sin.
– volume: 28
  start-page: 3633
  year: 2012
  end-page: 3640
  ident: b0265
  article-title: Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing
  publication-title: Langmuir
– volume: 153
  start-page: 728
  year: 2020
  end-page: 756
  ident: b0375
  article-title: A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach
  publication-title: Chem. Eng. Res. Des.
– volume: 16
  start-page: 2265
  year: 2019
  end-page: 2277
  ident: b0365
  article-title: Lipid Nanoparticles for Delivery of Therapeutic RNA Oligonucleotides
  publication-title: Mol. Pharm.
– volume: 7
  start-page: 122
  year: 2019
  ident: b0640
  article-title: Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections
  publication-title: Vaccines
– volume: 136
  start-page: 665
  year: 2017
  end-page: 677
  ident: b0440
  article-title: The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies
  publication-title: Hum. Genet.
– volume: 6
  start-page: 1
  year: 2021
  end-page: 24
  ident: b0060
  article-title: Viral vector platforms within the gene therapy landscape
  publication-title: Signal Transduct. Target. Ther.
– volume: 11
  start-page: 1198
  year: 2019
  ident: b0470
  article-title: Clinical-Scale Production of CAR-T Cells for the Treatment of Melanoma Patients by mRNA Transfection of a CSPG4-Specific CAR under Full GMP Compliance
  publication-title: Cancers
– volume: 97
  start-page: 92
  year: 2019
  end-page: 96
  ident: b0175
  article-title: Transfection reagent Lipofectamine triggers type I interferon signaling activation in macrophages
  publication-title: Immunol. Cell Biol.
– reference: Dietzel, A. A brief introduction to microfluidics, in:
– volume: 15
  start-page: 91
  year: 2017
  end-page: 106
  ident: b0390
  article-title: Evolution and clinical translation of drug delivery nanomaterials
  publication-title: Nano Today
– volume: 10
  start-page: 594
  year: 2019
  ident: b0630
  article-title: Advances in mRNA Vaccines for Infectious Diseases
  publication-title: Front. Immunol.
– start-page: 61
  year: 2016
  end-page: 85
  ident: b0560
  article-title: mRNA Cancer Vaccines
  publication-title: Current Strategies in Cancer Gene Therapy
– volume: 87
  start-page: 68
  year: 2015
  end-page: 80
  ident: b0145
  article-title: Delivery of oligonucleotides with lipid nanoparticles
  publication-title: Recent Dev. Oligonucleotide Based Ther.
– volume: 14
  start-page: 1084
  year: 2019
  end-page: 1087
  ident: b0620
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat. Nanotechnol.
– volume: 371
  start-page: 145
  year: 2021
  end-page: 153
  ident: b0105
  article-title: A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis
  publication-title: Science
– volume: 365
  start-page: 162
  year: 2019
  end-page: 168
  ident: b0480
  article-title: Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor
  publication-title: Science
– volume: 6
  year: 2020
  ident: b0420
  article-title: Impact of mRNA chemistry and manufacturing process on innate immune activation
  publication-title: Sci. Adv.
– volume: 18
  start-page: 421
  year: 2019
  end-page: 446
  ident: b0500
  article-title: The current state and future directions of RNAi-based therapeutics
  publication-title: Nat. Rev. Drug Discov.
– volume: 23
  start-page: 699
  year: 2016
  end-page: 707
  ident: b0600
  article-title: Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system
  publication-title: Gene Ther.
– volume: 586
  start-page: 567
  year: 2020
  end-page: 571
  ident: b0050
  article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness
  publication-title: Nature
– volume: 9
  start-page: 4493
  year: 2018
  ident: b0095
  article-title: Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes
  publication-title: Nat. Commun.
– volume: 534
  start-page: 396
  year: 2016
  end-page: 401
  ident: b0100
  article-title: Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
  publication-title: Nature
– volume: 51
  start-page: 11373
  year: 2012
  end-page: 11380
  ident: b0330
  article-title: Formulation of poorly water-soluble compound loaded solid lipid nanoparticles in a microchannel system fabricated by mechanical microcutting method: Puerarin as a model drug
  publication-title: Ind. Eng. Chem. Res.
– volume: 20
  start-page: 701
  year: 2021
  end-page: 710
  ident: b0115
  article-title: Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing
  publication-title: Nat. Mater.
– volume: 593
  start-page: 429
  year: 2021
  end-page: 434
  ident: b0070
  article-title: In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates
  publication-title: Nature
– volume: 578
  start-page: 229
  year: 2020
  end-page: 236
  ident: b0005
  article-title: The promise and challenge of therapeutic genome editing
  publication-title: Nature
– volume: 255
  start-page: 10431
  year: 1980
  end-page: 10435
  ident: b0165
  article-title: Introduction of liposome-encapsulated SV40 DNA into cells
  publication-title: J. Biol. Chem.
– volume: 26
  start-page: 3936
  year: 2020
  end-page: 3946
  ident: b0550
  article-title: MTL-CEBPA, a Small Activating RNA Therapeutic Upregulating C/EBP-α, in Patients with Advanced Liver Cancer: A First-in-Human, Multicenter, Open-Label. Phase I Trial
  publication-title: Clin. Cancer Res.
– volume: 182
  start-page: 463
  year: 2020
  end-page: 480.e30
  ident: b0445
  article-title: Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning
  publication-title: Cell
– volume: 108-109
  start-page: 303
  year: 2004
  end-page: 318
  ident: b0210
  article-title: Formation and stability of nano-emulsions
  publication-title: Adv. Colloid Interface Sci.
– volume: 27
  start-page: 803
  year: 2019
  end-page: 823
  ident: b0590
  article-title: Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases
  publication-title: Mol. Ther.
– volume: 17
  start-page: 261
  year: 2018
  end-page: 279
  ident: b0565
  article-title: mRNA vaccines — a new era in vaccinology
  publication-title: Nat. Rev. Drug Discov.
– volume: 12
  start-page: 1095
  year: 2020
  ident: b0250
  article-title: Manufacturing Considerations for the Development of Lipid Nanoparticles Using Microfluidics
  publication-title: Pharmaceutics
– reference: Let’s talk about lipid nanoparticles.
– volume: 217
  start-page: 345
  year: 2015
  end-page: 351
  ident: b0570
  article-title: Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes
  publication-title: J. Controlled Release
– volume: 15
  start-page: 313
  year: 2020
  end-page: 320
  ident: b0110
  article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing
  publication-title: Nat. Nanotechnol.
– year: 2011
  ident: b0200
  article-title: Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size
  publication-title: Nat. Nanotechnol.
– volume: 582
  year: 2020
  ident: b0255
  article-title: Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: A case study using protein-loaded liposomes
  publication-title: Int. J. Pharm.
– volume: 18
  start-page: 305
  year: 2008
  end-page: 320
  ident: b0410
  article-title: Chemical Modification of siRNAs for In Vivo Use
  publication-title: Oligonucleotides
– reference: High-dose AAV gene therapy deaths.
– volume: 11
  start-page: 673
  year: 2016
  end-page: 692
  ident: b0220
  article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction
  publication-title: Nanomedicine
– reference: (2016). doi: 10.1007/978-3-319-26920-7_1.
– volume: 458
  start-page: 102
  year: 2019
  end-page: 112
  ident: b0395
  article-title: Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy
  publication-title: Cancer Lett.
– volume: 24
  start-page: 1781
  year: 2003
  end-page: 1785
  ident: b0235
  article-title: The production and characteristics of solid lipid nanoparticles (SLNs)
  publication-title: Biomaterials
– volume: 371
  start-page: 554
  year: 2019
  end-page: 564
  ident: b0340
  article-title: Fluid mechanics and process design of high-pressure antisolvent precipitation of fenofibrate nanoparticles using a customized microsystem
  publication-title: Chem. Eng. J.
– volume: 80
  start-page: CT032
  year: 2020
  ident: b0530
  article-title: Abstract CT032: A phase 1/2, open-label, multicenter, dose escalation and efficacy study of mRNA-2416, a lipid nanoparticle encapsulated mRNA encoding human OX40L, for intratumoral injection alone or in combination with durvalumab for patients with advanced malignancies
  publication-title: Cancer Res.
– volume: 39
  start-page: 949
  year: 2021
  end-page: 957
  ident: b0450
  article-title: In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels
  publication-title: Nat. Biotechnol.
– volume: 12
  start-page: 974
  year: 2017
  end-page: 979
  ident: b0650
  article-title: Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: S54
  year: 2020
  end-page: S59
  ident: b0025
  article-title: New approaches to genetic therapies for cystic fibrosis
  publication-title: J. Cyst. Fibros.
– volume: 64
  start-page: 2749
  year: 2009
  end-page: 2761
  ident: b0325
  article-title: Flow regimes for adiabatic gas-liquid flow in microchannels
  publication-title: Chem. Eng. Sci.
– volume: 33
  start-page: 985
  year: 2015
  end-page: 989
  ident: b0415
  article-title: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: eaax5032
  year: 2020
  ident: b0135
  article-title: Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer
  publication-title: Sci. Adv.
– reference: 51. Results of a Phase I Trial of SGT-53: A Systemically Administered, Tumor-Targeting Immunoliposome Nanocomplex Incorporating a Plasmid Encoding wtp53.
– volume: 24
  start-page: 144
  year: 2017
  end-page: 150
  ident: b0055
  article-title: Non-viral delivery of genome-editing nucleases for gene therapy
  publication-title: Gene Ther.
– volume: 12
  year: 2021
  ident: b0505
  article-title: Insight Into the Prospects for RNAi Therapy of Cancer
  publication-title: Front. Pharmacol.
– volume: 9
  start-page: 2714
  year: 2018
  ident: b0645
  article-title: Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection
  publication-title: Nat. Commun.
– volume: 17
  start-page: 4421
  year: 2020
  end-page: 4434
  ident: b0120
  article-title: Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems
  publication-title: Mol. Pharm.
– volume: 38
  start-page: 5884
  year: 2010
  end-page: 5892
  ident: b0615
  article-title: Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation
  publication-title: Nucleic Acids Res.
– volume: 6
  year: 2016
  ident: b0345
  article-title: Liposome production by microfluidics: Potential and limiting factors
  publication-title: Sci. Rep.
– volume: 21
  start-page: 4845
  year: 2015
  end-page: 4855
  ident: b0515
  article-title: siRNA Lipid Nanoparticle Potently Silences Clusterin and Delays Progression When Combined with Androgen Receptor Cotargeting in Enzalutamide-Resistant Prostate Cancer
  publication-title: Clin. Cancer Res.
– volume: 55
  start-page: 125
  year: 2003
  end-page: 131
  ident: b0280
  article-title: Solvent injection as a new approach for manufacturing lipid nanoparticles - Evaluation of the method and process parameters
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 13
  start-page: 19352
  year: 2021
  end-page: 19366
  ident: b0670
  article-title: Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis
  publication-title: Nanoscale
– volume: 34
  start-page: 1339
  year: 2017
  end-page: 1363
  ident: b0125
  article-title: The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market
  publication-title: Pharm. Res.
– volume: 8
  start-page: 129
  year: 2009
  end-page: 138
  ident: b0170
  article-title: Knocking down barriers: advances in siRNA delivery
  publication-title: Nat. Rev. Drug Discov.
– reference: (2020) 910–910.
– volume: 6
  start-page: eabc9450
  year: 2020
  ident: b0090
  article-title: CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy
  publication-title: Sci. Adv.
– volume: 8
  year: 2020
  ident: b0455
  article-title: Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy
  publication-title: Front. Chem.
– volume: 20
  year: 2019
  ident: b0380
  article-title: Nanoparticles: Oral Delivery for Protein and Peptide Drugs
  publication-title: AAPS PharmSciTech
– reference: J.D. Gillmore et al., CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis,
– volume: 69
  start-page: 1
  year: 2008
  end-page: 9
  ident: b0205
  article-title: Nanoparticles for drug delivery: The need for precision in reporting particle size parameters
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 25
  start-page: 1316
  year: 2017
  end-page: 1327
  ident: b0430
  article-title: Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses
  publication-title: Mol. Ther.
– volume: 71
  start-page: 2829
  year: 2011
  ident: b0520
  article-title: Abstract 2829: Preclinical characterization of TKM-080301, a lipid nanoparticle formulation of a small interfering RNA directed against polo-like kinase 1
  publication-title: Cancer Res.
– volume: 18
  start-page: 1109
  year: 2012
  end-page: 1118
  ident: b0335
  article-title: Novel 3D manufacturing method combining microelectrial discharge machining and electrochemical polishing
  publication-title: Microsyst. Technol.
– volume: 21
  year: 2017
  ident: b0320
  article-title: Optically monitored segmented flow for controlled ultra-fast mixing and nanoparticle precipitation
  publication-title: Microfluid. Nanofluidics
– volume: 566
  start-page: 687
  year: 2019
  end-page: 696
  ident: b0315
  article-title: Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content
  publication-title: Int. J. Pharm.
– volume: 18
  start-page: 627
  year: 2018
  end-page: 638
  ident: b0260
  article-title: An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles
  publication-title: Lab. Chip
– volume: 22
  start-page: 512
  year: 2022
  end-page: 529
  ident: b0275
  article-title: Microfluidic Technologies for Nanoparticle Formation
  publication-title: Lab. Chip
– volume: 63
  start-page: 5600
  year: 2008
  end-page: 5605
  ident: b0350
  article-title: Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction
  publication-title: Chem. Eng. Sci.
– volume: 9
  start-page: 1183
  year: 2017
  end-page: 1197
  ident: b0460
  article-title: Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts
  publication-title: EMBO Mol. Med.
– volume: 35
  start-page: 1179
  year: 2017
  end-page: 1187
  ident: b0400
  article-title: Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing
  publication-title: Nat. Biotechnol.
– volume: 17
  start-page: 54
  year: 2019
  ident: b0555
  article-title: How mRNA therapeutics are entering the monoclonal antibody field
  publication-title: J. Transl. Med.
– volume: 10
  start-page: 11
  year: 2019
  ident: b0490
  article-title: Nanomedicine review: clinical developments in liposomal applications
  publication-title: Cancer Nanotechnol.
– volume: 169
  start-page: 176
  year: 2017
  ident: b0040
  article-title: Modified mRNA Vaccines Protect against Zika Virus Infection
  publication-title: Cell
– volume: 128
  start-page: 84
  year: 2018
  end-page: 100
  ident: b0140
  article-title: Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems
  publication-title: Adv. Drug Deliv. Rev.
– volume: 10
  start-page: 2001244
  year: 2021
  ident: b0660
  article-title: The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior
  publication-title: Adv. Healthc. Mater.
– volume: 22
  start-page: 2227
  year: 2018
  end-page: 2235
  ident: b0065
  article-title: A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing
  publication-title: Cell Rep.
– volume: 38
  start-page: 3136
  year: 2020
  ident: b0585
  article-title: A shared tumor-antigen RNA-lipoplex vaccine with/without anti-PD1 in patients with checkpoint-inhibition experienced melanoma
  publication-title: J. Clin. Oncol.
– volume: 5
  start-page: 46181
  year: 2015
  end-page: 46185
  ident: b0300
  article-title: A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure
  publication-title: RSC Adv.
– volume: 134
  start-page: 6948
  year: 2012
  end-page: 6951
  ident: b0305
  article-title: Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 209
  year: 2012
  end-page: 223
  ident: b0245
  article-title: A mini review of nanosuspensions development
  publication-title: J. Drug Target.
– volume: 239
  start-page: 121
  year: 2002
  end-page: 128
  ident: b0285
  article-title: Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization
  publication-title: Int. J. Pharm.
– volume: 303
  start-page: 1818
  year: 2004
  end-page: 1822
  ident: b0495
  article-title: Drug Delivery Systems: Entering the Mainstream
  publication-title: Science
– volume: 25
  start-page: 776
  year: 2019
  end-page: 783
  ident: b0030
  article-title: Highly efficient therapeutic gene editing of human hematopoietic stem cells
  publication-title: Nat. Med.
– volume: 88
  start-page: 191
  year: 2019
  end-page: 220
  ident: b0020
  article-title: Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases
  publication-title: Annu. Rev. Biochem.
– volume: 189
  start-page: 54
  year: 2014
  end-page: 64
  ident: b0225
  article-title: Lipid nanoparticles: Drug localization is substance-specific and achievable load depends on the size and physical state of the particles
  publication-title: J. Controlled Release
– volume: 44
  start-page: D862
  year: 2016
  end-page: D868
  ident: b0435
  article-title: ClinVar: public archive of interpretations of clinically relevant variants
  publication-title: Nucleic Acids Res.
– volume: 45
  start-page: 6023
  year: 2017
  end-page: 6036
  ident: b0610
  article-title: N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density
  publication-title: Nucleic Acids Res.
– volume: 68
  start-page: 1323
  year: 2019
  end-page: 1330
  ident: b0605
  article-title: Messenger RNA therapy for rare genetic metabolic diseases
  publication-title: Gut
– year: 2013
  ident: b0240
  article-title: Solid Lipid Nanoparticles for Drug Delivery
  publication-title: Drug Delivery Strategies Poorly Water-Soluble Drugs
– volume: 330
  start-page: 61
  year: 2021
  end-page: 71
  ident: b0370
  article-title: Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition
  publication-title: J. Controlled Release
– volume: 28
  start-page: 7365
  year: 2016
  end-page: 7374
  ident: b0655
  article-title: Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells
  publication-title: Adv. Mater.
– volume: 13
  start-page: 285
  year: 1994
  end-page: 309
  ident: b0180
  article-title: The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system
  publication-title: Adv. Drug Deliv. Rev.
– volume: 229
  start-page: 48
  year: 2016
  end-page: 57
  ident: b0195
  article-title: Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery
  publication-title: J. Controlled Release
– volume: 3
  start-page: 5044
  year: 2018
  end-page: 5051
  ident: b0310
  article-title: Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 nm for Drug Delivery
  publication-title: ACS Omega
– volume: 235
  start-page: 236
  year: 2016
  end-page: 244
  ident: b0185
  article-title: Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA
  publication-title: J. Controlled Release
– volume: 28
  start-page: 146
  year: 2018
  end-page: 157
  ident: b0155
  article-title: Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility
  publication-title: Nucleic Acid Ther.
– volume: 4
  start-page: 125
  year: 2020
  end-page: 130
  ident: b0080
  article-title: Adenine base editing in an adult mouse model of tyrosinaemia
  publication-title: Nat. Biomed. Eng.
– volume: 65
  start-page: 36
  year: 2013
  end-page: 48
  ident: b0150
  article-title: Liposomal drug delivery systems: From concept to clinical applications
  publication-title: Adv. Drug Deliv. Perspect. Prospects
– volume: 17
  start-page: 944
  year: 2020
  end-page: 953
  ident: b0190
  article-title: The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution
  publication-title: Mol. Pharm.
– volume: 170
  start-page: 83
  year: 2021
  end-page: 112
  ident: b0085
  article-title: Self-assembled mRNA vaccines
  publication-title: Adv. Drug Deliv. Rev.
– volume: 11
  start-page: 345
  year: 2021
  end-page: 352
  ident: b0665
  article-title: Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems
  publication-title: Drug Deliv. Transl. Res.
– volume: 579
  start-page: 119167
  year: 2020
  ident: b0355
  article-title: Antisolvent precipitation of lipid nanoparticles in microfluidic systems – A comparative study
  publication-title: Int. J. Pharm.
– reference: (2012) S21.
– volume: 94
  start-page: 68
  year: 2012
  end-page: 72
  ident: b0295
  article-title: Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers
  publication-title: Colloids Surf. B Biointerfaces
– volume: 19
  start-page: 937
  year: 2012
  end-page: 954
  ident: b0405
  article-title: Designing Chemically Modified Oligonucleotides for Targeted Gene Silencing
  publication-title: Chem. Biol.
– volume: 32
  start-page: 4141
  year: 2014
  end-page: 4148
  ident: b0525
  article-title: First-in-Human Phase I Study of the Liposomal RNA Interference Therapeutic Atu027 in Patients With Advanced Solid Tumors
  publication-title: J. Clin. Oncol.
– volume: 4
  start-page: 5128
  year: 2014
  ident: b0580
  article-title: Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity
  publication-title: Sci. Rep.
– volume: 543
  start-page: 248
  year: 2017
  end-page: 251
  ident: b0425
  article-title: Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination
  publication-title: Nature
– volume: 5
  start-page: e348
  year: 2016
  ident: b0510
  article-title: A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo
  publication-title: Mol. Ther. - Nucleic Acids
– volume: 375
  start-page: 91
  year: 2022
  end-page: 96
  ident: b0475
  article-title: CAR T cells produced in vivo to treat cardiac injury
  publication-title: Science
– reference: (2021) 99.
– volume: 6
  start-page: 1078
  year: 2021
  end-page: 1094
  ident: b0385
  article-title: Lipid nanoparticles for mRNA delivery
  publication-title: Nat. Rev. Mater.
– volume: 361
  start-page: 866
  year: 2018
  end-page: 869
  ident: b0015
  article-title: CRISPR-Cas guides the future of genetic engineering
  publication-title: Science
– volume: 13
  start-page: 206
  year: 2021
  ident: b0045
  article-title: Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines
  publication-title: Pharmaceutics
– volume: 217
  start-page: 345
  year: 2015
  ident: 10.1016/j.addr.2022.114197_b0570
  article-title: Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2015.08.007
– volume: 19
  start-page: 91
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0485
  article-title: Driving CARs to last
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/d41573-020-00007-1
– volume: 38
  start-page: 5884
  year: 2010
  ident: 10.1016/j.addr.2022.114197_b0615
  article-title: Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq347
– volume: 21
  start-page: 5671
  issue: 13
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0360
  article-title: Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c01353
– volume: 4
  start-page: 5128
  year: 2014
  ident: 10.1016/j.addr.2022.114197_b0580
  article-title: Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity
  publication-title: Sci. Rep.
  doi: 10.1038/srep05128
– volume: 55
  start-page: 125
  issue: 1
  year: 2003
  ident: 10.1016/j.addr.2022.114197_b0280
  article-title: Solvent injection as a new approach for manufacturing lipid nanoparticles - Evaluation of the method and process parameters
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/S0939-6411(02)00130-3
– volume: 10
  start-page: 594
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0630
  article-title: Advances in mRNA Vaccines for Infectious Diseases
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00594
– volume: 371
  start-page: 554
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0340
  article-title: Fluid mechanics and process design of high-pressure antisolvent precipitation of fenofibrate nanoparticles using a customized microsystem
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.051
– volume: 12
  start-page: 974
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0650
  article-title: Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.134
– volume: 25
  start-page: 776
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0030
  article-title: Highly efficient therapeutic gene editing of human hematopoietic stem cells
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0401-y
– volume: 18
  start-page: 627
  issue: 4
  year: 2018
  ident: 10.1016/j.addr.2022.114197_b0260
  article-title: An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles
  publication-title: Lab. Chip
  doi: 10.1039/C7LC01313B
– volume: 593
  start-page: 429
  issue: 7859
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0070
  article-title: In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates
  publication-title: Nature
  doi: 10.1038/s41586-021-03534-y
– volume: 586
  start-page: 567
  issue: 7830
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0050
  article-title: SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness
  publication-title: Nature
  doi: 10.1038/s41586-020-2622-0
– volume: 17
  start-page: 261
  issue: 4
  year: 2018
  ident: 10.1016/j.addr.2022.114197_b0565
  article-title: mRNA vaccines — a new era in vaccinology
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.243
– volume: 578
  start-page: 229
  issue: 7794
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0005
  article-title: The promise and challenge of therapeutic genome editing
  publication-title: Nature
  doi: 10.1038/s41586-020-1978-5
– volume: 65
  start-page: 36
  year: 2013
  ident: 10.1016/j.addr.2022.114197_b0150
  article-title: Liposomal drug delivery systems: From concept to clinical applications
  publication-title: Adv. Drug Deliv. Perspect. Prospects
  doi: 10.1016/j.addr.2012.09.037
– volume: 6
  issue: 26
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0420
  article-title: Impact of mRNA chemistry and manufacturing process on innate immune activation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz6893
– volume: 35
  start-page: 1179
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0400
  article-title: Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4005
– volume: 38
  start-page: 824
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0010
  article-title: Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0561-9
– volume: 33
  start-page: 985
  year: 2015
  ident: 10.1016/j.addr.2022.114197_b0415
  article-title: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3290
– start-page: 61
  year: 2016
  ident: 10.1016/j.addr.2022.114197_b0560
  article-title: mRNA Cancer Vaccines
– volume: 87
  start-page: 68
  year: 2015
  ident: 10.1016/j.addr.2022.114197_b0145
  article-title: Delivery of oligonucleotides with lipid nanoparticles
  publication-title: Recent Dev. Oligonucleotide Based Ther.
– volume: 24
  start-page: 144
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0055
  article-title: Non-viral delivery of genome-editing nucleases for gene therapy
  publication-title: Gene Ther.
  doi: 10.1038/gt.2016.72
– volume: 39
  start-page: 949
  issue: 8
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0450
  article-title: In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00933-4
– volume: 13
  start-page: 285
  issue: 3
  year: 1994
  ident: 10.1016/j.addr.2022.114197_b0180
  article-title: The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/0169-409X(94)90016-7
– volume: 18
  start-page: 1109
  issue: 7-8
  year: 2012
  ident: 10.1016/j.addr.2022.114197_b0335
  article-title: Novel 3D manufacturing method combining microelectrial discharge machining and electrochemical polishing
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-012-1452-x
– volume: 15
  start-page: 91
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0390
  article-title: Evolution and clinical translation of drug delivery nanomaterials
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.06.008
– volume: 182
  start-page: 463
  issue: 2
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0445
  article-title: Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.037
– volume: 5
  start-page: 46181
  issue: 57
  year: 2015
  ident: 10.1016/j.addr.2022.114197_b0300
  article-title: A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure
  publication-title: RSC Adv.
  doi: 10.1039/C5RA04690D
– volume: 28
  start-page: 146
  year: 2018
  ident: 10.1016/j.addr.2022.114197_b0155
  article-title: Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility
  publication-title: Nucleic Acid Ther.
  doi: 10.1089/nat.2018.0721
– volume: 68
  start-page: 1323
  issue: 7
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0605
  article-title: Messenger RNA therapy for rare genetic metabolic diseases
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-318269
– volume: 9
  start-page: 1183
  issue: 9
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0460
  article-title: Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201607485
– year: 2018
  ident: 10.1016/j.addr.2022.114197_b0215
  article-title: Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2018-0040
– volume: 38
  start-page: 738
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0130
  article-title: Therapeutic gene editing: delivery and regulatory perspectives
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2017.2
– volume: 371
  start-page: 145
  issue: 6525
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0105
  article-title: A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis
  publication-title: Science
  doi: 10.1126/science.aay3638
– volume: 28
  start-page: 3633
  issue: 7
  year: 2012
  ident: 10.1016/j.addr.2022.114197_b0265
  article-title: Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing
  publication-title: Langmuir
  doi: 10.1021/la204833h
– volume: 458
  start-page: 102
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0395
  article-title: Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.04.040
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.addr.2022.114197_b0345
  article-title: Liposome production by microfluidics: Potential and limiting factors
  publication-title: Sci. Rep.
  doi: 10.1038/srep25876
– volume: 8
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0455
  article-title: Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.589959
– volume: 14
  start-page: 1084
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0620
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0591-y
– volume: 8
  start-page: 129
  year: 2009
  ident: 10.1016/j.addr.2022.114197_b0170
  article-title: Knocking down barriers: advances in siRNA delivery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2742
– year: 2013
  ident: 10.1016/j.addr.2022.114197_b0240
  article-title: Solid Lipid Nanoparticles for Drug Delivery
  publication-title: Drug Delivery Strategies Poorly Water-Soluble Drugs
  doi: 10.1002/9781118444726.ch4
– volume: 5
  start-page: e348
  year: 2016
  ident: 10.1016/j.addr.2022.114197_b0510
  article-title: A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo
  publication-title: Mol. Ther. - Nucleic Acids
  doi: 10.1038/mtna.2016.43
– volume: 15
  start-page: 313
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0110
  article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0669-6
– volume: 38
  start-page: 3136
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0585
  article-title: A shared tumor-antigen RNA-lipoplex vaccine with/without anti-PD1 in patients with checkpoint-inhibition experienced melanoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2020.38.15_suppl.3136
– volume: 4
  start-page: 125
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0080
  article-title: Adenine base editing in an adult mouse model of tyrosinaemia
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0357-8
– volume: 10
  start-page: 2001244
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0660
  article-title: The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202001244
– volume: 6
  start-page: 1
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0060
  article-title: Viral vector platforms within the gene therapy landscape
  publication-title: Signal Transduct. Target. Ther.
– ident: 10.1016/j.addr.2022.114197_b0290
  doi: 10.1007/978-3-319-26920-7_1
– volume: 6
  start-page: eaax5032
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0135
  article-title: Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax5032
– volume: 362
  start-page: 86
  issue: 6410
  year: 2018
  ident: 10.1016/j.addr.2022.114197_b0035
  article-title: Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy
  publication-title: Science
  doi: 10.1126/science.aau1549
– volume: 108-109
  start-page: 303
  year: 2004
  ident: 10.1016/j.addr.2022.114197_b0210
  article-title: Formation and stability of nano-emulsions
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2003.10.023
– volume: 45
  start-page: 6023
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0610
  article-title: N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx135
– volume: 63
  start-page: 5600
  issue: 23
  year: 2008
  ident: 10.1016/j.addr.2022.114197_b0350
  article-title: Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.08.005
– volume: 20
  issue: 5
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0380
  article-title: Nanoparticles: Oral Delivery for Protein and Peptide Drugs
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-019-1325-z
– volume: 19
  start-page: 937
  year: 2012
  ident: 10.1016/j.addr.2022.114197_b0405
  article-title: Designing Chemically Modified Oligonucleotides for Targeted Gene Silencing
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2012.07.011
– ident: 10.1016/j.addr.2022.114197_b0625
– volume: 153
  start-page: 728
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0375
  article-title: A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.11.031
– volume: 21
  start-page: 4845
  year: 2015
  ident: 10.1016/j.addr.2022.114197_b0515
  article-title: siRNA Lipid Nanoparticle Potently Silences Clusterin and Delays Progression When Combined with Androgen Receptor Cotargeting in Enzalutamide-Resistant Prostate Cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-0866
– volume: 22
  start-page: 2227
  year: 2018
  ident: 10.1016/j.addr.2022.114197_b0065
  article-title: A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.02.014
– volume: 64
  start-page: 2749
  issue: 11
  year: 2009
  ident: 10.1016/j.addr.2022.114197_b0325
  article-title: Flow regimes for adiabatic gas-liquid flow in microchannels
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.01.067
– volume: 170
  start-page: 83
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0085
  article-title: Self-assembled mRNA vaccines
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.12.014
– volume: 17
  start-page: 944
  issue: 3
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0190
  article-title: The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.9b01182
– volume: 32
  start-page: 4141
  year: 2014
  ident: 10.1016/j.addr.2022.114197_b0525
  article-title: First-in-Human Phase I Study of the Liposomal RNA Interference Therapeutic Atu027 in Patients With Advanced Solid Tumors
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2013.55.0376
– volume: 17
  start-page: 4421
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0120
  article-title: Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.0c00913
– volume: 128
  start-page: 84
  year: 2018
  ident: 10.1016/j.addr.2022.114197_b0140
  article-title: Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2018.03.008
– volume: 7
  start-page: 122
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0640
  article-title: Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections
  publication-title: Vaccines
  doi: 10.3390/vaccines7040122
– volume: 582
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0255
  article-title: Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: A case study using protein-loaded liposomes
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119266
– volume: 18
  start-page: 421
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0500
  article-title: The current state and future directions of RNAi-based therapeutics
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-019-0017-4
– volume: 11
  start-page: 673
  issue: 6
  year: 2016
  ident: 10.1016/j.addr.2022.114197_b0220
  article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction
  publication-title: Nanomedicine
  doi: 10.2217/nnm.16.5
– volume: 134
  start-page: 6948
  issue: 16
  year: 2012
  ident: 10.1016/j.addr.2022.114197_b0305
  article-title: Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301621z
– volume: 361
  start-page: 866
  issue: 6405
  year: 2018
  ident: 10.1016/j.addr.2022.114197_b0015
  article-title: CRISPR-Cas guides the future of genetic engineering
  publication-title: Science
  doi: 10.1126/science.aat5011
– volume: 6
  start-page: eabc9450
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0090
  article-title: CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc9450
– volume: 365
  start-page: 162
  issue: 6449
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0480
  article-title: Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor
  publication-title: Science
  doi: 10.1126/science.aav8692
– volume: 19
  start-page: S54
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0025
  article-title: New approaches to genetic therapies for cystic fibrosis
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2019.12.012
– volume: 9
  start-page: 4493
  year: 2018
  ident: 10.1016/j.addr.2022.114197_b0095
  article-title: Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06936-1
– volume: 566
  start-page: 687
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0315
  article-title: Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.06.033
– volume: 579
  start-page: 119167
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0355
  article-title: Antisolvent precipitation of lipid nanoparticles in microfluidic systems – A comparative study
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119167
– volume: 303
  start-page: 1818
  issue: 5665
  year: 2004
  ident: 10.1016/j.addr.2022.114197_b0495
  article-title: Drug Delivery Systems: Entering the Mainstream
  publication-title: Science
  doi: 10.1126/science.1095833
– volume: 69
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.addr.2022.114197_b0205
  article-title: Nanoparticles for drug delivery: The need for precision in reporting particle size parameters
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2007.08.001
– volume: 24
  start-page: 1781
  issue: 10
  year: 2003
  ident: 10.1016/j.addr.2022.114197_b0235
  article-title: The production and characteristics of solid lipid nanoparticles (SLNs)
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00578-1
– volume: 17
  start-page: 54
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0555
  article-title: How mRNA therapeutics are entering the monoclonal antibody field
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-019-1804-8
– ident: 10.1016/j.addr.2022.114197_b0635
  doi: 10.1038/s41578-021-00281-4
– year: 2011
  ident: 10.1016/j.addr.2022.114197_b0200
  article-title: Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.166
– volume: 51
  start-page: 11373
  issue: 35
  year: 2012
  ident: 10.1016/j.addr.2022.114197_b0330
  article-title: Formulation of poorly water-soluble compound loaded solid lipid nanoparticles in a microchannel system fabricated by mechanical microcutting method: Puerarin as a model drug
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie300592u
– volume: 10
  start-page: 11
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0490
  article-title: Nanomedicine review: clinical developments in liposomal applications
  publication-title: Cancer Nanotechnol.
  doi: 10.1186/s12645-019-0055-y
– volume: 235
  start-page: 236
  year: 2016
  ident: 10.1016/j.addr.2022.114197_b0185
  article-title: Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2016.05.059
– volume: 274
  start-page: 120826
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0270
  article-title: Microfluidic formulation of nanoparticles for biomedical applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120826
– ident: 10.1016/j.addr.2022.114197_b0540
  doi: 10.1016/S1525-0016(16)35855-5
– volume: 64
  start-page: 83
  year: 2012
  ident: 10.1016/j.addr.2022.114197_b0230
  article-title: Solid lipid nanoparticles: Production, characterization and applications
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.021
– volume: 27
  start-page: 803
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0590
  article-title: Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2019.02.019
– volume: 22
  start-page: 512
  issue: 3
  year: 2022
  ident: 10.1016/j.addr.2022.114197_b0275
  article-title: Microfluidic Technologies for Nanoparticle Formation
  publication-title: Lab. Chip
  doi: 10.1039/D1LC00812A
– volume: 9
  start-page: 2714
  year: 2018
  ident: 10.1016/j.addr.2022.114197_b0645
  article-title: Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05041-7
– volume: 20
  start-page: 209
  issue: 3
  year: 2012
  ident: 10.1016/j.addr.2022.114197_b0245
  article-title: A mini review of nanosuspensions development
  publication-title: J. Drug Target.
  doi: 10.3109/1061186X.2011.645161
– volume: 20
  start-page: 701
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0115
  article-title: Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00886-0
– volume: 44
  start-page: D862
  issue: D1
  year: 2016
  ident: 10.1016/j.addr.2022.114197_b0435
  article-title: ClinVar: public archive of interpretations of clinically relevant variants
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1222
– ident: 10.1016/j.addr.2022.114197_b0075
  doi: 10.1038/s41587-020-0642-9
– volume: 11
  start-page: 345
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0665
  article-title: Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems
  publication-title: Drug Deliv. Transl. Res.
  doi: 10.1007/s13346-021-00929-2
– volume: 229
  start-page: 48
  year: 2016
  ident: 10.1016/j.addr.2022.114197_b0195
  article-title: Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2016.03.019
– volume: 136
  start-page: 665
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0440
  article-title: The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-017-1779-6
– volume: 6
  start-page: 1078
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0385
  article-title: Lipid nanoparticles for mRNA delivery
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00358-0
– volume: 12
  start-page: 1095
  issue: 11
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0250
  article-title: Manufacturing Considerations for the Development of Lipid Nanoparticles Using Microfluidics
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12111095
– volume: 94
  start-page: 68
  year: 2012
  ident: 10.1016/j.addr.2022.114197_b0295
  article-title: Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2012.01.018
– volume: 330
  start-page: 61
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0370
  article-title: Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2020.12.013
– volume: 13
  start-page: 206
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0045
  article-title: Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13020206
– volume: 20
  start-page: 1578
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0465
  article-title: Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04246
– volume: 159
  start-page: 344
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0160
  article-title: Lipid nanoparticle technology for therapeutic gene regulation in the liver
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.06.026
– volume: 12
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0505
  article-title: Insight Into the Prospects for RNAi Therapy of Cancer
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.644718
– volume: 31
  start-page: S276
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0535
  article-title: 88MO T-cell responses induced by an individualized neoantigen specific immune therapy in post (neo)adjuvant patients with triple negative breast cancer
  publication-title: Ann. Oncol.
  doi: 10.1016/j.annonc.2020.08.209
– volume: 26
  start-page: 3936
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0550
  article-title: MTL-CEBPA, a Small Activating RNA Therapeutic Upregulating C/EBP-α, in Patients with Advanced Liver Cancer: A First-in-Human, Multicenter, Open-Label. Phase I Trial
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-20-0414
– volume: 3
  start-page: 5044
  issue: 5
  year: 2018
  ident: 10.1016/j.addr.2022.114197_b0310
  article-title: Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size within 10 nm for Drug Delivery
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00341
– volume: 25
  start-page: 1316
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0430
  article-title: Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.03.035
– volume: 21
  issue: 12
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0320
  article-title: Optically monitored segmented flow for controlled ultra-fast mixing and nanoparticle precipitation
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-017-2016-2
– volume: 23
  start-page: 699
  year: 2016
  ident: 10.1016/j.addr.2022.114197_b0600
  article-title: Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system
  publication-title: Gene Ther.
  doi: 10.1038/gt.2016.46
– volume: 18
  start-page: 305
  issue: 4
  year: 2008
  ident: 10.1016/j.addr.2022.114197_b0410
  article-title: Chemical Modification of siRNAs for In Vivo Use
  publication-title: Oligonucleotides
  doi: 10.1089/oli.2008.0164
– volume: 71
  start-page: 2829
  year: 2011
  ident: 10.1016/j.addr.2022.114197_b0520
  article-title: Abstract 2829: Preclinical characterization of TKM-080301, a lipid nanoparticle formulation of a small interfering RNA directed against polo-like kinase 1
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2011-2829
– volume: 113
  start-page: E6639
  year: 2016
  ident: 10.1016/j.addr.2022.114197_b0575
  article-title: Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1606050113
– volume: 80
  start-page: CT032
  year: 2020
  ident: 10.1016/j.addr.2022.114197_b0530
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2020-CT032
– volume: 534
  start-page: 396
  issue: 7607
  year: 2016
  ident: 10.1016/j.addr.2022.114197_b0100
  article-title: Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
  publication-title: Nature
  doi: 10.1038/nature18300
– volume: 169
  start-page: 176
  issue: 1
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0040
  article-title: Modified mRNA Vaccines Protect against Zika Virus Infection
  publication-title: Cell
  doi: 10.1016/j.cell.2017.03.016
– volume: 34
  start-page: 1339
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0125
  article-title: The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-017-2134-2
– volume: 97
  start-page: 92
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0175
  article-title: Transfection reagent Lipofectamine triggers type I interferon signaling activation in macrophages
  publication-title: Immunol. Cell Biol.
  doi: 10.1111/imcb.12194
– volume: 16
  start-page: 2265
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0365
  article-title: Lipid Nanoparticles for Delivery of Therapeutic RNA Oligonucleotides
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.8b01290
– volume: 28
  start-page: 7365
  year: 2016
  ident: 10.1016/j.addr.2022.114197_b0655
  article-title: Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601900
– volume: 88
  start-page: 191
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0020
  article-title: Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-013118-111730
– volume: 239
  start-page: 121
  issue: 1-2
  year: 2002
  ident: 10.1016/j.addr.2022.114197_b0285
  article-title: Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(02)00081-9
– volume: 27
  start-page: 785
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0595
  article-title: mRNA-Based Protein Replacement Therapy for the Heart
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.11.018
– volume: 11
  start-page: 1198
  issue: 8
  year: 2019
  ident: 10.1016/j.addr.2022.114197_b0470
  article-title: Clinical-Scale Production of CAR-T Cells for the Treatment of Melanoma Patients by mRNA Transfection of a CSPG4-Specific CAR under Full GMP Compliance
  publication-title: Cancers
  doi: 10.3390/cancers11081198
– volume: 13
  start-page: 19352
  issue: 46
  year: 2021
  ident: 10.1016/j.addr.2022.114197_b0670
  article-title: Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis
  publication-title: Nanoscale
  doi: 10.1039/D1NR06195J
– volume: 255
  start-page: 10431
  year: 1980
  ident: 10.1016/j.addr.2022.114197_b0165
  article-title: Introduction of liposome-encapsulated SV40 DNA into cells
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)70482-7
– volume: 375
  start-page: 91
  issue: 6576
  year: 2022
  ident: 10.1016/j.addr.2022.114197_b0475
  article-title: CAR T cells produced in vivo to treat cardiac injury
  publication-title: Science
  doi: 10.1126/science.abm0594
– volume: 543
  start-page: 248
  issue: 7644
  year: 2017
  ident: 10.1016/j.addr.2022.114197_b0425
  article-title: Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination
  publication-title: Nature
  doi: 10.1038/nature21428
– volume: 189
  start-page: 54
  year: 2014
  ident: 10.1016/j.addr.2022.114197_b0225
  article-title: Lipid nanoparticles: Drug localization is substance-specific and achievable load depends on the size and physical state of the particles
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2014.06.007
SSID ssj0012760
Score 2.581204
SecondaryResourceType review_article
Snippet [Display omitted] Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with...
Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies....
Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would otherwise not be possible with traditional...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114197
SubjectTerms COVID-19
COVID-19 Vaccines
CRISPR-delivery
Gene delivery
Humans
Lipid nanoparticles
Lipids
Liposomes
Microfluidics
Nanoparticles
Non-viral vectors
Nucleic Acids
Rare Diseases
SARS-CoV-2
Title Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids
URI https://dx.doi.org/10.1016/j.addr.2022.114197
https://www.ncbi.nlm.nih.gov/pubmed/35288219
https://www.proquest.com/docview/2639222928
https://pubmed.ncbi.nlm.nih.gov/PMC9035142
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWqIiQuCMpX-KiMhHqhSzZee-09VhVVALUqopVys-yxLRZFm6hJDrnw2_HE3pQA6oHj7o4lyzO2n9dv3hDyrnIBysqbwkINRYyQUCgeHyVTdQOhUVBi7vD5RT2-5p8nYrJHTvtcGKRV5rU_remb1Tq_GebRHM7bdvgNdUTi6WTCMNtESdQE5VxilH_4uaV5jJjcZAqjcYHWOXEmcbzi5EZNUMZQMneEwk__3pz-Bp9_cih_25TOHpGHGU3Sk9Thx2TPdwfkfqovuT4gR5dJmHp9TK9u86wWx_SIXt5KVq-fkK_nyMsL01XrWqDB2Jv8K4_OAp2289bRznTxfJ1pdDRCXRqhI3V-isSONdp1KI0cmxto3eIpuT77eHU6LnKxhQK4EMtCBDDS17WpI2aTtgQmZfRvaJyJkMoKb2oRSgcR8HFnGTRY3TPiPQAhvFK8ekb2u1nnXxDaeN8YC0xZsLyspHJVrVTFgVmmRsAGZNSPsoasRI4FMaa6p5z90OgZjZ7RyTMD8n7bZp50OO60Fr3z9E406bhR3Nnube9pHacZ3p2Yzs9WC80iksPS50wNyPPk-W0_UCBHxZV_QOROTGwNUMJ790vXft9IeTd4kcvZy__s7yvyAJ8SAfM12V_erPybCJKW9nAzCw7JvZNPX8YXvwBoehL1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lLG9jK37SvelwejLauLIli0_lrKSrk3oWAp5E9JJph7BCU3ykP--ulhOl230YY-270Do9PGT9bvfAXxJbIlx4nRkMMPIj5Aykql_zLnMCiwLiTHlDg9H2eA6_T4Rkz04bXNhiFYZ1v5mTd-s1uFNL_Rmb15VvZ-kI-JPJxNO2SYyTx_BPqlTiQ7sn5xfDEbbywSeb5KFyT4ih5A709C8_PwmWVDOSTW3T9pP_96f_saff9Iof9uXzp7DswAo2UnT5hew5-oDeNyUmFwfwNFVo029Pmbj-1SrxTE7Ylf3qtXrl_BjSNS8crqqbIWs1OY2_M1js5JNq3llWa1rf8QOTDrm0S7z6JFZNyVux5rsalJH9u4aK7t4Bddn38angyjUW4gwFWIZiRJ17rJMZx625SZGnuc-xGVhtUdVRjidiTK26DFfag3Hggp8esiHKISTMk1eQ6ee1e4tsMK5Qhvk0qBJ4ySXNsmkTFLkhss-8i70215WGMTIqSbGVLWss1-KIqMoMqqJTBe-bn3mjRTHg9aiDZ7aGVDK7xUP-n1uI638TKPrE1272WqhuAdzVP2cyy68aSK_bQdp5Ei_-Hch3xkTWwNS8d79Ulc3GzXvgu5yU374n-39BE8G4-GlujwfXbyDp_Sl4WO-h87yduU-eMy0NB_DnLgDxH0Vpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+fabrication+of+lipid+nanoparticles+for+the+delivery+of+nucleic+acids&rft.jtitle=Advanced+drug+delivery+reviews&rft.au=Prakash%2C+Gyan&rft.au=Shokr%2C+Ahmed&rft.au=Willemen%2C+Niels&rft.au=Bashir%2C+Showkeen+Muzamil&rft.date=2022-05-01&rft.issn=0169-409X&rft.volume=184&rft.spage=114197&rft_id=info:doi/10.1016%2Fj.addr.2022.114197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_addr_2022_114197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-409X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-409X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-409X&client=summon