Potential role for age as a modulator of oral nitrate reductase activity

Reduction of salivary nitrate to nitrite by oral nitrate reductase (NR) expressing bacteria has emerged as an integral pathway in regulating nitric oxide (NO) homeostasis and signaling. The oral microbiome is critical for this pathway. Variations in this pathway may underlie variable responses in th...

Full description

Saved in:
Bibliographic Details
Published inNitric oxide Vol. 108; pp. 1 - 7
Main Authors Ahmed, Khandaker Ahtesham, Kim, Kiyoung, Ricart, Karina, Van Der Pol, William, Qi, Xiaoping, Bamman, Marcas M., Behrens, Christian, Fisher, Gordon, Boulton, Michael E., Morrow, Casey, O'Neal, Pamela V., Patel, Rakesh P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reduction of salivary nitrate to nitrite by oral nitrate reductase (NR) expressing bacteria has emerged as an integral pathway in regulating nitric oxide (NO) homeostasis and signaling. The oral microbiome is critical for this pathway. Variations in this pathway may underlie variable responses in the magnitude by which dietary or therapeutic nitrate modulates NO-signaling. The relationships between oral microbes and NR activity, and the factors that affect this relationship remain unclear however. Using a cross-sectional study design, the objective of this study was to determine the relationships between oral microbes and oral NR activity using a protocol that directly measures initial NR activity. Tongue swabs were collected from 28 subjects ranging in age from 21 to 73y. Initial NR activity showed a bell-shaped dependence with age, with activity peaking at ~40-50y and being lower but similar between younger (20-30y) and older (51–73) individuals. Microbiome relative abundance and diversity analyses, using 16s sequencing, demonstrated differences across age and identified both NR expressing and non-expressing bacteria in modulating initial NR activity. Finally, initial NR activity was measured in 3mo and 13mo old C57BL/6J mice. No differences in bacterial number were observed. However initial NR activity was significantly (80%) lower in 13mo old mice. Collectively, these data suggest that age is a variable in NR activity and may modulate responsiveness to dietary nitrate. •Age may be a variable in oral nitrate reductase activity and modulate responsiveness to dietary nitrate.•Oral nitrate reductase activity may be maximal in middle-age.•Middle age individuals may benefit most from nitrate-dependent interventions to stimulate nitric oxide bioactivity.
AbstractList Reduction of salivary nitrate to nitrite by oral nitrate reductase (NR) expressing bacteria has emerged as an integral pathway in regulating nitric oxide (NO) homeostasis and signaling. The oral microbiome is critical for this pathway. Variations in this pathway may underlie variable responses in the magnitude by which dietary or therapeutic nitrate modulates NO-signaling. The relationships between oral microbes and NR activity, and the factors that affect this relationship remain unclear however. Using a cross-sectional study design, the objective of this study was to determine the relationships between oral microbes and oral NR activity using a protocol that directly measures initial NR activity. Tongue swabs were collected from 28 subjects ranging in age from 21 to 73y. Initial NR activity showed a bell-shaped dependence with age, with activity peaking at ~40-50y and being lower but similar between younger (20-30y) and older (51-73) individuals. Microbiome relative abundance and diversity analyses, using 16s sequencing, demonstrated differences across age and identified both NR expressing and non-expressing bacteria in modulating initial NR activity. Finally, initial NR activity was measured in 3mo and 13mo old C57BL/6J mice. No differences in bacterial number were observed. However initial NR activity was significantly (80%) lower in 13mo old mice. Collectively, these data suggest that age is a variable in NR activity and may modulate responsiveness to dietary nitrate.Reduction of salivary nitrate to nitrite by oral nitrate reductase (NR) expressing bacteria has emerged as an integral pathway in regulating nitric oxide (NO) homeostasis and signaling. The oral microbiome is critical for this pathway. Variations in this pathway may underlie variable responses in the magnitude by which dietary or therapeutic nitrate modulates NO-signaling. The relationships between oral microbes and NR activity, and the factors that affect this relationship remain unclear however. Using a cross-sectional study design, the objective of this study was to determine the relationships between oral microbes and oral NR activity using a protocol that directly measures initial NR activity. Tongue swabs were collected from 28 subjects ranging in age from 21 to 73y. Initial NR activity showed a bell-shaped dependence with age, with activity peaking at ~40-50y and being lower but similar between younger (20-30y) and older (51-73) individuals. Microbiome relative abundance and diversity analyses, using 16s sequencing, demonstrated differences across age and identified both NR expressing and non-expressing bacteria in modulating initial NR activity. Finally, initial NR activity was measured in 3mo and 13mo old C57BL/6J mice. No differences in bacterial number were observed. However initial NR activity was significantly (80%) lower in 13mo old mice. Collectively, these data suggest that age is a variable in NR activity and may modulate responsiveness to dietary nitrate.
Reduction of salivary nitrate to nitrite by oral nitrate reductase (NR) expressing bacteria has emerged as an integral pathway in regulating nitric oxide (NO) homeostasis and signaling. The oral microbiome is critical for this pathway. Variations in this pathway may underlie variable responses in the magnitude by which dietary or therapeutic nitrate modulates NO-signaling. The relationships between oral microbes and NR activity, and the factors that affect this relationship remain unclear however. Using a cross-sectional study design, the objective of this study was to determine the relationships between oral microbes and oral NR activity using a protocol that directly measures initial NR activity. Tongue swabs were collected from 28 subjects ranging in age from 21-73y. Initial NR activity showed a bell-shaped dependence with age, with activity peaking at ~40-50y and being lower but similar between younger (20-30y) and older (51-73) individuals. Microbiome relative abundance and diversity analyses, using 16s sequencing, demonstrated differences across age and identified both NR expressing and non-expressing bacteria in modulating initial NR activity. Finally, initial NR activity was measured in 3mo and 13mo old C57BL/6J mice. No differences in bacterial number were observed. However initial NR activity was significantly (80%) lower in 13mo old mice. Collectively, these data suggest that age is a variable in NR activity and may modulate responsiveness to dietary nitrate.
Reduction of salivary nitrate to nitrite by oral nitrate reductase (NR) expressing bacteria has emerged as an integral pathway in regulating nitric oxide (NO) homeostasis and signaling. The oral microbiome is critical for this pathway. Variations in this pathway may underlie variable responses in the magnitude by which dietary or therapeutic nitrate modulates NO-signaling. The relationships between oral microbes and NR activity, and the factors that affect this relationship remain unclear however. Using a cross-sectional study design, the objective of this study was to determine the relationships between oral microbes and oral NR activity using a protocol that directly measures initial NR activity. Tongue swabs were collected from 28 subjects ranging in age from 21 to 73y. Initial NR activity showed a bell-shaped dependence with age, with activity peaking at ~40-50y and being lower but similar between younger (20-30y) and older (51-73) individuals. Microbiome relative abundance and diversity analyses, using 16s sequencing, demonstrated differences across age and identified both NR expressing and non-expressing bacteria in modulating initial NR activity. Finally, initial NR activity was measured in 3mo and 13mo old C57BL/6J mice. No differences in bacterial number were observed. However initial NR activity was significantly (80%) lower in 13mo old mice. Collectively, these data suggest that age is a variable in NR activity and may modulate responsiveness to dietary nitrate.
Reduction of salivary nitrate to nitrite by oral nitrate reductase (NR) expressing bacteria has emerged as an integral pathway in regulating nitric oxide (NO) homeostasis and signaling. The oral microbiome is critical for this pathway. Variations in this pathway may underlie variable responses in the magnitude by which dietary or therapeutic nitrate modulates NO-signaling. The relationships between oral microbes and NR activity, and the factors that affect this relationship remain unclear however. Using a cross-sectional study design, the objective of this study was to determine the relationships between oral microbes and oral NR activity using a protocol that directly measures initial NR activity. Tongue swabs were collected from 28 subjects ranging in age from 21 to 73y. Initial NR activity showed a bell-shaped dependence with age, with activity peaking at ~40-50y and being lower but similar between younger (20-30y) and older (51–73) individuals. Microbiome relative abundance and diversity analyses, using 16s sequencing, demonstrated differences across age and identified both NR expressing and non-expressing bacteria in modulating initial NR activity. Finally, initial NR activity was measured in 3mo and 13mo old C57BL/6J mice. No differences in bacterial number were observed. However initial NR activity was significantly (80%) lower in 13mo old mice. Collectively, these data suggest that age is a variable in NR activity and may modulate responsiveness to dietary nitrate. •Age may be a variable in oral nitrate reductase activity and modulate responsiveness to dietary nitrate.•Oral nitrate reductase activity may be maximal in middle-age.•Middle age individuals may benefit most from nitrate-dependent interventions to stimulate nitric oxide bioactivity.
Author Ahmed, Khandaker Ahtesham
Qi, Xiaoping
Fisher, Gordon
Kim, Kiyoung
Van Der Pol, William
Morrow, Casey
Bamman, Marcas M.
Ricart, Karina
Behrens, Christian
O'Neal, Pamela V.
Patel, Rakesh P.
Boulton, Michael E.
AuthorAffiliation 8 College of Nursing, University of Alabama in Huntsville, Huntsville AL
5 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham AL
3 Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL
1 Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham AL
4 Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham
2 Current address: Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston MA
7 Department of Human Studies, University of Alabama at Birmingham, Birmingham AL
6 Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham AL
AuthorAffiliation_xml – name: 5 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham AL
– name: 1 Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham AL
– name: 3 Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL
– name: 2 Current address: Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston MA
– name: 7 Department of Human Studies, University of Alabama at Birmingham, Birmingham AL
– name: 6 Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham AL
– name: 4 Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham
– name: 8 College of Nursing, University of Alabama in Huntsville, Huntsville AL
Author_xml – sequence: 1
  givenname: Khandaker Ahtesham
  surname: Ahmed
  fullname: Ahmed, Khandaker Ahtesham
  organization: Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
– sequence: 2
  givenname: Kiyoung
  orcidid: 0000-0002-8602-3304
  surname: Kim
  fullname: Kim, Kiyoung
  organization: Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
– sequence: 3
  givenname: Karina
  orcidid: 0000-0001-5737-8248
  surname: Ricart
  fullname: Ricart, Karina
  organization: Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
– sequence: 4
  givenname: William
  surname: Van Der Pol
  fullname: Van Der Pol, William
  organization: Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, USA
– sequence: 5
  givenname: Xiaoping
  surname: Qi
  fullname: Qi, Xiaoping
  organization: Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
– sequence: 6
  givenname: Marcas M.
  surname: Bamman
  fullname: Bamman, Marcas M.
  organization: Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
– sequence: 7
  givenname: Christian
  orcidid: 0000-0002-8889-0292
  surname: Behrens
  fullname: Behrens, Christian
  organization: Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
– sequence: 8
  givenname: Gordon
  orcidid: 0000-0002-9191-3774
  surname: Fisher
  fullname: Fisher, Gordon
  organization: Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, USA
– sequence: 9
  givenname: Michael E.
  orcidid: 0000-0002-0796-1766
  surname: Boulton
  fullname: Boulton, Michael E.
  organization: Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
– sequence: 10
  givenname: Casey
  surname: Morrow
  fullname: Morrow, Casey
  organization: Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
– sequence: 11
  givenname: Pamela V.
  surname: O'Neal
  fullname: O'Neal, Pamela V.
  organization: College of Nursing, University of Alabama in Huntsville, Huntsville, AL, USA
– sequence: 12
  givenname: Rakesh P.
  orcidid: 0000-0002-1526-4303
  surname: Patel
  fullname: Patel, Rakesh P.
  email: rakeshpatel@uabmc.edu
  organization: Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33321206$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaT7aP9BD2WMvdmek_ZAhBIppk0KgPbRnoZVGqcx6lUhak_z7aHFimh5y0jB63nmHeU_Z0RhGYuwjwhIB2y-b5ejD_ZIDLw2-BMA37ARBrhayRTw61CCO2WlKGwCohWzfsWMhBEcO7Qm7-hUyjdnroYphoMqFWOkbqnSqdLUNdhp0Lq3gqhALM_ocdaYqkp1M1qmAJvudzw_v2Vunh0Qfnt4z9uf7t9_rq8X1z8sf66_XC1M3TV40PdZWC5Dg5kp2shEO-7onsaqNBQcrIy1vCOvG9NLxrkXjOllAq9FxccYu9nNvp35L1pTly2LqNvqtjg8qaK9e_oz-r7oJOyVBNivEMuDz04AY7iZKWW19MjQMeqQwJcXrDtpi24mCfvrX62DyfL4C8D1gYkgpkjsgCGrOSG3UnJGaM1LIVcmoiOR_IuOzzj7M-_rhden5XkrlwjtPUSXjaTRkfSSTlQ3-Nfkj9Tatnw
CitedBy_id crossref_primary_10_1002_1873_3468_14859
crossref_primary_10_1113_JP287592
crossref_primary_10_1016_j_niox_2025_03_001
crossref_primary_10_1016_j_cell_2024_07_008
crossref_primary_10_1159_000540017
crossref_primary_10_1186_s13102_021_00292_2
crossref_primary_10_3899_jrheum_220635
crossref_primary_10_1016_j_niox_2021_09_005
crossref_primary_10_1016_j_nutres_2023_04_008
crossref_primary_10_1152_ajpregu_00150_2024
crossref_primary_10_1186_s40001_023_01413_y
Cites_doi 10.3389/fcimb.2019.00039
10.1016/j.niox.2018.12.003
10.1016/j.freeradbiomed.2013.06.031
10.1016/j.niox.2017.09.004
10.1056/NEJMc062800
10.1038/nrmicro929
10.1172/JCI31892
10.3390/nu9111171
10.1128/AEM.63.3.924-930.1997
10.1016/j.freeradbiomed.2019.05.010
10.1161/HYPERTENSIONAHA.107.103523
10.1111/j.1600-0722.2004.00184.x
10.1016/j.freeradbiomed.2014.09.017
10.1002/mnfr.201500313
10.1038/nrd2466
10.1161/CIRCULATIONAHA.112.112912
10.1371/journal.pone.0088645
10.1016/j.nutres.2015.06.001
10.1038/nrd4623
10.1038/pr.2014.168
10.1016/j.niox.2012.07.004
10.1016/j.niox.2019.04.010
10.1016/j.niox.2019.10.012
10.1016/S0300-9629(97)00023-6
10.1080/17461391.2018.1445298
10.1139/apnm-2014-0036
10.1016/j.freeradbiomed.2018.03.023
10.1097/MOL.0b013e328341942c
10.1038/nchembio734
10.1016/j.freeradbiomed.2012.11.013
10.1172/JCI22493
10.1016/j.niox.2014.03.162
10.1161/HYPERTENSIONAHA.110.153536
10.1016/j.freeradbiomed.2013.01.024
10.1182/blood-2005-07-2668
10.1007/s00394-015-0872-7
10.1016/j.freeradbiomed.2018.05.078
10.1073/pnas.0706579104
10.1038/nchembio.260
10.1111/j.1600-0722.2004.00153.x
10.1093/cvr/cvq323
10.1371/journal.pone.0089398
10.1161/HYPERTENSIONAHA.114.04675
10.1007/s00421-015-3296-4
10.3390/nu11071683
10.1161/CIRCULATIONAHA.109.891077
10.1152/ajpheart.00389.2017
10.1016/j.freeradbiomed.2018.07.010
10.1152/ajpheart.01291.2008
10.1016/j.niox.2012.01.004
10.1016/j.niox.2010.10.002
10.1152/ajpheart.00407.2006
10.3945/ajcn.115.116244
10.1152/japplphysiol.00722.2009
10.1111/joim.12441
10.1016/j.niox.2017.04.001
10.1186/2045-824X-6-19
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.niox.2020.12.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1089-8611
EndPage 7
ExternalDocumentID PMC8085911
33321206
10_1016_j_niox_2020_12_001
S1089860320302123
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001417
– fundername: NHLBI NIH HHS
  grantid: T32 HL105349
– fundername: NIDDK NIH HHS
  grantid: P30 DK079626
– fundername: NHLBI NIH HHS
  grantid: T32 HL007457
– fundername: NIDCR NIH HHS
  grantid: T90 DE022736
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABGSF
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DOVZS
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
WH7
ZU3
~G-
.55
.GJ
29N
3O-
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FGOYB
HZ~
H~9
R2-
RIG
SEW
SSH
X7M
XPP
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c455t-5b14da3080fb14d87853f1b4be394cd0f09c8d25e145cb8f2761cf78878da1f23
IEDL.DBID .~1
ISSN 1089-8603
1089-8611
IngestDate Thu Aug 21 14:34:59 EDT 2025
Fri Jul 11 12:07:55 EDT 2025
Thu Apr 03 07:06:49 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Tue Jul 01 03:23:03 EDT 2025
Fri Feb 23 02:48:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Aging
Nitric oxide
Microbiome
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-5b14da3080fb14d87853f1b4be394cd0f09c8d25e145cb8f2761cf78878da1f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9191-3774
0000-0001-5737-8248
0000-0002-0796-1766
0000-0002-8602-3304
0000-0002-8889-0292
0000-0002-1526-4303
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8085911
PMID 33321206
PQID 2470627673
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8085911
proquest_miscellaneous_2470627673
pubmed_primary_33321206
crossref_primary_10_1016_j_niox_2020_12_001
crossref_citationtrail_10_1016_j_niox_2020_12_001
elsevier_sciencedirect_doi_10_1016_j_niox_2020_12_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nitric oxide
PublicationTitleAlternate Nitric Oxide
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jones, Hopper, Power, Blood (bib15) 2015; 77
Kapil, Khambata, Robertson, Caulfield, Ahluwalia (bib30) 2015; 65
Kanady, Aruni, Ninnis, Hopper, Blood, Byrd, Holley, Staker, Hutson, Fletcher, Power, Blood (bib54) 2012; 27
Webb, Patel, Loukogeorgakis, Okorie, Aboud, Misra, Rashid, Miall, Deanfield, Benjamin, MacAllister, Hobbs, Ahluwalia (bib34) 2008; 51
Hendgen-Cotta, Luedike, Totzeck, Kropp, Schicho, Stock, Rammos, Niessen, Heiss, Lundberg, Weitzberg, Kelm, Rassaf (bib16) 2012; 126
Tang, Jiang, Bryan (bib7) 2011; 22
Bahra, Kapil, Pearl, Ghosh, Ahluwalia (bib32) 2012; 26
Larsen, Ekblom, Sahlin, Lundberg, Weitzberg (bib5) 2006; 355
Vanhatalo, Blackwell, L'Heureux, Williams, Smith, van der Giezen, Winyard, Kelly, Jones (bib49) 2018; 124
Joshipura, Munoz-Torres, Fernandez-Santiago, Patel, Lopez-Candales (bib41) 2020; vol. 29
Lang, Teng, Chumley, Crawford, Isbell, Chacko, Liu, Jhala, Crowe, Smith, Cross, Frenette, Kelley, Wilhite, Hall, Page, Fallon, Bynon, Eckhoff, Patel (bib45) 2007; 117
Stanaway, Rutherfurd-Markwick, Page, Wong, Jirangrat, Teh, Ali (bib58) 2019; 11
Lara, Ashor, Oggioni, Ahluwalia, Mathers, Siervo (bib29) 2015; 55
Doel, Benjamin, Hector, Rogers, Allaker (bib8) 2005; 113
Patel, Hogg, Kim-Shapiro (bib23) 2011; 89
Lundberg, Gladwin, Weitzberg (bib2) 2015; 14
McDonagh, Wylie, Thompson, Vanhatalo, Jones (bib39) 2019; 19
Kapil, Haydar, Pearl, Lundberg, Weitzberg, Ahluwalia (bib28) 2013; 55
Presley, Morgan, Bechtold, Clodfelter, Dove, Jennings, Kraft, King, Laurienti, Rejeski, Burdette, Kim-Shapiro, Miller (bib35) 2011; 24
Beall, Campbell, Dayeh, Griffen, Podar, Leys (bib55) 2014; 9
Bailey, Winyard, Vanhatalo, Blackwell, Dimenna, Wilkerson, Tarr, Benjamin, Jones (bib38) 2009; 1985
Duncan, Li, Dykhuizen, Frazer, Johnston, MacKnight, Smith, Lamza, McKenzie, Batt, Kelly, Golden, Benjamin, Leifert (bib13) 1997; 118
Stokes, Dugas, Tang, Garg, Guidry, Bryan (bib26) 2009; 296
Kumar, Eipers, Little, Crowley, Crossman, Lefkowitz, Morrow (bib46) 2014; 82
Gilchrist, Winyard, Aizawa, Anning, Shore, Benjamin (bib42) 2013; 60
Ashworth, Cutler, Farnham, Liddle, Burleigh, Rodiles, Sillitti, Kiernan, Moore, Hickson, Easton, Bescos (bib50) 2019; 138
Velmurugan, Kapil, Ghosh, Davies, McKnight, Aboud, Khambata, Webb, Poole, Ahluwalia (bib31) 2013; 65
Timby, Domellof, Hernell, Lonnerdal, Nihlen, Johanssson, Weitzberg (bib56) 2020; 94
Lundberg, Gladwin, Ahluwalia, Benjamin, Bryan, Butler, Cabrales, Fago, Feelisch, Ford, Freeman, Frenneaux, Friedman, Kelm, Kevil, Kim-Shapiro, Kozlov, Lancaster, Lefer, McColl, McCurry, Patel, Petersson, Rassaf, Reutov, Richter-Addo, Schechter, Shiva, Tsuchiya, van Faassen, Webb, Zuckerbraun, Zweier, Weitzberg (bib19) 2009; 5
Stanaway, Rutherfurd-Markwick, Page, Ali (bib43) 2017; 9
Zuckerbraun, Shiva, Ifedigbo, Mathier, Mollen, Rao, Bauer, Choi, Curtis, Choi, Gladwin (bib27) 2010; 121
Burleigh, Liddle, Muggeridge, Monaghan, Sculthorpe, Butcher, Henriquez, Easton (bib47) 2019; 89
Wylie, Bailey, Kelly, Blackwell, Vanhatalo, Jones (bib37) 2015; 116
Bryan, Ivy (bib6) 2015; 35
Kapil, Milsom, Okorie, Maleki-Toyserkani, Akram, Rehman, Arghandawi, Pearl, Benjamin, Loukogeorgakis, Macallister, Hobbs, Webb, Ahluwalia (bib33) 2010; 56
Lundberg, Weitzberg, Cole, Benjamin (bib17) 2004; 2
Ahmed, Nichols, Honavar, Dransfield, Matalon, Patel (bib44) 2017; 66
Burleigh, Liddle, Monaghan, Muggeridge, Sculthorpe, Butcher, Henriquez, Allen, Easton (bib53) 2018; 120
Gladwin, Raat, Shiva, Dezfulian, Hogg, Kim-Shapiro, Patel (bib20) 2006; 291
Scioli, Bielli, Arcuri, Ferlosio, Orlandi (bib59) 2014; 6
Jones (bib36) 2014; 39
Bock, Ueda, Schneider, Hughes, Limberg, Bryan, Casey (bib57) 2018; 314
Hyde, Andrade, Vaksman, Parthasarathy, Jiang, Parthasarathy, Torregrossa, Tribble, Kaplan, Petrosino, Bryan (bib10) 2014; 9
Hyde, Luk, Cron, Kusic, McCue, Bauch, Kaplan, Tribble, Petrosino, Bryan (bib11) 2014; 77
Tribble, Angelov, Weltman, Wang, Eswaran, Gay, Parthasarathy, Dao, Richardson, Ismail, Sharina, Hyde, Ajami, Petrosino, Bryan (bib48) 2019; 9
Doel, Hector, Amirtham, Al-Anzan, Benjamin, Allaker (bib9) 2004; 112
Duranski, Greer, Dejam, Jaganmohan, Hogg, Langston, Patel, Yet, Wang, Kevil, Gladwin, Lefer (bib22) 2005; 115
Bryan, Fernandez, Bauer, Garcia-Saura, Milsom, Rassaf, Maloney, Bharti, Rodriguez, Feelisch (bib25) 2005; 1
Velmurugan, Gan, Rathod, Khambata, Ghosh, Hartley, Van Eijl, Sagi-Kiss, Chowdhury, Curtis, Kuhnle, Wade, Ahluwalia (bib12) 2015; 103
Li, Duncan, Townend, Killham, Smith, Johnston, Dykhuizen, Kelly, Golden, Benjamin, Leifert (bib14) 1997; 63
Kapil, Weitzberg, Lundberg, Ahluwalia (bib3) 2014; 38
Rathod, Velmurugan, Ahluwalia (bib18) 2015; 60
Kapil, Rathod, Khambata, Bahra, Velmurugan, Purba, D, Barnes, Wade, Ahluwalia (bib52) 2018; 126
Lundberg, Weitzberg, Gladwin (bib4) 2008; 7
Bryan, Calvert, Elrod, Gundewar, Ji, Lefer (bib24) 2007; 104
Joshipura, Munoz-Torres, Morou-Bermudez, Patel (bib40) 2017; 71
Omar, Webb, Lundberg, Weitzberg (bib1) 2015; 279
Liddle, Burleigh, Monaghan, Muggeridge, Sculthorpe, Pedlar, Butcher, Henriquez, Easton (bib51) 2019; 83
Crawford, Isbell, Huang, Shiva, Chacko, Schechter, Darley-Usmar, Kerby, Lang, Kraus, Ho, Gladwin, Patel (bib21) 2006; 107
Stanaway (10.1016/j.niox.2020.12.001_bib43) 2017; 9
Lang (10.1016/j.niox.2020.12.001_bib45) 2007; 117
Duranski (10.1016/j.niox.2020.12.001_bib22) 2005; 115
Joshipura (10.1016/j.niox.2020.12.001_bib41) 2020; vol. 29
Tribble (10.1016/j.niox.2020.12.001_bib48) 2019; 9
Jones (10.1016/j.niox.2020.12.001_bib36) 2014; 39
Kapil (10.1016/j.niox.2020.12.001_bib3) 2014; 38
Bryan (10.1016/j.niox.2020.12.001_bib25) 2005; 1
Ahmed (10.1016/j.niox.2020.12.001_bib44) 2017; 66
Doel (10.1016/j.niox.2020.12.001_bib8) 2005; 113
Velmurugan (10.1016/j.niox.2020.12.001_bib31) 2013; 65
Duncan (10.1016/j.niox.2020.12.001_bib13) 1997; 118
Kapil (10.1016/j.niox.2020.12.001_bib52) 2018; 126
Vanhatalo (10.1016/j.niox.2020.12.001_bib49) 2018; 124
Rathod (10.1016/j.niox.2020.12.001_bib18) 2015; 60
Liddle (10.1016/j.niox.2020.12.001_bib51) 2019; 83
Webb (10.1016/j.niox.2020.12.001_bib34) 2008; 51
Bock (10.1016/j.niox.2020.12.001_bib57) 2018; 314
Presley (10.1016/j.niox.2020.12.001_bib35) 2011; 24
Stanaway (10.1016/j.niox.2020.12.001_bib58) 2019; 11
Crawford (10.1016/j.niox.2020.12.001_bib21) 2006; 107
Tang (10.1016/j.niox.2020.12.001_bib7) 2011; 22
Kapil (10.1016/j.niox.2020.12.001_bib30) 2015; 65
Beall (10.1016/j.niox.2020.12.001_bib55) 2014; 9
Timby (10.1016/j.niox.2020.12.001_bib56) 2020; 94
Joshipura (10.1016/j.niox.2020.12.001_bib40) 2017; 71
Kapil (10.1016/j.niox.2020.12.001_bib33) 2010; 56
Lara (10.1016/j.niox.2020.12.001_bib29) 2015; 55
Zuckerbraun (10.1016/j.niox.2020.12.001_bib27) 2010; 121
Jones (10.1016/j.niox.2020.12.001_bib15) 2015; 77
Kapil (10.1016/j.niox.2020.12.001_bib28) 2013; 55
Patel (10.1016/j.niox.2020.12.001_bib23) 2011; 89
Li (10.1016/j.niox.2020.12.001_bib14) 1997; 63
Lundberg (10.1016/j.niox.2020.12.001_bib17) 2004; 2
Hendgen-Cotta (10.1016/j.niox.2020.12.001_bib16) 2012; 126
Hyde (10.1016/j.niox.2020.12.001_bib10) 2014; 9
Bryan (10.1016/j.niox.2020.12.001_bib6) 2015; 35
Ashworth (10.1016/j.niox.2020.12.001_bib50) 2019; 138
Lundberg (10.1016/j.niox.2020.12.001_bib4) 2008; 7
Gilchrist (10.1016/j.niox.2020.12.001_bib42) 2013; 60
Kanady (10.1016/j.niox.2020.12.001_bib54) 2012; 27
Omar (10.1016/j.niox.2020.12.001_bib1) 2015; 279
McDonagh (10.1016/j.niox.2020.12.001_bib39) 2019; 19
Doel (10.1016/j.niox.2020.12.001_bib9) 2004; 112
Hyde (10.1016/j.niox.2020.12.001_bib11) 2014; 77
Stokes (10.1016/j.niox.2020.12.001_bib26) 2009; 296
Velmurugan (10.1016/j.niox.2020.12.001_bib12) 2015; 103
Lundberg (10.1016/j.niox.2020.12.001_bib2) 2015; 14
Burleigh (10.1016/j.niox.2020.12.001_bib47) 2019; 89
Larsen (10.1016/j.niox.2020.12.001_bib5) 2006; 355
Lundberg (10.1016/j.niox.2020.12.001_bib19) 2009; 5
Gladwin (10.1016/j.niox.2020.12.001_bib20) 2006; 291
Burleigh (10.1016/j.niox.2020.12.001_bib53) 2018; 120
Wylie (10.1016/j.niox.2020.12.001_bib37) 2015; 116
Bryan (10.1016/j.niox.2020.12.001_bib24) 2007; 104
Bailey (10.1016/j.niox.2020.12.001_bib38) 2009; 1985
Kumar (10.1016/j.niox.2020.12.001_bib46) 2014; 82
Scioli (10.1016/j.niox.2020.12.001_bib59) 2014; 6
Bahra (10.1016/j.niox.2020.12.001_bib32) 2012; 26
34253426 - Nitric Oxide. 2021 Sep 1;113-114:78-79
References_xml – volume: 11
  year: 2019
  ident: bib58
  article-title: Acute supplementation with nitrate-rich beetroot juice causes a greater increase in plasma nitrite and reduction in blood pressure of older compared to younger adults
  publication-title: Nutrients
– volume: 63
  start-page: 924
  year: 1997
  end-page: 930
  ident: bib14
  article-title: Nitrate-reducing bacteria on rat tongues
  publication-title: Appl. Environ. Microbiol.
– volume: 89
  start-page: 54
  year: 2019
  end-page: 63
  ident: bib47
  article-title: Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose
  publication-title: Nitric Oxide
– volume: 24
  start-page: 34
  year: 2011
  end-page: 42
  ident: bib35
  article-title: Acute effect of a high nitrate diet on brain perfusion in older adults
  publication-title: Nitric Oxide
– volume: 117
  start-page: 2583
  year: 2007
  end-page: 2591
  ident: bib45
  article-title: Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation
  publication-title: J. Clin. Invest.
– volume: 89
  start-page: 507
  year: 2011
  end-page: 515
  ident: bib23
  article-title: The potential role of the red blood cell in nitrite-dependent regulation of blood flow
  publication-title: Cardiovasc. Res.
– volume: 138
  start-page: 63
  year: 2019
  end-page: 72
  ident: bib50
  article-title: Dietary intake of inorganic nitrate in vegetarians and omnivores and its impact on blood pressure, resting metabolic rate and the oral microbiome
  publication-title: Free Radic. Biol. Med.
– volume: 56
  start-page: 274
  year: 2010
  end-page: 281
  ident: bib33
  article-title: Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO
  publication-title: Hypertension
– volume: 22
  start-page: 11
  year: 2011
  end-page: 15
  ident: bib7
  article-title: Nitrite and nitrate: cardiovascular risk-benefit and metabolic effect
  publication-title: Curr. Opin. Lipidol.
– volume: 291
  start-page: H2026
  year: 2006
  end-page: H2035
  ident: bib20
  article-title: Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 82
  start-page: 18 8 1
  year: 2014
  end-page: 29
  ident: bib46
  article-title: Getting started with microbiome analysis: sample acquisition to bioinformatics
  publication-title: Curr Protoc Hum Genet
– volume: 103
  start-page: 25
  year: 2015
  end-page: 38
  ident: bib12
  article-title: Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study
  publication-title: Am. J. Clin. Nutr.
– volume: 38
  start-page: 45
  year: 2014
  end-page: 57
  ident: bib3
  article-title: Clinical evidence demonstrating the utility of inorganic nitrate in cardiovascular health
  publication-title: Nitric Oxide
– volume: 77
  start-page: 173
  year: 2015
  end-page: 181
  ident: bib15
  article-title: Dietary intake and bio-activation of nitrite and nitrate in newborn infants
  publication-title: Pediatr. Res.
– volume: 2
  start-page: 593
  year: 2004
  end-page: 602
  ident: bib17
  article-title: Nitrate, bacteria and human health
  publication-title: Nat. Rev. Microbiol.
– volume: 9
  year: 2017
  ident: bib43
  article-title: Performance and health benefits of dietary nitrate supplementation in older adults: a systematic review
  publication-title: Nutrients
– volume: 120
  start-page: 80
  year: 2018
  end-page: 88
  ident: bib53
  article-title: Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria
  publication-title: Free Radic. Biol. Med.
– volume: 9
  year: 2014
  ident: bib10
  article-title: Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis
  publication-title: PloS One
– volume: 107
  start-page: 566
  year: 2006
  end-page: 574
  ident: bib21
  article-title: Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation
  publication-title: Blood
– volume: 39
  start-page: 1019
  year: 2014
  end-page: 1028
  ident: bib36
  article-title: Influence of dietary nitrate on the physiological determinants of exercise performance: a critical review
  publication-title: Appl. Physiol. Nutr. Metabol.
– volume: 60
  start-page: 185
  year: 2015
  end-page: 202
  ident: bib18
  article-title: A ‘green’ diet-based approach to cardiovascular health? Is inorganic nitrate the answer?
  publication-title: Mol. Nutr. Food Res.
– volume: 104
  start-page: 19144
  year: 2007
  end-page: 19149
  ident: bib24
  article-title: Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: 865
  year: 2009
  end-page: 869
  ident: bib19
  article-title: Nitrate and nitrite in biology, nutrition and therapeutics
  publication-title: Nat. Chem. Biol.
– volume: 118
  start-page: 939
  year: 1997
  end-page: 948
  ident: bib13
  article-title: Protection against oral and gastrointestinal diseases: importance of dietary nitrate intake, oral nitrate reduction and enterosalivary nitrate circulation
  publication-title: Comp. Biochem. Physiol. A Physiol.
– volume: 1
  start-page: 290
  year: 2005
  end-page: 297
  ident: bib25
  article-title: Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues
  publication-title: Nat. Chem. Biol.
– volume: 1985
  start-page: 1144
  year: 2009
  end-page: 1155
  ident: bib38
  article-title: Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans
  publication-title: J. Appl. Physiol.
– volume: 60
  start-page: 89
  year: 2013
  end-page: 97
  ident: bib42
  article-title: Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes
  publication-title: Free Radic. Biol. Med.
– volume: 35
  start-page: 643
  year: 2015
  end-page: 654
  ident: bib6
  article-title: Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients
  publication-title: Nutr. Res.
– volume: 9
  start-page: 39
  year: 2019
  ident: bib48
  article-title: Frequency of tongue cleaning impacts the human tongue microbiome composition and enterosalivary circulation of nitrate
  publication-title: Front. Cell Infect. Microbiol.
– volume: 115
  start-page: 1232
  year: 2005
  end-page: 1240
  ident: bib22
  article-title: Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver
  publication-title: J. Clin. Invest.
– volume: 126
  start-page: 1983
  year: 2012
  end-page: 1992
  ident: bib16
  article-title: Dietary nitrate supplementation improves revascularization in chronic ischemia
  publication-title: Circulation
– volume: vol. 29
  start-page: 103
  year: 2020
  end-page: 112
  ident: bib41
  publication-title: Over-the-counter Mouthwash Use, Nitric Oxide and Hypertension Risk
– volume: 355
  start-page: 2792
  year: 2006
  end-page: 2793
  ident: bib5
  article-title: Effects of dietary nitrate on blood pressure in healthy volunteers
  publication-title: N. Engl. J. Med.
– volume: 65
  start-page: 320
  year: 2015
  end-page: 327
  ident: bib30
  article-title: Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study
  publication-title: Hypertension
– volume: 65
  start-page: 1521
  year: 2013
  end-page: 1532
  ident: bib31
  article-title: Antiplatelet effects of dietary nitrate in healthy volunteers: involvement of cGMP and influence of sex
  publication-title: Free Radic. Biol. Med.
– volume: 113
  start-page: 14
  year: 2005
  end-page: 19
  ident: bib8
  article-title: Evaluation of bacterial nitrate reduction in the human oral cavity
  publication-title: Eur. J. Oral Sci.
– volume: 26
  start-page: 197
  year: 2012
  end-page: 202
  ident: bib32
  article-title: Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers
  publication-title: Nitric Oxide
– volume: 9
  year: 2014
  ident: bib55
  article-title: Single cell genomics of uncultured, health-associated Tannerella BU063 (Oral Taxon 286) and comparison to the closely related pathogen Tannerella forsythia
  publication-title: PloS One
– volume: 94
  start-page: 73
  year: 2020
  end-page: 78
  ident: bib56
  article-title: Effects of age, sex and diet on salivary nitrate and nitrite in infants
  publication-title: Nitric Oxide
– volume: 77
  start-page: 249
  year: 2014
  end-page: 257
  ident: bib11
  article-title: Characterization of the rat oral microbiome and the effects of dietary nitrate
  publication-title: Free Radic. Biol. Med.
– volume: 296
  start-page: H1281
  year: 2009
  end-page: H1288
  ident: bib26
  article-title: Dietary nitrite prevents hypercholesterolemic microvascular inflammation and reverses endothelial dysfunction
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 55
  start-page: 451
  year: 2015
  end-page: 459
  ident: bib29
  article-title: Effects of inorganic nitrate and beetroot supplementation on endothelial function: a systematic review and meta-analysis
  publication-title: Eur. J. Nutr.
– volume: 55
  start-page: 93
  year: 2013
  end-page: 100
  ident: bib28
  article-title: Physiological role for nitrate-reducing oral bacteria in blood pressure control
  publication-title: Free Radic. Biol. Med.
– volume: 112
  start-page: 424
  year: 2004
  end-page: 428
  ident: bib9
  article-title: Protective effect of salivary nitrate and microbial nitrate reductase activity against caries
  publication-title: Eur. J. Oral Sci.
– volume: 314
  start-page: H45
  year: 2018
  end-page: H51
  ident: bib57
  article-title: Inorganic nitrate supplementation attenuates peripheral chemoreflex sensitivity but does not improve cardiovagal baroreflex sensitivity in older adults
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 279
  start-page: 315
  year: 2015
  end-page: 336
  ident: bib1
  article-title: Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases
  publication-title: J. Intern. Med.
– volume: 71
  start-page: 14
  year: 2017
  end-page: 20
  ident: bib40
  article-title: Over-the-counter mouthwash use and risk of pre-diabetes/diabetes
  publication-title: Nitric Oxide
– volume: 124
  start-page: 21
  year: 2018
  end-page: 30
  ident: bib49
  article-title: Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans
  publication-title: Free Radic. Biol. Med.
– volume: 126
  start-page: 113
  year: 2018
  end-page: 121
  ident: bib52
  article-title: Sex differences in the nitrate-nitrite-NO(*) pathway: role of oral nitrate-reducing bacteria
  publication-title: Free Radic. Biol. Med.
– volume: 6
  start-page: 19
  year: 2014
  ident: bib59
  article-title: Ageing and microvasculature
  publication-title: Vasc. Cell
– volume: 51
  start-page: 784
  year: 2008
  end-page: 790
  ident: bib34
  article-title: Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite
  publication-title: Hypertension
– volume: 116
  start-page: 415
  year: 2015
  end-page: 425
  ident: bib37
  article-title: Influence of beetroot juice supplementation on intermittent exercise performance
  publication-title: Eur. J. Appl. Physiol.
– volume: 27
  start-page: 193
  year: 2012
  end-page: 200
  ident: bib54
  article-title: Nitrate reductase activity of bacteria in saliva of term and preterm infants
  publication-title: Nitric Oxide
– volume: 66
  start-page: 62
  year: 2017
  end-page: 70
  ident: bib44
  article-title: Measuring nitrate reductase activity from human and rodent tongues
  publication-title: Nitric Oxide
– volume: 19
  start-page: 15
  year: 2019
  end-page: 29
  ident: bib39
  article-title: Potential benefits of dietary nitrate ingestion in healthy and clinical populations: a brief review
  publication-title: Eur. J. Sport Sci.
– volume: 83
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib51
  article-title: Variability in nitrate-reducing oral bacteria and nitric oxide metabolites in biological fluids following dietary nitrate administration: an assessment of the critical difference
  publication-title: Nitric Oxide
– volume: 7
  start-page: 156
  year: 2008
  end-page: 167
  ident: bib4
  article-title: The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics
  publication-title: Nat. Rev. Drug Discov.
– volume: 14
  start-page: 623
  year: 2015
  end-page: 641
  ident: bib2
  article-title: Strategies to increase nitric oxide signalling in cardiovascular disease
  publication-title: Nat. Rev. Drug Discov.
– volume: 121
  start-page: 98
  year: 2010
  end-page: 109
  ident: bib27
  article-title: Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase-dependent nitric oxide generation
  publication-title: Circulation
– volume: 9
  start-page: 39
  year: 2019
  ident: 10.1016/j.niox.2020.12.001_bib48
  article-title: Frequency of tongue cleaning impacts the human tongue microbiome composition and enterosalivary circulation of nitrate
  publication-title: Front. Cell Infect. Microbiol.
  doi: 10.3389/fcimb.2019.00039
– volume: 83
  start-page: 1
  year: 2019
  ident: 10.1016/j.niox.2020.12.001_bib51
  article-title: Variability in nitrate-reducing oral bacteria and nitric oxide metabolites in biological fluids following dietary nitrate administration: an assessment of the critical difference
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2018.12.003
– volume: 65
  start-page: 1521
  year: 2013
  ident: 10.1016/j.niox.2020.12.001_bib31
  article-title: Antiplatelet effects of dietary nitrate in healthy volunteers: involvement of cGMP and influence of sex
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.06.031
– volume: 71
  start-page: 14
  year: 2017
  ident: 10.1016/j.niox.2020.12.001_bib40
  article-title: Over-the-counter mouthwash use and risk of pre-diabetes/diabetes
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2017.09.004
– volume: 355
  start-page: 2792
  year: 2006
  ident: 10.1016/j.niox.2020.12.001_bib5
  article-title: Effects of dietary nitrate on blood pressure in healthy volunteers
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc062800
– volume: 2
  start-page: 593
  year: 2004
  ident: 10.1016/j.niox.2020.12.001_bib17
  article-title: Nitrate, bacteria and human health
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro929
– volume: 117
  start-page: 2583
  year: 2007
  ident: 10.1016/j.niox.2020.12.001_bib45
  article-title: Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI31892
– volume: 9
  year: 2017
  ident: 10.1016/j.niox.2020.12.001_bib43
  article-title: Performance and health benefits of dietary nitrate supplementation in older adults: a systematic review
  publication-title: Nutrients
  doi: 10.3390/nu9111171
– volume: 63
  start-page: 924
  year: 1997
  ident: 10.1016/j.niox.2020.12.001_bib14
  article-title: Nitrate-reducing bacteria on rat tongues
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.63.3.924-930.1997
– volume: 138
  start-page: 63
  year: 2019
  ident: 10.1016/j.niox.2020.12.001_bib50
  article-title: Dietary intake of inorganic nitrate in vegetarians and omnivores and its impact on blood pressure, resting metabolic rate and the oral microbiome
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.05.010
– volume: 51
  start-page: 784
  year: 2008
  ident: 10.1016/j.niox.2020.12.001_bib34
  article-title: Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.107.103523
– volume: 113
  start-page: 14
  year: 2005
  ident: 10.1016/j.niox.2020.12.001_bib8
  article-title: Evaluation of bacterial nitrate reduction in the human oral cavity
  publication-title: Eur. J. Oral Sci.
  doi: 10.1111/j.1600-0722.2004.00184.x
– volume: 77
  start-page: 249
  year: 2014
  ident: 10.1016/j.niox.2020.12.001_bib11
  article-title: Characterization of the rat oral microbiome and the effects of dietary nitrate
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.09.017
– volume: 60
  start-page: 185
  issue: 1
  year: 2015
  ident: 10.1016/j.niox.2020.12.001_bib18
  article-title: A ‘green’ diet-based approach to cardiovascular health? Is inorganic nitrate the answer?
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201500313
– volume: 7
  start-page: 156
  year: 2008
  ident: 10.1016/j.niox.2020.12.001_bib4
  article-title: The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2466
– volume: 126
  start-page: 1983
  year: 2012
  ident: 10.1016/j.niox.2020.12.001_bib16
  article-title: Dietary nitrate supplementation improves revascularization in chronic ischemia
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.112.112912
– volume: 9
  year: 2014
  ident: 10.1016/j.niox.2020.12.001_bib10
  article-title: Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis
  publication-title: PloS One
  doi: 10.1371/journal.pone.0088645
– volume: 35
  start-page: 643
  year: 2015
  ident: 10.1016/j.niox.2020.12.001_bib6
  article-title: Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients
  publication-title: Nutr. Res.
  doi: 10.1016/j.nutres.2015.06.001
– volume: 14
  start-page: 623
  year: 2015
  ident: 10.1016/j.niox.2020.12.001_bib2
  article-title: Strategies to increase nitric oxide signalling in cardiovascular disease
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4623
– volume: 77
  start-page: 173
  year: 2015
  ident: 10.1016/j.niox.2020.12.001_bib15
  article-title: Dietary intake and bio-activation of nitrite and nitrate in newborn infants
  publication-title: Pediatr. Res.
  doi: 10.1038/pr.2014.168
– volume: 27
  start-page: 193
  year: 2012
  ident: 10.1016/j.niox.2020.12.001_bib54
  article-title: Nitrate reductase activity of bacteria in saliva of term and preterm infants
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2012.07.004
– volume: 89
  start-page: 54
  year: 2019
  ident: 10.1016/j.niox.2020.12.001_bib47
  article-title: Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2019.04.010
– volume: 94
  start-page: 73
  year: 2020
  ident: 10.1016/j.niox.2020.12.001_bib56
  article-title: Effects of age, sex and diet on salivary nitrate and nitrite in infants
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2019.10.012
– volume: 118
  start-page: 939
  year: 1997
  ident: 10.1016/j.niox.2020.12.001_bib13
  article-title: Protection against oral and gastrointestinal diseases: importance of dietary nitrate intake, oral nitrate reduction and enterosalivary nitrate circulation
  publication-title: Comp. Biochem. Physiol. A Physiol.
  doi: 10.1016/S0300-9629(97)00023-6
– volume: 19
  start-page: 15
  year: 2019
  ident: 10.1016/j.niox.2020.12.001_bib39
  article-title: Potential benefits of dietary nitrate ingestion in healthy and clinical populations: a brief review
  publication-title: Eur. J. Sport Sci.
  doi: 10.1080/17461391.2018.1445298
– volume: 39
  start-page: 1019
  year: 2014
  ident: 10.1016/j.niox.2020.12.001_bib36
  article-title: Influence of dietary nitrate on the physiological determinants of exercise performance: a critical review
  publication-title: Appl. Physiol. Nutr. Metabol.
  doi: 10.1139/apnm-2014-0036
– volume: 120
  start-page: 80
  year: 2018
  ident: 10.1016/j.niox.2020.12.001_bib53
  article-title: Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.03.023
– volume: 22
  start-page: 11
  year: 2011
  ident: 10.1016/j.niox.2020.12.001_bib7
  article-title: Nitrite and nitrate: cardiovascular risk-benefit and metabolic effect
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0b013e328341942c
– volume: 1
  start-page: 290
  year: 2005
  ident: 10.1016/j.niox.2020.12.001_bib25
  article-title: Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio734
– volume: 55
  start-page: 93
  year: 2013
  ident: 10.1016/j.niox.2020.12.001_bib28
  article-title: Physiological role for nitrate-reducing oral bacteria in blood pressure control
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.11.013
– volume: 115
  start-page: 1232
  year: 2005
  ident: 10.1016/j.niox.2020.12.001_bib22
  article-title: Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI22493
– volume: 38
  start-page: 45
  year: 2014
  ident: 10.1016/j.niox.2020.12.001_bib3
  article-title: Clinical evidence demonstrating the utility of inorganic nitrate in cardiovascular health
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2014.03.162
– volume: 56
  start-page: 274
  year: 2010
  ident: 10.1016/j.niox.2020.12.001_bib33
  article-title: Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.110.153536
– volume: 60
  start-page: 89
  year: 2013
  ident: 10.1016/j.niox.2020.12.001_bib42
  article-title: Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.01.024
– volume: 107
  start-page: 566
  year: 2006
  ident: 10.1016/j.niox.2020.12.001_bib21
  article-title: Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation
  publication-title: Blood
  doi: 10.1182/blood-2005-07-2668
– volume: vol. 29
  start-page: 103
  year: 2020
  ident: 10.1016/j.niox.2020.12.001_bib41
– volume: 55
  start-page: 451
  issue: 2
  year: 2015
  ident: 10.1016/j.niox.2020.12.001_bib29
  article-title: Effects of inorganic nitrate and beetroot supplementation on endothelial function: a systematic review and meta-analysis
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-015-0872-7
– volume: 124
  start-page: 21
  year: 2018
  ident: 10.1016/j.niox.2020.12.001_bib49
  article-title: Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.05.078
– volume: 104
  start-page: 19144
  year: 2007
  ident: 10.1016/j.niox.2020.12.001_bib24
  article-title: Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0706579104
– volume: 5
  start-page: 865
  year: 2009
  ident: 10.1016/j.niox.2020.12.001_bib19
  article-title: Nitrate and nitrite in biology, nutrition and therapeutics
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.260
– volume: 112
  start-page: 424
  year: 2004
  ident: 10.1016/j.niox.2020.12.001_bib9
  article-title: Protective effect of salivary nitrate and microbial nitrate reductase activity against caries
  publication-title: Eur. J. Oral Sci.
  doi: 10.1111/j.1600-0722.2004.00153.x
– volume: 89
  start-page: 507
  year: 2011
  ident: 10.1016/j.niox.2020.12.001_bib23
  article-title: The potential role of the red blood cell in nitrite-dependent regulation of blood flow
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvq323
– volume: 82
  start-page: 18 8 1
  year: 2014
  ident: 10.1016/j.niox.2020.12.001_bib46
  article-title: Getting started with microbiome analysis: sample acquisition to bioinformatics
  publication-title: Curr Protoc Hum Genet
– volume: 9
  year: 2014
  ident: 10.1016/j.niox.2020.12.001_bib55
  article-title: Single cell genomics of uncultured, health-associated Tannerella BU063 (Oral Taxon 286) and comparison to the closely related pathogen Tannerella forsythia
  publication-title: PloS One
  doi: 10.1371/journal.pone.0089398
– volume: 65
  start-page: 320
  year: 2015
  ident: 10.1016/j.niox.2020.12.001_bib30
  article-title: Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.114.04675
– volume: 116
  start-page: 415
  issue: 2
  year: 2015
  ident: 10.1016/j.niox.2020.12.001_bib37
  article-title: Influence of beetroot juice supplementation on intermittent exercise performance
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-015-3296-4
– volume: 11
  year: 2019
  ident: 10.1016/j.niox.2020.12.001_bib58
  article-title: Acute supplementation with nitrate-rich beetroot juice causes a greater increase in plasma nitrite and reduction in blood pressure of older compared to younger adults
  publication-title: Nutrients
  doi: 10.3390/nu11071683
– volume: 121
  start-page: 98
  year: 2010
  ident: 10.1016/j.niox.2020.12.001_bib27
  article-title: Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase-dependent nitric oxide generation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.891077
– volume: 314
  start-page: H45
  year: 2018
  ident: 10.1016/j.niox.2020.12.001_bib57
  article-title: Inorganic nitrate supplementation attenuates peripheral chemoreflex sensitivity but does not improve cardiovagal baroreflex sensitivity in older adults
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00389.2017
– volume: 126
  start-page: 113
  year: 2018
  ident: 10.1016/j.niox.2020.12.001_bib52
  article-title: Sex differences in the nitrate-nitrite-NO(*) pathway: role of oral nitrate-reducing bacteria
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.07.010
– volume: 296
  start-page: H1281
  year: 2009
  ident: 10.1016/j.niox.2020.12.001_bib26
  article-title: Dietary nitrite prevents hypercholesterolemic microvascular inflammation and reverses endothelial dysfunction
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01291.2008
– volume: 26
  start-page: 197
  year: 2012
  ident: 10.1016/j.niox.2020.12.001_bib32
  article-title: Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2012.01.004
– volume: 24
  start-page: 34
  year: 2011
  ident: 10.1016/j.niox.2020.12.001_bib35
  article-title: Acute effect of a high nitrate diet on brain perfusion in older adults
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2010.10.002
– volume: 291
  start-page: H2026
  year: 2006
  ident: 10.1016/j.niox.2020.12.001_bib20
  article-title: Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00407.2006
– volume: 103
  start-page: 25
  issue: 1
  year: 2015
  ident: 10.1016/j.niox.2020.12.001_bib12
  article-title: Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.115.116244
– volume: 1985
  start-page: 1144
  issue: 107
  year: 2009
  ident: 10.1016/j.niox.2020.12.001_bib38
  article-title: Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00722.2009
– volume: 279
  start-page: 315
  issue: 4
  year: 2015
  ident: 10.1016/j.niox.2020.12.001_bib1
  article-title: Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases
  publication-title: J. Intern. Med.
  doi: 10.1111/joim.12441
– volume: 66
  start-page: 62
  year: 2017
  ident: 10.1016/j.niox.2020.12.001_bib44
  article-title: Measuring nitrate reductase activity from human and rodent tongues
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2017.04.001
– volume: 6
  start-page: 19
  year: 2014
  ident: 10.1016/j.niox.2020.12.001_bib59
  article-title: Ageing and microvasculature
  publication-title: Vasc. Cell
  doi: 10.1186/2045-824X-6-19
– reference: 34253426 - Nitric Oxide. 2021 Sep 1;113-114:78-79
SSID ssj0004386
Score 2.3807328
Snippet Reduction of salivary nitrate to nitrite by oral nitrate reductase (NR) expressing bacteria has emerged as an integral pathway in regulating nitric oxide (NO)...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Adult
Age Factors
Aged
Aging
Animals
Bacteria - enzymology
Bacterial Proteins - metabolism
Cross-Sectional Studies
Female
Humans
Male
Mice
Mice, Inbred C57BL
Microbiome
Microbiota - physiology
Middle Aged
Nitrate Reductase - metabolism
Nitrates - metabolism
Nitric oxide
Nitrites - blood
Nitrites - metabolism
Tongue - microbiology
Young Adult
Title Potential role for age as a modulator of oral nitrate reductase activity
URI https://dx.doi.org/10.1016/j.niox.2020.12.001
https://www.ncbi.nlm.nih.gov/pubmed/33321206
https://www.proquest.com/docview/2470627673
https://pubmed.ncbi.nlm.nih.gov/PMC8085911
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQguCFoey6MyEuKCwsavxD4uq1bLq6qASr1ZiROri2hStakEl_72zjjJ0gXUA6dYzjiyPKOZsfP5G4BXGION16ZOFM-rBI3CJ9boLMlLk-qAEUVEtv3P-9niUH040kcbMB_vwhCscvD9vU-P3nromQ6rOT1dLqdfeWqsyagAuCSecmL8VConK397-RvmoWSs9kjCCUkPF2d6jFezbH_iHlGk8UhwKAzzj-D0d_L5J4byWlDauw_3hmySzfoJP4CNutmC7VmDO-mTX-w1i_jOeHC-Bbffja0787HK2zYsDtqOAEP4FQIaMsxhGboYVpyzgp20FVX3wq42MLrKz9ABELcEOyPG1w4jIKOLEVR_4iEc7u1-my-SobpC4pXWXaJLrqpCYsYYqGVyDNyBl6qspVW-SkNqvamErrnSvjRB5Bn3gcCHpip4EPIRbDZtUz8BVtggUcHCes9VaYMNKeWJqecyWGP5BPi4rM4P1ONUAeOHGzFm3x2pwpEqHBcEtJvAm9WY055440ZpPWrLrZmPw8hw47iXo2odLjz9LCmaur04d0LlxOCc5XICj3tVr-YhpUSDS7MJ5GtGsBIgzu71N83yOHJ3GyKU4_zpf873GdwVBKqJILjnsNmdXdQvMCvqyp1o9jtwazb_8umAnu8_LvavAAP4DHI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrVC5IGh5LE8jIS4o2tiOE_u4rKhS2q6QaKXerMSJ1UU0qdpUgn_PTOIsLKAeuFmOHVmeyczY-eYbgLfog7VTuo4SnlURKoWLjFZplJU6Vh49iujZ9o-XaX6afDpTZ1uwGHNhCFYZbP9g03trHXpmYTdnl6vV7AuPtdEpFQCXxFMu78A2sVOpCWzPDw7z5a_0SNkXfKTxEU0IuTMDzKtZtd_xmCji_lYw1Ib5h3_6O_78E0b5m1_afwD3Q0DJ5sOaH8JW3ezC3rzBw_TFD_aO9RDP_u58F-5-GFs7i7HQ2x7kn9uOMEP4FsIaMgxjGVoZVlyzgl20FRX4wq7WM8rmZ2gDiF6CXRHpa4dOkFFuBJWgeASn-x9PFnkUCixELlGqi1TJk6qQGDR6aukMfbfnZVLW0iSuin1snK6EqnmiXKm9yFLuPOEPdVVwL-RjmDRtUz8FVhgvUcbCOMeT0njjYwoVY8elN9rwKfBxW60L7ONUBOObHWFmXy2JwpIoLBeEtZvC-_Wcy4F749bRapSW3dAgi87h1nlvRtFa3Hj6X1I0dXtzbUWSEYlzmskpPBlEvV6HlBJ1Lk6nkG0owXoA0XZvPmlW5z19tyZOOc6f_ed6X8NOfnJ8ZI8OlofP4Z4gjE2PiXsBk-7qpn6JQVJXvgofwU_CAQ2O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+role+for+age+as+a+modulator+of+oral+nitrate+reductase+activity&rft.jtitle=Nitric+oxide&rft.au=Ahmed%2C+Khandaker+Ahtesham&rft.au=Kim%2C+Kiyoung&rft.au=Ricart%2C+Karina&rft.au=Van+Der+Pol%2C+William&rft.date=2021-03-01&rft.pub=Elsevier+Inc&rft.issn=1089-8603&rft.eissn=1089-8611&rft.volume=108&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1016%2Fj.niox.2020.12.001&rft.externalDocID=S1089860320302123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-8603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-8603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-8603&client=summon