Identification of topographic factors for gully erosion susceptibility and their spatial modelling using machine learning in the black soil region of Northeast China

[Display omitted] •Gully erosion susceptibility (GES) of black soil region in China was assessed.•Ten topographic factors were used to predict gully erosion using random forest model.•Results revealed considerable potential for gully erosion (35.36–42.69 %)•Landforms close to channel network systems...

Full description

Saved in:
Bibliographic Details
Published inEcological indicators Vol. 143; p. 109376
Main Authors Huang, Donghao, Su, Lin, Fan, Haoming, Zhou, Lili, Tian, Yulu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Gully erosion susceptibility (GES) of black soil region in China was assessed.•Ten topographic factors were used to predict gully erosion using random forest model.•Results revealed considerable potential for gully erosion (35.36–42.69 %)•Landforms close to channel network systems were more prone to gully erosion. Gullies are primary sediment sources that restrict sustainable agricultural development by reducing the quality of soil and destroying farmlands. In the black soil regions of Northeast China, the intensive exploitation and unreasonable cultivation result in severe soil erosion and malignant expansion of gully erosion. However, few gully erosion susceptibility (GES) assessments have been performed in this area, despite being an effective tool to explain the potential of gully occurrence. In this study, four adjacent catchments were selected in Keshan County, the black soil region of Northeast China. The locations of gullies were identified through extensive field surveys and interpreting remote sensing images. We used the random forest machine learning method to establish the spatial relationship between the gully occurrence and ten topographic factors (slope aspect, catchment area, channel network distance, elevation, LS-Factor, plan curvature, profile curvature, stream power index, surface roughness index, and topographic wetness index) and mapped the spatial distribution of GES. The mean decrease accuracy was calculated to identify the importance of the selected variables. The efficiency of the results was tested using the area under the receiver operating characteristic curve (area under the curve, AUC), accuracy, and kappa coefficient. The results indicate that 35%–42% of the total area in the study region presents high or elevated levels of GES. Although the importance of the topographic factors differed for the four catchments, the LS-Factor and channel network distance were the most important factors that affected gully spatial distribution. The AUC (0.805–0.846), accuracy (0.705–0.754), and kappa coefficient (0.715–0.788) indicated that the random forest model provided a reliable spatial distribution of GES in the study area. Our study demonstrates the potential risk of gully erosion in the black soil region of Northeast China.
AbstractList Gullies are primary sediment sources that restrict sustainable agricultural development by reducing the quality of soil and destroying farmlands. In the black soil regions of Northeast China, the intensive exploitation and unreasonable cultivation result in severe soil erosion and malignant expansion of gully erosion. However, few gully erosion susceptibility (GES) assessments have been performed in this area, despite being an effective tool to explain the potential of gully occurrence. In this study, four adjacent catchments were selected in Keshan County, the black soil region of Northeast China. The locations of gullies were identified through extensive field surveys and interpreting remote sensing images. We used the random forest machine learning method to establish the spatial relationship between the gully occurrence and ten topographic factors (slope aspect, catchment area, channel network distance, elevation, LS-Factor, plan curvature, profile curvature, stream power index, surface roughness index, and topographic wetness index) and mapped the spatial distribution of GES. The mean decrease accuracy was calculated to identify the importance of the selected variables. The efficiency of the results was tested using the area under the receiver operating characteristic curve (area under the curve, AUC), accuracy, and kappa coefficient. The results indicate that 35%–42% of the total area in the study region presents high or elevated levels of GES. Although the importance of the topographic factors differed for the four catchments, the LS-Factor and channel network distance were the most important factors that affected gully spatial distribution. The AUC (0.805–0.846), accuracy (0.705–0.754), and kappa coefficient (0.715–0.788) indicated that the random forest model provided a reliable spatial distribution of GES in the study area. Our study demonstrates the potential risk of gully erosion in the black soil region of Northeast China.
[Display omitted] •Gully erosion susceptibility (GES) of black soil region in China was assessed.•Ten topographic factors were used to predict gully erosion using random forest model.•Results revealed considerable potential for gully erosion (35.36–42.69 %)•Landforms close to channel network systems were more prone to gully erosion. Gullies are primary sediment sources that restrict sustainable agricultural development by reducing the quality of soil and destroying farmlands. In the black soil regions of Northeast China, the intensive exploitation and unreasonable cultivation result in severe soil erosion and malignant expansion of gully erosion. However, few gully erosion susceptibility (GES) assessments have been performed in this area, despite being an effective tool to explain the potential of gully occurrence. In this study, four adjacent catchments were selected in Keshan County, the black soil region of Northeast China. The locations of gullies were identified through extensive field surveys and interpreting remote sensing images. We used the random forest machine learning method to establish the spatial relationship between the gully occurrence and ten topographic factors (slope aspect, catchment area, channel network distance, elevation, LS-Factor, plan curvature, profile curvature, stream power index, surface roughness index, and topographic wetness index) and mapped the spatial distribution of GES. The mean decrease accuracy was calculated to identify the importance of the selected variables. The efficiency of the results was tested using the area under the receiver operating characteristic curve (area under the curve, AUC), accuracy, and kappa coefficient. The results indicate that 35%–42% of the total area in the study region presents high or elevated levels of GES. Although the importance of the topographic factors differed for the four catchments, the LS-Factor and channel network distance were the most important factors that affected gully spatial distribution. The AUC (0.805–0.846), accuracy (0.705–0.754), and kappa coefficient (0.715–0.788) indicated that the random forest model provided a reliable spatial distribution of GES in the study area. Our study demonstrates the potential risk of gully erosion in the black soil region of Northeast China.
ArticleNumber 109376
Author Zhou, Lili
Su, Lin
Fan, Haoming
Huang, Donghao
Tian, Yulu
Author_xml – sequence: 1
  givenname: Donghao
  surname: Huang
  fullname: Huang, Donghao
  organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
– sequence: 2
  givenname: Lin
  surname: Su
  fullname: Su, Lin
  organization: College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
– sequence: 3
  givenname: Haoming
  surname: Fan
  fullname: Fan, Haoming
  organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
– sequence: 4
  givenname: Lili
  surname: Zhou
  fullname: Zhou, Lili
  email: zll@syau.edu.cn
  organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
– sequence: 5
  givenname: Yulu
  surname: Tian
  fullname: Tian, Yulu
  email: tianyulu@nwu.edu.cn
  organization: College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
BookMark eNqFUc2OFCEY7MOauLv6CCYcvcwITdNMx4MxE38m2ehFE2-Eho-Zb2SgBcZkHsj3lN4eL172AklRVSmq7pqbEAM0zStG14yy_s1xDSZ6DHbd0rat2MBlf9Pcsk7SFevpj-fNXc5HWrnD0N82f3YWQkGHRheMgURHSpziPunpgIY4bUpMmbiYyP7s_YVAinkm5nM2MBUc0WO5EB0sKQfARPJUnbQnp2jB1yR7cs7zedLmgAGIB53CDGCYFWT02vwkOaInCfbXDF9iqm86F7KtIv2ieea0z_Dyet833z9--Lb9vHr4-mm3ff-wMp0QZSUk5dYBk4JLMYzOWNfxjWAtd3xwG2iZsd1GmNEwO7QcOurkMJpRUtfVNnp-3-wWXxv1UU0JTzpdVNSoHoGY9kqngsaD0hzMRg89HyXvWgaj65iQo6NO0N5YUb1eL15Tir_OkIs6Ya3Mex0gnrNqJdtwWXPySn27UE0tNydwymB53KMkjV4xquZx1VFdx1XzuGoZt6rFf-p_wZ_SvVt0UBv9jZBUNgjBgMUEptQv4xMOfwH6qsof
CitedBy_id crossref_primary_10_1016_j_iswcr_2024_11_003
crossref_primary_10_1016_j_aeolia_2024_100924
crossref_primary_10_3390_f15071122
crossref_primary_10_1002_esp_6059
crossref_primary_10_1016_j_catena_2023_107629
crossref_primary_10_1016_j_iswcr_2024_07_004
crossref_primary_10_1007_s12665_024_11424_5
crossref_primary_10_1016_j_jhydrol_2024_131235
crossref_primary_10_1016_j_eiar_2023_107124
crossref_primary_10_1016_j_jag_2025_104434
crossref_primary_10_1016_j_still_2024_106322
crossref_primary_10_3390_app14010240
crossref_primary_10_3390_su16103917
crossref_primary_10_1016_j_jclepro_2023_139719
crossref_primary_10_1016_j_ecoinf_2023_102101
crossref_primary_10_1002_ldr_4721
crossref_primary_10_1134_S1064229323603530
crossref_primary_10_1016_j_scitotenv_2023_166960
crossref_primary_10_1016_j_ecolind_2023_110976
crossref_primary_10_1016_j_jafrearsci_2025_105633
crossref_primary_10_1007_s11356_024_35521_x
crossref_primary_10_1016_j_catena_2024_108275
crossref_primary_10_1109_TGRS_2024_3417398
Cites_doi 10.3390/rs13112166
10.1002/esp.5102
10.1016/j.still.2020.104800
10.1007/s12665-018-7808-5
10.1007/s11368-021-02978-z
10.1016/j.energy.2019.02.022
10.1016/j.catena.2013.12.011
10.1080/19475705.2021.1920480
10.1016/j.still.2020.104857
10.1016/j.aej.2021.04.026
10.1016/j.scitotenv.2021.147040
10.1016/j.apgeog.2019.102083
10.1016/j.enggeo.2007.01.005
10.1016/j.geoderma.2021.115184
10.1080/10807039.2018.1470896
10.1016/j.catena.2017.11.022
10.1007/s12145-020-00491-4
10.1007/s12665-018-7844-1
10.1002/ldr.2688
10.1007/s11135-006-9018-6
10.1016/j.scitotenv.2019.02.093
10.1080/02723646.2013.778691
10.1016/j.catena.2021.105648
10.1007/s11069-015-1852-1
10.1007/s12517-012-0825-x
10.1177/001316446002000104
10.1002/hyp.3360050103
10.1016/S0341-8162(02)00143-1
10.1007/s12665-015-4950-1
10.1016/j.geomorph.2019.04.005
10.1016/j.scitotenv.2017.07.198
10.1073/pnas.1922375118
10.1016/j.gloplacha.2017.03.003
10.1007/s12665-018-7434-2
10.1016/j.ecolind.2021.107869
10.1016/j.catena.2014.03.016
10.1016/j.still.2021.105046
10.1007/s12665-012-2205-y
10.3390/ijgi10100680
10.1002/hyp.10770
10.1002/esp.5259
10.1016/j.geomorph.2008.03.008
10.3390/rs12172688
10.1007/s12517-017-3135-5
10.1016/j.geoderma.2018.12.042
10.2136/sssaj1986.03615995005000050042x
10.1007/s12665-021-09631-5
10.1126/science.1261071
10.1016/j.catena.2021.105482
10.1016/j.geomorph.2009.04.006
10.2136/sssaj2015.02.0077
10.1016/j.still.2015.04.009
10.1016/j.geoderma.2019.02.014
10.1016/j.geomorph.2013.08.021
10.1016/j.jseaes.2009.02.004
10.1002/esp.1872
10.1016/j.geomorph.2020.107559
10.1016/j.catena.2018.11.015
10.1016/j.geoderma.2021.115112
10.1016/j.catena.2021.105208
10.1023/A:1010933404324
10.1016/j.catena.2017.10.010
10.1007/s11356-021-17766-y
10.1016/j.geomorph.2013.10.007
10.1016/j.ecoinf.2021.101425
10.1007/s11069-010-9598-2
10.1016/j.geoderma.2018.05.027
10.3390/su8040317
10.1038/s41598-020-77567-0
10.1016/j.landusepol.2021.105705
10.3390/s20051313
10.1007/s11069-015-1703-0
10.1002/esp.4332
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.ecolind.2022.109376
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
ExternalDocumentID oai_doaj_org_article_a3ec8a963b73421ebf4157bf0f506cd5
10_1016_j_ecolind_2022_109376
S1470160X22008494
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSH
SSJ
SSZ
T5K
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c455t-5703dfe1753759bfcdf4385123f39f8e21cd485cbc1d923e40f79bcb70f499663
IEDL.DBID DOA
ISSN 1470-160X
IngestDate Wed Aug 27 00:41:37 EDT 2025
Fri Jul 11 00:10:31 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Tue Jul 01 04:26:58 EDT 2025
Sun Apr 06 06:54:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Northeast China
Random forest
Gully erosion susceptibility
Topographic attribute
Catchment areas
Remote sensing
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-5703dfe1753759bfcdf4385123f39f8e21cd485cbc1d923e40f79bcb70f499663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/a3ec8a963b73421ebf4157bf0f506cd5
PQID 2718377593
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_a3ec8a963b73421ebf4157bf0f506cd5
proquest_miscellaneous_2718377593
crossref_citationtrail_10_1016_j_ecolind_2022_109376
crossref_primary_10_1016_j_ecolind_2022_109376
elsevier_sciencedirect_doi_10_1016_j_ecolind_2022_109376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Ecological indicators
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gómez-Gutiérrez, Conoscenti, Angileri, Rotigliano, Schnabel (b0155) 2015; 79
Moore, Burch (b0250) 1986; 50
Qiu, Regmi, Cui, Hu, Wang, He (b0300) 2017; 10
Wei, Liu, Wu, Zhang, Cui, Cai, Guo, Wang, Cheng (b0335) 2021; 207
Talebi, Hajiabolghasemi, Hadian, Amanian (b0315) 2016; 30
Xia, Deng, Wang, Ding, Cai (b0365) 2015; 79
Haddadchi, Nosrati, Ahmadi (b0170) 2014; 116
Yang, A.N., Wang, C.M., Pang, G.W., Long, Y., Q., Wang, L., Cruse, R.M., Yang, Q.K., 2021a. Gully erosion susceptibility mapping in highly complex terrain using machine learning models. ISPRS Int. J. Geo-Inf. 10, 680. doi:10.3390/ijgi10100680.
Zhao, Zhang, Yuan, Yang, Deng (b0395) 2021; 46
Addisie, Ayele, Gessess, Tilahun, Zegeye, Moges, Schmitter, Langendoen, Steenhuis (b0005) 2017; 28
Kakembo, Xanga, Rowntree (b0195) 2009; 110
Garosi, Sheklabadi, Conoscenti, Pourghasemi, Van Oost (b0140) 2019; 664
Nhu, Thi Ngo, Pham, Dou, Song, Hoang, Tran, Cao, Aydilek, Amiri, Costache, Hoa, Tien Bui (b0260) 2020; 12
Pourghasemi, Yousefi, Kornejady, Cerda (b0295) 2017; 609
Ghosh, Maiti (b0150) 2021; 80
Cetin, Aksoy, Cabuk, Senyel Kurkcuoglu, Cabuk (b0060) 2021; 109
Lin, Chu, Wu (b0225) 2010; 7
Zabihi, Mirchooli, Motevalli, Khaledi Darvishan, Pourghasemi, Zakeri, Sadighi (b0385) 2018; 161
Dong, Xiong, Su, Li, Yang, Zhai, Lu, Liu, Shi (b0110) 2013; 34
Farias Amorim, F., Jacques Agra Bezerra da Silva, Y., Cabral Nascimento, R., Jacques Agra Bezerra da Silva, Y., Tiecher, T., Williams Araújo do Nascimento, C., Paolo Gomes Minella, J., Zhang, Y., Ram Upadhayay, H., Pulley, S., Collins, A.L., 2021. Sediment source apportionment using optical property composite signatures in a rural catchment, Brazil. Catena 202, 105208. 10.1016/j.catena.2021.105208.
Xia, Cai, Wei, Wu (b0360) 2019; 174
Guan, Yang, Zhao, Lou, Chen, Zhang, Wu (b0165) 2021; 205
Aksoy, Kaptan, Varol, Cetin, Ozel (b0020) 2022; 1–18
Amundson, Berhe, Hopmans, Olson, Sztein, Sparks (b0035) 2015; 348
Ohlmacher (b0270) 2007; 91
Arabkhedri, Heidary, Parsamehr (b0050) 2021; 21
Conforti, Aucelli, Robustelli, Scarciglia (b0085) 2010; 56
Huang, Du, Walling, Ning, Wei, Liu, Wang (b0180) 2019; 343
Kantardzic (b0200) 2011
Samani, Ahmadi, Jafari, Boggs, Ghoddousi, Malekian (b0310) 2009; 35
Yang, Liu, Yang, Chen, Liu, Yang, Chen, Wang (b0380) 2021; 13
Wang, Zhang, Yang, Pu, Yang, Yu, Chang, Bu (b0330) 2016; 8
Costache, Arabameri, Elkhrachy, Ghorbanzadeh, Pham (b0100) 2021; 12
Gong, Chen, Shi (b0160) 1999
Chen, Liu, Zhang, Shi, Li (b0070) 2021; 398
Kaya, Agca, Adiguzel, Cetin (b0205) 2019; 25
Chen, Li, Newby (b0065) 2019; 173
Al-Abadi, Al-Ali (b0025) 2018; 77
Garosi, Sheklabadi, Pourghasemi, Besalatpour, Conoscenti, Van Oost (b0135) 2018; 330
Zhao, Yang, Walling, Zhang, Zhang (b0390) 2017; 152
Fang (b0120) 2015; 153
Huang, Du, Wang, Wei, Liu, Xu (b0175) 2019; 339
Pourghasemi, Moradi, Fatemi Aghda, Gokceoglu, Pradhan (b0290) 2013; 7
Xu, Zhang, Liu, Yamanaka (b0370) 2014; 119
Emilio, Yolanda, Sonia, Ashraf, Albert (b0115) 2012; 145–146
Li, Li, Dai, Yang, Cui, Luo (b0215) 2020; 13
Moore, Grayson, Ladson (b0255) 1991; 5
Franklin, Bender-Özenç, Özenç, Cabrera (b0130) 2015; 79
Breiman (b0055) 2001; 45
Jiang, Wen, Yu, Liu (b0190) 2021; 783
Wu, Liu (b0345) 2000; 8
Huang, Zhou, Fan, Jia, Liu (b0185) 2021; 402
Domazetović, Šiljeg, Lončar, Marić (b0105) 2019; 112
Meliho, Khattabi, Mhammdi (b0240) 2018; 77
Wang, Sahana, Pahlevanzadeh, Chandra Pal, Kumar Shit, Piran, Janizadeh, Band, Mosavi (b0325) 2021; 60
Liu, Zheng, Wilson, Xu, Liu (b0230) 2021; 212
Leyland, Darby (b0210) 2009; 34
Anderson, Rowntree, Le Roux (b0040) 2021; 206
Pourghasemi, Kerle (b0280) 2016; 75
Wu, Xu, Zheng, Qin, He (b0350) 2017; 43
Gholami, Mohammadifar, Bui, Collins (b0145) 2020; 10
Amiri, Pourghasemi, Ghanbarian, Afzali (b0030) 2019; 340
Cohen (b0080) 1960; 20
Arabameri, Rezaei, Pourghasemi, Lee, Yamani (b0045) 2018; 77
Poesen, Nachtergaele, Verstraeten, Valentin (b0275) 2003; 50
Pourghasemi, Rahmati (b0285) 2018; 162
Agostini, Mondini, Torri, Rossi (b0010) 2021; 47
Wei, Wu, Wang, Yu, Xia, Deng, Zhang, Xiang, Cai, Guo (b0340) 2021; 208
Saha, Roy, Arabameri, Blaschke, Tien Bui (b0305) 2020; 20
Mohajane, Costache, Karimi, Bao Pham, Essahlaoui, Nguyen, Laneve, Oudija (b0245) 2021; 129
Thaler, E.A., Larsen, I.J., Yu, Q., 2021. The extent of soil loss across the US Corn Belt. Proc. Natl. Acad. Sci. U. S. A. 118, e1922375118. 10.1073/pnas.1922375118.
Wu, Zheng, Zhang, Liu, Cheng, Wang (b0355) 2008; 101
Conoscenti, Agnesi, Angileri, Cappadonia, Rotigliano, Märker (b0090) 2013; 70
Liaw, Wiener (b0220) 2001; 2
Aksoy, Dabanli, Cetin, Kurkcuoglu, Cengiz, Cabuk, Agacsapan, Cabuk (b0015) 2022; 29
Conoscenti, Angileri, Cappadonia, Rotigliano, Agnesi, Märker (b0095) 2014; 204
O’brien, R.M., 2007. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673-690. https://doi.org/10.1007/s11135-006-9018-6.
Maugnard, Van Dyck, Bielders (b0235) 2014; 206
Sedighi, Khaledi Darvishan, Zare (b9000) 2021; 375
Chowdhuri, Pal, Saha, Chakrabortty, Roy (b0075) 2021; 65
Fang (10.1016/j.ecolind.2022.109376_b0120) 2015; 153
Chowdhuri (10.1016/j.ecolind.2022.109376_b0075) 2021; 65
Nhu (10.1016/j.ecolind.2022.109376_b0260) 2020; 12
Zhao (10.1016/j.ecolind.2022.109376_b0390) 2017; 152
Ghosh (10.1016/j.ecolind.2022.109376_b0150) 2021; 80
Cetin (10.1016/j.ecolind.2022.109376_b0060) 2021; 109
Conforti (10.1016/j.ecolind.2022.109376_b0085) 2010; 56
Moore (10.1016/j.ecolind.2022.109376_b0250) 1986; 50
Kantardzic (10.1016/j.ecolind.2022.109376_b0200) 2011
Amiri (10.1016/j.ecolind.2022.109376_b0030) 2019; 340
Wu (10.1016/j.ecolind.2022.109376_b0355) 2008; 101
Haddadchi (10.1016/j.ecolind.2022.109376_b0170) 2014; 116
Huang (10.1016/j.ecolind.2022.109376_b0180) 2019; 343
Emilio (10.1016/j.ecolind.2022.109376_b0115) 2012; 145–146
Garosi (10.1016/j.ecolind.2022.109376_b0140) 2019; 664
Gholami (10.1016/j.ecolind.2022.109376_b0145) 2020; 10
Al-Abadi (10.1016/j.ecolind.2022.109376_b0025) 2018; 77
10.1016/j.ecolind.2022.109376_b0320
Xu (10.1016/j.ecolind.2022.109376_b0370) 2014; 119
Aksoy (10.1016/j.ecolind.2022.109376_b0020) 2022; 1–18
Li (10.1016/j.ecolind.2022.109376_b0215) 2020; 13
10.1016/j.ecolind.2022.109376_b0125
Maugnard (10.1016/j.ecolind.2022.109376_b0235) 2014; 206
Xia (10.1016/j.ecolind.2022.109376_b0360) 2019; 174
Conoscenti (10.1016/j.ecolind.2022.109376_b0095) 2014; 204
Yang (10.1016/j.ecolind.2022.109376_b0380) 2021; 13
Franklin (10.1016/j.ecolind.2022.109376_b0130) 2015; 79
Aksoy (10.1016/j.ecolind.2022.109376_b0015) 2022; 29
Sedighi (10.1016/j.ecolind.2022.109376_b9000) 2021; 375
Xia (10.1016/j.ecolind.2022.109376_b0365) 2015; 79
Domazetović (10.1016/j.ecolind.2022.109376_b0105) 2019; 112
Chen (10.1016/j.ecolind.2022.109376_b0070) 2021; 398
Wei (10.1016/j.ecolind.2022.109376_b0335) 2021; 207
Addisie (10.1016/j.ecolind.2022.109376_b0005) 2017; 28
Chen (10.1016/j.ecolind.2022.109376_b0065) 2019; 173
Breiman (10.1016/j.ecolind.2022.109376_b0055) 2001; 45
Wang (10.1016/j.ecolind.2022.109376_b0330) 2016; 8
Qiu (10.1016/j.ecolind.2022.109376_b0300) 2017; 10
Wu (10.1016/j.ecolind.2022.109376_b0350) 2017; 43
Gong (10.1016/j.ecolind.2022.109376_b0160) 1999
Mohajane (10.1016/j.ecolind.2022.109376_b0245) 2021; 129
Garosi (10.1016/j.ecolind.2022.109376_b0135) 2018; 330
Leyland (10.1016/j.ecolind.2022.109376_b0210) 2009; 34
10.1016/j.ecolind.2022.109376_b0375
Guan (10.1016/j.ecolind.2022.109376_b0165) 2021; 205
Zhao (10.1016/j.ecolind.2022.109376_b0395) 2021; 46
Huang (10.1016/j.ecolind.2022.109376_b0175) 2019; 339
Jiang (10.1016/j.ecolind.2022.109376_b0190) 2021; 783
Arabkhedri (10.1016/j.ecolind.2022.109376_b0050) 2021; 21
Kakembo (10.1016/j.ecolind.2022.109376_b0195) 2009; 110
Pourghasemi (10.1016/j.ecolind.2022.109376_b0285) 2018; 162
Amundson (10.1016/j.ecolind.2022.109376_b0035) 2015; 348
Liu (10.1016/j.ecolind.2022.109376_b0230) 2021; 212
Lin (10.1016/j.ecolind.2022.109376_b0225) 2010; 7
Wu (10.1016/j.ecolind.2022.109376_b0345) 2000; 8
Pourghasemi (10.1016/j.ecolind.2022.109376_b0290) 2013; 7
Conoscenti (10.1016/j.ecolind.2022.109376_b0090) 2013; 70
Meliho (10.1016/j.ecolind.2022.109376_b0240) 2018; 77
Anderson (10.1016/j.ecolind.2022.109376_b0040) 2021; 206
Liaw (10.1016/j.ecolind.2022.109376_b0220) 2001; 2
Moore (10.1016/j.ecolind.2022.109376_b0255) 1991; 5
Zabihi (10.1016/j.ecolind.2022.109376_b0385) 2018; 161
10.1016/j.ecolind.2022.109376_b0265
Pourghasemi (10.1016/j.ecolind.2022.109376_b0295) 2017; 609
Huang (10.1016/j.ecolind.2022.109376_b0185) 2021; 402
Ohlmacher (10.1016/j.ecolind.2022.109376_b0270) 2007; 91
Talebi (10.1016/j.ecolind.2022.109376_b0315) 2016; 30
Kaya (10.1016/j.ecolind.2022.109376_b0205) 2019; 25
Wei (10.1016/j.ecolind.2022.109376_b0340) 2021; 208
Agostini (10.1016/j.ecolind.2022.109376_b0010) 2021; 47
Wang (10.1016/j.ecolind.2022.109376_b0325) 2021; 60
Arabameri (10.1016/j.ecolind.2022.109376_b0045) 2018; 77
Pourghasemi (10.1016/j.ecolind.2022.109376_b0280) 2016; 75
Saha (10.1016/j.ecolind.2022.109376_b0305) 2020; 20
Costache (10.1016/j.ecolind.2022.109376_b0100) 2021; 12
Dong (10.1016/j.ecolind.2022.109376_b0110) 2013; 34
Gómez-Gutiérrez (10.1016/j.ecolind.2022.109376_b0155) 2015; 79
Cohen (10.1016/j.ecolind.2022.109376_b0080) 1960; 20
Samani (10.1016/j.ecolind.2022.109376_b0310) 2009; 35
Poesen (10.1016/j.ecolind.2022.109376_b0275) 2003; 50
References_xml – volume: 79
  start-page: 1386
  year: 2015
  ident: b0130
  article-title: Nitrogen mineralization and phosphorus release from composts and soil conditioners found in the Southeastern United States
  publication-title: Soil Sci. Soc. Am. J.
– volume: 7
  start-page: 3423
  year: 2010
  end-page: 3451
  ident: b0225
  article-title: Spatial pattern analysis of landslide using landscape metrics and logistic regression: a case study in Central Taiwan
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 375
  start-page: 107559
  year: 2021
  ident: b9000
  article-title: Effect of watershed geomorphological characteristics on sediment redistribution
  publication-title: Geomorphology
– volume: 10
  start-page: 20494
  year: 2020
  ident: b0145
  article-title: Mapping wind erosion hazard with regression-based machine learning algorithms
  publication-title: Sci Rep
– volume: 7
  start-page: 1857
  year: 2013
  end-page: 1878
  ident: b0290
  article-title: GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran)
  publication-title: Arab. J. Geosci.
– volume: 91
  start-page: 117
  year: 2007
  end-page: 134
  ident: b0270
  article-title: Plan curvature and landslide probability in regions dominated by earth flows and earth slides
  publication-title: Eng. Geol.
– volume: 30
  start-page: 1968
  year: 2016
  end-page: 1977
  ident: b0315
  article-title: Physically based modelling of sheet erosion (detachment and deposition processes) in complex hillslopes
  publication-title: Hydrol. Process.
– volume: 152
  start-page: 88
  year: 2017
  end-page: 98
  ident: b0390
  article-title: Using check dam deposits to investigate recent changes in sediment yield in the Loess Plateau, China
  publication-title: Glob. Planet. Change
– year: 2011
  ident: b0200
  article-title: Data mining: concepts, models, methods, and algorithms
– volume: 1–18
  year: 2022
  ident: b0020
  article-title: Exploring land use/land cover change by using density analysis method in yenice
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 80
  start-page: 328
  year: 2021
  ident: b0150
  article-title: Soil erosion susceptibility assessment using logistic regression, decision tree and random forest: study on the Mayurakshi river basin of Eastern India
  publication-title: Environ. Earth Sci.
– volume: 34
  start-page: 50
  year: 2013
  end-page: 59
  ident: b0110
  article-title: Critical topographic threshold of gully erosion in Yuanmou Dry-hot Valley in Southwestern China
  publication-title: Phys. Geogr.
– volume: 77
  start-page: 249
  year: 2018
  ident: b0025
  article-title: Susceptibility mapping of gully erosion using GIS-based statistical bivariate models: a case study from Ali Al-Gharbi District, Maysan Governorate, southern Iraq
  publication-title: Environ. Earth Sci.
– volume: 110
  start-page: 188
  year: 2009
  end-page: 194
  ident: b0195
  article-title: Topographic thresholds in gully development on the hillslopes of communal areas in ngqushwa local municipality, eastern cape, south africa
  publication-title: Geomorphology
– volume: 212
  year: 2021
  ident: b0230
  article-title: Three decades of ephemeral gully erosion studies
  publication-title: Soil Tillage Res.
– volume: 208
  year: 2021
  ident: b0340
  article-title: Identification of geo-environmental factors on Benggang susceptibility and its spatial modelling using comparative data-driven methods
  publication-title: Soil Tillage Res.
– volume: 47
  start-page: 436
  year: 2021
  end-page: 458
  ident: b0010
  article-title: Modelling seasonal variation of gully erosion at the catchment scale
  publication-title: Earth Surf. Process. Landf.
– volume: 77
  start-page: 655
  year: 2018
  ident: b0240
  article-title: A GIS-based approach for gully erosion susceptibility modelling using bivariate statistics methods in the Ourika watershed, Morocco
  publication-title: Environ. Earth Sci.
– reference: Farias Amorim, F., Jacques Agra Bezerra da Silva, Y., Cabral Nascimento, R., Jacques Agra Bezerra da Silva, Y., Tiecher, T., Williams Araújo do Nascimento, C., Paolo Gomes Minella, J., Zhang, Y., Ram Upadhayay, H., Pulley, S., Collins, A.L., 2021. Sediment source apportionment using optical property composite signatures in a rural catchment, Brazil. Catena 202, 105208. 10.1016/j.catena.2021.105208.
– volume: 343
  start-page: 139
  year: 2019
  end-page: 154
  ident: b0180
  article-title: Using reservoir deposits to reconstruct the impact of recent changes in land management on sediment yield and sediment sources for a small catchment in the Black Soil region of Northeast China
  publication-title: Geoderma
– volume: 65
  year: 2021
  ident: b0075
  article-title: Evaluation of different DEMs for gully erosion susceptibility mapping using in-situ field measurement and validation
  publication-title: Ecol. Inform.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0055
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 207
  year: 2021
  ident: b0335
  article-title: Can Benggang be regarded as gully erosion?
  publication-title: Catena
– volume: 12
  start-page: 2688
  year: 2020
  ident: b0260
  article-title: A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping
  publication-title: Remote Sens.
– volume: 34
  start-page: 1878
  year: 2009
  end-page: 1893
  ident: b0210
  article-title: Effects of holocene climate and sea-level changes on coastal gully evolution: insights from numerical modelling
  publication-title: Earth Surf. Process. Landf.
– volume: 162
  start-page: 177
  year: 2018
  end-page: 192
  ident: b0285
  article-title: Prediction of the landslide susceptibility: Which algorithm, which precision?
  publication-title: Catena
– reference: O’brien, R.M., 2007. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673-690. https://doi.org/10.1007/s11135-006-9018-6.
– volume: 330
  start-page: 65
  year: 2018
  end-page: 78
  ident: b0135
  article-title: Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping
  publication-title: Geoderma
– volume: 28
  start-page: 1579
  year: 2017
  end-page: 1588
  ident: b0005
  article-title: Gully head retreat in the subhumid Ethiopian highlands: the ene-chilala catchment
  publication-title: Land Degrad. Dev.
– volume: 77
  start-page: 628
  year: 2018
  ident: b0045
  article-title: GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique
  publication-title: Environ. Earth Sci.
– volume: 174
  start-page: 469
  year: 2019
  end-page: 477
  ident: b0360
  article-title: Granite residual soil properties in collapsing gullies of south China: spatial variations and effects on collapsing gully erosion
  publication-title: Catena
– volume: 664
  start-page: 1117
  year: 2019
  end-page: 1132
  ident: b0140
  article-title: Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 134
  year: 2000
  end-page: 142
  ident: b0345
  article-title: Gully, gully erosion and prediction
  publication-title: J. Basic Sci. Eng.
– volume: 145–146
  start-page: 81
  year: 2012
  end-page: 89
  ident: b0115
  article-title: Effects of biological soil crusts on surface roughness and implications for runoff and erosion
  publication-title: Geomorphology
– volume: 783
  year: 2021
  ident: b0190
  article-title: Spatial modeling of gully head erosion on the Loess Plateau using a certainty factor and random forest model
  publication-title: Sci. Total Environ.
– volume: 204
  start-page: 399
  year: 2014
  end-page: 411
  ident: b0095
  article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy)
  publication-title: Geomorphology
– volume: 75
  start-page: 185
  year: 2016
  ident: b0280
  article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran
  publication-title: Environ. Earth Sci.
– reference: Thaler, E.A., Larsen, I.J., Yu, Q., 2021. The extent of soil loss across the US Corn Belt. Proc. Natl. Acad. Sci. U. S. A. 118, e1922375118. 10.1073/pnas.1922375118.
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  ident: b0080
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
– volume: 129
  year: 2021
  ident: b0245
  article-title: Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area
  publication-title: Ecol. Indic.
– volume: 116
  start-page: 105
  year: 2014
  end-page: 113
  ident: b0170
  article-title: Differences between the source contribution of bed material and suspended sediments in a mountainous agricultural catchment of western Iran
  publication-title: Catena
– volume: 5
  start-page: 3
  year: 1991
  end-page: 30
  ident: b0255
  article-title: Digital terrain modelling : a review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol. Process.
– volume: 79
  start-page: 455
  year: 2015
  end-page: 478
  ident: b0365
  article-title: Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China
  publication-title: Nat. Hazards
– volume: 398
  year: 2021
  ident: b0070
  article-title: Quantifying sediment source contributions in an agricultural catchment with ephemeral and classic gullies using 137Cs technique
  publication-title: Geoderma
– volume: 161
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0385
  article-title: Spatial modelling of gully erosion in Mazandaran Province, northern Iran
  publication-title: Catena
– volume: 112
  year: 2019
  ident: b0105
  article-title: Development of automated multicriteria GIS analysis of gully erosion susceptibility
  publication-title: Appl. Geogr.
– volume: 13
  start-page: 1103
  year: 2020
  end-page: 1117
  ident: b0215
  article-title: Spatial variation of gully development in the loess plateau of China based on the morphological perspective
  publication-title: Earth Sci. Inform.
– volume: 50
  start-page: 91
  year: 2003
  end-page: 133
  ident: b0275
  article-title: Gully erosion and environmental change: Importance and research needs
  publication-title: Catena
– volume: 101
  start-page: 683
  year: 2008
  end-page: 691
  ident: b0355
  article-title: Development of gullies and sediment production in the black soil region of northeastern China
  publication-title: Geomorphology
– volume: 8
  start-page: 317
  year: 2016
  ident: b0330
  article-title: Integrated use of GCM, RS, and GIS for the assessment of hillslope and gully erosion in the Mushi River sub-catchment, Northeast China
  publication-title: Sustainability
– volume: 119
  start-page: 116
  year: 2014
  end-page: 124
  ident: b0370
  article-title: Soil properties in natural grassland, Caragana korshinskii planted shrubland, and Robinia pseudoacacia planted forest in gullies on the hilly Loess Plateau, China
  publication-title: Catena
– reference: Yang, A.N., Wang, C.M., Pang, G.W., Long, Y., Q., Wang, L., Cruse, R.M., Yang, Q.K., 2021a. Gully erosion susceptibility mapping in highly complex terrain using machine learning models. ISPRS Int. J. Geo-Inf. 10, 680. doi:10.3390/ijgi10100680.
– volume: 43
  start-page: 1701
  year: 2017
  end-page: 1710
  ident: b0350
  article-title: Gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique
  publication-title: Earth Surf. Process. Landf.
– volume: 609
  start-page: 764
  year: 2017
  end-page: 775
  ident: b0295
  article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling
  publication-title: Sci. Total Environ.
– volume: 46
  start-page: 1713
  year: 2021
  end-page: 1724
  ident: b0395
  article-title: Estimation of initiation thresholds and soil loss from gully erosion on unpaved roads on China’s Loess Plateau
  publication-title: Earth Surf. Process. Landf.
– volume: 25
  start-page: 1521
  year: 2019
  end-page: 1530
  ident: b0205
  article-title: Spatial data analysis with R programming for environment
  publication-title: Hum. Ecol. Risk Assess.
– volume: 13
  start-page: 2166
  year: 2021
  ident: b0380
  article-title: Incorporating landslide spatial information and correlated features among conditioning factors for landslide susceptibility mapping
  publication-title: Remote Sens.
– volume: 205
  year: 2021
  ident: b0165
  article-title: Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau
  publication-title: Soil Tillage Res.
– volume: 339
  start-page: 1
  year: 2019
  end-page: 18
  ident: b0175
  article-title: Using reservoir deposits to quantify the source contributions to the sediment yield in the Black Soil Region, Northeast China, based on the fingerprinting technique
  publication-title: Geomorphology
– volume: 12
  start-page: 1488
  year: 2021
  end-page: 1507
  ident: b0100
  article-title: Detection of areas prone to flood risk using state-of-the-art machine learning models
  publication-title: Geomat. Nat. Hazards Risk
– volume: 20
  start-page: 1313
  year: 2020
  ident: b0305
  article-title: Machine learning-based gully erosion susceptibility mapping: a case study of Eastern India
  publication-title: Sensors
– volume: 60
  start-page: 5813
  year: 2021
  end-page: 5829
  ident: b0325
  article-title: Applying different resampling strategies in machine learning models to predict head-cut gully erosion susceptibility
  publication-title: Alex. Eng. J.
– volume: 109
  year: 2021
  ident: b0060
  article-title: Employing remote sensing technique to monitor the influence of newly established universities in creating an urban development process on the respective cities
  publication-title: Land Use Pol.
– volume: 340
  start-page: 55
  year: 2019
  end-page: 69
  ident: b0030
  article-title: Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms
  publication-title: Geoderma
– volume: 29
  start-page: 28995
  year: 2022
  end-page: 29015
  ident: b0015
  article-title: Evaluation of comparing urban area land use change with Urban Atlas and CORINE data
  publication-title: Environ. Sci. Pollut. Res.
– year: 1999
  ident: b0160
  article-title: Chinese soil taxonomy
– volume: 70
  start-page: 1179
  year: 2013
  end-page: 1195
  ident: b0090
  article-title: A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily
  publication-title: Italy. Environ. Earth Sci.
– volume: 35
  start-page: 180
  year: 2009
  end-page: 189
  ident: b0310
  article-title: Geomorphic threshold conditions for gully erosion in southwestern iran (boushehr-samal watershed)
  publication-title: J. Asian Earth Sci.
– volume: 21
  start-page: 2699
  year: 2021
  end-page: 2708
  ident: b0050
  article-title: Relationship of sediment yield to connectivity index in small watersheds with similar erosion potentials
  publication-title: J. Soils Sediments
– volume: 56
  start-page: 881
  year: 2010
  end-page: 898
  ident: b0085
  article-title: Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)
  publication-title: Nat. Hazards
– volume: 2
  start-page: 18
  year: 2001
  end-page: 22
  ident: b0220
  article-title: Classification and regression by randomforest
  publication-title: R News
– volume: 10
  start-page: 344
  year: 2017
  ident: b0300
  article-title: Slope aspect effects of loess slides and its spatial differentiation in different geomorphologic types
  publication-title: Arab. J. Geosci.
– volume: 206
  start-page: 165
  year: 2014
  end-page: 177
  ident: b0235
  article-title: Assessing the regional and temporal variability of the topographic threshold for ephemeral gully initiation using quantile regression in Wallonia (Belgium)
  publication-title: Geomorphology
– volume: 153
  start-page: 59
  year: 2015
  end-page: 65
  ident: b0120
  article-title: Temporal variations of sediment source from a reservoir catchment in the black soil region, Northeast China
  publication-title: Soil Tillage Res.
– volume: 50
  start-page: 1294
  year: 1986
  end-page: 1298
  ident: b0250
  article-title: Physical basis of the length-slope factor in the universal soil loss equation
  publication-title: Soil Sci. Soc. Am. J.
– volume: 173
  start-page: 16
  year: 2019
  end-page: 27
  ident: b0065
  article-title: Performance simulation of a parallel dual-pressure once-through steam generator
  publication-title: Energy
– volume: 348
  start-page: 1261071
  year: 2015
  ident: b0035
  article-title: Soil and human security in the 21st century
  publication-title: Science
– volume: 79
  start-page: 291
  year: 2015
  end-page: 314
  ident: b0155
  article-title: Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations
  publication-title: Nat. Hazards
– volume: 402
  year: 2021
  ident: b0185
  article-title: Responses of aggregates and associated soil available phosphorus, and soil organic matter in different slope aspects, to seasonal freeze–thaw cycles in Northeast China
  publication-title: Geoderma
– volume: 206
  year: 2021
  ident: b0040
  article-title: An interrogation of research on the influence of rainfall on gully erosion
  publication-title: Catena
– volume: 13
  start-page: 2166
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0380
  article-title: Incorporating landslide spatial information and correlated features among conditioning factors for landslide susceptibility mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs13112166
– volume: 46
  start-page: 1713
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0395
  article-title: Estimation of initiation thresholds and soil loss from gully erosion on unpaved roads on China’s Loess Plateau
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.5102
– volume: 205
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0165
  article-title: Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2020.104800
– volume: 77
  start-page: 628
  year: 2018
  ident: 10.1016/j.ecolind.2022.109376_b0045
  article-title: GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7808-5
– volume: 21
  start-page: 2699
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0050
  article-title: Relationship of sediment yield to connectivity index in small watersheds with similar erosion potentials
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-021-02978-z
– volume: 173
  start-page: 16
  year: 2019
  ident: 10.1016/j.ecolind.2022.109376_b0065
  article-title: Performance simulation of a parallel dual-pressure once-through steam generator
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.022
– volume: 116
  start-page: 105
  year: 2014
  ident: 10.1016/j.ecolind.2022.109376_b0170
  article-title: Differences between the source contribution of bed material and suspended sediments in a mountainous agricultural catchment of western Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2013.12.011
– volume: 12
  start-page: 1488
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0100
  article-title: Detection of areas prone to flood risk using state-of-the-art machine learning models
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2021.1920480
– volume: 208
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0340
  article-title: Identification of geo-environmental factors on Benggang susceptibility and its spatial modelling using comparative data-driven methods
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2020.104857
– volume: 60
  start-page: 5813
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0325
  article-title: Applying different resampling strategies in machine learning models to predict head-cut gully erosion susceptibility
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.04.026
– volume: 783
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0190
  article-title: Spatial modeling of gully head erosion on the Loess Plateau using a certainty factor and random forest model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147040
– volume: 112
  year: 2019
  ident: 10.1016/j.ecolind.2022.109376_b0105
  article-title: Development of automated multicriteria GIS analysis of gully erosion susceptibility
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2019.102083
– volume: 91
  start-page: 117
  year: 2007
  ident: 10.1016/j.ecolind.2022.109376_b0270
  article-title: Plan curvature and landslide probability in regions dominated by earth flows and earth slides
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2007.01.005
– volume: 402
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0185
  article-title: Responses of aggregates and associated soil available phosphorus, and soil organic matter in different slope aspects, to seasonal freeze–thaw cycles in Northeast China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115184
– volume: 25
  start-page: 1521
  year: 2019
  ident: 10.1016/j.ecolind.2022.109376_b0205
  article-title: Spatial data analysis with R programming for environment
  publication-title: Hum. Ecol. Risk Assess.
  doi: 10.1080/10807039.2018.1470896
– volume: 162
  start-page: 177
  year: 2018
  ident: 10.1016/j.ecolind.2022.109376_b0285
  article-title: Prediction of the landslide susceptibility: Which algorithm, which precision?
  publication-title: Catena
  doi: 10.1016/j.catena.2017.11.022
– volume: 13
  start-page: 1103
  year: 2020
  ident: 10.1016/j.ecolind.2022.109376_b0215
  article-title: Spatial variation of gully development in the loess plateau of China based on the morphological perspective
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-020-00491-4
– year: 2011
  ident: 10.1016/j.ecolind.2022.109376_b0200
– volume: 77
  start-page: 655
  year: 2018
  ident: 10.1016/j.ecolind.2022.109376_b0240
  article-title: A GIS-based approach for gully erosion susceptibility modelling using bivariate statistics methods in the Ourika watershed, Morocco
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7844-1
– volume: 28
  start-page: 1579
  year: 2017
  ident: 10.1016/j.ecolind.2022.109376_b0005
  article-title: Gully head retreat in the subhumid Ethiopian highlands: the ene-chilala catchment
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2688
– ident: 10.1016/j.ecolind.2022.109376_b0265
  doi: 10.1007/s11135-006-9018-6
– volume: 664
  start-page: 1117
  year: 2019
  ident: 10.1016/j.ecolind.2022.109376_b0140
  article-title: Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.093
– volume: 8
  start-page: 134
  year: 2000
  ident: 10.1016/j.ecolind.2022.109376_b0345
  article-title: Gully, gully erosion and prediction
  publication-title: J. Basic Sci. Eng.
– volume: 34
  start-page: 50
  year: 2013
  ident: 10.1016/j.ecolind.2022.109376_b0110
  article-title: Critical topographic threshold of gully erosion in Yuanmou Dry-hot Valley in Southwestern China
  publication-title: Phys. Geogr.
  doi: 10.1080/02723646.2013.778691
– volume: 1–18
  year: 2022
  ident: 10.1016/j.ecolind.2022.109376_b0020
  article-title: Exploring land use/land cover change by using density analysis method in yenice
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 207
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0335
  article-title: Can Benggang be regarded as gully erosion?
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105648
– volume: 79
  start-page: 455
  year: 2015
  ident: 10.1016/j.ecolind.2022.109376_b0365
  article-title: Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1852-1
– volume: 7
  start-page: 1857
  year: 2013
  ident: 10.1016/j.ecolind.2022.109376_b0290
  article-title: GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran)
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0825-x
– volume: 20
  start-page: 37
  year: 1960
  ident: 10.1016/j.ecolind.2022.109376_b0080
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 5
  start-page: 3
  year: 1991
  ident: 10.1016/j.ecolind.2022.109376_b0255
  article-title: Digital terrain modelling : a review of hydrological, geomorphological, and biological applications
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360050103
– volume: 50
  start-page: 91
  year: 2003
  ident: 10.1016/j.ecolind.2022.109376_b0275
  article-title: Gully erosion and environmental change: Importance and research needs
  publication-title: Catena
  doi: 10.1016/S0341-8162(02)00143-1
– volume: 75
  start-page: 185
  year: 2016
  ident: 10.1016/j.ecolind.2022.109376_b0280
  article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4950-1
– volume: 339
  start-page: 1
  year: 2019
  ident: 10.1016/j.ecolind.2022.109376_b0175
  article-title: Using reservoir deposits to quantify the source contributions to the sediment yield in the Black Soil Region, Northeast China, based on the fingerprinting technique
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2019.04.005
– volume: 609
  start-page: 764
  year: 2017
  ident: 10.1016/j.ecolind.2022.109376_b0295
  article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.198
– ident: 10.1016/j.ecolind.2022.109376_b0320
  doi: 10.1073/pnas.1922375118
– volume: 152
  start-page: 88
  year: 2017
  ident: 10.1016/j.ecolind.2022.109376_b0390
  article-title: Using check dam deposits to investigate recent changes in sediment yield in the Loess Plateau, China
  publication-title: Glob. Planet. Change
  doi: 10.1016/j.gloplacha.2017.03.003
– volume: 77
  start-page: 249
  year: 2018
  ident: 10.1016/j.ecolind.2022.109376_b0025
  article-title: Susceptibility mapping of gully erosion using GIS-based statistical bivariate models: a case study from Ali Al-Gharbi District, Maysan Governorate, southern Iraq
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7434-2
– volume: 129
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0245
  article-title: Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.107869
– volume: 119
  start-page: 116
  year: 2014
  ident: 10.1016/j.ecolind.2022.109376_b0370
  article-title: Soil properties in natural grassland, Caragana korshinskii planted shrubland, and Robinia pseudoacacia planted forest in gullies on the hilly Loess Plateau, China
  publication-title: Catena
  doi: 10.1016/j.catena.2014.03.016
– volume: 212
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0230
  article-title: Three decades of ephemeral gully erosion studies
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2021.105046
– volume: 70
  start-page: 1179
  year: 2013
  ident: 10.1016/j.ecolind.2022.109376_b0090
  article-title: A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily
  publication-title: Italy. Environ. Earth Sci.
  doi: 10.1007/s12665-012-2205-y
– ident: 10.1016/j.ecolind.2022.109376_b0375
  doi: 10.3390/ijgi10100680
– volume: 30
  start-page: 1968
  year: 2016
  ident: 10.1016/j.ecolind.2022.109376_b0315
  article-title: Physically based modelling of sheet erosion (detachment and deposition processes) in complex hillslopes
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10770
– volume: 47
  start-page: 436
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0010
  article-title: Modelling seasonal variation of gully erosion at the catchment scale
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.5259
– volume: 101
  start-page: 683
  year: 2008
  ident: 10.1016/j.ecolind.2022.109376_b0355
  article-title: Development of gullies and sediment production in the black soil region of northeastern China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.03.008
– volume: 12
  start-page: 2688
  year: 2020
  ident: 10.1016/j.ecolind.2022.109376_b0260
  article-title: A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs12172688
– volume: 10
  start-page: 344
  year: 2017
  ident: 10.1016/j.ecolind.2022.109376_b0300
  article-title: Slope aspect effects of loess slides and its spatial differentiation in different geomorphologic types
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-017-3135-5
– volume: 340
  start-page: 55
  year: 2019
  ident: 10.1016/j.ecolind.2022.109376_b0030
  article-title: Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.042
– volume: 50
  start-page: 1294
  year: 1986
  ident: 10.1016/j.ecolind.2022.109376_b0250
  article-title: Physical basis of the length-slope factor in the universal soil loss equation
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1986.03615995005000050042x
– volume: 80
  start-page: 328
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0150
  article-title: Soil erosion susceptibility assessment using logistic regression, decision tree and random forest: study on the Mayurakshi river basin of Eastern India
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-021-09631-5
– year: 1999
  ident: 10.1016/j.ecolind.2022.109376_b0160
– volume: 348
  start-page: 1261071
  year: 2015
  ident: 10.1016/j.ecolind.2022.109376_b0035
  article-title: Soil and human security in the 21st century
  publication-title: Science
  doi: 10.1126/science.1261071
– volume: 206
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0040
  article-title: An interrogation of research on the influence of rainfall on gully erosion
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105482
– volume: 110
  start-page: 188
  year: 2009
  ident: 10.1016/j.ecolind.2022.109376_b0195
  article-title: Topographic thresholds in gully development on the hillslopes of communal areas in ngqushwa local municipality, eastern cape, south africa
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.04.006
– volume: 79
  start-page: 1386
  year: 2015
  ident: 10.1016/j.ecolind.2022.109376_b0130
  article-title: Nitrogen mineralization and phosphorus release from composts and soil conditioners found in the Southeastern United States
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.02.0077
– volume: 7
  start-page: 3423
  year: 2010
  ident: 10.1016/j.ecolind.2022.109376_b0225
  article-title: Spatial pattern analysis of landslide using landscape metrics and logistic regression: a case study in Central Taiwan
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 145–146
  start-page: 81
  year: 2012
  ident: 10.1016/j.ecolind.2022.109376_b0115
  article-title: Effects of biological soil crusts on surface roughness and implications for runoff and erosion
  publication-title: Geomorphology
– volume: 153
  start-page: 59
  year: 2015
  ident: 10.1016/j.ecolind.2022.109376_b0120
  article-title: Temporal variations of sediment source from a reservoir catchment in the black soil region, Northeast China
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2015.04.009
– volume: 343
  start-page: 139
  year: 2019
  ident: 10.1016/j.ecolind.2022.109376_b0180
  article-title: Using reservoir deposits to reconstruct the impact of recent changes in land management on sediment yield and sediment sources for a small catchment in the Black Soil region of Northeast China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.014
– volume: 204
  start-page: 399
  year: 2014
  ident: 10.1016/j.ecolind.2022.109376_b0095
  article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.021
– volume: 35
  start-page: 180
  year: 2009
  ident: 10.1016/j.ecolind.2022.109376_b0310
  article-title: Geomorphic threshold conditions for gully erosion in southwestern iran (boushehr-samal watershed)
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2009.02.004
– volume: 34
  start-page: 1878
  year: 2009
  ident: 10.1016/j.ecolind.2022.109376_b0210
  article-title: Effects of holocene climate and sea-level changes on coastal gully evolution: insights from numerical modelling
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.1872
– volume: 375
  start-page: 107559
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b9000
  article-title: Effect of watershed geomorphological characteristics on sediment redistribution
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107559
– volume: 174
  start-page: 469
  year: 2019
  ident: 10.1016/j.ecolind.2022.109376_b0360
  article-title: Granite residual soil properties in collapsing gullies of south China: spatial variations and effects on collapsing gully erosion
  publication-title: Catena
  doi: 10.1016/j.catena.2018.11.015
– volume: 398
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0070
  article-title: Quantifying sediment source contributions in an agricultural catchment with ephemeral and classic gullies using 137Cs technique
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115112
– ident: 10.1016/j.ecolind.2022.109376_b0125
  doi: 10.1016/j.catena.2021.105208
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.ecolind.2022.109376_b0055
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 161
  start-page: 1
  year: 2018
  ident: 10.1016/j.ecolind.2022.109376_b0385
  article-title: Spatial modelling of gully erosion in Mazandaran Province, northern Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2017.10.010
– volume: 29
  start-page: 28995
  year: 2022
  ident: 10.1016/j.ecolind.2022.109376_b0015
  article-title: Evaluation of comparing urban area land use change with Urban Atlas and CORINE data
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-17766-y
– volume: 206
  start-page: 165
  year: 2014
  ident: 10.1016/j.ecolind.2022.109376_b0235
  article-title: Assessing the regional and temporal variability of the topographic threshold for ephemeral gully initiation using quantile regression in Wallonia (Belgium)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.10.007
– volume: 65
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0075
  article-title: Evaluation of different DEMs for gully erosion susceptibility mapping using in-situ field measurement and validation
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101425
– volume: 56
  start-page: 881
  year: 2010
  ident: 10.1016/j.ecolind.2022.109376_b0085
  article-title: Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-010-9598-2
– volume: 330
  start-page: 65
  year: 2018
  ident: 10.1016/j.ecolind.2022.109376_b0135
  article-title: Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.027
– volume: 8
  start-page: 317
  year: 2016
  ident: 10.1016/j.ecolind.2022.109376_b0330
  article-title: Integrated use of GCM, RS, and GIS for the assessment of hillslope and gully erosion in the Mushi River sub-catchment, Northeast China
  publication-title: Sustainability
  doi: 10.3390/su8040317
– volume: 10
  start-page: 20494
  year: 2020
  ident: 10.1016/j.ecolind.2022.109376_b0145
  article-title: Mapping wind erosion hazard with regression-based machine learning algorithms
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-77567-0
– volume: 109
  year: 2021
  ident: 10.1016/j.ecolind.2022.109376_b0060
  article-title: Employing remote sensing technique to monitor the influence of newly established universities in creating an urban development process on the respective cities
  publication-title: Land Use Pol.
  doi: 10.1016/j.landusepol.2021.105705
– volume: 2
  start-page: 18
  year: 2001
  ident: 10.1016/j.ecolind.2022.109376_b0220
  article-title: Classification and regression by randomforest
  publication-title: R News
– volume: 20
  start-page: 1313
  year: 2020
  ident: 10.1016/j.ecolind.2022.109376_b0305
  article-title: Machine learning-based gully erosion susceptibility mapping: a case study of Eastern India
  publication-title: Sensors
  doi: 10.3390/s20051313
– volume: 79
  start-page: 291
  year: 2015
  ident: 10.1016/j.ecolind.2022.109376_b0155
  article-title: Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1703-0
– volume: 43
  start-page: 1701
  year: 2017
  ident: 10.1016/j.ecolind.2022.109376_b0350
  article-title: Gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.4332
SSID ssj0016996
Score 2.4692745
Snippet [Display omitted] •Gully erosion susceptibility (GES) of black soil region in China was assessed.•Ten topographic factors were used to predict gully erosion...
Gullies are primary sediment sources that restrict sustainable agricultural development by reducing the quality of soil and destroying farmlands. In the black...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109376
SubjectTerms agricultural development
algorithms
Catchment areas
China
forestry equipment
gully erosion
Gully erosion susceptibility
Northeast China
Random forest
Remote sensing
risk
sediments
soil
streams
surface roughness
Topographic attribute
topography
watersheds
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnrggXhULBQ0S1-zm4cTxEapWFRJcoNLerNjxrFKVZNXsHnrh3_A_mXGcLeVSiWMSv5QZj8f2N98I8REtZq1DBjFglcgmk0nNdHe0lNKXKi0aywHOX79Vl1fyy7pcH4mzORaGYZXR9k82PVjr-GYV_-Zq23Wr75lUTI-2zvkKX2rmBJVSsZYvfx1gHlml9RRhpNKES99H8ayul7TDI2eOCUPzPBArMfXIX-tToPF_sEz9Y7DDKnTxTDyN7iN8mkb4XBz5_oU4Ob-PVqOPcbqOL8XvKQwX47kcDAi7YTuRVHcOYq4dIL8VNrQVvQNPY-KC434McJeAnL2Dpm8h3CjAyABs6iMk0OFIdmDg_AZ-Bkymh5iEYgNdzzXA8vkgjEN3A5wCYhpDuCvinEEQsne_ElcX5z_OLpOYlyFxsix3CZN2teiZ41OV2qJrURbkueUFFhprn2eulXXprMta8h-9TFFp66xKUfL2qjgRx_3Q-9cCdJUjSmXTJmukRtIPbcu2Tkl9NGc8XAg5S8O4SFrOuTNuzIxOuzZRiIaFaCYhLsTyUG07sXY8VuEzi_pQmEm3w4vhdmOi1pmm8K5uyGJZVcg88xbJ-1EWUyzTyrXlQtSzopgHOkxNdY_1_2FWLEPzmy9tmt4P-9Hk5DwUiv5z8eb_m38rnvDTBEI8Fce7271_R87Uzr4Ps-UPW4YieQ
  priority: 102
  providerName: Elsevier
Title Identification of topographic factors for gully erosion susceptibility and their spatial modelling using machine learning in the black soil region of Northeast China
URI https://dx.doi.org/10.1016/j.ecolind.2022.109376
https://www.proquest.com/docview/2718377593
https://doaj.org/article/a3ec8a963b73421ebf4157bf0f506cd5
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLig8qhYHqtB4pptHs7Dx4JaLSB6otLerNjxrLYqSUV2D73wb_o_mbGdtnDZC9ckjq3MOPPZnvk-IT6iwayzyEkMWCWyzWTSMN0dhVK6U6VFa7jA-ft5tbyQX1fl6oHUF-eEBXrg8OGO28LZpiU3MXUh88wZpJBTG0yxTCvbefZSinnTYiqeH1RKhbqiOk2ox9V97c7x5YLWdQThmCY0zz2dEhOOPIhKnrz_r-D0z2_ax56zQ_EsgkY4CYN9Lh65_oU4Or2vUaObcZKOL8VtKL7FuBsHA8J2uA7U1BsLUWEHCK3CmhagN-BoTPzguBt9kovPl72Btu_AnyPAyGnX1IeXzeH6deB0-TX89JmYDqL0xBo2PbcAw7uCMA6bK2DhhzAGf0LESkHgNbtfiYuz0x-fl0lUY0isLMttwlRdHTpm9qxLZdB2KAvCa3mBhcLG5ZntZFNaY7OOUKOTKdbKWFOnKHlRVRyJg37o3WsBqsoRZW3SNmulQvIKZcquSclpFOsczoScrKFtpCpnxYwrPeWkXepoRM1G1MGIM7G4a3YduDr2NfjEpr57mKm2_QVyQB0dUO9zwJloJkfREbUENEKv2uzr_8PkWJpmNR_VtL0bdqPOCTIUNX3n4s3_GONb8ZS7DUmI78TB9tfOvScwtTVz8XjxO5uLJydfvi3P534W_QFYpSPk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAF8apYnoMEx-wmjvM6cODRaksfF1ppbyZ27FWqNlk1u0J74d_wC_iDzDjOlnKphNRrHDuWxx6P42--j7F3Vtmo0pZADDYNRBmJICe6O9xKsSQN41JRgvPRcTo9FV9nyWyL_R5yYQhW6X1_79Odt_ZPJn40J4u6nnyLREb0aDNOV_iiEB5ZeWDWP_Dc1n3Y_4JGfs_53u7J52ngpQUCLZJkGRDvVGUN0VRmSaGsrqyIMfjgsY0Lmxse6UrkiVY6qjAEMiK0WaG0ykIr6IQQY7t32F2B7oJkE8Y_N7iSKC2KPqUpCwPq3lXa0ORsjEdKjB6JoZRzx-REXCd_bYhON-DavvjPDuG2vb2H7IGPV-FjPySP2JZpHrOd3av0OCz0_qF7wn71eb_W_wiE1sKyXfSs2LUGL-4DGCjDHM--azDYJ3qxW3UOX-OgumsomwrcFQZ0hPjGbzjFHkqdB0Lqz-HCgUANeNWLOdQN1QBFPySha-tzIM2Jvg_ucopEisDJhT9lp7dirR223bSNecagSLm1IlNhGZWisDghC5VUeYjztSCJxRETgzWk9izpJNZxLgc43Jn0RpRkRNkbccTGm2qLnibkpgqfyNSbl4nl2z1oL-fST3NZxkbnJbpIlcWCR0ZZDLcyZUObhKmukhHLh4kiry0abKq-6ftvh4kl0aHQLVHZmHbVSY7RSpzhOMfP_7_5N-ze9OToUB7uHx-8YPeppEdAvmTby8uVeYWR3FK9disH2PfbXqp_ANyxX0s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+topographic+factors+for+gully+erosion+susceptibility+and+their+spatial+modelling+using+machine+learning+in+the+black+soil+region+of+Northeast+China&rft.jtitle=Ecological+indicators&rft.au=Donghao+Huang&rft.au=Lin+Su&rft.au=Haoming+Fan&rft.au=Lili+Zhou&rft.date=2022-10-01&rft.pub=Elsevier&rft.issn=1470-160X&rft.volume=143&rft.spage=109376&rft_id=info:doi/10.1016%2Fj.ecolind.2022.109376&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a3ec8a963b73421ebf4157bf0f506cd5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon