Identification of topographic factors for gully erosion susceptibility and their spatial modelling using machine learning in the black soil region of Northeast China
[Display omitted] •Gully erosion susceptibility (GES) of black soil region in China was assessed.•Ten topographic factors were used to predict gully erosion using random forest model.•Results revealed considerable potential for gully erosion (35.36–42.69 %)•Landforms close to channel network systems...
Saved in:
Published in | Ecological indicators Vol. 143; p. 109376 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Gully erosion susceptibility (GES) of black soil region in China was assessed.•Ten topographic factors were used to predict gully erosion using random forest model.•Results revealed considerable potential for gully erosion (35.36–42.69 %)•Landforms close to channel network systems were more prone to gully erosion.
Gullies are primary sediment sources that restrict sustainable agricultural development by reducing the quality of soil and destroying farmlands. In the black soil regions of Northeast China, the intensive exploitation and unreasonable cultivation result in severe soil erosion and malignant expansion of gully erosion. However, few gully erosion susceptibility (GES) assessments have been performed in this area, despite being an effective tool to explain the potential of gully occurrence. In this study, four adjacent catchments were selected in Keshan County, the black soil region of Northeast China. The locations of gullies were identified through extensive field surveys and interpreting remote sensing images. We used the random forest machine learning method to establish the spatial relationship between the gully occurrence and ten topographic factors (slope aspect, catchment area, channel network distance, elevation, LS-Factor, plan curvature, profile curvature, stream power index, surface roughness index, and topographic wetness index) and mapped the spatial distribution of GES. The mean decrease accuracy was calculated to identify the importance of the selected variables. The efficiency of the results was tested using the area under the receiver operating characteristic curve (area under the curve, AUC), accuracy, and kappa coefficient. The results indicate that 35%–42% of the total area in the study region presents high or elevated levels of GES. Although the importance of the topographic factors differed for the four catchments, the LS-Factor and channel network distance were the most important factors that affected gully spatial distribution. The AUC (0.805–0.846), accuracy (0.705–0.754), and kappa coefficient (0.715–0.788) indicated that the random forest model provided a reliable spatial distribution of GES in the study area. Our study demonstrates the potential risk of gully erosion in the black soil region of Northeast China. |
---|---|
AbstractList | Gullies are primary sediment sources that restrict sustainable agricultural development by reducing the quality of soil and destroying farmlands. In the black soil regions of Northeast China, the intensive exploitation and unreasonable cultivation result in severe soil erosion and malignant expansion of gully erosion. However, few gully erosion susceptibility (GES) assessments have been performed in this area, despite being an effective tool to explain the potential of gully occurrence. In this study, four adjacent catchments were selected in Keshan County, the black soil region of Northeast China. The locations of gullies were identified through extensive field surveys and interpreting remote sensing images. We used the random forest machine learning method to establish the spatial relationship between the gully occurrence and ten topographic factors (slope aspect, catchment area, channel network distance, elevation, LS-Factor, plan curvature, profile curvature, stream power index, surface roughness index, and topographic wetness index) and mapped the spatial distribution of GES. The mean decrease accuracy was calculated to identify the importance of the selected variables. The efficiency of the results was tested using the area under the receiver operating characteristic curve (area under the curve, AUC), accuracy, and kappa coefficient. The results indicate that 35%–42% of the total area in the study region presents high or elevated levels of GES. Although the importance of the topographic factors differed for the four catchments, the LS-Factor and channel network distance were the most important factors that affected gully spatial distribution. The AUC (0.805–0.846), accuracy (0.705–0.754), and kappa coefficient (0.715–0.788) indicated that the random forest model provided a reliable spatial distribution of GES in the study area. Our study demonstrates the potential risk of gully erosion in the black soil region of Northeast China. [Display omitted] •Gully erosion susceptibility (GES) of black soil region in China was assessed.•Ten topographic factors were used to predict gully erosion using random forest model.•Results revealed considerable potential for gully erosion (35.36–42.69 %)•Landforms close to channel network systems were more prone to gully erosion. Gullies are primary sediment sources that restrict sustainable agricultural development by reducing the quality of soil and destroying farmlands. In the black soil regions of Northeast China, the intensive exploitation and unreasonable cultivation result in severe soil erosion and malignant expansion of gully erosion. However, few gully erosion susceptibility (GES) assessments have been performed in this area, despite being an effective tool to explain the potential of gully occurrence. In this study, four adjacent catchments were selected in Keshan County, the black soil region of Northeast China. The locations of gullies were identified through extensive field surveys and interpreting remote sensing images. We used the random forest machine learning method to establish the spatial relationship between the gully occurrence and ten topographic factors (slope aspect, catchment area, channel network distance, elevation, LS-Factor, plan curvature, profile curvature, stream power index, surface roughness index, and topographic wetness index) and mapped the spatial distribution of GES. The mean decrease accuracy was calculated to identify the importance of the selected variables. The efficiency of the results was tested using the area under the receiver operating characteristic curve (area under the curve, AUC), accuracy, and kappa coefficient. The results indicate that 35%–42% of the total area in the study region presents high or elevated levels of GES. Although the importance of the topographic factors differed for the four catchments, the LS-Factor and channel network distance were the most important factors that affected gully spatial distribution. The AUC (0.805–0.846), accuracy (0.705–0.754), and kappa coefficient (0.715–0.788) indicated that the random forest model provided a reliable spatial distribution of GES in the study area. Our study demonstrates the potential risk of gully erosion in the black soil region of Northeast China. |
ArticleNumber | 109376 |
Author | Zhou, Lili Su, Lin Fan, Haoming Huang, Donghao Tian, Yulu |
Author_xml | – sequence: 1 givenname: Donghao surname: Huang fullname: Huang, Donghao organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China – sequence: 2 givenname: Lin surname: Su fullname: Su, Lin organization: College of Forestry, Shenyang Agricultural University, Shenyang 110866, China – sequence: 3 givenname: Haoming surname: Fan fullname: Fan, Haoming organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China – sequence: 4 givenname: Lili surname: Zhou fullname: Zhou, Lili email: zll@syau.edu.cn organization: College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China – sequence: 5 givenname: Yulu surname: Tian fullname: Tian, Yulu email: tianyulu@nwu.edu.cn organization: College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China |
BookMark | eNqFUc2OFCEY7MOauLv6CCYcvcwITdNMx4MxE38m2ehFE2-Eho-Zb2SgBcZkHsj3lN4eL172AklRVSmq7pqbEAM0zStG14yy_s1xDSZ6DHbd0rat2MBlf9Pcsk7SFevpj-fNXc5HWrnD0N82f3YWQkGHRheMgURHSpziPunpgIY4bUpMmbiYyP7s_YVAinkm5nM2MBUc0WO5EB0sKQfARPJUnbQnp2jB1yR7cs7zedLmgAGIB53CDGCYFWT02vwkOaInCfbXDF9iqm86F7KtIv2ieea0z_Dyet833z9--Lb9vHr4-mm3ff-wMp0QZSUk5dYBk4JLMYzOWNfxjWAtd3xwG2iZsd1GmNEwO7QcOurkMJpRUtfVNnp-3-wWXxv1UU0JTzpdVNSoHoGY9kqngsaD0hzMRg89HyXvWgaj65iQo6NO0N5YUb1eL15Tir_OkIs6Ya3Mex0gnrNqJdtwWXPySn27UE0tNydwymB53KMkjV4xquZx1VFdx1XzuGoZt6rFf-p_wZ_SvVt0UBv9jZBUNgjBgMUEptQv4xMOfwH6qsof |
CitedBy_id | crossref_primary_10_1016_j_iswcr_2024_11_003 crossref_primary_10_1016_j_aeolia_2024_100924 crossref_primary_10_3390_f15071122 crossref_primary_10_1002_esp_6059 crossref_primary_10_1016_j_catena_2023_107629 crossref_primary_10_1016_j_iswcr_2024_07_004 crossref_primary_10_1007_s12665_024_11424_5 crossref_primary_10_1016_j_jhydrol_2024_131235 crossref_primary_10_1016_j_eiar_2023_107124 crossref_primary_10_1016_j_jag_2025_104434 crossref_primary_10_1016_j_still_2024_106322 crossref_primary_10_3390_app14010240 crossref_primary_10_3390_su16103917 crossref_primary_10_1016_j_jclepro_2023_139719 crossref_primary_10_1016_j_ecoinf_2023_102101 crossref_primary_10_1002_ldr_4721 crossref_primary_10_1134_S1064229323603530 crossref_primary_10_1016_j_scitotenv_2023_166960 crossref_primary_10_1016_j_ecolind_2023_110976 crossref_primary_10_1016_j_jafrearsci_2025_105633 crossref_primary_10_1007_s11356_024_35521_x crossref_primary_10_1016_j_catena_2024_108275 crossref_primary_10_1109_TGRS_2024_3417398 |
Cites_doi | 10.3390/rs13112166 10.1002/esp.5102 10.1016/j.still.2020.104800 10.1007/s12665-018-7808-5 10.1007/s11368-021-02978-z 10.1016/j.energy.2019.02.022 10.1016/j.catena.2013.12.011 10.1080/19475705.2021.1920480 10.1016/j.still.2020.104857 10.1016/j.aej.2021.04.026 10.1016/j.scitotenv.2021.147040 10.1016/j.apgeog.2019.102083 10.1016/j.enggeo.2007.01.005 10.1016/j.geoderma.2021.115184 10.1080/10807039.2018.1470896 10.1016/j.catena.2017.11.022 10.1007/s12145-020-00491-4 10.1007/s12665-018-7844-1 10.1002/ldr.2688 10.1007/s11135-006-9018-6 10.1016/j.scitotenv.2019.02.093 10.1080/02723646.2013.778691 10.1016/j.catena.2021.105648 10.1007/s11069-015-1852-1 10.1007/s12517-012-0825-x 10.1177/001316446002000104 10.1002/hyp.3360050103 10.1016/S0341-8162(02)00143-1 10.1007/s12665-015-4950-1 10.1016/j.geomorph.2019.04.005 10.1016/j.scitotenv.2017.07.198 10.1073/pnas.1922375118 10.1016/j.gloplacha.2017.03.003 10.1007/s12665-018-7434-2 10.1016/j.ecolind.2021.107869 10.1016/j.catena.2014.03.016 10.1016/j.still.2021.105046 10.1007/s12665-012-2205-y 10.3390/ijgi10100680 10.1002/hyp.10770 10.1002/esp.5259 10.1016/j.geomorph.2008.03.008 10.3390/rs12172688 10.1007/s12517-017-3135-5 10.1016/j.geoderma.2018.12.042 10.2136/sssaj1986.03615995005000050042x 10.1007/s12665-021-09631-5 10.1126/science.1261071 10.1016/j.catena.2021.105482 10.1016/j.geomorph.2009.04.006 10.2136/sssaj2015.02.0077 10.1016/j.still.2015.04.009 10.1016/j.geoderma.2019.02.014 10.1016/j.geomorph.2013.08.021 10.1016/j.jseaes.2009.02.004 10.1002/esp.1872 10.1016/j.geomorph.2020.107559 10.1016/j.catena.2018.11.015 10.1016/j.geoderma.2021.115112 10.1016/j.catena.2021.105208 10.1023/A:1010933404324 10.1016/j.catena.2017.10.010 10.1007/s11356-021-17766-y 10.1016/j.geomorph.2013.10.007 10.1016/j.ecoinf.2021.101425 10.1007/s11069-010-9598-2 10.1016/j.geoderma.2018.05.027 10.3390/su8040317 10.1038/s41598-020-77567-0 10.1016/j.landusepol.2021.105705 10.3390/s20051313 10.1007/s11069-015-1703-0 10.1002/esp.4332 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ecolind.2022.109376 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
ExternalDocumentID | oai_doaj_org_article_a3ec8a963b73421ebf4157bf0f506cd5 10_1016_j_ecolind_2022_109376 S1470160X22008494 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AFJKZ AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSH SSJ SSZ T5K ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c455t-5703dfe1753759bfcdf4385123f39f8e21cd485cbc1d923e40f79bcb70f499663 |
IEDL.DBID | DOA |
ISSN | 1470-160X |
IngestDate | Wed Aug 27 00:41:37 EDT 2025 Fri Jul 11 00:10:31 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Tue Jul 01 04:26:58 EDT 2025 Sun Apr 06 06:54:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Northeast China Random forest Gully erosion susceptibility Topographic attribute Catchment areas Remote sensing |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-5703dfe1753759bfcdf4385123f39f8e21cd485cbc1d923e40f79bcb70f499663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/a3ec8a963b73421ebf4157bf0f506cd5 |
PQID | 2718377593 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a3ec8a963b73421ebf4157bf0f506cd5 proquest_miscellaneous_2718377593 crossref_citationtrail_10_1016_j_ecolind_2022_109376 crossref_primary_10_1016_j_ecolind_2022_109376 elsevier_sciencedirect_doi_10_1016_j_ecolind_2022_109376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 20221001 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Ecological indicators |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Gómez-Gutiérrez, Conoscenti, Angileri, Rotigliano, Schnabel (b0155) 2015; 79 Moore, Burch (b0250) 1986; 50 Qiu, Regmi, Cui, Hu, Wang, He (b0300) 2017; 10 Wei, Liu, Wu, Zhang, Cui, Cai, Guo, Wang, Cheng (b0335) 2021; 207 Talebi, Hajiabolghasemi, Hadian, Amanian (b0315) 2016; 30 Xia, Deng, Wang, Ding, Cai (b0365) 2015; 79 Haddadchi, Nosrati, Ahmadi (b0170) 2014; 116 Yang, A.N., Wang, C.M., Pang, G.W., Long, Y., Q., Wang, L., Cruse, R.M., Yang, Q.K., 2021a. Gully erosion susceptibility mapping in highly complex terrain using machine learning models. ISPRS Int. J. Geo-Inf. 10, 680. doi:10.3390/ijgi10100680. Zhao, Zhang, Yuan, Yang, Deng (b0395) 2021; 46 Addisie, Ayele, Gessess, Tilahun, Zegeye, Moges, Schmitter, Langendoen, Steenhuis (b0005) 2017; 28 Kakembo, Xanga, Rowntree (b0195) 2009; 110 Garosi, Sheklabadi, Conoscenti, Pourghasemi, Van Oost (b0140) 2019; 664 Nhu, Thi Ngo, Pham, Dou, Song, Hoang, Tran, Cao, Aydilek, Amiri, Costache, Hoa, Tien Bui (b0260) 2020; 12 Pourghasemi, Yousefi, Kornejady, Cerda (b0295) 2017; 609 Ghosh, Maiti (b0150) 2021; 80 Cetin, Aksoy, Cabuk, Senyel Kurkcuoglu, Cabuk (b0060) 2021; 109 Lin, Chu, Wu (b0225) 2010; 7 Zabihi, Mirchooli, Motevalli, Khaledi Darvishan, Pourghasemi, Zakeri, Sadighi (b0385) 2018; 161 Dong, Xiong, Su, Li, Yang, Zhai, Lu, Liu, Shi (b0110) 2013; 34 Farias Amorim, F., Jacques Agra Bezerra da Silva, Y., Cabral Nascimento, R., Jacques Agra Bezerra da Silva, Y., Tiecher, T., Williams Araújo do Nascimento, C., Paolo Gomes Minella, J., Zhang, Y., Ram Upadhayay, H., Pulley, S., Collins, A.L., 2021. Sediment source apportionment using optical property composite signatures in a rural catchment, Brazil. Catena 202, 105208. 10.1016/j.catena.2021.105208. Xia, Cai, Wei, Wu (b0360) 2019; 174 Guan, Yang, Zhao, Lou, Chen, Zhang, Wu (b0165) 2021; 205 Aksoy, Kaptan, Varol, Cetin, Ozel (b0020) 2022; 1–18 Amundson, Berhe, Hopmans, Olson, Sztein, Sparks (b0035) 2015; 348 Ohlmacher (b0270) 2007; 91 Arabkhedri, Heidary, Parsamehr (b0050) 2021; 21 Conforti, Aucelli, Robustelli, Scarciglia (b0085) 2010; 56 Huang, Du, Walling, Ning, Wei, Liu, Wang (b0180) 2019; 343 Kantardzic (b0200) 2011 Samani, Ahmadi, Jafari, Boggs, Ghoddousi, Malekian (b0310) 2009; 35 Yang, Liu, Yang, Chen, Liu, Yang, Chen, Wang (b0380) 2021; 13 Wang, Zhang, Yang, Pu, Yang, Yu, Chang, Bu (b0330) 2016; 8 Costache, Arabameri, Elkhrachy, Ghorbanzadeh, Pham (b0100) 2021; 12 Gong, Chen, Shi (b0160) 1999 Chen, Liu, Zhang, Shi, Li (b0070) 2021; 398 Kaya, Agca, Adiguzel, Cetin (b0205) 2019; 25 Chen, Li, Newby (b0065) 2019; 173 Al-Abadi, Al-Ali (b0025) 2018; 77 Garosi, Sheklabadi, Pourghasemi, Besalatpour, Conoscenti, Van Oost (b0135) 2018; 330 Zhao, Yang, Walling, Zhang, Zhang (b0390) 2017; 152 Fang (b0120) 2015; 153 Huang, Du, Wang, Wei, Liu, Xu (b0175) 2019; 339 Pourghasemi, Moradi, Fatemi Aghda, Gokceoglu, Pradhan (b0290) 2013; 7 Xu, Zhang, Liu, Yamanaka (b0370) 2014; 119 Emilio, Yolanda, Sonia, Ashraf, Albert (b0115) 2012; 145–146 Li, Li, Dai, Yang, Cui, Luo (b0215) 2020; 13 Moore, Grayson, Ladson (b0255) 1991; 5 Franklin, Bender-Özenç, Özenç, Cabrera (b0130) 2015; 79 Breiman (b0055) 2001; 45 Jiang, Wen, Yu, Liu (b0190) 2021; 783 Wu, Liu (b0345) 2000; 8 Huang, Zhou, Fan, Jia, Liu (b0185) 2021; 402 Domazetović, Šiljeg, Lončar, Marić (b0105) 2019; 112 Meliho, Khattabi, Mhammdi (b0240) 2018; 77 Wang, Sahana, Pahlevanzadeh, Chandra Pal, Kumar Shit, Piran, Janizadeh, Band, Mosavi (b0325) 2021; 60 Liu, Zheng, Wilson, Xu, Liu (b0230) 2021; 212 Leyland, Darby (b0210) 2009; 34 Anderson, Rowntree, Le Roux (b0040) 2021; 206 Pourghasemi, Kerle (b0280) 2016; 75 Wu, Xu, Zheng, Qin, He (b0350) 2017; 43 Gholami, Mohammadifar, Bui, Collins (b0145) 2020; 10 Amiri, Pourghasemi, Ghanbarian, Afzali (b0030) 2019; 340 Cohen (b0080) 1960; 20 Arabameri, Rezaei, Pourghasemi, Lee, Yamani (b0045) 2018; 77 Poesen, Nachtergaele, Verstraeten, Valentin (b0275) 2003; 50 Pourghasemi, Rahmati (b0285) 2018; 162 Agostini, Mondini, Torri, Rossi (b0010) 2021; 47 Wei, Wu, Wang, Yu, Xia, Deng, Zhang, Xiang, Cai, Guo (b0340) 2021; 208 Saha, Roy, Arabameri, Blaschke, Tien Bui (b0305) 2020; 20 Mohajane, Costache, Karimi, Bao Pham, Essahlaoui, Nguyen, Laneve, Oudija (b0245) 2021; 129 Thaler, E.A., Larsen, I.J., Yu, Q., 2021. The extent of soil loss across the US Corn Belt. Proc. Natl. Acad. Sci. U. S. A. 118, e1922375118. 10.1073/pnas.1922375118. Wu, Zheng, Zhang, Liu, Cheng, Wang (b0355) 2008; 101 Conoscenti, Agnesi, Angileri, Cappadonia, Rotigliano, Märker (b0090) 2013; 70 Liaw, Wiener (b0220) 2001; 2 Aksoy, Dabanli, Cetin, Kurkcuoglu, Cengiz, Cabuk, Agacsapan, Cabuk (b0015) 2022; 29 Conoscenti, Angileri, Cappadonia, Rotigliano, Agnesi, Märker (b0095) 2014; 204 O’brien, R.M., 2007. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673-690. https://doi.org/10.1007/s11135-006-9018-6. Maugnard, Van Dyck, Bielders (b0235) 2014; 206 Sedighi, Khaledi Darvishan, Zare (b9000) 2021; 375 Chowdhuri, Pal, Saha, Chakrabortty, Roy (b0075) 2021; 65 Fang (10.1016/j.ecolind.2022.109376_b0120) 2015; 153 Chowdhuri (10.1016/j.ecolind.2022.109376_b0075) 2021; 65 Nhu (10.1016/j.ecolind.2022.109376_b0260) 2020; 12 Zhao (10.1016/j.ecolind.2022.109376_b0390) 2017; 152 Ghosh (10.1016/j.ecolind.2022.109376_b0150) 2021; 80 Cetin (10.1016/j.ecolind.2022.109376_b0060) 2021; 109 Conforti (10.1016/j.ecolind.2022.109376_b0085) 2010; 56 Moore (10.1016/j.ecolind.2022.109376_b0250) 1986; 50 Kantardzic (10.1016/j.ecolind.2022.109376_b0200) 2011 Amiri (10.1016/j.ecolind.2022.109376_b0030) 2019; 340 Wu (10.1016/j.ecolind.2022.109376_b0355) 2008; 101 Haddadchi (10.1016/j.ecolind.2022.109376_b0170) 2014; 116 Huang (10.1016/j.ecolind.2022.109376_b0180) 2019; 343 Emilio (10.1016/j.ecolind.2022.109376_b0115) 2012; 145–146 Garosi (10.1016/j.ecolind.2022.109376_b0140) 2019; 664 Gholami (10.1016/j.ecolind.2022.109376_b0145) 2020; 10 Al-Abadi (10.1016/j.ecolind.2022.109376_b0025) 2018; 77 10.1016/j.ecolind.2022.109376_b0320 Xu (10.1016/j.ecolind.2022.109376_b0370) 2014; 119 Aksoy (10.1016/j.ecolind.2022.109376_b0020) 2022; 1–18 Li (10.1016/j.ecolind.2022.109376_b0215) 2020; 13 10.1016/j.ecolind.2022.109376_b0125 Maugnard (10.1016/j.ecolind.2022.109376_b0235) 2014; 206 Xia (10.1016/j.ecolind.2022.109376_b0360) 2019; 174 Conoscenti (10.1016/j.ecolind.2022.109376_b0095) 2014; 204 Yang (10.1016/j.ecolind.2022.109376_b0380) 2021; 13 Franklin (10.1016/j.ecolind.2022.109376_b0130) 2015; 79 Aksoy (10.1016/j.ecolind.2022.109376_b0015) 2022; 29 Sedighi (10.1016/j.ecolind.2022.109376_b9000) 2021; 375 Xia (10.1016/j.ecolind.2022.109376_b0365) 2015; 79 Domazetović (10.1016/j.ecolind.2022.109376_b0105) 2019; 112 Chen (10.1016/j.ecolind.2022.109376_b0070) 2021; 398 Wei (10.1016/j.ecolind.2022.109376_b0335) 2021; 207 Addisie (10.1016/j.ecolind.2022.109376_b0005) 2017; 28 Chen (10.1016/j.ecolind.2022.109376_b0065) 2019; 173 Breiman (10.1016/j.ecolind.2022.109376_b0055) 2001; 45 Wang (10.1016/j.ecolind.2022.109376_b0330) 2016; 8 Qiu (10.1016/j.ecolind.2022.109376_b0300) 2017; 10 Wu (10.1016/j.ecolind.2022.109376_b0350) 2017; 43 Gong (10.1016/j.ecolind.2022.109376_b0160) 1999 Mohajane (10.1016/j.ecolind.2022.109376_b0245) 2021; 129 Garosi (10.1016/j.ecolind.2022.109376_b0135) 2018; 330 Leyland (10.1016/j.ecolind.2022.109376_b0210) 2009; 34 10.1016/j.ecolind.2022.109376_b0375 Guan (10.1016/j.ecolind.2022.109376_b0165) 2021; 205 Zhao (10.1016/j.ecolind.2022.109376_b0395) 2021; 46 Huang (10.1016/j.ecolind.2022.109376_b0175) 2019; 339 Jiang (10.1016/j.ecolind.2022.109376_b0190) 2021; 783 Arabkhedri (10.1016/j.ecolind.2022.109376_b0050) 2021; 21 Kakembo (10.1016/j.ecolind.2022.109376_b0195) 2009; 110 Pourghasemi (10.1016/j.ecolind.2022.109376_b0285) 2018; 162 Amundson (10.1016/j.ecolind.2022.109376_b0035) 2015; 348 Liu (10.1016/j.ecolind.2022.109376_b0230) 2021; 212 Lin (10.1016/j.ecolind.2022.109376_b0225) 2010; 7 Wu (10.1016/j.ecolind.2022.109376_b0345) 2000; 8 Pourghasemi (10.1016/j.ecolind.2022.109376_b0290) 2013; 7 Conoscenti (10.1016/j.ecolind.2022.109376_b0090) 2013; 70 Meliho (10.1016/j.ecolind.2022.109376_b0240) 2018; 77 Anderson (10.1016/j.ecolind.2022.109376_b0040) 2021; 206 Liaw (10.1016/j.ecolind.2022.109376_b0220) 2001; 2 Moore (10.1016/j.ecolind.2022.109376_b0255) 1991; 5 Zabihi (10.1016/j.ecolind.2022.109376_b0385) 2018; 161 10.1016/j.ecolind.2022.109376_b0265 Pourghasemi (10.1016/j.ecolind.2022.109376_b0295) 2017; 609 Huang (10.1016/j.ecolind.2022.109376_b0185) 2021; 402 Ohlmacher (10.1016/j.ecolind.2022.109376_b0270) 2007; 91 Talebi (10.1016/j.ecolind.2022.109376_b0315) 2016; 30 Kaya (10.1016/j.ecolind.2022.109376_b0205) 2019; 25 Wei (10.1016/j.ecolind.2022.109376_b0340) 2021; 208 Agostini (10.1016/j.ecolind.2022.109376_b0010) 2021; 47 Wang (10.1016/j.ecolind.2022.109376_b0325) 2021; 60 Arabameri (10.1016/j.ecolind.2022.109376_b0045) 2018; 77 Pourghasemi (10.1016/j.ecolind.2022.109376_b0280) 2016; 75 Saha (10.1016/j.ecolind.2022.109376_b0305) 2020; 20 Costache (10.1016/j.ecolind.2022.109376_b0100) 2021; 12 Dong (10.1016/j.ecolind.2022.109376_b0110) 2013; 34 Gómez-Gutiérrez (10.1016/j.ecolind.2022.109376_b0155) 2015; 79 Cohen (10.1016/j.ecolind.2022.109376_b0080) 1960; 20 Samani (10.1016/j.ecolind.2022.109376_b0310) 2009; 35 Poesen (10.1016/j.ecolind.2022.109376_b0275) 2003; 50 |
References_xml | – volume: 79 start-page: 1386 year: 2015 ident: b0130 article-title: Nitrogen mineralization and phosphorus release from composts and soil conditioners found in the Southeastern United States publication-title: Soil Sci. Soc. Am. J. – volume: 7 start-page: 3423 year: 2010 end-page: 3451 ident: b0225 article-title: Spatial pattern analysis of landslide using landscape metrics and logistic regression: a case study in Central Taiwan publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 375 start-page: 107559 year: 2021 ident: b9000 article-title: Effect of watershed geomorphological characteristics on sediment redistribution publication-title: Geomorphology – volume: 10 start-page: 20494 year: 2020 ident: b0145 article-title: Mapping wind erosion hazard with regression-based machine learning algorithms publication-title: Sci Rep – volume: 7 start-page: 1857 year: 2013 end-page: 1878 ident: b0290 article-title: GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran) publication-title: Arab. J. Geosci. – volume: 91 start-page: 117 year: 2007 end-page: 134 ident: b0270 article-title: Plan curvature and landslide probability in regions dominated by earth flows and earth slides publication-title: Eng. Geol. – volume: 30 start-page: 1968 year: 2016 end-page: 1977 ident: b0315 article-title: Physically based modelling of sheet erosion (detachment and deposition processes) in complex hillslopes publication-title: Hydrol. Process. – volume: 152 start-page: 88 year: 2017 end-page: 98 ident: b0390 article-title: Using check dam deposits to investigate recent changes in sediment yield in the Loess Plateau, China publication-title: Glob. Planet. Change – year: 2011 ident: b0200 article-title: Data mining: concepts, models, methods, and algorithms – volume: 1–18 year: 2022 ident: b0020 article-title: Exploring land use/land cover change by using density analysis method in yenice publication-title: Int. J. Environ. Sci. Technol. – volume: 80 start-page: 328 year: 2021 ident: b0150 article-title: Soil erosion susceptibility assessment using logistic regression, decision tree and random forest: study on the Mayurakshi river basin of Eastern India publication-title: Environ. Earth Sci. – volume: 34 start-page: 50 year: 2013 end-page: 59 ident: b0110 article-title: Critical topographic threshold of gully erosion in Yuanmou Dry-hot Valley in Southwestern China publication-title: Phys. Geogr. – volume: 77 start-page: 249 year: 2018 ident: b0025 article-title: Susceptibility mapping of gully erosion using GIS-based statistical bivariate models: a case study from Ali Al-Gharbi District, Maysan Governorate, southern Iraq publication-title: Environ. Earth Sci. – volume: 110 start-page: 188 year: 2009 end-page: 194 ident: b0195 article-title: Topographic thresholds in gully development on the hillslopes of communal areas in ngqushwa local municipality, eastern cape, south africa publication-title: Geomorphology – volume: 212 year: 2021 ident: b0230 article-title: Three decades of ephemeral gully erosion studies publication-title: Soil Tillage Res. – volume: 208 year: 2021 ident: b0340 article-title: Identification of geo-environmental factors on Benggang susceptibility and its spatial modelling using comparative data-driven methods publication-title: Soil Tillage Res. – volume: 47 start-page: 436 year: 2021 end-page: 458 ident: b0010 article-title: Modelling seasonal variation of gully erosion at the catchment scale publication-title: Earth Surf. Process. Landf. – volume: 77 start-page: 655 year: 2018 ident: b0240 article-title: A GIS-based approach for gully erosion susceptibility modelling using bivariate statistics methods in the Ourika watershed, Morocco publication-title: Environ. Earth Sci. – reference: Farias Amorim, F., Jacques Agra Bezerra da Silva, Y., Cabral Nascimento, R., Jacques Agra Bezerra da Silva, Y., Tiecher, T., Williams Araújo do Nascimento, C., Paolo Gomes Minella, J., Zhang, Y., Ram Upadhayay, H., Pulley, S., Collins, A.L., 2021. Sediment source apportionment using optical property composite signatures in a rural catchment, Brazil. Catena 202, 105208. 10.1016/j.catena.2021.105208. – volume: 343 start-page: 139 year: 2019 end-page: 154 ident: b0180 article-title: Using reservoir deposits to reconstruct the impact of recent changes in land management on sediment yield and sediment sources for a small catchment in the Black Soil region of Northeast China publication-title: Geoderma – volume: 65 year: 2021 ident: b0075 article-title: Evaluation of different DEMs for gully erosion susceptibility mapping using in-situ field measurement and validation publication-title: Ecol. Inform. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0055 article-title: Random forests publication-title: Mach. Learn. – volume: 207 year: 2021 ident: b0335 article-title: Can Benggang be regarded as gully erosion? publication-title: Catena – volume: 12 start-page: 2688 year: 2020 ident: b0260 article-title: A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping publication-title: Remote Sens. – volume: 34 start-page: 1878 year: 2009 end-page: 1893 ident: b0210 article-title: Effects of holocene climate and sea-level changes on coastal gully evolution: insights from numerical modelling publication-title: Earth Surf. Process. Landf. – volume: 162 start-page: 177 year: 2018 end-page: 192 ident: b0285 article-title: Prediction of the landslide susceptibility: Which algorithm, which precision? publication-title: Catena – reference: O’brien, R.M., 2007. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673-690. https://doi.org/10.1007/s11135-006-9018-6. – volume: 330 start-page: 65 year: 2018 end-page: 78 ident: b0135 article-title: Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping publication-title: Geoderma – volume: 28 start-page: 1579 year: 2017 end-page: 1588 ident: b0005 article-title: Gully head retreat in the subhumid Ethiopian highlands: the ene-chilala catchment publication-title: Land Degrad. Dev. – volume: 77 start-page: 628 year: 2018 ident: b0045 article-title: GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique publication-title: Environ. Earth Sci. – volume: 174 start-page: 469 year: 2019 end-page: 477 ident: b0360 article-title: Granite residual soil properties in collapsing gullies of south China: spatial variations and effects on collapsing gully erosion publication-title: Catena – volume: 664 start-page: 1117 year: 2019 end-page: 1132 ident: b0140 article-title: Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion publication-title: Sci. Total Environ. – volume: 8 start-page: 134 year: 2000 end-page: 142 ident: b0345 article-title: Gully, gully erosion and prediction publication-title: J. Basic Sci. Eng. – volume: 145–146 start-page: 81 year: 2012 end-page: 89 ident: b0115 article-title: Effects of biological soil crusts on surface roughness and implications for runoff and erosion publication-title: Geomorphology – volume: 783 year: 2021 ident: b0190 article-title: Spatial modeling of gully head erosion on the Loess Plateau using a certainty factor and random forest model publication-title: Sci. Total Environ. – volume: 204 start-page: 399 year: 2014 end-page: 411 ident: b0095 article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy) publication-title: Geomorphology – volume: 75 start-page: 185 year: 2016 ident: b0280 article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran publication-title: Environ. Earth Sci. – reference: Thaler, E.A., Larsen, I.J., Yu, Q., 2021. The extent of soil loss across the US Corn Belt. Proc. Natl. Acad. Sci. U. S. A. 118, e1922375118. 10.1073/pnas.1922375118. – volume: 20 start-page: 37 year: 1960 end-page: 46 ident: b0080 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. – volume: 129 year: 2021 ident: b0245 article-title: Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area publication-title: Ecol. Indic. – volume: 116 start-page: 105 year: 2014 end-page: 113 ident: b0170 article-title: Differences between the source contribution of bed material and suspended sediments in a mountainous agricultural catchment of western Iran publication-title: Catena – volume: 5 start-page: 3 year: 1991 end-page: 30 ident: b0255 article-title: Digital terrain modelling : a review of hydrological, geomorphological, and biological applications publication-title: Hydrol. Process. – volume: 79 start-page: 455 year: 2015 end-page: 478 ident: b0365 article-title: Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China publication-title: Nat. Hazards – volume: 398 year: 2021 ident: b0070 article-title: Quantifying sediment source contributions in an agricultural catchment with ephemeral and classic gullies using 137Cs technique publication-title: Geoderma – volume: 161 start-page: 1 year: 2018 end-page: 13 ident: b0385 article-title: Spatial modelling of gully erosion in Mazandaran Province, northern Iran publication-title: Catena – volume: 112 year: 2019 ident: b0105 article-title: Development of automated multicriteria GIS analysis of gully erosion susceptibility publication-title: Appl. Geogr. – volume: 13 start-page: 1103 year: 2020 end-page: 1117 ident: b0215 article-title: Spatial variation of gully development in the loess plateau of China based on the morphological perspective publication-title: Earth Sci. Inform. – volume: 50 start-page: 91 year: 2003 end-page: 133 ident: b0275 article-title: Gully erosion and environmental change: Importance and research needs publication-title: Catena – volume: 101 start-page: 683 year: 2008 end-page: 691 ident: b0355 article-title: Development of gullies and sediment production in the black soil region of northeastern China publication-title: Geomorphology – volume: 8 start-page: 317 year: 2016 ident: b0330 article-title: Integrated use of GCM, RS, and GIS for the assessment of hillslope and gully erosion in the Mushi River sub-catchment, Northeast China publication-title: Sustainability – volume: 119 start-page: 116 year: 2014 end-page: 124 ident: b0370 article-title: Soil properties in natural grassland, Caragana korshinskii planted shrubland, and Robinia pseudoacacia planted forest in gullies on the hilly Loess Plateau, China publication-title: Catena – reference: Yang, A.N., Wang, C.M., Pang, G.W., Long, Y., Q., Wang, L., Cruse, R.M., Yang, Q.K., 2021a. Gully erosion susceptibility mapping in highly complex terrain using machine learning models. ISPRS Int. J. Geo-Inf. 10, 680. doi:10.3390/ijgi10100680. – volume: 43 start-page: 1701 year: 2017 end-page: 1710 ident: b0350 article-title: Gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique publication-title: Earth Surf. Process. Landf. – volume: 609 start-page: 764 year: 2017 end-page: 775 ident: b0295 article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling publication-title: Sci. Total Environ. – volume: 46 start-page: 1713 year: 2021 end-page: 1724 ident: b0395 article-title: Estimation of initiation thresholds and soil loss from gully erosion on unpaved roads on China’s Loess Plateau publication-title: Earth Surf. Process. Landf. – volume: 25 start-page: 1521 year: 2019 end-page: 1530 ident: b0205 article-title: Spatial data analysis with R programming for environment publication-title: Hum. Ecol. Risk Assess. – volume: 13 start-page: 2166 year: 2021 ident: b0380 article-title: Incorporating landslide spatial information and correlated features among conditioning factors for landslide susceptibility mapping publication-title: Remote Sens. – volume: 205 year: 2021 ident: b0165 article-title: Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau publication-title: Soil Tillage Res. – volume: 339 start-page: 1 year: 2019 end-page: 18 ident: b0175 article-title: Using reservoir deposits to quantify the source contributions to the sediment yield in the Black Soil Region, Northeast China, based on the fingerprinting technique publication-title: Geomorphology – volume: 12 start-page: 1488 year: 2021 end-page: 1507 ident: b0100 article-title: Detection of areas prone to flood risk using state-of-the-art machine learning models publication-title: Geomat. Nat. Hazards Risk – volume: 20 start-page: 1313 year: 2020 ident: b0305 article-title: Machine learning-based gully erosion susceptibility mapping: a case study of Eastern India publication-title: Sensors – volume: 60 start-page: 5813 year: 2021 end-page: 5829 ident: b0325 article-title: Applying different resampling strategies in machine learning models to predict head-cut gully erosion susceptibility publication-title: Alex. Eng. J. – volume: 109 year: 2021 ident: b0060 article-title: Employing remote sensing technique to monitor the influence of newly established universities in creating an urban development process on the respective cities publication-title: Land Use Pol. – volume: 340 start-page: 55 year: 2019 end-page: 69 ident: b0030 article-title: Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms publication-title: Geoderma – volume: 29 start-page: 28995 year: 2022 end-page: 29015 ident: b0015 article-title: Evaluation of comparing urban area land use change with Urban Atlas and CORINE data publication-title: Environ. Sci. Pollut. Res. – year: 1999 ident: b0160 article-title: Chinese soil taxonomy – volume: 70 start-page: 1179 year: 2013 end-page: 1195 ident: b0090 article-title: A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily publication-title: Italy. Environ. Earth Sci. – volume: 35 start-page: 180 year: 2009 end-page: 189 ident: b0310 article-title: Geomorphic threshold conditions for gully erosion in southwestern iran (boushehr-samal watershed) publication-title: J. Asian Earth Sci. – volume: 21 start-page: 2699 year: 2021 end-page: 2708 ident: b0050 article-title: Relationship of sediment yield to connectivity index in small watersheds with similar erosion potentials publication-title: J. Soils Sediments – volume: 56 start-page: 881 year: 2010 end-page: 898 ident: b0085 article-title: Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy) publication-title: Nat. Hazards – volume: 2 start-page: 18 year: 2001 end-page: 22 ident: b0220 article-title: Classification and regression by randomforest publication-title: R News – volume: 10 start-page: 344 year: 2017 ident: b0300 article-title: Slope aspect effects of loess slides and its spatial differentiation in different geomorphologic types publication-title: Arab. J. Geosci. – volume: 206 start-page: 165 year: 2014 end-page: 177 ident: b0235 article-title: Assessing the regional and temporal variability of the topographic threshold for ephemeral gully initiation using quantile regression in Wallonia (Belgium) publication-title: Geomorphology – volume: 153 start-page: 59 year: 2015 end-page: 65 ident: b0120 article-title: Temporal variations of sediment source from a reservoir catchment in the black soil region, Northeast China publication-title: Soil Tillage Res. – volume: 50 start-page: 1294 year: 1986 end-page: 1298 ident: b0250 article-title: Physical basis of the length-slope factor in the universal soil loss equation publication-title: Soil Sci. Soc. Am. J. – volume: 173 start-page: 16 year: 2019 end-page: 27 ident: b0065 article-title: Performance simulation of a parallel dual-pressure once-through steam generator publication-title: Energy – volume: 348 start-page: 1261071 year: 2015 ident: b0035 article-title: Soil and human security in the 21st century publication-title: Science – volume: 79 start-page: 291 year: 2015 end-page: 314 ident: b0155 article-title: Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations publication-title: Nat. Hazards – volume: 402 year: 2021 ident: b0185 article-title: Responses of aggregates and associated soil available phosphorus, and soil organic matter in different slope aspects, to seasonal freeze–thaw cycles in Northeast China publication-title: Geoderma – volume: 206 year: 2021 ident: b0040 article-title: An interrogation of research on the influence of rainfall on gully erosion publication-title: Catena – volume: 13 start-page: 2166 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0380 article-title: Incorporating landslide spatial information and correlated features among conditioning factors for landslide susceptibility mapping publication-title: Remote Sens. doi: 10.3390/rs13112166 – volume: 46 start-page: 1713 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0395 article-title: Estimation of initiation thresholds and soil loss from gully erosion on unpaved roads on China’s Loess Plateau publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.5102 – volume: 205 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0165 article-title: Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau publication-title: Soil Tillage Res. doi: 10.1016/j.still.2020.104800 – volume: 77 start-page: 628 year: 2018 ident: 10.1016/j.ecolind.2022.109376_b0045 article-title: GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7808-5 – volume: 21 start-page: 2699 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0050 article-title: Relationship of sediment yield to connectivity index in small watersheds with similar erosion potentials publication-title: J. Soils Sediments doi: 10.1007/s11368-021-02978-z – volume: 173 start-page: 16 year: 2019 ident: 10.1016/j.ecolind.2022.109376_b0065 article-title: Performance simulation of a parallel dual-pressure once-through steam generator publication-title: Energy doi: 10.1016/j.energy.2019.02.022 – volume: 116 start-page: 105 year: 2014 ident: 10.1016/j.ecolind.2022.109376_b0170 article-title: Differences between the source contribution of bed material and suspended sediments in a mountainous agricultural catchment of western Iran publication-title: Catena doi: 10.1016/j.catena.2013.12.011 – volume: 12 start-page: 1488 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0100 article-title: Detection of areas prone to flood risk using state-of-the-art machine learning models publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2021.1920480 – volume: 208 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0340 article-title: Identification of geo-environmental factors on Benggang susceptibility and its spatial modelling using comparative data-driven methods publication-title: Soil Tillage Res. doi: 10.1016/j.still.2020.104857 – volume: 60 start-page: 5813 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0325 article-title: Applying different resampling strategies in machine learning models to predict head-cut gully erosion susceptibility publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.04.026 – volume: 783 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0190 article-title: Spatial modeling of gully head erosion on the Loess Plateau using a certainty factor and random forest model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147040 – volume: 112 year: 2019 ident: 10.1016/j.ecolind.2022.109376_b0105 article-title: Development of automated multicriteria GIS analysis of gully erosion susceptibility publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2019.102083 – volume: 91 start-page: 117 year: 2007 ident: 10.1016/j.ecolind.2022.109376_b0270 article-title: Plan curvature and landslide probability in regions dominated by earth flows and earth slides publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2007.01.005 – volume: 402 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0185 article-title: Responses of aggregates and associated soil available phosphorus, and soil organic matter in different slope aspects, to seasonal freeze–thaw cycles in Northeast China publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115184 – volume: 25 start-page: 1521 year: 2019 ident: 10.1016/j.ecolind.2022.109376_b0205 article-title: Spatial data analysis with R programming for environment publication-title: Hum. Ecol. Risk Assess. doi: 10.1080/10807039.2018.1470896 – volume: 162 start-page: 177 year: 2018 ident: 10.1016/j.ecolind.2022.109376_b0285 article-title: Prediction of the landslide susceptibility: Which algorithm, which precision? publication-title: Catena doi: 10.1016/j.catena.2017.11.022 – volume: 13 start-page: 1103 year: 2020 ident: 10.1016/j.ecolind.2022.109376_b0215 article-title: Spatial variation of gully development in the loess plateau of China based on the morphological perspective publication-title: Earth Sci. Inform. doi: 10.1007/s12145-020-00491-4 – year: 2011 ident: 10.1016/j.ecolind.2022.109376_b0200 – volume: 77 start-page: 655 year: 2018 ident: 10.1016/j.ecolind.2022.109376_b0240 article-title: A GIS-based approach for gully erosion susceptibility modelling using bivariate statistics methods in the Ourika watershed, Morocco publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7844-1 – volume: 28 start-page: 1579 year: 2017 ident: 10.1016/j.ecolind.2022.109376_b0005 article-title: Gully head retreat in the subhumid Ethiopian highlands: the ene-chilala catchment publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2688 – ident: 10.1016/j.ecolind.2022.109376_b0265 doi: 10.1007/s11135-006-9018-6 – volume: 664 start-page: 1117 year: 2019 ident: 10.1016/j.ecolind.2022.109376_b0140 article-title: Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.093 – volume: 8 start-page: 134 year: 2000 ident: 10.1016/j.ecolind.2022.109376_b0345 article-title: Gully, gully erosion and prediction publication-title: J. Basic Sci. Eng. – volume: 34 start-page: 50 year: 2013 ident: 10.1016/j.ecolind.2022.109376_b0110 article-title: Critical topographic threshold of gully erosion in Yuanmou Dry-hot Valley in Southwestern China publication-title: Phys. Geogr. doi: 10.1080/02723646.2013.778691 – volume: 1–18 year: 2022 ident: 10.1016/j.ecolind.2022.109376_b0020 article-title: Exploring land use/land cover change by using density analysis method in yenice publication-title: Int. J. Environ. Sci. Technol. – volume: 207 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0335 article-title: Can Benggang be regarded as gully erosion? publication-title: Catena doi: 10.1016/j.catena.2021.105648 – volume: 79 start-page: 455 year: 2015 ident: 10.1016/j.ecolind.2022.109376_b0365 article-title: Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China publication-title: Nat. Hazards doi: 10.1007/s11069-015-1852-1 – volume: 7 start-page: 1857 year: 2013 ident: 10.1016/j.ecolind.2022.109376_b0290 article-title: GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran) publication-title: Arab. J. Geosci. doi: 10.1007/s12517-012-0825-x – volume: 20 start-page: 37 year: 1960 ident: 10.1016/j.ecolind.2022.109376_b0080 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – volume: 5 start-page: 3 year: 1991 ident: 10.1016/j.ecolind.2022.109376_b0255 article-title: Digital terrain modelling : a review of hydrological, geomorphological, and biological applications publication-title: Hydrol. Process. doi: 10.1002/hyp.3360050103 – volume: 50 start-page: 91 year: 2003 ident: 10.1016/j.ecolind.2022.109376_b0275 article-title: Gully erosion and environmental change: Importance and research needs publication-title: Catena doi: 10.1016/S0341-8162(02)00143-1 – volume: 75 start-page: 185 year: 2016 ident: 10.1016/j.ecolind.2022.109376_b0280 article-title: Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4950-1 – volume: 339 start-page: 1 year: 2019 ident: 10.1016/j.ecolind.2022.109376_b0175 article-title: Using reservoir deposits to quantify the source contributions to the sediment yield in the Black Soil Region, Northeast China, based on the fingerprinting technique publication-title: Geomorphology doi: 10.1016/j.geomorph.2019.04.005 – volume: 609 start-page: 764 year: 2017 ident: 10.1016/j.ecolind.2022.109376_b0295 article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.07.198 – ident: 10.1016/j.ecolind.2022.109376_b0320 doi: 10.1073/pnas.1922375118 – volume: 152 start-page: 88 year: 2017 ident: 10.1016/j.ecolind.2022.109376_b0390 article-title: Using check dam deposits to investigate recent changes in sediment yield in the Loess Plateau, China publication-title: Glob. Planet. Change doi: 10.1016/j.gloplacha.2017.03.003 – volume: 77 start-page: 249 year: 2018 ident: 10.1016/j.ecolind.2022.109376_b0025 article-title: Susceptibility mapping of gully erosion using GIS-based statistical bivariate models: a case study from Ali Al-Gharbi District, Maysan Governorate, southern Iraq publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7434-2 – volume: 129 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0245 article-title: Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107869 – volume: 119 start-page: 116 year: 2014 ident: 10.1016/j.ecolind.2022.109376_b0370 article-title: Soil properties in natural grassland, Caragana korshinskii planted shrubland, and Robinia pseudoacacia planted forest in gullies on the hilly Loess Plateau, China publication-title: Catena doi: 10.1016/j.catena.2014.03.016 – volume: 212 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0230 article-title: Three decades of ephemeral gully erosion studies publication-title: Soil Tillage Res. doi: 10.1016/j.still.2021.105046 – volume: 70 start-page: 1179 year: 2013 ident: 10.1016/j.ecolind.2022.109376_b0090 article-title: A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily publication-title: Italy. Environ. Earth Sci. doi: 10.1007/s12665-012-2205-y – ident: 10.1016/j.ecolind.2022.109376_b0375 doi: 10.3390/ijgi10100680 – volume: 30 start-page: 1968 year: 2016 ident: 10.1016/j.ecolind.2022.109376_b0315 article-title: Physically based modelling of sheet erosion (detachment and deposition processes) in complex hillslopes publication-title: Hydrol. Process. doi: 10.1002/hyp.10770 – volume: 47 start-page: 436 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0010 article-title: Modelling seasonal variation of gully erosion at the catchment scale publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.5259 – volume: 101 start-page: 683 year: 2008 ident: 10.1016/j.ecolind.2022.109376_b0355 article-title: Development of gullies and sediment production in the black soil region of northeastern China publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.03.008 – volume: 12 start-page: 2688 year: 2020 ident: 10.1016/j.ecolind.2022.109376_b0260 article-title: A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping publication-title: Remote Sens. doi: 10.3390/rs12172688 – volume: 10 start-page: 344 year: 2017 ident: 10.1016/j.ecolind.2022.109376_b0300 article-title: Slope aspect effects of loess slides and its spatial differentiation in different geomorphologic types publication-title: Arab. J. Geosci. doi: 10.1007/s12517-017-3135-5 – volume: 340 start-page: 55 year: 2019 ident: 10.1016/j.ecolind.2022.109376_b0030 article-title: Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.042 – volume: 50 start-page: 1294 year: 1986 ident: 10.1016/j.ecolind.2022.109376_b0250 article-title: Physical basis of the length-slope factor in the universal soil loss equation publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1986.03615995005000050042x – volume: 80 start-page: 328 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0150 article-title: Soil erosion susceptibility assessment using logistic regression, decision tree and random forest: study on the Mayurakshi river basin of Eastern India publication-title: Environ. Earth Sci. doi: 10.1007/s12665-021-09631-5 – year: 1999 ident: 10.1016/j.ecolind.2022.109376_b0160 – volume: 348 start-page: 1261071 year: 2015 ident: 10.1016/j.ecolind.2022.109376_b0035 article-title: Soil and human security in the 21st century publication-title: Science doi: 10.1126/science.1261071 – volume: 206 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0040 article-title: An interrogation of research on the influence of rainfall on gully erosion publication-title: Catena doi: 10.1016/j.catena.2021.105482 – volume: 110 start-page: 188 year: 2009 ident: 10.1016/j.ecolind.2022.109376_b0195 article-title: Topographic thresholds in gully development on the hillslopes of communal areas in ngqushwa local municipality, eastern cape, south africa publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.04.006 – volume: 79 start-page: 1386 year: 2015 ident: 10.1016/j.ecolind.2022.109376_b0130 article-title: Nitrogen mineralization and phosphorus release from composts and soil conditioners found in the Southeastern United States publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.02.0077 – volume: 7 start-page: 3423 year: 2010 ident: 10.1016/j.ecolind.2022.109376_b0225 article-title: Spatial pattern analysis of landslide using landscape metrics and logistic regression: a case study in Central Taiwan publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 145–146 start-page: 81 year: 2012 ident: 10.1016/j.ecolind.2022.109376_b0115 article-title: Effects of biological soil crusts on surface roughness and implications for runoff and erosion publication-title: Geomorphology – volume: 153 start-page: 59 year: 2015 ident: 10.1016/j.ecolind.2022.109376_b0120 article-title: Temporal variations of sediment source from a reservoir catchment in the black soil region, Northeast China publication-title: Soil Tillage Res. doi: 10.1016/j.still.2015.04.009 – volume: 343 start-page: 139 year: 2019 ident: 10.1016/j.ecolind.2022.109376_b0180 article-title: Using reservoir deposits to reconstruct the impact of recent changes in land management on sediment yield and sediment sources for a small catchment in the Black Soil region of Northeast China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.014 – volume: 204 start-page: 399 year: 2014 ident: 10.1016/j.ecolind.2022.109376_b0095 article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.08.021 – volume: 35 start-page: 180 year: 2009 ident: 10.1016/j.ecolind.2022.109376_b0310 article-title: Geomorphic threshold conditions for gully erosion in southwestern iran (boushehr-samal watershed) publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2009.02.004 – volume: 34 start-page: 1878 year: 2009 ident: 10.1016/j.ecolind.2022.109376_b0210 article-title: Effects of holocene climate and sea-level changes on coastal gully evolution: insights from numerical modelling publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.1872 – volume: 375 start-page: 107559 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b9000 article-title: Effect of watershed geomorphological characteristics on sediment redistribution publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107559 – volume: 174 start-page: 469 year: 2019 ident: 10.1016/j.ecolind.2022.109376_b0360 article-title: Granite residual soil properties in collapsing gullies of south China: spatial variations and effects on collapsing gully erosion publication-title: Catena doi: 10.1016/j.catena.2018.11.015 – volume: 398 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0070 article-title: Quantifying sediment source contributions in an agricultural catchment with ephemeral and classic gullies using 137Cs technique publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115112 – ident: 10.1016/j.ecolind.2022.109376_b0125 doi: 10.1016/j.catena.2021.105208 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.ecolind.2022.109376_b0055 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 161 start-page: 1 year: 2018 ident: 10.1016/j.ecolind.2022.109376_b0385 article-title: Spatial modelling of gully erosion in Mazandaran Province, northern Iran publication-title: Catena doi: 10.1016/j.catena.2017.10.010 – volume: 29 start-page: 28995 year: 2022 ident: 10.1016/j.ecolind.2022.109376_b0015 article-title: Evaluation of comparing urban area land use change with Urban Atlas and CORINE data publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-17766-y – volume: 206 start-page: 165 year: 2014 ident: 10.1016/j.ecolind.2022.109376_b0235 article-title: Assessing the regional and temporal variability of the topographic threshold for ephemeral gully initiation using quantile regression in Wallonia (Belgium) publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.10.007 – volume: 65 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0075 article-title: Evaluation of different DEMs for gully erosion susceptibility mapping using in-situ field measurement and validation publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2021.101425 – volume: 56 start-page: 881 year: 2010 ident: 10.1016/j.ecolind.2022.109376_b0085 article-title: Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy) publication-title: Nat. Hazards doi: 10.1007/s11069-010-9598-2 – volume: 330 start-page: 65 year: 2018 ident: 10.1016/j.ecolind.2022.109376_b0135 article-title: Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.027 – volume: 8 start-page: 317 year: 2016 ident: 10.1016/j.ecolind.2022.109376_b0330 article-title: Integrated use of GCM, RS, and GIS for the assessment of hillslope and gully erosion in the Mushi River sub-catchment, Northeast China publication-title: Sustainability doi: 10.3390/su8040317 – volume: 10 start-page: 20494 year: 2020 ident: 10.1016/j.ecolind.2022.109376_b0145 article-title: Mapping wind erosion hazard with regression-based machine learning algorithms publication-title: Sci Rep doi: 10.1038/s41598-020-77567-0 – volume: 109 year: 2021 ident: 10.1016/j.ecolind.2022.109376_b0060 article-title: Employing remote sensing technique to monitor the influence of newly established universities in creating an urban development process on the respective cities publication-title: Land Use Pol. doi: 10.1016/j.landusepol.2021.105705 – volume: 2 start-page: 18 year: 2001 ident: 10.1016/j.ecolind.2022.109376_b0220 article-title: Classification and regression by randomforest publication-title: R News – volume: 20 start-page: 1313 year: 2020 ident: 10.1016/j.ecolind.2022.109376_b0305 article-title: Machine learning-based gully erosion susceptibility mapping: a case study of Eastern India publication-title: Sensors doi: 10.3390/s20051313 – volume: 79 start-page: 291 year: 2015 ident: 10.1016/j.ecolind.2022.109376_b0155 article-title: Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations publication-title: Nat. Hazards doi: 10.1007/s11069-015-1703-0 – volume: 43 start-page: 1701 year: 2017 ident: 10.1016/j.ecolind.2022.109376_b0350 article-title: Gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.4332 |
SSID | ssj0016996 |
Score | 2.4692745 |
Snippet | [Display omitted]
•Gully erosion susceptibility (GES) of black soil region in China was assessed.•Ten topographic factors were used to predict gully erosion... Gullies are primary sediment sources that restrict sustainable agricultural development by reducing the quality of soil and destroying farmlands. In the black... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109376 |
SubjectTerms | agricultural development algorithms Catchment areas China forestry equipment gully erosion Gully erosion susceptibility Northeast China Random forest Remote sensing risk sediments soil streams surface roughness Topographic attribute topography watersheds |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnrggXhULBQ0S1-zm4cTxEapWFRJcoNLerNjxrFKVZNXsHnrh3_A_mXGcLeVSiWMSv5QZj8f2N98I8REtZq1DBjFglcgmk0nNdHe0lNKXKi0aywHOX79Vl1fyy7pcH4mzORaGYZXR9k82PVjr-GYV_-Zq23Wr75lUTI-2zvkKX2rmBJVSsZYvfx1gHlml9RRhpNKES99H8ayul7TDI2eOCUPzPBArMfXIX-tToPF_sEz9Y7DDKnTxTDyN7iN8mkb4XBz5_oU4Ob-PVqOPcbqOL8XvKQwX47kcDAi7YTuRVHcOYq4dIL8VNrQVvQNPY-KC434McJeAnL2Dpm8h3CjAyABs6iMk0OFIdmDg_AZ-Bkymh5iEYgNdzzXA8vkgjEN3A5wCYhpDuCvinEEQsne_ElcX5z_OLpOYlyFxsix3CZN2teiZ41OV2qJrURbkueUFFhprn2eulXXprMta8h-9TFFp66xKUfL2qjgRx_3Q-9cCdJUjSmXTJmukRtIPbcu2Tkl9NGc8XAg5S8O4SFrOuTNuzIxOuzZRiIaFaCYhLsTyUG07sXY8VuEzi_pQmEm3w4vhdmOi1pmm8K5uyGJZVcg88xbJ-1EWUyzTyrXlQtSzopgHOkxNdY_1_2FWLEPzmy9tmt4P-9Hk5DwUiv5z8eb_m38rnvDTBEI8Fce7271_R87Uzr4Ps-UPW4YieQ priority: 102 providerName: Elsevier |
Title | Identification of topographic factors for gully erosion susceptibility and their spatial modelling using machine learning in the black soil region of Northeast China |
URI | https://dx.doi.org/10.1016/j.ecolind.2022.109376 https://www.proquest.com/docview/2718377593 https://doaj.org/article/a3ec8a963b73421ebf4157bf0f506cd5 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLig8qhYHqtB4pptHs7Dx4JaLSB6otLerNjxrLYqSUV2D73wb_o_mbGdtnDZC9ckjq3MOPPZnvk-IT6iwayzyEkMWCWyzWTSMN0dhVK6U6VFa7jA-ft5tbyQX1fl6oHUF-eEBXrg8OGO28LZpiU3MXUh88wZpJBTG0yxTCvbefZSinnTYiqeH1RKhbqiOk2ox9V97c7x5YLWdQThmCY0zz2dEhOOPIhKnrz_r-D0z2_ax56zQ_EsgkY4CYN9Lh65_oU4Or2vUaObcZKOL8VtKL7FuBsHA8J2uA7U1BsLUWEHCK3CmhagN-BoTPzguBt9kovPl72Btu_AnyPAyGnX1IeXzeH6deB0-TX89JmYDqL0xBo2PbcAw7uCMA6bK2DhhzAGf0LESkHgNbtfiYuz0x-fl0lUY0isLMttwlRdHTpm9qxLZdB2KAvCa3mBhcLG5ZntZFNaY7OOUKOTKdbKWFOnKHlRVRyJg37o3WsBqsoRZW3SNmulQvIKZcquSclpFOsczoScrKFtpCpnxYwrPeWkXepoRM1G1MGIM7G4a3YduDr2NfjEpr57mKm2_QVyQB0dUO9zwJloJkfREbUENEKv2uzr_8PkWJpmNR_VtL0bdqPOCTIUNX3n4s3_GONb8ZS7DUmI78TB9tfOvScwtTVz8XjxO5uLJydfvi3P534W_QFYpSPk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAF8apYnoMEx-wmjvM6cODRaksfF1ppbyZ27FWqNlk1u0J74d_wC_iDzDjOlnKphNRrHDuWxx6P42--j7F3Vtmo0pZADDYNRBmJICe6O9xKsSQN41JRgvPRcTo9FV9nyWyL_R5yYQhW6X1_79Odt_ZPJn40J4u6nnyLREb0aDNOV_iiEB5ZeWDWP_Dc1n3Y_4JGfs_53u7J52ngpQUCLZJkGRDvVGUN0VRmSaGsrqyIMfjgsY0Lmxse6UrkiVY6qjAEMiK0WaG0ykIr6IQQY7t32F2B7oJkE8Y_N7iSKC2KPqUpCwPq3lXa0ORsjEdKjB6JoZRzx-REXCd_bYhON-DavvjPDuG2vb2H7IGPV-FjPySP2JZpHrOd3av0OCz0_qF7wn71eb_W_wiE1sKyXfSs2LUGL-4DGCjDHM--azDYJ3qxW3UOX-OgumsomwrcFQZ0hPjGbzjFHkqdB0Lqz-HCgUANeNWLOdQN1QBFPySha-tzIM2Jvg_ucopEisDJhT9lp7dirR223bSNecagSLm1IlNhGZWisDghC5VUeYjztSCJxRETgzWk9izpJNZxLgc43Jn0RpRkRNkbccTGm2qLnibkpgqfyNSbl4nl2z1oL-fST3NZxkbnJbpIlcWCR0ZZDLcyZUObhKmukhHLh4kiry0abKq-6ftvh4kl0aHQLVHZmHbVSY7RSpzhOMfP_7_5N-ze9OToUB7uHx-8YPeppEdAvmTby8uVeYWR3FK9disH2PfbXqp_ANyxX0s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+topographic+factors+for+gully+erosion+susceptibility+and+their+spatial+modelling+using+machine+learning+in+the+black+soil+region+of+Northeast+China&rft.jtitle=Ecological+indicators&rft.au=Donghao+Huang&rft.au=Lin+Su&rft.au=Haoming+Fan&rft.au=Lili+Zhou&rft.date=2022-10-01&rft.pub=Elsevier&rft.issn=1470-160X&rft.volume=143&rft.spage=109376&rft_id=info:doi/10.1016%2Fj.ecolind.2022.109376&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a3ec8a963b73421ebf4157bf0f506cd5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |