Abemaciclib and Vacuolin-1 induce vacuole-like autolysosome formation – A new tool to study autophagosome-lysosome fusion

Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 614; pp. 191 - 197
Main Authors Tanaka, Yoshinori, Hino, Hirotsugu, Takeya, Kosuke, Eto, Masumi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 23.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes and autolysosomes. A detailed understanding of the formation of autophagosomes has been obtained in the past several decades. However, limited information is currently available on the formation of autolysosomes, which may partially be attributed to fewer methods to study the formation of autolysosomes than that of autophagosomes. Abemaciclib (Abe) and vacuolin-1 (Vac) are drugs that suppress the progression of breast cancer and induce characteristic vacuole formation in cells. Since Abe-induced vacuoles have the appearance of autolysosomes, they may be used to examine the formation of autolysosomes. However, it remains unknown whether Abe-/Vac-induced vacuoles are regulated by autophagosome-lysosome fusion. Markers for endosomes, lysosomes, and autophagosomes (Rab7, LAMP1, and mRFP-GFP-LC3, respectively) indicated that Abe-/Vac-induced vacuoles were autolysosomes. Abe and Vac failed to induce vacuolation in ATG16L1-deficient autophagy-null cells. Furthermore, Abe-/Vac-induced vacuolation was suppressed by bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, whereas it was facilitated by rapamycin and the overexpression of Beclin-1, inducers of autophagosome-lysosome fusion. Moreover, vacuole formation was inhibited by the knockdown of progranulin (PGRN), a regulator of autophagosome-lysosome fusion, and promoted by its overexpression. The present results suggest the potential of Abe-/Vac-induced vacuole-like autolysosomes as a tool for evaluating autophagosome-lysosome fusion and examining the effects of PGRN in autophagy. •Abe and Vac induce vacuole-like autolysosome formation.•Abe-/Vac-induced vacuole formation depends on autophagy.•Suppressor and inducer for autolysosome formation modulate the vacuole formation.•PGRN is required for Abe-/Vac-induced vacuole formation.
AbstractList Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes and autolysosomes. A detailed understanding of the formation of autophagosomes has been obtained in the past several decades. However, limited information is currently available on the formation of autolysosomes, which may partially be attributed to fewer methods to study the formation of autolysosomes than that of autophagosomes. Abemaciclib (Abe) and vacuolin-1 (Vac) are drugs that suppress the progression of breast cancer and induce characteristic vacuole formation in cells. Since Abe-induced vacuoles have the appearance of autolysosomes, they may be used to examine the formation of autolysosomes. However, it remains unknown whether Abe-/Vac-induced vacuoles are regulated by autophagosome-lysosome fusion. Markers for endosomes, lysosomes, and autophagosomes (Rab7, LAMP1, and mRFP-GFP-LC3, respectively) indicated that Abe-/Vac-induced vacuoles were autolysosomes. Abe and Vac failed to induce vacuolation in ATG16L1-deficient autophagy-null cells. Furthermore, Abe-/Vac-induced vacuolation was suppressed by bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, whereas it was facilitated by rapamycin and the overexpression of Beclin-1, inducers of autophagosome-lysosome fusion. Moreover, vacuole formation was inhibited by the knockdown of progranulin (PGRN), a regulator of autophagosome-lysosome fusion, and promoted by its overexpression. The present results suggest the potential of Abe-/Vac-induced vacuole-like autolysosomes as a tool for evaluating autophagosome-lysosome fusion and examining the effects of PGRN in autophagy.
Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes and autolysosomes. A detailed understanding of the formation of autophagosomes has been obtained in the past several decades. However, limited information is currently available on the formation of autolysosomes, which may partially be attributed to fewer methods to study the formation of autolysosomes than that of autophagosomes. Abemaciclib (Abe) and vacuolin-1 (Vac) are drugs that suppress the progression of breast cancer and induce characteristic vacuole formation in cells. Since Abe-induced vacuoles have the appearance of autolysosomes, they may be used to examine the formation of autolysosomes. However, it remains unknown whether Abe-/Vac-induced vacuoles are regulated by autophagosome-lysosome fusion. Markers for endosomes, lysosomes, and autophagosomes (Rab7, LAMP1, and mRFP-GFP-LC3, respectively) indicated that Abe-/Vac-induced vacuoles were autolysosomes. Abe and Vac failed to induce vacuolation in ATG16L1-deficient autophagy-null cells. Furthermore, Abe-/Vac-induced vacuolation was suppressed by bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, whereas it was facilitated by rapamycin and the overexpression of Beclin-1, inducers of autophagosome-lysosome fusion. Moreover, vacuole formation was inhibited by the knockdown of progranulin (PGRN), a regulator of autophagosome-lysosome fusion, and promoted by its overexpression. The present results suggest the potential of Abe-/Vac-induced vacuole-like autolysosomes as a tool for evaluating autophagosome-lysosome fusion and examining the effects of PGRN in autophagy.Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes and autolysosomes. A detailed understanding of the formation of autophagosomes has been obtained in the past several decades. However, limited information is currently available on the formation of autolysosomes, which may partially be attributed to fewer methods to study the formation of autolysosomes than that of autophagosomes. Abemaciclib (Abe) and vacuolin-1 (Vac) are drugs that suppress the progression of breast cancer and induce characteristic vacuole formation in cells. Since Abe-induced vacuoles have the appearance of autolysosomes, they may be used to examine the formation of autolysosomes. However, it remains unknown whether Abe-/Vac-induced vacuoles are regulated by autophagosome-lysosome fusion. Markers for endosomes, lysosomes, and autophagosomes (Rab7, LAMP1, and mRFP-GFP-LC3, respectively) indicated that Abe-/Vac-induced vacuoles were autolysosomes. Abe and Vac failed to induce vacuolation in ATG16L1-deficient autophagy-null cells. Furthermore, Abe-/Vac-induced vacuolation was suppressed by bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, whereas it was facilitated by rapamycin and the overexpression of Beclin-1, inducers of autophagosome-lysosome fusion. Moreover, vacuole formation was inhibited by the knockdown of progranulin (PGRN), a regulator of autophagosome-lysosome fusion, and promoted by its overexpression. The present results suggest the potential of Abe-/Vac-induced vacuole-like autolysosomes as a tool for evaluating autophagosome-lysosome fusion and examining the effects of PGRN in autophagy.
Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes and autolysosomes. A detailed understanding of the formation of autophagosomes has been obtained in the past several decades. However, limited information is currently available on the formation of autolysosomes, which may partially be attributed to fewer methods to study the formation of autolysosomes than that of autophagosomes. Abemaciclib (Abe) and vacuolin-1 (Vac) are drugs that suppress the progression of breast cancer and induce characteristic vacuole formation in cells. Since Abe-induced vacuoles have the appearance of autolysosomes, they may be used to examine the formation of autolysosomes. However, it remains unknown whether Abe-/Vac-induced vacuoles are regulated by autophagosome-lysosome fusion. Markers for endosomes, lysosomes, and autophagosomes (Rab7, LAMP1, and mRFP-GFP-LC3, respectively) indicated that Abe-/Vac-induced vacuoles were autolysosomes. Abe and Vac failed to induce vacuolation in ATG16L1-deficient autophagy-null cells. Furthermore, Abe-/Vac-induced vacuolation was suppressed by bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, whereas it was facilitated by rapamycin and the overexpression of Beclin-1, inducers of autophagosome-lysosome fusion. Moreover, vacuole formation was inhibited by the knockdown of progranulin (PGRN), a regulator of autophagosome-lysosome fusion, and promoted by its overexpression. The present results suggest the potential of Abe-/Vac-induced vacuole-like autolysosomes as a tool for evaluating autophagosome-lysosome fusion and examining the effects of PGRN in autophagy. •Abe and Vac induce vacuole-like autolysosome formation.•Abe-/Vac-induced vacuole formation depends on autophagy.•Suppressor and inducer for autolysosome formation modulate the vacuole formation.•PGRN is required for Abe-/Vac-induced vacuole formation.
Author Takeya, Kosuke
Hino, Hirotsugu
Eto, Masumi
Tanaka, Yoshinori
Author_xml – sequence: 1
  givenname: Yoshinori
  orcidid: 0000-0003-1428-0683
  surname: Tanaka
  fullname: Tanaka, Yoshinori
  email: y-tanaka@ous.ac.jp
  organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
– sequence: 2
  givenname: Hirotsugu
  surname: Hino
  fullname: Hino, Hirotsugu
  email: hino.hirotsugu@nihon-u.ac.jp
  organization: Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
– sequence: 3
  givenname: Kosuke
  orcidid: 0000-0003-4270-5829
  surname: Takeya
  fullname: Takeya, Kosuke
  email: ktakeya.ous.vet@gmail.com
  organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
– sequence: 4
  givenname: Masumi
  orcidid: 0000-0002-0651-5836
  surname: Eto
  fullname: Eto, Masumi
  email: eto.ousvet@gmail.com
  organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35598430$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1URLeFF-CAfOSSMHZiJ5G4rKoClSpxAcTNsp0xeEnixU6KVlx4B96QJ6l3txUSh4rLWBp930j-_zNyMoUJCXnOoGTA5KtNaUy0JQfOSxAl8OYRWTHooOAM6hOyAgBZ8I59PiVnKW0AGKtl94ScVkJ0bV3BivxcGxy19Xbwhuqpp5-0XcLgp4JRP_WLRXpz2GAx-G9I9TKHYZdCCiNSF-KoZx8m-ufXb7qmE_6gcwhDHjTNS7874Nuv-suBL_6KS8rWU_LY6SHhs7v3nHx8c_nh4l1x_f7t1cX6urC1EHMhpLG1bVrZGMclOAldL_qatxxFxRsD1lXGtRq1aDppwOjGNi5_XVQWKtdV5-Tl8e42hu8LplmNPlkcBj1hWJLissl5QCXq_0Bly1nbCJbRF3foYkbs1Tb6Ucedus82A-0RsDGkFNEp6-dDXHPUflAM1L5GtVH7GtW-RgVC5Rqzyv9R768_KL0-SpizvPEYVbIeJ4u9j2hn1Qf_kH4LN1e4OQ
CitedBy_id crossref_primary_10_1016_j_jbc_2023_105272
crossref_primary_10_1016_j_bbrep_2024_101705
crossref_primary_10_1016_j_cbi_2024_111243
Cites_doi 10.1080/19336950.2017.1354584
10.1242/jcs.215442
10.15252/embj.2021108863
10.4161/auto.20284
10.4161/auto.5.3.7664
10.1083/jcb.201911036
10.1111/cas.14419
10.4161/auto.32200
10.1074/jbc.274.31.21589
10.1038/ncomms11803
10.1016/j.ajhg.2008.12.010
10.1042/BJ20081950
10.1038/s41388-021-01662-3
10.1038/nature05876
10.1016/j.molcel.2014.12.007
10.1016/j.jmb.2019.10.028
10.1016/j.cell.2011.06.023
10.1242/jcs.213587
10.1038/sj.embor.7400495
10.1073/pnas.1203106109
10.1016/j.cellsig.2009.04.001
10.1007/s00109-019-01828-3
10.1016/j.bbrc.2022.04.064
10.1038/embor.2012.183
10.1002/1873-3468.12195
10.1016/j.cell.2021.08.002
10.1038/sj.embor.7400243
10.1128/JVI.01610-12
10.1126/science.1174447
10.1038/nature05017
10.1084/jem.20160999
10.1038/ncomms8007
10.4161/auto.4451
10.15252/embj.201593148
10.1038/nrd4504
10.1038/nature05016
10.1093/brain/awn114
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbrc.2022.05.027
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 197
ExternalDocumentID 35598430
10_1016_j_bbrc_2022_05_027
S0006291X22007252
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
DOVZS
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZA5
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
9M8
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
OHT
R2-
RIG
SBG
SEW
SSH
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c455t-56bc4c7867bf260f609d5d4282e5327b0cf3bf8aea5796b0ba7c7f00653c03f93
IEDL.DBID .~1
ISSN 0006-291X
1090-2104
IngestDate Tue Aug 05 11:12:48 EDT 2025
Thu Jul 10 19:24:55 EDT 2025
Thu Apr 03 07:09:41 EDT 2025
Tue Jul 01 01:44:27 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Fri Feb 23 02:39:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Autolysosome
Abemaciclib
Progranulin
Vacuolin-1
Vacuolation
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-56bc4c7867bf260f609d5d4282e5327b0cf3bf8aea5796b0ba7c7f00653c03f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1428-0683
0000-0002-0651-5836
0000-0003-4270-5829
PMID 35598430
PQID 2668218751
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2675590354
proquest_miscellaneous_2668218751
pubmed_primary_35598430
crossref_citationtrail_10_1016_j_bbrc_2022_05_027
crossref_primary_10_1016_j_bbrc_2022_05_027
elsevier_sciencedirect_doi_10_1016_j_bbrc_2022_05_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-23
PublicationDateYYYYMMDD 2022-07-23
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Asghar, Witkiewicz, Turner (bib3) 2015; 14
Zhou, Zhong, Zhou (bib21) 2012; 8
Logan, Simon, Rana (bib27) 2021; 184
Vicinanza, Korolchuk, Ashkenazi (bib29) 2015; 57
Moreau, Ravikumar, Renna (bib16) 2011; 146
Dove, Dong, Kobayashi (bib36) 2009; 419
Hasegawa, Iwamoto, Otomo (bib38) 2016; 35
Zhang, Chow, Sahenk (bib37) 2008; 131
Cruts, Gijselinck, van der Zee (bib12) 2006; 442
Chow, Landers, Bergren (bib35) 2009; 84
Lu, Dong, Hao (bib7) 2014; 10
Gladue, O'Donnell, Baker-Branstetter (bib22) 2012; 86
Yin, Jian, Xu (bib26) 2020; 219
Cerny, Feng, Yu (bib8) 2004; 5
Kuchitsu, Homma, Fujita M (bib19) 2018; 131
Sbrissa, Ikonomov, Shisheva (bib32) 1999; 274
Bento, Ashkenazi, Jimenez-Sanchez (bib15) 2016; 7
Hino, Iriyama, Kokuba (bib4) 2020; 111
Kimura, Noda, Yoshimori (bib13) 2007; 3
Shaik, Draberova, Heneberg (bib10) 2009; 21
Sarkar, Korolchuk, Renna (bib14) 2009; 5
Sardiello, Palmieri, di Ronza (bib25) 2009; 325
Chang, Srinivasan, Friedman (bib24) 2017; 214
Scholz-Starke (bib33) 2017; 11
Baker, Mackenzie, Pickering-Brown (bib11) 2006; 442
Klionsky, Petroni, Amaravadi (bib1) 2021; 40
Huynh, Andrews (bib9) 2005; 6
Tanaka, Suzuki, Matsuwaki (bib18) 2017; 26
Zhou, Zhou, Wang (bib39) 2019; 97
Ye, Wang, Lu (bib6) 2021; 40
Choy, Saffi, Gray (bib28) 2018; 131
Lorincz, Juhasz (bib2) 2020; 432
Chow, Zhang, Dowling (bib34) 2007; 448
Sano, Kazetani, Funata Y (bib5) 2016; 590
Tanaka, Kusumoto, Honma K (bib17) 2022
Zhu, Cai, Xu (bib23) 2018; 40
Oppelt, Lobert, Haglund (bib30) 2013; 14
Mauvezin, Nagy, Juhasz (bib20) 2015; 6
Zolov, Bridges, Zhang (bib31) 2012; 109
Lu (10.1016/j.bbrc.2022.05.027_bib7) 2014; 10
Tanaka (10.1016/j.bbrc.2022.05.027_bib17) 2022
Choy (10.1016/j.bbrc.2022.05.027_bib28) 2018; 131
Cruts (10.1016/j.bbrc.2022.05.027_bib12) 2006; 442
Mauvezin (10.1016/j.bbrc.2022.05.027_bib20) 2015; 6
Ye (10.1016/j.bbrc.2022.05.027_bib6) 2021; 40
Chang (10.1016/j.bbrc.2022.05.027_bib24) 2017; 214
Moreau (10.1016/j.bbrc.2022.05.027_bib16) 2011; 146
Zhou (10.1016/j.bbrc.2022.05.027_bib21) 2012; 8
Shaik (10.1016/j.bbrc.2022.05.027_bib10) 2009; 21
Sardiello (10.1016/j.bbrc.2022.05.027_bib25) 2009; 325
Klionsky (10.1016/j.bbrc.2022.05.027_bib1) 2021; 40
Cerny (10.1016/j.bbrc.2022.05.027_bib8) 2004; 5
Lorincz (10.1016/j.bbrc.2022.05.027_bib2) 2020; 432
Gladue (10.1016/j.bbrc.2022.05.027_bib22) 2012; 86
Zhu (10.1016/j.bbrc.2022.05.027_bib23) 2018; 40
Oppelt (10.1016/j.bbrc.2022.05.027_bib30) 2013; 14
Chow (10.1016/j.bbrc.2022.05.027_bib34) 2007; 448
Zhang (10.1016/j.bbrc.2022.05.027_bib37) 2008; 131
Sarkar (10.1016/j.bbrc.2022.05.027_bib14) 2009; 5
Kuchitsu (10.1016/j.bbrc.2022.05.027_bib19) 2018; 131
Logan (10.1016/j.bbrc.2022.05.027_bib27) 2021; 184
Kimura (10.1016/j.bbrc.2022.05.027_bib13) 2007; 3
Hasegawa (10.1016/j.bbrc.2022.05.027_bib38) 2016; 35
Hino (10.1016/j.bbrc.2022.05.027_bib4) 2020; 111
Zolov (10.1016/j.bbrc.2022.05.027_bib31) 2012; 109
Baker (10.1016/j.bbrc.2022.05.027_bib11) 2006; 442
Dove (10.1016/j.bbrc.2022.05.027_bib36) 2009; 419
Yin (10.1016/j.bbrc.2022.05.027_bib26) 2020; 219
Vicinanza (10.1016/j.bbrc.2022.05.027_bib29) 2015; 57
Asghar (10.1016/j.bbrc.2022.05.027_bib3) 2015; 14
Bento (10.1016/j.bbrc.2022.05.027_bib15) 2016; 7
Chow (10.1016/j.bbrc.2022.05.027_bib35) 2009; 84
Sano (10.1016/j.bbrc.2022.05.027_bib5) 2016; 590
Sbrissa (10.1016/j.bbrc.2022.05.027_bib32) 1999; 274
Zhou (10.1016/j.bbrc.2022.05.027_bib39) 2019; 97
Huynh (10.1016/j.bbrc.2022.05.027_bib9) 2005; 6
Tanaka (10.1016/j.bbrc.2022.05.027_bib18) 2017; 26
Scholz-Starke (10.1016/j.bbrc.2022.05.027_bib33) 2017; 11
References_xml – volume: 6
  start-page: 843
  year: 2005
  end-page: 847
  ident: bib9
  article-title: The small chemical vacuolin-1 alters the morphology of lysosomes without inhibiting Ca2+-regulated exocytosis
  publication-title: EMBO Rep.
– volume: 97
  start-page: 1507
  year: 2019
  end-page: 1520
  ident: bib39
  article-title: Progranulin alleviates podocyte injury via regulating CAMKK/AMPK-mediated autophagy under diabetic conditions
  publication-title: J. Mol. Med. (Berl.)
– year: 2022
  ident: bib17
  article-title: Overexpression of progranulin increases pathological protein accumulation by suppressing autophagic flux
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 274
  start-page: 21589
  year: 1999
  end-page: 21597
  ident: bib32
  article-title: PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin
  publication-title: J. Biol. Chem.
– volume: 442
  start-page: 920
  year: 2006
  end-page: 924
  ident: bib12
  article-title: Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21
  publication-title: Nature
– volume: 590
  start-page: 1576
  year: 2016
  end-page: 1585
  ident: bib5
  article-title: Vacuolin-1 inhibits autophagy by impairing lysosomal maturation via PIKfyve inhibition
  publication-title: FEBS Lett.
– volume: 6
  start-page: 7007
  year: 2015
  ident: bib20
  article-title: Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification
  publication-title: Nat. Commun.
– volume: 432
  start-page: 2462
  year: 2020
  end-page: 2482
  ident: bib2
  article-title: Autophagosome-lysosome fusion
  publication-title: J. Mol. Biol.
– volume: 5
  start-page: 883
  year: 2004
  end-page: 888
  ident: bib8
  article-title: The small chemical vacuolin-1 inhibits Ca(2+)-dependent lysosomal exocytosis but not cell resealing
  publication-title: EMBO Rep.
– volume: 10
  start-page: 1895
  year: 2014
  end-page: 1905
  ident: bib7
  article-title: Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A
  publication-title: Autophagy
– volume: 86
  start-page: 12080
  year: 2012
  end-page: 12090
  ident: bib22
  article-title: Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication
  publication-title: J. Virol.
– volume: 40
  year: 2021
  ident: bib1
  article-title: Autophagy in major human diseases
  publication-title: EMBO J.
– volume: 84
  start-page: 85
  year: 2009
  end-page: 88
  ident: bib35
  article-title: Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS
  publication-title: Am. J. Hum. Genet.
– volume: 5
  start-page: 307
  year: 2009
  end-page: 313
  ident: bib14
  article-title: Methodological considerations for assessing autophagy modulators: a study with calcium phosphate precipitates
  publication-title: Autophagy
– volume: 14
  start-page: 57
  year: 2013
  end-page: 64
  ident: bib30
  article-title: Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration
  publication-title: EMBO Rep.
– volume: 131
  start-page: 1990
  year: 2008
  end-page: 2001
  ident: bib37
  article-title: Mutation of FIG 4 causes a rapidly progressive, asymmetric neuronal degeneration
  publication-title: Brain
– volume: 26
  start-page: 969
  year: 2017
  end-page: 988
  ident: bib18
  article-title: Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes
  publication-title: Hum. Mol. Genet.
– volume: 214
  start-page: 2611
  year: 2017
  end-page: 2628
  ident: bib24
  article-title: Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation
  publication-title: J. Exp. Med.
– volume: 109
  start-page: 17472
  year: 2012
  end-page: 17477
  ident: bib31
  article-title: In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 219
  year: 2020
  ident: bib26
  article-title: CDK4/6 regulate lysosome biogenesis through TFEB/TFE3
  publication-title: J. Cell Biol.
– volume: 448
  start-page: 68
  year: 2007
  end-page: 72
  ident: bib34
  article-title: Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J
  publication-title: Nature
– volume: 21
  start-page: 1337
  year: 2009
  end-page: 1345
  ident: bib10
  article-title: Vacuolin-1-modulated exocytosis and cell resealing in mast cells
  publication-title: Cell. Signal.
– volume: 57
  start-page: 219
  year: 2015
  end-page: 234
  ident: bib29
  article-title: PI(5)P regulates autophagosome biogenesis
  publication-title: Mol. Cell
– volume: 184
  start-page: 4651
  year: 2021
  end-page: 4668
  ident: bib27
  article-title: Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic
  publication-title: Cell
– volume: 442
  start-page: 916
  year: 2006
  end-page: 919
  ident: bib11
  article-title: Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17
  publication-title: Nature
– volume: 3
  start-page: 452
  year: 2007
  end-page: 460
  ident: bib13
  article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
  publication-title: Autophagy
– volume: 131
  year: 2018
  ident: bib28
  article-title: Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence
  publication-title: J. Cell Sci.
– volume: 419
  start-page: 1
  year: 2009
  end-page: 13
  ident: bib36
  article-title: Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function
  publication-title: Biochem. J.
– volume: 8
  start-page: 1215
  year: 2012
  end-page: 1226
  ident: bib21
  article-title: Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells
  publication-title: Autophagy
– volume: 7
  start-page: 11803
  year: 2016
  ident: bib15
  article-title: The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway
  publication-title: Nat. Commun.
– volume: 325
  start-page: 473
  year: 2009
  end-page: 477
  ident: bib25
  article-title: A gene network regulating lysosomal biogenesis and function
  publication-title: Science
– volume: 111
  start-page: 2132
  year: 2020
  end-page: 2145
  ident: bib4
  article-title: Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes
  publication-title: Cancer Sci.
– volume: 146
  start-page: 303
  year: 2011
  end-page: 317
  ident: bib16
  article-title: Autophagosome precursor maturation requires homotypic fusion
  publication-title: Cell
– volume: 40
  start-page: 1927
  year: 2018
  end-page: 1936
  ident: bib23
  article-title: Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagy-dependent pathway in human synovial sarcoma cells
  publication-title: Oncol. Rep.
– volume: 131
  year: 2018
  ident: bib19
  article-title: Rab7 knockout unveils regulated autolysosome maturation induced by glutamine starvation
  publication-title: J. Cell Sci.
– volume: 11
  start-page: 497
  year: 2017
  end-page: 498
  ident: bib33
  article-title: How may PI(3,5)P2 impact on vacuolar acidification?
  publication-title: Channels
– volume: 40
  start-page: 1775
  year: 2021
  end-page: 1791
  ident: bib6
  article-title: Vacuolin-1 inhibits endosomal trafficking and metastasis via CapZbeta
  publication-title: Oncogene
– volume: 14
  start-page: 130
  year: 2015
  end-page: 146
  ident: bib3
  article-title: The history and future of targeting cyclin-dependent kinases in cancer therapy
  publication-title: Nat. Rev. Drug Discov.
– volume: 35
  start-page: 1853
  year: 2016
  end-page: 1867
  ident: bib38
  article-title: Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome
  publication-title: EMBO J.
– volume: 11
  start-page: 497
  year: 2017
  ident: 10.1016/j.bbrc.2022.05.027_bib33
  article-title: How may PI(3,5)P2 impact on vacuolar acidification?
  publication-title: Channels
  doi: 10.1080/19336950.2017.1354584
– volume: 131
  year: 2018
  ident: 10.1016/j.bbrc.2022.05.027_bib19
  article-title: Rab7 knockout unveils regulated autolysosome maturation induced by glutamine starvation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.215442
– volume: 40
  year: 2021
  ident: 10.1016/j.bbrc.2022.05.027_bib1
  article-title: Autophagy in major human diseases
  publication-title: EMBO J.
  doi: 10.15252/embj.2021108863
– volume: 8
  start-page: 1215
  year: 2012
  ident: 10.1016/j.bbrc.2022.05.027_bib21
  article-title: Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells
  publication-title: Autophagy
  doi: 10.4161/auto.20284
– volume: 5
  start-page: 307
  year: 2009
  ident: 10.1016/j.bbrc.2022.05.027_bib14
  article-title: Methodological considerations for assessing autophagy modulators: a study with calcium phosphate precipitates
  publication-title: Autophagy
  doi: 10.4161/auto.5.3.7664
– volume: 219
  year: 2020
  ident: 10.1016/j.bbrc.2022.05.027_bib26
  article-title: CDK4/6 regulate lysosome biogenesis through TFEB/TFE3
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201911036
– volume: 111
  start-page: 2132
  year: 2020
  ident: 10.1016/j.bbrc.2022.05.027_bib4
  article-title: Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes
  publication-title: Cancer Sci.
  doi: 10.1111/cas.14419
– volume: 10
  start-page: 1895
  year: 2014
  ident: 10.1016/j.bbrc.2022.05.027_bib7
  article-title: Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A
  publication-title: Autophagy
  doi: 10.4161/auto.32200
– volume: 274
  start-page: 21589
  year: 1999
  ident: 10.1016/j.bbrc.2022.05.027_bib32
  article-title: PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.31.21589
– volume: 7
  start-page: 11803
  year: 2016
  ident: 10.1016/j.bbrc.2022.05.027_bib15
  article-title: The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11803
– volume: 84
  start-page: 85
  year: 2009
  ident: 10.1016/j.bbrc.2022.05.027_bib35
  article-title: Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2008.12.010
– volume: 419
  start-page: 1
  year: 2009
  ident: 10.1016/j.bbrc.2022.05.027_bib36
  article-title: Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function
  publication-title: Biochem. J.
  doi: 10.1042/BJ20081950
– volume: 40
  start-page: 1775
  year: 2021
  ident: 10.1016/j.bbrc.2022.05.027_bib6
  article-title: Vacuolin-1 inhibits endosomal trafficking and metastasis via CapZbeta
  publication-title: Oncogene
  doi: 10.1038/s41388-021-01662-3
– volume: 448
  start-page: 68
  year: 2007
  ident: 10.1016/j.bbrc.2022.05.027_bib34
  article-title: Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J
  publication-title: Nature
  doi: 10.1038/nature05876
– volume: 57
  start-page: 219
  year: 2015
  ident: 10.1016/j.bbrc.2022.05.027_bib29
  article-title: PI(5)P regulates autophagosome biogenesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.12.007
– volume: 432
  start-page: 2462
  year: 2020
  ident: 10.1016/j.bbrc.2022.05.027_bib2
  article-title: Autophagosome-lysosome fusion
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2019.10.028
– volume: 146
  start-page: 303
  year: 2011
  ident: 10.1016/j.bbrc.2022.05.027_bib16
  article-title: Autophagosome precursor maturation requires homotypic fusion
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.023
– volume: 131
  year: 2018
  ident: 10.1016/j.bbrc.2022.05.027_bib28
  article-title: Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.213587
– volume: 6
  start-page: 843
  year: 2005
  ident: 10.1016/j.bbrc.2022.05.027_bib9
  article-title: The small chemical vacuolin-1 alters the morphology of lysosomes without inhibiting Ca2+-regulated exocytosis
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400495
– volume: 109
  start-page: 17472
  year: 2012
  ident: 10.1016/j.bbrc.2022.05.027_bib31
  article-title: In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1203106109
– volume: 21
  start-page: 1337
  year: 2009
  ident: 10.1016/j.bbrc.2022.05.027_bib10
  article-title: Vacuolin-1-modulated exocytosis and cell resealing in mast cells
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2009.04.001
– volume: 97
  start-page: 1507
  year: 2019
  ident: 10.1016/j.bbrc.2022.05.027_bib39
  article-title: Progranulin alleviates podocyte injury via regulating CAMKK/AMPK-mediated autophagy under diabetic conditions
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-019-01828-3
– volume: 26
  start-page: 969
  year: 2017
  ident: 10.1016/j.bbrc.2022.05.027_bib18
  article-title: Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes
  publication-title: Hum. Mol. Genet.
– year: 2022
  ident: 10.1016/j.bbrc.2022.05.027_bib17
  article-title: Overexpression of progranulin increases pathological protein accumulation by suppressing autophagic flux
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2022.04.064
– volume: 14
  start-page: 57
  year: 2013
  ident: 10.1016/j.bbrc.2022.05.027_bib30
  article-title: Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2012.183
– volume: 590
  start-page: 1576
  year: 2016
  ident: 10.1016/j.bbrc.2022.05.027_bib5
  article-title: Vacuolin-1 inhibits autophagy by impairing lysosomal maturation via PIKfyve inhibition
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12195
– volume: 184
  start-page: 4651
  year: 2021
  ident: 10.1016/j.bbrc.2022.05.027_bib27
  article-title: Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic
  publication-title: Cell
  doi: 10.1016/j.cell.2021.08.002
– volume: 5
  start-page: 883
  year: 2004
  ident: 10.1016/j.bbrc.2022.05.027_bib8
  article-title: The small chemical vacuolin-1 inhibits Ca(2+)-dependent lysosomal exocytosis but not cell resealing
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400243
– volume: 86
  start-page: 12080
  year: 2012
  ident: 10.1016/j.bbrc.2022.05.027_bib22
  article-title: Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication
  publication-title: J. Virol.
  doi: 10.1128/JVI.01610-12
– volume: 40
  start-page: 1927
  year: 2018
  ident: 10.1016/j.bbrc.2022.05.027_bib23
  article-title: Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagy-dependent pathway in human synovial sarcoma cells
  publication-title: Oncol. Rep.
– volume: 325
  start-page: 473
  year: 2009
  ident: 10.1016/j.bbrc.2022.05.027_bib25
  article-title: A gene network regulating lysosomal biogenesis and function
  publication-title: Science
  doi: 10.1126/science.1174447
– volume: 442
  start-page: 920
  year: 2006
  ident: 10.1016/j.bbrc.2022.05.027_bib12
  article-title: Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21
  publication-title: Nature
  doi: 10.1038/nature05017
– volume: 214
  start-page: 2611
  year: 2017
  ident: 10.1016/j.bbrc.2022.05.027_bib24
  article-title: Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160999
– volume: 6
  start-page: 7007
  year: 2015
  ident: 10.1016/j.bbrc.2022.05.027_bib20
  article-title: Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8007
– volume: 3
  start-page: 452
  year: 2007
  ident: 10.1016/j.bbrc.2022.05.027_bib13
  article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
  publication-title: Autophagy
  doi: 10.4161/auto.4451
– volume: 35
  start-page: 1853
  year: 2016
  ident: 10.1016/j.bbrc.2022.05.027_bib38
  article-title: Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome
  publication-title: EMBO J.
  doi: 10.15252/embj.201593148
– volume: 14
  start-page: 130
  year: 2015
  ident: 10.1016/j.bbrc.2022.05.027_bib3
  article-title: The history and future of targeting cyclin-dependent kinases in cancer therapy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4504
– volume: 442
  start-page: 916
  year: 2006
  ident: 10.1016/j.bbrc.2022.05.027_bib11
  article-title: Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17
  publication-title: Nature
  doi: 10.1038/nature05016
– volume: 131
  start-page: 1990
  year: 2008
  ident: 10.1016/j.bbrc.2022.05.027_bib37
  article-title: Mutation of FIG 4 causes a rapidly progressive, asymmetric neuronal degeneration
  publication-title: Brain
  doi: 10.1093/brain/awn114
SSID ssj0011469
Score 2.4123516
Snippet Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 191
SubjectTerms Abemaciclib
Aminopyridines
Autolysosome
autophagosomes
Autophagosomes - metabolism
Autophagy
Benzimidazoles
breast neoplasms
endosomes
Heterocyclic Compounds, 4 or More Rings
lysosomes
Lysosomes - metabolism
Macroautophagy
Progranulin
Progranulins - metabolism
rapamycin
Vacuolation
vacuoles
Vacuoles - metabolism
Vacuolin-1
Title Abemaciclib and Vacuolin-1 induce vacuole-like autolysosome formation – A new tool to study autophagosome-lysosome fusion
URI https://dx.doi.org/10.1016/j.bbrc.2022.05.027
https://www.ncbi.nlm.nih.gov/pubmed/35598430
https://www.proquest.com/docview/2668218751
https://www.proquest.com/docview/2675590354
Volume 614
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HieiL6J0f68cRQXyReG2TNO1jXTxWxXvyZN9Ckqa6utsut61wCHL_w_2H_iXOpO2KoPsghdKWCYRMOvObyXwQ8gxPcnIwflisfMaEEI4ZsBqYqLgBgAGIXGKC8_vTdHYm3s7lfI9Mx1wYDKscZH8v04O0Hr4cD6t5vF4sMMc3SpM8nifobkskymEhFO7ylz-2YR6YdDtA4JQh9ZA408d4WXuOZQyTJFTvxM4yf1dO_wKfQQmd3Ca3BvRIi36Cd8ierw_IYVGD5by6oM9piOcMjvIDcv3V-HRjOnZ1OyTfC-tXxsHwhaWmLulH4zps3MNiCuY5MJp-C188Wy6-emq6tllebJpNs_J0m-lIf15e0YICJKdt0yzhRkOd2kC-_mw-BXr2e2CHTrm75Ozk9YfpjA0NGJgTUrZMptYJp7JU2QrsniqN8lKWYLAkXvJE2chV3FaZ8QYzWm1kjXKqCuVuXcSrnN8j-3VT-weEApBxxthM2LIEvSnzMoILBG1V5sJzNSHxuPLaDdXJsUnGUo9haF80cksjt3QkNXBrQl5sx6z72hw7qeXIUP3HDtOgPHaOezpyXwOv8DzF1L7pNhqwTQYIScl4F40Cmy3iUkzI_X7rbOfKsTi-4NHD_5zZI3IT39DTnPDHZL897_wTgEitPQr_wBG5Vrx5Nzv9Bf7dEJg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlQuFbRAl6eRgAsyTRw7jwOHpVBt6ePUor0Z23EgZTdZdXdBKyTEf-Cn8I_4Jcw4ySIk2ANSFSmKHI9keeyZb-x5EPIYb3IyMH5YmLiUCSEs02A1MFFEGgAGIHKJAc7HJ_HgTLwZyuEa-dHFwqBbZSv7G5nupXXbstvO5u6kLDHGN4h5Fg45HrdxyVvPykO3-Ax22_TFwStg8hPO91-f7g1YW1qAWSHljMnYWGGTNE5MAYi-iIMslzlAce5kxBMT2CIyRaqdxlhNExid2KTwiVxtEBWYgQnk_hUB4gLLJjz_uvQrwSjfFnPHDIfXRuo0TmXGXGDeRM59ulAsZfN3bfgvtOu13v51stnCVdpvZuQGWXPVFtnuV2Cqjxf0KfUOpP5kfotcfdl9bex1ZeS2yZe-cWNtgbw0VFc5favtHCsFsZCWVQ4ri37yLY6Nyo-O6vmsHi2m9bQeO7oMraQ_v32nfQo2AJ3V9Qhe1CfG9d0nH_R735_9JpzjKeBNcnYpbLlF1qu6cjuEAnKyWptUmDwHRS2zPIAHJHuRZ8JFSY-E3cwr26ZDx6ocI9X5vZ0r5JZCbqlAKuBWjzxb0kyaZCAre8uOoeqPJa1AW62ke9RxXwGv8AJHV66eTxWAqRQgWSLDVX0SMBKDSIoeud0sneVYI8zGL6Lgzn-O7CHZGJweH6mjg5PDu-Qa_sFjbh7dI-uzi7m7D_hsZh74_UDJu8vegL8A_zJMDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abemaciclib+and+Vacuolin-1+induce+vacuole-like+autolysosome+formation+-+A+new+tool+to+study+autophagosome-lysosome+fusion&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Tanaka%2C+Yoshinori&rft.au=Hino%2C+Hirotsugu&rft.au=Takeya%2C+Kosuke&rft.au=Eto%2C+Masumi&rft.date=2022-07-23&rft.eissn=1090-2104&rft.volume=614&rft.spage=191&rft_id=info:doi/10.1016%2Fj.bbrc.2022.05.027&rft_id=info%3Apmid%2F35598430&rft.externalDocID=35598430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon