Abemaciclib and Vacuolin-1 induce vacuole-like autolysosome formation – A new tool to study autophagosome-lysosome fusion
Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 614; pp. 191 - 197 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
23.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes and autolysosomes. A detailed understanding of the formation of autophagosomes has been obtained in the past several decades. However, limited information is currently available on the formation of autolysosomes, which may partially be attributed to fewer methods to study the formation of autolysosomes than that of autophagosomes. Abemaciclib (Abe) and vacuolin-1 (Vac) are drugs that suppress the progression of breast cancer and induce characteristic vacuole formation in cells. Since Abe-induced vacuoles have the appearance of autolysosomes, they may be used to examine the formation of autolysosomes. However, it remains unknown whether Abe-/Vac-induced vacuoles are regulated by autophagosome-lysosome fusion. Markers for endosomes, lysosomes, and autophagosomes (Rab7, LAMP1, and mRFP-GFP-LC3, respectively) indicated that Abe-/Vac-induced vacuoles were autolysosomes. Abe and Vac failed to induce vacuolation in ATG16L1-deficient autophagy-null cells. Furthermore, Abe-/Vac-induced vacuolation was suppressed by bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, whereas it was facilitated by rapamycin and the overexpression of Beclin-1, inducers of autophagosome-lysosome fusion. Moreover, vacuole formation was inhibited by the knockdown of progranulin (PGRN), a regulator of autophagosome-lysosome fusion, and promoted by its overexpression. The present results suggest the potential of Abe-/Vac-induced vacuole-like autolysosomes as a tool for evaluating autophagosome-lysosome fusion and examining the effects of PGRN in autophagy.
•Abe and Vac induce vacuole-like autolysosome formation.•Abe-/Vac-induced vacuole formation depends on autophagy.•Suppressor and inducer for autolysosome formation modulate the vacuole formation.•PGRN is required for Abe-/Vac-induced vacuole formation. |
---|---|
AbstractList | Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes and autolysosomes. A detailed understanding of the formation of autophagosomes has been obtained in the past several decades. However, limited information is currently available on the formation of autolysosomes, which may partially be attributed to fewer methods to study the formation of autolysosomes than that of autophagosomes. Abemaciclib (Abe) and vacuolin-1 (Vac) are drugs that suppress the progression of breast cancer and induce characteristic vacuole formation in cells. Since Abe-induced vacuoles have the appearance of autolysosomes, they may be used to examine the formation of autolysosomes. However, it remains unknown whether Abe-/Vac-induced vacuoles are regulated by autophagosome-lysosome fusion. Markers for endosomes, lysosomes, and autophagosomes (Rab7, LAMP1, and mRFP-GFP-LC3, respectively) indicated that Abe-/Vac-induced vacuoles were autolysosomes. Abe and Vac failed to induce vacuolation in ATG16L1-deficient autophagy-null cells. Furthermore, Abe-/Vac-induced vacuolation was suppressed by bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, whereas it was facilitated by rapamycin and the overexpression of Beclin-1, inducers of autophagosome-lysosome fusion. Moreover, vacuole formation was inhibited by the knockdown of progranulin (PGRN), a regulator of autophagosome-lysosome fusion, and promoted by its overexpression. The present results suggest the potential of Abe-/Vac-induced vacuole-like autolysosomes as a tool for evaluating autophagosome-lysosome fusion and examining the effects of PGRN in autophagy. Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes and autolysosomes. A detailed understanding of the formation of autophagosomes has been obtained in the past several decades. However, limited information is currently available on the formation of autolysosomes, which may partially be attributed to fewer methods to study the formation of autolysosomes than that of autophagosomes. Abemaciclib (Abe) and vacuolin-1 (Vac) are drugs that suppress the progression of breast cancer and induce characteristic vacuole formation in cells. Since Abe-induced vacuoles have the appearance of autolysosomes, they may be used to examine the formation of autolysosomes. However, it remains unknown whether Abe-/Vac-induced vacuoles are regulated by autophagosome-lysosome fusion. Markers for endosomes, lysosomes, and autophagosomes (Rab7, LAMP1, and mRFP-GFP-LC3, respectively) indicated that Abe-/Vac-induced vacuoles were autolysosomes. Abe and Vac failed to induce vacuolation in ATG16L1-deficient autophagy-null cells. Furthermore, Abe-/Vac-induced vacuolation was suppressed by bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, whereas it was facilitated by rapamycin and the overexpression of Beclin-1, inducers of autophagosome-lysosome fusion. Moreover, vacuole formation was inhibited by the knockdown of progranulin (PGRN), a regulator of autophagosome-lysosome fusion, and promoted by its overexpression. The present results suggest the potential of Abe-/Vac-induced vacuole-like autolysosomes as a tool for evaluating autophagosome-lysosome fusion and examining the effects of PGRN in autophagy.Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes and autolysosomes. A detailed understanding of the formation of autophagosomes has been obtained in the past several decades. However, limited information is currently available on the formation of autolysosomes, which may partially be attributed to fewer methods to study the formation of autolysosomes than that of autophagosomes. Abemaciclib (Abe) and vacuolin-1 (Vac) are drugs that suppress the progression of breast cancer and induce characteristic vacuole formation in cells. Since Abe-induced vacuoles have the appearance of autolysosomes, they may be used to examine the formation of autolysosomes. However, it remains unknown whether Abe-/Vac-induced vacuoles are regulated by autophagosome-lysosome fusion. Markers for endosomes, lysosomes, and autophagosomes (Rab7, LAMP1, and mRFP-GFP-LC3, respectively) indicated that Abe-/Vac-induced vacuoles were autolysosomes. Abe and Vac failed to induce vacuolation in ATG16L1-deficient autophagy-null cells. Furthermore, Abe-/Vac-induced vacuolation was suppressed by bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, whereas it was facilitated by rapamycin and the overexpression of Beclin-1, inducers of autophagosome-lysosome fusion. Moreover, vacuole formation was inhibited by the knockdown of progranulin (PGRN), a regulator of autophagosome-lysosome fusion, and promoted by its overexpression. The present results suggest the potential of Abe-/Vac-induced vacuole-like autolysosomes as a tool for evaluating autophagosome-lysosome fusion and examining the effects of PGRN in autophagy. Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range of diseases, including cancer and neurodegenerative diseases. Autophagy is mainly comprised of two processes: the formation of autophagosomes and autolysosomes. A detailed understanding of the formation of autophagosomes has been obtained in the past several decades. However, limited information is currently available on the formation of autolysosomes, which may partially be attributed to fewer methods to study the formation of autolysosomes than that of autophagosomes. Abemaciclib (Abe) and vacuolin-1 (Vac) are drugs that suppress the progression of breast cancer and induce characteristic vacuole formation in cells. Since Abe-induced vacuoles have the appearance of autolysosomes, they may be used to examine the formation of autolysosomes. However, it remains unknown whether Abe-/Vac-induced vacuoles are regulated by autophagosome-lysosome fusion. Markers for endosomes, lysosomes, and autophagosomes (Rab7, LAMP1, and mRFP-GFP-LC3, respectively) indicated that Abe-/Vac-induced vacuoles were autolysosomes. Abe and Vac failed to induce vacuolation in ATG16L1-deficient autophagy-null cells. Furthermore, Abe-/Vac-induced vacuolation was suppressed by bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, whereas it was facilitated by rapamycin and the overexpression of Beclin-1, inducers of autophagosome-lysosome fusion. Moreover, vacuole formation was inhibited by the knockdown of progranulin (PGRN), a regulator of autophagosome-lysosome fusion, and promoted by its overexpression. The present results suggest the potential of Abe-/Vac-induced vacuole-like autolysosomes as a tool for evaluating autophagosome-lysosome fusion and examining the effects of PGRN in autophagy. •Abe and Vac induce vacuole-like autolysosome formation.•Abe-/Vac-induced vacuole formation depends on autophagy.•Suppressor and inducer for autolysosome formation modulate the vacuole formation.•PGRN is required for Abe-/Vac-induced vacuole formation. |
Author | Takeya, Kosuke Hino, Hirotsugu Eto, Masumi Tanaka, Yoshinori |
Author_xml | – sequence: 1 givenname: Yoshinori orcidid: 0000-0003-1428-0683 surname: Tanaka fullname: Tanaka, Yoshinori email: y-tanaka@ous.ac.jp organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan – sequence: 2 givenname: Hirotsugu surname: Hino fullname: Hino, Hirotsugu email: hino.hirotsugu@nihon-u.ac.jp organization: Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan – sequence: 3 givenname: Kosuke orcidid: 0000-0003-4270-5829 surname: Takeya fullname: Takeya, Kosuke email: ktakeya.ous.vet@gmail.com organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan – sequence: 4 givenname: Masumi orcidid: 0000-0002-0651-5836 surname: Eto fullname: Eto, Masumi email: eto.ousvet@gmail.com organization: Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35598430$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAQhi1URLeFF-CAfOSSMHZiJ5G4rKoClSpxAcTNsp0xeEnixU6KVlx4B96QJ6l3txUSh4rLWBp930j-_zNyMoUJCXnOoGTA5KtNaUy0JQfOSxAl8OYRWTHooOAM6hOyAgBZ8I59PiVnKW0AGKtl94ScVkJ0bV3BivxcGxy19Xbwhuqpp5-0XcLgp4JRP_WLRXpz2GAx-G9I9TKHYZdCCiNSF-KoZx8m-ufXb7qmE_6gcwhDHjTNS7874Nuv-suBL_6KS8rWU_LY6SHhs7v3nHx8c_nh4l1x_f7t1cX6urC1EHMhpLG1bVrZGMclOAldL_qatxxFxRsD1lXGtRq1aDppwOjGNi5_XVQWKtdV5-Tl8e42hu8LplmNPlkcBj1hWJLissl5QCXq_0Bly1nbCJbRF3foYkbs1Tb6Ucedus82A-0RsDGkFNEp6-dDXHPUflAM1L5GtVH7GtW-RgVC5Rqzyv9R768_KL0-SpizvPEYVbIeJ4u9j2hn1Qf_kH4LN1e4OQ |
CitedBy_id | crossref_primary_10_1016_j_jbc_2023_105272 crossref_primary_10_1016_j_bbrep_2024_101705 crossref_primary_10_1016_j_cbi_2024_111243 |
Cites_doi | 10.1080/19336950.2017.1354584 10.1242/jcs.215442 10.15252/embj.2021108863 10.4161/auto.20284 10.4161/auto.5.3.7664 10.1083/jcb.201911036 10.1111/cas.14419 10.4161/auto.32200 10.1074/jbc.274.31.21589 10.1038/ncomms11803 10.1016/j.ajhg.2008.12.010 10.1042/BJ20081950 10.1038/s41388-021-01662-3 10.1038/nature05876 10.1016/j.molcel.2014.12.007 10.1016/j.jmb.2019.10.028 10.1016/j.cell.2011.06.023 10.1242/jcs.213587 10.1038/sj.embor.7400495 10.1073/pnas.1203106109 10.1016/j.cellsig.2009.04.001 10.1007/s00109-019-01828-3 10.1016/j.bbrc.2022.04.064 10.1038/embor.2012.183 10.1002/1873-3468.12195 10.1016/j.cell.2021.08.002 10.1038/sj.embor.7400243 10.1128/JVI.01610-12 10.1126/science.1174447 10.1038/nature05017 10.1084/jem.20160999 10.1038/ncomms8007 10.4161/auto.4451 10.15252/embj.201593148 10.1038/nrd4504 10.1038/nature05016 10.1093/brain/awn114 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbrc.2022.05.027 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1090-2104 |
EndPage | 197 |
ExternalDocumentID | 35598430 10_1016_j_bbrc_2022_05_027 S0006291X22007252 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 D0L DM4 DOVZS EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 XPP XSW ZA5 ZMT ~02 ~G- .55 .GJ .HR 1CY 3O- 9M8 AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM OHT R2- RIG SBG SEW SSH UQL WUQ X7M Y6R ZGI ZKB ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c455t-56bc4c7867bf260f609d5d4282e5327b0cf3bf8aea5796b0ba7c7f00653c03f93 |
IEDL.DBID | .~1 |
ISSN | 0006-291X 1090-2104 |
IngestDate | Tue Aug 05 11:12:48 EDT 2025 Thu Jul 10 19:24:55 EDT 2025 Thu Apr 03 07:09:41 EDT 2025 Tue Jul 01 01:44:27 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Fri Feb 23 02:39:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Autolysosome Abemaciclib Progranulin Vacuolin-1 Vacuolation |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-56bc4c7867bf260f609d5d4282e5327b0cf3bf8aea5796b0ba7c7f00653c03f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1428-0683 0000-0002-0651-5836 0000-0003-4270-5829 |
PMID | 35598430 |
PQID | 2668218751 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2675590354 proquest_miscellaneous_2668218751 pubmed_primary_35598430 crossref_citationtrail_10_1016_j_bbrc_2022_05_027 crossref_primary_10_1016_j_bbrc_2022_05_027 elsevier_sciencedirect_doi_10_1016_j_bbrc_2022_05_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-23 |
PublicationDateYYYYMMDD | 2022-07-23 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemical and biophysical research communications |
PublicationTitleAlternate | Biochem Biophys Res Commun |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Asghar, Witkiewicz, Turner (bib3) 2015; 14 Zhou, Zhong, Zhou (bib21) 2012; 8 Logan, Simon, Rana (bib27) 2021; 184 Vicinanza, Korolchuk, Ashkenazi (bib29) 2015; 57 Moreau, Ravikumar, Renna (bib16) 2011; 146 Dove, Dong, Kobayashi (bib36) 2009; 419 Hasegawa, Iwamoto, Otomo (bib38) 2016; 35 Zhang, Chow, Sahenk (bib37) 2008; 131 Cruts, Gijselinck, van der Zee (bib12) 2006; 442 Chow, Landers, Bergren (bib35) 2009; 84 Lu, Dong, Hao (bib7) 2014; 10 Gladue, O'Donnell, Baker-Branstetter (bib22) 2012; 86 Yin, Jian, Xu (bib26) 2020; 219 Cerny, Feng, Yu (bib8) 2004; 5 Kuchitsu, Homma, Fujita M (bib19) 2018; 131 Sbrissa, Ikonomov, Shisheva (bib32) 1999; 274 Bento, Ashkenazi, Jimenez-Sanchez (bib15) 2016; 7 Hino, Iriyama, Kokuba (bib4) 2020; 111 Kimura, Noda, Yoshimori (bib13) 2007; 3 Shaik, Draberova, Heneberg (bib10) 2009; 21 Sarkar, Korolchuk, Renna (bib14) 2009; 5 Sardiello, Palmieri, di Ronza (bib25) 2009; 325 Chang, Srinivasan, Friedman (bib24) 2017; 214 Scholz-Starke (bib33) 2017; 11 Baker, Mackenzie, Pickering-Brown (bib11) 2006; 442 Klionsky, Petroni, Amaravadi (bib1) 2021; 40 Huynh, Andrews (bib9) 2005; 6 Tanaka, Suzuki, Matsuwaki (bib18) 2017; 26 Zhou, Zhou, Wang (bib39) 2019; 97 Ye, Wang, Lu (bib6) 2021; 40 Choy, Saffi, Gray (bib28) 2018; 131 Lorincz, Juhasz (bib2) 2020; 432 Chow, Zhang, Dowling (bib34) 2007; 448 Sano, Kazetani, Funata Y (bib5) 2016; 590 Tanaka, Kusumoto, Honma K (bib17) 2022 Zhu, Cai, Xu (bib23) 2018; 40 Oppelt, Lobert, Haglund (bib30) 2013; 14 Mauvezin, Nagy, Juhasz (bib20) 2015; 6 Zolov, Bridges, Zhang (bib31) 2012; 109 Lu (10.1016/j.bbrc.2022.05.027_bib7) 2014; 10 Tanaka (10.1016/j.bbrc.2022.05.027_bib17) 2022 Choy (10.1016/j.bbrc.2022.05.027_bib28) 2018; 131 Cruts (10.1016/j.bbrc.2022.05.027_bib12) 2006; 442 Mauvezin (10.1016/j.bbrc.2022.05.027_bib20) 2015; 6 Ye (10.1016/j.bbrc.2022.05.027_bib6) 2021; 40 Chang (10.1016/j.bbrc.2022.05.027_bib24) 2017; 214 Moreau (10.1016/j.bbrc.2022.05.027_bib16) 2011; 146 Zhou (10.1016/j.bbrc.2022.05.027_bib21) 2012; 8 Shaik (10.1016/j.bbrc.2022.05.027_bib10) 2009; 21 Sardiello (10.1016/j.bbrc.2022.05.027_bib25) 2009; 325 Klionsky (10.1016/j.bbrc.2022.05.027_bib1) 2021; 40 Cerny (10.1016/j.bbrc.2022.05.027_bib8) 2004; 5 Lorincz (10.1016/j.bbrc.2022.05.027_bib2) 2020; 432 Gladue (10.1016/j.bbrc.2022.05.027_bib22) 2012; 86 Zhu (10.1016/j.bbrc.2022.05.027_bib23) 2018; 40 Oppelt (10.1016/j.bbrc.2022.05.027_bib30) 2013; 14 Chow (10.1016/j.bbrc.2022.05.027_bib34) 2007; 448 Zhang (10.1016/j.bbrc.2022.05.027_bib37) 2008; 131 Sarkar (10.1016/j.bbrc.2022.05.027_bib14) 2009; 5 Kuchitsu (10.1016/j.bbrc.2022.05.027_bib19) 2018; 131 Logan (10.1016/j.bbrc.2022.05.027_bib27) 2021; 184 Kimura (10.1016/j.bbrc.2022.05.027_bib13) 2007; 3 Hasegawa (10.1016/j.bbrc.2022.05.027_bib38) 2016; 35 Hino (10.1016/j.bbrc.2022.05.027_bib4) 2020; 111 Zolov (10.1016/j.bbrc.2022.05.027_bib31) 2012; 109 Baker (10.1016/j.bbrc.2022.05.027_bib11) 2006; 442 Dove (10.1016/j.bbrc.2022.05.027_bib36) 2009; 419 Yin (10.1016/j.bbrc.2022.05.027_bib26) 2020; 219 Vicinanza (10.1016/j.bbrc.2022.05.027_bib29) 2015; 57 Asghar (10.1016/j.bbrc.2022.05.027_bib3) 2015; 14 Bento (10.1016/j.bbrc.2022.05.027_bib15) 2016; 7 Chow (10.1016/j.bbrc.2022.05.027_bib35) 2009; 84 Sano (10.1016/j.bbrc.2022.05.027_bib5) 2016; 590 Sbrissa (10.1016/j.bbrc.2022.05.027_bib32) 1999; 274 Zhou (10.1016/j.bbrc.2022.05.027_bib39) 2019; 97 Huynh (10.1016/j.bbrc.2022.05.027_bib9) 2005; 6 Tanaka (10.1016/j.bbrc.2022.05.027_bib18) 2017; 26 Scholz-Starke (10.1016/j.bbrc.2022.05.027_bib33) 2017; 11 |
References_xml | – volume: 6 start-page: 843 year: 2005 end-page: 847 ident: bib9 article-title: The small chemical vacuolin-1 alters the morphology of lysosomes without inhibiting Ca2+-regulated exocytosis publication-title: EMBO Rep. – volume: 97 start-page: 1507 year: 2019 end-page: 1520 ident: bib39 article-title: Progranulin alleviates podocyte injury via regulating CAMKK/AMPK-mediated autophagy under diabetic conditions publication-title: J. Mol. Med. (Berl.) – year: 2022 ident: bib17 article-title: Overexpression of progranulin increases pathological protein accumulation by suppressing autophagic flux publication-title: Biochem. Biophys. Res. Commun. – volume: 274 start-page: 21589 year: 1999 end-page: 21597 ident: bib32 article-title: PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin publication-title: J. Biol. Chem. – volume: 442 start-page: 920 year: 2006 end-page: 924 ident: bib12 article-title: Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 publication-title: Nature – volume: 590 start-page: 1576 year: 2016 end-page: 1585 ident: bib5 article-title: Vacuolin-1 inhibits autophagy by impairing lysosomal maturation via PIKfyve inhibition publication-title: FEBS Lett. – volume: 6 start-page: 7007 year: 2015 ident: bib20 article-title: Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification publication-title: Nat. Commun. – volume: 432 start-page: 2462 year: 2020 end-page: 2482 ident: bib2 article-title: Autophagosome-lysosome fusion publication-title: J. Mol. Biol. – volume: 5 start-page: 883 year: 2004 end-page: 888 ident: bib8 article-title: The small chemical vacuolin-1 inhibits Ca(2+)-dependent lysosomal exocytosis but not cell resealing publication-title: EMBO Rep. – volume: 10 start-page: 1895 year: 2014 end-page: 1905 ident: bib7 article-title: Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A publication-title: Autophagy – volume: 86 start-page: 12080 year: 2012 end-page: 12090 ident: bib22 article-title: Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication publication-title: J. Virol. – volume: 40 year: 2021 ident: bib1 article-title: Autophagy in major human diseases publication-title: EMBO J. – volume: 84 start-page: 85 year: 2009 end-page: 88 ident: bib35 article-title: Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS publication-title: Am. J. Hum. Genet. – volume: 5 start-page: 307 year: 2009 end-page: 313 ident: bib14 article-title: Methodological considerations for assessing autophagy modulators: a study with calcium phosphate precipitates publication-title: Autophagy – volume: 14 start-page: 57 year: 2013 end-page: 64 ident: bib30 article-title: Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration publication-title: EMBO Rep. – volume: 131 start-page: 1990 year: 2008 end-page: 2001 ident: bib37 article-title: Mutation of FIG 4 causes a rapidly progressive, asymmetric neuronal degeneration publication-title: Brain – volume: 26 start-page: 969 year: 2017 end-page: 988 ident: bib18 article-title: Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes publication-title: Hum. Mol. Genet. – volume: 214 start-page: 2611 year: 2017 end-page: 2628 ident: bib24 article-title: Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation publication-title: J. Exp. Med. – volume: 109 start-page: 17472 year: 2012 end-page: 17477 ident: bib31 article-title: In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 219 year: 2020 ident: bib26 article-title: CDK4/6 regulate lysosome biogenesis through TFEB/TFE3 publication-title: J. Cell Biol. – volume: 448 start-page: 68 year: 2007 end-page: 72 ident: bib34 article-title: Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J publication-title: Nature – volume: 21 start-page: 1337 year: 2009 end-page: 1345 ident: bib10 article-title: Vacuolin-1-modulated exocytosis and cell resealing in mast cells publication-title: Cell. Signal. – volume: 57 start-page: 219 year: 2015 end-page: 234 ident: bib29 article-title: PI(5)P regulates autophagosome biogenesis publication-title: Mol. Cell – volume: 184 start-page: 4651 year: 2021 end-page: 4668 ident: bib27 article-title: Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic publication-title: Cell – volume: 442 start-page: 916 year: 2006 end-page: 919 ident: bib11 article-title: Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 publication-title: Nature – volume: 3 start-page: 452 year: 2007 end-page: 460 ident: bib13 article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 publication-title: Autophagy – volume: 131 year: 2018 ident: bib28 article-title: Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence publication-title: J. Cell Sci. – volume: 419 start-page: 1 year: 2009 end-page: 13 ident: bib36 article-title: Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function publication-title: Biochem. J. – volume: 8 start-page: 1215 year: 2012 end-page: 1226 ident: bib21 article-title: Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells publication-title: Autophagy – volume: 7 start-page: 11803 year: 2016 ident: bib15 article-title: The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway publication-title: Nat. Commun. – volume: 325 start-page: 473 year: 2009 end-page: 477 ident: bib25 article-title: A gene network regulating lysosomal biogenesis and function publication-title: Science – volume: 111 start-page: 2132 year: 2020 end-page: 2145 ident: bib4 article-title: Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes publication-title: Cancer Sci. – volume: 146 start-page: 303 year: 2011 end-page: 317 ident: bib16 article-title: Autophagosome precursor maturation requires homotypic fusion publication-title: Cell – volume: 40 start-page: 1927 year: 2018 end-page: 1936 ident: bib23 article-title: Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagy-dependent pathway in human synovial sarcoma cells publication-title: Oncol. Rep. – volume: 131 year: 2018 ident: bib19 article-title: Rab7 knockout unveils regulated autolysosome maturation induced by glutamine starvation publication-title: J. Cell Sci. – volume: 11 start-page: 497 year: 2017 end-page: 498 ident: bib33 article-title: How may PI(3,5)P2 impact on vacuolar acidification? publication-title: Channels – volume: 40 start-page: 1775 year: 2021 end-page: 1791 ident: bib6 article-title: Vacuolin-1 inhibits endosomal trafficking and metastasis via CapZbeta publication-title: Oncogene – volume: 14 start-page: 130 year: 2015 end-page: 146 ident: bib3 article-title: The history and future of targeting cyclin-dependent kinases in cancer therapy publication-title: Nat. Rev. Drug Discov. – volume: 35 start-page: 1853 year: 2016 end-page: 1867 ident: bib38 article-title: Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome publication-title: EMBO J. – volume: 11 start-page: 497 year: 2017 ident: 10.1016/j.bbrc.2022.05.027_bib33 article-title: How may PI(3,5)P2 impact on vacuolar acidification? publication-title: Channels doi: 10.1080/19336950.2017.1354584 – volume: 131 year: 2018 ident: 10.1016/j.bbrc.2022.05.027_bib19 article-title: Rab7 knockout unveils regulated autolysosome maturation induced by glutamine starvation publication-title: J. Cell Sci. doi: 10.1242/jcs.215442 – volume: 40 year: 2021 ident: 10.1016/j.bbrc.2022.05.027_bib1 article-title: Autophagy in major human diseases publication-title: EMBO J. doi: 10.15252/embj.2021108863 – volume: 8 start-page: 1215 year: 2012 ident: 10.1016/j.bbrc.2022.05.027_bib21 article-title: Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells publication-title: Autophagy doi: 10.4161/auto.20284 – volume: 5 start-page: 307 year: 2009 ident: 10.1016/j.bbrc.2022.05.027_bib14 article-title: Methodological considerations for assessing autophagy modulators: a study with calcium phosphate precipitates publication-title: Autophagy doi: 10.4161/auto.5.3.7664 – volume: 219 year: 2020 ident: 10.1016/j.bbrc.2022.05.027_bib26 article-title: CDK4/6 regulate lysosome biogenesis through TFEB/TFE3 publication-title: J. Cell Biol. doi: 10.1083/jcb.201911036 – volume: 111 start-page: 2132 year: 2020 ident: 10.1016/j.bbrc.2022.05.027_bib4 article-title: Abemaciclib induces atypical cell death in cancer cells characterized by formation of cytoplasmic vacuoles derived from lysosomes publication-title: Cancer Sci. doi: 10.1111/cas.14419 – volume: 10 start-page: 1895 year: 2014 ident: 10.1016/j.bbrc.2022.05.027_bib7 article-title: Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A publication-title: Autophagy doi: 10.4161/auto.32200 – volume: 274 start-page: 21589 year: 1999 ident: 10.1016/j.bbrc.2022.05.027_bib32 article-title: PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.31.21589 – volume: 7 start-page: 11803 year: 2016 ident: 10.1016/j.bbrc.2022.05.027_bib15 article-title: The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway publication-title: Nat. Commun. doi: 10.1038/ncomms11803 – volume: 84 start-page: 85 year: 2009 ident: 10.1016/j.bbrc.2022.05.027_bib35 article-title: Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2008.12.010 – volume: 419 start-page: 1 year: 2009 ident: 10.1016/j.bbrc.2022.05.027_bib36 article-title: Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function publication-title: Biochem. J. doi: 10.1042/BJ20081950 – volume: 40 start-page: 1775 year: 2021 ident: 10.1016/j.bbrc.2022.05.027_bib6 article-title: Vacuolin-1 inhibits endosomal trafficking and metastasis via CapZbeta publication-title: Oncogene doi: 10.1038/s41388-021-01662-3 – volume: 448 start-page: 68 year: 2007 ident: 10.1016/j.bbrc.2022.05.027_bib34 article-title: Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J publication-title: Nature doi: 10.1038/nature05876 – volume: 57 start-page: 219 year: 2015 ident: 10.1016/j.bbrc.2022.05.027_bib29 article-title: PI(5)P regulates autophagosome biogenesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.12.007 – volume: 432 start-page: 2462 year: 2020 ident: 10.1016/j.bbrc.2022.05.027_bib2 article-title: Autophagosome-lysosome fusion publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.10.028 – volume: 146 start-page: 303 year: 2011 ident: 10.1016/j.bbrc.2022.05.027_bib16 article-title: Autophagosome precursor maturation requires homotypic fusion publication-title: Cell doi: 10.1016/j.cell.2011.06.023 – volume: 131 year: 2018 ident: 10.1016/j.bbrc.2022.05.027_bib28 article-title: Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence publication-title: J. Cell Sci. doi: 10.1242/jcs.213587 – volume: 6 start-page: 843 year: 2005 ident: 10.1016/j.bbrc.2022.05.027_bib9 article-title: The small chemical vacuolin-1 alters the morphology of lysosomes without inhibiting Ca2+-regulated exocytosis publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400495 – volume: 109 start-page: 17472 year: 2012 ident: 10.1016/j.bbrc.2022.05.027_bib31 article-title: In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1203106109 – volume: 21 start-page: 1337 year: 2009 ident: 10.1016/j.bbrc.2022.05.027_bib10 article-title: Vacuolin-1-modulated exocytosis and cell resealing in mast cells publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2009.04.001 – volume: 97 start-page: 1507 year: 2019 ident: 10.1016/j.bbrc.2022.05.027_bib39 article-title: Progranulin alleviates podocyte injury via regulating CAMKK/AMPK-mediated autophagy under diabetic conditions publication-title: J. Mol. Med. (Berl.) doi: 10.1007/s00109-019-01828-3 – volume: 26 start-page: 969 year: 2017 ident: 10.1016/j.bbrc.2022.05.027_bib18 article-title: Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes publication-title: Hum. Mol. Genet. – year: 2022 ident: 10.1016/j.bbrc.2022.05.027_bib17 article-title: Overexpression of progranulin increases pathological protein accumulation by suppressing autophagic flux publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2022.04.064 – volume: 14 start-page: 57 year: 2013 ident: 10.1016/j.bbrc.2022.05.027_bib30 article-title: Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration publication-title: EMBO Rep. doi: 10.1038/embor.2012.183 – volume: 590 start-page: 1576 year: 2016 ident: 10.1016/j.bbrc.2022.05.027_bib5 article-title: Vacuolin-1 inhibits autophagy by impairing lysosomal maturation via PIKfyve inhibition publication-title: FEBS Lett. doi: 10.1002/1873-3468.12195 – volume: 184 start-page: 4651 year: 2021 ident: 10.1016/j.bbrc.2022.05.027_bib27 article-title: Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic publication-title: Cell doi: 10.1016/j.cell.2021.08.002 – volume: 5 start-page: 883 year: 2004 ident: 10.1016/j.bbrc.2022.05.027_bib8 article-title: The small chemical vacuolin-1 inhibits Ca(2+)-dependent lysosomal exocytosis but not cell resealing publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400243 – volume: 86 start-page: 12080 year: 2012 ident: 10.1016/j.bbrc.2022.05.027_bib22 article-title: Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication publication-title: J. Virol. doi: 10.1128/JVI.01610-12 – volume: 40 start-page: 1927 year: 2018 ident: 10.1016/j.bbrc.2022.05.027_bib23 article-title: Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagy-dependent pathway in human synovial sarcoma cells publication-title: Oncol. Rep. – volume: 325 start-page: 473 year: 2009 ident: 10.1016/j.bbrc.2022.05.027_bib25 article-title: A gene network regulating lysosomal biogenesis and function publication-title: Science doi: 10.1126/science.1174447 – volume: 442 start-page: 920 year: 2006 ident: 10.1016/j.bbrc.2022.05.027_bib12 article-title: Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 publication-title: Nature doi: 10.1038/nature05017 – volume: 214 start-page: 2611 year: 2017 ident: 10.1016/j.bbrc.2022.05.027_bib24 article-title: Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation publication-title: J. Exp. Med. doi: 10.1084/jem.20160999 – volume: 6 start-page: 7007 year: 2015 ident: 10.1016/j.bbrc.2022.05.027_bib20 article-title: Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification publication-title: Nat. Commun. doi: 10.1038/ncomms8007 – volume: 3 start-page: 452 year: 2007 ident: 10.1016/j.bbrc.2022.05.027_bib13 article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 publication-title: Autophagy doi: 10.4161/auto.4451 – volume: 35 start-page: 1853 year: 2016 ident: 10.1016/j.bbrc.2022.05.027_bib38 article-title: Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome publication-title: EMBO J. doi: 10.15252/embj.201593148 – volume: 14 start-page: 130 year: 2015 ident: 10.1016/j.bbrc.2022.05.027_bib3 article-title: The history and future of targeting cyclin-dependent kinases in cancer therapy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4504 – volume: 442 start-page: 916 year: 2006 ident: 10.1016/j.bbrc.2022.05.027_bib11 article-title: Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 publication-title: Nature doi: 10.1038/nature05016 – volume: 131 start-page: 1990 year: 2008 ident: 10.1016/j.bbrc.2022.05.027_bib37 article-title: Mutation of FIG 4 causes a rapidly progressive, asymmetric neuronal degeneration publication-title: Brain doi: 10.1093/brain/awn114 |
SSID | ssj0011469 |
Score | 2.4123516 |
Snippet | Macroautophagy (hereafter autophagy) is a conserved cellular degradation system, impairments in which have been implicated in the development of a wide range... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 191 |
SubjectTerms | Abemaciclib Aminopyridines Autolysosome autophagosomes Autophagosomes - metabolism Autophagy Benzimidazoles breast neoplasms endosomes Heterocyclic Compounds, 4 or More Rings lysosomes Lysosomes - metabolism Macroautophagy Progranulin Progranulins - metabolism rapamycin Vacuolation vacuoles Vacuoles - metabolism Vacuolin-1 |
Title | Abemaciclib and Vacuolin-1 induce vacuole-like autolysosome formation – A new tool to study autophagosome-lysosome fusion |
URI | https://dx.doi.org/10.1016/j.bbrc.2022.05.027 https://www.ncbi.nlm.nih.gov/pubmed/35598430 https://www.proquest.com/docview/2668218751 https://www.proquest.com/docview/2675590354 |
Volume | 614 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HieiL6J0f68cRQXyReG2TNO1jXTxWxXvyZN9Ckqa6utsut61wCHL_w_2H_iXOpO2KoPsghdKWCYRMOvObyXwQ8gxPcnIwflisfMaEEI4ZsBqYqLgBgAGIXGKC8_vTdHYm3s7lfI9Mx1wYDKscZH8v04O0Hr4cD6t5vF4sMMc3SpM8nifobkskymEhFO7ylz-2YR6YdDtA4JQh9ZA408d4WXuOZQyTJFTvxM4yf1dO_wKfQQmd3Ca3BvRIi36Cd8ierw_IYVGD5by6oM9piOcMjvIDcv3V-HRjOnZ1OyTfC-tXxsHwhaWmLulH4zps3MNiCuY5MJp-C188Wy6-emq6tllebJpNs_J0m-lIf15e0YICJKdt0yzhRkOd2kC-_mw-BXr2e2CHTrm75Ozk9YfpjA0NGJgTUrZMptYJp7JU2QrsniqN8lKWYLAkXvJE2chV3FaZ8QYzWm1kjXKqCuVuXcSrnN8j-3VT-weEApBxxthM2LIEvSnzMoILBG1V5sJzNSHxuPLaDdXJsUnGUo9haF80cksjt3QkNXBrQl5sx6z72hw7qeXIUP3HDtOgPHaOezpyXwOv8DzF1L7pNhqwTQYIScl4F40Cmy3iUkzI_X7rbOfKsTi-4NHD_5zZI3IT39DTnPDHZL897_wTgEitPQr_wBG5Vrx5Nzv9Bf7dEJg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlQuFbRAl6eRgAsyTRw7jwOHpVBt6ePUor0Z23EgZTdZdXdBKyTEf-Cn8I_4Jcw4ySIk2ANSFSmKHI9keeyZb-x5EPIYb3IyMH5YmLiUCSEs02A1MFFEGgAGIHKJAc7HJ_HgTLwZyuEa-dHFwqBbZSv7G5nupXXbstvO5u6kLDHGN4h5Fg45HrdxyVvPykO3-Ax22_TFwStg8hPO91-f7g1YW1qAWSHljMnYWGGTNE5MAYi-iIMslzlAce5kxBMT2CIyRaqdxlhNExid2KTwiVxtEBWYgQnk_hUB4gLLJjz_uvQrwSjfFnPHDIfXRuo0TmXGXGDeRM59ulAsZfN3bfgvtOu13v51stnCVdpvZuQGWXPVFtnuV2Cqjxf0KfUOpP5kfotcfdl9bex1ZeS2yZe-cWNtgbw0VFc5favtHCsFsZCWVQ4ri37yLY6Nyo-O6vmsHi2m9bQeO7oMraQ_v32nfQo2AJ3V9Qhe1CfG9d0nH_R735_9JpzjKeBNcnYpbLlF1qu6cjuEAnKyWptUmDwHRS2zPIAHJHuRZ8JFSY-E3cwr26ZDx6ocI9X5vZ0r5JZCbqlAKuBWjzxb0kyaZCAre8uOoeqPJa1AW62ke9RxXwGv8AJHV66eTxWAqRQgWSLDVX0SMBKDSIoeud0sneVYI8zGL6Lgzn-O7CHZGJweH6mjg5PDu-Qa_sFjbh7dI-uzi7m7D_hsZh74_UDJu8vegL8A_zJMDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abemaciclib+and+Vacuolin-1+induce+vacuole-like+autolysosome+formation+-+A+new+tool+to+study+autophagosome-lysosome+fusion&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Tanaka%2C+Yoshinori&rft.au=Hino%2C+Hirotsugu&rft.au=Takeya%2C+Kosuke&rft.au=Eto%2C+Masumi&rft.date=2022-07-23&rft.eissn=1090-2104&rft.volume=614&rft.spage=191&rft_id=info:doi/10.1016%2Fj.bbrc.2022.05.027&rft_id=info%3Apmid%2F35598430&rft.externalDocID=35598430 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |