Mitochondrial Metabolism as a Target for Cancer Therapy
Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism supports tumor anabolism by providing key metabolites for macromolecule synthesis and generating oncometabolites to maintain the cancer phenotype. M...
Saved in:
Published in | Cell metabolism Vol. 32; no. 3; pp. 341 - 352 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism supports tumor anabolism by providing key metabolites for macromolecule synthesis and generating oncometabolites to maintain the cancer phenotype. Moreover, there are multiple clinical trials testing the efficacy of inhibiting mitochondrial metabolism as a new cancer therapeutic treatment. In this review, we discuss the rationale of using these anti-cancer agents in clinical trials and highlight how to effectively utilize them in different tumor contexts.
Recent evidence indicates that mitochondrial metabolism is essential for tumorigenesis. Vasan et al. review multiple mitochondrial drugs in clinical trials for various cancers, including metformin. Also, they report a genetic screen highlighting mechanisms of resistance to metformin. |
---|---|
AbstractList | Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism supports tumor anabolism by providing key metabolites for macromolecule synthesis and generating oncometabolites to maintain the cancer phenotype. Moreover, there are multiple clinical trials testing the efficacy of inhibiting mitochondrial metabolism as a new cancer therapeutic treatment. In this review, we discuss the rationale of using these anti-cancer agents in clinical trials and highlight how to effectively utilize them in different tumor contexts.Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism supports tumor anabolism by providing key metabolites for macromolecule synthesis and generating oncometabolites to maintain the cancer phenotype. Moreover, there are multiple clinical trials testing the efficacy of inhibiting mitochondrial metabolism as a new cancer therapeutic treatment. In this review, we discuss the rationale of using these anti-cancer agents in clinical trials and highlight how to effectively utilize them in different tumor contexts. Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism supports tumor anabolism by providing key metabolites for macromolecule synthesis and generating oncometabolites to maintain the cancer phenotype. Moreover, there are multiple clinical trials testing the efficacy of inhibiting mitochondrial metabolism as a new cancer therapeutic treatment. In this review, we discuss the rationale of using these anti-cancer agents in clinical trials and highlight how to effectively utilize them in different tumor contexts. Recent evidence indicates that mitochondrial metabolism is essential for tumorigenesis. Vasan et al. review multiple mitochondrial drugs in clinical trials for various cancers, including metformin. Also, they report a genetic screen highlighting mechanisms of resistance to metformin. Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism supports tumor anabolism by providing key metabolites for macromolecule synthesis and generating oncometabolites to maintain the cancer phenotype. Moreover, there are multiple clinical trials testing the efficacy of inhibiting mitochondrial metabolism as a new cancer therapeutic treatment. In this review, we discuss the rationale of using these anti-cancer agents in clinical trials and highlight how to effectively utilize them in different tumor contexts. |
Author | Vasan, Karthik Chandel, Navdeep S. Werner, Marie |
AuthorAffiliation | 1 Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA |
AuthorAffiliation_xml | – name: 1 Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA |
Author_xml | – sequence: 1 givenname: Karthik surname: Vasan fullname: Vasan, Karthik organization: Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA – sequence: 2 givenname: Marie surname: Werner fullname: Werner, Marie organization: Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA – sequence: 3 givenname: Navdeep S. surname: Chandel fullname: Chandel, Navdeep S. email: nav@northwestern.edu organization: Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32668195$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LJDEQhoMo68fuH_AgffTSvflON4ggw36B4mX2HNJJtZOhuzMmGcF_b4ZxRffgqQrqfd4q6j1Fh3OYAaFzghuCify-buwEuaGY4gbLBpPuAJ2QjtFacYoPSy8Erjlh5BidprTGmEnWsS_omFEpW9KJE6TufA52FWYXvRmrO8imD6NPU2VSZaqliQ-QqyHEamFmC7FariCazfNXdDSYMcG313qG_v78sVz8rm_vf_1Z3NzWlguRayF5uVQOPWAJUlqqOuEAd2Lo-6GVvWVGmraTSjkumOPt0LpeOeeEAEpEx87Q9d53s-0ncBbmHM2oN9FPJj7rYLz-OJn9Sj-EJ614y1RLisHlq0EMj1tIWU8-WRhHM0PYJk055ZxTJUWRXrzf9bbk37eKgO4FNoaUIgxvEoL1LhK91rtI9C4SjaUukRSo_Q-yPpvsw-5eP36OXu1RKB9-8hB1sh5KDM5HsFm74D_DXwBvTKb_ |
CitedBy_id | crossref_primary_10_1172_jci_insight_159600 crossref_primary_10_1038_s41598_022_22006_5 crossref_primary_10_3390_metabo13050618 crossref_primary_10_1002_advs_202401095 crossref_primary_10_3389_fbioe_2021_786621 crossref_primary_10_1007_s11010_021_04281_4 crossref_primary_10_1002_cam4_4169 crossref_primary_10_1021_acsami_3c01099 crossref_primary_10_3389_fonc_2022_888922 crossref_primary_10_3389_fimmu_2024_1346585 crossref_primary_10_3389_fonc_2025_1522910 crossref_primary_10_1016_j_cellsig_2024_111329 crossref_primary_10_1016_j_bbcan_2025_189263 crossref_primary_10_1038_s41568_021_00378_6 crossref_primary_10_1002_advs_202300286 crossref_primary_10_1038_s41418_022_01044_6 crossref_primary_10_1186_s12967_021_02889_0 crossref_primary_10_1158_0008_5472_CAN_24_1271 crossref_primary_10_1021_acsnano_4c04024 crossref_primary_10_3390_jcm12155028 crossref_primary_10_1016_j_bbadis_2023_166758 crossref_primary_10_14336_AD_2023_0717 crossref_primary_10_3390_molecules28237767 crossref_primary_10_1038_s41598_024_64228_9 crossref_primary_10_1016_j_celrep_2022_111105 crossref_primary_10_1089_ars_2023_0257 crossref_primary_10_1038_s41574_021_00487_0 crossref_primary_10_3389_fcvm_2022_905717 crossref_primary_10_2139_ssrn_4012909 crossref_primary_10_1016_j_bbadis_2023_166740 crossref_primary_10_1073_pnas_2219352120 crossref_primary_10_3389_bjbs_2024_13707 crossref_primary_10_1089_bioe_2020_0048 crossref_primary_10_1186_s12964_025_02109_y crossref_primary_10_1038_s41419_022_04823_8 crossref_primary_10_1186_s13098_023_01218_3 crossref_primary_10_5306_wjco_v16_i1_94813 crossref_primary_10_1016_j_neo_2023_100903 crossref_primary_10_1172_jci_insight_169868 crossref_primary_10_1021_acsnano_3c10133 crossref_primary_10_2147_JIR_S351799 crossref_primary_10_1097_COC_0000000000000989 crossref_primary_10_1016_j_semcdb_2023_07_003 crossref_primary_10_7717_peerj_14350 crossref_primary_10_1245_s10434_024_16533_w crossref_primary_10_3389_fcell_2021_765859 crossref_primary_10_3390_pharmaceutics15122687 crossref_primary_10_1038_s41598_022_17446_y crossref_primary_10_1016_j_ijbiomac_2024_129974 crossref_primary_10_1016_j_ijbiomac_2024_130705 crossref_primary_10_3390_biom10101395 crossref_primary_10_1016_j_intimp_2024_113412 crossref_primary_10_1038_s41420_021_00660_4 crossref_primary_10_1038_s42255_023_00838_3 crossref_primary_10_3389_fimmu_2024_1497461 crossref_primary_10_1186_s12967_023_04613_6 crossref_primary_10_3390_cancers13133311 crossref_primary_10_3389_fmolb_2023_1107651 crossref_primary_10_1021_acs_jmedchem_3c01950 crossref_primary_10_1038_s41389_022_00400_y crossref_primary_10_1038_s41575_021_00431_7 crossref_primary_10_3390_cancers14174113 crossref_primary_10_1016_j_isci_2024_109591 crossref_primary_10_1152_ajpendo_00074_2022 crossref_primary_10_12677_ACM_2024_141210 crossref_primary_10_1002_advs_202104134 crossref_primary_10_1186_s13046_024_03101_z crossref_primary_10_3390_antiox13030298 crossref_primary_10_15252_embr_202153054 crossref_primary_10_1186_s12967_023_04373_3 crossref_primary_10_1186_s12967_023_04188_2 crossref_primary_10_3390_antiox11112202 crossref_primary_10_1016_j_yexcr_2025_114438 crossref_primary_10_1002_adma_202413069 crossref_primary_10_1038_s41598_024_70550_z crossref_primary_10_3390_cells10030634 crossref_primary_10_1038_s41420_025_02304_3 crossref_primary_10_1111_cns_14865 crossref_primary_10_1016_j_stem_2025_01_013 crossref_primary_10_1016_j_bbcan_2024_189164 crossref_primary_10_1002_advs_202403093 crossref_primary_10_3390_ijms26031376 crossref_primary_10_3390_cancers14092155 crossref_primary_10_1016_j_molmet_2023_101674 crossref_primary_10_1158_2767_9764_CRC_23_0144 crossref_primary_10_1152_physrev_00011_2024 crossref_primary_10_1016_j_jbc_2024_107994 crossref_primary_10_1016_j_molmet_2024_101966 crossref_primary_10_1158_1078_0432_CCR_20_3913 crossref_primary_10_4132_jptm_2023_10_09 crossref_primary_10_1007_s13596_025_00818_w crossref_primary_10_3389_fonc_2022_816504 crossref_primary_10_1186_s12967_024_05234_3 crossref_primary_10_3390_antiox14010115 crossref_primary_10_1038_s41590_023_01675_y crossref_primary_10_1089_dna_2021_1072 crossref_primary_10_1038_s41420_024_01926_3 crossref_primary_10_1186_s40164_024_00482_x crossref_primary_10_1248_bpb_b21_00470 crossref_primary_10_1016_j_cmet_2021_06_013 crossref_primary_10_1016_j_ajps_2024_100989 crossref_primary_10_1016_j_stem_2024_07_009 crossref_primary_10_1016_j_ijpharm_2022_122201 crossref_primary_10_1021_acsabm_2c00641 crossref_primary_10_3390_cells13060495 crossref_primary_10_1016_j_trecan_2021_03_001 crossref_primary_10_1016_j_bbrep_2024_101909 crossref_primary_10_3390_ijms26010092 crossref_primary_10_3389_fcell_2023_1127618 crossref_primary_10_1158_2159_8290_CD_22_0096 crossref_primary_10_3390_biomedicines10081987 crossref_primary_10_1002_ctm2_1325 crossref_primary_10_1371_journal_pone_0255355 crossref_primary_10_1038_s41392_025_02141_x crossref_primary_10_1038_s41598_024_60068_9 crossref_primary_10_1007_s00204_023_03625_x crossref_primary_10_1016_j_pdpdt_2021_102446 crossref_primary_10_3390_antiox10101576 crossref_primary_10_1002_cam4_70567 crossref_primary_10_1042_BST20190232 crossref_primary_10_1016_j_ajps_2024_100971 crossref_primary_10_1021_acscentsci_4c01941 crossref_primary_10_3390_biom11111666 crossref_primary_10_1007_s13258_022_01359_1 crossref_primary_10_1016_j_isci_2024_110710 crossref_primary_10_3390_ijms241814365 crossref_primary_10_1371_journal_pone_0309700 crossref_primary_10_3389_fcell_2023_1252318 crossref_primary_10_1016_j_genrep_2024_102099 crossref_primary_10_3389_fimmu_2023_1106881 crossref_primary_10_3390_ijms21197346 crossref_primary_10_3390_cancers14081865 crossref_primary_10_1038_s41576_023_00645_2 crossref_primary_10_1016_j_jbc_2024_107793 crossref_primary_10_1038_s41467_023_42784_4 crossref_primary_10_1016_j_nantod_2023_101819 crossref_primary_10_1021_acsnano_4c08567 crossref_primary_10_1016_j_carbpol_2024_121889 crossref_primary_10_1038_s41591_022_02129_y crossref_primary_10_3390_ijms231911569 crossref_primary_10_1007_s12672_024_01690_x crossref_primary_10_31083_j_fbl2901045 crossref_primary_10_1039_D4SC01214C crossref_primary_10_3390_cancers15153775 crossref_primary_10_54457_DR_202302006 crossref_primary_10_1007_s12094_021_02734_2 crossref_primary_10_1021_acsnano_2c12319 crossref_primary_10_3389_fphar_2024_1430561 crossref_primary_10_1111_bph_16489 crossref_primary_10_3390_cells13181574 crossref_primary_10_1016_j_bbadis_2024_167497 crossref_primary_10_3390_cells10030497 crossref_primary_10_3390_metabo11030181 crossref_primary_10_3390_ijms23158813 crossref_primary_10_3390_ijms25189975 crossref_primary_10_1007_s12672_024_01041_w crossref_primary_10_3389_fchem_2021_775226 crossref_primary_10_3389_fcell_2022_948097 crossref_primary_10_1021_acs_jmedchem_2c01633 crossref_primary_10_31083_j_fbl2901026 crossref_primary_10_1016_j_jff_2023_105498 crossref_primary_10_1007_s13577_023_00961_z crossref_primary_10_3390_cancers16213606 crossref_primary_10_1016_j_taap_2024_117157 crossref_primary_10_1038_s41467_023_37924_9 crossref_primary_10_1016_j_cellsig_2024_111473 crossref_primary_10_1186_s12967_025_06287_8 crossref_primary_10_1016_j_ccr_2024_216140 crossref_primary_10_1016_j_nantod_2023_101993 crossref_primary_10_1016_j_jconrel_2022_07_020 crossref_primary_10_3390_cancers14235723 crossref_primary_10_1093_nsr_nwae039 crossref_primary_10_1186_s12967_025_06077_2 crossref_primary_10_1016_j_actbio_2022_08_071 crossref_primary_10_1186_s12967_024_05545_5 crossref_primary_10_1016_j_mocell_2025_100198 crossref_primary_10_1186_s12967_023_03985_z crossref_primary_10_1038_s41598_022_08984_6 crossref_primary_10_3389_fgene_2022_994741 crossref_primary_10_3389_fcell_2021_695351 crossref_primary_10_1186_s12885_023_11646_z crossref_primary_10_1016_j_bioorg_2022_106253 crossref_primary_10_1126_sciadv_ads8489 crossref_primary_10_1021_acsanm_3c00953 crossref_primary_10_1186_s12916_022_02643_3 crossref_primary_10_1038_s41416_023_02324_9 crossref_primary_10_3390_cells11172726 crossref_primary_10_1016_j_celrep_2023_112562 crossref_primary_10_1165_rcmb_2020_0550TR crossref_primary_10_3389_fphar_2024_1332042 crossref_primary_10_3390_ijms24010099 crossref_primary_10_1002_smll_202305923 crossref_primary_10_1002_tox_24209 crossref_primary_10_3389_fimmu_2023_1325360 crossref_primary_10_1016_j_molmet_2021_101222 crossref_primary_10_1080_14728222_2023_2261631 crossref_primary_10_3390_molecules27227807 crossref_primary_10_1038_s41598_023_28678_x crossref_primary_10_1002_anie_202410241 crossref_primary_10_2147_DMSO_S412747 crossref_primary_10_1038_s41420_022_01212_0 crossref_primary_10_1007_s00232_024_00308_1 crossref_primary_10_1016_j_tips_2023_09_008 crossref_primary_10_1016_j_bbcan_2021_188606 crossref_primary_10_3389_fimmu_2024_1512469 crossref_primary_10_3389_fonc_2022_870721 crossref_primary_10_1038_s41573_021_00339_6 crossref_primary_10_1111_acel_13954 crossref_primary_10_1016_j_bbcan_2023_189023 crossref_primary_10_1016_j_biopha_2024_116838 crossref_primary_10_1002_adma_202305095 crossref_primary_10_1039_D4SC06576J crossref_primary_10_3892_ol_2024_14437 crossref_primary_10_1186_s12967_024_05109_7 crossref_primary_10_1101_cshperspect_a041534 crossref_primary_10_1152_ajpcell_00189_2023 crossref_primary_10_3390_pharmaceutics14081712 crossref_primary_10_1016_j_freeradbiomed_2021_09_003 crossref_primary_10_1016_j_nantod_2024_102374 crossref_primary_10_1016_j_celrep_2021_109880 crossref_primary_10_1158_0008_5472_CAN_23_2194 crossref_primary_10_1101_cshperspect_a041530 crossref_primary_10_1186_s12951_025_03264_7 crossref_primary_10_1016_j_apsb_2023_11_032 crossref_primary_10_1002_adma_202413210 crossref_primary_10_1096_fj_202101194RRR crossref_primary_10_3389_fonc_2022_961637 crossref_primary_10_1111_cas_14938 crossref_primary_10_1002_adhm_202100978 crossref_primary_10_1016_j_molcel_2022_07_012 crossref_primary_10_3390_cancers15184476 crossref_primary_10_1016_j_biopha_2023_114241 crossref_primary_10_1186_s12935_022_02562_6 crossref_primary_10_1016_j_heliyon_2024_e29549 crossref_primary_10_1038_s41598_021_83708_w crossref_primary_10_1038_s43018_024_00874_2 crossref_primary_10_1186_s13578_021_00569_6 crossref_primary_10_18632_aging_205125 crossref_primary_10_1007_s11010_022_04558_2 crossref_primary_10_3390_v15051083 crossref_primary_10_1016_j_bcp_2023_115953 crossref_primary_10_1038_s41568_022_00543_5 crossref_primary_10_1016_j_molcel_2024_04_009 crossref_primary_10_1039_D3NJ05045A crossref_primary_10_1016_j_jconrel_2023_05_023 crossref_primary_10_1016_j_nantod_2023_102070 crossref_primary_10_1016_j_phrs_2024_107115 crossref_primary_10_1038_s41598_023_42850_3 crossref_primary_10_3389_fcell_2023_1168462 crossref_primary_10_1016_j_freeradbiomed_2021_09_024 crossref_primary_10_1088_1748_605X_ad2ecf crossref_primary_10_3390_ijms25042092 crossref_primary_10_3390_biom11020141 crossref_primary_10_1021_acs_jproteome_3c00476 crossref_primary_10_1007_s00277_023_05293_4 crossref_primary_10_1016_j_devcel_2024_12_035 crossref_primary_10_3389_fonc_2023_1059520 crossref_primary_10_3389_fphar_2022_905501 crossref_primary_10_1038_s41568_023_00628_9 crossref_primary_10_1002_2211_5463_13398 crossref_primary_10_3390_cells11192956 crossref_primary_10_1016_j_bbrep_2021_101141 crossref_primary_10_1186_s40824_022_00296_0 crossref_primary_10_1016_j_biomaterials_2022_121682 crossref_primary_10_1080_15384047_2022_2029132 crossref_primary_10_1126_sciadv_adp3481 crossref_primary_10_1038_s41598_024_76465_z crossref_primary_10_1021_acsnano_4c05938 crossref_primary_10_1155_2022_3594901 crossref_primary_10_1073_pnas_2401996121 crossref_primary_10_1016_j_cellsig_2023_110794 crossref_primary_10_3390_ijms241814108 crossref_primary_10_1039_D3CB00087G crossref_primary_10_1016_j_lfs_2024_122439 crossref_primary_10_1002_adma_202207343 crossref_primary_10_1038_s41419_022_05070_7 crossref_primary_10_1016_j_carbpol_2023_121207 crossref_primary_10_1021_acsmedchemlett_4c00094 crossref_primary_10_1021_acs_jmedchem_3c00058 crossref_primary_10_1186_s10020_023_00663_0 crossref_primary_10_1126_sciadv_abh2635 crossref_primary_10_26508_lsa_202302131 crossref_primary_10_3389_fonc_2021_786089 crossref_primary_10_3390_cells10102603 crossref_primary_10_1016_j_gendis_2023_04_022 crossref_primary_10_1002_pul2_70042 crossref_primary_10_1093_neuonc_noae175 crossref_primary_10_3390_biomedicines10040800 crossref_primary_10_1002_ijc_35202 crossref_primary_10_3390_cells13060471 crossref_primary_10_1002_prp2_993 crossref_primary_10_3390_ph16121697 crossref_primary_10_3389_fimmu_2024_1448764 crossref_primary_10_1016_j_bmcl_2023_129545 crossref_primary_10_3390_ijms24098181 crossref_primary_10_1038_s41568_022_00459_0 crossref_primary_10_1055_a_2330_3696 crossref_primary_10_3389_fcell_2023_1324158 crossref_primary_10_1016_j_bioorg_2021_105015 crossref_primary_10_1016_j_bbrc_2023_149382 crossref_primary_10_1039_D2TB00553K crossref_primary_10_1080_15548627_2022_2103961 crossref_primary_10_3390_cells9112439 crossref_primary_10_1016_j_tem_2023_08_018 crossref_primary_10_1083_jcb_202105043 crossref_primary_10_1038_s41429_021_00437_y crossref_primary_10_1186_s12935_023_02961_3 crossref_primary_10_1245_s10434_024_16573_2 crossref_primary_10_1016_j_bbabio_2022_148915 crossref_primary_10_1172_JCI176736 crossref_primary_10_1016_j_canlet_2025_217582 crossref_primary_10_1016_j_ecoenv_2022_114334 crossref_primary_10_3389_fimmu_2024_1393852 crossref_primary_10_1016_j_bcp_2021_114809 crossref_primary_10_1002_adma_202207384 crossref_primary_10_1186_s13045_022_01313_4 crossref_primary_10_1007_s12274_022_5340_0 crossref_primary_10_1021_acs_jproteome_2c00736 crossref_primary_10_1038_s41418_022_00974_5 crossref_primary_10_1371_journal_pbio_3001800 crossref_primary_10_1016_j_jconrel_2025_113594 crossref_primary_10_1038_s41392_023_01606_1 crossref_primary_10_1016_j_cmet_2023_06_003 crossref_primary_10_1007_s13273_024_00445_7 crossref_primary_10_1016_j_mito_2023_02_007 crossref_primary_10_1073_pnas_2115624119 crossref_primary_10_3390_cancers14215454 crossref_primary_10_1186_s12967_024_05483_2 crossref_primary_10_3390_cancers16203539 crossref_primary_10_3390_cells12060867 crossref_primary_10_1038_s43705_023_00338_1 crossref_primary_10_3390_ijms24032606 crossref_primary_10_3390_ijms222011250 crossref_primary_10_1186_s12967_024_05833_0 crossref_primary_10_1016_j_exger_2023_112158 crossref_primary_10_1002_ange_202410241 crossref_primary_10_1038_s41419_024_06956_4 crossref_primary_10_1038_s41586_021_03539_7 crossref_primary_10_1097_JP9_0000000000000146 crossref_primary_10_3390_ijms24087531 crossref_primary_10_3389_fimmu_2023_1203459 crossref_primary_10_1016_j_bbrc_2024_150501 crossref_primary_10_3389_fonc_2022_1005566 crossref_primary_10_1002_hep_32702 crossref_primary_10_1016_j_bcp_2024_116717 crossref_primary_10_1186_s12967_023_04105_7 crossref_primary_10_1038_s41417_023_00690_3 crossref_primary_10_1021_jacs_2c03215 crossref_primary_10_3390_cancers16234094 crossref_primary_10_1101_gad_348523_121 crossref_primary_10_1186_s40170_021_00274_5 crossref_primary_10_3390_cancers12123788 crossref_primary_10_3390_ijms221910420 crossref_primary_10_3389_fimmu_2023_1294317 crossref_primary_10_3390_antiox10111838 crossref_primary_10_1002_1878_0261_13582 crossref_primary_10_1016_j_heliyon_2023_e19893 crossref_primary_10_1016_j_redox_2025_103536 crossref_primary_10_3389_fchem_2022_946865 crossref_primary_10_7555_JBR_37_20230224 crossref_primary_10_1016_j_neo_2024_101076 crossref_primary_10_1155_2022_5295434 crossref_primary_10_1186_s12943_024_02172_y crossref_primary_10_1038_s42255_024_01038_3 crossref_primary_10_1186_s12964_024_01625_7 crossref_primary_10_1093_neuonc_noac071 crossref_primary_10_1007_s11064_024_04194_w crossref_primary_10_1158_1078_0432_CCR_21_2857 crossref_primary_10_1016_j_tips_2022_03_007 crossref_primary_10_3390_ijms221910790 crossref_primary_10_1002_1873_3468_14021 crossref_primary_10_1021_jacsau_4c00849 crossref_primary_10_1002_advs_202401738 crossref_primary_10_1038_s41392_025_02180_4 crossref_primary_10_3390_oxygen4020008 crossref_primary_10_1038_s41586_020_03048_z crossref_primary_10_1016_j_biomaterials_2022_121947 crossref_primary_10_1007_s12033_024_01151_4 crossref_primary_10_1007_s12035_023_03732_x crossref_primary_10_1111_exd_15114 crossref_primary_10_1002_wnan_1803 crossref_primary_10_3390_molecules27062011 crossref_primary_10_1186_s12935_024_03537_5 crossref_primary_10_3390_cancers13215484 crossref_primary_10_3389_fbioe_2021_782234 crossref_primary_10_1186_s13046_024_03239_w crossref_primary_10_3389_fphar_2022_870282 crossref_primary_10_1016_j_bcp_2025_116807 crossref_primary_10_1038_s41422_023_00788_1 crossref_primary_10_1038_s41568_021_00375_9 crossref_primary_10_31083_j_jin2306113 crossref_primary_10_1021_acsnano_4c15456 crossref_primary_10_1016_j_bios_2024_116211 crossref_primary_10_26599_FSHW_2022_9250140 crossref_primary_10_3390_ijms24065564 crossref_primary_10_3389_fsysb_2024_1346076 crossref_primary_10_1016_j_ctarc_2022_100600 crossref_primary_10_1038_s41418_024_01414_2 crossref_primary_10_1016_j_ebiom_2022_104080 crossref_primary_10_1038_s42003_024_07209_y crossref_primary_10_1007_s10238_023_01051_y crossref_primary_10_1038_s41598_025_88373_x crossref_primary_10_3389_fimmu_2022_1017400 |
Cites_doi | 10.1016/j.trecan.2017.01.005 10.1111/j.1349-7006.2008.00933.x 10.1038/nature13611 10.1126/scitranslmed.aau1167 10.1038/ncomms9784 10.1038/nature09882 10.1146/annurev-immunol-042617-053019 10.1038/s41375-019-0461-5 10.1158/2159-8290.CD-18-1489 10.1038/s41581-019-0210-z 10.1016/j.cell.2016.08.057 10.1146/annurev-pharmtox-010617-052713 10.1073/pnas.1808945115 10.1038/ncb3233 10.1073/pnas.1402012111 10.1038/nrc.2016.71 10.1016/j.cmet.2017.05.007 10.1038/nm.3596 10.7554/eLife.02242 10.1016/j.celrep.2018.01.040 10.1038/nature10642 10.1016/j.immuni.2011.09.021 10.1016/j.cell.2005.05.025 10.1038/nm.2870 10.1016/j.ccr.2012.12.008 10.1016/j.ccr.2012.08.014 10.1016/j.tips.2012.11.005 10.1016/S0021-9258(18)55409-0 10.1038/onc.2010.483 10.1016/j.molcel.2016.05.037 10.1073/pnas.1620433114 10.1016/j.celrep.2018.03.032 10.1038/s41422-018-0071-1 10.7554/eLife.02935 10.1126/science.aav2588 10.1073/pnas.1117773108 10.1158/1940-6207.CAPR-14-0348 10.1126/science.123.3191.309 10.1016/j.cmet.2018.10.014 10.1038/s42255-020-0172-2 10.1016/j.leukres.2017.09.021 10.1016/j.ccr.2011.10.015 10.1038/s41591-018-0052-4 10.1158/1078-0432.CCR-14-1019 10.1046/j.1432-1327.2000.01213.x 10.1038/s41586-018-0846-z 10.1172/JCI75836 10.1016/S1074-7613(02)00323-0 10.1038/nature19353 10.1016/j.molcel.2013.05.003 10.1101/gad.191056.112 10.1093/annonc/mdw371.67 10.1038/nature24057 10.1158/2159-8290.CD-18-1354 10.1038/s41586-020-2475-6 10.1016/j.immuni.2012.10.020 10.1158/2159-8290.CD-16-0441 10.1530/JME-12-0007 10.1016/j.ccr.2013.06.014 10.1016/j.molcel.2016.02.011 10.1038/nrc3038 10.1016/j.cell.2015.07.017 10.1038/nm.4399 10.1101/gad.2016311 10.1158/1940-6207.CAPR-10-0055 10.1042/bj3480607 10.1016/j.ccell.2019.08.005 10.1016/j.cmet.2013.02.002 10.1172/jci.insight.93411 10.1016/j.cell.2015.07.016 10.1038/nrc3215 10.1158/2159-8290.CD-13-0696 10.1016/j.cmet.2018.07.020 10.1158/0008-5472.CAN-13-0080 10.1074/jbc.RA118.004180 10.1016/j.celrep.2015.10.059 10.1038/s41467-018-04392-5 10.1172/JCI44855 10.1016/j.cmet.2011.12.009 10.1038/s41586-019-0993-x 10.1016/j.cmet.2017.09.009 10.1016/j.immuni.2016.07.009 10.1186/2049-3002-2-4 10.1042/BJ20140620 10.1158/2159-8290.CD-16-0611 10.1158/0008-5472.CAN-06-4447 10.1016/j.molcel.2019.07.022 10.1016/j.cmet.2018.08.021 10.1016/j.cmet.2016.09.005 10.1016/j.celrep.2019.11.007 10.1126/sciadv.1600200 10.1136/bmj.38415.708634.F7 10.1016/j.ccr.2006.04.023 10.1158/0008-5472.CAN-09-2994 10.1016/j.cell.2015.08.016 10.1111/febs.13295 10.1016/j.immuni.2019.09.003 10.1016/j.cmet.2016.03.006 10.1038/s41586-019-1311-3 10.1158/2159-8290.CD-16-0612 10.15252/emmm.201911217 10.1016/j.cell.2016.12.039 10.1016/j.cell.2018.10.001 10.1038/nrc778 10.1016/j.cell.2015.12.034 10.7554/eLife.10769 10.1126/sciadv.aax9484 10.1038/s41467-018-03441-3 10.1002/prot.21452 10.1126/scitranslmed.aaw7852 10.1126/scitranslmed.aat5933 10.1074/jbc.275.1.223 10.1016/j.celrep.2016.05.052 10.1371/journal.pbio.1002309 10.1172/JCI82661 10.1001/jamaoncol.2019.2553 10.1038/s41586-019-1005-x 10.1016/j.cmet.2016.03.010 10.1080/14728222.2018.1536748 10.1016/j.cmet.2017.06.004 10.1073/pnas.1507228112 10.1016/0003-9861(76)90143-0 10.1038/nature13110 10.1016/j.immuni.2014.04.007 10.1126/science.aaw5473 10.1038/s41467-019-08839-1 10.1016/j.celrep.2020.01.039 10.1038/nm.4407 10.1038/s41586-019-1715-0 10.1126/scitranslmed.aau4972 10.1073/pnas.1003428107 10.1186/s40170-018-0184-5 10.1002/nbm.2794 10.1016/j.celrep.2018.05.060 10.1016/j.cell.2011.02.013 10.1016/j.chembiol.2018.03.005 10.1038/nature10602 10.1111/bph.14694 10.1016/j.cmet.2020.02.017 10.1093/jnci/djv006 10.1073/pnas.1409844111 10.1016/j.celrep.2019.06.024 10.1038/s41467-018-06485-7 10.1038/ng.3984 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2020.06.019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 352 |
ExternalDocumentID | PMC7483781 32668195 10_1016_j_cmet_2020_06_019 S155041312030320X |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: F30 CA250236 – fundername: NIGMS NIH HHS grantid: T32 GM008152 – fundername: NIGMS NIH HHS grantid: T32 GM144295 – fundername: NCI NIH HHS grantid: R35 CA197532 – fundername: NCI NIH HHS grantid: T32 CA009560 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c455t-5640166fbe06e66c2795de095fbbf86bc3a6a89677d453d48f8db7ddd55e21593 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 18:14:26 EDT 2025 Mon Jul 21 09:32:45 EDT 2025 Thu Apr 03 07:01:39 EDT 2025 Tue Jul 01 03:58:19 EDT 2025 Thu Apr 24 23:00:17 EDT 2025 Fri Feb 23 02:49:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | metformin mitochondria |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-5640166fbe06e66c2795de095fbbf86bc3a6a89677d453d48f8db7ddd55e21593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S155041312030320X/pdf |
PMID | 32668195 |
PQID | 2424442765 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7483781 proquest_miscellaneous_2424442765 pubmed_primary_32668195 crossref_primary_10_1016_j_cmet_2020_06_019 crossref_citationtrail_10_1016_j_cmet_2020_06_019 elsevier_sciencedirect_doi_10_1016_j_cmet_2020_06_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | White, Cech, Ratanasirintrawoot, Lin, Rahl, Burke, Langdon, Tomlinson, Mosher, Kaufman (bib137) 2011; 471 Navarro, Bueno, Zagorac, Mondejar, Sanchez, Mourón, Muñoz, Gómez-López, Jimenez-Renard, Mulero (bib95) 2016; 15 Hanahan, Weinberg (bib50) 2011; 144 Siegelin, Dohi, Raskett, Orlowski, Powers, Gilbert, Ross, Plescia, Altieri (bib118) 2011; 121 Dempster, Rossen, Kazachkova, Pan, Kugener, Root, Tsherniak (bib30) 2019 Scharping, Menk, Moreci, Whetstone, Dadey, Watkins, Ferris, Delgoffe (bib111) 2016; 45 Guo, Chen, Mathew, Fan, Strohecker, Karsli-Uzunbas, Kamphorst, Chen, Lemons, Karantza (bib48) 2011; 25 Brown, Chan, Shank, Griffith, Fan, Szulawski, Yang, Reynolds, Johnston, McLean (bib14) 2020; 5 Pardee, Lee, Luddy, Maturo, Rodriguez, Isom, Miller, Stadelman, Levitan, Hurd (bib100) 2014; 20 Madera, Vitale-Cross, Martin, Schneider, Molinolo, Gangane, Carey, McHugh, Komarck, Walline (bib80) 2015; 8 Henkenius, Greene, Barckhausen, Hartmann, Märken, Kaiser, Rehberger, Metzelder, Parak, Neubauer (bib51) 2017; 62 Menk, Scharping, Moreci, Zeng, Guy, Salvatore, Bae, Xie, Young, Wendell, Delgoffe (bib86) 2018; 22 Bailis, Shyer, Zhao, Canaveras, Al Khazal, Qu, Steach, Bielecki, Khan, Jackson (bib6) 2019; 571 Dowling, Lam, Bassi, Mouaaz, Aman, Kiyota, Al-Awar, Goodwin, Stambolic (bib32) 2016; 23 Faubert, Solmonson, DeBerardinis (bib38) 2020; 368 Wang, Yang, Wu, Kim, Morton, Gimple, Prager, Shi, Zhou, Bhargava (bib132) 2019; 11 Nowicki, Gottlieb (bib97) 2015; 282 El-Mir, Nogueira, Fontaine, Avéret, Rigoulet, Leverve (bib33) 2000; 275 Maher, Marin-Valencia, Bachoo, Mashimo, Raisanen, Hatanpaa, Jindal, Jeffrey, Choi, Madden (bib81) 2012; 25 Nakaya, Xiao, Zhou, Chang, Chang, Cheng, Blonska, Lin, Sun (bib94) 2014; 40 DeBerardinis, Chandel (bib29) 2020; 2 Buzzai, Jones, Amaravadi, Lum, DeBerardinis, Zhao, Viollet, Thompson (bib15) 2007; 67 Zhang, Yao, Zhang, Liu, Guo, Ahmed, Bell, Zhang, Han, Lorence (bib145) 2019; 11 Jain, Munn, Fukumura (bib56) 2002; 2 Nigam (bib96) 2018; 58 Meyers, Bryan, McFarland, Weir, Sizemore, Xu, Dharia, Montgomery, Cowley, Pantel (bib88) 2017; 49 Kurelac, Iommarini, Vatrinet, Amato, De Luise, Leone, Girolimetti, Umesh Ganesh, Bridgeman, Ombrato (bib65) 2019; 10 Hui, Ghergurovich, Morscher, Jang, Teng, Lu, Esparza, Reya, Le Zhan, Yanxiang Guo (bib55) 2017; 551 Shim, Livi, Rakheja, Tan, Benson, Parekh, Kho, Ghosh, Kirkman, Velu (bib116) 2014; 4 Chapman, Zeng, Nguyen, Wang, Vogel, Dhungana, Liu, Neale, Locasale, Chi (bib23) 2018; 9 Rumsey, Schlosser, Nuutinen, Robiolio, Wilson (bib108) 1990; 265 Lussey-Lepoutre, Hollinshead, Ludwig, Menara, Morin, Castro-Vega, Parker, Janin, Martinelli, Ottolenghi (bib78) 2015; 6 Weinberg, Singer, Steinert, Martinez, Mehta, Martínez-Reyes, Gao, Helmin, Abdala-Valencia, Sena (bib135) 2019; 565 Dowling, Niraula, Stambolic, Goodwin (bib31) 2012; 48 Molina, Sun, Protopopova, Gera, Bandi, Bristow, McAfoos, Morlacchi, Ackroyd, Agip (bib90) 2018; 24 Sciacovelli, Gonçalves, Johnson, Zecchini, da Costa, Gaude, Drubbel, Theobald, Abbo, Tran (bib112) 2016; 537 Lee, Giltnane, Balko, Schwarz, Guerrero-Zotano, Hutchinson, Nixon, Estrada, Sánchez, Sanders (bib70) 2017; 26 Romero, Sayin, Davidson, Bauer, Singh, LeBoeuf, Karakousi, Ellis, Bhutkar, Sánchez-Rivera (bib107) 2017; 23 Bridges, Jones, Pollak, Hirst (bib12) 2014; 462 Ladds, van Leeuwen, Drummond, Chu, Healy, Popova, Pastor Fernández, Mollick, Darekar, Sedimbi (bib66) 2018; 9 Owen, Doran, Halestrap (bib99) 2000; 348 Yang, Garcia Canaveras, Chen, Wang, Liang, Jang, Mayr, Zhang, Ghergurovich, Zhan (bib141) 2020; 31 Sullivan, Gui, Hosios, Bush, Freinkman, Vander Heiden (bib123) 2015; 162 Liu, Romero, Litchfield, Lengyel, Locasale (bib76) 2016; 24 Koundinya, Sudhalter, Courjaud, Lionne, Touyer, Bonnet, Menguy, Schreiber, Perrault, Vougier (bib63) 2018; 25 Mehta, Weinberg, Steinert, Chhiba, Martinez, Gao, Perlman, Bryce, Hay, Chandel (bib84) 2018; 6 Arrieta, Barrón, Padilla, Avilés-Salas, Ramírez-Tirado, Arguelles Jiménez, Vergara, Zatarain-Barrón, Hernández-Pedro, Cardona (bib5) 2019; 5 Naguib, Mathew, Reczek, Watrud, Ambrico, Herzka, Salas, Lee, El-Amine, Zheng (bib93) 2018; 23 Oshima, Ishida, Kishimoto, Beebe, Brender, Yamamoto, Urban, Rai, Johnson, Benavides (bib98) 2020; 30 Leone, Zhao, Englert, Sun, Oh, Sun, Arwood, Bettencourt, Patel, Wen (bib72) 2019; 366 Le, Stine, Nguyen, Afzal, Sun, Hamaker, Siegel, Gouw, Kang, Yu (bib69) 2014; 111 Chandel, Avizonis, Reczek, Weinberg, Menz, Neuhaus, Christian, Haegebarth, Algire, Pollak (bib21) 2016; 23 Ma, Verway, Johnson, Roy, Steadman, Hayes, Williams, Sheldon, Samborska, Kosinski (bib79) 2019; 51 Stuart, Schauble, Gupta, Kennedy, Keppler, Bingham, Zachar (bib121) 2014; 2 Pollak (bib103) 2012; 12 Janzer, German, Gonzalez-Herrera, Asara, Haigis, Struhl (bib57) 2014; 111 Patra, Wang, Bhaskar, Miller, Wang, Wheaton, Chandel, Laakso, Muller, Allen (bib102) 2013; 24 Chen, Jones (bib24) 1976; 176 Emami Riedmaier, Fisel, Nies, Schaeffeler, Schwab (bib34) 2013; 34 Tomimoto, Endo, Sugiyama, Fujisawa, Hosono, Takahashi, Nakajima, Nagashima, Wada, Nakagama, Nakajima (bib128) 2008; 99 Gameiro, Yang, Metelo, Pérez-Carro, Baker, Wang, Arreola, Rathmell, Olumi, López-Larrubia (bib43) 2013; 17 Courtney, Bezwada, Mashimo, Pichumani, Vemireddy, Funk, Wimberly, McNeil, Kapur, Lotan (bib27) 2018; 28 Metallo, Gameiro, Bell, Mattaini, Yang, Hiller, Jewell, Johnson, Irvine, Guarente (bib87) 2011; 481 Goodwin, Parulekar, Gelmon, Shepherd, Ligibel, Hershman, Rastogi, Mayer, Hobday, Lemieux (bib45) 2015; 107 Mirkin, Jaconcic, Stojanoff, Moreno (bib89) 2008; 70 Hahn, Parey, Bublitz, Mills, Zickermann, Vonck, Kühlbrandt, Meier (bib49) 2016; 63 Linehan, Schmidt, Crooks, Wei, Srinivasan, Lang, Ricketts (bib75) 2019; 9 Martinez-Reyes, Cardona, Kong, Vasan, McElroy, Werner, Kihshen, Reczek, Weinberg (bib82) 2020 Fendt, Bell, Keibler, Davidson, Wirth, Fiske, Mayers, Schwab, Bellinger, Csibi (bib39) 2013; 73 Johnson, Wolf, Madden, Andrejeva, Sugiura, Contreras, Maseda, Liberti, Paz, Kishton (bib58) 2018; 175 Momcilovic, Jones, Bailey, Waldmann, Li, Lee, Abdelhady, Gomez, Holloway, Schmid (bib91) 2019; 575 Parey, Haapanen, Sharma, Köfeler, Züllig, Prinz, Siegmund, Wittig, Mills, Vonck (bib101) 2019; 5 Pollak (bib104) 2014; 20 Shackelford, Abt, Gerken, Vasquez, Seki, Leblanc, Wei, Fishbein, Czernin, Mischel, Shaw (bib114) 2013; 23 Viale, Pettazzoni, Lyssiotis, Ying, Sánchez, Marchesini, Carugo, Green, Seth, Giuliani (bib130) 2014; 514 Tarasenko, Pacheco, Koenig, Gomez-Rodriguez, Kapnick, Diaz, Zerfas, Barca, Sudderth, DeBerardinis (bib127) 2017; 25 Rusch, Nakitandwe, Shurtleff, Newman, Zhang, Edmonson, Parker, Jiao, Ma, Liu (bib109) 2018; 9 Vander Heiden, DeBerardinis (bib129) 2017; 168 Algire, Amrein, Bazile, David, Zakikhani, Pollak (bib1) 2011; 30 Siska, Beckermann, Mason, Andrejeva, Greenplate, Sendor, Chiang, Corona, Gemta, Vincent (bib119) 2017; 2 Geltink, Kyle, Pearce (bib44) 2018; 36 Altman, Stine, Dang (bib3) 2016; 16 Cluntun, Lukey, Cerione, Locasale (bib26) 2017; 3 Chandel (bib20) 2015 Birsoy, Sabatini, Possemato (bib9) 2012; 18 Lee, Yesilkanal, Wynne, Frankenberger, Liu, Yan, Elbaz, Rabe, Rustandy, Tiwari (bib71) 2019; 568 Weinberg, Hamanaka, Wheaton, Weinberg, Joseph, Lopez, Kalyanaraman, Mutlu, Budinger, Chandel (bib134) 2010; 107 Scafoglio, Villegas, Abdelhady, Bailey, Liu, Shirali, Wallace, Magyar, Grogan, Elashoff (bib110) 2018; 10 Birsoy, Possemato, Lorbeer, Bayraktar, Thiru, Yucel, Wang, Chen, Clish, Sabatini (bib10) 2014; 508 Warburg (bib133) 1956; 123 Fantin, St-Pierre, Leder (bib36) 2006; 9 Caro, Kishan, Norberg, Stanley, Chapuy, Ficarro, Polak, Tondera, Gounarides, Yin (bib18) 2012; 22 Guièze, Liu, Rosebrock, Jourdain, Hernández-Sánchez, Martinez Zurita, Sun, Ten Hacken, Baranowski, Thompson (bib47) 2019; 36 Le, Lane, Hamaker, Bose, Gouw, Barbi, Tsukamoto, Rojas, Slusher, Zhang (bib68) 2012; 15 Cai, Everett, Thakker (bib16) 2019; 176 Frauwirth, Riley, Harris, Parry, Rathmell, Plas, Elstrom, June, Thompson (bib41) 2002; 16 Lahiguera, Hyroššová, Figueras, Garzón, Moreno, Soto-Cerrato, McNeish, Serra, Lazaro, Barretina (bib67) 2020; 12 Sena, Li, Jairaman, Prakriya, Ezponda, Hildeman, Wang, Schumacker, Licht, Perlman (bib113) 2013; 38 Xiang, Stine, Xia, Lu, O’Connor, Altman, Hsieh, Gouw, Thomas, Gao (bib139) 2015; 125 Benej, Hong, Vibhute, Scott, Wu, Graves, Le, Koong, Giaccia, Yu (bib8) 2018; 115 Yong, Stewart, Frezza (bib142) 2020; 16 Sykes, Kfoury, Mercier, Wawer, Law, Haynes, Lewis, Schajnovitz, Jain, Lee (bib126) 2016; 167 Li, Ng, Colón, Drapkin, Hsu, Li, Nabel, Lewis, Romero, Mercer (bib74) 2019; 11 Sykes (bib125) 2018; 22 Zong, Rabinowitz, White (bib146) 2016; 61 Sun, Huo, Zhai, Wang, Xu, Su, Bartlam, Rao (bib124) 2005; 121 Fischer, Jalali, Kircher, Lee, McQuade, Haydu, Joon, Reuben, de Macedo, Carapeto (bib40) 2019; 9 Shroff, Eberlin, Dang, Gouw, Gabay, Adam, Bellovin, Tran, Philbrick, Garcia-Ocana (bib117) 2015; 112 Kuntz, Baquero, Michie, Dunn, Tardito, Holyoake, Helgason, Gottlieb (bib64) 2017; 23 Hensley, Faubert, Yuan, Lev-Cohain, Jin, Kim, Jiang, Ko, Skelton, Loudat (bib52) 2016; 164 Wise, Ward, Shay, Cross, Gruber, Sachdeva, Platt, DeMatteo, Simon, Thompson (bib138) 2011; 108 Mullen, Wheaton, Jin, Chen, Sullivan, Cheng, Yang, Linehan, Chandel, DeBerardinis (bib92) 2011; 481 Letts, Fiedorczuk, Degliesposti, Skehel, Sazanov (bib73) 2019; 75 Ždralević, Brand, Di Ianni, Dettmer, Reinders, Singer, Peter, Schnell, Bruss, Decking (bib143) 2018; 293 Chang, Qiu, O’Sullivan, Buck, Noguchi, Curtis, Chen, Gindin, Gubin, van der Windt (bib22) 2015; 162 Fu, Ye, Dean, Bostick, Weinberg, Xiong, Oliff, Chen, Avram, Chandel, Zhou (bib42) 2019; 28 Wheaton, Weinberg, Hamanaka, Soberanes, Sullivan, Anso, Glasauer, Dufour, Mutlu, Budigner, Chandel (bib136) 2014; 3 Ju, Alexandrov, Gerstung, Martincorena, Nik-Zainal, Ramakrishna, Davies, Papaemmanuil, Gundem, Shlien (bib60) 2014; 3 Khan, Anshu, Prasad, Roy, Jeffery, Kittipongdaja, Yang, Schieke (bib61) 2019; 29 Shi, Lim, Liang, Iyer, Wang, Wang, Xie, Sun, Chen, Tabar (bib115) 2019; 567 Memmott, Mercado, Maier, Kawabata, Fox, Dennis (bib85) 2010; 3 Cardaci, Zheng, MacKay, van den Zong (10.1016/j.cmet.2020.06.019_bib146) 2016; 61 Benej (10.1016/j.cmet.2020.06.019_bib8) 2018; 115 Brown (10.1016/j.cmet.2020.06.019_bib13) 2017; 7 Siegelin (10.1016/j.cmet.2020.06.019_bib118) 2011; 121 Birsoy (10.1016/j.cmet.2020.06.019_bib9) 2012; 18 Yang (10.1016/j.cmet.2020.06.019_bib141) 2020; 31 Le (10.1016/j.cmet.2020.06.019_bib69) 2014; 111 Koundinya (10.1016/j.cmet.2020.06.019_bib63) 2018; 25 Griss (10.1016/j.cmet.2020.06.019_bib46) 2015; 13 Rumsey (10.1016/j.cmet.2020.06.019_bib108) 1990; 265 Metallo (10.1016/j.cmet.2020.06.019_bib87) 2011; 481 Pardee (10.1016/j.cmet.2020.06.019_bib100) 2014; 20 Dempster (10.1016/j.cmet.2020.06.019_bib30) 2019 Hensley (10.1016/j.cmet.2020.06.019_bib52) 2016; 164 Momcilovic (10.1016/j.cmet.2020.06.019_bib91) 2019; 575 Hirsch (10.1016/j.cmet.2020.06.019_bib53) 2009; 69 Letts (10.1016/j.cmet.2020.06.019_bib73) 2019; 75 Wang (10.1016/j.cmet.2020.06.019_bib132) 2019; 11 Gameiro (10.1016/j.cmet.2020.06.019_bib43) 2013; 17 Mathur (10.1016/j.cmet.2020.06.019_bib83) 2017; 7 Emami Riedmaier (10.1016/j.cmet.2020.06.019_bib34) 2013; 34 Kuntz (10.1016/j.cmet.2020.06.019_bib64) 2017; 23 Martinez-Reyes (10.1016/j.cmet.2020.06.019_bib82) 2020 Cardaci (10.1016/j.cmet.2020.06.019_bib17) 2015; 17 Rusch (10.1016/j.cmet.2020.06.019_bib109) 2018; 9 Chandel (10.1016/j.cmet.2020.06.019_bib20) 2015 Janzer (10.1016/j.cmet.2020.06.019_bib57) 2014; 111 Hahn (10.1016/j.cmet.2020.06.019_bib49) 2016; 63 Jain (10.1016/j.cmet.2020.06.019_bib56) 2002; 2 Alistar (10.1016/j.cmet.2020.06.019_bib2) 2016; 27 Zhang (10.1016/j.cmet.2020.06.019_bib144) 2016; 126 Memmott (10.1016/j.cmet.2020.06.019_bib85) 2010; 3 Naguib (10.1016/j.cmet.2020.06.019_bib93) 2018; 23 Chapman (10.1016/j.cmet.2020.06.019_bib23) 2018; 9 Shim (10.1016/j.cmet.2020.06.019_bib116) 2014; 4 Chen (10.1016/j.cmet.2020.06.019_bib24) 1976; 176 Fischer (10.1016/j.cmet.2020.06.019_bib40) 2019; 9 Wang (10.1016/j.cmet.2020.06.019_bib131) 2011; 35 Hosseini (10.1016/j.cmet.2020.06.019_bib54) 2018; 23 Siska (10.1016/j.cmet.2020.06.019_bib119) 2017; 2 Owen (10.1016/j.cmet.2020.06.019_bib99) 2000; 348 Tomimoto (10.1016/j.cmet.2020.06.019_bib128) 2008; 99 Navarro (10.1016/j.cmet.2020.06.019_bib95) 2016; 15 Geltink (10.1016/j.cmet.2020.06.019_bib44) 2018; 36 Hui (10.1016/j.cmet.2020.06.019_bib55) 2017; 551 Chandel (10.1016/j.cmet.2020.06.019_bib21) 2016; 23 Maher (10.1016/j.cmet.2020.06.019_bib81) 2012; 25 Brown (10.1016/j.cmet.2020.06.019_bib14) 2020; 5 Frauwirth (10.1016/j.cmet.2020.06.019_bib41) 2002; 16 Caro (10.1016/j.cmet.2020.06.019_bib18) 2012; 22 Courtney (10.1016/j.cmet.2020.06.019_bib27) 2018; 28 Ladds (10.1016/j.cmet.2020.06.019_bib66) 2018; 9 Joshi (10.1016/j.cmet.2020.06.019_bib59) 2015; 13 Menk (10.1016/j.cmet.2020.06.019_bib86) 2018; 22 Le (10.1016/j.cmet.2020.06.019_bib68) 2012; 15 DeBerardinis (10.1016/j.cmet.2020.06.019_bib28) 2016; 2 Andrejeva (10.1016/j.cmet.2020.06.019_bib4) 2017; 26 Nakaya (10.1016/j.cmet.2020.06.019_bib94) 2014; 40 Birsoy (10.1016/j.cmet.2020.06.019_bib11) 2015; 162 Skrtić (10.1016/j.cmet.2020.06.019_bib120) 2011; 20 Sullivan (10.1016/j.cmet.2020.06.019_bib123) 2015; 162 Scafoglio (10.1016/j.cmet.2020.06.019_bib110) 2018; 10 El-Mir (10.1016/j.cmet.2020.06.019_bib33) 2000; 275 Nigam (10.1016/j.cmet.2020.06.019_bib96) 2018; 58 Dowling (10.1016/j.cmet.2020.06.019_bib31) 2012; 48 Goodwin (10.1016/j.cmet.2020.06.019_bib45) 2015; 107 Christian (10.1016/j.cmet.2020.06.019_bib25) 2019; 33 Vander Heiden (10.1016/j.cmet.2020.06.019_bib129) 2017; 168 Madera (10.1016/j.cmet.2020.06.019_bib80) 2015; 8 Mullen (10.1016/j.cmet.2020.06.019_bib92) 2011; 481 Weinberg (10.1016/j.cmet.2020.06.019_bib135) 2019; 565 Henkenius (10.1016/j.cmet.2020.06.019_bib51) 2017; 62 Viale (10.1016/j.cmet.2020.06.019_bib130) 2014; 514 Birsoy (10.1016/j.cmet.2020.06.019_bib10) 2014; 508 Oshima (10.1016/j.cmet.2020.06.019_bib98) 2020; 30 Sena (10.1016/j.cmet.2020.06.019_bib113) 2013; 38 Lussey-Lepoutre (10.1016/j.cmet.2020.06.019_bib78) 2015; 6 Lee (10.1016/j.cmet.2020.06.019_bib71) 2019; 568 Ju (10.1016/j.cmet.2020.06.019_bib60) 2014; 3 Ždralević (10.1016/j.cmet.2020.06.019_bib143) 2018; 293 Mehta (10.1016/j.cmet.2020.06.019_bib84) 2018; 6 Fu (10.1016/j.cmet.2020.06.019_bib42) 2019; 28 Warburg (10.1016/j.cmet.2020.06.019_bib133) 1956; 123 Faubert (10.1016/j.cmet.2020.06.019_bib38) 2020; 368 Ma (10.1016/j.cmet.2020.06.019_bib79) 2019; 51 Li (10.1016/j.cmet.2020.06.019_bib74) 2019; 11 Patra (10.1016/j.cmet.2020.06.019_bib102) 2013; 24 Rawls (10.1016/j.cmet.2020.06.019_bib105) 2000; 267 Wise (10.1016/j.cmet.2020.06.019_bib138) 2011; 108 Linehan (10.1016/j.cmet.2020.06.019_bib75) 2019; 9 Pollak (10.1016/j.cmet.2020.06.019_bib104) 2014; 20 Sciacovelli (10.1016/j.cmet.2020.06.019_bib112) 2016; 537 Molina (10.1016/j.cmet.2020.06.019_bib90) 2018; 24 Nowicki (10.1016/j.cmet.2020.06.019_bib97) 2015; 282 Shackelford (10.1016/j.cmet.2020.06.019_bib114) 2013; 23 Stuart (10.1016/j.cmet.2020.06.019_bib121) 2014; 2 Zhang (10.1016/j.cmet.2020.06.019_bib145) 2019; 11 Chang (10.1016/j.cmet.2020.06.019_bib22) 2015; 162 Hanahan (10.1016/j.cmet.2020.06.019_bib50) 2011; 144 Fendt (10.1016/j.cmet.2020.06.019_bib39) 2013; 73 Guièze (10.1016/j.cmet.2020.06.019_bib47) 2019; 36 Koppenol (10.1016/j.cmet.2020.06.019_bib62) 2011; 11 Johnson (10.1016/j.cmet.2020.06.019_bib58) 2018; 175 Reznik (10.1016/j.cmet.2020.06.019_bib106) 2016; 5 Chamoto (10.1016/j.cmet.2020.06.019_bib19) 2017; 114 Cai (10.1016/j.cmet.2020.06.019_bib16) 2019; 176 Lord (10.1016/j.cmet.2020.06.019_bib77) 2018; 28 Scharping (10.1016/j.cmet.2020.06.019_bib111) 2016; 45 Weinberg (10.1016/j.cmet.2020.06.019_bib134) 2010; 107 Lee (10.1016/j.cmet.2020.06.019_bib70) 2017; 26 Cluntun (10.1016/j.cmet.2020.06.019_bib26) 2017; 3 Romero (10.1016/j.cmet.2020.06.019_bib107) 2017; 23 Sykes (10.1016/j.cmet.2020.06.019_bib126) 2016; 167 Meyers (10.1016/j.cmet.2020.06.019_bib88) 2017; 49 Sykes (10.1016/j.cmet.2020.06.019_bib125) 2018; 22 Algire (10.1016/j.cmet.2020.06.019_bib1) 2011; 30 Dowling (10.1016/j.cmet.2020.06.019_bib32) 2016; 23 Lahiguera (10.1016/j.cmet.2020.06.019_bib67) 2020; 12 DeBerardinis (10.1016/j.cmet.2020.06.019_bib29) 2020; 2 Tarasenko (10.1016/j.cmet.2020.06.019_bib127) 2017; 25 Khan (10.1016/j.cmet.2020.06.019_bib61) 2019; 29 Xiao (10.1016/j.cmet.2020.06.019_bib140) 2012; 26 Zong (10.1016/j.cmet.2020.06.019_bib147) 2018; 28 Kurelac (10.1016/j.cmet.2020.06.019_bib65) 2019; 10 Guo (10.1016/j.cmet.2020.06.019_bib48) 2011; 25 Bajzikova (10.1016/j.cmet.2020.06.019_bib7) 2019; 29 Shi (10.1016/j.cmet.2020.06.019_bib115) 2019; 567 Bridges (10.1016/j.cmet.2020.06.019_bib12) 2014; 462 Parey (10.1016/j.cmet.2020.06.019_bib101) 2019; 5 Wheaton (10.1016/j.cmet.2020.06.019_bib136) 2014; 3 Xiang (10.1016/j.cmet.2020.06.019_bib139) 2015; 125 Mirkin (10.1016/j.cmet.2020.06.019_bib89) 2008; 70 Bailis (10.1016/j.cmet.2020.06.019_bib6) 2019; 571 Yong (10.1016/j.cmet.2020.06.019_bib142) 2020; 16 Leone (10.1016/j.cmet.2020.06.019_bib72) 2019; 366 Altman (10.1016/j.cmet.2020.06.019_bib3) 2016; 16 White (10.1016/j.cmet.2020.06.019_bib137) 2011; 471 Arrieta (10.1016/j.cmet.2020.06.019_bib5) 2019; 5 Sun (10.1016/j.cmet.2020.06.019_bib124) 2005; 121 Fantin (10.1016/j.cmet.2020.06.019_bib36) 2006; 9 Liu (10.1016/j.cmet.2020.06.019_bib76) 2016; 24 Evans (10.1016/j.cmet.2020.06.019_bib35) 2005; 330 Pollak (10.1016/j.cmet.2020.06.019_bib103) 2012; 12 Shroff (10.1016/j.cmet.2020.06.019_bib117) 2015; 112 Buzzai (10.1016/j.cmet.2020.06.019_bib15) 2007; 67 Farge (10.1016/j.cmet.2020.06.019_bib37) 2017; 7 Sullivan (10.1016/j.cmet.2020.06.019_bib122) 2013; 51 |
References_xml | – volume: 23 start-page: 1234 year: 2017 end-page: 1240 ident: bib64 article-title: Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells publication-title: Nat. Med. – volume: 112 start-page: 6539 year: 2015 end-page: 6544 ident: bib117 article-title: MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 591 year: 2014 end-page: 593 ident: bib104 article-title: Overcoming drug development bottlenecks with repurposing: repurposing biguanides to target energy metabolism for cancer treatment publication-title: Nat. Med. – volume: 12 start-page: e11217 year: 2020 ident: bib67 article-title: Tumors defective in homologous recombination rely on oxidative metabolism: relevance to treatments with PARP inhibitors publication-title: EMBO Mol. Med. – volume: 2 start-page: 127 year: 2020 end-page: 129 ident: bib29 article-title: We need to talk about the Warburg effect publication-title: Nat. Metab. – volume: 125 start-page: 2293 year: 2015 end-page: 2306 ident: bib139 article-title: Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis publication-title: J. Clin. Invest. – volume: 567 start-page: 341 year: 2019 end-page: 346 ident: bib115 article-title: Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma publication-title: Nature – volume: 2 start-page: e1600200 year: 2016 ident: bib28 article-title: Fundamentals of cancer metabolism publication-title: Sci. Adv. – volume: 5 start-page: e10769 year: 2016 ident: bib106 article-title: Mitochondrial DNA copy number variation across human cancers publication-title: eLife – volume: 508 start-page: 108 year: 2014 end-page: 112 ident: bib10 article-title: Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides publication-title: Nature – volume: 25 start-page: 1234 year: 2012 end-page: 1244 ident: bib81 article-title: Metabolism of [U-13 C]glucose in human brain tumors in vivo publication-title: NMR Biomed. – volume: 23 start-page: 1362 year: 2017 end-page: 1368 ident: bib107 article-title: Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis publication-title: Nat. Med. – volume: 62 start-page: 56 year: 2017 end-page: 63 ident: bib51 article-title: Maintenance of cellular respiration indicates drug resistance in acute myeloid leukemia publication-title: Leuk. Res. – volume: 38 start-page: 225 year: 2013 end-page: 236 ident: bib113 article-title: Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling publication-title: Immunity – volume: 48 start-page: R31 year: 2012 end-page: R43 ident: bib31 article-title: Metformin in cancer: translational challenges publication-title: J. Mol. Endocrinol. – volume: 16 start-page: 769 year: 2002 end-page: 777 ident: bib41 article-title: The CD28 signaling pathway regulates glucose metabolism publication-title: Immunity – volume: 5 start-page: x9484 year: 2019 ident: bib101 article-title: High-resolution cryo-EM structures of respiratory complex I: mechanism, assembly, and disease publication-title: Sci. Adv. – volume: 108 start-page: 19611 year: 2011 end-page: 19616 ident: bib138 article-title: Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability publication-title: Proc. Natl. Acad. Sci. USA – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: bib50 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 36 start-page: 369 year: 2019 end-page: 384.e13 ident: bib47 article-title: Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies publication-title: Cancer Cell – volume: 6 start-page: 8784 year: 2015 ident: bib78 article-title: Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism publication-title: Nat. Commun. – volume: 568 start-page: 254 year: 2019 end-page: 258 ident: bib71 article-title: Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism publication-title: Nature – volume: 20 start-page: 5255 year: 2014 end-page: 5264 ident: bib100 article-title: A phase I study of the first-in-class antimitochondrial metabolism agent, CPI-613, in patients with advanced hematologic malignancies publication-title: Clin. Cancer Res. – volume: 26 start-page: 1326 year: 2012 end-page: 1338 ident: bib140 article-title: Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors publication-title: Genes Dev. – volume: 265 start-page: 15392 year: 1990 end-page: 15402 ident: bib108 article-title: Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat publication-title: J. Biol. Chem. – volume: 368 start-page: 1 year: 2020 end-page: 10 ident: bib38 article-title: Metabolic reprogramming and cancer progression publication-title: Science – volume: 12 start-page: 159 year: 2012 end-page: 169 ident: bib103 article-title: The insulin and insulin-like growth factor receptor family in neoplasia: an update publication-title: Nat. Rev. Cancer – year: 2020 ident: bib82 article-title: Mitochondrial ubiquinol oxidation is necessary for tumour growth publication-title: Nature – volume: 330 start-page: 1304 year: 2005 end-page: 1305 ident: bib35 article-title: Metformin and reduced risk of cancer in diabetic patients publication-title: BMJ – volume: 3 start-page: e02935 year: 2014 ident: bib60 article-title: Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer publication-title: eLife – volume: 15 start-page: 110 year: 2012 end-page: 121 ident: bib68 article-title: Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells publication-title: Cell Metab. – volume: 7 start-page: 380 year: 2017 end-page: 390 ident: bib83 article-title: PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition publication-title: Cancer Discov. – volume: 2 start-page: 4 year: 2014 ident: bib121 article-title: A strategically designed small molecule attacks alpha-ketoglutarate dehydrogenase in tumor cells through a redox process publication-title: Cancer Metab. – volume: 11 start-page: 325 year: 2011 end-page: 337 ident: bib62 article-title: Otto Warburg’s contributions to current concepts of cancer metabolism publication-title: Nat. Rev. Cancer – volume: 115 start-page: 10756 year: 2018 end-page: 10761 ident: bib8 article-title: Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism publication-title: Proc. Natl. Acad. Sci. USA – volume: 267 start-page: 2079 year: 2000 end-page: 2087 ident: bib105 article-title: Requirements for the mitochondrial import and localization of dihydroorotate dehydrogenase publication-title: Eur. J. Biochem. – volume: 25 start-page: 1254 year: 2017 end-page: 1268.e7 ident: bib127 article-title: Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation publication-title: Cell Metab. – volume: 31 start-page: 809 year: 2020 end-page: 821.e6 ident: bib141 article-title: Serine catabolism feeds NADH when respiration is impaired publication-title: Cell Metab. – volume: 28 start-page: 793 year: 2018 end-page: 800.e2 ident: bib27 article-title: Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo publication-title: Cell Metab. – volume: 23 start-page: 569 year: 2016 end-page: 570 ident: bib21 article-title: Are metformin doses used in murine cancer models clinically relevant? publication-title: Cell Metab. – volume: 73 start-page: 4429 year: 2013 end-page: 4438 ident: bib39 article-title: Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism publication-title: Cancer Res. – volume: 551 start-page: 115 year: 2017 end-page: 118 ident: bib55 article-title: Glucose feeds the TCA cycle via circulating lactate publication-title: Nature – volume: 162 start-page: 540 year: 2015 end-page: 551 ident: bib11 article-title: An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis publication-title: Cell – volume: 282 start-page: 2796 year: 2015 end-page: 2805 ident: bib97 article-title: Oncometabolites: tailoring our genes publication-title: FEBS J. – volume: 35 start-page: 871 year: 2011 end-page: 882 ident: bib131 article-title: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation publication-title: Immunity – volume: 471 start-page: 518 year: 2011 end-page: 522 ident: bib137 article-title: DHODH modulates transcriptional elongation in the neural crest and melanoma publication-title: Nature – volume: 24 start-page: 213 year: 2013 end-page: 228 ident: bib102 article-title: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer publication-title: Cancer Cell – volume: 51 start-page: 236 year: 2013 end-page: 248 ident: bib122 article-title: The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling publication-title: Mol. Cell – volume: 107 start-page: djv006 year: 2015 ident: bib45 article-title: Effect of metformin vs placebo on and metabolic factors in NCIC CTG MA.32 publication-title: J. Natl. Cancer Inst. – volume: 28 start-page: 1026 year: 2018 end-page: 1034 ident: bib147 article-title: Structure of the intact 14-subunit human cytochrome c oxidase publication-title: Cell Res. – volume: 348 start-page: 607 year: 2000 end-page: 614 ident: bib99 article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain publication-title: Biochem. J. – volume: 565 start-page: 495 year: 2019 end-page: 499 ident: bib135 article-title: Mitochondrial complex III is essential for suppressive function of regulatory T cells publication-title: Nature – volume: 23 start-page: 58 year: 2018 end-page: 67 ident: bib93 article-title: Mitochondrial complex I inhibitors expose a vulnerability for selective killing of Pten-null cells publication-title: Cell Rep. – volume: 7 start-page: 391 year: 2017 end-page: 399 ident: bib13 article-title: Adaptive reprogramming of publication-title: Cancer Discov. – volume: 123 start-page: 309 year: 1956 end-page: 314 ident: bib133 article-title: On the origin of cancer cells publication-title: Science – volume: 114 start-page: E761 year: 2017 end-page: E770 ident: bib19 article-title: Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity publication-title: Proc. Natl. Acad. Sci. USA – volume: 36 start-page: 461 year: 2018 end-page: 488 ident: bib44 article-title: Unraveling the complex interplay between T cell metabolism and function publication-title: Annu. Rev. Immunol. – volume: 15 start-page: 2705 year: 2016 end-page: 2718 ident: bib95 article-title: Targeting tumor mitochondrial metabolism overcomes resistance to antiangiogenics publication-title: Cell Rep. – volume: 366 start-page: 1013 year: 2019 end-page: 1021 ident: bib72 article-title: Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion publication-title: Science – volume: 40 start-page: 692 year: 2014 end-page: 705 ident: bib94 article-title: Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation publication-title: Immunity – volume: 462 start-page: 475 year: 2014 end-page: 487 ident: bib12 article-title: Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria publication-title: Biochem. J. – volume: 63 start-page: 445 year: 2016 end-page: 456 ident: bib49 article-title: Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology publication-title: Mol. Cell – volume: 8 start-page: 197 year: 2015 end-page: 207 ident: bib80 article-title: Prevention of tumor growth driven by PIK3CA and HPV oncogenes by targeting mTOR signaling with metformin in oral squamous carcinomas expressing OCT3 publication-title: Cancer Prev. Res. (Phila.) – volume: 514 start-page: 628 year: 2014 end-page: 632 ident: bib130 article-title: Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function publication-title: Nature – volume: 75 start-page: 1131 year: 2019 end-page: 1146.e6 ident: bib73 article-title: Structures of respiratory supercomplex I+III publication-title: Mol. Cell – volume: 481 start-page: 385 year: 2011 end-page: 388 ident: bib92 article-title: Reductive carboxylation supports growth in tumour cells with defective mitochondria publication-title: Nature – volume: 23 start-page: 567 year: 2016 end-page: 568 ident: bib32 article-title: Metformin pharmacokinetics in mouse tumors: implications for human therapy publication-title: Cell Metab. – volume: 30 start-page: 1798 year: 2020 end-page: 1810.e4 ident: bib98 article-title: Dynamic imaging of LDH inhibition in tumors reveals rapid in vivo metabolic rewiring and vulnerability to combination therapy publication-title: Cell Rep. – volume: 25 start-page: 705 year: 2018 end-page: 717.e11 ident: bib63 article-title: Dependence on the pyrimidine biosynthetic enzyme DHODH is a synthetic lethal vulnerability in mutant KRAS-driven cancers publication-title: Cell Chem. Biol. – volume: 18 start-page: 1022 year: 2012 end-page: 1023 ident: bib9 article-title: Untuning the tumor metabolic machine: targeting cancer metabolism: a bedside lesson publication-title: Nat. Med. – volume: 28 start-page: 679 year: 2018 end-page: 688.e4 ident: bib77 article-title: Integrated pharmacodynamic analysis identifies two metabolic adaption pathways to metformin in breast cancer publication-title: Cell Metab. – volume: 9 start-page: 3962 year: 2018 ident: bib109 article-title: Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome publication-title: Nat. Commun. – volume: 2 start-page: e93411 year: 2017 ident: bib119 article-title: Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma publication-title: JCI Insight – volume: 162 start-page: 1229 year: 2015 end-page: 1241 ident: bib22 article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression publication-title: Cell – volume: 24 start-page: 1036 year: 2018 end-page: 1046 ident: bib90 article-title: An inhibitor of oxidative phosphorylation exploits cancer vulnerability publication-title: Nat. Med. – volume: 23 start-page: 143 year: 2013 end-page: 158 ident: bib114 article-title: LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin publication-title: Cancer Cell – volume: 24 start-page: 728 year: 2016 end-page: 739 ident: bib76 article-title: Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers publication-title: Cell Metab. – volume: 9 start-page: 628 year: 2019 end-page: 645 ident: bib40 article-title: Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases publication-title: Cancer Discov. – volume: 29 start-page: 3009 year: 2019 end-page: 3018.e4 ident: bib61 article-title: Metabolic rewiring in response to biguanides is mediated by mROS/HIF-1a in malignant lymphocytes publication-title: Cell Rep. – volume: 20 start-page: 674 year: 2011 end-page: 688 ident: bib120 article-title: Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia publication-title: Cancer Cell – volume: 34 start-page: 126 year: 2013 end-page: 135 ident: bib34 article-title: Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects publication-title: Trends Pharmacol. Sci. – volume: 69 start-page: 7507 year: 2009 end-page: 7511 ident: bib53 article-title: Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission publication-title: Cancer Res. – volume: 121 start-page: 1043 year: 2005 end-page: 1057 ident: bib124 article-title: Crystal structure of mitochondrial respiratory membrane protein complex II publication-title: Cell – volume: 175 start-page: 1780 year: 2018 end-page: 1795.e19 ident: bib58 article-title: Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism publication-title: Cell – volume: 61 start-page: 667 year: 2016 end-page: 676 ident: bib146 article-title: Mitochondria and cancer publication-title: Mol. Cell – volume: 27 start-page: VI228 year: 2016 ident: bib2 article-title: CPI-613 enhances FOLFIRINOX response rate in stage IV pancreatic cancer publication-title: Ann. Oncol. – volume: 111 start-page: 10574 year: 2014 end-page: 10579 ident: bib57 article-title: Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: eaau4972 year: 2019 ident: bib132 article-title: Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells publication-title: Sci. Transl. Med. – volume: 571 start-page: 403 year: 2019 end-page: 407 ident: bib6 article-title: Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function publication-title: Nature – volume: 9 start-page: 425 year: 2006 end-page: 434 ident: bib36 article-title: Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance publication-title: Cancer Cell – volume: 168 start-page: 657 year: 2017 end-page: 669 ident: bib129 article-title: Understanding the intersections between metabolism and cancer biology publication-title: Cell – volume: 26 start-page: 633 year: 2017 end-page: 647.e7 ident: bib70 article-title: MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation publication-title: Cell Metab. – volume: 16 start-page: 619 year: 2016 end-page: 634 ident: bib3 article-title: From Krebs to clinic: glutamine metabolism to cancer therapy publication-title: Nat. Rev. Cancer – volume: 5 start-page: e133247 year: 2020 ident: bib14 article-title: Phase II clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer publication-title: JCI Insight – volume: 176 start-page: 2724 year: 2019 end-page: 2735 ident: bib16 article-title: Efficacious dose of metformin for breast cancer therapy is determined by cation transporter expression in tumours publication-title: Br. J. Pharmacol. – volume: 107 start-page: 8788 year: 2010 end-page: 8793 ident: bib134 article-title: Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity publication-title: Proc. Natl. Acad. Sci. USA – volume: 2 start-page: 266 year: 2002 end-page: 276 ident: bib56 article-title: Dissecting tumour pathophysiology using intravital microscopy publication-title: Nat. Rev. Cancer – volume: 293 start-page: 15947 year: 2018 end-page: 15961 ident: bib143 article-title: Double genetic disruption of lactate dehydrogenases A and B is required to ablate the “Warburg effect” restricting tumor growth to oxidative metabolism publication-title: J. Biol. Chem. – volume: 121 start-page: 1349 year: 2011 end-page: 1360 ident: bib118 article-title: Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells publication-title: J. Clin. Invest. – volume: 162 start-page: 552 year: 2015 end-page: 563 ident: bib123 article-title: Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells publication-title: Cell – volume: 10 start-page: 903 year: 2019 ident: bib65 article-title: Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses publication-title: Nat. Commun. – volume: 4 start-page: 1290 year: 2014 end-page: 1298 ident: bib116 article-title: L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer publication-title: Cancer Discov. – volume: 111 start-page: 12486 year: 2014 end-page: 12491 ident: bib69 article-title: Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia-cell cycle dual reporter publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 start-page: e02242 year: 2014 ident: bib136 article-title: Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis publication-title: eLife – volume: 28 start-page: 159 year: 2019 end-page: 171.e4 ident: bib42 article-title: Requirement of mitochondrial transcription factor A in tissue-resident regulatory T cell maintenance and function publication-title: Cell Rep. – volume: 164 start-page: 681 year: 2016 end-page: 694 ident: bib52 article-title: Metabolic heterogeneity in human lung tumors publication-title: Cell – volume: 25 start-page: 460 year: 2011 end-page: 470 ident: bib48 article-title: Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis publication-title: Genes Dev. – volume: 5 start-page: e192553 year: 2019 ident: bib5 article-title: Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: a phase 2 randomized clinical trial publication-title: JAMA Oncol. – volume: 29 start-page: 399 year: 2019 end-page: 416.e10 ident: bib7 article-title: Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells publication-title: Cell Metab. – volume: 6 start-page: 10 year: 2018 ident: bib84 article-title: Hexokinase 2 is dispensable for T cell-dependent immunity publication-title: Cancer Metab. – volume: 17 start-page: 1317 year: 2015 end-page: 1326 ident: bib17 article-title: Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis publication-title: Nat. Cell Biol. – volume: 9 start-page: 1107 year: 2018 ident: bib66 article-title: A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage publication-title: Nat. Commun. – volume: 99 start-page: 2136 year: 2008 end-page: 2141 ident: bib128 article-title: Metformin suppresses intestinal polyp growth in ApcMin/+ mice publication-title: Cancer Sci. – volume: 9 start-page: 1006 year: 2019 end-page: 1021 ident: bib75 article-title: The metabolic basis of kidney cancer publication-title: Cancer Discov. – volume: 3 start-page: 1066 year: 2010 end-page: 1076 ident: bib85 article-title: Metformin prevents tobacco carcinogen--induced lung tumorigenesis publication-title: Cancer Prev. Res. (Phila.) – volume: 275 start-page: 223 year: 2000 end-page: 228 ident: bib33 article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I publication-title: J. Biol. Chem. – volume: 13 start-page: e1002309 year: 2015 ident: bib46 article-title: Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis publication-title: PLoS Biol. – volume: 481 start-page: 380 year: 2011 end-page: 384 ident: bib87 article-title: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia publication-title: Nature – volume: 126 start-page: 1834 year: 2016 end-page: 1856 ident: bib144 article-title: Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors publication-title: J. Clin. Invest. – volume: 26 start-page: 49 year: 2017 end-page: 70 ident: bib4 article-title: Similarities and distinctions of cancer and immune metabolism in inflammation and tumors publication-title: Cell Metab. – volume: 13 start-page: 1895 year: 2015 end-page: 1908 ident: bib59 article-title: The genomic landscape of renal oncocytoma identifies a metabolic barrier to tumorigenesis publication-title: Cell Rep. – volume: 9 start-page: 2095 year: 2018 ident: bib23 article-title: mTOR coordinates transcriptional programs and mitochondrial metabolism of activated T publication-title: Nat. Commun. – volume: 3 start-page: 169 year: 2017 end-page: 180 ident: bib26 article-title: Glutamine metabolism in cancer: understanding the heterogeneity publication-title: Trends Cancer – volume: 22 start-page: 1509 year: 2018 end-page: 1521 ident: bib86 article-title: Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions publication-title: Cell Rep. – volume: 67 start-page: 6745 year: 2007 end-page: 6752 ident: bib15 article-title: Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth publication-title: Cancer Res. – volume: 7 start-page: 716 year: 2017 end-page: 735 ident: bib37 article-title: Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism publication-title: Cancer Discov. – volume: 30 start-page: 1174 year: 2011 end-page: 1182 ident: bib1 article-title: Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo publication-title: Oncogene – year: 2019 ident: bib30 article-title: Extracting biological insights from the Project Achilles genome-scale CRISPR screens in cancer cell lines publication-title: bioRxiv – volume: 70 start-page: 83 year: 2008 end-page: 92 ident: bib89 article-title: High resolution X-ray crystallographic structure of bovine heart cytochrome c and its application to the design of an electron transfer biosensor publication-title: Proteins – volume: 51 start-page: 856 year: 2019 end-page: 870.e5 ident: bib79 article-title: Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8 publication-title: Immunity – volume: 575 start-page: 380 year: 2019 end-page: 384 ident: bib91 article-title: In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer publication-title: Nature – volume: 537 start-page: 544 year: 2016 end-page: 547 ident: bib112 article-title: Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition publication-title: Nature – volume: 33 start-page: 2403 year: 2019 end-page: 2415 ident: bib25 article-title: The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies publication-title: Leukemia – volume: 11 start-page: eaaw7852 year: 2019 ident: bib74 article-title: Identification of DHODH as a therapeutic target in small cell lung cancer publication-title: Sci. Transl. Med. – volume: 17 start-page: 372 year: 2013 end-page: 385 ident: bib43 article-title: In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation publication-title: Cell Metab. – volume: 23 start-page: 3621 year: 2018 end-page: 3634 ident: bib54 article-title: Energy metabolism rewiring precedes UVB-induced primary skin tumor formation publication-title: Cell Rep. – volume: 176 start-page: 82 year: 1976 end-page: 90 ident: bib24 article-title: The cellular location of dihydroorotate dehydrogenase: relation to de novo biosynthesis of pyrimidines publication-title: Arch. Biochem. Biophys. – volume: 10 start-page: eaat5933 year: 2018 ident: bib110 article-title: Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma publication-title: Sci. Transl. Med. – volume: 16 start-page: 156 year: 2020 end-page: 172 ident: bib142 article-title: Oncometabolites in renal cancer publication-title: Nat. Rev. Nephrol. – volume: 58 start-page: 663 year: 2018 end-page: 687 ident: bib96 article-title: The SLC22 transporter family: a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 11 start-page: eaau1167 year: 2019 ident: bib145 article-title: Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma publication-title: Sci. Transl. Med. – volume: 49 start-page: 1779 year: 2017 end-page: 1784 ident: bib88 article-title: Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells publication-title: Nat. Genet. – volume: 167 start-page: 171 year: 2016 end-page: 186.e15 ident: bib126 article-title: Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia publication-title: Cell – volume: 22 start-page: 893 year: 2018 end-page: 898 ident: bib125 article-title: The emergence of dihydroorotate dehydrogenase (DHODH) as a therapeutic target in acute myeloid leukemia publication-title: Expert Opin. Ther. Targets – volume: 22 start-page: 547 year: 2012 end-page: 560 ident: bib18 article-title: Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma publication-title: Cancer Cell – year: 2015 ident: bib20 article-title: Navigating Metabolism – volume: 45 start-page: 374 year: 2016 end-page: 388 ident: bib111 article-title: The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction publication-title: Immunity – volume: 3 start-page: 169 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib26 article-title: Glutamine metabolism in cancer: understanding the heterogeneity publication-title: Trends Cancer doi: 10.1016/j.trecan.2017.01.005 – volume: 99 start-page: 2136 year: 2008 ident: 10.1016/j.cmet.2020.06.019_bib128 article-title: Metformin suppresses intestinal polyp growth in ApcMin/+ mice publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2008.00933.x – volume: 514 start-page: 628 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib130 article-title: Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function publication-title: Nature doi: 10.1038/nature13611 – volume: 11 start-page: eaau1167 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib145 article-title: Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aau1167 – volume: 6 start-page: 8784 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib78 article-title: Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism publication-title: Nat. Commun. doi: 10.1038/ncomms9784 – volume: 471 start-page: 518 year: 2011 ident: 10.1016/j.cmet.2020.06.019_bib137 article-title: DHODH modulates transcriptional elongation in the neural crest and melanoma publication-title: Nature doi: 10.1038/nature09882 – volume: 36 start-page: 461 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib44 article-title: Unraveling the complex interplay between T cell metabolism and function publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-042617-053019 – volume: 33 start-page: 2403 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib25 article-title: The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies publication-title: Leukemia doi: 10.1038/s41375-019-0461-5 – volume: 9 start-page: 628 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib40 article-title: Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-18-1489 – volume: 16 start-page: 156 year: 2020 ident: 10.1016/j.cmet.2020.06.019_bib142 article-title: Oncometabolites in renal cancer publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-019-0210-z – year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib20 – volume: 167 start-page: 171 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib126 article-title: Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia publication-title: Cell doi: 10.1016/j.cell.2016.08.057 – volume: 58 start-page: 663 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib96 article-title: The SLC22 transporter family: a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010617-052713 – volume: 115 start-page: 10756 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib8 article-title: Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1808945115 – volume: 17 start-page: 1317 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib17 article-title: Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis publication-title: Nat. Cell Biol. doi: 10.1038/ncb3233 – volume: 111 start-page: 12486 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib69 article-title: Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia-cell cycle dual reporter publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1402012111 – volume: 16 start-page: 619 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib3 article-title: From Krebs to clinic: glutamine metabolism to cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.71 – volume: 25 start-page: 1254 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib127 article-title: Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.05.007 – volume: 20 start-page: 591 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib104 article-title: Overcoming drug development bottlenecks with repurposing: repurposing biguanides to target energy metabolism for cancer treatment publication-title: Nat. Med. doi: 10.1038/nm.3596 – volume: 3 start-page: e02242 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib136 article-title: Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis publication-title: eLife doi: 10.7554/eLife.02242 – volume: 22 start-page: 1509 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib86 article-title: Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.040 – volume: 481 start-page: 385 year: 2011 ident: 10.1016/j.cmet.2020.06.019_bib92 article-title: Reductive carboxylation supports growth in tumour cells with defective mitochondria publication-title: Nature doi: 10.1038/nature10642 – volume: 35 start-page: 871 year: 2011 ident: 10.1016/j.cmet.2020.06.019_bib131 article-title: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation publication-title: Immunity doi: 10.1016/j.immuni.2011.09.021 – volume: 121 start-page: 1043 year: 2005 ident: 10.1016/j.cmet.2020.06.019_bib124 article-title: Crystal structure of mitochondrial respiratory membrane protein complex II publication-title: Cell doi: 10.1016/j.cell.2005.05.025 – volume: 18 start-page: 1022 year: 2012 ident: 10.1016/j.cmet.2020.06.019_bib9 article-title: Untuning the tumor metabolic machine: targeting cancer metabolism: a bedside lesson publication-title: Nat. Med. doi: 10.1038/nm.2870 – volume: 23 start-page: 143 year: 2013 ident: 10.1016/j.cmet.2020.06.019_bib114 article-title: LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.12.008 – volume: 22 start-page: 547 year: 2012 ident: 10.1016/j.cmet.2020.06.019_bib18 article-title: Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.08.014 – volume: 34 start-page: 126 year: 2013 ident: 10.1016/j.cmet.2020.06.019_bib34 article-title: Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2012.11.005 – volume: 265 start-page: 15392 year: 1990 ident: 10.1016/j.cmet.2020.06.019_bib108 article-title: Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)55409-0 – volume: 30 start-page: 1174 year: 2011 ident: 10.1016/j.cmet.2020.06.019_bib1 article-title: Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo publication-title: Oncogene doi: 10.1038/onc.2010.483 – volume: 63 start-page: 445 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib49 article-title: Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.05.037 – volume: 114 start-page: E761 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib19 article-title: Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1620433114 – volume: 23 start-page: 58 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib93 article-title: Mitochondrial complex I inhibitors expose a vulnerability for selective killing of Pten-null cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.03.032 – volume: 28 start-page: 1026 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib147 article-title: Structure of the intact 14-subunit human cytochrome c oxidase publication-title: Cell Res. doi: 10.1038/s41422-018-0071-1 – volume: 3 start-page: e02935 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib60 article-title: Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer publication-title: eLife doi: 10.7554/eLife.02935 – volume: 366 start-page: 1013 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib72 article-title: Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion publication-title: Science doi: 10.1126/science.aav2588 – volume: 108 start-page: 19611 year: 2011 ident: 10.1016/j.cmet.2020.06.019_bib138 article-title: Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1117773108 – volume: 8 start-page: 197 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib80 article-title: Prevention of tumor growth driven by PIK3CA and HPV oncogenes by targeting mTOR signaling with metformin in oral squamous carcinomas expressing OCT3 publication-title: Cancer Prev. Res. (Phila.) doi: 10.1158/1940-6207.CAPR-14-0348 – volume: 123 start-page: 309 year: 1956 ident: 10.1016/j.cmet.2020.06.019_bib133 article-title: On the origin of cancer cells publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 29 start-page: 399 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib7 article-title: Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.10.014 – volume: 2 start-page: 127 year: 2020 ident: 10.1016/j.cmet.2020.06.019_bib29 article-title: We need to talk about the Warburg effect publication-title: Nat. Metab. doi: 10.1038/s42255-020-0172-2 – volume: 62 start-page: 56 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib51 article-title: Maintenance of cellular respiration indicates drug resistance in acute myeloid leukemia publication-title: Leuk. Res. doi: 10.1016/j.leukres.2017.09.021 – volume: 20 start-page: 674 year: 2011 ident: 10.1016/j.cmet.2020.06.019_bib120 article-title: Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.10.015 – volume: 24 start-page: 1036 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib90 article-title: An inhibitor of oxidative phosphorylation exploits cancer vulnerability publication-title: Nat. Med. doi: 10.1038/s41591-018-0052-4 – volume: 20 start-page: 5255 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib100 article-title: A phase I study of the first-in-class antimitochondrial metabolism agent, CPI-613, in patients with advanced hematologic malignancies publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-1019 – volume: 267 start-page: 2079 year: 2000 ident: 10.1016/j.cmet.2020.06.019_bib105 article-title: Requirements for the mitochondrial import and localization of dihydroorotate dehydrogenase publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.2000.01213.x – volume: 565 start-page: 495 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib135 article-title: Mitochondrial complex III is essential for suppressive function of regulatory T cells publication-title: Nature doi: 10.1038/s41586-018-0846-z – volume: 125 start-page: 2293 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib139 article-title: Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis publication-title: J. Clin. Invest. doi: 10.1172/JCI75836 – volume: 16 start-page: 769 year: 2002 ident: 10.1016/j.cmet.2020.06.019_bib41 article-title: The CD28 signaling pathway regulates glucose metabolism publication-title: Immunity doi: 10.1016/S1074-7613(02)00323-0 – volume: 537 start-page: 544 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib112 article-title: Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition publication-title: Nature doi: 10.1038/nature19353 – volume: 51 start-page: 236 year: 2013 ident: 10.1016/j.cmet.2020.06.019_bib122 article-title: The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.05.003 – volume: 26 start-page: 1326 year: 2012 ident: 10.1016/j.cmet.2020.06.019_bib140 article-title: Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors publication-title: Genes Dev. doi: 10.1101/gad.191056.112 – volume: 27 start-page: VI228 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib2 article-title: CPI-613 enhances FOLFIRINOX response rate in stage IV pancreatic cancer publication-title: Ann. Oncol. doi: 10.1093/annonc/mdw371.67 – volume: 551 start-page: 115 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib55 article-title: Glucose feeds the TCA cycle via circulating lactate publication-title: Nature doi: 10.1038/nature24057 – volume: 9 start-page: 1006 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib75 article-title: The metabolic basis of kidney cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-18-1354 – year: 2020 ident: 10.1016/j.cmet.2020.06.019_bib82 article-title: Mitochondrial ubiquinol oxidation is necessary for tumour growth publication-title: Nature doi: 10.1038/s41586-020-2475-6 – volume: 38 start-page: 225 year: 2013 ident: 10.1016/j.cmet.2020.06.019_bib113 article-title: Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling publication-title: Immunity doi: 10.1016/j.immuni.2012.10.020 – volume: 7 start-page: 716 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib37 article-title: Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-0441 – volume: 48 start-page: R31 year: 2012 ident: 10.1016/j.cmet.2020.06.019_bib31 article-title: Metformin in cancer: translational challenges publication-title: J. Mol. Endocrinol. doi: 10.1530/JME-12-0007 – volume: 24 start-page: 213 year: 2013 ident: 10.1016/j.cmet.2020.06.019_bib102 article-title: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.06.014 – volume: 61 start-page: 667 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib146 article-title: Mitochondria and cancer publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.02.011 – volume: 11 start-page: 325 year: 2011 ident: 10.1016/j.cmet.2020.06.019_bib62 article-title: Otto Warburg’s contributions to current concepts of cancer metabolism publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3038 – volume: 162 start-page: 552 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib123 article-title: Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells publication-title: Cell doi: 10.1016/j.cell.2015.07.017 – volume: 23 start-page: 1234 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib64 article-title: Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells publication-title: Nat. Med. doi: 10.1038/nm.4399 – volume: 25 start-page: 460 year: 2011 ident: 10.1016/j.cmet.2020.06.019_bib48 article-title: Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis publication-title: Genes Dev. doi: 10.1101/gad.2016311 – volume: 3 start-page: 1066 year: 2010 ident: 10.1016/j.cmet.2020.06.019_bib85 article-title: Metformin prevents tobacco carcinogen--induced lung tumorigenesis publication-title: Cancer Prev. Res. (Phila.) doi: 10.1158/1940-6207.CAPR-10-0055 – volume: 348 start-page: 607 year: 2000 ident: 10.1016/j.cmet.2020.06.019_bib99 article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain publication-title: Biochem. J. doi: 10.1042/bj3480607 – volume: 36 start-page: 369 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib47 article-title: Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.08.005 – volume: 17 start-page: 372 year: 2013 ident: 10.1016/j.cmet.2020.06.019_bib43 article-title: In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.02.002 – volume: 2 start-page: e93411 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib119 article-title: Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma publication-title: JCI Insight doi: 10.1172/jci.insight.93411 – volume: 162 start-page: 540 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib11 article-title: An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis publication-title: Cell doi: 10.1016/j.cell.2015.07.016 – volume: 12 start-page: 159 year: 2012 ident: 10.1016/j.cmet.2020.06.019_bib103 article-title: The insulin and insulin-like growth factor receptor family in neoplasia: an update publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3215 – volume: 4 start-page: 1290 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib116 article-title: L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0696 – volume: 28 start-page: 793 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib27 article-title: Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.07.020 – volume: 73 start-page: 4429 year: 2013 ident: 10.1016/j.cmet.2020.06.019_bib39 article-title: Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-0080 – volume: 293 start-page: 15947 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib143 article-title: Double genetic disruption of lactate dehydrogenases A and B is required to ablate the “Warburg effect” restricting tumor growth to oxidative metabolism publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.004180 – volume: 13 start-page: 1895 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib59 article-title: The genomic landscape of renal oncocytoma identifies a metabolic barrier to tumorigenesis publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.10.059 – volume: 9 start-page: 2095 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib23 article-title: mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis publication-title: Nat. Commun. doi: 10.1038/s41467-018-04392-5 – volume: 121 start-page: 1349 year: 2011 ident: 10.1016/j.cmet.2020.06.019_bib118 article-title: Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells publication-title: J. Clin. Invest. doi: 10.1172/JCI44855 – volume: 15 start-page: 110 year: 2012 ident: 10.1016/j.cmet.2020.06.019_bib68 article-title: Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.12.009 – volume: 567 start-page: 341 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib115 article-title: Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma publication-title: Nature doi: 10.1038/s41586-019-0993-x – volume: 26 start-page: 633 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib70 article-title: MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.09.009 – volume: 45 start-page: 374 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib111 article-title: The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction publication-title: Immunity doi: 10.1016/j.immuni.2016.07.009 – volume: 2 start-page: 4 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib121 article-title: A strategically designed small molecule attacks alpha-ketoglutarate dehydrogenase in tumor cells through a redox process publication-title: Cancer Metab. doi: 10.1186/2049-3002-2-4 – volume: 462 start-page: 475 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib12 article-title: Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria publication-title: Biochem. J. doi: 10.1042/BJ20140620 – volume: 7 start-page: 391 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib13 article-title: Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-0611 – volume: 67 start-page: 6745 year: 2007 ident: 10.1016/j.cmet.2020.06.019_bib15 article-title: Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-4447 – volume: 75 start-page: 1131 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib73 article-title: Structures of respiratory supercomplex I+III2 reveal functional and conformational crosstalk publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.07.022 – volume: 28 start-page: 679 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib77 article-title: Integrated pharmacodynamic analysis identifies two metabolic adaption pathways to metformin in breast cancer publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.08.021 – volume: 24 start-page: 728 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib76 article-title: Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.09.005 – volume: 29 start-page: 3009 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib61 article-title: Metabolic rewiring in response to biguanides is mediated by mROS/HIF-1a in malignant lymphocytes publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.11.007 – volume: 2 start-page: e1600200 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib28 article-title: Fundamentals of cancer metabolism publication-title: Sci. Adv. doi: 10.1126/sciadv.1600200 – volume: 330 start-page: 1304 year: 2005 ident: 10.1016/j.cmet.2020.06.019_bib35 article-title: Metformin and reduced risk of cancer in diabetic patients publication-title: BMJ doi: 10.1136/bmj.38415.708634.F7 – volume: 9 start-page: 425 year: 2006 ident: 10.1016/j.cmet.2020.06.019_bib36 article-title: Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.04.023 – volume: 69 start-page: 7507 year: 2009 ident: 10.1016/j.cmet.2020.06.019_bib53 article-title: Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-2994 – volume: 162 start-page: 1229 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib22 article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression publication-title: Cell doi: 10.1016/j.cell.2015.08.016 – volume: 282 start-page: 2796 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib97 article-title: Oncometabolites: tailoring our genes publication-title: FEBS J. doi: 10.1111/febs.13295 – volume: 51 start-page: 856 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib79 article-title: Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells publication-title: Immunity doi: 10.1016/j.immuni.2019.09.003 – volume: 23 start-page: 567 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib32 article-title: Metformin pharmacokinetics in mouse tumors: implications for human therapy publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.03.006 – volume: 571 start-page: 403 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib6 article-title: Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function publication-title: Nature doi: 10.1038/s41586-019-1311-3 – volume: 7 start-page: 380 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib83 article-title: PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-0612 – volume: 12 start-page: e11217 year: 2020 ident: 10.1016/j.cmet.2020.06.019_bib67 article-title: Tumors defective in homologous recombination rely on oxidative metabolism: relevance to treatments with PARP inhibitors publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201911217 – volume: 168 start-page: 657 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib129 article-title: Understanding the intersections between metabolism and cancer biology publication-title: Cell doi: 10.1016/j.cell.2016.12.039 – volume: 175 start-page: 1780 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib58 article-title: Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism publication-title: Cell doi: 10.1016/j.cell.2018.10.001 – volume: 2 start-page: 266 year: 2002 ident: 10.1016/j.cmet.2020.06.019_bib56 article-title: Dissecting tumour pathophysiology using intravital microscopy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc778 – volume: 164 start-page: 681 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib52 article-title: Metabolic heterogeneity in human lung tumors publication-title: Cell doi: 10.1016/j.cell.2015.12.034 – volume: 5 start-page: e10769 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib106 article-title: Mitochondrial DNA copy number variation across human cancers publication-title: eLife doi: 10.7554/eLife.10769 – volume: 5 start-page: x9484 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib101 article-title: High-resolution cryo-EM structures of respiratory complex I: mechanism, assembly, and disease publication-title: Sci. Adv. doi: 10.1126/sciadv.aax9484 – volume: 9 start-page: 1107 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib66 article-title: A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage publication-title: Nat. Commun. doi: 10.1038/s41467-018-03441-3 – volume: 70 start-page: 83 year: 2008 ident: 10.1016/j.cmet.2020.06.019_bib89 article-title: High resolution X-ray crystallographic structure of bovine heart cytochrome c and its application to the design of an electron transfer biosensor publication-title: Proteins doi: 10.1002/prot.21452 – volume: 5 start-page: e133247 year: 2020 ident: 10.1016/j.cmet.2020.06.019_bib14 article-title: Phase II clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer publication-title: JCI Insight – volume: 11 start-page: eaaw7852 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib74 article-title: Identification of DHODH as a therapeutic target in small cell lung cancer publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaw7852 – volume: 10 start-page: eaat5933 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib110 article-title: Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aat5933 – year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib30 article-title: Extracting biological insights from the Project Achilles genome-scale CRISPR screens in cancer cell lines publication-title: bioRxiv – volume: 275 start-page: 223 year: 2000 ident: 10.1016/j.cmet.2020.06.019_bib33 article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.1.223 – volume: 15 start-page: 2705 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib95 article-title: Targeting tumor mitochondrial metabolism overcomes resistance to antiangiogenics publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.05.052 – volume: 13 start-page: e1002309 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib46 article-title: Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002309 – volume: 126 start-page: 1834 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib144 article-title: Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors publication-title: J. Clin. Invest. doi: 10.1172/JCI82661 – volume: 5 start-page: e192553 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib5 article-title: Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: a phase 2 randomized clinical trial publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2019.2553 – volume: 568 start-page: 254 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib71 article-title: Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism publication-title: Nature doi: 10.1038/s41586-019-1005-x – volume: 23 start-page: 569 year: 2016 ident: 10.1016/j.cmet.2020.06.019_bib21 article-title: Are metformin doses used in murine cancer models clinically relevant? publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.03.010 – volume: 22 start-page: 893 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib125 article-title: The emergence of dihydroorotate dehydrogenase (DHODH) as a therapeutic target in acute myeloid leukemia publication-title: Expert Opin. Ther. Targets doi: 10.1080/14728222.2018.1536748 – volume: 26 start-page: 49 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib4 article-title: Similarities and distinctions of cancer and immune metabolism in inflammation and tumors publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.06.004 – volume: 112 start-page: 6539 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib117 article-title: MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1507228112 – volume: 176 start-page: 82 year: 1976 ident: 10.1016/j.cmet.2020.06.019_bib24 article-title: The cellular location of dihydroorotate dehydrogenase: relation to de novo biosynthesis of pyrimidines publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(76)90143-0 – volume: 508 start-page: 108 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib10 article-title: Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides publication-title: Nature doi: 10.1038/nature13110 – volume: 40 start-page: 692 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib94 article-title: Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation publication-title: Immunity doi: 10.1016/j.immuni.2014.04.007 – volume: 368 start-page: 1 year: 2020 ident: 10.1016/j.cmet.2020.06.019_bib38 article-title: Metabolic reprogramming and cancer progression publication-title: Science doi: 10.1126/science.aaw5473 – volume: 10 start-page: 903 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib65 article-title: Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses publication-title: Nat. Commun. doi: 10.1038/s41467-019-08839-1 – volume: 30 start-page: 1798 year: 2020 ident: 10.1016/j.cmet.2020.06.019_bib98 article-title: Dynamic imaging of LDH inhibition in tumors reveals rapid in vivo metabolic rewiring and vulnerability to combination therapy publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.01.039 – volume: 23 start-page: 1362 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib107 article-title: Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis publication-title: Nat. Med. doi: 10.1038/nm.4407 – volume: 575 start-page: 380 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib91 article-title: In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer publication-title: Nature doi: 10.1038/s41586-019-1715-0 – volume: 11 start-page: eaau4972 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib132 article-title: Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aau4972 – volume: 107 start-page: 8788 year: 2010 ident: 10.1016/j.cmet.2020.06.019_bib134 article-title: Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1003428107 – volume: 6 start-page: 10 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib84 article-title: Hexokinase 2 is dispensable for T cell-dependent immunity publication-title: Cancer Metab. doi: 10.1186/s40170-018-0184-5 – volume: 25 start-page: 1234 year: 2012 ident: 10.1016/j.cmet.2020.06.019_bib81 article-title: Metabolism of [U-13 C]glucose in human brain tumors in vivo publication-title: NMR Biomed. doi: 10.1002/nbm.2794 – volume: 23 start-page: 3621 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib54 article-title: Energy metabolism rewiring precedes UVB-induced primary skin tumor formation publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.060 – volume: 144 start-page: 646 year: 2011 ident: 10.1016/j.cmet.2020.06.019_bib50 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 25 start-page: 705 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib63 article-title: Dependence on the pyrimidine biosynthetic enzyme DHODH is a synthetic lethal vulnerability in mutant KRAS-driven cancers publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.03.005 – volume: 481 start-page: 380 year: 2011 ident: 10.1016/j.cmet.2020.06.019_bib87 article-title: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia publication-title: Nature doi: 10.1038/nature10602 – volume: 176 start-page: 2724 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib16 article-title: Efficacious dose of metformin for breast cancer therapy is determined by cation transporter expression in tumours publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14694 – volume: 31 start-page: 809 year: 2020 ident: 10.1016/j.cmet.2020.06.019_bib141 article-title: Serine catabolism feeds NADH when respiration is impaired publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.02.017 – volume: 107 start-page: djv006 year: 2015 ident: 10.1016/j.cmet.2020.06.019_bib45 article-title: Effect of metformin vs placebo on and metabolic factors in NCIC CTG MA.32 publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djv006 – volume: 111 start-page: 10574 year: 2014 ident: 10.1016/j.cmet.2020.06.019_bib57 article-title: Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1409844111 – volume: 28 start-page: 159 year: 2019 ident: 10.1016/j.cmet.2020.06.019_bib42 article-title: Requirement of mitochondrial transcription factor A in tissue-resident regulatory T cell maintenance and function publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.06.024 – volume: 9 start-page: 3962 year: 2018 ident: 10.1016/j.cmet.2020.06.019_bib109 article-title: Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome publication-title: Nat. Commun. doi: 10.1038/s41467-018-06485-7 – volume: 49 start-page: 1779 year: 2017 ident: 10.1016/j.cmet.2020.06.019_bib88 article-title: Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells publication-title: Nat. Genet. doi: 10.1038/ng.3984 |
SSID | ssj0036393 |
Score | 2.708296 |
SecondaryResourceType | review_article |
Snippet | Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 341 |
SubjectTerms | Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Humans metformin mitochondria Mitochondria - drug effects Mitochondria - metabolism Neoplasms - drug therapy Neoplasms - metabolism |
Title | Mitochondrial Metabolism as a Target for Cancer Therapy |
URI | https://dx.doi.org/10.1016/j.cmet.2020.06.019 https://www.ncbi.nlm.nih.gov/pubmed/32668195 https://www.proquest.com/docview/2424442765 https://pubmed.ncbi.nlm.nih.gov/PMC7483781 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA4iCF5EXR-jrvSCN2mmO49K-qjDiizMXhxhbiGdpHFEW3HGg__eqn4MO7p48NjdFQhVyVfV5KsvjJ15w4UsXJEarmNK6Jcaj48qqwSYoIsqUIPz-C9c38o_UzVdY6O-F4ZolR32t5jeoHX3Zth5c_g8mw1vqLhGCM45rlPBsynisJCmaeKbXvZoLDADNyR7NE7JumucaTle_jESn5JnjYYnqe38Pzl9Lj4_cij_SUpX22yrqyaTi3bCO2wt1rtso71f8u0H02Pcr4hvdaBllozjAkP-MJs_Jm6euGTSsMATLFuTEQX_JZm0GgN77Pbq92R0nXY3JaReKrVIFeBvEkBVxgwigOe6UCFi9VSVZWWg9MKBMwVoHaQSQZrKhFKHEJSKmPMLsc_W66c6HhLVSYqyAp0FJ6QDcCHPPFQZ8Ajc-XLA8t5F1ncy4nSbxYPt-WL3ltxqya2WSHN5MWDnyzHPrYjGl9aq97xdWQoWUf7Lcb_6MFncI3Tw4er49Dq31AIjJdegBuygDdtyHli-Ap0lDpheCejSgPS3V7_Us7tGh1s3avz50Tfne8w26aklrJ2w9cXLa_yJFc6iPG2W8Dv1OPie |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6DsN2KfZe2j08YLfBiK0HZR_bYEW6Nb0sBXITZEnGMrRu0aSH_fuSfgTLNvSwo20KEEiK_Ax9JAE--UJIVboyLYSJKUe_tPD0qLNaYhFMWQcucJ6d4fRcfV3oxQ5MhloYplX2sb-L6W207t-Me22Or5fL8XcG1xSCc0F-KkW2eAAPCQ0Ynt9wsjgawrGkFNyy7Ek6ZfG-cqYjefnLyIRKkbVNPLndzr-z09_o808S5W9Z6fgp7PVwMjnsdvwMdmLzHB51AyZ_vQAzowNLAa4J7GfJLK7J5hfL1WXiVolL5i0NPCHcmkzY-jfJvGsy8BLOj7_MJ9O0H5WQeqX1OtVI_0mIdRUzjIhemFKHSPCprqq6wMpLh64o0ZigtAyqqItQmRCC1pGSfilfwW5z1cQ3zHVSsqpJj8FJ5RBdyDOPdYYionC-GkE-qMj6vo84j7O4sANh7KdltVpWq2XWXF6O4PNmzXXXReNeaT1o3m75gqUwf--6j4OZLB0SvvlwTby6XVmugVFKGNQjeN2ZbbMPwq_Il4kjMFsG3QhwA-7tL83yR9uI27Tt-PP9_9zvB3g8nc9O7enJ2bcDeMJfOvbaW9hd39zGdwR31tX71p3vAHgh-70 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+Metabolism+as+a+Target+for+Cancer+Therapy&rft.jtitle=Cell+metabolism&rft.au=Vasan%2C+Karthik&rft.au=Werner%2C+Marie&rft.au=Chandel%2C+Navdeep+S&rft.date=2020-09-01&rft.eissn=1932-7420&rft.volume=32&rft.issue=3&rft.spage=341&rft_id=info:doi/10.1016%2Fj.cmet.2020.06.019&rft_id=info%3Apmid%2F32668195&rft.externalDocID=32668195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |