PPARs-Orchestrated Metabolic Homeostasis in the Adipose Tissue

It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention du...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 16; p. 8974
Main Authors Sun, Chen, Mao, Shuyu, Chen, Siyu, Zhang, Wenxiang, Liu, Chang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 20.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention due to their ability to improve metabolic syndromes, and they have also been proposed as classical drug targets for the treatment of hyperlipidemia and type 2 diabetes (T2D) mellitus. In parallel, adipose tissue is known to play a unique role in the pathogenesis of insulin resistance and metabolic syndromes due to its ability to “safely” store lipids and secrete cytokines that regulate whole-body metabolism. Adipose tissue relies on a complex and subtle network of transcription factors to maintain its normal physiological function, by coordinating various molecular events, among which PPARs play distinctive and indispensable roles in adipocyte differentiation, lipid metabolism, adipokine secretion, and insulin sensitivity. In this review, we discuss the characteristics of PPARs with special emphasis on the roles of the different isotypes in adipocyte biology.
AbstractList It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention due to their ability to improve metabolic syndromes, and they have also been proposed as classical drug targets for the treatment of hyperlipidemia and type 2 diabetes (T2D) mellitus. In parallel, adipose tissue is known to play a unique role in the pathogenesis of insulin resistance and metabolic syndromes due to its ability to “safely” store lipids and secrete cytokines that regulate whole-body metabolism. Adipose tissue relies on a complex and subtle network of transcription factors to maintain its normal physiological function, by coordinating various molecular events, among which PPARs play distinctive and indispensable roles in adipocyte differentiation, lipid metabolism, adipokine secretion, and insulin sensitivity. In this review, we discuss the characteristics of PPARs with special emphasis on the roles of the different isotypes in adipocyte biology.
It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention due to their ability to improve metabolic syndromes, and they have also been proposed as classical drug targets for the treatment of hyperlipidemia and type 2 diabetes (T2D) mellitus. In parallel, adipose tissue is known to play a unique role in the pathogenesis of insulin resistance and metabolic syndromes due to its ability to "safely" store lipids and secrete cytokines that regulate whole-body metabolism. Adipose tissue relies on a complex and subtle network of transcription factors to maintain its normal physiological function, by coordinating various molecular events, among which PPARs play distinctive and indispensable roles in adipocyte differentiation, lipid metabolism, adipokine secretion, and insulin sensitivity. In this review, we discuss the characteristics of PPARs with special emphasis on the roles of the different isotypes in adipocyte biology.It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention due to their ability to improve metabolic syndromes, and they have also been proposed as classical drug targets for the treatment of hyperlipidemia and type 2 diabetes (T2D) mellitus. In parallel, adipose tissue is known to play a unique role in the pathogenesis of insulin resistance and metabolic syndromes due to its ability to "safely" store lipids and secrete cytokines that regulate whole-body metabolism. Adipose tissue relies on a complex and subtle network of transcription factors to maintain its normal physiological function, by coordinating various molecular events, among which PPARs play distinctive and indispensable roles in adipocyte differentiation, lipid metabolism, adipokine secretion, and insulin sensitivity. In this review, we discuss the characteristics of PPARs with special emphasis on the roles of the different isotypes in adipocyte biology.
Author Sun, Chen
Mao, Shuyu
Zhang, Wenxiang
Chen, Siyu
Liu, Chang
AuthorAffiliation 2 State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; 3220030438@stu.cpu.edu.cn (S.M.); siyuchen@cpu.edu.cn (S.C.); wenxiangzhang@cpu.edu.cn (W.Z.)
1 College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; 3119030134@stu.cpu.edu.cn
AuthorAffiliation_xml – name: 1 College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; 3119030134@stu.cpu.edu.cn
– name: 2 State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; 3220030438@stu.cpu.edu.cn (S.M.); siyuchen@cpu.edu.cn (S.C.); wenxiangzhang@cpu.edu.cn (W.Z.)
Author_xml – sequence: 1
  givenname: Chen
  surname: Sun
  fullname: Sun, Chen
– sequence: 2
  givenname: Shuyu
  surname: Mao
  fullname: Mao, Shuyu
– sequence: 3
  givenname: Siyu
  orcidid: 0000-0002-3809-1062
  surname: Chen
  fullname: Chen, Siyu
– sequence: 4
  givenname: Wenxiang
  orcidid: 0000-0002-1077-8014
  surname: Zhang
  fullname: Zhang, Wenxiang
– sequence: 5
  givenname: Chang
  orcidid: 0000-0001-9251-708X
  surname: Liu
  fullname: Liu, Chang
BookMark eNptkUtLw0AUhQepaFvd-QMCblwYnXcym0IpvqBSEV0Pk5kbOyXJ1Ewi-O-NVETF1b1wv3s4hzNBoyY0gNAJwReMKXzpN3WklMhcZXwPjQmnNMVYZqMf-yGaxLjBmDIq1AE6ZJxzITM1RrOHh_ljTFetXUPsWtOBS-6hM0WovE1uQw0hdib6mPgm6daQzJ3fhgjJk4-xhyO0X5oqwvHXnKLn66unxW26XN3cLebL1HIhulRIWmbWGSCqJM4Q5TIwpCTcUlpkDmRmCKbSSZVJZSW1uRKMcGGEsc4VhE3RbKe77YsanIVm8Frpbetr077rYLz-fWn8Wr-EN50zJSVWg8DZl0AbXvshqq59tFBVpoHQR03FgHHGBBvQ0z_oJvRtM8TTVFJOOc5JPlDnO8q2IcYWym8zBOvPYvTPYgac_sGt70znw6ddX_3_9AFxaJI9
CitedBy_id crossref_primary_10_1016_j_biopha_2024_117496
crossref_primary_10_1080_03602532_2023_2215478
crossref_primary_10_1210_endocr_bqad024
crossref_primary_10_3390_biom14121607
crossref_primary_10_3390_molecules27092800
crossref_primary_10_3390_ijms241713325
crossref_primary_10_1016_j_chembiol_2023_05_003
crossref_primary_10_1002_mnfr_202101015
crossref_primary_10_1111_jcmm_70332
crossref_primary_10_3390_cells11243959
crossref_primary_10_1186_s13765_024_00889_4
crossref_primary_10_1210_clinem_dgae542
crossref_primary_10_1007_s00109_024_02459_z
crossref_primary_10_3389_fvets_2022_946447
crossref_primary_10_3389_fcvm_2022_808929
crossref_primary_10_1016_j_abb_2022_109445
crossref_primary_10_3390_ijms23095025
crossref_primary_10_3390_ph15030363
crossref_primary_10_1016_j_pestbp_2023_105739
crossref_primary_10_1016_j_phrs_2022_106281
crossref_primary_10_3390_ijms26031177
crossref_primary_10_1016_j_jtumed_2024_12_008
crossref_primary_10_3390_nu16183174
crossref_primary_10_1016_j_biopha_2023_115424
crossref_primary_10_3390_ph17070967
crossref_primary_10_3390_foods11142134
crossref_primary_10_3390_biomedicines12081876
crossref_primary_10_1016_j_toxlet_2025_01_008
crossref_primary_10_3390_genes15070875
crossref_primary_10_3389_fnut_2022_1019259
crossref_primary_10_1080_00071668_2024_2383940
crossref_primary_10_3390_antiox10122015
crossref_primary_10_1021_acs_molpharmaceut_4c00886
crossref_primary_10_3390_ijms242015100
crossref_primary_10_1210_endocr_bqad019
crossref_primary_10_3390_cells11020300
crossref_primary_10_3390_ijerph192315492
crossref_primary_10_1016_j_jff_2022_105141
crossref_primary_10_1111_jbg_12841
crossref_primary_10_1016_j_eurox_2024_100334
crossref_primary_10_3390_nu16183063
crossref_primary_10_3892_br_2024_1852
crossref_primary_10_3390_obesities4030020
crossref_primary_10_3390_ph16111607
crossref_primary_10_14202_vetworld_2022_173_181
crossref_primary_10_1007_s00210_024_03661_z
crossref_primary_10_3390_molecules28207115
crossref_primary_10_3390_cancers15154013
crossref_primary_10_3390_ijms24043412
crossref_primary_10_1002_jsfa_12352
crossref_primary_10_3390_jcm12082882
crossref_primary_10_1080_1028415X_2024_2316448
crossref_primary_10_3390_toxics13030222
crossref_primary_10_1021_acsnano_4c10742
crossref_primary_10_3390_md22080330
crossref_primary_10_3390_nu16020329
crossref_primary_10_3390_nu16101514
crossref_primary_10_1038_s41598_022_25012_9
crossref_primary_10_1016_j_jksus_2022_102116
crossref_primary_10_3390_ijms26041778
crossref_primary_10_3390_app14219994
crossref_primary_10_1016_j_lfs_2023_121668
crossref_primary_10_3390_molecules29040758
crossref_primary_10_1002_ptr_8196
crossref_primary_10_1093_advances_nmac073
crossref_primary_10_1016_j_ebiom_2024_105293
crossref_primary_10_1016_j_ijheh_2023_114124
crossref_primary_10_1007_s00210_023_02771_4
crossref_primary_10_3390_cells13131081
crossref_primary_10_1096_fj_202402470R
crossref_primary_10_3390_nu16101441
crossref_primary_10_3390_app13116489
Cites_doi 10.2337/db06-1465
10.1101/gad.953802
10.1371/journal.pone.0195007
10.2337/diab.46.8.1319
10.1038/s41598-020-71100-z
10.1073/pnas.2536828100
10.3390/ijms21083020
10.1124/mol.108.044826
10.1007/s00424-004-1353-7
10.1096/fj.201900909RR
10.1517/14728222.9.4.861
10.1111/bcpt.13190
10.1515/hmbci-2013-0028
10.3390/ijms19072124
10.1016/j.nut.2020.110791
10.1194/jlr.M700199-JLR200
10.1016/j.cell.2012.05.016
10.1016/S0303-7207(99)00081-7
10.1073/pnas.91.15.7355
10.1074/jbc.M005567200
10.1152/ajpregu.00821.2009
10.1016/j.yexcr.2013.04.007
10.1038/s41580-018-0093-z
10.1016/j.cmet.2016.10.005
10.1152/ajpendo.00035.2008
10.1152/ajpregu.90552.2008
10.1007/s00125-006-0336-y
10.1016/j.cell.2012.06.027
10.1016/j.cmet.2008.04.002
10.1038/sj.ijo.0801492
10.1016/j.molmet.2018.01.023
10.1016/j.gene.2020.145100
10.2337/db10-0704
10.1101/gad.1709008
10.1016/j.jprot.2018.01.010
10.3390/ijms19061738
10.1016/j.cmet.2012.01.019
10.1038/nm.3159
10.1038/ijo.2013.116
10.1016/j.cell.2009.01.051
10.3389/fendo.2011.00084
10.1194/jlr.M011320
10.1210/endo.135.2.8033830
10.1016/j.cmet.2013.01.015
10.1016/j.bbrc.2011.03.106
10.1101/gad.250829.114
10.1016/j.celrep.2018.07.063
10.1172/JCI98709
10.1038/nrendo.2013.204
10.1152/ajpendo.00394.2018
10.1016/j.coph.2017.07.004
10.1172/JCI129190
10.1210/en.2007-1553
10.2337/diabetes.54.12.3358
10.1242/jeb.162958
10.1007/s00360-015-0907-7
10.1371/journal.pgen.0030064
10.1371/journal.pone.0122584
10.1073/pnas.1906712116
10.1128/MCB.00601-18
10.1038/347645a0
10.1074/jbc.M103241200
10.1152/ajpregu.91012.2008
10.1186/1478-1336-1-9
10.1172/JCI118703
10.1080/17512433.2018.1537780
10.1038/cddis.2016.388
10.1073/pnas.211416898
10.1016/S1097-2765(00)80209-9
10.1016/j.mce.2014.12.027
10.1016/j.celrep.2020.02.032
10.1128/MCB.20.14.5119-5128.2000
10.1074/jbc.274.31.21920
10.1172/JCI28003
10.1074/jbc.271.47.29909
10.1128/MCB.01899-08
10.1007/s11892-021-01385-5
10.1073/pnas.0400356101
10.1074/jbc.M111.252775
10.1016/B978-0-12-398313-8.00006-3
10.1080/15257770.2018.1475673
10.1016/S0092-8674(03)00269-1
10.3389/fcvm.2020.00022
10.1042/BJ20031622
10.1073/pnas.1314863110
10.1038/ncomms15253
10.1073/pnas.0306743102
10.2217/clp.09.45
10.1016/j.bbrc.2005.08.041
10.1371/journal.pone.0191365
10.3390/ijms22094624
10.2337/diabetes.48.4.699
10.1016/j.celrep.2017.12.067
10.1016/S1097-2765(00)80211-7
10.1172/JCI21752
10.1172/JCI129187
10.1111/acel.12721
10.1007/s11745-011-3615-4
10.1146/annurev.biochem.77.061307.091829
10.1016/j.molmet.2016.03.002
10.1101/gad.8.10.1224
10.1136/gutjnl-2015-310798
10.1111/j.1365-2443.2009.01368.x
10.1016/j.jbc.2021.100941
10.1074/jbc.M109.053942
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.3390/ijms22168974
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8396609
10_3390_ijms22168974
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c455t-562f7cdae19f1da19d7ea1f14c22b7de67a1026d69769c62c8953145a5acddb13
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:39:54 EDT 2025
Sun Aug 24 04:14:02 EDT 2025
Fri Jul 25 20:35:11 EDT 2025
Tue Jul 01 03:07:48 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-562f7cdae19f1da19d7ea1f14c22b7de67a1026d69769c62c8953145a5acddb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9251-708X
0000-0002-3809-1062
0000-0002-1077-8014
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22168974
PMID 34445679
PQID 2624240818
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8396609
proquest_miscellaneous_2566043353
proquest_journals_2624240818
crossref_primary_10_3390_ijms22168974
crossref_citationtrail_10_3390_ijms22168974
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210820
PublicationDateYYYYMMDD 2021-08-20
PublicationDate_xml – month: 8
  year: 2021
  text: 20210820
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle International journal of molecular sciences
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_47) 2018; 115
Rodriguez (ref_39) 2017; 1862
Ren (ref_24) 2002; 16
Wang (ref_87) 2013; 319
Bedu (ref_9) 2005; 9
Ohno (ref_72) 2012; 15
Wang (ref_102) 2003; 113
ref_10
Spiegelman (ref_57) 2000; 24
Vosper (ref_98) 2003; 1
Xu (ref_78) 2018; 17
Bastie (ref_99) 1999; 274
Oelkrug (ref_53) 2015; 185
Rajakumari (ref_56) 2013; 17
ref_25
Kahn (ref_2) 2019; 129
Shi (ref_42) 2021; 297
Goto (ref_81) 2011; 52
Festuccia (ref_62) 2010; 299
Virtue (ref_27) 2018; 24
Spalding (ref_11) 2017; 8
Kraakman (ref_77) 2018; 128
Auboeuf (ref_79) 1997; 46
Hondares (ref_91) 2011; 286
Montagner (ref_90) 2016; 65
Barquissau (ref_94) 2016; 5
Kliewer (ref_8) 1994; 91
Festuccia (ref_59) 2009; 4
Mazzucotelli (ref_83) 2007; 56
Miranda (ref_93) 2020; 78
Ahmadian (ref_5) 2013; 19
Komatsu (ref_92) 2010; 15
Semple (ref_29) 2006; 116
Montgomery (ref_85) 2019; 33
Bond (ref_43) 2019; 316
Petrovic (ref_52) 2008; 295
Jones (ref_19) 2005; 102
Tong (ref_89) 2005; 336
Rieusset (ref_34) 1999; 48
Chait (ref_1) 2020; 7
Wang (ref_71) 2016; 24
Defour (ref_97) 2018; 10
Kang (ref_105) 2008; 7
Festuccia (ref_65) 2011; 2
Schoettl (ref_14) 2018; 221
Wu (ref_69) 2012; 150
Peters (ref_101) 2000; 20
Lowell (ref_35) 1996; 97
Rosen (ref_17) 1999; 4
Shen (ref_95) 2020; 30
Muise (ref_44) 2008; 74
Qiang (ref_74) 2012; 150
Barak (ref_18) 1999; 4
Astapova (ref_45) 2012; 90
Chalise (ref_26) 2019; 116
Festuccia (ref_60) 2009; 296
Liu (ref_88) 2016; 7
Li (ref_38) 2018; 37
Chawla (ref_15) 1994; 135
Lee (ref_82) 2011; 407
MacLaren (ref_80) 2008; 49
Laplante (ref_61) 2009; 296
Tontonoz (ref_16) 1994; 8
ref_55
Hansen (ref_100) 2001; 276
Lindgren (ref_49) 2004; 382
Mann (ref_28) 2019; 129
Taylor (ref_33) 2020; 10
Palomer (ref_104) 2011; 60
Yamauchi (ref_32) 2001; 276
Tsuchida (ref_86) 2005; 54
Lykkesfeldt (ref_37) 2019; 124
Cataldi (ref_4) 2021; 21
Miranda (ref_84) 2011; 46
ref_68
Zhu (ref_46) 2020; 764
ref_64
Moura (ref_58) 2005; 449
Lasar (ref_66) 2018; 22
Vernochet (ref_76) 2009; 29
Lee (ref_22) 2019; 39
Imai (ref_30) 2004; 101
He (ref_31) 2003; 100
Pan (ref_106) 2009; 137
(ref_7) 2018; 11
Wang (ref_20) 2013; 110
Ghaben (ref_21) 2019; 20
Petrovic (ref_70) 2010; 285
Loft (ref_75) 2015; 29
Gao (ref_67) 2018; 176
Sodhi (ref_103) 2014; 38
Festuccia (ref_41) 2006; 49
Tai (ref_51) 1996; 271
Christian (ref_40) 2013; 14
ref_108
ref_107
Bartelt (ref_13) 2014; 10
Lefterova (ref_23) 2008; 22
Valmaseda (ref_50) 1999; 154
Tontonoz (ref_36) 2008; 77
ref_3
Linhart (ref_54) 2001; 98
Nicoloro (ref_73) 2004; 114
Issemann (ref_6) 1990; 347
ref_48
Bhatt (ref_12) 2017; 37
Rachid (ref_96) 2015; 402
Festuccia (ref_63) 2008; 149
References_xml – volume: 56
  start-page: 2467
  year: 2007
  ident: ref_83
  article-title: The transcriptional coactivator peroxisome proliferator–activated receptor (PPAR) γ coactivator-1α and the nuclear receptor PPARα control the expression of glycerol kinase and metabolism genes independently of PPARγ activation in human white adipocytes
  publication-title: Diabetes
  doi: 10.2337/db06-1465
– volume: 16
  start-page: 27
  year: 2002
  ident: ref_24
  article-title: PPARγ knockdown by engineered transcription factors: Exogenous PPARγ2 but not PPARγ1 reactivates adipogenesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.953802
– ident: ref_68
  doi: 10.1371/journal.pone.0195007
– volume: 46
  start-page: 1319
  year: 1997
  ident: ref_79
  article-title: Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator–activated receptors and liver X receptor-α in humans: No alteration in adipose tissue of obese and NIDDM patients
  publication-title: Diabetes
  doi: 10.2337/diab.46.8.1319
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_33
  article-title: TGF-β is insufficient to induce adipocyte state loss without concurrent PPARγ downregulation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71100-z
– volume: 100
  start-page: 15712
  year: 2003
  ident: ref_31
  article-title: Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2536828100
– ident: ref_64
  doi: 10.3390/ijms21083020
– volume: 74
  start-page: 403
  year: 2008
  ident: ref_44
  article-title: Adipose Fibroblast Growth Factor 21 Is Up-Regulated by Peroxisome Proliferator-Activated Receptor γ and Altered Metabolic States
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.108.044826
– volume: 449
  start-page: 463
  year: 2005
  ident: ref_58
  article-title: Brown adipose tissue glyceroneogenesis is activated in rats exposed to cold
  publication-title: Pflügers Arch.
  doi: 10.1007/s00424-004-1353-7
– volume: 33
  start-page: 13267
  year: 2019
  ident: ref_85
  article-title: The role of Ap2a2 in PPARα-mediated regulation of lipolysis in adipose tissue
  publication-title: FASEB J.
  doi: 10.1096/fj.201900909RR
– volume: 9
  start-page: 861
  year: 2005
  ident: ref_9
  article-title: Peroxisome proliferator-activated receptor β/δ as a therapeutic target for metabolic diseases
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1517/14728222.9.4.861
– volume: 124
  start-page: 528
  year: 2019
  ident: ref_37
  article-title: A role of peroxisome proliferator-activated receptor gamma in non-alcoholic fatty liver disease
  publication-title: Basic Clin. Pharmacol. Toxicol.
  doi: 10.1111/bcpt.13190
– volume: 14
  start-page: 87
  year: 2013
  ident: ref_40
  article-title: Nuclear receptor-mediated regulation of lipid droplet-associated protein gene expression in adipose tissue
  publication-title: Horm. Mol. Biol. Clin. Investig.
  doi: 10.1515/hmbci-2013-0028
– ident: ref_10
  doi: 10.3390/ijms19072124
– volume: 78
  start-page: 110791
  year: 2020
  ident: ref_93
  article-title: PPAR-α activation counters brown adipose tissue whitening: A comparative study between high-fat–and high-fructose–fed mice
  publication-title: Nutrition
  doi: 10.1016/j.nut.2020.110791
– volume: 49
  start-page: 308
  year: 2008
  ident: ref_80
  article-title: Influence of obesity and insulin sensitivity on insulin signaling genes in human omental and subcutaneous adipose tissues
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M700199-JLR200
– volume: 150
  start-page: 366
  year: 2012
  ident: ref_69
  article-title: Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.016
– volume: 154
  start-page: 101
  year: 1999
  ident: ref_50
  article-title: Opposite regulation of PPAR-α and -γ gene expression by both their ligands and retinoic acid in brown adipocytes
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/S0303-7207(99)00081-7
– volume: 91
  start-page: 7355
  year: 1994
  ident: ref_8
  article-title: Differential expression and activation of a family of murine peroxisome proliferator-activated receptors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.15.7355
– volume: 276
  start-page: 3175
  year: 2001
  ident: ref_100
  article-title: Peroxisome Proliferator-activated Receptor δ (PPARδ)-mediated Regulation of Preadipocyte Proliferation and Gene Expression Is Dependent on cAMP Signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M005567200
– ident: ref_48
– volume: 299
  start-page: R159
  year: 2010
  ident: ref_62
  article-title: Basal adrenergic tone is required for maximal stimulation of rat brown adipose tissue UCP1 expression by chronic PPAR-γ activation
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00821.2009
– volume: 319
  start-page: 1523
  year: 2013
  ident: ref_87
  article-title: PPARα agonist fenofibrate attenuates TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2013.04.007
– volume: 20
  start-page: 242
  year: 2019
  ident: ref_21
  article-title: Adipogenesis and metabolic health
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0093-z
– volume: 24
  start-page: 835
  year: 2016
  ident: ref_71
  article-title: Browning of White Adipose Tissue with Roscovitine Induces a Distinct Population of UCP1 + Adipocytes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.10.005
– volume: 295
  start-page: E287
  year: 2008
  ident: ref_52
  article-title: Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a PPARγ agonist
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00035.2008
– volume: 296
  start-page: R57
  year: 2009
  ident: ref_61
  article-title: Tissue-specific postprandial clearance is the major determinant of PPARγ-induced triglyceride lowering in the rat
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.90552.2008
– volume: 49
  start-page: 2427
  year: 2006
  ident: ref_41
  article-title: PPARgamma agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control
  publication-title: Diabetologia
  doi: 10.1007/s00125-006-0336-y
– volume: 150
  start-page: 620
  year: 2012
  ident: ref_74
  article-title: Brown Remodeling of White Adipose Tissue by SirT1-Dependent Deacetylation of Pparγ
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.027
– volume: 7
  start-page: 485
  year: 2008
  ident: ref_105
  article-title: Adipocyte-Derived Th2 Cytokines and Myeloid PPARδ Regulate Macrophage Polarization and Insulin Sensitivity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.04.002
– volume: 24
  start-page: S8
  year: 2000
  ident: ref_57
  article-title: Regulation of adipogenesis and energy balance by PPARgamma and PGC-1
  publication-title: Int. J. Obes.
  doi: 10.1038/sj.ijo.0801492
– volume: 10
  start-page: 39
  year: 2018
  ident: ref_97
  article-title: The Peroxisome Proliferator-Activated Receptor α is dispensable for cold-induced adipose tissue browning in mice
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2018.01.023
– volume: 764
  start-page: 145100
  year: 2020
  ident: ref_46
  article-title: PPARγ enhanced Adiponectin polymerization and trafficking by promoting RUVBL2 expression during adipogenic differentiation
  publication-title: Gene
  doi: 10.1016/j.gene.2020.145100
– volume: 60
  start-page: 1990
  year: 2011
  ident: ref_104
  article-title: Activation of Peroxisome Proliferator-Activated Receptor-β/-δ (PPAR-β/-δ) Ameliorates Insulin Signaling and Reduces SOCS3 Levels by Inhibiting STAT3 in Interleukin-6-Stimulated Adipocytes
  publication-title: Diabetes
  doi: 10.2337/db10-0704
– volume: 22
  start-page: 2941
  year: 2008
  ident: ref_23
  article-title: PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale
  publication-title: Genes Dev.
  doi: 10.1101/gad.1709008
– volume: 176
  start-page: 24
  year: 2018
  ident: ref_67
  article-title: PPARγ agonist rosiglitazone switches fuel preference to lipids in promoting thermogenesis under cold exposure in C57BL/6 mice
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2018.01.010
– ident: ref_3
  doi: 10.3390/ijms19061738
– volume: 15
  start-page: 395
  year: 2012
  ident: ref_72
  article-title: PPARγ agonists Induce a White-to-Brown Fat Conversion through Stabilization of PRDM16 Protein
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.01.019
– volume: 19
  start-page: 557
  year: 2013
  ident: ref_5
  article-title: PPARγ signaling and metabolism: The good, the bad and the future
  publication-title: Nat. Med.
  doi: 10.1038/nm.3159
– volume: 38
  start-page: 456
  year: 2014
  ident: ref_103
  article-title: PPAR-delta binding to heme oxygenase 1 promoter prevents angiotensin II induced adipocyte dysfunction in goldblatt hypertensive rats
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2013.116
– volume: 137
  start-page: 73
  year: 2009
  ident: ref_106
  article-title: Twist-1 Is a PPARδ-Inducible, Negative-Feedback Regulator of PGC-1α in Brown Fat Metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.051
– volume: 2
  start-page: 84
  year: 2011
  ident: ref_65
  article-title: Control of Brown Adipose Tissue Glucose and Lipid Metabolism by PPARgamma
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2011.00084
– volume: 52
  start-page: 873
  year: 2011
  ident: ref_81
  article-title: Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M011320
– volume: 135
  start-page: 798
  year: 1994
  ident: ref_15
  article-title: Peroxisome proliferator-activated receptor (PPAR) gamma: Adipose-predominant expression and induction early in adipocyte differentiation
  publication-title: Endocrinology
  doi: 10.1210/endo.135.2.8033830
– volume: 17
  start-page: 562
  year: 2013
  ident: ref_56
  article-title: EBF2 Determines and Maintains Brown Adipocyte Identity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.01.015
– volume: 407
  start-page: 818
  year: 2011
  ident: ref_82
  article-title: Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.03.106
– volume: 29
  start-page: 7
  year: 2015
  ident: ref_75
  article-title: Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers
  publication-title: Genes Dev.
  doi: 10.1101/gad.250829.114
– volume: 24
  start-page: 2005
  year: 2018
  ident: ref_27
  article-title: Peroxisome Proliferator-Activated Receptor γ2 Controls the Rate of Adipose Tissue Lipid Storage and Determines Metabolic Flexibility
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.07.063
– volume: 128
  start-page: 2600
  year: 2018
  ident: ref_77
  article-title: PPARγ deacetylation dissociates thiazolidinedione’s metabolic benefits from its adverse effects
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI98709
– volume: 10
  start-page: 24
  year: 2014
  ident: ref_13
  article-title: Adipose tissue browning and metabolic health
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2013.204
– volume: 316
  start-page: E293
  year: 2019
  ident: ref_43
  article-title: The E3 ligase MARCH5 is a PPARγ target gene that regulates mitochondria and metabolism in adipocytes
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00394.2018
– volume: 37
  start-page: 1
  year: 2017
  ident: ref_12
  article-title: Human brown adipose tissue—Function and therapeutic potential in metabolic disease
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2017.07.004
– volume: 129
  start-page: 4009
  year: 2019
  ident: ref_28
  article-title: What lipodystrophies teach us about the metabolic syndrome
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI129190
– volume: 149
  start-page: 2121
  year: 2008
  ident: ref_63
  article-title: Peroxisome Proliferator-Activated Receptor-γ-Mediated Positive Energy Balance in the Rat Is Associated with Reduced Sympathetic Drive to Adipose Tissues and Thyroid Status
  publication-title: Endocrinology
  doi: 10.1210/en.2007-1553
– volume: 54
  start-page: 3358
  year: 2005
  ident: ref_86
  article-title: Peroxisome proliferator–activated receptor (PPAR) α activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: Comparison of activation of PPARα, PPARγ, and their combination
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.12.3358
– volume: 221
  start-page: jeb162958
  year: 2018
  ident: ref_14
  article-title: Heterogeneity of adipose tissue in development and metabolic function
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.162958
– volume: 185
  start-page: 587
  year: 2015
  ident: ref_53
  article-title: Brown adipose tissue: Physiological function and evolutionary significance
  publication-title: J. Comp. Physiol. B Biochem. Syst. Environ. Physiol.
  doi: 10.1007/s00360-015-0907-7
– ident: ref_25
  doi: 10.1371/journal.pgen.0030064
– ident: ref_55
  doi: 10.1371/journal.pone.0122584
– volume: 116
  start-page: 15128
  year: 2019
  ident: ref_26
  article-title: Feedback regulation of Arid5a and Ppar-γ2 maintains adipose tissue homeostasis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1906712116
– volume: 39
  start-page: e00601
  year: 2019
  ident: ref_22
  article-title: Transcriptional and Epigenomic Regulation of Adipogenesis
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00601-18
– volume: 347
  start-page: 645
  year: 1990
  ident: ref_6
  article-title: Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators
  publication-title: Nature
  doi: 10.1038/347645a0
– volume: 276
  start-page: 41245
  year: 2001
  ident: ref_32
  article-title: The Mechanisms by Which Both Heterozygous Peroxisome Proliferator-activated Receptor γ (PPARγ) Deficiency and PPARγ Agonist Improve Insulin Resistance
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M103241200
– volume: 296
  start-page: R1327
  year: 2009
  ident: ref_60
  article-title: The PPARγ agonist rosiglitazone enhances rat brown adipose tissue lipogenesis from glucose without altering glucose uptake
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.91012.2008
– volume: 1
  start-page: 1
  year: 2003
  ident: ref_98
  article-title: The peroxisome proliferator activated receptor δ is required for the differentiation of THP-1 monocytic cells by phorbol ester
  publication-title: Nucl. Recept.
  doi: 10.1186/1478-1336-1-9
– volume: 97
  start-page: 2553
  year: 1996
  ident: ref_35
  article-title: Regulation of PPAR gamma gene expression by nutrition and obesity in rodents
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI118703
– volume: 11
  start-page: 1099
  year: 2018
  ident: ref_7
  article-title: Benefits and risks of the treatment with fibrates—A comprehensive summary
  publication-title: Expert Rev. Clin. Pharmacol.
  doi: 10.1080/17512433.2018.1537780
– volume: 7
  start-page: e2487
  year: 2016
  ident: ref_88
  article-title: Adiponectin reduces ER stress-induced apoptosis through PPAR α transcriptional regulation of ATF2 in mouse adipose
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.388
– volume: 98
  start-page: 12532
  year: 2001
  ident: ref_54
  article-title: C/EBPα is required for differentiation of white, but not brown, adipose tissue
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.211416898
– volume: 4
  start-page: 585
  year: 1999
  ident: ref_18
  article-title: PPAR gamma is required for placental, cardiac, and adipose tissue development
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80209-9
– volume: 402
  start-page: 86
  year: 2015
  ident: ref_96
  article-title: Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2014.12.027
– volume: 30
  start-page: 3079
  year: 2020
  ident: ref_95
  article-title: Shared PPARα/γ target genes regulate brown adipocyte thermogenic function
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.02.032
– volume: 20
  start-page: 5119
  year: 2000
  ident: ref_101
  article-title: Growth, Adipose, Brain, and Skin Alterations Resulting from Targeted Disruption of the Mouse Peroxisome Proliferator-Activated Receptor β(δ)
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.14.5119-5128.2000
– volume: 274
  start-page: 21920
  year: 1999
  ident: ref_99
  article-title: Expression of Peroxisome Proliferator-activated Receptor PPARδ Promotes Induction of PPARγ and Adipocyte Differentiation in 3T3C2 Fibroblasts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.31.21920
– volume: 116
  start-page: 581
  year: 2006
  ident: ref_29
  article-title: PPAR gamma and human metabolic disease
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI28003
– volume: 271
  start-page: 29909
  year: 1996
  ident: ref_51
  article-title: Activation of the Nuclear Receptor Peroxisome Proliferator-activated Receptor γ Promotes Brown Adipocyte Differentiation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.47.29909
– volume: 29
  start-page: 4714
  year: 2009
  ident: ref_76
  article-title: C/EBPα and the Corepressors CtBP1 and CtBP2 Regulate Repression of Select Visceral White Adipose Genes during Induction of the Brown Phenotype in White Adipocytes by Peroxisome Proliferator-Activated Receptor γ Agonists
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01899-08
– volume: 21
  start-page: 1
  year: 2021
  ident: ref_4
  article-title: PPARγ and Diabetes: Beyond the Genome and Towards Personalized Medicine
  publication-title: Curr. Diabetes Rep.
  doi: 10.1007/s11892-021-01385-5
– volume: 101
  start-page: 4543
  year: 2004
  ident: ref_30
  article-title: Peroxisome proliferator-activated receptor γ is required in mature white and brown adipocytes for their survival in the mouse
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0400356101
– volume: 286
  start-page: 43112
  year: 2011
  ident: ref_91
  article-title: Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: Involvement of PRDM16
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.252775
– volume: 90
  start-page: 143
  year: 2012
  ident: ref_45
  article-title: Adiponectin and PPARγ: Cooperative and interdependent actions of two key regulators of metabolism
  publication-title: Vitam. Horm.
  doi: 10.1016/B978-0-12-398313-8.00006-3
– volume: 37
  start-page: 361
  year: 2018
  ident: ref_38
  article-title: The roles of PPARs in human diseases
  publication-title: Nucleosides Nucleotides Nucleic Acids
  doi: 10.1080/15257770.2018.1475673
– volume: 113
  start-page: 159
  year: 2003
  ident: ref_102
  article-title: Peroxisome-Proliferator-Activated Receptor δ Activates Fat Metabolism to Prevent Obesity
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00269-1
– volume: 7
  start-page: 22
  year: 2020
  ident: ref_1
  article-title: Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2020.00022
– volume: 382
  start-page: 597
  year: 2004
  ident: ref_49
  article-title: Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor) γ2 gene expression in brown adipocytes: Intracellular signalling and effects on PPARγ2 and PPARγ1 protein levels
  publication-title: Biochem. J.
  doi: 10.1042/BJ20031622
– volume: 110
  start-page: 18656
  year: 2013
  ident: ref_20
  article-title: Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1314863110
– volume: 8
  start-page: 15253
  year: 2017
  ident: ref_11
  article-title: Impact of fat mass and distribution on lipid turnover in human adipose tissue
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15253
– volume: 102
  start-page: 6207
  year: 2005
  ident: ref_19
  article-title: Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0306743102
– volume: 4
  start-page: 633
  year: 2009
  ident: ref_59
  article-title: Depot specificities of PPARγ ligand actions on lipid and glucose metabolism and their implication in PPARγ-mediated body fat redistribution
  publication-title: Clin. Lipidol.
  doi: 10.2217/clp.09.45
– volume: 336
  start-page: 76
  year: 2005
  ident: ref_89
  article-title: Suppression of expression of muscle-associated proteins by PPARα in brown adipose tissue
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.08.041
– ident: ref_107
  doi: 10.1371/journal.pone.0191365
– ident: ref_108
  doi: 10.3390/ijms22094624
– volume: 115
  start-page: E6039
  year: 2018
  ident: ref_47
  article-title: A non-canonical-PPARγ/RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 48
  start-page: 699
  year: 1999
  ident: ref_34
  article-title: Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes
  publication-title: Diabetes
  doi: 10.2337/diabetes.48.4.699
– volume: 22
  start-page: 760
  year: 2018
  ident: ref_66
  article-title: Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.12.067
– volume: 4
  start-page: 611
  year: 1999
  ident: ref_17
  article-title: PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80211-7
– volume: 114
  start-page: 1281
  year: 2004
  ident: ref_73
  article-title: Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI21752
– volume: 129
  start-page: 3990
  year: 2019
  ident: ref_2
  article-title: Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI129187
– volume: 17
  start-page: e12721
  year: 2018
  ident: ref_78
  article-title: Ablation of PPAR γ in subcutaneous fat exacerbates age-associated obesity and metabolic decline
  publication-title: Aging Cell
  doi: 10.1111/acel.12721
– volume: 46
  start-page: 1005
  year: 2011
  ident: ref_84
  article-title: cis-9, trans-11, cis-15 and cis-9, trans-13, cis-15 CLNA Mixture Activates PPARα in HEK293 and Reduces Triacylglycerols in 3T3-L1 cells
  publication-title: Lipids
  doi: 10.1007/s11745-011-3615-4
– volume: 77
  start-page: 289
  year: 2008
  ident: ref_36
  article-title: Fat and Beyond: The Diverse Biology of PPARgamma
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.77.061307.091829
– volume: 5
  start-page: 352
  year: 2016
  ident: ref_94
  article-title: White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2016.03.002
– volume: 8
  start-page: 1224
  year: 1994
  ident: ref_16
  article-title: mPPAR gamma 2: Tissue-specific regulator of an adipocyte enhancer
  publication-title: Genes Dev.
  doi: 10.1101/gad.8.10.1224
– volume: 65
  start-page: 1202
  year: 2016
  ident: ref_90
  article-title: Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310798
– volume: 15
  start-page: 91
  year: 2010
  ident: ref_92
  article-title: Multiple roles of PPARα in brown adipose tissue under constitutive and cold conditions
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2009.01368.x
– volume: 297
  start-page: 1
  year: 2021
  ident: ref_42
  article-title: Diet-dependent natriuretic peptide receptor C expression in adipose tissue is mediated by PPARγ via long-range distal enhancers
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2021.100941
– volume: 1862
  start-page: 1212
  year: 2017
  ident: ref_39
  article-title: Regulation of lipid droplet-associated proteins by peroxisome proliferator-activated receptors
  publication-title: Biochim. Biophys. Acta BBA—Mol. Cell Biol. Lipids
– volume: 285
  start-page: 7153
  year: 2010
  ident: ref_70
  article-title: Chronic Peroxisome Proliferator-activated Receptor γ (PPARγ) Activation of Epididymally Derived White Adipocyte Cultures Reveals a Population of Thermogenically Competent, UCP1-containing Adipocytes Molecularly Distinct from Classic Brown Adipocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.053942
SSID ssj0023259
Score 2.581126
SecondaryResourceType review_article
Snippet It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8974
SubjectTerms Adipocytes
Binding sites
Body fat
Cloning
Cytokines
Energy
Fatty acids
Gene expression
Glucose
Homeostasis
Insulin resistance
Ligands
Lipids
Metabolic syndrome
Musculoskeletal system
Proteins
Respiration
Review
Weight control
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5eEHwRrzhvVNAnCS5tkzQvyhCnCNMhG-ytNJdhRdtp54P_3nParnMP-pwTAuckOV-Sk-8j5Ey6thYM3wch_dBQtzVNHGOUq8AGAbcuVPjBufco7ofhw4iP6gu3oi6rnO2J5UZtc4N35Jd--ZEBCdiuJx8UVaPwdbWW0FgmqwwyDZZ0Rd275sAV-KVYGoMcRAVXoip8D-CYf5m-vhe-z0SkZLiYkuY4c7FK8lfa6W6SjRovep0qwFtkyWXbZK1SkPzeIVf9fue5oE-fpe4V0j5Yr-emENm31HiogZ4D_CvSwkszD7Ce17HpJC-cNygdvkuG3dvBzT2tJRGoCTmfUkArY2ksuFONmU2YstIlbMxC4_taWidkAohBWAEoQxnhm0jBIgt5whNjrWbBHlnJ8sztEw-ggAGwgAR6OrSRURaxXaB1JKU2WrTIxcwrsan5wlG24i2GcwP6MP7twxY5b6wnFU_GH3ZHMwfH9Wop4nlsW-S0aYZ5jo8XSebyL7AB3IlkazxoEbkQmGY8ZMpebMnSl5IxG1Ag9FYH_w9-SNZ9rFhp495xRFamn1_uGCDHVJ-U8-oHCRbWLQ
  priority: 102
  providerName: ProQuest
Title PPARs-Orchestrated Metabolic Homeostasis in the Adipose Tissue
URI https://www.proquest.com/docview/2624240818
https://www.proquest.com/docview/2566043353
https://pubmed.ncbi.nlm.nih.gov/PMC8396609
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5si-BFfGK1lgh6kmg3yWaTg0oVqwjVUlroLWQfxUhNtamg_96Z9KFFBS-57G4CM7s732R2vw_gUJia9BnVBzH82J6sSTs2jNk8dLXrcm28kC44N-_926531-O9JZipjU4NmP2a2pGeVHc0OHl__bjABX9GGSem7KfJ03PmOMwPEBsXoIQxSZCWQdOb1xMQNuSyafTDw6YNenIE_sfoxeD0hTgXz0t-C0CNNVidIkerPnH1OiyZdAOWJ1qSH5tw3mrV25n9MMoVsIgAQltNM0YfDxJlkRr6EIFglmRWklqI-qy6Tl6GmbE6uem3oNu47lzd2lNxBFt5nI9txC19oTQaNuwzHbNQCxOzPvOU40ihjS9ixA6-9hFvhMp3VBDicvN4zGOltWTuNhTTYWp2wEJQoBA2EJWe9HSgQk0oz5UyEEIq6ZfheGaVSE2Zw0nAYhBhBkE2jL7bsAxH894vE8aMP_pVZgaOZm6PnPy6CtHsleFg3owznsoYcWqGb9gHESjRrnG3DGLBMfPvEWf2YkuaPObc2YgHcXS4-4-378GKQwdYarSVVKA4Hr2ZfUQgY1mFgugJfAaNmyqULq_vW-0qxQRezafdJwpA3y8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgQXxKdYKGAkekJW147trA-AVsCypd1Soa3UWxp_rAgqydJshfqn-I3MJJtt9wC3nu3E0XjseY5n3gN4nca-M4LuBzH8cOX6judRCK5tEpJEh6gsFThPDsz4SH051scb8KerhaG0ym5PbDbqUHn6R74jm0IGImB7P__FSTWKblc7CY3WLfbixW88stVvdz_i_G5LOfo0_TDmS1UB7pXWC44Bf5b6gF9kZyLkwoY05mImlJfSpSGaNMega4LBQG29kX5g0U-VznXuQ3AiwffegJsqwUhOlemjz6sDXiIbcTaBMY8bbU2baI8d-zvFj5-1lMIMbKrWQ-Alrl3PyrwS5kb34O4Sn7Jh61D3YSOWD-BWq1h58RDeHR4Ov9X861mjs0U0E4FN4gI96bTwjDTXK4SbdVGzomSILdkwFPOqjmzaTPAjOLoWYz2GzbIq4xNgCD08ghMi7HMqDLwNhCUT5wZp6rwzPXjTWSXzS35yksk4zfCcQjbMrtqwB9ur3vOWl-Mf_bY6A2fL1Vlnl77Ug1erZlxXdFmSl7E6xz6Ic4ncTSc9SNcmZjUeMXOvt5TF94ahG1EnPm2f_n_wl3B7PJ3sZ_u7B3vP4I6kbJk-7VtbsLk4O4_PEe4s3IvGxxicXLdT_wWOrROo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xUMBI9ISsXTuJvT4AWmhXLaXLqmql3kL8WBFUkqXZCvWv8euYyWPbPcCtZztxNP7s-SYezwfwRoehVYLOB9H98NgOLc-CEDwxkY-ixIfY0AXnw6naO4k_nyanG_CnuwtDaZXdnlhv1L509I98IOuLDFSAbTBv0yJmO5MPi1-cFKTopLWT02ggchAuf2P4Vr3b38G53pZysnv8aY-3CgPcxUmy5Oj859p5_DozFz4TxuuQibmInZRW-6B0hg5YeYVO2zgl3cggZuMkSzLnvRURvvcWbGqKinqw-XF3OjtahXuRrKXaBHpArhKjmrT7KDLDQf7jZyWlUCOj43WHeMVy13M0rzm9yX2417JVNm7g9QA2QvEQbjf6lZeP4P1sNj6q-NfzWnWLik54dhiWiKuz3DFSYC-RfFZ5xfKCIdNkY58vyiqw43q6H8PJjZjrCfSKsghPgSERcUhVqHyfjf3IGU_MMrJ2pLV1VvXhbWeV1LXVykk04yzFqIVsmF63YR-2V70XTZWOf_Tb6gyctmu1Sq-Q1YfXq2ZcZXR0khWhvMA-yHqp1FsS9UGvTcxqPKrTvd5S5N_ret3IQfFp8-z_g7-COwjo9Mv-9OA53JWUOjOkTWwLesvzi_ACuc_SvmxBxuDbTeP6L7_rGTo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PPARs-Orchestrated+Metabolic+Homeostasis+in+the+Adipose+Tissue&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Sun%2C+Chen&rft.au=Mao%2C+Shuyu&rft.au=Chen%2C+Siyu&rft.au=Zhang%2C+Wenxiang&rft.date=2021-08-20&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=16&rft_id=info:doi/10.3390%2Fijms22168974&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon