PPARs-Orchestrated Metabolic Homeostasis in the Adipose Tissue
It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention du...
Saved in:
Published in | International journal of molecular sciences Vol. 22; no. 16; p. 8974 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
20.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention due to their ability to improve metabolic syndromes, and they have also been proposed as classical drug targets for the treatment of hyperlipidemia and type 2 diabetes (T2D) mellitus. In parallel, adipose tissue is known to play a unique role in the pathogenesis of insulin resistance and metabolic syndromes due to its ability to “safely” store lipids and secrete cytokines that regulate whole-body metabolism. Adipose tissue relies on a complex and subtle network of transcription factors to maintain its normal physiological function, by coordinating various molecular events, among which PPARs play distinctive and indispensable roles in adipocyte differentiation, lipid metabolism, adipokine secretion, and insulin sensitivity. In this review, we discuss the characteristics of PPARs with special emphasis on the roles of the different isotypes in adipocyte biology. |
---|---|
AbstractList | It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention due to their ability to improve metabolic syndromes, and they have also been proposed as classical drug targets for the treatment of hyperlipidemia and type 2 diabetes (T2D) mellitus. In parallel, adipose tissue is known to play a unique role in the pathogenesis of insulin resistance and metabolic syndromes due to its ability to “safely” store lipids and secrete cytokines that regulate whole-body metabolism. Adipose tissue relies on a complex and subtle network of transcription factors to maintain its normal physiological function, by coordinating various molecular events, among which PPARs play distinctive and indispensable roles in adipocyte differentiation, lipid metabolism, adipokine secretion, and insulin sensitivity. In this review, we discuss the characteristics of PPARs with special emphasis on the roles of the different isotypes in adipocyte biology. It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention due to their ability to improve metabolic syndromes, and they have also been proposed as classical drug targets for the treatment of hyperlipidemia and type 2 diabetes (T2D) mellitus. In parallel, adipose tissue is known to play a unique role in the pathogenesis of insulin resistance and metabolic syndromes due to its ability to "safely" store lipids and secrete cytokines that regulate whole-body metabolism. Adipose tissue relies on a complex and subtle network of transcription factors to maintain its normal physiological function, by coordinating various molecular events, among which PPARs play distinctive and indispensable roles in adipocyte differentiation, lipid metabolism, adipokine secretion, and insulin sensitivity. In this review, we discuss the characteristics of PPARs with special emphasis on the roles of the different isotypes in adipocyte biology.It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention due to their ability to improve metabolic syndromes, and they have also been proposed as classical drug targets for the treatment of hyperlipidemia and type 2 diabetes (T2D) mellitus. In parallel, adipose tissue is known to play a unique role in the pathogenesis of insulin resistance and metabolic syndromes due to its ability to "safely" store lipids and secrete cytokines that regulate whole-body metabolism. Adipose tissue relies on a complex and subtle network of transcription factors to maintain its normal physiological function, by coordinating various molecular events, among which PPARs play distinctive and indispensable roles in adipocyte differentiation, lipid metabolism, adipokine secretion, and insulin sensitivity. In this review, we discuss the characteristics of PPARs with special emphasis on the roles of the different isotypes in adipocyte biology. |
Author | Sun, Chen Mao, Shuyu Zhang, Wenxiang Chen, Siyu Liu, Chang |
AuthorAffiliation | 2 State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; 3220030438@stu.cpu.edu.cn (S.M.); siyuchen@cpu.edu.cn (S.C.); wenxiangzhang@cpu.edu.cn (W.Z.) 1 College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; 3119030134@stu.cpu.edu.cn |
AuthorAffiliation_xml | – name: 1 College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; 3119030134@stu.cpu.edu.cn – name: 2 State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; 3220030438@stu.cpu.edu.cn (S.M.); siyuchen@cpu.edu.cn (S.C.); wenxiangzhang@cpu.edu.cn (W.Z.) |
Author_xml | – sequence: 1 givenname: Chen surname: Sun fullname: Sun, Chen – sequence: 2 givenname: Shuyu surname: Mao fullname: Mao, Shuyu – sequence: 3 givenname: Siyu orcidid: 0000-0002-3809-1062 surname: Chen fullname: Chen, Siyu – sequence: 4 givenname: Wenxiang orcidid: 0000-0002-1077-8014 surname: Zhang fullname: Zhang, Wenxiang – sequence: 5 givenname: Chang orcidid: 0000-0001-9251-708X surname: Liu fullname: Liu, Chang |
BookMark | eNptkUtLw0AUhQepaFvd-QMCblwYnXcym0IpvqBSEV0Pk5kbOyXJ1Ewi-O-NVETF1b1wv3s4hzNBoyY0gNAJwReMKXzpN3WklMhcZXwPjQmnNMVYZqMf-yGaxLjBmDIq1AE6ZJxzITM1RrOHh_ljTFetXUPsWtOBS-6hM0WovE1uQw0hdib6mPgm6daQzJ3fhgjJk4-xhyO0X5oqwvHXnKLn66unxW26XN3cLebL1HIhulRIWmbWGSCqJM4Q5TIwpCTcUlpkDmRmCKbSSZVJZSW1uRKMcGGEsc4VhE3RbKe77YsanIVm8Frpbetr077rYLz-fWn8Wr-EN50zJSVWg8DZl0AbXvshqq59tFBVpoHQR03FgHHGBBvQ0z_oJvRtM8TTVFJOOc5JPlDnO8q2IcYWym8zBOvPYvTPYgac_sGt70znw6ddX_3_9AFxaJI9 |
CitedBy_id | crossref_primary_10_1016_j_biopha_2024_117496 crossref_primary_10_1080_03602532_2023_2215478 crossref_primary_10_1210_endocr_bqad024 crossref_primary_10_3390_biom14121607 crossref_primary_10_3390_molecules27092800 crossref_primary_10_3390_ijms241713325 crossref_primary_10_1016_j_chembiol_2023_05_003 crossref_primary_10_1002_mnfr_202101015 crossref_primary_10_1111_jcmm_70332 crossref_primary_10_3390_cells11243959 crossref_primary_10_1186_s13765_024_00889_4 crossref_primary_10_1210_clinem_dgae542 crossref_primary_10_1007_s00109_024_02459_z crossref_primary_10_3389_fvets_2022_946447 crossref_primary_10_3389_fcvm_2022_808929 crossref_primary_10_1016_j_abb_2022_109445 crossref_primary_10_3390_ijms23095025 crossref_primary_10_3390_ph15030363 crossref_primary_10_1016_j_pestbp_2023_105739 crossref_primary_10_1016_j_phrs_2022_106281 crossref_primary_10_3390_ijms26031177 crossref_primary_10_1016_j_jtumed_2024_12_008 crossref_primary_10_3390_nu16183174 crossref_primary_10_1016_j_biopha_2023_115424 crossref_primary_10_3390_ph17070967 crossref_primary_10_3390_foods11142134 crossref_primary_10_3390_biomedicines12081876 crossref_primary_10_1016_j_toxlet_2025_01_008 crossref_primary_10_3390_genes15070875 crossref_primary_10_3389_fnut_2022_1019259 crossref_primary_10_1080_00071668_2024_2383940 crossref_primary_10_3390_antiox10122015 crossref_primary_10_1021_acs_molpharmaceut_4c00886 crossref_primary_10_3390_ijms242015100 crossref_primary_10_1210_endocr_bqad019 crossref_primary_10_3390_cells11020300 crossref_primary_10_3390_ijerph192315492 crossref_primary_10_1016_j_jff_2022_105141 crossref_primary_10_1111_jbg_12841 crossref_primary_10_1016_j_eurox_2024_100334 crossref_primary_10_3390_nu16183063 crossref_primary_10_3892_br_2024_1852 crossref_primary_10_3390_obesities4030020 crossref_primary_10_3390_ph16111607 crossref_primary_10_14202_vetworld_2022_173_181 crossref_primary_10_1007_s00210_024_03661_z crossref_primary_10_3390_molecules28207115 crossref_primary_10_3390_cancers15154013 crossref_primary_10_3390_ijms24043412 crossref_primary_10_1002_jsfa_12352 crossref_primary_10_3390_jcm12082882 crossref_primary_10_1080_1028415X_2024_2316448 crossref_primary_10_3390_toxics13030222 crossref_primary_10_1021_acsnano_4c10742 crossref_primary_10_3390_md22080330 crossref_primary_10_3390_nu16020329 crossref_primary_10_3390_nu16101514 crossref_primary_10_1038_s41598_022_25012_9 crossref_primary_10_1016_j_jksus_2022_102116 crossref_primary_10_3390_ijms26041778 crossref_primary_10_3390_app14219994 crossref_primary_10_1016_j_lfs_2023_121668 crossref_primary_10_3390_molecules29040758 crossref_primary_10_1002_ptr_8196 crossref_primary_10_1093_advances_nmac073 crossref_primary_10_1016_j_ebiom_2024_105293 crossref_primary_10_1016_j_ijheh_2023_114124 crossref_primary_10_1007_s00210_023_02771_4 crossref_primary_10_3390_cells13131081 crossref_primary_10_1096_fj_202402470R crossref_primary_10_3390_nu16101441 crossref_primary_10_3390_app13116489 |
Cites_doi | 10.2337/db06-1465 10.1101/gad.953802 10.1371/journal.pone.0195007 10.2337/diab.46.8.1319 10.1038/s41598-020-71100-z 10.1073/pnas.2536828100 10.3390/ijms21083020 10.1124/mol.108.044826 10.1007/s00424-004-1353-7 10.1096/fj.201900909RR 10.1517/14728222.9.4.861 10.1111/bcpt.13190 10.1515/hmbci-2013-0028 10.3390/ijms19072124 10.1016/j.nut.2020.110791 10.1194/jlr.M700199-JLR200 10.1016/j.cell.2012.05.016 10.1016/S0303-7207(99)00081-7 10.1073/pnas.91.15.7355 10.1074/jbc.M005567200 10.1152/ajpregu.00821.2009 10.1016/j.yexcr.2013.04.007 10.1038/s41580-018-0093-z 10.1016/j.cmet.2016.10.005 10.1152/ajpendo.00035.2008 10.1152/ajpregu.90552.2008 10.1007/s00125-006-0336-y 10.1016/j.cell.2012.06.027 10.1016/j.cmet.2008.04.002 10.1038/sj.ijo.0801492 10.1016/j.molmet.2018.01.023 10.1016/j.gene.2020.145100 10.2337/db10-0704 10.1101/gad.1709008 10.1016/j.jprot.2018.01.010 10.3390/ijms19061738 10.1016/j.cmet.2012.01.019 10.1038/nm.3159 10.1038/ijo.2013.116 10.1016/j.cell.2009.01.051 10.3389/fendo.2011.00084 10.1194/jlr.M011320 10.1210/endo.135.2.8033830 10.1016/j.cmet.2013.01.015 10.1016/j.bbrc.2011.03.106 10.1101/gad.250829.114 10.1016/j.celrep.2018.07.063 10.1172/JCI98709 10.1038/nrendo.2013.204 10.1152/ajpendo.00394.2018 10.1016/j.coph.2017.07.004 10.1172/JCI129190 10.1210/en.2007-1553 10.2337/diabetes.54.12.3358 10.1242/jeb.162958 10.1007/s00360-015-0907-7 10.1371/journal.pgen.0030064 10.1371/journal.pone.0122584 10.1073/pnas.1906712116 10.1128/MCB.00601-18 10.1038/347645a0 10.1074/jbc.M103241200 10.1152/ajpregu.91012.2008 10.1186/1478-1336-1-9 10.1172/JCI118703 10.1080/17512433.2018.1537780 10.1038/cddis.2016.388 10.1073/pnas.211416898 10.1016/S1097-2765(00)80209-9 10.1016/j.mce.2014.12.027 10.1016/j.celrep.2020.02.032 10.1128/MCB.20.14.5119-5128.2000 10.1074/jbc.274.31.21920 10.1172/JCI28003 10.1074/jbc.271.47.29909 10.1128/MCB.01899-08 10.1007/s11892-021-01385-5 10.1073/pnas.0400356101 10.1074/jbc.M111.252775 10.1016/B978-0-12-398313-8.00006-3 10.1080/15257770.2018.1475673 10.1016/S0092-8674(03)00269-1 10.3389/fcvm.2020.00022 10.1042/BJ20031622 10.1073/pnas.1314863110 10.1038/ncomms15253 10.1073/pnas.0306743102 10.2217/clp.09.45 10.1016/j.bbrc.2005.08.041 10.1371/journal.pone.0191365 10.3390/ijms22094624 10.2337/diabetes.48.4.699 10.1016/j.celrep.2017.12.067 10.1016/S1097-2765(00)80211-7 10.1172/JCI21752 10.1172/JCI129187 10.1111/acel.12721 10.1007/s11745-011-3615-4 10.1146/annurev.biochem.77.061307.091829 10.1016/j.molmet.2016.03.002 10.1101/gad.8.10.1224 10.1136/gutjnl-2015-310798 10.1111/j.1365-2443.2009.01368.x 10.1016/j.jbc.2021.100941 10.1074/jbc.M109.053942 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.3390/ijms22168974 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC8396609 10_3390_ijms22168974 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c455t-562f7cdae19f1da19d7ea1f14c22b7de67a1026d69769c62c8953145a5acddb13 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:39:54 EDT 2025 Sun Aug 24 04:14:02 EDT 2025 Fri Jul 25 20:35:11 EDT 2025 Tue Jul 01 03:07:48 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-562f7cdae19f1da19d7ea1f14c22b7de67a1026d69769c62c8953145a5acddb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9251-708X 0000-0002-3809-1062 0000-0002-1077-8014 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22168974 |
PMID | 34445679 |
PQID | 2624240818 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8396609 proquest_miscellaneous_2566043353 proquest_journals_2624240818 crossref_primary_10_3390_ijms22168974 crossref_citationtrail_10_3390_ijms22168974 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210820 |
PublicationDateYYYYMMDD | 2021-08-20 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210820 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhang (ref_47) 2018; 115 Rodriguez (ref_39) 2017; 1862 Ren (ref_24) 2002; 16 Wang (ref_87) 2013; 319 Bedu (ref_9) 2005; 9 Ohno (ref_72) 2012; 15 Wang (ref_102) 2003; 113 ref_10 Spiegelman (ref_57) 2000; 24 Vosper (ref_98) 2003; 1 Xu (ref_78) 2018; 17 Bastie (ref_99) 1999; 274 Oelkrug (ref_53) 2015; 185 Rajakumari (ref_56) 2013; 17 ref_25 Kahn (ref_2) 2019; 129 Shi (ref_42) 2021; 297 Goto (ref_81) 2011; 52 Festuccia (ref_62) 2010; 299 Virtue (ref_27) 2018; 24 Spalding (ref_11) 2017; 8 Kraakman (ref_77) 2018; 128 Auboeuf (ref_79) 1997; 46 Hondares (ref_91) 2011; 286 Montagner (ref_90) 2016; 65 Barquissau (ref_94) 2016; 5 Kliewer (ref_8) 1994; 91 Festuccia (ref_59) 2009; 4 Mazzucotelli (ref_83) 2007; 56 Miranda (ref_93) 2020; 78 Ahmadian (ref_5) 2013; 19 Komatsu (ref_92) 2010; 15 Semple (ref_29) 2006; 116 Montgomery (ref_85) 2019; 33 Bond (ref_43) 2019; 316 Petrovic (ref_52) 2008; 295 Jones (ref_19) 2005; 102 Tong (ref_89) 2005; 336 Rieusset (ref_34) 1999; 48 Chait (ref_1) 2020; 7 Wang (ref_71) 2016; 24 Defour (ref_97) 2018; 10 Kang (ref_105) 2008; 7 Festuccia (ref_65) 2011; 2 Schoettl (ref_14) 2018; 221 Wu (ref_69) 2012; 150 Peters (ref_101) 2000; 20 Lowell (ref_35) 1996; 97 Rosen (ref_17) 1999; 4 Shen (ref_95) 2020; 30 Muise (ref_44) 2008; 74 Qiang (ref_74) 2012; 150 Barak (ref_18) 1999; 4 Astapova (ref_45) 2012; 90 Chalise (ref_26) 2019; 116 Festuccia (ref_60) 2009; 296 Liu (ref_88) 2016; 7 Li (ref_38) 2018; 37 Chawla (ref_15) 1994; 135 Lee (ref_82) 2011; 407 MacLaren (ref_80) 2008; 49 Laplante (ref_61) 2009; 296 Tontonoz (ref_16) 1994; 8 ref_55 Hansen (ref_100) 2001; 276 Lindgren (ref_49) 2004; 382 Mann (ref_28) 2019; 129 Taylor (ref_33) 2020; 10 Palomer (ref_104) 2011; 60 Yamauchi (ref_32) 2001; 276 Tsuchida (ref_86) 2005; 54 Lykkesfeldt (ref_37) 2019; 124 Cataldi (ref_4) 2021; 21 Miranda (ref_84) 2011; 46 ref_68 Zhu (ref_46) 2020; 764 ref_64 Moura (ref_58) 2005; 449 Lasar (ref_66) 2018; 22 Vernochet (ref_76) 2009; 29 Lee (ref_22) 2019; 39 Imai (ref_30) 2004; 101 He (ref_31) 2003; 100 Pan (ref_106) 2009; 137 (ref_7) 2018; 11 Wang (ref_20) 2013; 110 Ghaben (ref_21) 2019; 20 Petrovic (ref_70) 2010; 285 Loft (ref_75) 2015; 29 Gao (ref_67) 2018; 176 Sodhi (ref_103) 2014; 38 Festuccia (ref_41) 2006; 49 Tai (ref_51) 1996; 271 Christian (ref_40) 2013; 14 ref_108 ref_107 Bartelt (ref_13) 2014; 10 Lefterova (ref_23) 2008; 22 Valmaseda (ref_50) 1999; 154 Tontonoz (ref_36) 2008; 77 ref_3 Linhart (ref_54) 2001; 98 Nicoloro (ref_73) 2004; 114 Issemann (ref_6) 1990; 347 ref_48 Bhatt (ref_12) 2017; 37 Rachid (ref_96) 2015; 402 Festuccia (ref_63) 2008; 149 |
References_xml | – volume: 56 start-page: 2467 year: 2007 ident: ref_83 article-title: The transcriptional coactivator peroxisome proliferator–activated receptor (PPAR) γ coactivator-1α and the nuclear receptor PPARα control the expression of glycerol kinase and metabolism genes independently of PPARγ activation in human white adipocytes publication-title: Diabetes doi: 10.2337/db06-1465 – volume: 16 start-page: 27 year: 2002 ident: ref_24 article-title: PPARγ knockdown by engineered transcription factors: Exogenous PPARγ2 but not PPARγ1 reactivates adipogenesis publication-title: Genes Dev. doi: 10.1101/gad.953802 – ident: ref_68 doi: 10.1371/journal.pone.0195007 – volume: 46 start-page: 1319 year: 1997 ident: ref_79 article-title: Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator–activated receptors and liver X receptor-α in humans: No alteration in adipose tissue of obese and NIDDM patients publication-title: Diabetes doi: 10.2337/diab.46.8.1319 – volume: 10 start-page: 1 year: 2020 ident: ref_33 article-title: TGF-β is insufficient to induce adipocyte state loss without concurrent PPARγ downregulation publication-title: Sci. Rep. doi: 10.1038/s41598-020-71100-z – volume: 100 start-page: 15712 year: 2003 ident: ref_31 article-title: Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2536828100 – ident: ref_64 doi: 10.3390/ijms21083020 – volume: 74 start-page: 403 year: 2008 ident: ref_44 article-title: Adipose Fibroblast Growth Factor 21 Is Up-Regulated by Peroxisome Proliferator-Activated Receptor γ and Altered Metabolic States publication-title: Mol. Pharmacol. doi: 10.1124/mol.108.044826 – volume: 449 start-page: 463 year: 2005 ident: ref_58 article-title: Brown adipose tissue glyceroneogenesis is activated in rats exposed to cold publication-title: Pflügers Arch. doi: 10.1007/s00424-004-1353-7 – volume: 33 start-page: 13267 year: 2019 ident: ref_85 article-title: The role of Ap2a2 in PPARα-mediated regulation of lipolysis in adipose tissue publication-title: FASEB J. doi: 10.1096/fj.201900909RR – volume: 9 start-page: 861 year: 2005 ident: ref_9 article-title: Peroxisome proliferator-activated receptor β/δ as a therapeutic target for metabolic diseases publication-title: Expert Opin. Ther. Targets doi: 10.1517/14728222.9.4.861 – volume: 124 start-page: 528 year: 2019 ident: ref_37 article-title: A role of peroxisome proliferator-activated receptor gamma in non-alcoholic fatty liver disease publication-title: Basic Clin. Pharmacol. Toxicol. doi: 10.1111/bcpt.13190 – volume: 14 start-page: 87 year: 2013 ident: ref_40 article-title: Nuclear receptor-mediated regulation of lipid droplet-associated protein gene expression in adipose tissue publication-title: Horm. Mol. Biol. Clin. Investig. doi: 10.1515/hmbci-2013-0028 – ident: ref_10 doi: 10.3390/ijms19072124 – volume: 78 start-page: 110791 year: 2020 ident: ref_93 article-title: PPAR-α activation counters brown adipose tissue whitening: A comparative study between high-fat–and high-fructose–fed mice publication-title: Nutrition doi: 10.1016/j.nut.2020.110791 – volume: 49 start-page: 308 year: 2008 ident: ref_80 article-title: Influence of obesity and insulin sensitivity on insulin signaling genes in human omental and subcutaneous adipose tissues publication-title: J. Lipid Res. doi: 10.1194/jlr.M700199-JLR200 – volume: 150 start-page: 366 year: 2012 ident: ref_69 article-title: Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human publication-title: Cell doi: 10.1016/j.cell.2012.05.016 – volume: 154 start-page: 101 year: 1999 ident: ref_50 article-title: Opposite regulation of PPAR-α and -γ gene expression by both their ligands and retinoic acid in brown adipocytes publication-title: Mol. Cell. Endocrinol. doi: 10.1016/S0303-7207(99)00081-7 – volume: 91 start-page: 7355 year: 1994 ident: ref_8 article-title: Differential expression and activation of a family of murine peroxisome proliferator-activated receptors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.15.7355 – volume: 276 start-page: 3175 year: 2001 ident: ref_100 article-title: Peroxisome Proliferator-activated Receptor δ (PPARδ)-mediated Regulation of Preadipocyte Proliferation and Gene Expression Is Dependent on cAMP Signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M005567200 – ident: ref_48 – volume: 299 start-page: R159 year: 2010 ident: ref_62 article-title: Basal adrenergic tone is required for maximal stimulation of rat brown adipose tissue UCP1 expression by chronic PPAR-γ activation publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00821.2009 – volume: 319 start-page: 1523 year: 2013 ident: ref_87 article-title: PPARα agonist fenofibrate attenuates TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2013.04.007 – volume: 20 start-page: 242 year: 2019 ident: ref_21 article-title: Adipogenesis and metabolic health publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0093-z – volume: 24 start-page: 835 year: 2016 ident: ref_71 article-title: Browning of White Adipose Tissue with Roscovitine Induces a Distinct Population of UCP1 + Adipocytes publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.10.005 – volume: 295 start-page: E287 year: 2008 ident: ref_52 article-title: Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a PPARγ agonist publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00035.2008 – volume: 296 start-page: R57 year: 2009 ident: ref_61 article-title: Tissue-specific postprandial clearance is the major determinant of PPARγ-induced triglyceride lowering in the rat publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.90552.2008 – volume: 49 start-page: 2427 year: 2006 ident: ref_41 article-title: PPARgamma agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control publication-title: Diabetologia doi: 10.1007/s00125-006-0336-y – volume: 150 start-page: 620 year: 2012 ident: ref_74 article-title: Brown Remodeling of White Adipose Tissue by SirT1-Dependent Deacetylation of Pparγ publication-title: Cell doi: 10.1016/j.cell.2012.06.027 – volume: 7 start-page: 485 year: 2008 ident: ref_105 article-title: Adipocyte-Derived Th2 Cytokines and Myeloid PPARδ Regulate Macrophage Polarization and Insulin Sensitivity publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.04.002 – volume: 24 start-page: S8 year: 2000 ident: ref_57 article-title: Regulation of adipogenesis and energy balance by PPARgamma and PGC-1 publication-title: Int. J. Obes. doi: 10.1038/sj.ijo.0801492 – volume: 10 start-page: 39 year: 2018 ident: ref_97 article-title: The Peroxisome Proliferator-Activated Receptor α is dispensable for cold-induced adipose tissue browning in mice publication-title: Mol. Metab. doi: 10.1016/j.molmet.2018.01.023 – volume: 764 start-page: 145100 year: 2020 ident: ref_46 article-title: PPARγ enhanced Adiponectin polymerization and trafficking by promoting RUVBL2 expression during adipogenic differentiation publication-title: Gene doi: 10.1016/j.gene.2020.145100 – volume: 60 start-page: 1990 year: 2011 ident: ref_104 article-title: Activation of Peroxisome Proliferator-Activated Receptor-β/-δ (PPAR-β/-δ) Ameliorates Insulin Signaling and Reduces SOCS3 Levels by Inhibiting STAT3 in Interleukin-6-Stimulated Adipocytes publication-title: Diabetes doi: 10.2337/db10-0704 – volume: 22 start-page: 2941 year: 2008 ident: ref_23 article-title: PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale publication-title: Genes Dev. doi: 10.1101/gad.1709008 – volume: 176 start-page: 24 year: 2018 ident: ref_67 article-title: PPARγ agonist rosiglitazone switches fuel preference to lipids in promoting thermogenesis under cold exposure in C57BL/6 mice publication-title: J. Proteom. doi: 10.1016/j.jprot.2018.01.010 – ident: ref_3 doi: 10.3390/ijms19061738 – volume: 15 start-page: 395 year: 2012 ident: ref_72 article-title: PPARγ agonists Induce a White-to-Brown Fat Conversion through Stabilization of PRDM16 Protein publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.01.019 – volume: 19 start-page: 557 year: 2013 ident: ref_5 article-title: PPARγ signaling and metabolism: The good, the bad and the future publication-title: Nat. Med. doi: 10.1038/nm.3159 – volume: 38 start-page: 456 year: 2014 ident: ref_103 article-title: PPAR-delta binding to heme oxygenase 1 promoter prevents angiotensin II induced adipocyte dysfunction in goldblatt hypertensive rats publication-title: Int. J. Obes. doi: 10.1038/ijo.2013.116 – volume: 137 start-page: 73 year: 2009 ident: ref_106 article-title: Twist-1 Is a PPARδ-Inducible, Negative-Feedback Regulator of PGC-1α in Brown Fat Metabolism publication-title: Cell doi: 10.1016/j.cell.2009.01.051 – volume: 2 start-page: 84 year: 2011 ident: ref_65 article-title: Control of Brown Adipose Tissue Glucose and Lipid Metabolism by PPARgamma publication-title: Front. Endocrinol. doi: 10.3389/fendo.2011.00084 – volume: 52 start-page: 873 year: 2011 ident: ref_81 article-title: Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes publication-title: J. Lipid Res. doi: 10.1194/jlr.M011320 – volume: 135 start-page: 798 year: 1994 ident: ref_15 article-title: Peroxisome proliferator-activated receptor (PPAR) gamma: Adipose-predominant expression and induction early in adipocyte differentiation publication-title: Endocrinology doi: 10.1210/endo.135.2.8033830 – volume: 17 start-page: 562 year: 2013 ident: ref_56 article-title: EBF2 Determines and Maintains Brown Adipocyte Identity publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.01.015 – volume: 407 start-page: 818 year: 2011 ident: ref_82 article-title: Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.03.106 – volume: 29 start-page: 7 year: 2015 ident: ref_75 article-title: Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers publication-title: Genes Dev. doi: 10.1101/gad.250829.114 – volume: 24 start-page: 2005 year: 2018 ident: ref_27 article-title: Peroxisome Proliferator-Activated Receptor γ2 Controls the Rate of Adipose Tissue Lipid Storage and Determines Metabolic Flexibility publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.07.063 – volume: 128 start-page: 2600 year: 2018 ident: ref_77 article-title: PPARγ deacetylation dissociates thiazolidinedione’s metabolic benefits from its adverse effects publication-title: J. Clin. Investig. doi: 10.1172/JCI98709 – volume: 10 start-page: 24 year: 2014 ident: ref_13 article-title: Adipose tissue browning and metabolic health publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2013.204 – volume: 316 start-page: E293 year: 2019 ident: ref_43 article-title: The E3 ligase MARCH5 is a PPARγ target gene that regulates mitochondria and metabolism in adipocytes publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00394.2018 – volume: 37 start-page: 1 year: 2017 ident: ref_12 article-title: Human brown adipose tissue—Function and therapeutic potential in metabolic disease publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2017.07.004 – volume: 129 start-page: 4009 year: 2019 ident: ref_28 article-title: What lipodystrophies teach us about the metabolic syndrome publication-title: J. Clin. Investig. doi: 10.1172/JCI129190 – volume: 149 start-page: 2121 year: 2008 ident: ref_63 article-title: Peroxisome Proliferator-Activated Receptor-γ-Mediated Positive Energy Balance in the Rat Is Associated with Reduced Sympathetic Drive to Adipose Tissues and Thyroid Status publication-title: Endocrinology doi: 10.1210/en.2007-1553 – volume: 54 start-page: 3358 year: 2005 ident: ref_86 article-title: Peroxisome proliferator–activated receptor (PPAR) α activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: Comparison of activation of PPARα, PPARγ, and their combination publication-title: Diabetes doi: 10.2337/diabetes.54.12.3358 – volume: 221 start-page: jeb162958 year: 2018 ident: ref_14 article-title: Heterogeneity of adipose tissue in development and metabolic function publication-title: J. Exp. Biol. doi: 10.1242/jeb.162958 – volume: 185 start-page: 587 year: 2015 ident: ref_53 article-title: Brown adipose tissue: Physiological function and evolutionary significance publication-title: J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. doi: 10.1007/s00360-015-0907-7 – ident: ref_25 doi: 10.1371/journal.pgen.0030064 – ident: ref_55 doi: 10.1371/journal.pone.0122584 – volume: 116 start-page: 15128 year: 2019 ident: ref_26 article-title: Feedback regulation of Arid5a and Ppar-γ2 maintains adipose tissue homeostasis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1906712116 – volume: 39 start-page: e00601 year: 2019 ident: ref_22 article-title: Transcriptional and Epigenomic Regulation of Adipogenesis publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00601-18 – volume: 347 start-page: 645 year: 1990 ident: ref_6 article-title: Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators publication-title: Nature doi: 10.1038/347645a0 – volume: 276 start-page: 41245 year: 2001 ident: ref_32 article-title: The Mechanisms by Which Both Heterozygous Peroxisome Proliferator-activated Receptor γ (PPARγ) Deficiency and PPARγ Agonist Improve Insulin Resistance publication-title: J. Biol. Chem. doi: 10.1074/jbc.M103241200 – volume: 296 start-page: R1327 year: 2009 ident: ref_60 article-title: The PPARγ agonist rosiglitazone enhances rat brown adipose tissue lipogenesis from glucose without altering glucose uptake publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.91012.2008 – volume: 1 start-page: 1 year: 2003 ident: ref_98 article-title: The peroxisome proliferator activated receptor δ is required for the differentiation of THP-1 monocytic cells by phorbol ester publication-title: Nucl. Recept. doi: 10.1186/1478-1336-1-9 – volume: 97 start-page: 2553 year: 1996 ident: ref_35 article-title: Regulation of PPAR gamma gene expression by nutrition and obesity in rodents publication-title: J. Clin. Investig. doi: 10.1172/JCI118703 – volume: 11 start-page: 1099 year: 2018 ident: ref_7 article-title: Benefits and risks of the treatment with fibrates—A comprehensive summary publication-title: Expert Rev. Clin. Pharmacol. doi: 10.1080/17512433.2018.1537780 – volume: 7 start-page: e2487 year: 2016 ident: ref_88 article-title: Adiponectin reduces ER stress-induced apoptosis through PPAR α transcriptional regulation of ATF2 in mouse adipose publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.388 – volume: 98 start-page: 12532 year: 2001 ident: ref_54 article-title: C/EBPα is required for differentiation of white, but not brown, adipose tissue publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.211416898 – volume: 4 start-page: 585 year: 1999 ident: ref_18 article-title: PPAR gamma is required for placental, cardiac, and adipose tissue development publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80209-9 – volume: 402 start-page: 86 year: 2015 ident: ref_96 article-title: Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2014.12.027 – volume: 30 start-page: 3079 year: 2020 ident: ref_95 article-title: Shared PPARα/γ target genes regulate brown adipocyte thermogenic function publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.02.032 – volume: 20 start-page: 5119 year: 2000 ident: ref_101 article-title: Growth, Adipose, Brain, and Skin Alterations Resulting from Targeted Disruption of the Mouse Peroxisome Proliferator-Activated Receptor β(δ) publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.14.5119-5128.2000 – volume: 274 start-page: 21920 year: 1999 ident: ref_99 article-title: Expression of Peroxisome Proliferator-activated Receptor PPARδ Promotes Induction of PPARγ and Adipocyte Differentiation in 3T3C2 Fibroblasts publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.31.21920 – volume: 116 start-page: 581 year: 2006 ident: ref_29 article-title: PPAR gamma and human metabolic disease publication-title: J. Clin. Investig. doi: 10.1172/JCI28003 – volume: 271 start-page: 29909 year: 1996 ident: ref_51 article-title: Activation of the Nuclear Receptor Peroxisome Proliferator-activated Receptor γ Promotes Brown Adipocyte Differentiation publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.47.29909 – volume: 29 start-page: 4714 year: 2009 ident: ref_76 article-title: C/EBPα and the Corepressors CtBP1 and CtBP2 Regulate Repression of Select Visceral White Adipose Genes during Induction of the Brown Phenotype in White Adipocytes by Peroxisome Proliferator-Activated Receptor γ Agonists publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01899-08 – volume: 21 start-page: 1 year: 2021 ident: ref_4 article-title: PPARγ and Diabetes: Beyond the Genome and Towards Personalized Medicine publication-title: Curr. Diabetes Rep. doi: 10.1007/s11892-021-01385-5 – volume: 101 start-page: 4543 year: 2004 ident: ref_30 article-title: Peroxisome proliferator-activated receptor γ is required in mature white and brown adipocytes for their survival in the mouse publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0400356101 – volume: 286 start-page: 43112 year: 2011 ident: ref_91 article-title: Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: Involvement of PRDM16 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.252775 – volume: 90 start-page: 143 year: 2012 ident: ref_45 article-title: Adiponectin and PPARγ: Cooperative and interdependent actions of two key regulators of metabolism publication-title: Vitam. Horm. doi: 10.1016/B978-0-12-398313-8.00006-3 – volume: 37 start-page: 361 year: 2018 ident: ref_38 article-title: The roles of PPARs in human diseases publication-title: Nucleosides Nucleotides Nucleic Acids doi: 10.1080/15257770.2018.1475673 – volume: 113 start-page: 159 year: 2003 ident: ref_102 article-title: Peroxisome-Proliferator-Activated Receptor δ Activates Fat Metabolism to Prevent Obesity publication-title: Cell doi: 10.1016/S0092-8674(03)00269-1 – volume: 7 start-page: 22 year: 2020 ident: ref_1 article-title: Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2020.00022 – volume: 382 start-page: 597 year: 2004 ident: ref_49 article-title: Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor) γ2 gene expression in brown adipocytes: Intracellular signalling and effects on PPARγ2 and PPARγ1 protein levels publication-title: Biochem. J. doi: 10.1042/BJ20031622 – volume: 110 start-page: 18656 year: 2013 ident: ref_20 article-title: Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1314863110 – volume: 8 start-page: 15253 year: 2017 ident: ref_11 article-title: Impact of fat mass and distribution on lipid turnover in human adipose tissue publication-title: Nat. Commun. doi: 10.1038/ncomms15253 – volume: 102 start-page: 6207 year: 2005 ident: ref_19 article-title: Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0306743102 – volume: 4 start-page: 633 year: 2009 ident: ref_59 article-title: Depot specificities of PPARγ ligand actions on lipid and glucose metabolism and their implication in PPARγ-mediated body fat redistribution publication-title: Clin. Lipidol. doi: 10.2217/clp.09.45 – volume: 336 start-page: 76 year: 2005 ident: ref_89 article-title: Suppression of expression of muscle-associated proteins by PPARα in brown adipose tissue publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.08.041 – ident: ref_107 doi: 10.1371/journal.pone.0191365 – ident: ref_108 doi: 10.3390/ijms22094624 – volume: 115 start-page: E6039 year: 2018 ident: ref_47 article-title: A non-canonical-PPARγ/RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass publication-title: Proc. Natl. Acad. Sci. USA – volume: 48 start-page: 699 year: 1999 ident: ref_34 article-title: Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes publication-title: Diabetes doi: 10.2337/diabetes.48.4.699 – volume: 22 start-page: 760 year: 2018 ident: ref_66 article-title: Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.12.067 – volume: 4 start-page: 611 year: 1999 ident: ref_17 article-title: PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80211-7 – volume: 114 start-page: 1281 year: 2004 ident: ref_73 article-title: Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone publication-title: J. Clin. Investig. doi: 10.1172/JCI21752 – volume: 129 start-page: 3990 year: 2019 ident: ref_2 article-title: Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome publication-title: J. Clin. Investig. doi: 10.1172/JCI129187 – volume: 17 start-page: e12721 year: 2018 ident: ref_78 article-title: Ablation of PPAR γ in subcutaneous fat exacerbates age-associated obesity and metabolic decline publication-title: Aging Cell doi: 10.1111/acel.12721 – volume: 46 start-page: 1005 year: 2011 ident: ref_84 article-title: cis-9, trans-11, cis-15 and cis-9, trans-13, cis-15 CLNA Mixture Activates PPARα in HEK293 and Reduces Triacylglycerols in 3T3-L1 cells publication-title: Lipids doi: 10.1007/s11745-011-3615-4 – volume: 77 start-page: 289 year: 2008 ident: ref_36 article-title: Fat and Beyond: The Diverse Biology of PPARgamma publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.77.061307.091829 – volume: 5 start-page: 352 year: 2016 ident: ref_94 article-title: White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways publication-title: Mol. Metab. doi: 10.1016/j.molmet.2016.03.002 – volume: 8 start-page: 1224 year: 1994 ident: ref_16 article-title: mPPAR gamma 2: Tissue-specific regulator of an adipocyte enhancer publication-title: Genes Dev. doi: 10.1101/gad.8.10.1224 – volume: 65 start-page: 1202 year: 2016 ident: ref_90 article-title: Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD publication-title: Gut doi: 10.1136/gutjnl-2015-310798 – volume: 15 start-page: 91 year: 2010 ident: ref_92 article-title: Multiple roles of PPARα in brown adipose tissue under constitutive and cold conditions publication-title: Genes Cells doi: 10.1111/j.1365-2443.2009.01368.x – volume: 297 start-page: 1 year: 2021 ident: ref_42 article-title: Diet-dependent natriuretic peptide receptor C expression in adipose tissue is mediated by PPARγ via long-range distal enhancers publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.100941 – volume: 1862 start-page: 1212 year: 2017 ident: ref_39 article-title: Regulation of lipid droplet-associated proteins by peroxisome proliferator-activated receptors publication-title: Biochim. Biophys. Acta BBA—Mol. Cell Biol. Lipids – volume: 285 start-page: 7153 year: 2010 ident: ref_70 article-title: Chronic Peroxisome Proliferator-activated Receptor γ (PPARγ) Activation of Epididymally Derived White Adipocyte Cultures Reveals a Population of Thermogenically Competent, UCP1-containing Adipocytes Molecularly Distinct from Classic Brown Adipocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.053942 |
SSID | ssj0023259 |
Score | 2.581126 |
SecondaryResourceType | review_article |
Snippet | It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 8974 |
SubjectTerms | Adipocytes Binding sites Body fat Cloning Cytokines Energy Fatty acids Gene expression Glucose Homeostasis Insulin resistance Ligands Lipids Metabolic syndrome Musculoskeletal system Proteins Respiration Review Weight control |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5eEHwRrzhvVNAnCS5tkzQvyhCnCNMhG-ytNJdhRdtp54P_3nParnMP-pwTAuckOV-Sk-8j5Ey6thYM3wch_dBQtzVNHGOUq8AGAbcuVPjBufco7ofhw4iP6gu3oi6rnO2J5UZtc4N35Jd--ZEBCdiuJx8UVaPwdbWW0FgmqwwyDZZ0Rd275sAV-KVYGoMcRAVXoip8D-CYf5m-vhe-z0SkZLiYkuY4c7FK8lfa6W6SjRovep0qwFtkyWXbZK1SkPzeIVf9fue5oE-fpe4V0j5Yr-emENm31HiogZ4D_CvSwkszD7Ce17HpJC-cNygdvkuG3dvBzT2tJRGoCTmfUkArY2ksuFONmU2YstIlbMxC4_taWidkAohBWAEoQxnhm0jBIgt5whNjrWbBHlnJ8sztEw-ggAGwgAR6OrSRURaxXaB1JKU2WrTIxcwrsan5wlG24i2GcwP6MP7twxY5b6wnFU_GH3ZHMwfH9Wop4nlsW-S0aYZ5jo8XSebyL7AB3IlkazxoEbkQmGY8ZMpebMnSl5IxG1Ag9FYH_w9-SNZ9rFhp495xRFamn1_uGCDHVJ-U8-oHCRbWLQ priority: 102 providerName: ProQuest |
Title | PPARs-Orchestrated Metabolic Homeostasis in the Adipose Tissue |
URI | https://www.proquest.com/docview/2624240818 https://www.proquest.com/docview/2566043353 https://pubmed.ncbi.nlm.nih.gov/PMC8396609 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5si-BFfGK1lgh6kmg3yWaTg0oVqwjVUlroLWQfxUhNtamg_96Z9KFFBS-57G4CM7s732R2vw_gUJia9BnVBzH82J6sSTs2jNk8dLXrcm28kC44N-_926531-O9JZipjU4NmP2a2pGeVHc0OHl__bjABX9GGSem7KfJ03PmOMwPEBsXoIQxSZCWQdOb1xMQNuSyafTDw6YNenIE_sfoxeD0hTgXz0t-C0CNNVidIkerPnH1OiyZdAOWJ1qSH5tw3mrV25n9MMoVsIgAQltNM0YfDxJlkRr6EIFglmRWklqI-qy6Tl6GmbE6uem3oNu47lzd2lNxBFt5nI9txC19oTQaNuwzHbNQCxOzPvOU40ihjS9ixA6-9hFvhMp3VBDicvN4zGOltWTuNhTTYWp2wEJQoBA2EJWe9HSgQk0oz5UyEEIq6ZfheGaVSE2Zw0nAYhBhBkE2jL7bsAxH894vE8aMP_pVZgaOZm6PnPy6CtHsleFg3owznsoYcWqGb9gHESjRrnG3DGLBMfPvEWf2YkuaPObc2YgHcXS4-4-378GKQwdYarSVVKA4Hr2ZfUQgY1mFgugJfAaNmyqULq_vW-0qxQRezafdJwpA3y8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgQXxKdYKGAkekJW147trA-AVsCypd1Soa3UWxp_rAgqydJshfqn-I3MJJtt9wC3nu3E0XjseY5n3gN4nca-M4LuBzH8cOX6judRCK5tEpJEh6gsFThPDsz4SH051scb8KerhaG0ym5PbDbqUHn6R74jm0IGImB7P__FSTWKblc7CY3WLfbixW88stVvdz_i_G5LOfo0_TDmS1UB7pXWC44Bf5b6gF9kZyLkwoY05mImlJfSpSGaNMega4LBQG29kX5g0U-VznXuQ3AiwffegJsqwUhOlemjz6sDXiIbcTaBMY8bbU2baI8d-zvFj5-1lMIMbKrWQ-Alrl3PyrwS5kb34O4Sn7Jh61D3YSOWD-BWq1h58RDeHR4Ov9X861mjs0U0E4FN4gI96bTwjDTXK4SbdVGzomSILdkwFPOqjmzaTPAjOLoWYz2GzbIq4xNgCD08ghMi7HMqDLwNhCUT5wZp6rwzPXjTWSXzS35yksk4zfCcQjbMrtqwB9ur3vOWl-Mf_bY6A2fL1Vlnl77Ug1erZlxXdFmSl7E6xz6Ic4ncTSc9SNcmZjUeMXOvt5TF94ahG1EnPm2f_n_wl3B7PJ3sZ_u7B3vP4I6kbJk-7VtbsLk4O4_PEe4s3IvGxxicXLdT_wWOrROo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xUMBI9ISsXTuJvT4AWmhXLaXLqmql3kL8WBFUkqXZCvWv8euYyWPbPcCtZztxNP7s-SYezwfwRoehVYLOB9H98NgOLc-CEDwxkY-ixIfY0AXnw6naO4k_nyanG_CnuwtDaZXdnlhv1L509I98IOuLDFSAbTBv0yJmO5MPi1-cFKTopLWT02ggchAuf2P4Vr3b38G53pZysnv8aY-3CgPcxUmy5Oj859p5_DozFz4TxuuQibmInZRW-6B0hg5YeYVO2zgl3cggZuMkSzLnvRURvvcWbGqKinqw-XF3OjtahXuRrKXaBHpArhKjmrT7KDLDQf7jZyWlUCOj43WHeMVy13M0rzm9yX2417JVNm7g9QA2QvEQbjf6lZeP4P1sNj6q-NfzWnWLik54dhiWiKuz3DFSYC-RfFZ5xfKCIdNkY58vyiqw43q6H8PJjZjrCfSKsghPgSERcUhVqHyfjf3IGU_MMrJ2pLV1VvXhbWeV1LXVykk04yzFqIVsmF63YR-2V70XTZWOf_Tb6gyctmu1Sq-Q1YfXq2ZcZXR0khWhvMA-yHqp1FsS9UGvTcxqPKrTvd5S5N_ret3IQfFp8-z_g7-COwjo9Mv-9OA53JWUOjOkTWwLesvzi_ACuc_SvmxBxuDbTeP6L7_rGTo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PPARs-Orchestrated+Metabolic+Homeostasis+in+the+Adipose+Tissue&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Sun%2C+Chen&rft.au=Mao%2C+Shuyu&rft.au=Chen%2C+Siyu&rft.au=Zhang%2C+Wenxiang&rft.date=2021-08-20&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=16&rft_id=info:doi/10.3390%2Fijms22168974&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |