Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020
•From 2003 to 2020, Fractional Vegetation Cover (FVC) increased at a rate of 0.19•Due to the differences in topography and landforms, the FVC in the Yellow River Basin presents obvious spatial differences.•FVC in 73% of the basin shows high stability.•There is obvious seasonal characteristics of FVC...
Saved in:
Published in | Ecological indicators Vol. 138; p. 108818 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •From 2003 to 2020, Fractional Vegetation Cover (FVC) increased at a rate of 0.19•Due to the differences in topography and landforms, the FVC in the Yellow River Basin presents obvious spatial differences.•FVC in 73% of the basin shows high stability.•There is obvious seasonal characteristics of FVC in the basin.
The Yellow River occupies a pivotal strategic position in the development and economic construction of China. Moreover, grasping the dynamics of change in long-term vegetation cover and predicting future trends in the Yellow River Basin could provide an empirical foundation for improved ecological protection and soil and water conservation initiatives. This study uses statistical methods such as Dimidiate pixel model, linear regression, Moran’s index, and coefficient of variation to conduct a spatio-temporal analysis of the vegetation coverage in the Yellow River Basin. The Hurst exponent is used for further analysis of the trend of change in the vegetation coverage across the study area. The results show that from 2003 to 2020, the fractional vegetation coverage (FVC) in the Yellow River Basin increased at an average rate of 0.19% per year. Furthermore, only 2.22% of the area of the Yellow River Basin shows a relative increase in FVC from 2003 to 2020; most of the increased area is located in the northwestern Loess Plateau. The Global Moran index values from 2003 to 2020 are all greater than 0.8, indicating that the vegetation coverage presents a strong agglomeration. According to the Local Moran index, the vegetation coverage of the Yellow River Basin presents a strong spatial difference. According to the coefficient of variation, 73% of the vegetation coverage in the Yellow River Basin has been highly stable over the past 18 years. In addition, the overall Hurst exponent for the FVC in the Yellow River Basin is less than 0.5, indicating a anti-persistence pattern of change in vegetation. |
---|---|
AbstractList | The Yellow River occupies a pivotal strategic position in the development and economic construction of China. Moreover, grasping the dynamics of change in long-term vegetation cover and predicting future trends in the Yellow River Basin could provide an empirical foundation for improved ecological protection and soil and water conservation initiatives. This study uses statistical methods such as Dimidiate pixel model, linear regression, Moran’s index, and coefficient of variation to conduct a spatio-temporal analysis of the vegetation coverage in the Yellow River Basin. The Hurst exponent is used for further analysis of the trend of change in the vegetation coverage across the study area. The results show that from 2003 to 2020, the fractional vegetation coverage (FVC) in the Yellow River Basin increased at an average rate of 0.19% per year. Furthermore, only 2.22% of the area of the Yellow River Basin shows a relative increase in FVC from 2003 to 2020; most of the increased area is located in the northwestern Loess Plateau. The Global Moran index values from 2003 to 2020 are all greater than 0.8, indicating that the vegetation coverage presents a strong agglomeration. According to the Local Moran index, the vegetation coverage of the Yellow River Basin presents a strong spatial difference. According to the coefficient of variation, 73% of the vegetation coverage in the Yellow River Basin has been highly stable over the past 18 years. In addition, the overall Hurst exponent for the FVC in the Yellow River Basin is less than 0.5, indicating a anti-persistence pattern of change in vegetation. The Yellow River occupies a pivotal strategic position in the development and economic construction of China. Moreover, grasping the dynamics of change in long-term vegetation cover and predicting future trends in the Yellow River Basin could provide an empirical foundation for improved ecological protection and soil and water conservation initiatives. This study uses statistical methods such as Dimidiate pixel model, linear regression, Moran’s index, and coefficient of variation to conduct a spatio-temporal analysis of the vegetation coverage in the Yellow River Basin. The Hurst exponent is used for further analysis of the trend of change in the vegetation coverage across the study area. The results show that from 2003 to 2020, the fractional vegetation coverage (FVC) in the Yellow River Basin increased at an average rate of 0.19% per year. Furthermore, only 2.22% of the area of the Yellow River Basin shows a relative increase in FVC from 2003 to 2020; most of the increased area is located in the northwestern Loess Plateau. The Global Moran index values from 2003 to 2020 are all greater than 0.8, indicating that the vegetation coverage presents a strong agglomeration. According to the Local Moran index, the vegetation coverage of the Yellow River Basin presents a strong spatial difference. According to the coefficient of variation, 73% of the vegetation coverage in the Yellow River Basin has been highly stable over the past 18 years. In addition, the overall Hurst exponent for the FVC in the Yellow River Basin is less than 0.5, indicating a anti-persistence pattern of change in vegetation. •From 2003 to 2020, Fractional Vegetation Cover (FVC) increased at a rate of 0.19•Due to the differences in topography and landforms, the FVC in the Yellow River Basin presents obvious spatial differences.•FVC in 73% of the basin shows high stability.•There is obvious seasonal characteristics of FVC in the basin. The Yellow River occupies a pivotal strategic position in the development and economic construction of China. Moreover, grasping the dynamics of change in long-term vegetation cover and predicting future trends in the Yellow River Basin could provide an empirical foundation for improved ecological protection and soil and water conservation initiatives. This study uses statistical methods such as Dimidiate pixel model, linear regression, Moran’s index, and coefficient of variation to conduct a spatio-temporal analysis of the vegetation coverage in the Yellow River Basin. The Hurst exponent is used for further analysis of the trend of change in the vegetation coverage across the study area. The results show that from 2003 to 2020, the fractional vegetation coverage (FVC) in the Yellow River Basin increased at an average rate of 0.19% per year. Furthermore, only 2.22% of the area of the Yellow River Basin shows a relative increase in FVC from 2003 to 2020; most of the increased area is located in the northwestern Loess Plateau. The Global Moran index values from 2003 to 2020 are all greater than 0.8, indicating that the vegetation coverage presents a strong agglomeration. According to the Local Moran index, the vegetation coverage of the Yellow River Basin presents a strong spatial difference. According to the coefficient of variation, 73% of the vegetation coverage in the Yellow River Basin has been highly stable over the past 18 years. In addition, the overall Hurst exponent for the FVC in the Yellow River Basin is less than 0.5, indicating a anti-persistence pattern of change in vegetation. |
ArticleNumber | 108818 |
Author | Zhang, Xiaodong Chen, Guanzhou Wang, Tong Zhu, Kun Wang, Qing Wang, Jing Liu, Chenxi |
Author_xml | – sequence: 1 givenname: Chenxi surname: Liu fullname: Liu, Chenxi organization: School of Geosciences, Yangtze University, Wuhan 430100, China – sequence: 2 givenname: Xiaodong surname: Zhang fullname: Zhang, Xiaodong email: zxdlmars@whu.edu.cn organization: State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China – sequence: 3 givenname: Tong surname: Wang fullname: Wang, Tong organization: State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China – sequence: 4 givenname: Guanzhou surname: Chen fullname: Chen, Guanzhou organization: State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China – sequence: 5 givenname: Kun surname: Zhu fullname: Zhu, Kun organization: State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China – sequence: 6 givenname: Qing surname: Wang fullname: Wang, Qing organization: School of Geosciences, Yangtze University, Wuhan 430100, China – sequence: 7 givenname: Jing surname: Wang fullname: Wang, Jing organization: School of Geosciences, Yangtze University, Wuhan 430100, China |
BookMark | eNqFkU9rHSEUxaWk0CTtRyi47GZer86oI12ENP8aCARKCu1KHOf64mPemKp5od8-JhO6yCarq8f7O3LvOSB7c5yRkM8MVgyY_LpZoYtTmMcVB86r1vesf0f2Wa94o6Dt9uq5U9AwCb8_kIOcN1A5reU-uTnFgq6EONPo6Q7XWOzzzcUdJrtG6m7tvMZMw0zLLdI_OE3xgf4M9Zl-t7nKPsUt5QAtLbFWDh_Je2-njJ9e6iH5dX52c_Kjubq-uDw5vmpcJ0RpurGXfBi0lBy87JBrxV3P0bUonFVolYXBg-y1FnLAAXw7cKGZ8naQOPr2kFwuvmO0G3OXwtamfybaYJ6FmNbGphLchKZXUqMTMCqUnedyEEogdC06z7AVsnp9WbzuUvx7j7mYbciuDmtnjPfZcClBKyaFqq1iaXUp5pzQ__-agXlKxGzMSyLmKRGzJFK5b684F5Ztl2TD9CZ9tNBYN7oLmEx2AWeHY0g1wTpyeMPhEU6squA |
CitedBy_id | crossref_primary_10_1002_joc_8213 crossref_primary_10_3390_agriculture14101759 crossref_primary_10_1016_j_chaos_2024_115917 crossref_primary_10_1016_j_ecolind_2023_111441 crossref_primary_10_1016_j_jenvman_2024_123436 crossref_primary_10_3390_s24165167 crossref_primary_10_1016_j_ejrh_2023_101614 crossref_primary_10_3390_f15030505 crossref_primary_10_1109_ACCESS_2024_3455903 crossref_primary_10_1016_j_jhydrol_2024_131012 crossref_primary_10_1016_j_jenvman_2024_121023 crossref_primary_10_3390_land13122127 crossref_primary_10_3390_rs16244772 crossref_primary_10_1016_j_scitotenv_2024_173339 crossref_primary_10_1061_JWRMD5_WRENG_5891 crossref_primary_10_1007_s10661_023_11650_7 crossref_primary_10_1038_s41545_023_00290_6 crossref_primary_10_3389_feart_2022_1043403 crossref_primary_10_1016_j_scitotenv_2022_159296 crossref_primary_10_3390_rs14225720 crossref_primary_10_1016_j_ecolind_2025_113171 crossref_primary_10_3389_fpls_2024_1363690 crossref_primary_10_1109_JSTARS_2024_3453295 crossref_primary_10_1016_j_landusepol_2025_107529 crossref_primary_10_3390_land13040475 crossref_primary_10_1061_JHYEFF_HEENG_6365 crossref_primary_10_1016_j_ecolind_2023_110345 crossref_primary_10_1016_j_uclim_2024_102081 crossref_primary_10_1029_2022JG007140 crossref_primary_10_3390_su15129269 crossref_primary_10_3390_su151914648 crossref_primary_10_1016_j_ecolind_2022_109663 crossref_primary_10_3390_rs16010160 crossref_primary_10_3390_su151914244 crossref_primary_10_3390_rs14246271 crossref_primary_10_3390_su16020661 crossref_primary_10_1016_j_scitotenv_2024_176271 crossref_primary_10_3390_rs14246273 crossref_primary_10_3390_w16202888 crossref_primary_10_1016_j_gecco_2023_e02550 crossref_primary_10_1002_ldr_4882 crossref_primary_10_3390_app132312596 crossref_primary_10_1016_j_scitotenv_2024_173959 crossref_primary_10_3390_rs16111980 crossref_primary_10_1002_eco_2752 crossref_primary_10_1016_j_ecolind_2023_110683 crossref_primary_10_3390_rs15194683 crossref_primary_10_3390_s23229038 crossref_primary_10_1016_j_jclepro_2023_139384 crossref_primary_10_1016_j_fmre_2024_10_006 crossref_primary_10_1109_JSTARS_2024_3498899 crossref_primary_10_1016_j_rcar_2024_10_006 crossref_primary_10_3390_su16146039 crossref_primary_10_1016_j_ecolind_2023_111139 crossref_primary_10_3390_su142013103 crossref_primary_10_1016_j_hydres_2023_11_005 crossref_primary_10_1080_10106049_2023_2184501 crossref_primary_10_1016_j_ecolind_2022_109200 crossref_primary_10_1016_j_gecco_2024_e03351 crossref_primary_10_3390_rs16142665 crossref_primary_10_3390_rs15102671 crossref_primary_10_1007_s11356_023_27702_x crossref_primary_10_1016_j_jclepro_2022_133789 crossref_primary_10_1007_s40333_024_0092_1 crossref_primary_10_3390_f14030620 crossref_primary_10_1002_joc_8383 crossref_primary_10_3390_ijerph192316111 crossref_primary_10_1007_s13146_024_00971_4 crossref_primary_10_1016_j_ecolind_2024_111648 crossref_primary_10_1016_j_ecolind_2023_110797 crossref_primary_10_3390_rs15092276 crossref_primary_10_3390_land11091553 crossref_primary_10_1016_j_scitotenv_2024_174903 crossref_primary_10_3390_f15071147 crossref_primary_10_1038_s41598_024_73121_4 crossref_primary_10_3390_land11081367 crossref_primary_10_1080_15481603_2023_2194597 crossref_primary_10_1109_JSTARS_2024_3407755 crossref_primary_10_3390_rs15061509 crossref_primary_10_3390_rs15164072 crossref_primary_10_1016_j_compenvurbsys_2024_102220 crossref_primary_10_1016_j_ecolind_2024_113007 crossref_primary_10_1016_j_scitotenv_2024_170375 crossref_primary_10_3390_w16233468 crossref_primary_10_3390_land13071032 crossref_primary_10_3390_rs15215212 crossref_primary_10_1007_s11356_024_31902_4 crossref_primary_10_1016_j_scs_2024_105487 crossref_primary_10_1007_s11356_022_22077_x crossref_primary_10_3389_ffgc_2023_1157285 crossref_primary_10_1016_j_scitotenv_2023_167088 crossref_primary_10_3389_fpls_2024_1440993 crossref_primary_10_1007_s11442_024_2298_8 crossref_primary_10_3389_fpls_2024_1441567 crossref_primary_10_3390_rs14184607 crossref_primary_10_1038_s41598_024_65548_6 crossref_primary_10_3390_f15071200 crossref_primary_10_1002_ldr_5408 crossref_primary_10_1016_j_ecolind_2023_110083 crossref_primary_10_3390_land13111840 crossref_primary_10_1371_journal_pone_0303078 crossref_primary_10_1080_01431161_2025_2471593 crossref_primary_10_3390_rs16111952 crossref_primary_10_3390_su16010378 crossref_primary_10_1016_j_jclepro_2023_136869 crossref_primary_10_1016_j_ocecoaman_2024_107029 crossref_primary_10_3390_f15122219 crossref_primary_10_1016_j_jclepro_2023_137559 crossref_primary_10_1016_j_jenvman_2023_117910 crossref_primary_10_3390_su16219495 crossref_primary_10_3390_f14122350 crossref_primary_10_1016_j_seps_2024_101970 crossref_primary_10_3390_rs16173302 crossref_primary_10_1016_j_jclepro_2023_136740 |
Cites_doi | 10.1016/j.scitotenv.2018.09.115 10.1016/j.jclepro.2020.122705 10.1016/j.gloplacha.2018.06.005 10.1016/j.chnaes.2012.08.001 10.1016/j.jhydrol.2020.124751 10.1016/j.agee.2021.107636 10.1016/j.ecolind.2020.107124 10.1016/j.scitotenv.2010.10.020 10.1016/j.jclepro.2019.05.334 10.3390/su12051933 10.1016/j.scitotenv.2019.135428 10.1016/j.catena.2005.12.006 10.1016/j.ecolind.2014.07.031 10.1016/j.rse.2018.06.022 10.1016/j.ecoleng.2019.06.023 10.1016/j.isprsjprs.2012.11.008 10.1109/JSTARS.2019.2934732 10.1016/j.jclepro.2020.121751 10.1080/15481603.2019.1662166 10.1016/j.jclepro.2021.127249 10.1016/j.jhydrol.2019.04.040 10.1016/j.jhydrol.2019.124218 10.1016/j.scitotenv.2021.150535 10.1016/j.agwat.2021.107231 10.1016/S1002-0160(06)60071-4 10.1016/j.jenvman.2021.112562 10.3390/rs10040549 10.1016/j.scitotenv.2019.135588 10.1016/j.agee.2021.107719 10.1016/j.ecolind.2021.108029 10.1016/j.ecolind.2021.107479 10.1016/j.ecolind.2021.108010 10.3390/rs12060945 10.1007/s00704-021-03616-x 10.1016/j.quaint.2014.03.048 10.1073/pnas.1922349117 10.1016/j.agrformet.2015.05.002 10.1016/j.jhydrol.2021.126183 10.1016/j.geomorph.2004.10.005 10.1016/j.jclepro.2021.128592 10.1016/j.ecolind.2021.108490 10.1016/j.ecolind.2019.105892 10.1016/j.ecolind.2021.108004 10.1016/j.ecolind.2021.108223 10.1016/j.scitotenv.2017.06.188 10.1016/j.scitotenv.2019.01.430 10.1007/s11629-020-6404-9 10.1016/j.scitotenv.2021.152512 10.1080/19475705.2020.1861112 10.1371/journal.pone.0245784 10.1016/j.ecolind.2018.07.047 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ecolind.2022.108818 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1872-7034 |
ExternalDocumentID | oai_doaj_org_article_8769ec50d7e64f26b575e043ecf1e356 10_1016_j_ecolind_2022_108818 S1470160X22002898 |
GeographicLocations | China Yellow River |
GeographicLocations_xml | – name: China – name: Yellow River |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c455t-4d862bb96620f64e2972c82ec3e5ca7ea7a0bf0689956beb0f3b25917fab6edf3 |
IEDL.DBID | DOA |
ISSN | 1470-160X |
IngestDate | Tue Aug 26 23:55:38 EDT 2025 Mon Jul 21 09:17:00 EDT 2025 Tue Jul 01 04:26:55 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Fri Feb 23 02:41:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Yellow River Basin Hurst exponent Spatio-temporal patterns Fractional vegetation cover Remote sensing Moran’s index |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-4d862bb96620f64e2972c82ec3e5ca7ea7a0bf0689956beb0f3b25917fab6edf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/8769ec50d7e64f26b575e043ecf1e356 |
PQID | 2660971657 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8769ec50d7e64f26b575e043ecf1e356 proquest_miscellaneous_2660971657 crossref_primary_10_1016_j_ecolind_2022_108818 crossref_citationtrail_10_1016_j_ecolind_2022_108818 elsevier_sciencedirect_doi_10_1016_j_ecolind_2022_108818 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Ecological indicators |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Shi, Li, Li, Sun, Wang, Min (b0150) 2022; 259 Liu, Skidmore, Hasi, Wagner, Tatarko (b0080) 2005; 67 Qin, Yang, Gao, Wang, Chen, Chen, Wang, Zheng (b0130) 2017; 605 Zheng (b0285) 2006; 16 Zhang, Wang, Xiang, Qin, Jiang (b0275) 2020; 110 Zhang, Jin (b0250) 2021; 131 Chen, Guo, Zhang, Zang, Wei, Wu, Yang, Zhen, Li, Zhang (b0020) 2021; 18 Mao, Zhang, Li, Liu, Wang, Yan, Shen, Zhang, Shen, Zhu, Xu, Xin (b0100) 2022; 135 Zhang, Wang, Xiang, Qin, Jiang (b0280) 2020; 110 Jiang, Yuan, Wang, Cao, Zhang, Shen (b0060) 2015; 51 Guo, Wei, Yu, Liu, Li, Meng, Cai (b0040) 2022; 813 Liu, Song, An, Sun, Trouet, Cai, Liu, Leavitt, Song, Li (b0090) 2020; 117 Yu, Xie, Jiang, Zhao, Li, Liang, Wang (b0245) 2021; 145 Yuan, Bian, Yan, Gu, Yu (b0240) 2020; 12 Wang, Wang, Yang, Di, Zhao, Liang, Hussain (b0170) 2020; 584 Shammi, Meng (b0140) 2021; 121 Chang, Wang, Istanbulluoglu, Bai, Huang, Yang, Huang (b0015) 2015; 380 Tian, Liu, Yang, Wu (b0165) 2021; 125 Zhang, Wang, Li (b0265) 2019; 232 Hou, Wu, Yu, Qian (b0055) 2012; 32 Ran, Hong, Chen, Gao, Ye (b0135) 2019; 574 . Zhang, Liu, Ren, Jiang, Yang, Yuan, Wang, Wei (b0260) 2019; 12 Sun, Song, Mu, Gao, Wang, Zhao (b0155) 2015; 209 Xiong, Xiao, Liang, Li, Zhang, Li, Pan, Liu (b0200) 2021; 129 Xu, Zhang, Li, Li, Lu, Wang, Wang, Cheng, Wang (b0215) 2018; 95 Yang, L., Jia, K., Liang, S., Liu, M., Wei, X., Yao, Y., Zhang, X., Liu, D., 2018. Spatio-temporal analysis and uncertainty of fractional vegetation cover change over northern China during 2001–2012 based on multiple vegetation data sets. Remote Sensing, 10. URL Bai (b0010) 2021; 129 Xiao, Guo, Lu, Zhang, Zhang, Zhen, Chen, Wu, Wei (b0190) 2021; 12 Pei, Liu, Jia, Zhang, Li, Xiao (b0125) 2021; 129 Yuan, Bian, Yan, Gu, Yu (b0235) 2020; 12 Ayantobo, Wei, Kang, Wang (b0005) 2021 Xu (b0205) 2006; 65 Li, Wang, Zhang, Zhang, Kong (b0075) 2021; 102 Zhang, Ge, Zhang (b0270) 2020; 264 Mu, Song, Gao, McVicar, Donohue, Yan (b0110) 2018; 216 Gou, Hu, Chen, Wei, Du, Zhou (b0035) 2019; 139 Liu, Li, Chen, Zhang, Yang (b0085) 2018; 169 Kim, Kang, Seo, Narantsetseg, Han (b0065) 2020; 57 Ouyang, Hao, Skidmore, Toxopeus (b0120) 2010; 409 Hill, Guerschman (b0050) 2022; 324 Li, Shi, Zhang, Ning, Sun, Liu, Ma, Liu, Collins (b0070) 2020; 703 Wei, Lei, Yao, Ge, Wu, Liu (b0185) 2021; 308 Théau, Lauzier-Hudon, Aubé, Devillers (b0160) 2021; 16 Xie, Xu, Wang, Gu, Wang, Pan (b0195) 2019; 579 Shi, Zhang, Ren, Yu, Li, Gong (b0145) 2019; 664 Xu, Zhang, Yang (b0220) 2021; 597 He, Shi, Fu (b0045) 2021; 289 Yang, Pu, Zhang, Zhao, Feng, Wang (b0225) 2013; 77 Moura, Fonseca (b0105) 2020; 12 Wang, Wang, Zhao, Liu (b0180) 2021 Ma, Wang, Jiang, Chu, Zhang (b0095) 2021; 318 Wang, Liu, Gao, Emanuele, Ren, Shao, Wei (b0175) 2021; 322 Zhang, Liao, Li, Sun (b0255) 2013; 21 Chu, Venevsky, Wu, Wang (b0025) 2019; 650 Feng, Yang, Fu, Wang, Zhang, Sun, Bao (b0030) 2020; 271 Omer, Zhuguo, Zheng, Saleem (b0115) 2020; 704 Xue, Jian, Yang, Liu, Yao (b0210) 2022; 806 Wang (10.1016/j.ecolind.2022.108818_b0180) 2021 Yuan (10.1016/j.ecolind.2022.108818_b0240) 2020; 12 Hill (10.1016/j.ecolind.2022.108818_b0050) 2022; 324 Ayantobo (10.1016/j.ecolind.2022.108818_b0005) 2021 Liu (10.1016/j.ecolind.2022.108818_b0080) 2005; 67 Xu (10.1016/j.ecolind.2022.108818_b0205) 2006; 65 Shammi (10.1016/j.ecolind.2022.108818_b0140) 2021; 121 Yang (10.1016/j.ecolind.2022.108818_b0225) 2013; 77 Ouyang (10.1016/j.ecolind.2022.108818_b0120) 2010; 409 Xiong (10.1016/j.ecolind.2022.108818_b0200) 2021; 129 Zhang (10.1016/j.ecolind.2022.108818_b0280) 2020; 110 Zhang (10.1016/j.ecolind.2022.108818_b0250) 2021; 131 Mu (10.1016/j.ecolind.2022.108818_b0110) 2018; 216 Tian (10.1016/j.ecolind.2022.108818_b0165) 2021; 125 Liu (10.1016/j.ecolind.2022.108818_b0085) 2018; 169 Xu (10.1016/j.ecolind.2022.108818_b0215) 2018; 95 Hou (10.1016/j.ecolind.2022.108818_b0055) 2012; 32 Li (10.1016/j.ecolind.2022.108818_b0070) 2020; 703 Mao (10.1016/j.ecolind.2022.108818_b0100) 2022; 135 Gou (10.1016/j.ecolind.2022.108818_b0035) 2019; 139 Zhang (10.1016/j.ecolind.2022.108818_b0270) 2020; 264 Liu (10.1016/j.ecolind.2022.108818_b0090) 2020; 117 Guo (10.1016/j.ecolind.2022.108818_b0040) 2022; 813 Chen (10.1016/j.ecolind.2022.108818_b0020) 2021; 18 10.1016/j.ecolind.2022.108818_b0230 Moura (10.1016/j.ecolind.2022.108818_b0105) 2020; 12 Ran (10.1016/j.ecolind.2022.108818_b0135) 2019; 574 Xue (10.1016/j.ecolind.2022.108818_b0210) 2022; 806 Xiao (10.1016/j.ecolind.2022.108818_b0190) 2021; 12 Shi (10.1016/j.ecolind.2022.108818_b0145) 2019; 664 Jiang (10.1016/j.ecolind.2022.108818_b0060) 2015; 51 Xie (10.1016/j.ecolind.2022.108818_b0195) 2019; 579 Li (10.1016/j.ecolind.2022.108818_b0075) 2021; 102 He (10.1016/j.ecolind.2022.108818_b0045) 2021; 289 Zhang (10.1016/j.ecolind.2022.108818_b0255) 2013; 21 Wei (10.1016/j.ecolind.2022.108818_b0185) 2021; 308 Omer (10.1016/j.ecolind.2022.108818_b0115) 2020; 704 Zhang (10.1016/j.ecolind.2022.108818_b0275) 2020; 110 Qin (10.1016/j.ecolind.2022.108818_b0130) 2017; 605 Shi (10.1016/j.ecolind.2022.108818_b0150) 2022; 259 Sun (10.1016/j.ecolind.2022.108818_b0155) 2015; 209 Bai (10.1016/j.ecolind.2022.108818_b0010) 2021; 129 Feng (10.1016/j.ecolind.2022.108818_b0030) 2020; 271 Théau (10.1016/j.ecolind.2022.108818_b0160) 2021; 16 Chu (10.1016/j.ecolind.2022.108818_b0025) 2019; 650 Xu (10.1016/j.ecolind.2022.108818_b0220) 2021; 597 Yuan (10.1016/j.ecolind.2022.108818_b0235) 2020; 12 Chang (10.1016/j.ecolind.2022.108818_b0015) 2015; 380 Kim (10.1016/j.ecolind.2022.108818_b0065) 2020; 57 Ma (10.1016/j.ecolind.2022.108818_b0095) 2021; 318 Wang (10.1016/j.ecolind.2022.108818_b0170) 2020; 584 Zhang (10.1016/j.ecolind.2022.108818_b0265) 2019; 232 Yu (10.1016/j.ecolind.2022.108818_b0245) 2021; 145 Wang (10.1016/j.ecolind.2022.108818_b0175) 2021; 322 Zhang (10.1016/j.ecolind.2022.108818_b0260) 2019; 12 Pei (10.1016/j.ecolind.2022.108818_b0125) 2021; 129 Zheng (10.1016/j.ecolind.2022.108818_b0285) 2006; 16 |
References_xml | – volume: 318 year: 2021 ident: b0095 article-title: Threshold effect of ecosystem services in response to climate change and vegetation coverage change in the qinghai-tibet plateau ecological shelter publication-title: J. Cleaner Prod. – volume: 121 year: 2021 ident: b0140 article-title: Use time series ndvi and evi to develop dynamic crop growth metrics for yield modeling publication-title: Ecol. Ind. – volume: 584 year: 2020 ident: b0170 article-title: Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the yellow river basin, China publication-title: J. Hydrol. – volume: 597 year: 2021 ident: b0220 article-title: Water and sediment yield response to extreme rainfall events in a complex large river basin: a case study of the yellow river basin, China publication-title: J. Hydrol. – volume: 125 year: 2021 ident: b0165 article-title: Vegetation greening in more than 94% of the yellow river basin (yrb) region in China during the 21st century caused jointly by warming and anthropogenic activities publication-title: Ecol. Ind. – volume: 322 year: 2021 ident: b0175 article-title: The grain for green project eliminated the effect of soil erosion on organic carbon on China’s loess plateau between 1980 and 2008 publication-title: Agriculture, Ecosystems & Environment – volume: 110 year: 2020 ident: b0280 article-title: Vegetation dynamics and the relations with climate change at multiple time scales in the yangtze river and yellow river basin, China publication-title: Ecol. Ind. – volume: 16 start-page: 420 year: 2006 end-page: 427 ident: b0285 article-title: Effect of vegetation changes on soil erosion on the loess plateau1 1project supported by the chinese academy of sciences (no. kzcx3-sw-422) and the national natural science foundation of China (nos. 9032001 and 40335050) publication-title: Pedosphere – volume: 409 start-page: 396 year: 2010 end-page: 403 ident: b0120 article-title: Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the yellow river publication-title: Sci. Total Environ. – volume: 117 start-page: 18251 year: 2020 end-page: 18257 ident: b0090 article-title: Recent anthropogenic curtailing of yellow river runoff and sediment load is unprecedented over the past 500 y publication-title: Proc. Nat. Acad. Sci. – volume: 102 year: 2021 ident: b0075 article-title: Dynamic changes of vegetation coverage in China-Myanmar economic corridor over the past 20 years publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 18 start-page: 427 year: 2021 end-page: 445 ident: b0020 article-title: Quantitatively determine the dominant driving factors of the spatial–temporal changes of vegetation npp in the hengduan mountain area during 2000–2015 publication-title: J. Mountain Sci. – volume: 380 start-page: 169 year: 2015 end-page: 179 ident: b0015 article-title: Impact of climate change and human activities on runoff in the weihe river basin, China publication-title: Quatern. Int. – volume: 12 year: 2020 ident: b0240 article-title: An approach to the temporal and spatial characteristics of vegetation in the growing season in western China publication-title: Remote Sensing – volume: 579 year: 2019 ident: b0195 article-title: Influences of climatic variability and human activities on terrestrial water storage variations across the yellow river basin in the recent decade publication-title: J. Hydrol. – volume: 57 start-page: 49 year: 2020 end-page: 59 ident: b0065 article-title: Estimating fractional green vegetation cover of mongolian grasslands using digital camera images and modis satellite vegetation indices publication-title: GIScience Remote Sens. – volume: 324 year: 2022 ident: b0050 article-title: Global trends in vegetation fractional cover: hotspots for change in bare soil and non-photosynthetic vegetation publication-title: Agricul., Ecosyst. Environ. – volume: 813 year: 2022 ident: b0040 article-title: The dominant influencing factors of desertification changes in the source region of yellow river: climate change or human activity? publication-title: Sci. Total Environ. – volume: 271 year: 2020 ident: b0030 article-title: Do anthropogenic factors affect the improvement of vegetation cover in resource-based region? publication-title: J. Cleaner Prod. – volume: 12 start-page: 945 year: 2020 ident: b0235 article-title: An approach to the temporal and spatial characteristics of vegetation in the growing season in western China publication-title: Remote Sensing – volume: 32 start-page: 297 year: 2012 end-page: 304 ident: b0055 article-title: Characteristics of multi-temporal scale variation of vegetation coverage in the circum bohai bay region, 1999–2009 publication-title: Acta Ecologica Sinica – volume: 139 year: 2019 ident: b0035 article-title: The effect of artificial vegetation recovery on the soil nutrients and enzyme activities in subhumid desert land on the southeast qinghai-tibetan plateau, China publication-title: Ecol. Eng. – volume: 65 start-page: 279 year: 2006 end-page: 284 ident: b0205 article-title: Sand-dust storms in and around the ordos plateau of China as influenced by land use change and desertification publication-title: CATENA – volume: 95 start-page: 233 year: 2018 end-page: 241 ident: b0215 article-title: Vegetation restoration projects and their influence on runoff and sediment in China publication-title: Ecol. Indic. – volume: 704 year: 2020 ident: b0115 article-title: Natural and anthropogenic influences on the recent droughts in yellow river basin, China publication-title: Sci. Total Environ. – volume: 12 start-page: 3376 year: 2019 end-page: 3386 ident: b0260 article-title: Drought monitoring and evaluation by esa cci soil moisture products over the yellow river basin publication-title: IEEE J. Selected Top. Appl. Earth Observ. Remote Sens. – volume: 574 start-page: 211 year: 2019 end-page: 225 ident: b0135 article-title: Impact of soil properties on water and sediment transport: a case study at a small catchment in the loess plateau publication-title: J. Hydrol. – volume: 216 start-page: 44 year: 2018 end-page: 56 ident: b0110 article-title: Fractional vegetation cover estimation by using multi-angle vegetation index publication-title: Remote Sens. Environ. – volume: 169 start-page: 145 year: 2018 end-page: 155 ident: b0085 article-title: Temporal-spatial variations and influencing factors of vegetation cover in xinjiang from 1982 to 2013 based on gimms-ndvi3g publication-title: Global Planet. Change – volume: 12 start-page: 1933 year: 2020 ident: b0105 article-title: Esda (exploratory spatial data analysis) of vegetation cover in urban areas–recognition of vulnerabilities for the management of resources in urban green infrastructure publication-title: Sustainability – volume: 129 year: 2021 ident: b0200 article-title: Trends in climate change and human interventions indicate grassland productivity on the qinghai–tibetan plateau from 1980 to 2015 publication-title: Ecol. Ind. – volume: 232 start-page: 940 year: 2019 end-page: 952 ident: b0265 article-title: Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015 publication-title: J. Cleaner Prod. – volume: 289 year: 2021 ident: b0045 article-title: Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly loess plateau: from the perspective of ecological resilience publication-title: J. Environ. Manage. – volume: 67 start-page: 283 year: 2005 end-page: 297 ident: b0080 article-title: Dune sand transport as influenced by wind directions, speed and frequencies in the ordos plateau, China publication-title: Geomorphology – volume: 650 start-page: 2051 year: 2019 end-page: 2062 ident: b0025 article-title: Ndvi-based vegetation dynamics and its response to climate changes at amur-heilongjiang river basin from 1982 to 2015 publication-title: Sci. Total Environ. – volume: 16 year: 2021 ident: b0160 article-title: Estimation of forage biomass and vegetation cover in grasslands using uav imagery publication-title: Plos One – start-page: 127310 year: 2021 ident: b0180 article-title: The increasing contribution of potential evapotranspiration to severe droughts in the yellow river basin publication-title: J. Hydrol. – volume: 131 year: 2021 ident: b0250 article-title: Vegetation dynamics and responses to climate change and anthropogenic activities in the three-river headwaters region, China publication-title: Ecol. Ind. – start-page: 1 year: 2021 end-page: 18 ident: b0005 article-title: Integrated moisture transport variability over China: patterns, impacts, and relationship with el nino–southern oscillation (enso) publication-title: Theoret. Appl. Climatol. – volume: 209 start-page: 87 year: 2015 end-page: 99 ident: b0155 article-title: Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the loess plateau publication-title: Agric. For. Meteorol. – volume: 129 year: 2021 ident: b0125 article-title: The trend of vegetation greening and its drivers in the agro-pastoral ecotone of northern China, 2000–2020 publication-title: Ecol. Ind. – reference: Yang, L., Jia, K., Liang, S., Liu, M., Wei, X., Yao, Y., Zhang, X., Liu, D., 2018. Spatio-temporal analysis and uncertainty of fractional vegetation cover change over northern China during 2001–2012 based on multiple vegetation data sets. Remote Sensing, 10. URL: – volume: 129 year: 2021 ident: b0010 article-title: Analysis of vegetation dynamics in the qinling-daba mountains region from modis time series data publication-title: Ecol. Ind. – volume: 703 year: 2020 ident: b0070 article-title: Using the budyko hypothesis for detecting and attributing changes in runoff to climate and vegetation change in the soft sandstone area of the middle yellow river basin, China publication-title: Sci. Total Environ. – volume: 259 year: 2022 ident: b0150 article-title: Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of loess plateau, China publication-title: Agric. Water Manag. – volume: 264 year: 2020 ident: b0270 article-title: Evaluating the vegetation restoration sustainability of ecological projects: a case study of wuqi county in China publication-title: J. Cleaner Prod. – volume: 605 start-page: 830 year: 2017 end-page: 841 ident: b0130 article-title: Impacts of climate warming on the frozen ground and eco-hydrology in the yellow river source region, China publication-title: Sci. Total Environ. – volume: 806 year: 2022 ident: b0210 article-title: Impact of water-sediment regulation on the concentration and transport of dissolved heavy metals in the middle and lower reaches of the yellow river publication-title: Sci. Total Environ. – volume: 12 start-page: 103 year: 2021 end-page: 122 ident: b0190 article-title: Spatial–temporal evolution patterns of soil erosion in the yellow river basin from 1990 to 2015: impacts of natural factors and land use change publication-title: Geomatics Natural Hazards Risk – reference: . – volume: 77 start-page: 79 year: 2013 end-page: 93 ident: b0225 article-title: Remote sensing of seasonal variability of fractional vegetation cover and its object-based spatial pattern analysis over mountain areas publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 51 start-page: 117 year: 2015 end-page: 126 ident: b0060 article-title: Spatio-temporal analysis of vegetation variation in the yellow river basin publication-title: Ecol. Ind. – volume: 135 year: 2022 ident: b0100 article-title: Spatial and temporal variations in fractional vegetation cover and its driving factors in the hulun lake region publication-title: Ecol. Ind. – volume: 308 year: 2021 ident: b0185 article-title: Estimation and influencing factors of agricultural water efficiency in the yellow river basin, China publication-title: J. Cleaner Prod. – volume: 110 year: 2020 ident: b0275 article-title: Vegetation dynamics and the relations with climate change at multiple time scales in the yangtze river and yellow river basin, China publication-title: Ecol. Ind. – volume: 145 start-page: 47 year: 2021 end-page: 62 ident: b0245 article-title: Spatiotemporal variation and predictability of vegetation coverage in the beijing–tianjin–hebei metropolitan region, China publication-title: Theoret. Appl. Climatol. – volume: 664 start-page: 984 year: 2019 end-page: 994 ident: b0145 article-title: Land-use changes and check dams reducing runoff and sediment yield on the loess plateau of China publication-title: Sci. Total Environ. – volume: 21 start-page: 506 year: 2013 end-page: 512 ident: b0255 article-title: Fractional vegetation cover estimation in arid and semi-arid environments using hj-1 satellite hyperspectral data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 650 start-page: 2051 year: 2019 ident: 10.1016/j.ecolind.2022.108818_b0025 article-title: Ndvi-based vegetation dynamics and its response to climate changes at amur-heilongjiang river basin from 1982 to 2015 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.115 – volume: 271 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0030 article-title: Do anthropogenic factors affect the improvement of vegetation cover in resource-based region? publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.122705 – volume: 169 start-page: 145 year: 2018 ident: 10.1016/j.ecolind.2022.108818_b0085 article-title: Temporal-spatial variations and influencing factors of vegetation cover in xinjiang from 1982 to 2013 based on gimms-ndvi3g publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2018.06.005 – volume: 32 start-page: 297 year: 2012 ident: 10.1016/j.ecolind.2022.108818_b0055 article-title: Characteristics of multi-temporal scale variation of vegetation coverage in the circum bohai bay region, 1999–2009 publication-title: Acta Ecologica Sinica doi: 10.1016/j.chnaes.2012.08.001 – volume: 584 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0170 article-title: Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the yellow river basin, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124751 – volume: 322 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0175 article-title: The grain for green project eliminated the effect of soil erosion on organic carbon on China’s loess plateau between 1980 and 2008 publication-title: Agriculture, Ecosystems & Environment doi: 10.1016/j.agee.2021.107636 – volume: 121 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0140 article-title: Use time series ndvi and evi to develop dynamic crop growth metrics for yield modeling publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2020.107124 – volume: 409 start-page: 396 year: 2010 ident: 10.1016/j.ecolind.2022.108818_b0120 article-title: Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the yellow river publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2010.10.020 – volume: 232 start-page: 940 year: 2019 ident: 10.1016/j.ecolind.2022.108818_b0265 article-title: Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.05.334 – volume: 12 start-page: 1933 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0105 article-title: Esda (exploratory spatial data analysis) of vegetation cover in urban areas–recognition of vulnerabilities for the management of resources in urban green infrastructure publication-title: Sustainability doi: 10.3390/su12051933 – volume: 704 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0115 article-title: Natural and anthropogenic influences on the recent droughts in yellow river basin, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135428 – volume: 65 start-page: 279 year: 2006 ident: 10.1016/j.ecolind.2022.108818_b0205 article-title: Sand-dust storms in and around the ordos plateau of China as influenced by land use change and desertification publication-title: CATENA doi: 10.1016/j.catena.2005.12.006 – volume: 51 start-page: 117 year: 2015 ident: 10.1016/j.ecolind.2022.108818_b0060 article-title: Spatio-temporal analysis of vegetation variation in the yellow river basin publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2014.07.031 – volume: 216 start-page: 44 year: 2018 ident: 10.1016/j.ecolind.2022.108818_b0110 article-title: Fractional vegetation cover estimation by using multi-angle vegetation index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.022 – volume: 139 year: 2019 ident: 10.1016/j.ecolind.2022.108818_b0035 article-title: The effect of artificial vegetation recovery on the soil nutrients and enzyme activities in subhumid desert land on the southeast qinghai-tibetan plateau, China publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2019.06.023 – volume: 77 start-page: 79 year: 2013 ident: 10.1016/j.ecolind.2022.108818_b0225 article-title: Remote sensing of seasonal variability of fractional vegetation cover and its object-based spatial pattern analysis over mountain areas publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.11.008 – volume: 12 start-page: 3376 year: 2019 ident: 10.1016/j.ecolind.2022.108818_b0260 article-title: Drought monitoring and evaluation by esa cci soil moisture products over the yellow river basin publication-title: IEEE J. Selected Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2019.2934732 – volume: 264 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0270 article-title: Evaluating the vegetation restoration sustainability of ecological projects: a case study of wuqi county in China publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.121751 – volume: 57 start-page: 49 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0065 article-title: Estimating fractional green vegetation cover of mongolian grasslands using digital camera images and modis satellite vegetation indices publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2019.1662166 – volume: 308 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0185 article-title: Estimation and influencing factors of agricultural water efficiency in the yellow river basin, China publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.127249 – volume: 574 start-page: 211 year: 2019 ident: 10.1016/j.ecolind.2022.108818_b0135 article-title: Impact of soil properties on water and sediment transport: a case study at a small catchment in the loess plateau publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.04.040 – volume: 579 year: 2019 ident: 10.1016/j.ecolind.2022.108818_b0195 article-title: Influences of climatic variability and human activities on terrestrial water storage variations across the yellow river basin in the recent decade publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124218 – start-page: 127310 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0180 article-title: The increasing contribution of potential evapotranspiration to severe droughts in the yellow river basin publication-title: J. Hydrol. – volume: 806 year: 2022 ident: 10.1016/j.ecolind.2022.108818_b0210 article-title: Impact of water-sediment regulation on the concentration and transport of dissolved heavy metals in the middle and lower reaches of the yellow river publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150535 – volume: 259 year: 2022 ident: 10.1016/j.ecolind.2022.108818_b0150 article-title: Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of loess plateau, China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107231 – volume: 16 start-page: 420 year: 2006 ident: 10.1016/j.ecolind.2022.108818_b0285 article-title: Effect of vegetation changes on soil erosion on the loess plateau1 1project supported by the chinese academy of sciences (no. kzcx3-sw-422) and the national natural science foundation of China (nos. 9032001 and 40335050) publication-title: Pedosphere doi: 10.1016/S1002-0160(06)60071-4 – volume: 289 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0045 article-title: Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly loess plateau: from the perspective of ecological resilience publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.112562 – ident: 10.1016/j.ecolind.2022.108818_b0230 doi: 10.3390/rs10040549 – volume: 703 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0070 article-title: Using the budyko hypothesis for detecting and attributing changes in runoff to climate and vegetation change in the soft sandstone area of the middle yellow river basin, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135588 – volume: 324 year: 2022 ident: 10.1016/j.ecolind.2022.108818_b0050 article-title: Global trends in vegetation fractional cover: hotspots for change in bare soil and non-photosynthetic vegetation publication-title: Agricul., Ecosyst. Environ. doi: 10.1016/j.agee.2021.107719 – volume: 129 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0010 article-title: Analysis of vegetation dynamics in the qinling-daba mountains region from modis time series data publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2021.108029 – volume: 125 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0165 article-title: Vegetation greening in more than 94% of the yellow river basin (yrb) region in China during the 21st century caused jointly by warming and anthropogenic activities publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2021.107479 – volume: 129 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0200 article-title: Trends in climate change and human interventions indicate grassland productivity on the qinghai–tibetan plateau from 1980 to 2015 publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2021.108010 – volume: 21 start-page: 506 year: 2013 ident: 10.1016/j.ecolind.2022.108818_b0255 article-title: Fractional vegetation cover estimation in arid and semi-arid environments using hj-1 satellite hyperspectral data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 12 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0240 article-title: An approach to the temporal and spatial characteristics of vegetation in the growing season in western China publication-title: Remote Sensing doi: 10.3390/rs12060945 – volume: 145 start-page: 47 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0245 article-title: Spatiotemporal variation and predictability of vegetation coverage in the beijing–tianjin–hebei metropolitan region, China publication-title: Theoret. Appl. Climatol. doi: 10.1007/s00704-021-03616-x – volume: 380 start-page: 169 year: 2015 ident: 10.1016/j.ecolind.2022.108818_b0015 article-title: Impact of climate change and human activities on runoff in the weihe river basin, China publication-title: Quatern. Int. doi: 10.1016/j.quaint.2014.03.048 – volume: 102 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0075 article-title: Dynamic changes of vegetation coverage in China-Myanmar economic corridor over the past 20 years publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 117 start-page: 18251 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0090 article-title: Recent anthropogenic curtailing of yellow river runoff and sediment load is unprecedented over the past 500 y publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.1922349117 – volume: 209 start-page: 87 year: 2015 ident: 10.1016/j.ecolind.2022.108818_b0155 article-title: Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the loess plateau publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.05.002 – volume: 597 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0220 article-title: Water and sediment yield response to extreme rainfall events in a complex large river basin: a case study of the yellow river basin, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126183 – volume: 12 start-page: 945 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0235 article-title: An approach to the temporal and spatial characteristics of vegetation in the growing season in western China publication-title: Remote Sensing doi: 10.3390/rs12060945 – volume: 67 start-page: 283 year: 2005 ident: 10.1016/j.ecolind.2022.108818_b0080 article-title: Dune sand transport as influenced by wind directions, speed and frequencies in the ordos plateau, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.10.005 – volume: 318 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0095 article-title: Threshold effect of ecosystem services in response to climate change and vegetation coverage change in the qinghai-tibet plateau ecological shelter publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.128592 – start-page: 1 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0005 article-title: Integrated moisture transport variability over China: patterns, impacts, and relationship with el nino–southern oscillation (enso) publication-title: Theoret. Appl. Climatol. – volume: 135 year: 2022 ident: 10.1016/j.ecolind.2022.108818_b0100 article-title: Spatial and temporal variations in fractional vegetation cover and its driving factors in the hulun lake region publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2021.108490 – volume: 110 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0275 article-title: Vegetation dynamics and the relations with climate change at multiple time scales in the yangtze river and yellow river basin, China publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2019.105892 – volume: 129 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0125 article-title: The trend of vegetation greening and its drivers in the agro-pastoral ecotone of northern China, 2000–2020 publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2021.108004 – volume: 131 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0250 article-title: Vegetation dynamics and responses to climate change and anthropogenic activities in the three-river headwaters region, China publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2021.108223 – volume: 605 start-page: 830 year: 2017 ident: 10.1016/j.ecolind.2022.108818_b0130 article-title: Impacts of climate warming on the frozen ground and eco-hydrology in the yellow river source region, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.06.188 – volume: 664 start-page: 984 year: 2019 ident: 10.1016/j.ecolind.2022.108818_b0145 article-title: Land-use changes and check dams reducing runoff and sediment yield on the loess plateau of China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.430 – volume: 18 start-page: 427 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0020 article-title: Quantitatively determine the dominant driving factors of the spatial–temporal changes of vegetation npp in the hengduan mountain area during 2000–2015 publication-title: J. Mountain Sci. doi: 10.1007/s11629-020-6404-9 – volume: 813 year: 2022 ident: 10.1016/j.ecolind.2022.108818_b0040 article-title: The dominant influencing factors of desertification changes in the source region of yellow river: climate change or human activity? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152512 – volume: 12 start-page: 103 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0190 article-title: Spatial–temporal evolution patterns of soil erosion in the yellow river basin from 1990 to 2015: impacts of natural factors and land use change publication-title: Geomatics Natural Hazards Risk doi: 10.1080/19475705.2020.1861112 – volume: 110 year: 2020 ident: 10.1016/j.ecolind.2022.108818_b0280 article-title: Vegetation dynamics and the relations with climate change at multiple time scales in the yangtze river and yellow river basin, China publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2019.105892 – volume: 16 year: 2021 ident: 10.1016/j.ecolind.2022.108818_b0160 article-title: Estimation of forage biomass and vegetation cover in grasslands using uav imagery publication-title: Plos One doi: 10.1371/journal.pone.0245784 – volume: 95 start-page: 233 year: 2018 ident: 10.1016/j.ecolind.2022.108818_b0215 article-title: Vegetation restoration projects and their influence on runoff and sediment in China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.07.047 |
SSID | ssj0016996 |
Score | 2.631936 |
Snippet | •From 2003 to 2020, Fractional Vegetation Cover (FVC) increased at a rate of 0.19•Due to the differences in topography and landforms, the FVC in the Yellow... The Yellow River occupies a pivotal strategic position in the development and economic construction of China. Moreover, grasping the dynamics of change in... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108818 |
SubjectTerms | China Fractional vegetation cover Hurst exponent Moran’s index regression analysis Remote sensing soil Spatio-temporal patterns vegetation cover water conservation watersheds Yellow River Yellow River Basin |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnrggXhULBRmJa3YdP5MjLa0qJDhAKy0ny3bsaiuUVN0Ubvx2ZhxnS7lU4hTFcR4aT8bfyN83JuS9M8a0jfdVgNyiklI1lfe-qQTj3nTeOZ31FZ-_6LML-Wmt1nvkeNbCIK2yxP4ppudoXVpWxZqr681m9a2WBsujrTnPy2Uo-JXSoJcvf-9oHrVu20lhZFiFve9UPKurJWR4AOawYCjnyLZrcO-Pv-anXMb_3jT1T8DOs9DpE_K4wEf6YfrCp2Qv9s_IwcmdWg0ult91-5ycf4xjplr1dEj0Z7ws3EIakLgJkYROut8t3fQUkCD9jksxv-hXJGvQI7eFZtSfUOSW0XGAI2cvyMXpyfnxWVW2UaiCVGqsZAdZi_eQ13CWtIy8NTw0PAYRVXAmOuOYT0w3KHL10bMkPCRFtUnO69glcUD2-6GPLwnVQjjRuTpJwQDJMRcQgiik0nRdSmZB5Gw8G0qNcdzq4oedyWRXttjcos3tZPMFWe5uu56KbDx0wxGOzK4z1sjODcPNpS1OYiHOtzEo1pmoZeLaAzKNTIoYUh2F0gvSzONq77kcPGrz0PvfzX5g4XfENRbXx-F2awHv5Kpcyrz6_8e_Jo_wbOJVHpL98eY2vgHsM_q32bn_AH4LAFY priority: 102 providerName: Elsevier |
Title | Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020 |
URI | https://dx.doi.org/10.1016/j.ecolind.2022.108818 https://www.proquest.com/docview/2660971657 https://doaj.org/article/8769ec50d7e64f26b575e043ecf1e356 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXLggClQstCsjcc3W8WdybEurBUQPqJWWk2U7NmqFsohN4cZvZyZ22sJlL5wiOXFsjceeN_KbGULeOmNM23hfBfAtKilVU3nvm0ow7k3nndNjfMWnc728lB9WanWv1BdywnJ64Cy4Q9itbQyKdSZqmbj2gC8ikyKGVEehxmTbYPMmZ6rcH-i2zXFFhlW1Zqu72J3D6wX4dQDhME0o58ixa7Dixz2rNCbv_8s4_XNMj7bn7Cl5UkAjPcqT3SUPYv-M7J3exajBy7JJN8_Jxbs4jASrnq4T_Rm_FkYhDUjXhPOD5mjfDb3qKeA_-gUvYH7Rz0jRoMduA80YdUKRUUaHNTw5e0Euz04vTpZVKZ5QBanUUMkOfBXvwZvhLGkZeWt4aHgMIqrgTHTGMZ-YbjC01UfPkvDgCtUmOa9jl8Qe2enXfXxJqBbCic7VSQoG-I25gMBDIYGm61IyMyIn4dlQMotjgYtvdqKQXdsic4syt1nmM7K47fY9p9bY1uEYV-b2Y8yMPTaAvtiiL3abvsxIM62rLSAjgwf41dW28d9MemBhE-LNiuvj-mZjAeWMubiUefU_5viaPMZhM69yn-wMP27iAWCfwc_Jw8Xvek4eHb3_uDyfj0r_B8LNAS0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAF8apYnkaCY3a9tmMnBw6UttrSxwG20nIydmJXW1VJ1aRUXPhT_EFmEmdLuVRC6imSHTvR2J75Rv5mhpB3VmudZ84lBfgWiZRpljjnskQw7nTprFVdfMXBoZodyc-LdLFGfg-xMEirjLq_1-mdto4tkyjNydlyOfk6lRrToy04767Lssis3PM_L8Fvaz7sbsEiv-d8Z3v-aZbE0gJJIdO0TWQJSN45wPqcBSU9zzUvMu4L4dPCam-1ZS4wlWHgp_OOBeHAUZjqYJ3yZRAw7x1yV4K6wLIJ418rXslU5Xkf0qRZgr93FTY0ORmDSwnoETOUco70vgyLjfxlELu6Adfs4j8WojN7Ow_Jg4hX6cdeJI_Imq8ek43tq_A46Iz6oXlC5lu-7bhdFa0D_eGPI5mRFsgUBdVF-0Djhi4rCtCTfsO7n0v6BdkhdNM20IwBLxTJbLSt4cnZU3J0K8LdIOtVXflnhCohrCjtNEjBADoyWyDmSZG7U5Yh6BGRg_BMEZOaY22NUzOw105MlLlBmZte5iMyXg0767N63DRgE1dm9TIm5e4a6vNjE3elAcOS-yJlpfZKBq4cQGHPpPBFmHqRqhHJhnU11_Y4TLW86ftvh31g4PzjpY6tfH3RGABYXRqwVD___-nfkHuz-cG-2d893HtB7mNPT-p8Sdbb8wv_CoBX6153G52S77d9sv4AOkg-jA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+vegetation+coverage+changes+in+the+Yellow+River+Basin+from+2003+to+2020&rft.jtitle=Ecological+indicators&rft.au=Liu%2C+Chenxi&rft.au=Zhang%2C+Xiaodong&rft.au=Wang%2C+Tong&rft.au=Chen%2C+Guanzhou&rft.date=2022-05-01&rft.issn=1470-160X&rft.volume=138+p.108818-&rft_id=info:doi/10.1016%2Fj.ecolind.2022.108818&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |