Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes
Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain...
Saved in:
Published in | Cell metabolism Vol. 27; no. 6; pp. 1212 - 1221.e3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
05.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hr feeding period, with dinner before 3 p.m.) or a control schedule (12-hr feeding period) for 5 weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF’s effects are not solely due to weight loss.
[Display omitted]
•Early time-restricted feeding (eTRF) increases insulin sensitivity•eTRF also improves β cell function and lowers blood pressure and oxidative stress•eTRF lowers the desire to eat in the evening, which may facilitate weight loss•Intermittent fasting can improve health even in the absence of weight loss
Sutton et al. conduct the first supervised controlled feeding trial to test whether intermittent fasting has benefits in humans in the absence of weight loss. Prediabetic men following a form of intermittent fasting called early time-restricted feeding improved their insulin sensitivity, blood pressure, and oxidative stress levels without losing weight. |
---|---|
AbstractList | Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hr feeding period, with dinner before 3 p.m.) or a control schedule (12-hr feeding period) for 5 weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF's effects are not solely due to weight loss.Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hr feeding period, with dinner before 3 p.m.) or a control schedule (12-hr feeding period) for 5 weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF's effects are not solely due to weight loss. Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hr feeding period, with dinner before 3 p.m.) or a control schedule (12-hr feeding period) for 5 weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF's effects are not solely due to weight loss. Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hour feeding period, with dinner before 3 pm) or a control schedule (12-hour feeding period) for five weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and IF’s effects are not solely due to weight loss. Sutton et al. conduct the first supervised controlled feeding trial to test whether intermittent fasting has benefits in humans in the absence of weight loss. Prediabetic men following a form of intermittent fasting called early time-restricted feeding improved their insulin sensitivity, blood pressure, and oxidative stress levels, without losing weight. Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hr feeding period, with dinner before 3 p.m.) or a control schedule (12-hr feeding period) for 5 weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF’s effects are not solely due to weight loss. [Display omitted] •Early time-restricted feeding (eTRF) increases insulin sensitivity•eTRF also improves β cell function and lowers blood pressure and oxidative stress•eTRF lowers the desire to eat in the evening, which may facilitate weight loss•Intermittent fasting can improve health even in the absence of weight loss Sutton et al. conduct the first supervised controlled feeding trial to test whether intermittent fasting has benefits in humans in the absence of weight loss. Prediabetic men following a form of intermittent fasting called early time-restricted feeding improved their insulin sensitivity, blood pressure, and oxidative stress levels without losing weight. |
Author | Early, Kate S. Cefalu, William T. Ravussin, Eric Beyl, Robbie Peterson, Courtney M. Sutton, Elizabeth F. |
AuthorAffiliation | 4 Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA 2 Health, Physical Education, and Exercise Science, Columbus State University, Columbus, GA, 31907, USA 3 American Diabetes Association, Arlington, VA 22202, USA 1 Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA |
AuthorAffiliation_xml | – name: 3 American Diabetes Association, Arlington, VA 22202, USA – name: 2 Health, Physical Education, and Exercise Science, Columbus State University, Columbus, GA, 31907, USA – name: 1 Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA – name: 4 Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA |
Author_xml | – sequence: 1 givenname: Elizabeth F. surname: Sutton fullname: Sutton, Elizabeth F. organization: Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA – sequence: 2 givenname: Robbie surname: Beyl fullname: Beyl, Robbie organization: Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA – sequence: 3 givenname: Kate S. surname: Early fullname: Early, Kate S. organization: Health, Physical Education, and Exercise Science, Columbus State University, Columbus, GA 31907, USA – sequence: 4 givenname: William T. surname: Cefalu fullname: Cefalu, William T. organization: Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA – sequence: 5 givenname: Eric surname: Ravussin fullname: Ravussin, Eric organization: Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA – sequence: 6 givenname: Courtney M. surname: Peterson fullname: Peterson, Courtney M. email: cpeterso@uab.edu organization: Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29754952$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctuEzEUHaEi-oAfYIG8ZNEZ_EwyEkKCKoVIQUW0iKXlse8kjmbs1PYE8hn8MR4lRcCiK1s6L91zzosT5x0UxUuCK4LJ5M2m0j2kimIyqzCvMMFPijNSM1pOOcUn-S8ELjlh5LQ4j3GDMZuwmj0rTmk9FbwW9Kz4NVeh26M720P5FWIKVicw6BrAWLdCi34b_A4iWrg4dNahW3DRJruzaX-JPnTeG_QlQIxDgEuknEE3P61RmQDoNo0Amu_AoR82rf2Q0Hewq3VCS5-B7Pb5CI0exqoGEsTnxdNWdRFeHN-L4tv1_O7qU7m8-bi4er8sNRcilbypVTtTWOOGE1JPGCWCKKYUVfWEElaDASEoZ40w2OCGTTXPDZEW1y0G07KL4t3Bdzs0PRgNLgXVyW2wvQp76ZWV_yLOruXK76Soa8ynOBu8PhoEfz_k7mRvo4auUw78ECXFbDbFlJFJpr76O-tPyMMOmTA7EHTI1QRopbYp1-jHaNtJguU4udzIcXI5Ti4xl_mgLKX_SR_cHxW9PYggN7yzEGTUFpzOKwTQSRpvH5P_BsUAx-g |
CitedBy_id | crossref_primary_10_1016_j_ando_2023_12_001 crossref_primary_10_1097_MD_0000000000036857 crossref_primary_10_1007_s11357_020_00156_6 crossref_primary_10_1016_j_cmet_2020_06_018 crossref_primary_10_1016_j_molmed_2021_10_006 crossref_primary_10_1007_s12012_024_09925_7 crossref_primary_10_3389_fnut_2023_1264535 crossref_primary_10_1016_j_cmet_2023_12_004 crossref_primary_10_1016_j_nut_2021_111583 crossref_primary_10_3390_biom11040516 crossref_primary_10_1017_S0967199424000108 crossref_primary_10_1136_bmjopen_2023_073572 crossref_primary_10_3389_fnut_2020_596285 crossref_primary_10_3390_nu16142187 crossref_primary_10_1038_s41392_022_01211_8 crossref_primary_10_1017_jns_2018_13 crossref_primary_10_3390_ijerph18189935 crossref_primary_10_3390_nu12103213 crossref_primary_10_1007_s13668_021_00353_5 crossref_primary_10_3390_nu12103215 crossref_primary_10_2337_dci19_0014 crossref_primary_10_1016_j_ahj_2022_12_010 crossref_primary_10_1080_10408398_2022_2119362 crossref_primary_10_7554_eLife_98514 crossref_primary_10_1016_j_cmet_2022_09_003 crossref_primary_10_1016_j_cmet_2022_09_007 crossref_primary_10_1249_MSS_0000000000002655 crossref_primary_10_1080_17437199_2021_1968310 crossref_primary_10_1038_s41366_020_00719_9 crossref_primary_10_1152_ajpheart_00462_2020 crossref_primary_10_3390_nu17010169 crossref_primary_10_1016_j_cct_2023_107412 crossref_primary_10_1126_sciadv_adh9570 crossref_primary_10_26442_00403660_2024_10_202884 crossref_primary_10_1111_jpi_12956 crossref_primary_10_3390_nu12113228 crossref_primary_10_37349_en_2023_00013 crossref_primary_10_1016_j_clnu_2020_10_031 crossref_primary_10_1161_CIRCRESAHA_119_315897 crossref_primary_10_1016_j_metop_2025_100353 crossref_primary_10_1093_pnasnexus_pgae505 crossref_primary_10_1016_j_arr_2020_101189 crossref_primary_10_1016_j_bbadis_2023_166749 crossref_primary_10_1016_j_nut_2021_111566 crossref_primary_10_3390_nu13093179 crossref_primary_10_3390_nu13051558 crossref_primary_10_1055_a_2248_5316 crossref_primary_10_1093_nutrit_nuab108 crossref_primary_10_20996_1819_6446_2020_12_12 crossref_primary_10_3389_fendo_2021_662017 crossref_primary_10_1016_j_isci_2022_105847 crossref_primary_10_3389_fonc_2023_1222573 crossref_primary_10_1016_j_semcancer_2020_09_010 crossref_primary_10_3390_ijerph19074240 crossref_primary_10_3390_nu13093166 crossref_primary_10_1210_endrev_bnaa014 crossref_primary_10_1016_j_celrep_2022_111008 crossref_primary_10_1038_s41573_020_00109_w crossref_primary_10_1186_s12986_022_00711_2 crossref_primary_10_1016_j_appet_2022_106034 crossref_primary_10_1080_1028415X_2024_2359868 crossref_primary_10_1038_s41568_022_00485_y crossref_primary_10_1055_a_1485_1293 crossref_primary_10_3390_ijms25031504 crossref_primary_10_1007_s13679_025_00613_3 crossref_primary_10_1038_s41574_018_0142_x crossref_primary_10_3390_nu15163661 crossref_primary_10_3233_NHA_200106 crossref_primary_10_1007_s13337_021_00703_5 crossref_primary_10_3389_fendo_2022_975509 crossref_primary_10_3390_healthcare12141392 crossref_primary_10_2459_JCM_0000000000001397 crossref_primary_10_1093_jn_nxab397 crossref_primary_10_3389_fnut_2021_687658 crossref_primary_10_1152_ajpendo_00187_2019 crossref_primary_10_1161_JAHA_122_026484 crossref_primary_10_1097_HJH_0000000000003275 crossref_primary_10_1007_s00125_020_05238_w crossref_primary_10_3389_fnut_2022_853118 crossref_primary_10_1016_j_jand_2023_10_012 crossref_primary_10_1111_nmo_14487 crossref_primary_10_1038_s42255_024_01012_z crossref_primary_10_1016_j_cell_2024_06_032 crossref_primary_10_1016_j_obmed_2024_100539 crossref_primary_10_1016_j_clnu_2024_08_029 crossref_primary_10_1007_s00125_023_06045_9 crossref_primary_10_1038_s41598_022_11251_3 crossref_primary_10_1007_s11938_019_00250_5 crossref_primary_10_1111_jdi_14186 crossref_primary_10_14789_jmj_JMJ24_0012_R crossref_primary_10_1016_j_cmet_2023_05_003 crossref_primary_10_1038_s41591_023_02287_7 crossref_primary_10_7326_M24_0695 crossref_primary_10_1113_JP280884 crossref_primary_10_1016_j_copbio_2020_10_007 crossref_primary_10_55544_jrasb_2_6_28 crossref_primary_10_3390_nu10091245 crossref_primary_10_1159_000515960 crossref_primary_10_3390_nu11030587 crossref_primary_10_3390_nu15010020 crossref_primary_10_3390_clockssleep5030034 crossref_primary_10_3390_nu16203476 crossref_primary_10_3389_fgene_2020_590369 crossref_primary_10_1001_jamainternmed_2022_3050 crossref_primary_10_3390_ijerph192416772 crossref_primary_10_1016_j_amjmed_2022_01_028 crossref_primary_10_1093_jnci_djae331 crossref_primary_10_1152_physiol_00030_2019 crossref_primary_10_3390_nu15163640 crossref_primary_10_1111_apha_14027 crossref_primary_10_1038_s41575_020_00401_5 crossref_primary_10_14814_phy2_15279 crossref_primary_10_1016_j_cell_2024_11_004 crossref_primary_10_1016_j_mam_2021_100984 crossref_primary_10_1093_jn_nxab123 crossref_primary_10_1093_ajcn_nqz126 crossref_primary_10_1126_science_adc8824 crossref_primary_10_1146_annurev_nutr_052020_041327 crossref_primary_10_1055_a_1515_8766 crossref_primary_10_3389_fendo_2021_683140 crossref_primary_10_1055_a_1946_3753 crossref_primary_10_1111_nbu_12479 crossref_primary_10_1186_s12967_020_02687_0 crossref_primary_10_3390_cancers14184402 crossref_primary_10_1126_science_aau2095 crossref_primary_10_1016_j_dsx_2024_102952 crossref_primary_10_1186_s12889_022_12908_4 crossref_primary_10_1159_000540068 crossref_primary_10_1016_j_freeradbiomed_2022_02_021 crossref_primary_10_3390_nu12102990 crossref_primary_10_1900_RDS_2022_18_10 crossref_primary_10_3390_nu15092101 crossref_primary_10_3389_fnut_2022_871682 crossref_primary_10_3390_nu11061234 crossref_primary_10_3390_nu14153177 crossref_primary_10_1016_j_numecd_2020_08_006 crossref_primary_10_1017_jns_2019_8 crossref_primary_10_1155_2022_2830545 crossref_primary_10_1080_09637486_2020_1866504 crossref_primary_10_1016_j_cmet_2022_08_018 crossref_primary_10_1210_clinem_dgac197 crossref_primary_10_3390_nu13010191 crossref_primary_10_1152_physrev_00045_2021 crossref_primary_10_3390_metabo11020062 crossref_primary_10_3390_nu13072424 crossref_primary_10_3390_toxics9060130 crossref_primary_10_1080_07420528_2022_2053702 crossref_primary_10_1016_j_xcrm_2023_101363 crossref_primary_10_1016_j_it_2019_03_010 crossref_primary_10_3389_fendo_2019_00554 crossref_primary_10_52494_DRHI9315 crossref_primary_10_1038_s41430_024_01525_6 crossref_primary_10_1038_s41387_024_00344_9 crossref_primary_10_3389_fnint_2022_957193 crossref_primary_10_3390_nu13082686 crossref_primary_10_1016_j_cmet_2022_08_001 crossref_primary_10_1002_dmrr_3760 crossref_primary_10_3390_nu14153136 crossref_primary_10_2337_dc19_2289 crossref_primary_10_1186_s40842_020_00116_1 crossref_primary_10_1016_j_tifs_2021_01_007 crossref_primary_10_1007_s11357_024_01093_4 crossref_primary_10_1016_j_appet_2022_106266 crossref_primary_10_1017_S0007114522001581 crossref_primary_10_1111_nbu_12467 crossref_primary_10_1016_j_freeradbiomed_2022_12_084 crossref_primary_10_1038_s41575_023_00792_1 crossref_primary_10_1111_apt_16727 crossref_primary_10_1136_bmjopen_2023_080003 crossref_primary_10_1073_pnas_2015873118 crossref_primary_10_1155_2019_7049237 crossref_primary_10_1152_ajpendo_00129_2023 crossref_primary_10_1016_j_pcad_2022_11_003 crossref_primary_10_1152_ajpendo_00526_2020 crossref_primary_10_1016_j_orcp_2022_08_009 crossref_primary_10_1101_gad_350759_123 crossref_primary_10_1096_fj_202002470R crossref_primary_10_1002_smtd_201900601 crossref_primary_10_1016_j_cub_2019_11_029 crossref_primary_10_1002_mnfr_202101136 crossref_primary_10_1016_j_clnu_2023_10_010 crossref_primary_10_1172_jci_insight_177997 crossref_primary_10_3390_nu16060876 crossref_primary_10_3390_nu16040504 crossref_primary_10_3389_fnut_2021_779863 crossref_primary_10_3390_vetsci9050217 crossref_primary_10_1016_j_arres_2021_100026 crossref_primary_10_3390_ijms20071597 crossref_primary_10_1007_s11428_021_00749_5 crossref_primary_10_3390_nu11102501 crossref_primary_10_3390_nu15030729 crossref_primary_10_1016_j_intimp_2021_108465 crossref_primary_10_1155_2023_6666613 crossref_primary_10_3389_fneur_2022_1087126 crossref_primary_10_3389_fnut_2020_606378 crossref_primary_10_1097_MD_0000000000025509 crossref_primary_10_1111_dom_15730 crossref_primary_10_7554_eLife_89214 crossref_primary_10_1038_s41598_022_23931_1 crossref_primary_10_3389_fendo_2022_870054 crossref_primary_10_1177_00033197241228046 crossref_primary_10_1155_2022_5653739 crossref_primary_10_1016_j_diabres_2024_111893 crossref_primary_10_3803_EnM_2021_405 crossref_primary_10_3390_ijms20174281 crossref_primary_10_3390_ijerph17114088 crossref_primary_10_1016_j_pneurobio_2022_102387 crossref_primary_10_1111_dom_13762 crossref_primary_10_1210_clinem_dgad036 crossref_primary_10_1007_s00278_020_00471_5 crossref_primary_10_1016_j_jnutbio_2024_109835 crossref_primary_10_3389_fpubh_2025_1514090 crossref_primary_10_3390_biology12040539 crossref_primary_10_1159_000535944 crossref_primary_10_1016_j_ihj_2022_07_005 crossref_primary_10_1016_j_diabres_2022_110195 crossref_primary_10_1055_a_2311_9952 crossref_primary_10_1007_s00424_020_02381_6 crossref_primary_10_1055_a_1658_5597 crossref_primary_10_1002_14651858_CD013496_pub2 crossref_primary_10_1172_JCI167275 crossref_primary_10_1210_clinem_dgae594 crossref_primary_10_3390_nu16183066 crossref_primary_10_3389_fphys_2022_950619 crossref_primary_10_1002_oby_22829 crossref_primary_10_1016_j_tem_2023_10_001 crossref_primary_10_1155_2022_6999907 crossref_primary_10_1007_s11914_019_00552_8 crossref_primary_10_1038_d41586_021_01578_8 crossref_primary_10_1016_j_tem_2021_06_004 crossref_primary_10_1016_j_bbalip_2021_158961 crossref_primary_10_3390_nu13113697 crossref_primary_10_1038_s42255_025_01254_5 crossref_primary_10_1002_osp4_702 crossref_primary_10_36660_abc_20230265 crossref_primary_10_1002_oby_22776 crossref_primary_10_1002_oby_22774 crossref_primary_10_1002_oby_23620 crossref_primary_10_3389_fnut_2020_00028 crossref_primary_10_3389_fphys_2021_651738 crossref_primary_10_7554_eLife_98514_3 crossref_primary_10_1111_ijfs_14986 crossref_primary_10_1007_s00018_023_04834_4 crossref_primary_10_3390_nu13010221 crossref_primary_10_1002_jpen_2642 crossref_primary_10_4093_dmj_2023_0193 crossref_primary_10_4093_jkd_2022_23_3_185 crossref_primary_10_1136_bmjopen_2020_040020 crossref_primary_10_1186_s12986_021_00613_9 crossref_primary_10_3390_nu16162692 crossref_primary_10_3390_ijms24087154 crossref_primary_10_1016_j_cell_2022_04_002 crossref_primary_10_1111_dom_14207 crossref_primary_10_1056_NEJMoa2114833 crossref_primary_10_37989_gumussagbil_1366944 crossref_primary_10_1002_oby_23855 crossref_primary_10_1186_s12882_023_03104_6 crossref_primary_10_3389_fnut_2020_00018 crossref_primary_10_1002_mco2_212 crossref_primary_10_3390_nu12030638 crossref_primary_10_1016_j_jmb_2020_01_018 crossref_primary_10_1093_nutrit_nuae195 crossref_primary_10_1002_oby_23614 crossref_primary_10_1111_1753_0407_13568 crossref_primary_10_1016_j_appet_2019_104411 crossref_primary_10_3390_biomedicines11051319 crossref_primary_10_1146_annurev_nutr_062122_014528 crossref_primary_10_1186_s41043_024_00497_4 crossref_primary_10_1016_j_cct_2024_107696 crossref_primary_10_1002_mnfr_201900867 crossref_primary_10_1093_ajcn_nqac237 crossref_primary_10_1016_j_yjmcc_2020_09_006 crossref_primary_10_1111_jsr_13436 crossref_primary_10_3390_nu15112570 crossref_primary_10_1016_j_ajpc_2022_100323 crossref_primary_10_1016_j_jpsychires_2024_11_041 crossref_primary_10_3390_nu15112573 crossref_primary_10_1111_obr_13603 crossref_primary_10_1016_j_nut_2020_110796 crossref_primary_10_1002_oby_22756 crossref_primary_10_1016_j_cmet_2018_05_016 crossref_primary_10_1177_07487304211044301 crossref_primary_10_3390_nu16050722 crossref_primary_10_1186_s40104_021_00564_4 crossref_primary_10_1002_oby_22518 crossref_primary_10_1093_lifemedi_lnac017 crossref_primary_10_1016_j_celrep_2021_109543 crossref_primary_10_1038_s41585_024_00961_0 crossref_primary_10_1161_HYPERTENSIONAHA_122_19372 crossref_primary_10_1080_07420528_2020_1772810 crossref_primary_10_1519_JSC_0000000000003860 crossref_primary_10_1080_09637486_2023_2294685 crossref_primary_10_3389_fpubh_2022_946795 crossref_primary_10_1111_apha_13936 crossref_primary_10_1152_ajpregu_00150_2020 crossref_primary_10_3390_cells12101424 crossref_primary_10_1111_apha_13939 crossref_primary_10_1016_j_jcjd_2024_03_002 crossref_primary_10_1017_S0029665119000636 crossref_primary_10_1097_HEP_0000000000000330 crossref_primary_10_1136_bmjopen_2024_087260 crossref_primary_10_3390_nu14030631 crossref_primary_10_1002_oby_23666 crossref_primary_10_4178_epih_e2021101 crossref_primary_10_1002_oby_23420 crossref_primary_10_3390_nu16121946 crossref_primary_10_1002_oby_22335 crossref_primary_10_15252_embr_202152412 crossref_primary_10_3390_nu14224778 crossref_primary_10_1016_j_celrep_2024_114523 crossref_primary_10_1016_j_compchemeng_2019_05_030 crossref_primary_10_12688_f1000research_128716_1 crossref_primary_10_3390_microorganisms8081140 crossref_primary_10_1016_j_numecd_2023_09_014 crossref_primary_10_1016_j_cjca_2023_06_416 crossref_primary_10_1146_annurev_physiol_031522_092054 crossref_primary_10_12688_f1000research_128716_2 crossref_primary_10_3390_nu15112517 crossref_primary_10_1093_ajcn_nqac021 crossref_primary_10_1002_aac2_12021 crossref_primary_10_1126_scitranslmed_adh1175 crossref_primary_10_7556_jaoa_2019_086 crossref_primary_10_1177_03000605231164548 crossref_primary_10_1016_j_clnu_2020_06_036 crossref_primary_10_1007_s40519_024_01709_w crossref_primary_10_5650_oleoscience_21_121 crossref_primary_10_1016_j_scib_2020_03_025 crossref_primary_10_1016_j_metabol_2022_155158 crossref_primary_10_3389_fnut_2022_979702 crossref_primary_10_3390_nu16010034 crossref_primary_10_7759_cureus_59504 crossref_primary_10_1038_s41366_021_01038_3 crossref_primary_10_46413_boneyusbad_874087 crossref_primary_10_59541_001c_121441 crossref_primary_10_7759_cureus_28800 crossref_primary_10_1016_j_numecd_2023_10_013 crossref_primary_10_1152_ajpendo_00017_2022 crossref_primary_10_1038_s41598_023_28260_5 crossref_primary_10_1042_BSR20212358 crossref_primary_10_3389_fnut_2022_967996 crossref_primary_10_1002_oby_23642 crossref_primary_10_2337_ds19_0064 crossref_primary_10_1093_nutrit_nuab094 crossref_primary_10_1016_j_appet_2021_105240 crossref_primary_10_3390_nu16193390 crossref_primary_10_1042_BSR20222151 crossref_primary_10_3389_fendo_2021_656346 crossref_primary_10_3390_nu13061839 crossref_primary_10_1007_s11605_020_04551_4 crossref_primary_10_3390_nu14030420 crossref_primary_10_3390_foods13131960 crossref_primary_10_1038_s41580_021_00411_4 crossref_primary_10_1016_j_eatbeh_2022_101625 crossref_primary_10_1016_j_tcm_2023_10_002 crossref_primary_10_3389_fnut_2020_00039 crossref_primary_10_1017_S0007114521005079 crossref_primary_10_1002_oby_23637 crossref_primary_10_1016_j_xcrm_2023_101324 crossref_primary_10_1111_jnc_15246 crossref_primary_10_1007_s00467_023_06115_5 crossref_primary_10_1371_journal_pone_0246186 crossref_primary_10_1017_S0007114521000829 crossref_primary_10_1016_j_jnha_2024_100165 crossref_primary_10_1016_j_nut_2021_111504 crossref_primary_10_1089_met_2022_0014 crossref_primary_10_1016_j_ejim_2024_01_005 crossref_primary_10_3390_nu15010238 crossref_primary_10_3390_ijms25031390 crossref_primary_10_3390_nu15194233 crossref_primary_10_1177_2047487319869400 crossref_primary_10_3390_medicines9020015 crossref_primary_10_3390_nu12103043 crossref_primary_10_3390_nu15102336 crossref_primary_10_1016_j_diabres_2020_108154 crossref_primary_10_1136_gutjnl_2023_329998 crossref_primary_10_1093_advances_nmac015 crossref_primary_10_1111_nbu_70000 crossref_primary_10_1002_oby_23451 crossref_primary_10_1093_advances_nmac014 crossref_primary_10_1172_JCI148277 crossref_primary_10_1172_JCI148278 crossref_primary_10_1093_nutrit_nuae114 crossref_primary_10_1172_JCI148286 crossref_primary_10_1093_nutrit_nuad026 crossref_primary_10_3390_nu14010024 crossref_primary_10_1172_jci_insight_127737 crossref_primary_10_1126_scitranslmed_abd8034 crossref_primary_10_1016_j_tem_2020_10_005 crossref_primary_10_1080_10408398_2020_1789550 crossref_primary_10_1093_sleep_zsad123 crossref_primary_10_1016_j_pcd_2025_02_006 crossref_primary_10_3390_nu14204299 crossref_primary_10_1055_a_1938_7240 crossref_primary_10_1080_19490976_2024_2390164 crossref_primary_10_1080_09637486_2024_2313981 crossref_primary_10_1080_07420528_2023_2256855 crossref_primary_10_3389_fnut_2022_1026694 crossref_primary_10_1080_07420528_2023_2195492 crossref_primary_10_3390_jcm12227007 crossref_primary_10_3390_nu14030456 crossref_primary_10_1093_advances_nmab131 crossref_primary_10_3390_nu14193995 crossref_primary_10_1016_j_foodres_2024_115186 crossref_primary_10_3390_nu14173542 crossref_primary_10_1016_j_micpath_2024_106590 crossref_primary_10_1210_endocr_bqaa244 crossref_primary_10_1016_j_jnutbio_2020_108531 crossref_primary_10_3390_nu15020259 crossref_primary_10_1016_j_tem_2023_07_001 crossref_primary_10_1152_physrev_00006_2022 crossref_primary_10_1016_j_clnu_2025_01_019 crossref_primary_10_1136_bmjnph_2020_000183 crossref_primary_10_1002_oby_23676 crossref_primary_10_1002_oby_23672 crossref_primary_10_1007_s15034_022_4438_5 crossref_primary_10_3389_fendo_2024_1359772 crossref_primary_10_1016_j_xcrm_2022_100777 crossref_primary_10_1016_j_cjca_2023_09_017 crossref_primary_10_1016_j_heliyon_2024_e37475 crossref_primary_10_1210_endocr_bqaa230 crossref_primary_10_1016_j_jmb_2020_04_027 crossref_primary_10_1136_bcr_2019_234223 crossref_primary_10_1016_j_clnesp_2023_07_086 crossref_primary_10_1097_HJH_0000000000003200 crossref_primary_10_1038_s41467_023_43444_3 crossref_primary_10_1002_mnfr_202200043 crossref_primary_10_3390_nu12041194 crossref_primary_10_33069_cim_2019_0017 crossref_primary_10_1007_s11906_022_01219_z crossref_primary_10_1111_acel_14169 crossref_primary_10_1007_s11033_023_08794_7 crossref_primary_10_1126_science_ade6720 crossref_primary_10_1038_s41387_021_00149_0 crossref_primary_10_1186_s13098_023_01234_3 crossref_primary_10_3390_obesities5010010 crossref_primary_10_3390_nu14030489 crossref_primary_10_3389_fpubh_2022_820238 crossref_primary_10_1016_j_nut_2021_111536 crossref_primary_10_1055_a_1584_3360 crossref_primary_10_3390_ijerph19137969 crossref_primary_10_4274_cjms_2024_2023_109 crossref_primary_10_1016_j_cjca_2024_02_004 crossref_primary_10_1002_oby_23499 crossref_primary_10_1016_j_ajcnut_2023_10_009 crossref_primary_10_1111_dom_14080 crossref_primary_10_1016_j_jand_2022_09_013 crossref_primary_10_18231_j_ijnmhs_2024_019 crossref_primary_10_1080_10408398_2022_2153355 crossref_primary_10_1128_mbio_01907_23 crossref_primary_10_1038_s41467_022_28662_5 crossref_primary_10_1101_gad_328633_119 crossref_primary_10_3390_nu16193300 crossref_primary_10_1002_lio2_748 crossref_primary_10_1186_s12967_024_05738_y crossref_primary_10_1007_s40519_021_01280_8 crossref_primary_10_1016_j_metabol_2020_154337 crossref_primary_10_3390_ijms24010422 crossref_primary_10_3390_nu13103476 crossref_primary_10_1016_j_exger_2023_112116 crossref_primary_10_3389_fnetp_2021_732243 crossref_primary_10_3389_fphar_2024_1364881 crossref_primary_10_1016_j_exger_2022_112033 crossref_primary_10_3389_fpubh_2023_1020887 crossref_primary_10_3389_jpps_2024_13062 crossref_primary_10_3390_ijms252111524 crossref_primary_10_1016_j_tjnut_2024_12_025 crossref_primary_10_7326_M23_3132 crossref_primary_10_1038_d41586_025_00895_6 crossref_primary_10_1002_oby_22384 crossref_primary_10_3389_fcvm_2021_721956 crossref_primary_10_1016_j_cmet_2020_02_011 crossref_primary_10_1016_j_ajcnut_2023_11_016 crossref_primary_10_1111_imm_13829 crossref_primary_10_1146_annurev_nutr_082018_124320 crossref_primary_10_1097_TIN_0000000000000372 crossref_primary_10_1186_s13063_023_07691_5 crossref_primary_10_1007_s00125_019_05059_6 crossref_primary_10_1016_j_freeradbiomed_2020_04_025 crossref_primary_10_1016_j_physbeh_2023_114103 crossref_primary_10_1016_j_isci_2024_111501 crossref_primary_10_1113_JP280542 crossref_primary_10_1016_j_clnu_2024_01_005 crossref_primary_10_1016_j_advnut_2023_10_003 crossref_primary_10_1016_j_jad_2022_06_003 crossref_primary_10_1093_gerona_glad069 crossref_primary_10_3390_nu14112343 crossref_primary_10_1161_JAHA_120_021560 crossref_primary_10_1007_s13679_022_00491_z crossref_primary_10_1016_j_ajpc_2020_100106 crossref_primary_10_3390_nu13072378 crossref_primary_10_7554_eLife_89214_2 crossref_primary_10_1038_s41575_021_00452_2 crossref_primary_10_1089_act_2021_29319_klu crossref_primary_10_3390_jcm8101645 crossref_primary_10_1016_j_aninu_2021_09_009 crossref_primary_10_3390_cells11213372 crossref_primary_10_1007_s13238_020_00814_7 crossref_primary_10_3390_nu16132018 crossref_primary_10_7556_jaoa_2020_101 crossref_primary_10_1152_physiolgenomics_00117_2020 crossref_primary_10_1016_j_arr_2020_101038 crossref_primary_10_51754_cusbed_1342655 crossref_primary_10_3390_nu13072148 crossref_primary_10_1093_advances_nmy131 crossref_primary_10_3390_healthcare9050495 crossref_primary_10_33619_2414_2948_66_16 crossref_primary_10_1093_cdn_nzz145 crossref_primary_10_3389_fimmu_2025_1501850 crossref_primary_10_7759_cureus_53680 crossref_primary_10_1016_j_jhep_2023_05_021 crossref_primary_10_1080_07420528_2024_2360742 crossref_primary_10_1056_NEJMc2030030 crossref_primary_10_2196_35896 crossref_primary_10_1016_j_appet_2023_106452 crossref_primary_10_1016_j_diabres_2023_110569 crossref_primary_10_1055_a_1245_5623 crossref_primary_10_3389_fcvm_2022_822209 crossref_primary_10_3390_ijms252212355 crossref_primary_10_1007_s11892_020_01362_4 crossref_primary_10_1016_j_cbpa_2021_110929 crossref_primary_10_1111_liv_15335 crossref_primary_10_1007_s00125_022_05752_z crossref_primary_10_3389_fnut_2022_1043783 crossref_primary_10_1136_bmjopen_2021_058954 crossref_primary_10_3389_fnut_2023_1079250 crossref_primary_10_1016_j_arr_2024_102274 crossref_primary_10_7554_eLife_52623 crossref_primary_10_1016_j_kint_2021_06_031 crossref_primary_10_1161_JAHA_120_020254 crossref_primary_10_3390_nu13051430 crossref_primary_10_3390_nu15061323 crossref_primary_10_1002_mnfr_202300465 crossref_primary_10_1186_s12967_024_05849_6 crossref_primary_10_1042_CS20210578 crossref_primary_10_3390_nu11030673 crossref_primary_10_3390_nu14194216 crossref_primary_10_3390_ijms20081911 crossref_primary_10_1038_s41586_024_07781_7 crossref_primary_10_1124_molpharm_123_000831 crossref_primary_10_1016_j_amjmed_2020_05_017 crossref_primary_10_1016_j_isci_2022_104870 crossref_primary_10_1016_j_numecd_2021_09_031 crossref_primary_10_1097_JN9_0000000000000004 crossref_primary_10_1096_fj_202100497RR crossref_primary_10_1371_journal_pone_0316333 crossref_primary_10_12677_IJPN_2021_102006 crossref_primary_10_3389_fnut_2022_838091 crossref_primary_10_1080_10408398_2021_1974335 crossref_primary_10_31083_j_fbl2906206 crossref_primary_10_1113_JP276488 crossref_primary_10_12997_jla_2020_9_1_140 crossref_primary_10_1088_1478_3975_abde8d crossref_primary_10_1002_advs_202407677 crossref_primary_10_1007_s11906_020_01043_3 crossref_primary_10_1038_s41430_023_01311_w crossref_primary_10_3390_nu14071509 crossref_primary_10_1093_nutrit_nuz090 crossref_primary_10_3390_nu15061348 crossref_primary_10_1038_s41467_020_20743_7 crossref_primary_10_3390_nu13051492 crossref_primary_10_1016_j_jhep_2023_04_040 crossref_primary_10_3390_nu11122854 crossref_primary_10_1038_s41575_024_01021_z crossref_primary_10_1186_s40035_024_00406_z crossref_primary_10_1038_s41569_020_00437_9 crossref_primary_10_1210_endocr_bqaa180 crossref_primary_10_3389_fcell_2022_803280 crossref_primary_10_1039_D4FO06011C crossref_primary_10_1159_000527838 crossref_primary_10_2174_0929867330666230330092725 crossref_primary_10_3390_nu16111581 crossref_primary_10_1038_s41574_022_00638_x crossref_primary_10_17925_EE_2023_19_1_25 crossref_primary_10_4330_wjc_v15_i7_354 crossref_primary_10_1007_s13668_024_00570_8 crossref_primary_10_3390_nu15194264 crossref_primary_10_1016_j_celrep_2022_111786 crossref_primary_10_1007_s11428_024_01172_2 crossref_primary_10_3390_nu13072164 crossref_primary_10_1016_j_diabres_2024_111939 crossref_primary_10_1016_j_physbeh_2023_114128 crossref_primary_10_1055_a_1284_6036 crossref_primary_10_1093_ehjopen_oeab026 crossref_primary_10_20945_2359_3997000000322 crossref_primary_10_3390_nu13114087 crossref_primary_10_15252_embr_201948804 crossref_primary_10_1519_JSC_0000000000004353 crossref_primary_10_1016_j_advnut_2024_100262 crossref_primary_10_1002_oby_24057 crossref_primary_10_1016_j_nut_2021_111244 crossref_primary_10_3390_nu17020292 crossref_primary_10_1016_j_nut_2022_111764 crossref_primary_10_7759_cureus_56902 crossref_primary_10_3390_nu14235080 crossref_primary_10_1139_apnm_2020_0477 crossref_primary_10_1210_endocr_bqaa167 crossref_primary_10_1016_j_gtc_2023_03_009 crossref_primary_10_3390_nu16070984 crossref_primary_10_3389_fnut_2023_1120168 crossref_primary_10_1016_j_diabres_2022_110231 crossref_primary_10_1007_s40123_020_00278_2 crossref_primary_10_1097_JOM_0000000000002169 crossref_primary_10_1155_2020_2309437 crossref_primary_10_3390_nu12092567 crossref_primary_10_3390_nu15163525 crossref_primary_10_1016_j_diabres_2025_112081 crossref_primary_10_1210_endrev_bnab027 crossref_primary_10_1016_j_isci_2024_109000 crossref_primary_10_3389_fimmu_2022_1054875 crossref_primary_10_1097_j_pain_0000000000001918 crossref_primary_10_1038_s41467_020_15795_8 crossref_primary_10_3389_fnut_2021_765543 crossref_primary_10_1111_dom_15801 crossref_primary_10_3389_fendo_2024_1328139 crossref_primary_10_1080_07315724_2021_1958719 crossref_primary_10_1016_j_cmet_2024_04_015 crossref_primary_10_3390_endocrines3040052 crossref_primary_10_3390_nu14122536 crossref_primary_10_1249_FIT_0000000000000444 crossref_primary_10_1016_j_nut_2022_111588 crossref_primary_10_1080_09637486_2020_1787959 crossref_primary_10_1080_09291016_2024_2333296 crossref_primary_10_3389_fphys_2022_1061063 crossref_primary_10_3390_nu13113846 crossref_primary_10_3322_caac_21694 crossref_primary_10_3390_antiox10030383 crossref_primary_10_7554_eLife_75132 crossref_primary_10_1055_a_1908_0685 crossref_primary_10_3389_fnut_2022_858320 crossref_primary_10_3390_nu13010073 crossref_primary_10_1053_j_gastro_2020_10_057 crossref_primary_10_3389_fnut_2022_1075744 crossref_primary_10_1080_10408398_2022_2110034 crossref_primary_10_1161_HYPERTENSIONAHA_119_13908 crossref_primary_10_3390_nu14132569 crossref_primary_10_1186_s13063_024_08284_6 crossref_primary_10_37527_2023_73_1_006 crossref_primary_10_1038_d41586_020_02481_4 crossref_primary_10_1016_j_abb_2019_108160 crossref_primary_10_1210_clinem_dgaa926 crossref_primary_10_3390_nu14153025 crossref_primary_10_1016_j_exger_2021_111545 crossref_primary_10_1016_j_appet_2022_106135 crossref_primary_10_2139_ssrn_4788134 crossref_primary_10_3233_NHA_200098 crossref_primary_10_1016_j_giec_2024_03_003 crossref_primary_10_3389_fnut_2022_1025919 crossref_primary_10_1016_j_amjmed_2020_03_030 crossref_primary_10_1017_cts_2023_646 crossref_primary_10_1002_dmrr_3633 crossref_primary_10_1113_EP091890 crossref_primary_10_3390_nu15071762 crossref_primary_10_4239_wjd_v15_i3_361 crossref_primary_10_23736_S2724_6507_21_03596_X crossref_primary_10_1016_j_jnutbio_2022_109146 crossref_primary_10_3390_nu14194058 crossref_primary_10_3389_fnut_2024_1439473 crossref_primary_10_1210_clinem_dgac094 crossref_primary_10_3390_nu14040824 crossref_primary_10_3390_nu14040823 crossref_primary_10_1249_JES_0000000000000235 crossref_primary_10_3390_nu14235022 crossref_primary_10_1007_s11883_021_00922_7 crossref_primary_10_1016_j_molmet_2020_101058 crossref_primary_10_1016_j_pmr_2022_04_009 crossref_primary_10_3390_nu13051405 crossref_primary_10_1007_s44154_024_00182_w crossref_primary_10_1152_ajpregu_00283_2021 crossref_primary_10_1016_j_chembiol_2023_08_014 crossref_primary_10_3389_fimmu_2019_01402 crossref_primary_10_3390_nu12123770 crossref_primary_10_1016_j_brainres_2025_149510 crossref_primary_10_1186_s42269_023_01118_6 crossref_primary_10_1016_j_bbcan_2023_189062 crossref_primary_10_1017_S0954422421000123 crossref_primary_10_1152_ajpheart_00312_2019 crossref_primary_10_1096_fj_202001246RR crossref_primary_10_56712_latam_v4i2_940 crossref_primary_10_3390_nu13051651 crossref_primary_10_3389_fnut_2021_642628 crossref_primary_10_1017_S0007114523000545 crossref_primary_10_1093_jncics_pkac032 crossref_primary_10_1093_function_zqaa034 crossref_primary_10_1002_oby_22964 crossref_primary_10_2174_0109298673275492231121062033 crossref_primary_10_1161_HYPERTENSIONAHA_121_14519 crossref_primary_10_3389_fendo_2022_841838 crossref_primary_10_1038_s41598_024_72913_y crossref_primary_10_1007_s00394_023_03141_9 crossref_primary_10_3389_fendo_2022_1057376 crossref_primary_10_1080_10408398_2020_1781050 crossref_primary_10_3390_jcm8091301 crossref_primary_10_1152_ajprenal_00047_2024 crossref_primary_10_3390_nu16111721 crossref_primary_10_1016_j_cmet_2019_11_004 crossref_primary_10_36660_abc_20220606 crossref_primary_10_3390_ijms23052719 crossref_primary_10_1080_09637486_2020_1760218 crossref_primary_10_1016_j_eclinm_2024_102519 crossref_primary_10_1016_j_celrep_2023_112559 crossref_primary_10_14341_probl13078 crossref_primary_10_3390_cancers16081513 crossref_primary_10_3389_fnut_2021_756413 crossref_primary_10_1111_acel_13507 crossref_primary_10_1093_eurjpc_zwaa050 crossref_primary_10_1016_j_physbeh_2020_112905 crossref_primary_10_1249_JES_0000000000000207 crossref_primary_10_3390_nu12051416 crossref_primary_10_1001_jamanetworkopen_2023_3513 crossref_primary_10_1016_j_physbeh_2022_113890 crossref_primary_10_3390_metabo13040490 crossref_primary_10_1371_journal_pone_0231403 crossref_primary_10_1002_oby_23984 crossref_primary_10_3390_biomedicines9111651 crossref_primary_10_1177_08968608211047787 crossref_primary_10_1186_s12967_021_02817_2 crossref_primary_10_1093_nutrit_nuae062 crossref_primary_10_3390_nu13031042 crossref_primary_10_1016_j_it_2020_04_005 crossref_primary_10_3390_nu16173007 crossref_primary_10_1038_s41440_023_01493_7 crossref_primary_10_1016_j_celrep_2018_09_058 crossref_primary_10_1016_j_endmts_2024_100163 crossref_primary_10_1055_a_2069_8998 crossref_primary_10_1007_s11428_023_01040_5 crossref_primary_10_1002_jcp_30815 crossref_primary_10_3389_fnut_2021_669325 crossref_primary_10_3390_nu13124485 crossref_primary_10_1038_s44324_024_00025_2 crossref_primary_10_3390_ijms24076382 crossref_primary_10_1016_j_tma_2021_11_003 crossref_primary_10_1093_nutrit_nuae074 crossref_primary_10_5664_jcsm_10734 crossref_primary_10_1111_ijpo_12764 crossref_primary_10_1093_nutrit_nuae078 crossref_primary_10_1186_s13098_023_01037_6 crossref_primary_10_1016_j_cub_2020_10_092 crossref_primary_10_3390_nu12020505 crossref_primary_10_3389_fragi_2022_927630 crossref_primary_10_1089_dia_2024_2509 crossref_primary_10_3390_jcm13133893 crossref_primary_10_1002_oby_23965 crossref_primary_10_1055_a_1219_7355 crossref_primary_10_1016_j_clnesp_2025_03_006 crossref_primary_10_3390_nu15081978 crossref_primary_10_1093_nutrit_nuae044 crossref_primary_10_1038_s41598_022_13387_8 crossref_primary_10_1172_jci_insight_160257 crossref_primary_10_1016_j_jacc_2020_07_049 crossref_primary_10_1056_NEJMra1905136 crossref_primary_10_3390_nu17061022 crossref_primary_10_1161_CIRCRESAHA_122_320334 crossref_primary_10_1093_cvr_cvad035 crossref_primary_10_1002_advs_202204487 crossref_primary_10_3389_fnut_2023_1256101 crossref_primary_10_3390_nu15245058 crossref_primary_10_3389_fnut_2020_00116 crossref_primary_10_1136_bmjopen_2020_037166 crossref_primary_10_3390_ijms231810814 crossref_primary_10_1136_bmjopen_2020_044769 crossref_primary_10_1053_j_gastro_2020_01_050 crossref_primary_10_1186_s13098_024_01492_9 crossref_primary_10_1016_j_isci_2020_101161 crossref_primary_10_1007_s13679_025_00609_z crossref_primary_10_5664_jcsm_10754 crossref_primary_10_1007_s13668_024_00532_0 crossref_primary_10_1210_clinem_dgaa028 crossref_primary_10_2217_epi_2020_0403 crossref_primary_10_3389_fcvm_2020_602088 crossref_primary_10_1007_s10555_022_10061_3 crossref_primary_10_1007_s10522_022_09994_7 crossref_primary_10_1093_ajcn_nqaa192 crossref_primary_10_1038_s41573_021_00198_1 crossref_primary_10_3390_nu12051267 crossref_primary_10_3390_nu12082185 crossref_primary_10_1055_a_1997_7789 crossref_primary_10_3390_nu13061977 crossref_primary_10_1093_jcag_gwae027 crossref_primary_10_1111_jne_12886 crossref_primary_10_1177_1178638820979029 crossref_primary_10_1152_ajprenal_00247_2023 crossref_primary_10_1016_j_cmet_2024_01_007 crossref_primary_10_2174_1573399817666210129102956 crossref_primary_10_1186_s12916_020_01716_5 crossref_primary_10_1017_S0007114521002944 crossref_primary_10_1177_15330338241233443 crossref_primary_10_1002_oby_22449 crossref_primary_10_1007_s13679_021_00424_2 crossref_primary_10_3389_fpubh_2022_1017254 crossref_primary_10_1007_s15006_020_0550_4 crossref_primary_10_1016_j_jagp_2019_02_010 crossref_primary_10_1038_s41467_019_10563_9 crossref_primary_10_3390_nu14010169 crossref_primary_10_1016_j_sleep_2020_11_031 crossref_primary_10_3390_nu13124407 crossref_primary_10_1111_cen_14607 crossref_primary_10_3390_nu17030529 crossref_primary_10_15252_emmm_202114418 crossref_primary_10_3390_nu14061275 crossref_primary_10_1016_j_bj_2024_100824 crossref_primary_10_3390_nu11102442 crossref_primary_10_1016_j_cmet_2020_09_012 crossref_primary_10_1016_j_jand_2020_10_001 crossref_primary_10_1007_s11428_022_00910_8 crossref_primary_10_1515_mr_2022_0021 crossref_primary_10_3390_nu16121802 crossref_primary_10_1007_s11154_023_09853_x crossref_primary_10_2174_1573399817666210806114200 crossref_primary_10_1186_s12937_024_00939_z crossref_primary_10_1016_j_cct_2022_106872 crossref_primary_10_1016_j_exger_2021_111617 crossref_primary_10_1055_a_0872_6365 crossref_primary_10_3177_jnsv_68_S2 crossref_primary_10_3390_nu16213700 crossref_primary_10_1016_j_nutres_2019_12_001 crossref_primary_10_2174_1573399817666210806102212 crossref_primary_10_3390_nu13113780 crossref_primary_10_1093_nutrit_nuae014 crossref_primary_10_1002_oby_23756 crossref_primary_10_1038_s41569_024_01061_7 crossref_primary_10_1155_2024_6623357 crossref_primary_10_1007_s11154_019_09524_w crossref_primary_10_2337_dc19_1142 crossref_primary_10_1016_j_clnu_2021_07_030 crossref_primary_10_1097_GME_0000000000002518 crossref_primary_10_3390_nu11102437 crossref_primary_10_23736_S0026_4725_20_05253_6 crossref_primary_10_3390_nu12041029 crossref_primary_10_1016_j_ijcrp_2023_200209 crossref_primary_10_33590_emj_21_00148 crossref_primary_10_1007_s11428_020_00666_z crossref_primary_10_3390_jcm12113699 crossref_primary_10_2174_1573399818666220318095320 crossref_primary_10_15384_kjhp_2019_19_4_171 crossref_primary_10_3390_nu13103379 crossref_primary_10_1016_j_cmet_2022_12_008 crossref_primary_10_3390_ijms22157797 crossref_primary_10_1007_s12016_025_09039_0 crossref_primary_10_1007_s11011_023_01288_2 crossref_primary_10_3389_fnut_2022_1007824 crossref_primary_10_3390_nu17030389 crossref_primary_10_3390_nu17030384 crossref_primary_10_1080_19490976_2023_2221450 crossref_primary_10_1093_nutrit_nuad132 crossref_primary_10_7759_cureus_30372 crossref_primary_10_3390_cells9071596 crossref_primary_10_1097_jnr_0000000000000469 crossref_primary_10_1016_j_nut_2022_111909 crossref_primary_10_3389_fendo_2021_723918 crossref_primary_10_1016_j_cmet_2023_06_008 crossref_primary_10_3390_nu14010139 crossref_primary_10_1002_oby_23577 crossref_primary_10_1002_oby_23579 crossref_primary_10_1152_ajpendo_00365_2019 crossref_primary_10_1186_s40001_023_01158_8 crossref_primary_10_1038_s41591_024_03375_y crossref_primary_10_4103_jmms_jmms_24_24 crossref_primary_10_3389_fnut_2023_1307736 crossref_primary_10_3389_fmed_2023_1316284 crossref_primary_10_1097_MOL_0000000000000722 crossref_primary_10_1055_a_2185_7599 crossref_primary_10_1097_MOL_0000000000000961 crossref_primary_10_1016_j_physbeh_2021_113313 crossref_primary_10_1093_advances_nmaa168 crossref_primary_10_1016_j_tem_2019_03_001 crossref_primary_10_1002_oby_23564 crossref_primary_10_1016_j_mito_2020_03_009 crossref_primary_10_1016_j_xcrm_2022_100665 crossref_primary_10_1111_1753_0407_13288 crossref_primary_10_2337_dc24_0564 crossref_primary_10_1038_s42255_021_00466_9 crossref_primary_10_1186_s12986_022_00704_1 crossref_primary_10_1002_ctm2_195 crossref_primary_10_1186_s40795_020_00375_2 crossref_primary_10_1093_ajcn_nqab433 crossref_primary_10_1038_s41467_020_18412_w crossref_primary_10_1186_s12916_024_03716_1 crossref_primary_10_1007_s40279_020_01295_8 crossref_primary_10_1038_s41569_023_00931_w crossref_primary_10_4103_ijd_ijd_155_21 crossref_primary_10_1097_MCO_0000000000000675 crossref_primary_10_4093_dmj_2020_0250 crossref_primary_10_1016_j_tjnut_2024_07_021 crossref_primary_10_3390_jcm11020296 crossref_primary_10_1038_s41574_018_0122_1 crossref_primary_10_1155_2020_6615295 crossref_primary_10_1016_j_heliyon_2023_e22814 crossref_primary_10_1007_s11886_021_01515_1 crossref_primary_10_1080_21623945_2018_1516099 crossref_primary_10_1016_j_tjnut_2023_10_023 crossref_primary_10_2147_DMSO_S376409 crossref_primary_10_3390_nu17020300 crossref_primary_10_1016_j_cbpc_2024_110038 crossref_primary_10_1080_13813455_2023_2268301 crossref_primary_10_1038_s41537_022_00276_2 crossref_primary_10_14336_AD_2021_1018 crossref_primary_10_1111_febs_15482 crossref_primary_10_3389_fimmu_2023_1167562 crossref_primary_10_1001_jamainternmed_2020_4153 crossref_primary_10_1152_japplphysiol_00521_2018 crossref_primary_10_3390_genes15111376 crossref_primary_10_1538_expanim_20_0112 crossref_primary_10_1016_j_heliyon_2023_e17233 crossref_primary_10_1007_s11357_022_00668_3 crossref_primary_10_1016_j_mib_2023_102287 crossref_primary_10_2174_1570161120666220610151915 crossref_primary_10_1186_s13098_023_01190_y crossref_primary_10_1016_j_arr_2022_101596 crossref_primary_10_1097_MCO_0000000000000694 crossref_primary_10_3390_nu13020346 crossref_primary_10_1093_lifemeta_loaf002 crossref_primary_10_20960_nh_04790 crossref_primary_10_1016_j_nut_2019_07_001 crossref_primary_10_1002_mco2_70030 crossref_primary_10_1016_j_crphys_2021_09_003 crossref_primary_10_18502_sjms_v15i5_7147 crossref_primary_10_3390_nu17020322 crossref_primary_10_1016_j_disamonth_2024_101778 crossref_primary_10_3390_nu16020316 crossref_primary_10_3390_nu16132075 crossref_primary_10_3390_life14070844 crossref_primary_10_1016_j_neo_2023_100943 crossref_primary_10_3390_nu16030357 crossref_primary_10_3390_nu14112283 crossref_primary_10_2139_ssrn_4096552 crossref_primary_10_1016_j_nut_2025_112691 crossref_primary_10_1146_annurev_nutr_122319_034601 crossref_primary_10_3390_nu12113396 crossref_primary_10_1038_s41574_024_01021_8 crossref_primary_10_1016_j_tem_2020_03_002 crossref_primary_10_1113_JP281101 crossref_primary_10_1186_s12937_024_01046_9 crossref_primary_10_3389_fnut_2023_1048230 crossref_primary_10_2174_1573399816666201026161009 crossref_primary_10_1152_ajprenal_00287_2021 crossref_primary_10_1016_j_archger_2020_104188 crossref_primary_10_3390_nu14102001 crossref_primary_10_1136_bmjnph_2022_000462 crossref_primary_10_1038_s41467_021_22922_6 crossref_primary_10_1007_s11892_024_01550_6 crossref_primary_10_1097_NT_0000000000000443 crossref_primary_10_1002_jcp_70020 crossref_primary_10_4103_ijar_ijar_24_24 crossref_primary_10_4103_jrms_jrms_280_24 |
Cites_doi | 10.1093/ajcn/85.4.981 10.1097/00004872-199816121-00033 10.1016/S0008-6363(95)00218-9 10.1016/j.celrep.2016.05.009 10.1016/j.cmet.2012.04.019 10.1017/S0007114515005346 10.1152/ajprenal.00103.2016 10.1055/s-0031-1278267 10.2337/diab.5.6.437 10.1177/0260106017753487 10.1126/scitranslmed.aai8700 10.1016/j.diabres.2016.10.010 10.1038/ijo.2010.171 10.1038/oby.2005.61 10.2337/diacare.21.1.2 10.1073/pnas.1418955112 10.1111/j.1582-4934.2010.01160.x 10.1007/s00125-004-1461-0 10.1155/2012/962012 10.1073/pnas.0808180106 10.1002/oby.20909 10.1186/1475-2891-12-146 10.1016/j.metabol.2012.07.002 10.1080/17461391.2016.1223173 10.1093/ajcn/81.1.69 10.1007/s11605-009-1060-y 10.1017/S0007114513000792 10.1001/jamainternmed.2017.0936 10.1016/j.metabol.2016.09.006 10.1016/j.metabol.2017.11.017 10.1038/ijo.2012.229 10.1016/j.cmet.2014.11.008 10.3233/NHA-1611 10.3945/ajcn.2008.27327 10.1016/j.physbeh.2016.08.027 10.3945/ajcn.114.085191 10.1016/j.metabol.2007.07.018 10.1152/ajpendo.90613.2008 10.1152/ajpendo.00397.2012 10.1038/jcbfm.2014.36 10.1530/JOE-16-0402 10.1042/CS20130071 10.1002/oby.21189 10.1016/j.clnu.2016.02.007 10.3109/07420528.2011.622599 10.1093/jn/127.1.75 10.1161/01.HYP.28.5.863 10.1016/j.nutres.2016.02.005 10.1017/S0029665116002986 10.2337/dc09-2107 10.1371/journal.pone.0004377 10.1186/s12967-016-1044-0 10.1016/j.cmet.2015.09.005 10.1089/rej.2014.1624 10.1016/j.cmet.2014.11.001 10.1007/s00125-015-3524-9 10.1016/j.jnutbio.2016.10.003 10.1016/j.arr.2016.10.005 10.1152/japplphysiol.00683.2005 10.1016/j.cmet.2015.05.012 10.1146/annurev-nutr-071816-064634 10.1152/jappl.1980.48.1.109 10.1017/S0007114516003524 10.1093/jn/107.2.176 10.1002/oby.20460 10.1016/j.physbeh.2017.02.032 10.1194/jlr.P020867 10.1186/s13058-016-0714-4 10.3945/ajcn.2009.28380 10.1016/j.freeradbiomed.2006.12.005 10.1002/oby.21581 10.1096/fj.12-208868 10.1210/jcem.87.7.8695 10.1073/pnas.1035720100 10.2337/db12-1762 10.1002/oby.20353 10.1186/2251-6581-12-4 10.2337/dc12-2316 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2018.04.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 1221.e3 |
ExternalDocumentID | PMC5990470 29754952 10_1016_j_cmet_2018_04_010 S1550413118302535 |
Genre | Controlled Clinical Trial Journal Article |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR001417 – fundername: NIDDK NIH HHS grantid: P30 DK072476 – fundername: NICHD NIH HHS grantid: F31 HD084199 – fundername: NIDDK NIH HHS grantid: P30 DK079626 – fundername: NIGMS NIH HHS grantid: U54 GM104940 – fundername: NCATS NIH HHS grantid: KL2 TR001419 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c455t-4b9af8a0c0b4119632151a3aa2a962139ede55243b5d0d0b37c40101f09f0edf3 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 13:41:48 EDT 2025 Fri Jul 11 00:14:23 EDT 2025 Mon Jul 21 05:58:21 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Tue Jul 01 03:58:17 EDT 2025 Fri Feb 23 02:50:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | insulin sensitivity blood pressure intermittent fasting prediabetes early time-restricted feeding eTRF meal timing circadian rhythms circadian system insulin resistance |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-4b9af8a0c0b4119632151a3aa2a962139ede55243b5d0d0b37c40101f09f0edf3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Lead Contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1550413118302535 |
PMID | 29754952 |
PQID | 2038702316 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5990470 proquest_miscellaneous_2038702316 pubmed_primary_29754952 crossref_citationtrail_10_1016_j_cmet_2018_04_010 crossref_primary_10_1016_j_cmet_2018_04_010 elsevier_sciencedirect_doi_10_1016_j_cmet_2018_04_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-05 |
PublicationDateYYYYMMDD | 2018-06-05 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Brandhorst, Choi, Wei, Cheng, Sedrakyan, Navarrete, Dubeau, Yap, Park, Vinciguerra (bib10) 2015; 22 Antoni, Johnston, Collins, Robertson (bib3) 2017; 76 Philippens, von Mayersbach, Scheving (bib61) 1977; 107 Hoddy, Kroeger, Trepanowski, Barnosky, Bhutani, Varady (bib34) 2014; 22 Belkacemi, Selselet-Attou, Hupkens, Nguidjoe, Louchami, Sener, Malaisse (bib6) 2012; 2012 Persson (bib59) 2007; 16 Hatori, Vollmers, Zarrinpar, DiTacchio, Bushong, Gill, Leblanc, Chaix, Joens, Fitzpatrick (bib30) 2012; 15 Trepanowski, Kroeger, Barnosky, Klempel, Bhutani, Hoddy, Rood, Ravussin, Varady (bib74) 2017 Jakubowicz, Barnea, Wainstein, Froy (bib39) 2013; 21 Morris, Garcia, Myers, Yang, Trienekens, Scheer (bib52) 2015; 23 Kroeger, Trepanowski, Klempel, Barnosky, Bhutani, Gabel, Varady (bib46) 2018; 24 Anson, Guo, de Cabo, Iyun, Rios, Hagepanos, Ingram, Lane, Mattson (bib1) 2003; 100 Mattson, Longo, Harvie (bib50) 2017; 39 Scheer, Hilton, Mantzoros, Shea (bib66) 2009; 106 Harvie, Pegington, Mattson, Frystyk, Dillon, Evans, Cuzick, Jebb, Martin, Cutler (bib27) 2011; 35 Peterson, Apolzan, Wright, Martin (bib60) 2016; 116 Duncan, Smith, Narbaiza, Mueez, Bustle, Qureshi, Fieseler, Legan (bib20) 2016; 167 Kant, Graubard (bib43) 2014; 100 Garaulet, Gómez-Abellán, Alburquerque-Béjar, Lee, Ordovás, Scheer (bib22) 2013; 37 Harvie, Howell (bib26) 2017; 7 Johnston, Speed, Jin, Pollock (bib42) 2016; 311 Heilbronn, Civitarese, Bogacka, Smith, Hulver, Ravussin (bib31) 2005; 13 Bhutani, Klempel, Kroeger, Trepanowski, Varady (bib8) 2013; 21 Tinsley, Forsse, Butler, Paoli, Bane, La Bounty, Morgan, Grandjean (bib73) 2017; 17 Gill, Panda (bib24) 2015; 22 Chung, Chou, Sears, Patterson, Webster, Ellies (bib18) 2016; 65 Keim, Van Loan, Horn, Barbieri, Mayclin (bib44) 1997; 127 Heilbronn, Smith, Martin, Anton, Ravussin (bib32) 2005; 81 Kudo, Akiyama, Kuriyama, Sudo, Moriya, Shibata (bib47) 2004; 47 Stote, Baer, Spears, Paul, Harris, Rumpler, Strycula, Najjar, Ferrucci, Ingram (bib71) 2007; 85 Wei, Brandhorst, Shelehchi, Mirzaei, Cheng, Budniak, Groshen, Mack, Guen, Di Biase (bib79) 2017; 9 Zarrinpar, Chaix, Yooseph, Panda (bib84) 2014; 20 Salgin, Marcovecchio, Humphreys, Hill, Chassin, Lunn, Hovorka, Dunger (bib65) 2009; 296 Morris, Yang, Garcia, Myers, Bozzi, Wang, Buxton, Shea, Scheer (bib53) 2015; 112 Park, Yoo, Hyun, Kang (bib55) 2017; 40 Sundaram, Yan (bib72) 2016; 36 Hoddy, Bhutani, Phillips, Varady (bib35) 2016; 4 Redman, Heilbronn, Martin, de Jonge, Williamson, Delany, and, Ravussin (bib63) 2009; 4 Campos, Rabl, Peeva, Ciovica, Rao, Schwarz, Havel, Schambelan, Mulligan (bib12) 2010; 14 Trepanowski, Kroeger, Barnosky, Klempel, Bhutani, Hoddy, Gabel, Freels, Rigdon, Rood (bib75) 2017; 177 Carter, Clifton, Keogh (bib14) 2016; 122 Soeters, Soeters, Schooneman, Houten, Romijn (bib70) 2012; 303 Wegman, Guo, Bennion, Shankar, Chrzanowski, Goldberg, Xu, Williams, Lu, Hsu (bib78) 2015; 18 Antoni, Johnston, Collins, Robertson (bib2) 2016; 115 Belkacemi, Selselet-Attou, Louchami, Sener, Malaisse (bib4) 2010; 26 Sherman, Frumin, Gutman, Chapnik, Lorentz, Meylan, le Coutre, Froy (bib67) 2011; 15 Patterson, Sears (bib57) 2017; 37 Lingvay, Guth, Islam, Livingston (bib48) 2013; 36 Halberg, Henriksen, Söderhamn, Stallknecht, Ploug, Schjerling, Dela (bib25) 2005; 99 Wu, Sun, ZhuGe, Guo, Zhao, Tang, Chen, Chen, Kato, Fu (bib83) 2011; 28 Wilkinson, Fuchs, Jansen, Spratt, Murray, Cockcroft, Webb (bib80) 1998; 16 Conn, Fajans, Seltzer (bib19) 1956; 5 Bhanot, McNeill (bib7) 1996; 31 Johnson, Summer, Cutler, Martin, Hyun, Dixit, Pearson, Nassar, Telljohann, Maudsley (bib41) 2007; 42 Poggiogalle, Jamshed, Peterson (bib62) 2018 Eshghinia, Mohammadzadeh (bib21) 2013; 12 García-Luna, Soberanes-Chávez, de Gortari (bib23) 2017; 232 Ruiz-Lozano, Vidal, de Hollanda, Scheer, Garaulet, Izquierdo-Pulido (bib64) 2016; 35 Woodie, Luo, Wayne, Graff, Ahmed, O’Neill, Greene (bib82) 2017 Soeters, Lammers, Dubbelhuis, Ackermans, Jonkers-Schuitema, Fliers, Sauerwein, Aerts, Serlie (bib69) 2009; 90 Manzanero, Erion, Santro, Steyn, Chen, Arumugam, Stranahan (bib49) 2014; 34 Catenacci, Pan, Ostendorf, Brannon, Gozansky, Mattson, Martin, MacLean, Melanson, Troy Donahoo (bib15) 2016; 24 Harvie, Sims, Pegington, Spence, Mitchell, Vaughan, Allwood, Xu, Rattray, Goodacre (bib29) 2016; 18 Biston, Van Cauter, Ofek, Linkowski, Polonsky, Degaute (bib9) 1996; 28 Harvie, Wright, Pegington, McMullan, Mitchell, Martin, Cutler, Evans, Whiteside, Maudsley (bib28) 2013; 110 Sherman, Genzer, Cohen, Chapnik, Madar, Froy (bib68) 2012; 26 Isbell, Tamboli, Hansen, Saliba, Dunn, Phillips, Marks-Shulman, Abumrad (bib36) 2010; 33 Varady, Bhutani, Church, Klempel (bib76) 2009; 90 Chaix, Zarrinpar, Miu, Panda (bib16) 2014; 20 Moro, Tinsley, Bianco, Marcolin, Pacelli, Battaglia, Palma, Gentil, Neri, Paoli (bib51) 2016; 14 Klempel, Kroeger, Varady (bib45) 2013; 62 Jakubowicz, Barnea, Wainstein, Froy (bib38) 2013; 125 Varady, Bhutani, Klempel, Kroeger, Trepanowski, Haus, Hoddy, Calvo (bib77) 2013; 12 Jackness, Karmally, Febres, Conwell, Ahmed, Bessler, McMahon, Korner (bib37) 2013; 62 Carlson, Martin, Stote, Golden, Maudsley, Najjar, Ferrucci, Ingram, Longo, Rumpler (bib13) 2007; 56 Jakubowicz, Wainstein, Ahrén, Bar-Dayan, Landau, Rabinovitz, Froy (bib40) 2015; 58 Heran, Wong, Heran, Wright (bib33) 2008 Williams, Mullen, Kelley, Wing (bib81) 1998; 21 Belkacemi, Selselet-Attou, Bulur, Louchami, Sener, Malaisse (bib5) 2011; 27 Olsen, Choi, Kulseng, Zhao, Chen (bib54) 2017; 173 Patel, Coppack, Goldstein, Miles, Eisenhofer (bib56) 2002; 87 Pequignot, Peyrin, Pérès (bib58) 1980; 48 Choi, Piccio, Childress, Bollman, Ghosh, Brandhorst, Suarez, Michalsen, Cross, Morgan (bib17) 2016; 15 Browning, Baxter, Satapati, Burgess (bib11) 2012; 53 García-Luna (10.1016/j.cmet.2018.04.010_bib23) 2017; 232 Heilbronn (10.1016/j.cmet.2018.04.010_bib32) 2005; 81 Bhanot (10.1016/j.cmet.2018.04.010_bib7) 1996; 31 Heran (10.1016/j.cmet.2018.04.010_bib33) 2008 Johnston (10.1016/j.cmet.2018.04.010_bib42) 2016; 311 Choi (10.1016/j.cmet.2018.04.010_bib17) 2016; 15 Persson (10.1016/j.cmet.2018.04.010_bib59) 2007; 16 Harvie (10.1016/j.cmet.2018.04.010_bib27) 2011; 35 Morris (10.1016/j.cmet.2018.04.010_bib52) 2015; 23 Stote (10.1016/j.cmet.2018.04.010_bib71) 2007; 85 Ruiz-Lozano (10.1016/j.cmet.2018.04.010_bib64) 2016; 35 Morris (10.1016/j.cmet.2018.04.010_bib53) 2015; 112 Wegman (10.1016/j.cmet.2018.04.010_bib78) 2015; 18 Conn (10.1016/j.cmet.2018.04.010_bib19) 1956; 5 Wei (10.1016/j.cmet.2018.04.010_bib79) 2017; 9 Belkacemi (10.1016/j.cmet.2018.04.010_bib4) 2010; 26 Varady (10.1016/j.cmet.2018.04.010_bib77) 2013; 12 Halberg (10.1016/j.cmet.2018.04.010_bib25) 2005; 99 Anson (10.1016/j.cmet.2018.04.010_bib1) 2003; 100 Belkacemi (10.1016/j.cmet.2018.04.010_bib5) 2011; 27 Jakubowicz (10.1016/j.cmet.2018.04.010_bib38) 2013; 125 Kudo (10.1016/j.cmet.2018.04.010_bib47) 2004; 47 Antoni (10.1016/j.cmet.2018.04.010_bib3) 2017; 76 Biston (10.1016/j.cmet.2018.04.010_bib9) 1996; 28 Wu (10.1016/j.cmet.2018.04.010_bib83) 2011; 28 Patterson (10.1016/j.cmet.2018.04.010_bib57) 2017; 37 Klempel (10.1016/j.cmet.2018.04.010_bib45) 2013; 62 Tinsley (10.1016/j.cmet.2018.04.010_bib73) 2017; 17 Varady (10.1016/j.cmet.2018.04.010_bib76) 2009; 90 Harvie (10.1016/j.cmet.2018.04.010_bib29) 2016; 18 Sherman (10.1016/j.cmet.2018.04.010_bib67) 2011; 15 Soeters (10.1016/j.cmet.2018.04.010_bib69) 2009; 90 Chung (10.1016/j.cmet.2018.04.010_bib18) 2016; 65 Peterson (10.1016/j.cmet.2018.04.010_bib60) 2016; 116 Scheer (10.1016/j.cmet.2018.04.010_bib66) 2009; 106 Trepanowski (10.1016/j.cmet.2018.04.010_bib75) 2017; 177 Woodie (10.1016/j.cmet.2018.04.010_bib82) 2017 Gill (10.1016/j.cmet.2018.04.010_bib24) 2015; 22 Jakubowicz (10.1016/j.cmet.2018.04.010_bib39) 2013; 21 Harvie (10.1016/j.cmet.2018.04.010_bib28) 2013; 110 Redman (10.1016/j.cmet.2018.04.010_bib63) 2009; 4 Moro (10.1016/j.cmet.2018.04.010_bib51) 2016; 14 Soeters (10.1016/j.cmet.2018.04.010_bib70) 2012; 303 Garaulet (10.1016/j.cmet.2018.04.010_bib22) 2013; 37 Hatori (10.1016/j.cmet.2018.04.010_bib30) 2012; 15 Carlson (10.1016/j.cmet.2018.04.010_bib13) 2007; 56 Brandhorst (10.1016/j.cmet.2018.04.010_bib10) 2015; 22 Manzanero (10.1016/j.cmet.2018.04.010_bib49) 2014; 34 Williams (10.1016/j.cmet.2018.04.010_bib81) 1998; 21 Salgin (10.1016/j.cmet.2018.04.010_bib65) 2009; 296 Kroeger (10.1016/j.cmet.2018.04.010_bib46) 2018; 24 Lingvay (10.1016/j.cmet.2018.04.010_bib48) 2013; 36 Chaix (10.1016/j.cmet.2018.04.010_bib16) 2014; 20 Olsen (10.1016/j.cmet.2018.04.010_bib54) 2017; 173 Bhutani (10.1016/j.cmet.2018.04.010_bib8) 2013; 21 Hoddy (10.1016/j.cmet.2018.04.010_bib35) 2016; 4 Heilbronn (10.1016/j.cmet.2018.04.010_bib31) 2005; 13 Eshghinia (10.1016/j.cmet.2018.04.010_bib21) 2013; 12 Kant (10.1016/j.cmet.2018.04.010_bib43) 2014; 100 Antoni (10.1016/j.cmet.2018.04.010_bib2) 2016; 115 Poggiogalle (10.1016/j.cmet.2018.04.010_bib62) 2018 Sundaram (10.1016/j.cmet.2018.04.010_bib72) 2016; 36 Pequignot (10.1016/j.cmet.2018.04.010_bib58) 1980; 48 Hoddy (10.1016/j.cmet.2018.04.010_bib34) 2014; 22 Jakubowicz (10.1016/j.cmet.2018.04.010_bib40) 2015; 58 Sherman (10.1016/j.cmet.2018.04.010_bib68) 2012; 26 Catenacci (10.1016/j.cmet.2018.04.010_bib15) 2016; 24 Harvie (10.1016/j.cmet.2018.04.010_bib26) 2017; 7 Isbell (10.1016/j.cmet.2018.04.010_bib36) 2010; 33 Belkacemi (10.1016/j.cmet.2018.04.010_bib6) 2012; 2012 Keim (10.1016/j.cmet.2018.04.010_bib44) 1997; 127 Philippens (10.1016/j.cmet.2018.04.010_bib61) 1977; 107 Carter (10.1016/j.cmet.2018.04.010_bib14) 2016; 122 Trepanowski (10.1016/j.cmet.2018.04.010_bib74) 2017 Browning (10.1016/j.cmet.2018.04.010_bib11) 2012; 53 Jackness (10.1016/j.cmet.2018.04.010_bib37) 2013; 62 Mattson (10.1016/j.cmet.2018.04.010_bib50) 2017; 39 Park (10.1016/j.cmet.2018.04.010_bib55) 2017; 40 Zarrinpar (10.1016/j.cmet.2018.04.010_bib84) 2014; 20 Patel (10.1016/j.cmet.2018.04.010_bib56) 2002; 87 Johnson (10.1016/j.cmet.2018.04.010_bib41) 2007; 42 Wilkinson (10.1016/j.cmet.2018.04.010_bib80) 1998; 16 Campos (10.1016/j.cmet.2018.04.010_bib12) 2010; 14 Duncan (10.1016/j.cmet.2018.04.010_bib20) 2016; 167 29874561 - Cell Metab. 2018 Jun 5;27(6):1159-1160 |
References_xml | – volume: 115 start-page: 951 year: 2016 end-page: 959 ident: bib2 article-title: Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants publication-title: Br. J. Nutr. – volume: 112 start-page: E2225 year: 2015 end-page: E2234 ident: bib53 article-title: Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 437 year: 1956 end-page: 442 ident: bib19 article-title: Spontaneous hypoglycemia as an early manifestation of diabetes mellitus publication-title: Diabetes – volume: 81 start-page: 69 year: 2005 end-page: 73 ident: bib32 article-title: Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism publication-title: Am. J. Clin. Nutr. – volume: 15 start-page: 848 year: 2012 end-page: 860 ident: bib30 article-title: Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet publication-title: Cell Metab. – volume: 296 start-page: E454 year: 2009 end-page: E461 ident: bib65 article-title: Effects of prolonged fasting and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 303 start-page: E1397 year: 2012 end-page: E1407 ident: bib70 article-title: Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 21 start-page: 1370 year: 2013 end-page: 1379 ident: bib8 article-title: Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans publication-title: Obesity (Silver Spring) – volume: 107 start-page: 176 year: 1977 end-page: 193 ident: bib61 article-title: Effects of the scheduling of meal-feeding at different phases of the circadian system in rats publication-title: J. Nutr. – volume: 21 start-page: 2504 year: 2013 end-page: 2512 ident: bib39 article-title: High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women publication-title: Obesity (Silver Spring) – volume: 48 start-page: 109 year: 1980 end-page: 113 ident: bib58 article-title: Catecholamine-fuel interrelationships during exercise in fasting men publication-title: J. Appl. Physiol. – volume: 28 start-page: 890 year: 2011 end-page: 903 ident: bib83 article-title: Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology publication-title: Chronobiol. Int. – volume: 177 start-page: 930 year: 2017 end-page: 938 ident: bib75 article-title: Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial publication-title: JAMA Intern. Med. – volume: 85 start-page: 981 year: 2007 end-page: 988 ident: bib71 article-title: A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults publication-title: Am. J. Clin. Nutr. – volume: 21 start-page: 2 year: 1998 end-page: 8 ident: bib81 article-title: The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes publication-title: Diabetes Care – year: 2017 ident: bib82 article-title: Restricted feeding for 9h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice publication-title: Metabolism – volume: 13 start-page: 574 year: 2005 end-page: 581 ident: bib31 article-title: Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting publication-title: Obes. Res. – volume: 36 start-page: 2741 year: 2013 end-page: 2747 ident: bib48 article-title: Rapid improvement in diabetes after gastric bypass surgery: is it the diet or surgery? publication-title: Diabetes Care – volume: 47 start-page: 1425 year: 2004 end-page: 1436 ident: bib47 article-title: Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver publication-title: Diabetologia – volume: 31 start-page: 212 year: 1996 end-page: 221 ident: bib7 article-title: Insulin and hypertension: a causal relationship? publication-title: Cardiovasc. Res. – volume: 56 start-page: 1729 year: 2007 end-page: 1734 ident: bib13 article-title: Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women publication-title: Metabolism – volume: 37 start-page: 371 year: 2017 end-page: 393 ident: bib57 article-title: Metabolic effects of intermittent fasting publication-title: Annu. Rev. Nutr. – volume: 4 start-page: e4377 year: 2009 ident: bib63 article-title: Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss publication-title: PLoS One – volume: 311 start-page: F991 year: 2016 end-page: F998 ident: bib42 article-title: Loss of endothelin B receptor function impairs sodium excretion in a time- and sex-dependent manner publication-title: Am. J. Physiol. Renal Physiol. – volume: 99 start-page: 2128 year: 2005 end-page: 2136 ident: bib25 article-title: Effect of intermittent fasting and refeeding on insulin action in healthy men publication-title: J. Appl. Physiol. – volume: 40 start-page: 14 year: 2017 end-page: 22 ident: bib55 article-title: Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets publication-title: J. Nutr. Biochem. – volume: 167 start-page: 1 year: 2016 end-page: 9 ident: bib20 article-title: Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet publication-title: Physiol. Behav. – volume: 100 start-page: 938 year: 2014 end-page: 947 ident: bib43 article-title: Association of self-reported sleep duration with eating behaviors of American adults: NHANES 2005-2010 publication-title: Am. J. Clin. Nutr. – volume: 20 start-page: 991 year: 2014 end-page: 1005 ident: bib16 article-title: Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges publication-title: Cell Metab. – volume: 26 start-page: 759 year: 2010 end-page: 765 ident: bib4 article-title: Intermittent fasting modulation of the diabetic syndrome in sand rats. II. In vivo investigations publication-title: Int. J. Mol. Med. – volume: 22 start-page: 789 year: 2015 end-page: 798 ident: bib24 article-title: A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits publication-title: Cell Metab. – volume: 9 start-page: 9 year: 2017 ident: bib79 article-title: Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease publication-title: Sci. Transl. Med. – volume: 62 start-page: 3027 year: 2013 end-page: 3032 ident: bib37 article-title: Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell Function in type 2 diabetic patients publication-title: Diabetes – volume: 90 start-page: 1244 year: 2009 end-page: 1251 ident: bib69 article-title: Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism publication-title: Am. J. Clin. Nutr. – volume: 173 start-page: 298 year: 2017 end-page: 304 ident: bib54 article-title: Time-restricted feeding on weekdays restricts weight gain: a study using rat models of high-fat diet-induced obesity publication-title: Physiol. Behav. – volume: 2012 start-page: 962012 year: 2012 ident: bib6 article-title: Intermittent fasting modulation of the diabetic syndrome in streptozotocin-injected rats publication-title: Int. J. Endocrinol. – volume: 125 start-page: 423 year: 2013 end-page: 432 ident: bib38 article-title: Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome publication-title: Clin. Sci. – volume: 58 start-page: 912 year: 2015 end-page: 919 ident: bib40 article-title: High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial publication-title: Diabetologia – volume: 23 start-page: 2053 year: 2015 end-page: 2058 ident: bib52 article-title: The human circadian system has a dominating role in causing the morning/evening difference in diet-induced thermogenesis publication-title: Obesity (Silver Spring) – volume: 28 start-page: 863 year: 1996 end-page: 871 ident: bib9 article-title: Diurnal variations in cardiovascular function and glucose regulation in normotensive humans publication-title: Hypertension – volume: 36 start-page: 603 year: 2016 end-page: 611 ident: bib72 article-title: Time-restricted feeding reduces adiposity in mice fed a high-fat diet publication-title: Nutr. Res. – volume: 37 start-page: 604 year: 2013 end-page: 611 ident: bib22 article-title: Timing of food intake predicts weight loss effectiveness publication-title: Int. J. Obes. – volume: 35 start-page: 1308 year: 2016 end-page: 1314 ident: bib64 article-title: Timing of food intake is associated with weight loss evolution in severe obese patients after bariatric surgery publication-title: Clin. Nutr. – volume: 26 start-page: 3493 year: 2012 end-page: 3502 ident: bib68 article-title: Timed high-fat diet resets circadian metabolism and prevents obesity publication-title: FASEB J. – volume: 87 start-page: 3373 year: 2002 end-page: 3377 ident: bib56 article-title: Norepinephrine spillover from human adipose tissue before and after a 72-hour fast publication-title: J. Clin. Endocrinol. Metab. – volume: 17 start-page: 200 year: 2017 end-page: 207 ident: bib73 article-title: Time-restricted feeding in young men performing resistance training: a randomized controlled trial publication-title: Eur. J. Sport Sci. – volume: 116 start-page: 1646 year: 2016 end-page: 1655 ident: bib60 article-title: Video chat technology to remotely quantify dietary, supplement and medication adherence in clinical trials publication-title: Br. J. Nutr. – volume: 110 start-page: 1534 year: 2013 end-page: 1547 ident: bib28 article-title: The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women publication-title: Br. J. Nutr. – volume: 18 start-page: 57 year: 2016 ident: bib29 article-title: Intermittent energy restriction induces changes in breast gene expression and systemic metabolism publication-title: Breast Cancer Res. – volume: 12 start-page: 146 year: 2013 ident: bib77 article-title: Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial publication-title: Nutr. J. – volume: 100 start-page: 6216 year: 2003 end-page: 6220 ident: bib1 article-title: Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake publication-title: Proc. Natl. Acad. Sci. USA – volume: 62 start-page: 137 year: 2013 end-page: 143 ident: bib45 article-title: Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet publication-title: Metabolism – start-page: CD003823 year: 2008 ident: bib33 article-title: Blood pressure lowering efficacy of angiotensin converting enzyme (ACE) inhibitors for primary hypertension publication-title: Cochrane Database Syst. Rev. – volume: 127 start-page: 75 year: 1997 end-page: 82 ident: bib44 article-title: Weight loss is greater with consumption of large morning meals and fat-free mass is preserved with large evening meals in women on a controlled weight reduction regimen publication-title: J. Nutr. – volume: 24 start-page: 5 year: 2018 end-page: 10 ident: bib46 article-title: Eating behavior traits of successful weight losers during 12 months of alternate-day fasting: an exploratory analysis of a randomized controlled trial publication-title: Nutr. Health – volume: 65 start-page: 1743 year: 2016 end-page: 1754 ident: bib18 article-title: Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity publication-title: Metabolism – volume: 122 start-page: 106 year: 2016 end-page: 112 ident: bib14 article-title: The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial publication-title: Diabetes Res. Clin. Pract. – volume: 20 start-page: 1006 year: 2014 end-page: 1017 ident: bib84 article-title: Diet and feeding pattern affect the diurnal dynamics of the gut microbiome publication-title: Cell Metab. – volume: 76 start-page: 361 year: 2017 end-page: 368 ident: bib3 article-title: Effects of intermittent fasting on glucose and lipid metabolism publication-title: Proc. Nutr. Soc. – volume: 35 start-page: 714 year: 2011 end-page: 727 ident: bib27 article-title: The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women publication-title: Int. J. Obes. – volume: 22 start-page: 2524 year: 2014 end-page: 2531 ident: bib34 article-title: Meal timing during alternate day fasting: Impact on body weight and cardiovascular disease risk in obese adults publication-title: Obesity (Silver Spring) – year: 2018 ident: bib62 article-title: Circadian regulation of glucose, lipid, and energy metabolism in humans publication-title: Metabolism – volume: 18 start-page: 162 year: 2015 end-page: 172 ident: bib78 article-title: Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism publication-title: Rejuvenation Res. – volume: 42 start-page: 665 year: 2007 end-page: 674 ident: bib41 article-title: Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma publication-title: Free Radic. Biol. Med. – volume: 232 start-page: 15 year: 2017 end-page: 28 ident: bib23 article-title: Prepuberal light phase feeding induces neuroendocrine alterations in adult rats publication-title: J. Endocrinol. – volume: 27 start-page: 95 year: 2011 end-page: 102 ident: bib5 article-title: Intermittent fasting modulation of the diabetic syndrome in sand rats. III. Post-mortem investigations publication-title: Int. J. Mol. Med. – volume: 106 start-page: 4453 year: 2009 end-page: 4458 ident: bib66 article-title: Adverse metabolic and cardiovascular consequences of circadian misalignment publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 86 year: 2015 end-page: 99 ident: bib10 article-title: A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan publication-title: Cell Metab. – volume: 16 start-page: 135 year: 2007 end-page: 138 ident: bib59 article-title: Blood pressure reactions to insulin treatment in patients with type 2 diabetes publication-title: Int. J. Angiol. – volume: 15 start-page: 2136 year: 2016 end-page: 2146 ident: bib17 article-title: A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms publication-title: Cell Rep. – volume: 24 start-page: 1874 year: 2016 end-page: 1883 ident: bib15 article-title: A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity publication-title: Obesity (Silver Spring) – volume: 33 start-page: 1438 year: 2010 end-page: 1442 ident: bib36 article-title: The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery publication-title: Diabetes Care – volume: 39 start-page: 46 year: 2017 end-page: 58 ident: bib50 article-title: Impact of intermittent fasting on health and disease processes publication-title: Ageing Res. Rev. – volume: 12 start-page: 4 year: 2013 ident: bib21 article-title: The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women publication-title: J. Diabetes Metab. Disord. – volume: 15 start-page: 2745 year: 2011 end-page: 2759 ident: bib67 article-title: Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers publication-title: J. Cell. Mol. Med. – volume: 14 start-page: 290 year: 2016 ident: bib51 article-title: Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males publication-title: J. Transl. Med. – volume: 90 start-page: 1138 year: 2009 end-page: 1143 ident: bib76 article-title: Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults publication-title: Am. J. Clin. Nutr. – year: 2017 ident: bib74 article-title: Effects of alternate-day fasting or daily calorie restriction on body composition, fat distribution, and circulating adipokines: secondary analysis of a randomized controlled trial publication-title: Clin. Nutr. – volume: 4 start-page: 63 year: 2016 end-page: 71 ident: bib35 article-title: Effects of different degrees of insulin resistance on endothelial function in obese adults undergoing alternate day fasting publication-title: Nutr. Healthy Aging – volume: 34 start-page: 897 year: 2014 end-page: 905 ident: bib49 article-title: Intermittent fasting attenuates increases in neurogenesis after ischemia and reperfusion and improves recovery publication-title: J. Cereb. Blood Flow Metab. – volume: 16 start-page: 2079 year: 1998 end-page: 2084 ident: bib80 article-title: Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis publication-title: J. Hypertens. – volume: 7 start-page: 7 year: 2017 ident: bib26 article-title: Potential benefits and harms of intermittent energy restriction and intermittent fasting amongst obese, overweight and normal weight subjects-a narrative review of human and animal evidence publication-title: Behav. Sci. (Basel) – volume: 53 start-page: 577 year: 2012 end-page: 586 ident: bib11 article-title: The effect of short-term fasting on liver and skeletal muscle lipid, glucose, and energy metabolism in healthy women and men publication-title: J. Lipid Res. – volume: 14 start-page: 15 year: 2010 end-page: 23 ident: bib12 article-title: Improvement in peripheral glucose uptake after gastric bypass surgery is observed only after substantial weight loss has occurred and correlates with the magnitude of weight lost publication-title: J. Gastrointest. Surg. – volume: 85 start-page: 981 year: 2007 ident: 10.1016/j.cmet.2018.04.010_bib71 article-title: A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/85.4.981 – volume: 16 start-page: 2079 year: 1998 ident: 10.1016/j.cmet.2018.04.010_bib80 article-title: Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis publication-title: J. Hypertens. doi: 10.1097/00004872-199816121-00033 – volume: 31 start-page: 212 year: 1996 ident: 10.1016/j.cmet.2018.04.010_bib7 article-title: Insulin and hypertension: a causal relationship? publication-title: Cardiovasc. Res. doi: 10.1016/S0008-6363(95)00218-9 – volume: 15 start-page: 2136 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib17 article-title: A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.05.009 – volume: 15 start-page: 848 year: 2012 ident: 10.1016/j.cmet.2018.04.010_bib30 article-title: Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.04.019 – volume: 115 start-page: 951 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib2 article-title: Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants publication-title: Br. J. Nutr. doi: 10.1017/S0007114515005346 – volume: 311 start-page: F991 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib42 article-title: Loss of endothelin B receptor function impairs sodium excretion in a time- and sex-dependent manner publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00103.2016 – volume: 16 start-page: 135 year: 2007 ident: 10.1016/j.cmet.2018.04.010_bib59 article-title: Blood pressure reactions to insulin treatment in patients with type 2 diabetes publication-title: Int. J. Angiol. doi: 10.1055/s-0031-1278267 – volume: 5 start-page: 437 year: 1956 ident: 10.1016/j.cmet.2018.04.010_bib19 article-title: Spontaneous hypoglycemia as an early manifestation of diabetes mellitus publication-title: Diabetes doi: 10.2337/diab.5.6.437 – volume: 24 start-page: 5 year: 2018 ident: 10.1016/j.cmet.2018.04.010_bib46 article-title: Eating behavior traits of successful weight losers during 12 months of alternate-day fasting: an exploratory analysis of a randomized controlled trial publication-title: Nutr. Health doi: 10.1177/0260106017753487 – volume: 9 start-page: 9 year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib79 article-title: Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aai8700 – volume: 122 start-page: 106 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib14 article-title: The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2016.10.010 – volume: 35 start-page: 714 year: 2011 ident: 10.1016/j.cmet.2018.04.010_bib27 article-title: The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women publication-title: Int. J. Obes. doi: 10.1038/ijo.2010.171 – volume: 13 start-page: 574 year: 2005 ident: 10.1016/j.cmet.2018.04.010_bib31 article-title: Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting publication-title: Obes. Res. doi: 10.1038/oby.2005.61 – volume: 21 start-page: 2 year: 1998 ident: 10.1016/j.cmet.2018.04.010_bib81 article-title: The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes publication-title: Diabetes Care doi: 10.2337/diacare.21.1.2 – year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib82 article-title: Restricted feeding for 9h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice publication-title: Metabolism – volume: 112 start-page: E2225 year: 2015 ident: 10.1016/j.cmet.2018.04.010_bib53 article-title: Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1418955112 – volume: 15 start-page: 2745 year: 2011 ident: 10.1016/j.cmet.2018.04.010_bib67 article-title: Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2010.01160.x – volume: 47 start-page: 1425 year: 2004 ident: 10.1016/j.cmet.2018.04.010_bib47 article-title: Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver publication-title: Diabetologia doi: 10.1007/s00125-004-1461-0 – volume: 2012 start-page: 962012 year: 2012 ident: 10.1016/j.cmet.2018.04.010_bib6 article-title: Intermittent fasting modulation of the diabetic syndrome in streptozotocin-injected rats publication-title: Int. J. Endocrinol. doi: 10.1155/2012/962012 – volume: 106 start-page: 4453 year: 2009 ident: 10.1016/j.cmet.2018.04.010_bib66 article-title: Adverse metabolic and cardiovascular consequences of circadian misalignment publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0808180106 – volume: 22 start-page: 2524 year: 2014 ident: 10.1016/j.cmet.2018.04.010_bib34 article-title: Meal timing during alternate day fasting: Impact on body weight and cardiovascular disease risk in obese adults publication-title: Obesity (Silver Spring) doi: 10.1002/oby.20909 – volume: 12 start-page: 146 year: 2013 ident: 10.1016/j.cmet.2018.04.010_bib77 article-title: Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial publication-title: Nutr. J. doi: 10.1186/1475-2891-12-146 – volume: 62 start-page: 137 year: 2013 ident: 10.1016/j.cmet.2018.04.010_bib45 article-title: Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet publication-title: Metabolism doi: 10.1016/j.metabol.2012.07.002 – volume: 17 start-page: 200 year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib73 article-title: Time-restricted feeding in young men performing resistance training: a randomized controlled trial publication-title: Eur. J. Sport Sci. doi: 10.1080/17461391.2016.1223173 – volume: 81 start-page: 69 year: 2005 ident: 10.1016/j.cmet.2018.04.010_bib32 article-title: Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/81.1.69 – volume: 14 start-page: 15 year: 2010 ident: 10.1016/j.cmet.2018.04.010_bib12 article-title: Improvement in peripheral glucose uptake after gastric bypass surgery is observed only after substantial weight loss has occurred and correlates with the magnitude of weight lost publication-title: J. Gastrointest. Surg. doi: 10.1007/s11605-009-1060-y – volume: 110 start-page: 1534 year: 2013 ident: 10.1016/j.cmet.2018.04.010_bib28 article-title: The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women publication-title: Br. J. Nutr. doi: 10.1017/S0007114513000792 – volume: 177 start-page: 930 year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib75 article-title: Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2017.0936 – volume: 65 start-page: 1743 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib18 article-title: Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity publication-title: Metabolism doi: 10.1016/j.metabol.2016.09.006 – year: 2018 ident: 10.1016/j.cmet.2018.04.010_bib62 article-title: Circadian regulation of glucose, lipid, and energy metabolism in humans publication-title: Metabolism doi: 10.1016/j.metabol.2017.11.017 – volume: 37 start-page: 604 year: 2013 ident: 10.1016/j.cmet.2018.04.010_bib22 article-title: Timing of food intake predicts weight loss effectiveness publication-title: Int. J. Obes. doi: 10.1038/ijo.2012.229 – volume: 20 start-page: 1006 year: 2014 ident: 10.1016/j.cmet.2018.04.010_bib84 article-title: Diet and feeding pattern affect the diurnal dynamics of the gut microbiome publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.11.008 – volume: 4 start-page: 63 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib35 article-title: Effects of different degrees of insulin resistance on endothelial function in obese adults undergoing alternate day fasting publication-title: Nutr. Healthy Aging doi: 10.3233/NHA-1611 – start-page: CD003823 year: 2008 ident: 10.1016/j.cmet.2018.04.010_bib33 article-title: Blood pressure lowering efficacy of angiotensin converting enzyme (ACE) inhibitors for primary hypertension publication-title: Cochrane Database Syst. Rev. – volume: 90 start-page: 1244 year: 2009 ident: 10.1016/j.cmet.2018.04.010_bib69 article-title: Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.2008.27327 – volume: 167 start-page: 1 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib20 article-title: Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2016.08.027 – volume: 100 start-page: 938 year: 2014 ident: 10.1016/j.cmet.2018.04.010_bib43 article-title: Association of self-reported sleep duration with eating behaviors of American adults: NHANES 2005-2010 publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.114.085191 – volume: 56 start-page: 1729 year: 2007 ident: 10.1016/j.cmet.2018.04.010_bib13 article-title: Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women publication-title: Metabolism doi: 10.1016/j.metabol.2007.07.018 – volume: 296 start-page: E454 year: 2009 ident: 10.1016/j.cmet.2018.04.010_bib65 article-title: Effects of prolonged fasting and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.90613.2008 – volume: 303 start-page: E1397 year: 2012 ident: 10.1016/j.cmet.2018.04.010_bib70 article-title: Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00397.2012 – volume: 34 start-page: 897 year: 2014 ident: 10.1016/j.cmet.2018.04.010_bib49 article-title: Intermittent fasting attenuates increases in neurogenesis after ischemia and reperfusion and improves recovery publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2014.36 – volume: 232 start-page: 15 year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib23 article-title: Prepuberal light phase feeding induces neuroendocrine alterations in adult rats publication-title: J. Endocrinol. doi: 10.1530/JOE-16-0402 – volume: 125 start-page: 423 year: 2013 ident: 10.1016/j.cmet.2018.04.010_bib38 article-title: Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome publication-title: Clin. Sci. doi: 10.1042/CS20130071 – volume: 23 start-page: 2053 year: 2015 ident: 10.1016/j.cmet.2018.04.010_bib52 article-title: The human circadian system has a dominating role in causing the morning/evening difference in diet-induced thermogenesis publication-title: Obesity (Silver Spring) doi: 10.1002/oby.21189 – volume: 35 start-page: 1308 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib64 article-title: Timing of food intake is associated with weight loss evolution in severe obese patients after bariatric surgery publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2016.02.007 – volume: 28 start-page: 890 year: 2011 ident: 10.1016/j.cmet.2018.04.010_bib83 article-title: Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology publication-title: Chronobiol. Int. doi: 10.3109/07420528.2011.622599 – volume: 127 start-page: 75 year: 1997 ident: 10.1016/j.cmet.2018.04.010_bib44 article-title: Weight loss is greater with consumption of large morning meals and fat-free mass is preserved with large evening meals in women on a controlled weight reduction regimen publication-title: J. Nutr. doi: 10.1093/jn/127.1.75 – volume: 28 start-page: 863 year: 1996 ident: 10.1016/j.cmet.2018.04.010_bib9 article-title: Diurnal variations in cardiovascular function and glucose regulation in normotensive humans publication-title: Hypertension doi: 10.1161/01.HYP.28.5.863 – volume: 36 start-page: 603 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib72 article-title: Time-restricted feeding reduces adiposity in mice fed a high-fat diet publication-title: Nutr. Res. doi: 10.1016/j.nutres.2016.02.005 – volume: 76 start-page: 361 year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib3 article-title: Effects of intermittent fasting on glucose and lipid metabolism publication-title: Proc. Nutr. Soc. doi: 10.1017/S0029665116002986 – volume: 33 start-page: 1438 year: 2010 ident: 10.1016/j.cmet.2018.04.010_bib36 article-title: The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery publication-title: Diabetes Care doi: 10.2337/dc09-2107 – volume: 4 start-page: e4377 year: 2009 ident: 10.1016/j.cmet.2018.04.010_bib63 article-title: Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss publication-title: PLoS One doi: 10.1371/journal.pone.0004377 – year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib74 article-title: Effects of alternate-day fasting or daily calorie restriction on body composition, fat distribution, and circulating adipokines: secondary analysis of a randomized controlled trial publication-title: Clin. Nutr. – volume: 7 start-page: 7 year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib26 article-title: Potential benefits and harms of intermittent energy restriction and intermittent fasting amongst obese, overweight and normal weight subjects-a narrative review of human and animal evidence publication-title: Behav. Sci. (Basel) – volume: 26 start-page: 759 year: 2010 ident: 10.1016/j.cmet.2018.04.010_bib4 article-title: Intermittent fasting modulation of the diabetic syndrome in sand rats. II. In vivo investigations publication-title: Int. J. Mol. Med. – volume: 14 start-page: 290 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib51 article-title: Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males publication-title: J. Transl. Med. doi: 10.1186/s12967-016-1044-0 – volume: 22 start-page: 789 year: 2015 ident: 10.1016/j.cmet.2018.04.010_bib24 article-title: A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.09.005 – volume: 18 start-page: 162 year: 2015 ident: 10.1016/j.cmet.2018.04.010_bib78 article-title: Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism publication-title: Rejuvenation Res. doi: 10.1089/rej.2014.1624 – volume: 20 start-page: 991 year: 2014 ident: 10.1016/j.cmet.2018.04.010_bib16 article-title: Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.11.001 – volume: 58 start-page: 912 year: 2015 ident: 10.1016/j.cmet.2018.04.010_bib40 article-title: High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial publication-title: Diabetologia doi: 10.1007/s00125-015-3524-9 – volume: 40 start-page: 14 year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib55 article-title: Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2016.10.003 – volume: 39 start-page: 46 year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib50 article-title: Impact of intermittent fasting on health and disease processes publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2016.10.005 – volume: 99 start-page: 2128 year: 2005 ident: 10.1016/j.cmet.2018.04.010_bib25 article-title: Effect of intermittent fasting and refeeding on insulin action in healthy men publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00683.2005 – volume: 22 start-page: 86 year: 2015 ident: 10.1016/j.cmet.2018.04.010_bib10 article-title: A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.05.012 – volume: 37 start-page: 371 year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib57 article-title: Metabolic effects of intermittent fasting publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-071816-064634 – volume: 27 start-page: 95 year: 2011 ident: 10.1016/j.cmet.2018.04.010_bib5 article-title: Intermittent fasting modulation of the diabetic syndrome in sand rats. III. Post-mortem investigations publication-title: Int. J. Mol. Med. – volume: 48 start-page: 109 year: 1980 ident: 10.1016/j.cmet.2018.04.010_bib58 article-title: Catecholamine-fuel interrelationships during exercise in fasting men publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1980.48.1.109 – volume: 116 start-page: 1646 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib60 article-title: Video chat technology to remotely quantify dietary, supplement and medication adherence in clinical trials publication-title: Br. J. Nutr. doi: 10.1017/S0007114516003524 – volume: 107 start-page: 176 year: 1977 ident: 10.1016/j.cmet.2018.04.010_bib61 article-title: Effects of the scheduling of meal-feeding at different phases of the circadian system in rats publication-title: J. Nutr. doi: 10.1093/jn/107.2.176 – volume: 21 start-page: 2504 year: 2013 ident: 10.1016/j.cmet.2018.04.010_bib39 article-title: High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women publication-title: Obesity (Silver Spring) doi: 10.1002/oby.20460 – volume: 173 start-page: 298 year: 2017 ident: 10.1016/j.cmet.2018.04.010_bib54 article-title: Time-restricted feeding on weekdays restricts weight gain: a study using rat models of high-fat diet-induced obesity publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2017.02.032 – volume: 53 start-page: 577 year: 2012 ident: 10.1016/j.cmet.2018.04.010_bib11 article-title: The effect of short-term fasting on liver and skeletal muscle lipid, glucose, and energy metabolism in healthy women and men publication-title: J. Lipid Res. doi: 10.1194/jlr.P020867 – volume: 18 start-page: 57 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib29 article-title: Intermittent energy restriction induces changes in breast gene expression and systemic metabolism publication-title: Breast Cancer Res. doi: 10.1186/s13058-016-0714-4 – volume: 90 start-page: 1138 year: 2009 ident: 10.1016/j.cmet.2018.04.010_bib76 article-title: Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.2009.28380 – volume: 42 start-page: 665 year: 2007 ident: 10.1016/j.cmet.2018.04.010_bib41 article-title: Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2006.12.005 – volume: 24 start-page: 1874 year: 2016 ident: 10.1016/j.cmet.2018.04.010_bib15 article-title: A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity publication-title: Obesity (Silver Spring) doi: 10.1002/oby.21581 – volume: 26 start-page: 3493 year: 2012 ident: 10.1016/j.cmet.2018.04.010_bib68 article-title: Timed high-fat diet resets circadian metabolism and prevents obesity publication-title: FASEB J. doi: 10.1096/fj.12-208868 – volume: 87 start-page: 3373 year: 2002 ident: 10.1016/j.cmet.2018.04.010_bib56 article-title: Norepinephrine spillover from human adipose tissue before and after a 72-hour fast publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem.87.7.8695 – volume: 100 start-page: 6216 year: 2003 ident: 10.1016/j.cmet.2018.04.010_bib1 article-title: Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1035720100 – volume: 62 start-page: 3027 year: 2013 ident: 10.1016/j.cmet.2018.04.010_bib37 article-title: Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell Function in type 2 diabetic patients publication-title: Diabetes doi: 10.2337/db12-1762 – volume: 21 start-page: 1370 year: 2013 ident: 10.1016/j.cmet.2018.04.010_bib8 article-title: Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans publication-title: Obesity (Silver Spring) doi: 10.1002/oby.20353 – volume: 12 start-page: 4 year: 2013 ident: 10.1016/j.cmet.2018.04.010_bib21 article-title: The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women publication-title: J. Diabetes Metab. Disord. doi: 10.1186/2251-6581-12-4 – volume: 36 start-page: 2741 year: 2013 ident: 10.1016/j.cmet.2018.04.010_bib48 article-title: Rapid improvement in diabetes after gastric bypass surgery: is it the diet or surgery? publication-title: Diabetes Care doi: 10.2337/dc12-2316 – reference: 29874561 - Cell Metab. 2018 Jun 5;27(6):1159-1160 |
SSID | ssj0036393 |
Score | 2.699572 |
Snippet | Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1212 |
SubjectTerms | Adult Aged Blood Pressure circadian rhythms circadian system early time-restricted feeding eTRF Fasting - metabolism Humans Insulin Resistance insulin sensitivity Insulin-Secreting Cells - metabolism intermittent fasting Male meal timing Middle Aged Oxidative Stress prediabetes Prediabetic State - diet therapy Prediabetic State - metabolism Proof of Concept Study Weight Loss |
Title | Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes |
URI | https://dx.doi.org/10.1016/j.cmet.2018.04.010 https://www.ncbi.nlm.nih.gov/pubmed/29754952 https://www.proquest.com/docview/2038702316 https://pubmed.ncbi.nlm.nih.gov/PMC5990470 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF0hJCQuVUu_0pZqKvVWrKy9u459BEREK6BSU9TcVvtlNQgcBInU_gz-MTO7dtS0FQeOicfOxrs7Mx6_94axjxgTghnRO0PhTSbrxmWmEC7LS4yurhI-lQZOz8rjc_llqqYb7LDnwhCssvP9yadHb919M-zu5vB6NhtOKLmWpBZDElZKENFcyCqS-KYHvTcWGIEjyB6NM7LuiDMJ4-WuAuEp8yrKnRKL9v_B6d_k828M5R9BafyUPemySdhPA37GNkK7w7ZSf8nfz9ldlC8Gonlk3wJ16HCYYMI4RSxIBYVwC58TIB0mhGZP7ST24IAg7ZDogzdhD0zr4euvmY9K4TCJHBM4Ql8JVMudLxfwI5ZZ4QT_GuDVTrtDdI2-xPuCnY-Pvh8eZ10PhsxJpRaZtLVpKsMdtzKn3UopghHGFKYuC0wfgw9KFVJY5bnnVoycJNm6htcND74RL9lmO2_Dawa1LKwPVVn70krprM1Nzp1QwYvKVFIOWN7ffO06gXLqk3GpeyTahaYJ0zRhmkuNvzNgn1bnXCd5jgetVT-nem2RaYwfD573oV8AGncfvVIxbZgvb9FIoMPDHLkcsFdpQazGQZxlfPwsBmy0tlRWBqTsvX6knf2MCt8KcwQ54m8eOd63bJs-RUSbesc2FzfLsIu508K-j5vjHtCOGWE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQQviP-Uv0aCJxY1ie00eeCBwaqWtUOim-ib59iOKIJ0WlvBPgafhS_InZ1UFNAekPYaO47jO99dLr_7GeA5-gSne_TPkFsdiaIykU65iZIMvavJuQ2pgfFBNjgS76ZyugU_21oYglU2tj_YdG-tmyvdZjW7J7NZd0LBtSC2GKKwkrxFVu67s2_43bZ4NXyLQn6Rpv29wzeDqDlaIDJCymUkykJXuY5NXIqElJA8n-Zap7rIUoyKnHVSpoKX0sY2LnnPCGJjq-Kiip2tOI57CS5j9NEjazCc7rbmn6PL96h-nF1E02sqdQKozHx1BOBMcs-vSmW7__aGf0e7f4I2f_OC_RtwvQlf2euwQjdhy9W34Eo40PLsNvzwfMmM6kqiD46OBDEY0bJ-cJEsZDDcgg0DAp5NCD4fzq_YYbuEoWehXvHU7TBdW_b--8x6anI28UUtbA-NM6Pk8Xy1ZB99XpeN8NUYjjZummiMNqd8B44uRDJ3Ybue1-4-sEKkpXV5VtisFMKUZaKT2HDpLM91LkQHknbxlWkY0elgji-qhb59ViQwRQJTsVD4nA68XN9zEvhAzu0tW5mqDa1W6LDOve9ZqwAKtzv9w9G1m68W2ImjhcWgPOvAvaAQ63lQkTR-76Yd6G2oyroDUYlvttSzT55SXGJQInrxg_-c71O4Ojgcj9RoeLD_EK5Ri4fTyUewvTxduccYuC3LJ36jMDi-6J35C6goVZ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Time-Restricted+Feeding+Improves+Insulin+Sensitivity%2C+Blood+Pressure%2C+and+Oxidative+Stress+Even+without+Weight+Loss+in+Men+with+Prediabetes&rft.jtitle=Cell+metabolism&rft.au=Sutton%2C+Elizabeth+F&rft.au=Beyl%2C+Robbie&rft.au=Early%2C+Kate+S&rft.au=Cefalu%2C+William+T&rft.date=2018-06-05&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=27&rft.issue=6&rft.spage=1212&rft_id=info:doi/10.1016%2Fj.cmet.2018.04.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |