Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes

Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 27; no. 6; pp. 1212 - 1221.e3
Main Authors Sutton, Elizabeth F., Beyl, Robbie, Early, Kate S., Cefalu, William T., Ravussin, Eric, Peterson, Courtney M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 05.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hr feeding period, with dinner before 3 p.m.) or a control schedule (12-hr feeding period) for 5 weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF’s effects are not solely due to weight loss. [Display omitted] •Early time-restricted feeding (eTRF) increases insulin sensitivity•eTRF also improves β cell function and lowers blood pressure and oxidative stress•eTRF lowers the desire to eat in the evening, which may facilitate weight loss•Intermittent fasting can improve health even in the absence of weight loss Sutton et al. conduct the first supervised controlled feeding trial to test whether intermittent fasting has benefits in humans in the absence of weight loss. Prediabetic men following a form of intermittent fasting called early time-restricted feeding improved their insulin sensitivity, blood pressure, and oxidative stress levels without losing weight.
AbstractList Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hr feeding period, with dinner before 3 p.m.) or a control schedule (12-hr feeding period) for 5 weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF's effects are not solely due to weight loss.Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hr feeding period, with dinner before 3 p.m.) or a control schedule (12-hr feeding period) for 5 weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF's effects are not solely due to weight loss.
Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hr feeding period, with dinner before 3 p.m.) or a control schedule (12-hr feeding period) for 5 weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF's effects are not solely due to weight loss.
Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hour feeding period, with dinner before 3 pm) or a control schedule (12-hour feeding period) for five weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and IF’s effects are not solely due to weight loss. Sutton et al. conduct the first supervised controlled feeding trial to test whether intermittent fasting has benefits in humans in the absence of weight loss. Prediabetic men following a form of intermittent fasting called early time-restricted feeding improved their insulin sensitivity, blood pressure, and oxidative stress levels, without losing weight.
Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first supervised controlled feeding trial to test whether IF has benefits independent of weight loss by feeding participants enough food to maintain their weight. Our proof-of-concept study also constitutes the first trial of early time-restricted feeding (eTRF), a form of IF that involves eating early in the day to be in alignment with circadian rhythms in metabolism. Men with prediabetes were randomized to eTRF (6-hr feeding period, with dinner before 3 p.m.) or a control schedule (12-hr feeding period) for 5 weeks and later crossed over to the other schedule. eTRF improved insulin sensitivity, β cell responsiveness, blood pressure, oxidative stress, and appetite. We demonstrate for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF’s effects are not solely due to weight loss. [Display omitted] •Early time-restricted feeding (eTRF) increases insulin sensitivity•eTRF also improves β cell function and lowers blood pressure and oxidative stress•eTRF lowers the desire to eat in the evening, which may facilitate weight loss•Intermittent fasting can improve health even in the absence of weight loss Sutton et al. conduct the first supervised controlled feeding trial to test whether intermittent fasting has benefits in humans in the absence of weight loss. Prediabetic men following a form of intermittent fasting called early time-restricted feeding improved their insulin sensitivity, blood pressure, and oxidative stress levels without losing weight.
Author Early, Kate S.
Cefalu, William T.
Ravussin, Eric
Beyl, Robbie
Peterson, Courtney M.
Sutton, Elizabeth F.
AuthorAffiliation 4 Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
2 Health, Physical Education, and Exercise Science, Columbus State University, Columbus, GA, 31907, USA
3 American Diabetes Association, Arlington, VA 22202, USA
1 Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
AuthorAffiliation_xml – name: 3 American Diabetes Association, Arlington, VA 22202, USA
– name: 2 Health, Physical Education, and Exercise Science, Columbus State University, Columbus, GA, 31907, USA
– name: 1 Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
– name: 4 Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
Author_xml – sequence: 1
  givenname: Elizabeth F.
  surname: Sutton
  fullname: Sutton, Elizabeth F.
  organization: Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
– sequence: 2
  givenname: Robbie
  surname: Beyl
  fullname: Beyl, Robbie
  organization: Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
– sequence: 3
  givenname: Kate S.
  surname: Early
  fullname: Early, Kate S.
  organization: Health, Physical Education, and Exercise Science, Columbus State University, Columbus, GA 31907, USA
– sequence: 4
  givenname: William T.
  surname: Cefalu
  fullname: Cefalu, William T.
  organization: Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
– sequence: 5
  givenname: Eric
  surname: Ravussin
  fullname: Ravussin, Eric
  organization: Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
– sequence: 6
  givenname: Courtney M.
  surname: Peterson
  fullname: Peterson, Courtney M.
  email: cpeterso@uab.edu
  organization: Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29754952$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuEzEUHaEi-oAfYIG8ZNEZ_EwyEkKCKoVIQUW0iKXlse8kjmbs1PYE8hn8MR4lRcCiK1s6L91zzosT5x0UxUuCK4LJ5M2m0j2kimIyqzCvMMFPijNSM1pOOcUn-S8ELjlh5LQ4j3GDMZuwmj0rTmk9FbwW9Kz4NVeh26M720P5FWIKVicw6BrAWLdCi34b_A4iWrg4dNahW3DRJruzaX-JPnTeG_QlQIxDgEuknEE3P61RmQDoNo0Amu_AoR82rf2Q0Hewq3VCS5-B7Pb5CI0exqoGEsTnxdNWdRFeHN-L4tv1_O7qU7m8-bi4er8sNRcilbypVTtTWOOGE1JPGCWCKKYUVfWEElaDASEoZ40w2OCGTTXPDZEW1y0G07KL4t3Bdzs0PRgNLgXVyW2wvQp76ZWV_yLOruXK76Soa8ynOBu8PhoEfz_k7mRvo4auUw78ECXFbDbFlJFJpr76O-tPyMMOmTA7EHTI1QRopbYp1-jHaNtJguU4udzIcXI5Ti4xl_mgLKX_SR_cHxW9PYggN7yzEGTUFpzOKwTQSRpvH5P_BsUAx-g
CitedBy_id crossref_primary_10_1016_j_ando_2023_12_001
crossref_primary_10_1097_MD_0000000000036857
crossref_primary_10_1007_s11357_020_00156_6
crossref_primary_10_1016_j_cmet_2020_06_018
crossref_primary_10_1016_j_molmed_2021_10_006
crossref_primary_10_1007_s12012_024_09925_7
crossref_primary_10_3389_fnut_2023_1264535
crossref_primary_10_1016_j_cmet_2023_12_004
crossref_primary_10_1016_j_nut_2021_111583
crossref_primary_10_3390_biom11040516
crossref_primary_10_1017_S0967199424000108
crossref_primary_10_1136_bmjopen_2023_073572
crossref_primary_10_3389_fnut_2020_596285
crossref_primary_10_3390_nu16142187
crossref_primary_10_1038_s41392_022_01211_8
crossref_primary_10_1017_jns_2018_13
crossref_primary_10_3390_ijerph18189935
crossref_primary_10_3390_nu12103213
crossref_primary_10_1007_s13668_021_00353_5
crossref_primary_10_3390_nu12103215
crossref_primary_10_2337_dci19_0014
crossref_primary_10_1016_j_ahj_2022_12_010
crossref_primary_10_1080_10408398_2022_2119362
crossref_primary_10_7554_eLife_98514
crossref_primary_10_1016_j_cmet_2022_09_003
crossref_primary_10_1016_j_cmet_2022_09_007
crossref_primary_10_1249_MSS_0000000000002655
crossref_primary_10_1080_17437199_2021_1968310
crossref_primary_10_1038_s41366_020_00719_9
crossref_primary_10_1152_ajpheart_00462_2020
crossref_primary_10_3390_nu17010169
crossref_primary_10_1016_j_cct_2023_107412
crossref_primary_10_1126_sciadv_adh9570
crossref_primary_10_26442_00403660_2024_10_202884
crossref_primary_10_1111_jpi_12956
crossref_primary_10_3390_nu12113228
crossref_primary_10_37349_en_2023_00013
crossref_primary_10_1016_j_clnu_2020_10_031
crossref_primary_10_1161_CIRCRESAHA_119_315897
crossref_primary_10_1016_j_metop_2025_100353
crossref_primary_10_1093_pnasnexus_pgae505
crossref_primary_10_1016_j_arr_2020_101189
crossref_primary_10_1016_j_bbadis_2023_166749
crossref_primary_10_1016_j_nut_2021_111566
crossref_primary_10_3390_nu13093179
crossref_primary_10_3390_nu13051558
crossref_primary_10_1055_a_2248_5316
crossref_primary_10_1093_nutrit_nuab108
crossref_primary_10_20996_1819_6446_2020_12_12
crossref_primary_10_3389_fendo_2021_662017
crossref_primary_10_1016_j_isci_2022_105847
crossref_primary_10_3389_fonc_2023_1222573
crossref_primary_10_1016_j_semcancer_2020_09_010
crossref_primary_10_3390_ijerph19074240
crossref_primary_10_3390_nu13093166
crossref_primary_10_1210_endrev_bnaa014
crossref_primary_10_1016_j_celrep_2022_111008
crossref_primary_10_1038_s41573_020_00109_w
crossref_primary_10_1186_s12986_022_00711_2
crossref_primary_10_1016_j_appet_2022_106034
crossref_primary_10_1080_1028415X_2024_2359868
crossref_primary_10_1038_s41568_022_00485_y
crossref_primary_10_1055_a_1485_1293
crossref_primary_10_3390_ijms25031504
crossref_primary_10_1007_s13679_025_00613_3
crossref_primary_10_1038_s41574_018_0142_x
crossref_primary_10_3390_nu15163661
crossref_primary_10_3233_NHA_200106
crossref_primary_10_1007_s13337_021_00703_5
crossref_primary_10_3389_fendo_2022_975509
crossref_primary_10_3390_healthcare12141392
crossref_primary_10_2459_JCM_0000000000001397
crossref_primary_10_1093_jn_nxab397
crossref_primary_10_3389_fnut_2021_687658
crossref_primary_10_1152_ajpendo_00187_2019
crossref_primary_10_1161_JAHA_122_026484
crossref_primary_10_1097_HJH_0000000000003275
crossref_primary_10_1007_s00125_020_05238_w
crossref_primary_10_3389_fnut_2022_853118
crossref_primary_10_1016_j_jand_2023_10_012
crossref_primary_10_1111_nmo_14487
crossref_primary_10_1038_s42255_024_01012_z
crossref_primary_10_1016_j_cell_2024_06_032
crossref_primary_10_1016_j_obmed_2024_100539
crossref_primary_10_1016_j_clnu_2024_08_029
crossref_primary_10_1007_s00125_023_06045_9
crossref_primary_10_1038_s41598_022_11251_3
crossref_primary_10_1007_s11938_019_00250_5
crossref_primary_10_1111_jdi_14186
crossref_primary_10_14789_jmj_JMJ24_0012_R
crossref_primary_10_1016_j_cmet_2023_05_003
crossref_primary_10_1038_s41591_023_02287_7
crossref_primary_10_7326_M24_0695
crossref_primary_10_1113_JP280884
crossref_primary_10_1016_j_copbio_2020_10_007
crossref_primary_10_55544_jrasb_2_6_28
crossref_primary_10_3390_nu10091245
crossref_primary_10_1159_000515960
crossref_primary_10_3390_nu11030587
crossref_primary_10_3390_nu15010020
crossref_primary_10_3390_clockssleep5030034
crossref_primary_10_3390_nu16203476
crossref_primary_10_3389_fgene_2020_590369
crossref_primary_10_1001_jamainternmed_2022_3050
crossref_primary_10_3390_ijerph192416772
crossref_primary_10_1016_j_amjmed_2022_01_028
crossref_primary_10_1093_jnci_djae331
crossref_primary_10_1152_physiol_00030_2019
crossref_primary_10_3390_nu15163640
crossref_primary_10_1111_apha_14027
crossref_primary_10_1038_s41575_020_00401_5
crossref_primary_10_14814_phy2_15279
crossref_primary_10_1016_j_cell_2024_11_004
crossref_primary_10_1016_j_mam_2021_100984
crossref_primary_10_1093_jn_nxab123
crossref_primary_10_1093_ajcn_nqz126
crossref_primary_10_1126_science_adc8824
crossref_primary_10_1146_annurev_nutr_052020_041327
crossref_primary_10_1055_a_1515_8766
crossref_primary_10_3389_fendo_2021_683140
crossref_primary_10_1055_a_1946_3753
crossref_primary_10_1111_nbu_12479
crossref_primary_10_1186_s12967_020_02687_0
crossref_primary_10_3390_cancers14184402
crossref_primary_10_1126_science_aau2095
crossref_primary_10_1016_j_dsx_2024_102952
crossref_primary_10_1186_s12889_022_12908_4
crossref_primary_10_1159_000540068
crossref_primary_10_1016_j_freeradbiomed_2022_02_021
crossref_primary_10_3390_nu12102990
crossref_primary_10_1900_RDS_2022_18_10
crossref_primary_10_3390_nu15092101
crossref_primary_10_3389_fnut_2022_871682
crossref_primary_10_3390_nu11061234
crossref_primary_10_3390_nu14153177
crossref_primary_10_1016_j_numecd_2020_08_006
crossref_primary_10_1017_jns_2019_8
crossref_primary_10_1155_2022_2830545
crossref_primary_10_1080_09637486_2020_1866504
crossref_primary_10_1016_j_cmet_2022_08_018
crossref_primary_10_1210_clinem_dgac197
crossref_primary_10_3390_nu13010191
crossref_primary_10_1152_physrev_00045_2021
crossref_primary_10_3390_metabo11020062
crossref_primary_10_3390_nu13072424
crossref_primary_10_3390_toxics9060130
crossref_primary_10_1080_07420528_2022_2053702
crossref_primary_10_1016_j_xcrm_2023_101363
crossref_primary_10_1016_j_it_2019_03_010
crossref_primary_10_3389_fendo_2019_00554
crossref_primary_10_52494_DRHI9315
crossref_primary_10_1038_s41430_024_01525_6
crossref_primary_10_1038_s41387_024_00344_9
crossref_primary_10_3389_fnint_2022_957193
crossref_primary_10_3390_nu13082686
crossref_primary_10_1016_j_cmet_2022_08_001
crossref_primary_10_1002_dmrr_3760
crossref_primary_10_3390_nu14153136
crossref_primary_10_2337_dc19_2289
crossref_primary_10_1186_s40842_020_00116_1
crossref_primary_10_1016_j_tifs_2021_01_007
crossref_primary_10_1007_s11357_024_01093_4
crossref_primary_10_1016_j_appet_2022_106266
crossref_primary_10_1017_S0007114522001581
crossref_primary_10_1111_nbu_12467
crossref_primary_10_1016_j_freeradbiomed_2022_12_084
crossref_primary_10_1038_s41575_023_00792_1
crossref_primary_10_1111_apt_16727
crossref_primary_10_1136_bmjopen_2023_080003
crossref_primary_10_1073_pnas_2015873118
crossref_primary_10_1155_2019_7049237
crossref_primary_10_1152_ajpendo_00129_2023
crossref_primary_10_1016_j_pcad_2022_11_003
crossref_primary_10_1152_ajpendo_00526_2020
crossref_primary_10_1016_j_orcp_2022_08_009
crossref_primary_10_1101_gad_350759_123
crossref_primary_10_1096_fj_202002470R
crossref_primary_10_1002_smtd_201900601
crossref_primary_10_1016_j_cub_2019_11_029
crossref_primary_10_1002_mnfr_202101136
crossref_primary_10_1016_j_clnu_2023_10_010
crossref_primary_10_1172_jci_insight_177997
crossref_primary_10_3390_nu16060876
crossref_primary_10_3390_nu16040504
crossref_primary_10_3389_fnut_2021_779863
crossref_primary_10_3390_vetsci9050217
crossref_primary_10_1016_j_arres_2021_100026
crossref_primary_10_3390_ijms20071597
crossref_primary_10_1007_s11428_021_00749_5
crossref_primary_10_3390_nu11102501
crossref_primary_10_3390_nu15030729
crossref_primary_10_1016_j_intimp_2021_108465
crossref_primary_10_1155_2023_6666613
crossref_primary_10_3389_fneur_2022_1087126
crossref_primary_10_3389_fnut_2020_606378
crossref_primary_10_1097_MD_0000000000025509
crossref_primary_10_1111_dom_15730
crossref_primary_10_7554_eLife_89214
crossref_primary_10_1038_s41598_022_23931_1
crossref_primary_10_3389_fendo_2022_870054
crossref_primary_10_1177_00033197241228046
crossref_primary_10_1155_2022_5653739
crossref_primary_10_1016_j_diabres_2024_111893
crossref_primary_10_3803_EnM_2021_405
crossref_primary_10_3390_ijms20174281
crossref_primary_10_3390_ijerph17114088
crossref_primary_10_1016_j_pneurobio_2022_102387
crossref_primary_10_1111_dom_13762
crossref_primary_10_1210_clinem_dgad036
crossref_primary_10_1007_s00278_020_00471_5
crossref_primary_10_1016_j_jnutbio_2024_109835
crossref_primary_10_3389_fpubh_2025_1514090
crossref_primary_10_3390_biology12040539
crossref_primary_10_1159_000535944
crossref_primary_10_1016_j_ihj_2022_07_005
crossref_primary_10_1016_j_diabres_2022_110195
crossref_primary_10_1055_a_2311_9952
crossref_primary_10_1007_s00424_020_02381_6
crossref_primary_10_1055_a_1658_5597
crossref_primary_10_1002_14651858_CD013496_pub2
crossref_primary_10_1172_JCI167275
crossref_primary_10_1210_clinem_dgae594
crossref_primary_10_3390_nu16183066
crossref_primary_10_3389_fphys_2022_950619
crossref_primary_10_1002_oby_22829
crossref_primary_10_1016_j_tem_2023_10_001
crossref_primary_10_1155_2022_6999907
crossref_primary_10_1007_s11914_019_00552_8
crossref_primary_10_1038_d41586_021_01578_8
crossref_primary_10_1016_j_tem_2021_06_004
crossref_primary_10_1016_j_bbalip_2021_158961
crossref_primary_10_3390_nu13113697
crossref_primary_10_1038_s42255_025_01254_5
crossref_primary_10_1002_osp4_702
crossref_primary_10_36660_abc_20230265
crossref_primary_10_1002_oby_22776
crossref_primary_10_1002_oby_22774
crossref_primary_10_1002_oby_23620
crossref_primary_10_3389_fnut_2020_00028
crossref_primary_10_3389_fphys_2021_651738
crossref_primary_10_7554_eLife_98514_3
crossref_primary_10_1111_ijfs_14986
crossref_primary_10_1007_s00018_023_04834_4
crossref_primary_10_3390_nu13010221
crossref_primary_10_1002_jpen_2642
crossref_primary_10_4093_dmj_2023_0193
crossref_primary_10_4093_jkd_2022_23_3_185
crossref_primary_10_1136_bmjopen_2020_040020
crossref_primary_10_1186_s12986_021_00613_9
crossref_primary_10_3390_nu16162692
crossref_primary_10_3390_ijms24087154
crossref_primary_10_1016_j_cell_2022_04_002
crossref_primary_10_1111_dom_14207
crossref_primary_10_1056_NEJMoa2114833
crossref_primary_10_37989_gumussagbil_1366944
crossref_primary_10_1002_oby_23855
crossref_primary_10_1186_s12882_023_03104_6
crossref_primary_10_3389_fnut_2020_00018
crossref_primary_10_1002_mco2_212
crossref_primary_10_3390_nu12030638
crossref_primary_10_1016_j_jmb_2020_01_018
crossref_primary_10_1093_nutrit_nuae195
crossref_primary_10_1002_oby_23614
crossref_primary_10_1111_1753_0407_13568
crossref_primary_10_1016_j_appet_2019_104411
crossref_primary_10_3390_biomedicines11051319
crossref_primary_10_1146_annurev_nutr_062122_014528
crossref_primary_10_1186_s41043_024_00497_4
crossref_primary_10_1016_j_cct_2024_107696
crossref_primary_10_1002_mnfr_201900867
crossref_primary_10_1093_ajcn_nqac237
crossref_primary_10_1016_j_yjmcc_2020_09_006
crossref_primary_10_1111_jsr_13436
crossref_primary_10_3390_nu15112570
crossref_primary_10_1016_j_ajpc_2022_100323
crossref_primary_10_1016_j_jpsychires_2024_11_041
crossref_primary_10_3390_nu15112573
crossref_primary_10_1111_obr_13603
crossref_primary_10_1016_j_nut_2020_110796
crossref_primary_10_1002_oby_22756
crossref_primary_10_1016_j_cmet_2018_05_016
crossref_primary_10_1177_07487304211044301
crossref_primary_10_3390_nu16050722
crossref_primary_10_1186_s40104_021_00564_4
crossref_primary_10_1002_oby_22518
crossref_primary_10_1093_lifemedi_lnac017
crossref_primary_10_1016_j_celrep_2021_109543
crossref_primary_10_1038_s41585_024_00961_0
crossref_primary_10_1161_HYPERTENSIONAHA_122_19372
crossref_primary_10_1080_07420528_2020_1772810
crossref_primary_10_1519_JSC_0000000000003860
crossref_primary_10_1080_09637486_2023_2294685
crossref_primary_10_3389_fpubh_2022_946795
crossref_primary_10_1111_apha_13936
crossref_primary_10_1152_ajpregu_00150_2020
crossref_primary_10_3390_cells12101424
crossref_primary_10_1111_apha_13939
crossref_primary_10_1016_j_jcjd_2024_03_002
crossref_primary_10_1017_S0029665119000636
crossref_primary_10_1097_HEP_0000000000000330
crossref_primary_10_1136_bmjopen_2024_087260
crossref_primary_10_3390_nu14030631
crossref_primary_10_1002_oby_23666
crossref_primary_10_4178_epih_e2021101
crossref_primary_10_1002_oby_23420
crossref_primary_10_3390_nu16121946
crossref_primary_10_1002_oby_22335
crossref_primary_10_15252_embr_202152412
crossref_primary_10_3390_nu14224778
crossref_primary_10_1016_j_celrep_2024_114523
crossref_primary_10_1016_j_compchemeng_2019_05_030
crossref_primary_10_12688_f1000research_128716_1
crossref_primary_10_3390_microorganisms8081140
crossref_primary_10_1016_j_numecd_2023_09_014
crossref_primary_10_1016_j_cjca_2023_06_416
crossref_primary_10_1146_annurev_physiol_031522_092054
crossref_primary_10_12688_f1000research_128716_2
crossref_primary_10_3390_nu15112517
crossref_primary_10_1093_ajcn_nqac021
crossref_primary_10_1002_aac2_12021
crossref_primary_10_1126_scitranslmed_adh1175
crossref_primary_10_7556_jaoa_2019_086
crossref_primary_10_1177_03000605231164548
crossref_primary_10_1016_j_clnu_2020_06_036
crossref_primary_10_1007_s40519_024_01709_w
crossref_primary_10_5650_oleoscience_21_121
crossref_primary_10_1016_j_scib_2020_03_025
crossref_primary_10_1016_j_metabol_2022_155158
crossref_primary_10_3389_fnut_2022_979702
crossref_primary_10_3390_nu16010034
crossref_primary_10_7759_cureus_59504
crossref_primary_10_1038_s41366_021_01038_3
crossref_primary_10_46413_boneyusbad_874087
crossref_primary_10_59541_001c_121441
crossref_primary_10_7759_cureus_28800
crossref_primary_10_1016_j_numecd_2023_10_013
crossref_primary_10_1152_ajpendo_00017_2022
crossref_primary_10_1038_s41598_023_28260_5
crossref_primary_10_1042_BSR20212358
crossref_primary_10_3389_fnut_2022_967996
crossref_primary_10_1002_oby_23642
crossref_primary_10_2337_ds19_0064
crossref_primary_10_1093_nutrit_nuab094
crossref_primary_10_1016_j_appet_2021_105240
crossref_primary_10_3390_nu16193390
crossref_primary_10_1042_BSR20222151
crossref_primary_10_3389_fendo_2021_656346
crossref_primary_10_3390_nu13061839
crossref_primary_10_1007_s11605_020_04551_4
crossref_primary_10_3390_nu14030420
crossref_primary_10_3390_foods13131960
crossref_primary_10_1038_s41580_021_00411_4
crossref_primary_10_1016_j_eatbeh_2022_101625
crossref_primary_10_1016_j_tcm_2023_10_002
crossref_primary_10_3389_fnut_2020_00039
crossref_primary_10_1017_S0007114521005079
crossref_primary_10_1002_oby_23637
crossref_primary_10_1016_j_xcrm_2023_101324
crossref_primary_10_1111_jnc_15246
crossref_primary_10_1007_s00467_023_06115_5
crossref_primary_10_1371_journal_pone_0246186
crossref_primary_10_1017_S0007114521000829
crossref_primary_10_1016_j_jnha_2024_100165
crossref_primary_10_1016_j_nut_2021_111504
crossref_primary_10_1089_met_2022_0014
crossref_primary_10_1016_j_ejim_2024_01_005
crossref_primary_10_3390_nu15010238
crossref_primary_10_3390_ijms25031390
crossref_primary_10_3390_nu15194233
crossref_primary_10_1177_2047487319869400
crossref_primary_10_3390_medicines9020015
crossref_primary_10_3390_nu12103043
crossref_primary_10_3390_nu15102336
crossref_primary_10_1016_j_diabres_2020_108154
crossref_primary_10_1136_gutjnl_2023_329998
crossref_primary_10_1093_advances_nmac015
crossref_primary_10_1111_nbu_70000
crossref_primary_10_1002_oby_23451
crossref_primary_10_1093_advances_nmac014
crossref_primary_10_1172_JCI148277
crossref_primary_10_1172_JCI148278
crossref_primary_10_1093_nutrit_nuae114
crossref_primary_10_1172_JCI148286
crossref_primary_10_1093_nutrit_nuad026
crossref_primary_10_3390_nu14010024
crossref_primary_10_1172_jci_insight_127737
crossref_primary_10_1126_scitranslmed_abd8034
crossref_primary_10_1016_j_tem_2020_10_005
crossref_primary_10_1080_10408398_2020_1789550
crossref_primary_10_1093_sleep_zsad123
crossref_primary_10_1016_j_pcd_2025_02_006
crossref_primary_10_3390_nu14204299
crossref_primary_10_1055_a_1938_7240
crossref_primary_10_1080_19490976_2024_2390164
crossref_primary_10_1080_09637486_2024_2313981
crossref_primary_10_1080_07420528_2023_2256855
crossref_primary_10_3389_fnut_2022_1026694
crossref_primary_10_1080_07420528_2023_2195492
crossref_primary_10_3390_jcm12227007
crossref_primary_10_3390_nu14030456
crossref_primary_10_1093_advances_nmab131
crossref_primary_10_3390_nu14193995
crossref_primary_10_1016_j_foodres_2024_115186
crossref_primary_10_3390_nu14173542
crossref_primary_10_1016_j_micpath_2024_106590
crossref_primary_10_1210_endocr_bqaa244
crossref_primary_10_1016_j_jnutbio_2020_108531
crossref_primary_10_3390_nu15020259
crossref_primary_10_1016_j_tem_2023_07_001
crossref_primary_10_1152_physrev_00006_2022
crossref_primary_10_1016_j_clnu_2025_01_019
crossref_primary_10_1136_bmjnph_2020_000183
crossref_primary_10_1002_oby_23676
crossref_primary_10_1002_oby_23672
crossref_primary_10_1007_s15034_022_4438_5
crossref_primary_10_3389_fendo_2024_1359772
crossref_primary_10_1016_j_xcrm_2022_100777
crossref_primary_10_1016_j_cjca_2023_09_017
crossref_primary_10_1016_j_heliyon_2024_e37475
crossref_primary_10_1210_endocr_bqaa230
crossref_primary_10_1016_j_jmb_2020_04_027
crossref_primary_10_1136_bcr_2019_234223
crossref_primary_10_1016_j_clnesp_2023_07_086
crossref_primary_10_1097_HJH_0000000000003200
crossref_primary_10_1038_s41467_023_43444_3
crossref_primary_10_1002_mnfr_202200043
crossref_primary_10_3390_nu12041194
crossref_primary_10_33069_cim_2019_0017
crossref_primary_10_1007_s11906_022_01219_z
crossref_primary_10_1111_acel_14169
crossref_primary_10_1007_s11033_023_08794_7
crossref_primary_10_1126_science_ade6720
crossref_primary_10_1038_s41387_021_00149_0
crossref_primary_10_1186_s13098_023_01234_3
crossref_primary_10_3390_obesities5010010
crossref_primary_10_3390_nu14030489
crossref_primary_10_3389_fpubh_2022_820238
crossref_primary_10_1016_j_nut_2021_111536
crossref_primary_10_1055_a_1584_3360
crossref_primary_10_3390_ijerph19137969
crossref_primary_10_4274_cjms_2024_2023_109
crossref_primary_10_1016_j_cjca_2024_02_004
crossref_primary_10_1002_oby_23499
crossref_primary_10_1016_j_ajcnut_2023_10_009
crossref_primary_10_1111_dom_14080
crossref_primary_10_1016_j_jand_2022_09_013
crossref_primary_10_18231_j_ijnmhs_2024_019
crossref_primary_10_1080_10408398_2022_2153355
crossref_primary_10_1128_mbio_01907_23
crossref_primary_10_1038_s41467_022_28662_5
crossref_primary_10_1101_gad_328633_119
crossref_primary_10_3390_nu16193300
crossref_primary_10_1002_lio2_748
crossref_primary_10_1186_s12967_024_05738_y
crossref_primary_10_1007_s40519_021_01280_8
crossref_primary_10_1016_j_metabol_2020_154337
crossref_primary_10_3390_ijms24010422
crossref_primary_10_3390_nu13103476
crossref_primary_10_1016_j_exger_2023_112116
crossref_primary_10_3389_fnetp_2021_732243
crossref_primary_10_3389_fphar_2024_1364881
crossref_primary_10_1016_j_exger_2022_112033
crossref_primary_10_3389_fpubh_2023_1020887
crossref_primary_10_3389_jpps_2024_13062
crossref_primary_10_3390_ijms252111524
crossref_primary_10_1016_j_tjnut_2024_12_025
crossref_primary_10_7326_M23_3132
crossref_primary_10_1038_d41586_025_00895_6
crossref_primary_10_1002_oby_22384
crossref_primary_10_3389_fcvm_2021_721956
crossref_primary_10_1016_j_cmet_2020_02_011
crossref_primary_10_1016_j_ajcnut_2023_11_016
crossref_primary_10_1111_imm_13829
crossref_primary_10_1146_annurev_nutr_082018_124320
crossref_primary_10_1097_TIN_0000000000000372
crossref_primary_10_1186_s13063_023_07691_5
crossref_primary_10_1007_s00125_019_05059_6
crossref_primary_10_1016_j_freeradbiomed_2020_04_025
crossref_primary_10_1016_j_physbeh_2023_114103
crossref_primary_10_1016_j_isci_2024_111501
crossref_primary_10_1113_JP280542
crossref_primary_10_1016_j_clnu_2024_01_005
crossref_primary_10_1016_j_advnut_2023_10_003
crossref_primary_10_1016_j_jad_2022_06_003
crossref_primary_10_1093_gerona_glad069
crossref_primary_10_3390_nu14112343
crossref_primary_10_1161_JAHA_120_021560
crossref_primary_10_1007_s13679_022_00491_z
crossref_primary_10_1016_j_ajpc_2020_100106
crossref_primary_10_3390_nu13072378
crossref_primary_10_7554_eLife_89214_2
crossref_primary_10_1038_s41575_021_00452_2
crossref_primary_10_1089_act_2021_29319_klu
crossref_primary_10_3390_jcm8101645
crossref_primary_10_1016_j_aninu_2021_09_009
crossref_primary_10_3390_cells11213372
crossref_primary_10_1007_s13238_020_00814_7
crossref_primary_10_3390_nu16132018
crossref_primary_10_7556_jaoa_2020_101
crossref_primary_10_1152_physiolgenomics_00117_2020
crossref_primary_10_1016_j_arr_2020_101038
crossref_primary_10_51754_cusbed_1342655
crossref_primary_10_3390_nu13072148
crossref_primary_10_1093_advances_nmy131
crossref_primary_10_3390_healthcare9050495
crossref_primary_10_33619_2414_2948_66_16
crossref_primary_10_1093_cdn_nzz145
crossref_primary_10_3389_fimmu_2025_1501850
crossref_primary_10_7759_cureus_53680
crossref_primary_10_1016_j_jhep_2023_05_021
crossref_primary_10_1080_07420528_2024_2360742
crossref_primary_10_1056_NEJMc2030030
crossref_primary_10_2196_35896
crossref_primary_10_1016_j_appet_2023_106452
crossref_primary_10_1016_j_diabres_2023_110569
crossref_primary_10_1055_a_1245_5623
crossref_primary_10_3389_fcvm_2022_822209
crossref_primary_10_3390_ijms252212355
crossref_primary_10_1007_s11892_020_01362_4
crossref_primary_10_1016_j_cbpa_2021_110929
crossref_primary_10_1111_liv_15335
crossref_primary_10_1007_s00125_022_05752_z
crossref_primary_10_3389_fnut_2022_1043783
crossref_primary_10_1136_bmjopen_2021_058954
crossref_primary_10_3389_fnut_2023_1079250
crossref_primary_10_1016_j_arr_2024_102274
crossref_primary_10_7554_eLife_52623
crossref_primary_10_1016_j_kint_2021_06_031
crossref_primary_10_1161_JAHA_120_020254
crossref_primary_10_3390_nu13051430
crossref_primary_10_3390_nu15061323
crossref_primary_10_1002_mnfr_202300465
crossref_primary_10_1186_s12967_024_05849_6
crossref_primary_10_1042_CS20210578
crossref_primary_10_3390_nu11030673
crossref_primary_10_3390_nu14194216
crossref_primary_10_3390_ijms20081911
crossref_primary_10_1038_s41586_024_07781_7
crossref_primary_10_1124_molpharm_123_000831
crossref_primary_10_1016_j_amjmed_2020_05_017
crossref_primary_10_1016_j_isci_2022_104870
crossref_primary_10_1016_j_numecd_2021_09_031
crossref_primary_10_1097_JN9_0000000000000004
crossref_primary_10_1096_fj_202100497RR
crossref_primary_10_1371_journal_pone_0316333
crossref_primary_10_12677_IJPN_2021_102006
crossref_primary_10_3389_fnut_2022_838091
crossref_primary_10_1080_10408398_2021_1974335
crossref_primary_10_31083_j_fbl2906206
crossref_primary_10_1113_JP276488
crossref_primary_10_12997_jla_2020_9_1_140
crossref_primary_10_1088_1478_3975_abde8d
crossref_primary_10_1002_advs_202407677
crossref_primary_10_1007_s11906_020_01043_3
crossref_primary_10_1038_s41430_023_01311_w
crossref_primary_10_3390_nu14071509
crossref_primary_10_1093_nutrit_nuz090
crossref_primary_10_3390_nu15061348
crossref_primary_10_1038_s41467_020_20743_7
crossref_primary_10_3390_nu13051492
crossref_primary_10_1016_j_jhep_2023_04_040
crossref_primary_10_3390_nu11122854
crossref_primary_10_1038_s41575_024_01021_z
crossref_primary_10_1186_s40035_024_00406_z
crossref_primary_10_1038_s41569_020_00437_9
crossref_primary_10_1210_endocr_bqaa180
crossref_primary_10_3389_fcell_2022_803280
crossref_primary_10_1039_D4FO06011C
crossref_primary_10_1159_000527838
crossref_primary_10_2174_0929867330666230330092725
crossref_primary_10_3390_nu16111581
crossref_primary_10_1038_s41574_022_00638_x
crossref_primary_10_17925_EE_2023_19_1_25
crossref_primary_10_4330_wjc_v15_i7_354
crossref_primary_10_1007_s13668_024_00570_8
crossref_primary_10_3390_nu15194264
crossref_primary_10_1016_j_celrep_2022_111786
crossref_primary_10_1007_s11428_024_01172_2
crossref_primary_10_3390_nu13072164
crossref_primary_10_1016_j_diabres_2024_111939
crossref_primary_10_1016_j_physbeh_2023_114128
crossref_primary_10_1055_a_1284_6036
crossref_primary_10_1093_ehjopen_oeab026
crossref_primary_10_20945_2359_3997000000322
crossref_primary_10_3390_nu13114087
crossref_primary_10_15252_embr_201948804
crossref_primary_10_1519_JSC_0000000000004353
crossref_primary_10_1016_j_advnut_2024_100262
crossref_primary_10_1002_oby_24057
crossref_primary_10_1016_j_nut_2021_111244
crossref_primary_10_3390_nu17020292
crossref_primary_10_1016_j_nut_2022_111764
crossref_primary_10_7759_cureus_56902
crossref_primary_10_3390_nu14235080
crossref_primary_10_1139_apnm_2020_0477
crossref_primary_10_1210_endocr_bqaa167
crossref_primary_10_1016_j_gtc_2023_03_009
crossref_primary_10_3390_nu16070984
crossref_primary_10_3389_fnut_2023_1120168
crossref_primary_10_1016_j_diabres_2022_110231
crossref_primary_10_1007_s40123_020_00278_2
crossref_primary_10_1097_JOM_0000000000002169
crossref_primary_10_1155_2020_2309437
crossref_primary_10_3390_nu12092567
crossref_primary_10_3390_nu15163525
crossref_primary_10_1016_j_diabres_2025_112081
crossref_primary_10_1210_endrev_bnab027
crossref_primary_10_1016_j_isci_2024_109000
crossref_primary_10_3389_fimmu_2022_1054875
crossref_primary_10_1097_j_pain_0000000000001918
crossref_primary_10_1038_s41467_020_15795_8
crossref_primary_10_3389_fnut_2021_765543
crossref_primary_10_1111_dom_15801
crossref_primary_10_3389_fendo_2024_1328139
crossref_primary_10_1080_07315724_2021_1958719
crossref_primary_10_1016_j_cmet_2024_04_015
crossref_primary_10_3390_endocrines3040052
crossref_primary_10_3390_nu14122536
crossref_primary_10_1249_FIT_0000000000000444
crossref_primary_10_1016_j_nut_2022_111588
crossref_primary_10_1080_09637486_2020_1787959
crossref_primary_10_1080_09291016_2024_2333296
crossref_primary_10_3389_fphys_2022_1061063
crossref_primary_10_3390_nu13113846
crossref_primary_10_3322_caac_21694
crossref_primary_10_3390_antiox10030383
crossref_primary_10_7554_eLife_75132
crossref_primary_10_1055_a_1908_0685
crossref_primary_10_3389_fnut_2022_858320
crossref_primary_10_3390_nu13010073
crossref_primary_10_1053_j_gastro_2020_10_057
crossref_primary_10_3389_fnut_2022_1075744
crossref_primary_10_1080_10408398_2022_2110034
crossref_primary_10_1161_HYPERTENSIONAHA_119_13908
crossref_primary_10_3390_nu14132569
crossref_primary_10_1186_s13063_024_08284_6
crossref_primary_10_37527_2023_73_1_006
crossref_primary_10_1038_d41586_020_02481_4
crossref_primary_10_1016_j_abb_2019_108160
crossref_primary_10_1210_clinem_dgaa926
crossref_primary_10_3390_nu14153025
crossref_primary_10_1016_j_exger_2021_111545
crossref_primary_10_1016_j_appet_2022_106135
crossref_primary_10_2139_ssrn_4788134
crossref_primary_10_3233_NHA_200098
crossref_primary_10_1016_j_giec_2024_03_003
crossref_primary_10_3389_fnut_2022_1025919
crossref_primary_10_1016_j_amjmed_2020_03_030
crossref_primary_10_1017_cts_2023_646
crossref_primary_10_1002_dmrr_3633
crossref_primary_10_1113_EP091890
crossref_primary_10_3390_nu15071762
crossref_primary_10_4239_wjd_v15_i3_361
crossref_primary_10_23736_S2724_6507_21_03596_X
crossref_primary_10_1016_j_jnutbio_2022_109146
crossref_primary_10_3390_nu14194058
crossref_primary_10_3389_fnut_2024_1439473
crossref_primary_10_1210_clinem_dgac094
crossref_primary_10_3390_nu14040824
crossref_primary_10_3390_nu14040823
crossref_primary_10_1249_JES_0000000000000235
crossref_primary_10_3390_nu14235022
crossref_primary_10_1007_s11883_021_00922_7
crossref_primary_10_1016_j_molmet_2020_101058
crossref_primary_10_1016_j_pmr_2022_04_009
crossref_primary_10_3390_nu13051405
crossref_primary_10_1007_s44154_024_00182_w
crossref_primary_10_1152_ajpregu_00283_2021
crossref_primary_10_1016_j_chembiol_2023_08_014
crossref_primary_10_3389_fimmu_2019_01402
crossref_primary_10_3390_nu12123770
crossref_primary_10_1016_j_brainres_2025_149510
crossref_primary_10_1186_s42269_023_01118_6
crossref_primary_10_1016_j_bbcan_2023_189062
crossref_primary_10_1017_S0954422421000123
crossref_primary_10_1152_ajpheart_00312_2019
crossref_primary_10_1096_fj_202001246RR
crossref_primary_10_56712_latam_v4i2_940
crossref_primary_10_3390_nu13051651
crossref_primary_10_3389_fnut_2021_642628
crossref_primary_10_1017_S0007114523000545
crossref_primary_10_1093_jncics_pkac032
crossref_primary_10_1093_function_zqaa034
crossref_primary_10_1002_oby_22964
crossref_primary_10_2174_0109298673275492231121062033
crossref_primary_10_1161_HYPERTENSIONAHA_121_14519
crossref_primary_10_3389_fendo_2022_841838
crossref_primary_10_1038_s41598_024_72913_y
crossref_primary_10_1007_s00394_023_03141_9
crossref_primary_10_3389_fendo_2022_1057376
crossref_primary_10_1080_10408398_2020_1781050
crossref_primary_10_3390_jcm8091301
crossref_primary_10_1152_ajprenal_00047_2024
crossref_primary_10_3390_nu16111721
crossref_primary_10_1016_j_cmet_2019_11_004
crossref_primary_10_36660_abc_20220606
crossref_primary_10_3390_ijms23052719
crossref_primary_10_1080_09637486_2020_1760218
crossref_primary_10_1016_j_eclinm_2024_102519
crossref_primary_10_1016_j_celrep_2023_112559
crossref_primary_10_14341_probl13078
crossref_primary_10_3390_cancers16081513
crossref_primary_10_3389_fnut_2021_756413
crossref_primary_10_1111_acel_13507
crossref_primary_10_1093_eurjpc_zwaa050
crossref_primary_10_1016_j_physbeh_2020_112905
crossref_primary_10_1249_JES_0000000000000207
crossref_primary_10_3390_nu12051416
crossref_primary_10_1001_jamanetworkopen_2023_3513
crossref_primary_10_1016_j_physbeh_2022_113890
crossref_primary_10_3390_metabo13040490
crossref_primary_10_1371_journal_pone_0231403
crossref_primary_10_1002_oby_23984
crossref_primary_10_3390_biomedicines9111651
crossref_primary_10_1177_08968608211047787
crossref_primary_10_1186_s12967_021_02817_2
crossref_primary_10_1093_nutrit_nuae062
crossref_primary_10_3390_nu13031042
crossref_primary_10_1016_j_it_2020_04_005
crossref_primary_10_3390_nu16173007
crossref_primary_10_1038_s41440_023_01493_7
crossref_primary_10_1016_j_celrep_2018_09_058
crossref_primary_10_1016_j_endmts_2024_100163
crossref_primary_10_1055_a_2069_8998
crossref_primary_10_1007_s11428_023_01040_5
crossref_primary_10_1002_jcp_30815
crossref_primary_10_3389_fnut_2021_669325
crossref_primary_10_3390_nu13124485
crossref_primary_10_1038_s44324_024_00025_2
crossref_primary_10_3390_ijms24076382
crossref_primary_10_1016_j_tma_2021_11_003
crossref_primary_10_1093_nutrit_nuae074
crossref_primary_10_5664_jcsm_10734
crossref_primary_10_1111_ijpo_12764
crossref_primary_10_1093_nutrit_nuae078
crossref_primary_10_1186_s13098_023_01037_6
crossref_primary_10_1016_j_cub_2020_10_092
crossref_primary_10_3390_nu12020505
crossref_primary_10_3389_fragi_2022_927630
crossref_primary_10_1089_dia_2024_2509
crossref_primary_10_3390_jcm13133893
crossref_primary_10_1002_oby_23965
crossref_primary_10_1055_a_1219_7355
crossref_primary_10_1016_j_clnesp_2025_03_006
crossref_primary_10_3390_nu15081978
crossref_primary_10_1093_nutrit_nuae044
crossref_primary_10_1038_s41598_022_13387_8
crossref_primary_10_1172_jci_insight_160257
crossref_primary_10_1016_j_jacc_2020_07_049
crossref_primary_10_1056_NEJMra1905136
crossref_primary_10_3390_nu17061022
crossref_primary_10_1161_CIRCRESAHA_122_320334
crossref_primary_10_1093_cvr_cvad035
crossref_primary_10_1002_advs_202204487
crossref_primary_10_3389_fnut_2023_1256101
crossref_primary_10_3390_nu15245058
crossref_primary_10_3389_fnut_2020_00116
crossref_primary_10_1136_bmjopen_2020_037166
crossref_primary_10_3390_ijms231810814
crossref_primary_10_1136_bmjopen_2020_044769
crossref_primary_10_1053_j_gastro_2020_01_050
crossref_primary_10_1186_s13098_024_01492_9
crossref_primary_10_1016_j_isci_2020_101161
crossref_primary_10_1007_s13679_025_00609_z
crossref_primary_10_5664_jcsm_10754
crossref_primary_10_1007_s13668_024_00532_0
crossref_primary_10_1210_clinem_dgaa028
crossref_primary_10_2217_epi_2020_0403
crossref_primary_10_3389_fcvm_2020_602088
crossref_primary_10_1007_s10555_022_10061_3
crossref_primary_10_1007_s10522_022_09994_7
crossref_primary_10_1093_ajcn_nqaa192
crossref_primary_10_1038_s41573_021_00198_1
crossref_primary_10_3390_nu12051267
crossref_primary_10_3390_nu12082185
crossref_primary_10_1055_a_1997_7789
crossref_primary_10_3390_nu13061977
crossref_primary_10_1093_jcag_gwae027
crossref_primary_10_1111_jne_12886
crossref_primary_10_1177_1178638820979029
crossref_primary_10_1152_ajprenal_00247_2023
crossref_primary_10_1016_j_cmet_2024_01_007
crossref_primary_10_2174_1573399817666210129102956
crossref_primary_10_1186_s12916_020_01716_5
crossref_primary_10_1017_S0007114521002944
crossref_primary_10_1177_15330338241233443
crossref_primary_10_1002_oby_22449
crossref_primary_10_1007_s13679_021_00424_2
crossref_primary_10_3389_fpubh_2022_1017254
crossref_primary_10_1007_s15006_020_0550_4
crossref_primary_10_1016_j_jagp_2019_02_010
crossref_primary_10_1038_s41467_019_10563_9
crossref_primary_10_3390_nu14010169
crossref_primary_10_1016_j_sleep_2020_11_031
crossref_primary_10_3390_nu13124407
crossref_primary_10_1111_cen_14607
crossref_primary_10_3390_nu17030529
crossref_primary_10_15252_emmm_202114418
crossref_primary_10_3390_nu14061275
crossref_primary_10_1016_j_bj_2024_100824
crossref_primary_10_3390_nu11102442
crossref_primary_10_1016_j_cmet_2020_09_012
crossref_primary_10_1016_j_jand_2020_10_001
crossref_primary_10_1007_s11428_022_00910_8
crossref_primary_10_1515_mr_2022_0021
crossref_primary_10_3390_nu16121802
crossref_primary_10_1007_s11154_023_09853_x
crossref_primary_10_2174_1573399817666210806114200
crossref_primary_10_1186_s12937_024_00939_z
crossref_primary_10_1016_j_cct_2022_106872
crossref_primary_10_1016_j_exger_2021_111617
crossref_primary_10_1055_a_0872_6365
crossref_primary_10_3177_jnsv_68_S2
crossref_primary_10_3390_nu16213700
crossref_primary_10_1016_j_nutres_2019_12_001
crossref_primary_10_2174_1573399817666210806102212
crossref_primary_10_3390_nu13113780
crossref_primary_10_1093_nutrit_nuae014
crossref_primary_10_1002_oby_23756
crossref_primary_10_1038_s41569_024_01061_7
crossref_primary_10_1155_2024_6623357
crossref_primary_10_1007_s11154_019_09524_w
crossref_primary_10_2337_dc19_1142
crossref_primary_10_1016_j_clnu_2021_07_030
crossref_primary_10_1097_GME_0000000000002518
crossref_primary_10_3390_nu11102437
crossref_primary_10_23736_S0026_4725_20_05253_6
crossref_primary_10_3390_nu12041029
crossref_primary_10_1016_j_ijcrp_2023_200209
crossref_primary_10_33590_emj_21_00148
crossref_primary_10_1007_s11428_020_00666_z
crossref_primary_10_3390_jcm12113699
crossref_primary_10_2174_1573399818666220318095320
crossref_primary_10_15384_kjhp_2019_19_4_171
crossref_primary_10_3390_nu13103379
crossref_primary_10_1016_j_cmet_2022_12_008
crossref_primary_10_3390_ijms22157797
crossref_primary_10_1007_s12016_025_09039_0
crossref_primary_10_1007_s11011_023_01288_2
crossref_primary_10_3389_fnut_2022_1007824
crossref_primary_10_3390_nu17030389
crossref_primary_10_3390_nu17030384
crossref_primary_10_1080_19490976_2023_2221450
crossref_primary_10_1093_nutrit_nuad132
crossref_primary_10_7759_cureus_30372
crossref_primary_10_3390_cells9071596
crossref_primary_10_1097_jnr_0000000000000469
crossref_primary_10_1016_j_nut_2022_111909
crossref_primary_10_3389_fendo_2021_723918
crossref_primary_10_1016_j_cmet_2023_06_008
crossref_primary_10_3390_nu14010139
crossref_primary_10_1002_oby_23577
crossref_primary_10_1002_oby_23579
crossref_primary_10_1152_ajpendo_00365_2019
crossref_primary_10_1186_s40001_023_01158_8
crossref_primary_10_1038_s41591_024_03375_y
crossref_primary_10_4103_jmms_jmms_24_24
crossref_primary_10_3389_fnut_2023_1307736
crossref_primary_10_3389_fmed_2023_1316284
crossref_primary_10_1097_MOL_0000000000000722
crossref_primary_10_1055_a_2185_7599
crossref_primary_10_1097_MOL_0000000000000961
crossref_primary_10_1016_j_physbeh_2021_113313
crossref_primary_10_1093_advances_nmaa168
crossref_primary_10_1016_j_tem_2019_03_001
crossref_primary_10_1002_oby_23564
crossref_primary_10_1016_j_mito_2020_03_009
crossref_primary_10_1016_j_xcrm_2022_100665
crossref_primary_10_1111_1753_0407_13288
crossref_primary_10_2337_dc24_0564
crossref_primary_10_1038_s42255_021_00466_9
crossref_primary_10_1186_s12986_022_00704_1
crossref_primary_10_1002_ctm2_195
crossref_primary_10_1186_s40795_020_00375_2
crossref_primary_10_1093_ajcn_nqab433
crossref_primary_10_1038_s41467_020_18412_w
crossref_primary_10_1186_s12916_024_03716_1
crossref_primary_10_1007_s40279_020_01295_8
crossref_primary_10_1038_s41569_023_00931_w
crossref_primary_10_4103_ijd_ijd_155_21
crossref_primary_10_1097_MCO_0000000000000675
crossref_primary_10_4093_dmj_2020_0250
crossref_primary_10_1016_j_tjnut_2024_07_021
crossref_primary_10_3390_jcm11020296
crossref_primary_10_1038_s41574_018_0122_1
crossref_primary_10_1155_2020_6615295
crossref_primary_10_1016_j_heliyon_2023_e22814
crossref_primary_10_1007_s11886_021_01515_1
crossref_primary_10_1080_21623945_2018_1516099
crossref_primary_10_1016_j_tjnut_2023_10_023
crossref_primary_10_2147_DMSO_S376409
crossref_primary_10_3390_nu17020300
crossref_primary_10_1016_j_cbpc_2024_110038
crossref_primary_10_1080_13813455_2023_2268301
crossref_primary_10_1038_s41537_022_00276_2
crossref_primary_10_14336_AD_2021_1018
crossref_primary_10_1111_febs_15482
crossref_primary_10_3389_fimmu_2023_1167562
crossref_primary_10_1001_jamainternmed_2020_4153
crossref_primary_10_1152_japplphysiol_00521_2018
crossref_primary_10_3390_genes15111376
crossref_primary_10_1538_expanim_20_0112
crossref_primary_10_1016_j_heliyon_2023_e17233
crossref_primary_10_1007_s11357_022_00668_3
crossref_primary_10_1016_j_mib_2023_102287
crossref_primary_10_2174_1570161120666220610151915
crossref_primary_10_1186_s13098_023_01190_y
crossref_primary_10_1016_j_arr_2022_101596
crossref_primary_10_1097_MCO_0000000000000694
crossref_primary_10_3390_nu13020346
crossref_primary_10_1093_lifemeta_loaf002
crossref_primary_10_20960_nh_04790
crossref_primary_10_1016_j_nut_2019_07_001
crossref_primary_10_1002_mco2_70030
crossref_primary_10_1016_j_crphys_2021_09_003
crossref_primary_10_18502_sjms_v15i5_7147
crossref_primary_10_3390_nu17020322
crossref_primary_10_1016_j_disamonth_2024_101778
crossref_primary_10_3390_nu16020316
crossref_primary_10_3390_nu16132075
crossref_primary_10_3390_life14070844
crossref_primary_10_1016_j_neo_2023_100943
crossref_primary_10_3390_nu16030357
crossref_primary_10_3390_nu14112283
crossref_primary_10_2139_ssrn_4096552
crossref_primary_10_1016_j_nut_2025_112691
crossref_primary_10_1146_annurev_nutr_122319_034601
crossref_primary_10_3390_nu12113396
crossref_primary_10_1038_s41574_024_01021_8
crossref_primary_10_1016_j_tem_2020_03_002
crossref_primary_10_1113_JP281101
crossref_primary_10_1186_s12937_024_01046_9
crossref_primary_10_3389_fnut_2023_1048230
crossref_primary_10_2174_1573399816666201026161009
crossref_primary_10_1152_ajprenal_00287_2021
crossref_primary_10_1016_j_archger_2020_104188
crossref_primary_10_3390_nu14102001
crossref_primary_10_1136_bmjnph_2022_000462
crossref_primary_10_1038_s41467_021_22922_6
crossref_primary_10_1007_s11892_024_01550_6
crossref_primary_10_1097_NT_0000000000000443
crossref_primary_10_1002_jcp_70020
crossref_primary_10_4103_ijar_ijar_24_24
crossref_primary_10_4103_jrms_jrms_280_24
Cites_doi 10.1093/ajcn/85.4.981
10.1097/00004872-199816121-00033
10.1016/S0008-6363(95)00218-9
10.1016/j.celrep.2016.05.009
10.1016/j.cmet.2012.04.019
10.1017/S0007114515005346
10.1152/ajprenal.00103.2016
10.1055/s-0031-1278267
10.2337/diab.5.6.437
10.1177/0260106017753487
10.1126/scitranslmed.aai8700
10.1016/j.diabres.2016.10.010
10.1038/ijo.2010.171
10.1038/oby.2005.61
10.2337/diacare.21.1.2
10.1073/pnas.1418955112
10.1111/j.1582-4934.2010.01160.x
10.1007/s00125-004-1461-0
10.1155/2012/962012
10.1073/pnas.0808180106
10.1002/oby.20909
10.1186/1475-2891-12-146
10.1016/j.metabol.2012.07.002
10.1080/17461391.2016.1223173
10.1093/ajcn/81.1.69
10.1007/s11605-009-1060-y
10.1017/S0007114513000792
10.1001/jamainternmed.2017.0936
10.1016/j.metabol.2016.09.006
10.1016/j.metabol.2017.11.017
10.1038/ijo.2012.229
10.1016/j.cmet.2014.11.008
10.3233/NHA-1611
10.3945/ajcn.2008.27327
10.1016/j.physbeh.2016.08.027
10.3945/ajcn.114.085191
10.1016/j.metabol.2007.07.018
10.1152/ajpendo.90613.2008
10.1152/ajpendo.00397.2012
10.1038/jcbfm.2014.36
10.1530/JOE-16-0402
10.1042/CS20130071
10.1002/oby.21189
10.1016/j.clnu.2016.02.007
10.3109/07420528.2011.622599
10.1093/jn/127.1.75
10.1161/01.HYP.28.5.863
10.1016/j.nutres.2016.02.005
10.1017/S0029665116002986
10.2337/dc09-2107
10.1371/journal.pone.0004377
10.1186/s12967-016-1044-0
10.1016/j.cmet.2015.09.005
10.1089/rej.2014.1624
10.1016/j.cmet.2014.11.001
10.1007/s00125-015-3524-9
10.1016/j.jnutbio.2016.10.003
10.1016/j.arr.2016.10.005
10.1152/japplphysiol.00683.2005
10.1016/j.cmet.2015.05.012
10.1146/annurev-nutr-071816-064634
10.1152/jappl.1980.48.1.109
10.1017/S0007114516003524
10.1093/jn/107.2.176
10.1002/oby.20460
10.1016/j.physbeh.2017.02.032
10.1194/jlr.P020867
10.1186/s13058-016-0714-4
10.3945/ajcn.2009.28380
10.1016/j.freeradbiomed.2006.12.005
10.1002/oby.21581
10.1096/fj.12-208868
10.1210/jcem.87.7.8695
10.1073/pnas.1035720100
10.2337/db12-1762
10.1002/oby.20353
10.1186/2251-6581-12-4
10.2337/dc12-2316
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2018.04.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 1221.e3
ExternalDocumentID PMC5990470
29754952
10_1016_j_cmet_2018_04_010
S1550413118302535
Genre Controlled Clinical Trial
Journal Article
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001417
– fundername: NIDDK NIH HHS
  grantid: P30 DK072476
– fundername: NICHD NIH HHS
  grantid: F31 HD084199
– fundername: NIDDK NIH HHS
  grantid: P30 DK079626
– fundername: NIGMS NIH HHS
  grantid: U54 GM104940
– fundername: NCATS NIH HHS
  grantid: KL2 TR001419
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c455t-4b9af8a0c0b4119632151a3aa2a962139ede55243b5d0d0b37c40101f09f0edf3
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 13:41:48 EDT 2025
Fri Jul 11 00:14:23 EDT 2025
Mon Jul 21 05:58:21 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Tue Jul 01 03:58:17 EDT 2025
Fri Feb 23 02:50:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords insulin sensitivity
blood pressure
intermittent fasting
prediabetes
early time-restricted feeding
eTRF
meal timing
circadian rhythms
circadian system
insulin resistance
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-4b9af8a0c0b4119632151a3aa2a962139ede55243b5d0d0b37c40101f09f0edf3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Lead Contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413118302535
PMID 29754952
PQID 2038702316
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5990470
proquest_miscellaneous_2038702316
pubmed_primary_29754952
crossref_citationtrail_10_1016_j_cmet_2018_04_010
crossref_primary_10_1016_j_cmet_2018_04_010
elsevier_sciencedirect_doi_10_1016_j_cmet_2018_04_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-05
PublicationDateYYYYMMDD 2018-06-05
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Brandhorst, Choi, Wei, Cheng, Sedrakyan, Navarrete, Dubeau, Yap, Park, Vinciguerra (bib10) 2015; 22
Antoni, Johnston, Collins, Robertson (bib3) 2017; 76
Philippens, von Mayersbach, Scheving (bib61) 1977; 107
Hoddy, Kroeger, Trepanowski, Barnosky, Bhutani, Varady (bib34) 2014; 22
Belkacemi, Selselet-Attou, Hupkens, Nguidjoe, Louchami, Sener, Malaisse (bib6) 2012; 2012
Persson (bib59) 2007; 16
Hatori, Vollmers, Zarrinpar, DiTacchio, Bushong, Gill, Leblanc, Chaix, Joens, Fitzpatrick (bib30) 2012; 15
Trepanowski, Kroeger, Barnosky, Klempel, Bhutani, Hoddy, Rood, Ravussin, Varady (bib74) 2017
Jakubowicz, Barnea, Wainstein, Froy (bib39) 2013; 21
Morris, Garcia, Myers, Yang, Trienekens, Scheer (bib52) 2015; 23
Kroeger, Trepanowski, Klempel, Barnosky, Bhutani, Gabel, Varady (bib46) 2018; 24
Anson, Guo, de Cabo, Iyun, Rios, Hagepanos, Ingram, Lane, Mattson (bib1) 2003; 100
Mattson, Longo, Harvie (bib50) 2017; 39
Scheer, Hilton, Mantzoros, Shea (bib66) 2009; 106
Harvie, Pegington, Mattson, Frystyk, Dillon, Evans, Cuzick, Jebb, Martin, Cutler (bib27) 2011; 35
Peterson, Apolzan, Wright, Martin (bib60) 2016; 116
Duncan, Smith, Narbaiza, Mueez, Bustle, Qureshi, Fieseler, Legan (bib20) 2016; 167
Kant, Graubard (bib43) 2014; 100
Garaulet, Gómez-Abellán, Alburquerque-Béjar, Lee, Ordovás, Scheer (bib22) 2013; 37
Harvie, Howell (bib26) 2017; 7
Johnston, Speed, Jin, Pollock (bib42) 2016; 311
Heilbronn, Civitarese, Bogacka, Smith, Hulver, Ravussin (bib31) 2005; 13
Bhutani, Klempel, Kroeger, Trepanowski, Varady (bib8) 2013; 21
Tinsley, Forsse, Butler, Paoli, Bane, La Bounty, Morgan, Grandjean (bib73) 2017; 17
Gill, Panda (bib24) 2015; 22
Chung, Chou, Sears, Patterson, Webster, Ellies (bib18) 2016; 65
Keim, Van Loan, Horn, Barbieri, Mayclin (bib44) 1997; 127
Heilbronn, Smith, Martin, Anton, Ravussin (bib32) 2005; 81
Kudo, Akiyama, Kuriyama, Sudo, Moriya, Shibata (bib47) 2004; 47
Stote, Baer, Spears, Paul, Harris, Rumpler, Strycula, Najjar, Ferrucci, Ingram (bib71) 2007; 85
Wei, Brandhorst, Shelehchi, Mirzaei, Cheng, Budniak, Groshen, Mack, Guen, Di Biase (bib79) 2017; 9
Zarrinpar, Chaix, Yooseph, Panda (bib84) 2014; 20
Salgin, Marcovecchio, Humphreys, Hill, Chassin, Lunn, Hovorka, Dunger (bib65) 2009; 296
Morris, Yang, Garcia, Myers, Bozzi, Wang, Buxton, Shea, Scheer (bib53) 2015; 112
Park, Yoo, Hyun, Kang (bib55) 2017; 40
Sundaram, Yan (bib72) 2016; 36
Hoddy, Bhutani, Phillips, Varady (bib35) 2016; 4
Redman, Heilbronn, Martin, de Jonge, Williamson, Delany, and, Ravussin (bib63) 2009; 4
Campos, Rabl, Peeva, Ciovica, Rao, Schwarz, Havel, Schambelan, Mulligan (bib12) 2010; 14
Trepanowski, Kroeger, Barnosky, Klempel, Bhutani, Hoddy, Gabel, Freels, Rigdon, Rood (bib75) 2017; 177
Carter, Clifton, Keogh (bib14) 2016; 122
Soeters, Soeters, Schooneman, Houten, Romijn (bib70) 2012; 303
Wegman, Guo, Bennion, Shankar, Chrzanowski, Goldberg, Xu, Williams, Lu, Hsu (bib78) 2015; 18
Antoni, Johnston, Collins, Robertson (bib2) 2016; 115
Belkacemi, Selselet-Attou, Louchami, Sener, Malaisse (bib4) 2010; 26
Sherman, Frumin, Gutman, Chapnik, Lorentz, Meylan, le Coutre, Froy (bib67) 2011; 15
Patterson, Sears (bib57) 2017; 37
Lingvay, Guth, Islam, Livingston (bib48) 2013; 36
Halberg, Henriksen, Söderhamn, Stallknecht, Ploug, Schjerling, Dela (bib25) 2005; 99
Wu, Sun, ZhuGe, Guo, Zhao, Tang, Chen, Chen, Kato, Fu (bib83) 2011; 28
Wilkinson, Fuchs, Jansen, Spratt, Murray, Cockcroft, Webb (bib80) 1998; 16
Conn, Fajans, Seltzer (bib19) 1956; 5
Bhanot, McNeill (bib7) 1996; 31
Johnson, Summer, Cutler, Martin, Hyun, Dixit, Pearson, Nassar, Telljohann, Maudsley (bib41) 2007; 42
Poggiogalle, Jamshed, Peterson (bib62) 2018
Eshghinia, Mohammadzadeh (bib21) 2013; 12
García-Luna, Soberanes-Chávez, de Gortari (bib23) 2017; 232
Ruiz-Lozano, Vidal, de Hollanda, Scheer, Garaulet, Izquierdo-Pulido (bib64) 2016; 35
Woodie, Luo, Wayne, Graff, Ahmed, O’Neill, Greene (bib82) 2017
Soeters, Lammers, Dubbelhuis, Ackermans, Jonkers-Schuitema, Fliers, Sauerwein, Aerts, Serlie (bib69) 2009; 90
Manzanero, Erion, Santro, Steyn, Chen, Arumugam, Stranahan (bib49) 2014; 34
Catenacci, Pan, Ostendorf, Brannon, Gozansky, Mattson, Martin, MacLean, Melanson, Troy Donahoo (bib15) 2016; 24
Harvie, Sims, Pegington, Spence, Mitchell, Vaughan, Allwood, Xu, Rattray, Goodacre (bib29) 2016; 18
Biston, Van Cauter, Ofek, Linkowski, Polonsky, Degaute (bib9) 1996; 28
Harvie, Wright, Pegington, McMullan, Mitchell, Martin, Cutler, Evans, Whiteside, Maudsley (bib28) 2013; 110
Sherman, Genzer, Cohen, Chapnik, Madar, Froy (bib68) 2012; 26
Isbell, Tamboli, Hansen, Saliba, Dunn, Phillips, Marks-Shulman, Abumrad (bib36) 2010; 33
Varady, Bhutani, Church, Klempel (bib76) 2009; 90
Chaix, Zarrinpar, Miu, Panda (bib16) 2014; 20
Moro, Tinsley, Bianco, Marcolin, Pacelli, Battaglia, Palma, Gentil, Neri, Paoli (bib51) 2016; 14
Klempel, Kroeger, Varady (bib45) 2013; 62
Jakubowicz, Barnea, Wainstein, Froy (bib38) 2013; 125
Varady, Bhutani, Klempel, Kroeger, Trepanowski, Haus, Hoddy, Calvo (bib77) 2013; 12
Jackness, Karmally, Febres, Conwell, Ahmed, Bessler, McMahon, Korner (bib37) 2013; 62
Carlson, Martin, Stote, Golden, Maudsley, Najjar, Ferrucci, Ingram, Longo, Rumpler (bib13) 2007; 56
Jakubowicz, Wainstein, Ahrén, Bar-Dayan, Landau, Rabinovitz, Froy (bib40) 2015; 58
Heran, Wong, Heran, Wright (bib33) 2008
Williams, Mullen, Kelley, Wing (bib81) 1998; 21
Belkacemi, Selselet-Attou, Bulur, Louchami, Sener, Malaisse (bib5) 2011; 27
Olsen, Choi, Kulseng, Zhao, Chen (bib54) 2017; 173
Patel, Coppack, Goldstein, Miles, Eisenhofer (bib56) 2002; 87
Pequignot, Peyrin, Pérès (bib58) 1980; 48
Choi, Piccio, Childress, Bollman, Ghosh, Brandhorst, Suarez, Michalsen, Cross, Morgan (bib17) 2016; 15
Browning, Baxter, Satapati, Burgess (bib11) 2012; 53
García-Luna (10.1016/j.cmet.2018.04.010_bib23) 2017; 232
Heilbronn (10.1016/j.cmet.2018.04.010_bib32) 2005; 81
Bhanot (10.1016/j.cmet.2018.04.010_bib7) 1996; 31
Heran (10.1016/j.cmet.2018.04.010_bib33) 2008
Johnston (10.1016/j.cmet.2018.04.010_bib42) 2016; 311
Choi (10.1016/j.cmet.2018.04.010_bib17) 2016; 15
Persson (10.1016/j.cmet.2018.04.010_bib59) 2007; 16
Harvie (10.1016/j.cmet.2018.04.010_bib27) 2011; 35
Morris (10.1016/j.cmet.2018.04.010_bib52) 2015; 23
Stote (10.1016/j.cmet.2018.04.010_bib71) 2007; 85
Ruiz-Lozano (10.1016/j.cmet.2018.04.010_bib64) 2016; 35
Morris (10.1016/j.cmet.2018.04.010_bib53) 2015; 112
Wegman (10.1016/j.cmet.2018.04.010_bib78) 2015; 18
Conn (10.1016/j.cmet.2018.04.010_bib19) 1956; 5
Wei (10.1016/j.cmet.2018.04.010_bib79) 2017; 9
Belkacemi (10.1016/j.cmet.2018.04.010_bib4) 2010; 26
Varady (10.1016/j.cmet.2018.04.010_bib77) 2013; 12
Halberg (10.1016/j.cmet.2018.04.010_bib25) 2005; 99
Anson (10.1016/j.cmet.2018.04.010_bib1) 2003; 100
Belkacemi (10.1016/j.cmet.2018.04.010_bib5) 2011; 27
Jakubowicz (10.1016/j.cmet.2018.04.010_bib38) 2013; 125
Kudo (10.1016/j.cmet.2018.04.010_bib47) 2004; 47
Antoni (10.1016/j.cmet.2018.04.010_bib3) 2017; 76
Biston (10.1016/j.cmet.2018.04.010_bib9) 1996; 28
Wu (10.1016/j.cmet.2018.04.010_bib83) 2011; 28
Patterson (10.1016/j.cmet.2018.04.010_bib57) 2017; 37
Klempel (10.1016/j.cmet.2018.04.010_bib45) 2013; 62
Tinsley (10.1016/j.cmet.2018.04.010_bib73) 2017; 17
Varady (10.1016/j.cmet.2018.04.010_bib76) 2009; 90
Harvie (10.1016/j.cmet.2018.04.010_bib29) 2016; 18
Sherman (10.1016/j.cmet.2018.04.010_bib67) 2011; 15
Soeters (10.1016/j.cmet.2018.04.010_bib69) 2009; 90
Chung (10.1016/j.cmet.2018.04.010_bib18) 2016; 65
Peterson (10.1016/j.cmet.2018.04.010_bib60) 2016; 116
Scheer (10.1016/j.cmet.2018.04.010_bib66) 2009; 106
Trepanowski (10.1016/j.cmet.2018.04.010_bib75) 2017; 177
Woodie (10.1016/j.cmet.2018.04.010_bib82) 2017
Gill (10.1016/j.cmet.2018.04.010_bib24) 2015; 22
Jakubowicz (10.1016/j.cmet.2018.04.010_bib39) 2013; 21
Harvie (10.1016/j.cmet.2018.04.010_bib28) 2013; 110
Redman (10.1016/j.cmet.2018.04.010_bib63) 2009; 4
Moro (10.1016/j.cmet.2018.04.010_bib51) 2016; 14
Soeters (10.1016/j.cmet.2018.04.010_bib70) 2012; 303
Garaulet (10.1016/j.cmet.2018.04.010_bib22) 2013; 37
Hatori (10.1016/j.cmet.2018.04.010_bib30) 2012; 15
Carlson (10.1016/j.cmet.2018.04.010_bib13) 2007; 56
Brandhorst (10.1016/j.cmet.2018.04.010_bib10) 2015; 22
Manzanero (10.1016/j.cmet.2018.04.010_bib49) 2014; 34
Williams (10.1016/j.cmet.2018.04.010_bib81) 1998; 21
Salgin (10.1016/j.cmet.2018.04.010_bib65) 2009; 296
Kroeger (10.1016/j.cmet.2018.04.010_bib46) 2018; 24
Lingvay (10.1016/j.cmet.2018.04.010_bib48) 2013; 36
Chaix (10.1016/j.cmet.2018.04.010_bib16) 2014; 20
Olsen (10.1016/j.cmet.2018.04.010_bib54) 2017; 173
Bhutani (10.1016/j.cmet.2018.04.010_bib8) 2013; 21
Hoddy (10.1016/j.cmet.2018.04.010_bib35) 2016; 4
Heilbronn (10.1016/j.cmet.2018.04.010_bib31) 2005; 13
Eshghinia (10.1016/j.cmet.2018.04.010_bib21) 2013; 12
Kant (10.1016/j.cmet.2018.04.010_bib43) 2014; 100
Antoni (10.1016/j.cmet.2018.04.010_bib2) 2016; 115
Poggiogalle (10.1016/j.cmet.2018.04.010_bib62) 2018
Sundaram (10.1016/j.cmet.2018.04.010_bib72) 2016; 36
Pequignot (10.1016/j.cmet.2018.04.010_bib58) 1980; 48
Hoddy (10.1016/j.cmet.2018.04.010_bib34) 2014; 22
Jakubowicz (10.1016/j.cmet.2018.04.010_bib40) 2015; 58
Sherman (10.1016/j.cmet.2018.04.010_bib68) 2012; 26
Catenacci (10.1016/j.cmet.2018.04.010_bib15) 2016; 24
Harvie (10.1016/j.cmet.2018.04.010_bib26) 2017; 7
Isbell (10.1016/j.cmet.2018.04.010_bib36) 2010; 33
Belkacemi (10.1016/j.cmet.2018.04.010_bib6) 2012; 2012
Keim (10.1016/j.cmet.2018.04.010_bib44) 1997; 127
Philippens (10.1016/j.cmet.2018.04.010_bib61) 1977; 107
Carter (10.1016/j.cmet.2018.04.010_bib14) 2016; 122
Trepanowski (10.1016/j.cmet.2018.04.010_bib74) 2017
Browning (10.1016/j.cmet.2018.04.010_bib11) 2012; 53
Jackness (10.1016/j.cmet.2018.04.010_bib37) 2013; 62
Mattson (10.1016/j.cmet.2018.04.010_bib50) 2017; 39
Park (10.1016/j.cmet.2018.04.010_bib55) 2017; 40
Zarrinpar (10.1016/j.cmet.2018.04.010_bib84) 2014; 20
Patel (10.1016/j.cmet.2018.04.010_bib56) 2002; 87
Johnson (10.1016/j.cmet.2018.04.010_bib41) 2007; 42
Wilkinson (10.1016/j.cmet.2018.04.010_bib80) 1998; 16
Campos (10.1016/j.cmet.2018.04.010_bib12) 2010; 14
Duncan (10.1016/j.cmet.2018.04.010_bib20) 2016; 167
29874561 - Cell Metab. 2018 Jun 5;27(6):1159-1160
References_xml – volume: 115
  start-page: 951
  year: 2016
  end-page: 959
  ident: bib2
  article-title: Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants
  publication-title: Br. J. Nutr.
– volume: 112
  start-page: E2225
  year: 2015
  end-page: E2234
  ident: bib53
  article-title: Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 437
  year: 1956
  end-page: 442
  ident: bib19
  article-title: Spontaneous hypoglycemia as an early manifestation of diabetes mellitus
  publication-title: Diabetes
– volume: 81
  start-page: 69
  year: 2005
  end-page: 73
  ident: bib32
  article-title: Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism
  publication-title: Am. J. Clin. Nutr.
– volume: 15
  start-page: 848
  year: 2012
  end-page: 860
  ident: bib30
  article-title: Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
  publication-title: Cell Metab.
– volume: 296
  start-page: E454
  year: 2009
  end-page: E461
  ident: bib65
  article-title: Effects of prolonged fasting and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 303
  start-page: E1397
  year: 2012
  end-page: E1407
  ident: bib70
  article-title: Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 21
  start-page: 1370
  year: 2013
  end-page: 1379
  ident: bib8
  article-title: Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans
  publication-title: Obesity (Silver Spring)
– volume: 107
  start-page: 176
  year: 1977
  end-page: 193
  ident: bib61
  article-title: Effects of the scheduling of meal-feeding at different phases of the circadian system in rats
  publication-title: J. Nutr.
– volume: 21
  start-page: 2504
  year: 2013
  end-page: 2512
  ident: bib39
  article-title: High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women
  publication-title: Obesity (Silver Spring)
– volume: 48
  start-page: 109
  year: 1980
  end-page: 113
  ident: bib58
  article-title: Catecholamine-fuel interrelationships during exercise in fasting men
  publication-title: J. Appl. Physiol.
– volume: 28
  start-page: 890
  year: 2011
  end-page: 903
  ident: bib83
  article-title: Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology
  publication-title: Chronobiol. Int.
– volume: 177
  start-page: 930
  year: 2017
  end-page: 938
  ident: bib75
  article-title: Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial
  publication-title: JAMA Intern. Med.
– volume: 85
  start-page: 981
  year: 2007
  end-page: 988
  ident: bib71
  article-title: A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults
  publication-title: Am. J. Clin. Nutr.
– volume: 21
  start-page: 2
  year: 1998
  end-page: 8
  ident: bib81
  article-title: The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes
  publication-title: Diabetes Care
– year: 2017
  ident: bib82
  article-title: Restricted feeding for 9h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice
  publication-title: Metabolism
– volume: 13
  start-page: 574
  year: 2005
  end-page: 581
  ident: bib31
  article-title: Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting
  publication-title: Obes. Res.
– volume: 36
  start-page: 2741
  year: 2013
  end-page: 2747
  ident: bib48
  article-title: Rapid improvement in diabetes after gastric bypass surgery: is it the diet or surgery?
  publication-title: Diabetes Care
– volume: 47
  start-page: 1425
  year: 2004
  end-page: 1436
  ident: bib47
  article-title: Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver
  publication-title: Diabetologia
– volume: 31
  start-page: 212
  year: 1996
  end-page: 221
  ident: bib7
  article-title: Insulin and hypertension: a causal relationship?
  publication-title: Cardiovasc. Res.
– volume: 56
  start-page: 1729
  year: 2007
  end-page: 1734
  ident: bib13
  article-title: Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women
  publication-title: Metabolism
– volume: 37
  start-page: 371
  year: 2017
  end-page: 393
  ident: bib57
  article-title: Metabolic effects of intermittent fasting
  publication-title: Annu. Rev. Nutr.
– volume: 4
  start-page: e4377
  year: 2009
  ident: bib63
  article-title: Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss
  publication-title: PLoS One
– volume: 311
  start-page: F991
  year: 2016
  end-page: F998
  ident: bib42
  article-title: Loss of endothelin B receptor function impairs sodium excretion in a time- and sex-dependent manner
  publication-title: Am. J. Physiol. Renal Physiol.
– volume: 99
  start-page: 2128
  year: 2005
  end-page: 2136
  ident: bib25
  article-title: Effect of intermittent fasting and refeeding on insulin action in healthy men
  publication-title: J. Appl. Physiol.
– volume: 40
  start-page: 14
  year: 2017
  end-page: 22
  ident: bib55
  article-title: Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets
  publication-title: J. Nutr. Biochem.
– volume: 167
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib20
  article-title: Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet
  publication-title: Physiol. Behav.
– volume: 100
  start-page: 938
  year: 2014
  end-page: 947
  ident: bib43
  article-title: Association of self-reported sleep duration with eating behaviors of American adults: NHANES 2005-2010
  publication-title: Am. J. Clin. Nutr.
– volume: 20
  start-page: 991
  year: 2014
  end-page: 1005
  ident: bib16
  article-title: Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges
  publication-title: Cell Metab.
– volume: 26
  start-page: 759
  year: 2010
  end-page: 765
  ident: bib4
  article-title: Intermittent fasting modulation of the diabetic syndrome in sand rats. II. In vivo investigations
  publication-title: Int. J. Mol. Med.
– volume: 22
  start-page: 789
  year: 2015
  end-page: 798
  ident: bib24
  article-title: A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits
  publication-title: Cell Metab.
– volume: 9
  start-page: 9
  year: 2017
  ident: bib79
  article-title: Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease
  publication-title: Sci. Transl. Med.
– volume: 62
  start-page: 3027
  year: 2013
  end-page: 3032
  ident: bib37
  article-title: Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell Function in type 2 diabetic patients
  publication-title: Diabetes
– volume: 90
  start-page: 1244
  year: 2009
  end-page: 1251
  ident: bib69
  article-title: Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism
  publication-title: Am. J. Clin. Nutr.
– volume: 173
  start-page: 298
  year: 2017
  end-page: 304
  ident: bib54
  article-title: Time-restricted feeding on weekdays restricts weight gain: a study using rat models of high-fat diet-induced obesity
  publication-title: Physiol. Behav.
– volume: 2012
  start-page: 962012
  year: 2012
  ident: bib6
  article-title: Intermittent fasting modulation of the diabetic syndrome in streptozotocin-injected rats
  publication-title: Int. J. Endocrinol.
– volume: 125
  start-page: 423
  year: 2013
  end-page: 432
  ident: bib38
  article-title: Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome
  publication-title: Clin. Sci.
– volume: 58
  start-page: 912
  year: 2015
  end-page: 919
  ident: bib40
  article-title: High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial
  publication-title: Diabetologia
– volume: 23
  start-page: 2053
  year: 2015
  end-page: 2058
  ident: bib52
  article-title: The human circadian system has a dominating role in causing the morning/evening difference in diet-induced thermogenesis
  publication-title: Obesity (Silver Spring)
– volume: 28
  start-page: 863
  year: 1996
  end-page: 871
  ident: bib9
  article-title: Diurnal variations in cardiovascular function and glucose regulation in normotensive humans
  publication-title: Hypertension
– volume: 36
  start-page: 603
  year: 2016
  end-page: 611
  ident: bib72
  article-title: Time-restricted feeding reduces adiposity in mice fed a high-fat diet
  publication-title: Nutr. Res.
– volume: 37
  start-page: 604
  year: 2013
  end-page: 611
  ident: bib22
  article-title: Timing of food intake predicts weight loss effectiveness
  publication-title: Int. J. Obes.
– volume: 35
  start-page: 1308
  year: 2016
  end-page: 1314
  ident: bib64
  article-title: Timing of food intake is associated with weight loss evolution in severe obese patients after bariatric surgery
  publication-title: Clin. Nutr.
– volume: 26
  start-page: 3493
  year: 2012
  end-page: 3502
  ident: bib68
  article-title: Timed high-fat diet resets circadian metabolism and prevents obesity
  publication-title: FASEB J.
– volume: 87
  start-page: 3373
  year: 2002
  end-page: 3377
  ident: bib56
  article-title: Norepinephrine spillover from human adipose tissue before and after a 72-hour fast
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 17
  start-page: 200
  year: 2017
  end-page: 207
  ident: bib73
  article-title: Time-restricted feeding in young men performing resistance training: a randomized controlled trial
  publication-title: Eur. J. Sport Sci.
– volume: 116
  start-page: 1646
  year: 2016
  end-page: 1655
  ident: bib60
  article-title: Video chat technology to remotely quantify dietary, supplement and medication adherence in clinical trials
  publication-title: Br. J. Nutr.
– volume: 110
  start-page: 1534
  year: 2013
  end-page: 1547
  ident: bib28
  article-title: The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women
  publication-title: Br. J. Nutr.
– volume: 18
  start-page: 57
  year: 2016
  ident: bib29
  article-title: Intermittent energy restriction induces changes in breast gene expression and systemic metabolism
  publication-title: Breast Cancer Res.
– volume: 12
  start-page: 146
  year: 2013
  ident: bib77
  article-title: Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial
  publication-title: Nutr. J.
– volume: 100
  start-page: 6216
  year: 2003
  end-page: 6220
  ident: bib1
  article-title: Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 62
  start-page: 137
  year: 2013
  end-page: 143
  ident: bib45
  article-title: Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet
  publication-title: Metabolism
– start-page: CD003823
  year: 2008
  ident: bib33
  article-title: Blood pressure lowering efficacy of angiotensin converting enzyme (ACE) inhibitors for primary hypertension
  publication-title: Cochrane Database Syst. Rev.
– volume: 127
  start-page: 75
  year: 1997
  end-page: 82
  ident: bib44
  article-title: Weight loss is greater with consumption of large morning meals and fat-free mass is preserved with large evening meals in women on a controlled weight reduction regimen
  publication-title: J. Nutr.
– volume: 24
  start-page: 5
  year: 2018
  end-page: 10
  ident: bib46
  article-title: Eating behavior traits of successful weight losers during 12 months of alternate-day fasting: an exploratory analysis of a randomized controlled trial
  publication-title: Nutr. Health
– volume: 65
  start-page: 1743
  year: 2016
  end-page: 1754
  ident: bib18
  article-title: Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity
  publication-title: Metabolism
– volume: 122
  start-page: 106
  year: 2016
  end-page: 112
  ident: bib14
  article-title: The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial
  publication-title: Diabetes Res. Clin. Pract.
– volume: 20
  start-page: 1006
  year: 2014
  end-page: 1017
  ident: bib84
  article-title: Diet and feeding pattern affect the diurnal dynamics of the gut microbiome
  publication-title: Cell Metab.
– volume: 76
  start-page: 361
  year: 2017
  end-page: 368
  ident: bib3
  article-title: Effects of intermittent fasting on glucose and lipid metabolism
  publication-title: Proc. Nutr. Soc.
– volume: 35
  start-page: 714
  year: 2011
  end-page: 727
  ident: bib27
  article-title: The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women
  publication-title: Int. J. Obes.
– volume: 22
  start-page: 2524
  year: 2014
  end-page: 2531
  ident: bib34
  article-title: Meal timing during alternate day fasting: Impact on body weight and cardiovascular disease risk in obese adults
  publication-title: Obesity (Silver Spring)
– year: 2018
  ident: bib62
  article-title: Circadian regulation of glucose, lipid, and energy metabolism in humans
  publication-title: Metabolism
– volume: 18
  start-page: 162
  year: 2015
  end-page: 172
  ident: bib78
  article-title: Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism
  publication-title: Rejuvenation Res.
– volume: 42
  start-page: 665
  year: 2007
  end-page: 674
  ident: bib41
  article-title: Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma
  publication-title: Free Radic. Biol. Med.
– volume: 232
  start-page: 15
  year: 2017
  end-page: 28
  ident: bib23
  article-title: Prepuberal light phase feeding induces neuroendocrine alterations in adult rats
  publication-title: J. Endocrinol.
– volume: 27
  start-page: 95
  year: 2011
  end-page: 102
  ident: bib5
  article-title: Intermittent fasting modulation of the diabetic syndrome in sand rats. III. Post-mortem investigations
  publication-title: Int. J. Mol. Med.
– volume: 106
  start-page: 4453
  year: 2009
  end-page: 4458
  ident: bib66
  article-title: Adverse metabolic and cardiovascular consequences of circadian misalignment
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 86
  year: 2015
  end-page: 99
  ident: bib10
  article-title: A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan
  publication-title: Cell Metab.
– volume: 16
  start-page: 135
  year: 2007
  end-page: 138
  ident: bib59
  article-title: Blood pressure reactions to insulin treatment in patients with type 2 diabetes
  publication-title: Int. J. Angiol.
– volume: 15
  start-page: 2136
  year: 2016
  end-page: 2146
  ident: bib17
  article-title: A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms
  publication-title: Cell Rep.
– volume: 24
  start-page: 1874
  year: 2016
  end-page: 1883
  ident: bib15
  article-title: A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity
  publication-title: Obesity (Silver Spring)
– volume: 33
  start-page: 1438
  year: 2010
  end-page: 1442
  ident: bib36
  article-title: The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery
  publication-title: Diabetes Care
– volume: 39
  start-page: 46
  year: 2017
  end-page: 58
  ident: bib50
  article-title: Impact of intermittent fasting on health and disease processes
  publication-title: Ageing Res. Rev.
– volume: 12
  start-page: 4
  year: 2013
  ident: bib21
  article-title: The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women
  publication-title: J. Diabetes Metab. Disord.
– volume: 15
  start-page: 2745
  year: 2011
  end-page: 2759
  ident: bib67
  article-title: Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers
  publication-title: J. Cell. Mol. Med.
– volume: 14
  start-page: 290
  year: 2016
  ident: bib51
  article-title: Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males
  publication-title: J. Transl. Med.
– volume: 90
  start-page: 1138
  year: 2009
  end-page: 1143
  ident: bib76
  article-title: Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults
  publication-title: Am. J. Clin. Nutr.
– year: 2017
  ident: bib74
  article-title: Effects of alternate-day fasting or daily calorie restriction on body composition, fat distribution, and circulating adipokines: secondary analysis of a randomized controlled trial
  publication-title: Clin. Nutr.
– volume: 4
  start-page: 63
  year: 2016
  end-page: 71
  ident: bib35
  article-title: Effects of different degrees of insulin resistance on endothelial function in obese adults undergoing alternate day fasting
  publication-title: Nutr. Healthy Aging
– volume: 34
  start-page: 897
  year: 2014
  end-page: 905
  ident: bib49
  article-title: Intermittent fasting attenuates increases in neurogenesis after ischemia and reperfusion and improves recovery
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 16
  start-page: 2079
  year: 1998
  end-page: 2084
  ident: bib80
  article-title: Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis
  publication-title: J. Hypertens.
– volume: 7
  start-page: 7
  year: 2017
  ident: bib26
  article-title: Potential benefits and harms of intermittent energy restriction and intermittent fasting amongst obese, overweight and normal weight subjects-a narrative review of human and animal evidence
  publication-title: Behav. Sci. (Basel)
– volume: 53
  start-page: 577
  year: 2012
  end-page: 586
  ident: bib11
  article-title: The effect of short-term fasting on liver and skeletal muscle lipid, glucose, and energy metabolism in healthy women and men
  publication-title: J. Lipid Res.
– volume: 14
  start-page: 15
  year: 2010
  end-page: 23
  ident: bib12
  article-title: Improvement in peripheral glucose uptake after gastric bypass surgery is observed only after substantial weight loss has occurred and correlates with the magnitude of weight lost
  publication-title: J. Gastrointest. Surg.
– volume: 85
  start-page: 981
  year: 2007
  ident: 10.1016/j.cmet.2018.04.010_bib71
  article-title: A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/85.4.981
– volume: 16
  start-page: 2079
  year: 1998
  ident: 10.1016/j.cmet.2018.04.010_bib80
  article-title: Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis
  publication-title: J. Hypertens.
  doi: 10.1097/00004872-199816121-00033
– volume: 31
  start-page: 212
  year: 1996
  ident: 10.1016/j.cmet.2018.04.010_bib7
  article-title: Insulin and hypertension: a causal relationship?
  publication-title: Cardiovasc. Res.
  doi: 10.1016/S0008-6363(95)00218-9
– volume: 15
  start-page: 2136
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib17
  article-title: A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.05.009
– volume: 15
  start-page: 848
  year: 2012
  ident: 10.1016/j.cmet.2018.04.010_bib30
  article-title: Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.04.019
– volume: 115
  start-page: 951
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib2
  article-title: Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114515005346
– volume: 311
  start-page: F991
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib42
  article-title: Loss of endothelin B receptor function impairs sodium excretion in a time- and sex-dependent manner
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00103.2016
– volume: 16
  start-page: 135
  year: 2007
  ident: 10.1016/j.cmet.2018.04.010_bib59
  article-title: Blood pressure reactions to insulin treatment in patients with type 2 diabetes
  publication-title: Int. J. Angiol.
  doi: 10.1055/s-0031-1278267
– volume: 5
  start-page: 437
  year: 1956
  ident: 10.1016/j.cmet.2018.04.010_bib19
  article-title: Spontaneous hypoglycemia as an early manifestation of diabetes mellitus
  publication-title: Diabetes
  doi: 10.2337/diab.5.6.437
– volume: 24
  start-page: 5
  year: 2018
  ident: 10.1016/j.cmet.2018.04.010_bib46
  article-title: Eating behavior traits of successful weight losers during 12 months of alternate-day fasting: an exploratory analysis of a randomized controlled trial
  publication-title: Nutr. Health
  doi: 10.1177/0260106017753487
– volume: 9
  start-page: 9
  year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib79
  article-title: Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aai8700
– volume: 122
  start-page: 106
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib14
  article-title: The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2016.10.010
– volume: 35
  start-page: 714
  year: 2011
  ident: 10.1016/j.cmet.2018.04.010_bib27
  article-title: The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2010.171
– volume: 13
  start-page: 574
  year: 2005
  ident: 10.1016/j.cmet.2018.04.010_bib31
  article-title: Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting
  publication-title: Obes. Res.
  doi: 10.1038/oby.2005.61
– volume: 21
  start-page: 2
  year: 1998
  ident: 10.1016/j.cmet.2018.04.010_bib81
  article-title: The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/diacare.21.1.2
– year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib82
  article-title: Restricted feeding for 9h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice
  publication-title: Metabolism
– volume: 112
  start-page: E2225
  year: 2015
  ident: 10.1016/j.cmet.2018.04.010_bib53
  article-title: Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1418955112
– volume: 15
  start-page: 2745
  year: 2011
  ident: 10.1016/j.cmet.2018.04.010_bib67
  article-title: Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2010.01160.x
– volume: 47
  start-page: 1425
  year: 2004
  ident: 10.1016/j.cmet.2018.04.010_bib47
  article-title: Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver
  publication-title: Diabetologia
  doi: 10.1007/s00125-004-1461-0
– volume: 2012
  start-page: 962012
  year: 2012
  ident: 10.1016/j.cmet.2018.04.010_bib6
  article-title: Intermittent fasting modulation of the diabetic syndrome in streptozotocin-injected rats
  publication-title: Int. J. Endocrinol.
  doi: 10.1155/2012/962012
– volume: 106
  start-page: 4453
  year: 2009
  ident: 10.1016/j.cmet.2018.04.010_bib66
  article-title: Adverse metabolic and cardiovascular consequences of circadian misalignment
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0808180106
– volume: 22
  start-page: 2524
  year: 2014
  ident: 10.1016/j.cmet.2018.04.010_bib34
  article-title: Meal timing during alternate day fasting: Impact on body weight and cardiovascular disease risk in obese adults
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.20909
– volume: 12
  start-page: 146
  year: 2013
  ident: 10.1016/j.cmet.2018.04.010_bib77
  article-title: Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial
  publication-title: Nutr. J.
  doi: 10.1186/1475-2891-12-146
– volume: 62
  start-page: 137
  year: 2013
  ident: 10.1016/j.cmet.2018.04.010_bib45
  article-title: Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2012.07.002
– volume: 17
  start-page: 200
  year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib73
  article-title: Time-restricted feeding in young men performing resistance training: a randomized controlled trial
  publication-title: Eur. J. Sport Sci.
  doi: 10.1080/17461391.2016.1223173
– volume: 81
  start-page: 69
  year: 2005
  ident: 10.1016/j.cmet.2018.04.010_bib32
  article-title: Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/81.1.69
– volume: 14
  start-page: 15
  year: 2010
  ident: 10.1016/j.cmet.2018.04.010_bib12
  article-title: Improvement in peripheral glucose uptake after gastric bypass surgery is observed only after substantial weight loss has occurred and correlates with the magnitude of weight lost
  publication-title: J. Gastrointest. Surg.
  doi: 10.1007/s11605-009-1060-y
– volume: 110
  start-page: 1534
  year: 2013
  ident: 10.1016/j.cmet.2018.04.010_bib28
  article-title: The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114513000792
– volume: 177
  start-page: 930
  year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib75
  article-title: Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2017.0936
– volume: 65
  start-page: 1743
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib18
  article-title: Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2016.09.006
– year: 2018
  ident: 10.1016/j.cmet.2018.04.010_bib62
  article-title: Circadian regulation of glucose, lipid, and energy metabolism in humans
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2017.11.017
– volume: 37
  start-page: 604
  year: 2013
  ident: 10.1016/j.cmet.2018.04.010_bib22
  article-title: Timing of food intake predicts weight loss effectiveness
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2012.229
– volume: 20
  start-page: 1006
  year: 2014
  ident: 10.1016/j.cmet.2018.04.010_bib84
  article-title: Diet and feeding pattern affect the diurnal dynamics of the gut microbiome
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.11.008
– volume: 4
  start-page: 63
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib35
  article-title: Effects of different degrees of insulin resistance on endothelial function in obese adults undergoing alternate day fasting
  publication-title: Nutr. Healthy Aging
  doi: 10.3233/NHA-1611
– start-page: CD003823
  year: 2008
  ident: 10.1016/j.cmet.2018.04.010_bib33
  article-title: Blood pressure lowering efficacy of angiotensin converting enzyme (ACE) inhibitors for primary hypertension
  publication-title: Cochrane Database Syst. Rev.
– volume: 90
  start-page: 1244
  year: 2009
  ident: 10.1016/j.cmet.2018.04.010_bib69
  article-title: Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.2008.27327
– volume: 167
  start-page: 1
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib20
  article-title: Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2016.08.027
– volume: 100
  start-page: 938
  year: 2014
  ident: 10.1016/j.cmet.2018.04.010_bib43
  article-title: Association of self-reported sleep duration with eating behaviors of American adults: NHANES 2005-2010
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.114.085191
– volume: 56
  start-page: 1729
  year: 2007
  ident: 10.1016/j.cmet.2018.04.010_bib13
  article-title: Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2007.07.018
– volume: 296
  start-page: E454
  year: 2009
  ident: 10.1016/j.cmet.2018.04.010_bib65
  article-title: Effects of prolonged fasting and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.90613.2008
– volume: 303
  start-page: E1397
  year: 2012
  ident: 10.1016/j.cmet.2018.04.010_bib70
  article-title: Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00397.2012
– volume: 34
  start-page: 897
  year: 2014
  ident: 10.1016/j.cmet.2018.04.010_bib49
  article-title: Intermittent fasting attenuates increases in neurogenesis after ischemia and reperfusion and improves recovery
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2014.36
– volume: 232
  start-page: 15
  year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib23
  article-title: Prepuberal light phase feeding induces neuroendocrine alterations in adult rats
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-16-0402
– volume: 125
  start-page: 423
  year: 2013
  ident: 10.1016/j.cmet.2018.04.010_bib38
  article-title: Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome
  publication-title: Clin. Sci.
  doi: 10.1042/CS20130071
– volume: 23
  start-page: 2053
  year: 2015
  ident: 10.1016/j.cmet.2018.04.010_bib52
  article-title: The human circadian system has a dominating role in causing the morning/evening difference in diet-induced thermogenesis
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.21189
– volume: 35
  start-page: 1308
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib64
  article-title: Timing of food intake is associated with weight loss evolution in severe obese patients after bariatric surgery
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2016.02.007
– volume: 28
  start-page: 890
  year: 2011
  ident: 10.1016/j.cmet.2018.04.010_bib83
  article-title: Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology
  publication-title: Chronobiol. Int.
  doi: 10.3109/07420528.2011.622599
– volume: 127
  start-page: 75
  year: 1997
  ident: 10.1016/j.cmet.2018.04.010_bib44
  article-title: Weight loss is greater with consumption of large morning meals and fat-free mass is preserved with large evening meals in women on a controlled weight reduction regimen
  publication-title: J. Nutr.
  doi: 10.1093/jn/127.1.75
– volume: 28
  start-page: 863
  year: 1996
  ident: 10.1016/j.cmet.2018.04.010_bib9
  article-title: Diurnal variations in cardiovascular function and glucose regulation in normotensive humans
  publication-title: Hypertension
  doi: 10.1161/01.HYP.28.5.863
– volume: 36
  start-page: 603
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib72
  article-title: Time-restricted feeding reduces adiposity in mice fed a high-fat diet
  publication-title: Nutr. Res.
  doi: 10.1016/j.nutres.2016.02.005
– volume: 76
  start-page: 361
  year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib3
  article-title: Effects of intermittent fasting on glucose and lipid metabolism
  publication-title: Proc. Nutr. Soc.
  doi: 10.1017/S0029665116002986
– volume: 33
  start-page: 1438
  year: 2010
  ident: 10.1016/j.cmet.2018.04.010_bib36
  article-title: The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery
  publication-title: Diabetes Care
  doi: 10.2337/dc09-2107
– volume: 4
  start-page: e4377
  year: 2009
  ident: 10.1016/j.cmet.2018.04.010_bib63
  article-title: Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004377
– year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib74
  article-title: Effects of alternate-day fasting or daily calorie restriction on body composition, fat distribution, and circulating adipokines: secondary analysis of a randomized controlled trial
  publication-title: Clin. Nutr.
– volume: 7
  start-page: 7
  year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib26
  article-title: Potential benefits and harms of intermittent energy restriction and intermittent fasting amongst obese, overweight and normal weight subjects-a narrative review of human and animal evidence
  publication-title: Behav. Sci. (Basel)
– volume: 26
  start-page: 759
  year: 2010
  ident: 10.1016/j.cmet.2018.04.010_bib4
  article-title: Intermittent fasting modulation of the diabetic syndrome in sand rats. II. In vivo investigations
  publication-title: Int. J. Mol. Med.
– volume: 14
  start-page: 290
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib51
  article-title: Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-016-1044-0
– volume: 22
  start-page: 789
  year: 2015
  ident: 10.1016/j.cmet.2018.04.010_bib24
  article-title: A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.09.005
– volume: 18
  start-page: 162
  year: 2015
  ident: 10.1016/j.cmet.2018.04.010_bib78
  article-title: Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism
  publication-title: Rejuvenation Res.
  doi: 10.1089/rej.2014.1624
– volume: 20
  start-page: 991
  year: 2014
  ident: 10.1016/j.cmet.2018.04.010_bib16
  article-title: Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.11.001
– volume: 58
  start-page: 912
  year: 2015
  ident: 10.1016/j.cmet.2018.04.010_bib40
  article-title: High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3524-9
– volume: 40
  start-page: 14
  year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib55
  article-title: Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2016.10.003
– volume: 39
  start-page: 46
  year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib50
  article-title: Impact of intermittent fasting on health and disease processes
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2016.10.005
– volume: 99
  start-page: 2128
  year: 2005
  ident: 10.1016/j.cmet.2018.04.010_bib25
  article-title: Effect of intermittent fasting and refeeding on insulin action in healthy men
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00683.2005
– volume: 22
  start-page: 86
  year: 2015
  ident: 10.1016/j.cmet.2018.04.010_bib10
  article-title: A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.05.012
– volume: 37
  start-page: 371
  year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib57
  article-title: Metabolic effects of intermittent fasting
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-071816-064634
– volume: 27
  start-page: 95
  year: 2011
  ident: 10.1016/j.cmet.2018.04.010_bib5
  article-title: Intermittent fasting modulation of the diabetic syndrome in sand rats. III. Post-mortem investigations
  publication-title: Int. J. Mol. Med.
– volume: 48
  start-page: 109
  year: 1980
  ident: 10.1016/j.cmet.2018.04.010_bib58
  article-title: Catecholamine-fuel interrelationships during exercise in fasting men
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1980.48.1.109
– volume: 116
  start-page: 1646
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib60
  article-title: Video chat technology to remotely quantify dietary, supplement and medication adherence in clinical trials
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114516003524
– volume: 107
  start-page: 176
  year: 1977
  ident: 10.1016/j.cmet.2018.04.010_bib61
  article-title: Effects of the scheduling of meal-feeding at different phases of the circadian system in rats
  publication-title: J. Nutr.
  doi: 10.1093/jn/107.2.176
– volume: 21
  start-page: 2504
  year: 2013
  ident: 10.1016/j.cmet.2018.04.010_bib39
  article-title: High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.20460
– volume: 173
  start-page: 298
  year: 2017
  ident: 10.1016/j.cmet.2018.04.010_bib54
  article-title: Time-restricted feeding on weekdays restricts weight gain: a study using rat models of high-fat diet-induced obesity
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2017.02.032
– volume: 53
  start-page: 577
  year: 2012
  ident: 10.1016/j.cmet.2018.04.010_bib11
  article-title: The effect of short-term fasting on liver and skeletal muscle lipid, glucose, and energy metabolism in healthy women and men
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.P020867
– volume: 18
  start-page: 57
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib29
  article-title: Intermittent energy restriction induces changes in breast gene expression and systemic metabolism
  publication-title: Breast Cancer Res.
  doi: 10.1186/s13058-016-0714-4
– volume: 90
  start-page: 1138
  year: 2009
  ident: 10.1016/j.cmet.2018.04.010_bib76
  article-title: Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.2009.28380
– volume: 42
  start-page: 665
  year: 2007
  ident: 10.1016/j.cmet.2018.04.010_bib41
  article-title: Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2006.12.005
– volume: 24
  start-page: 1874
  year: 2016
  ident: 10.1016/j.cmet.2018.04.010_bib15
  article-title: A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.21581
– volume: 26
  start-page: 3493
  year: 2012
  ident: 10.1016/j.cmet.2018.04.010_bib68
  article-title: Timed high-fat diet resets circadian metabolism and prevents obesity
  publication-title: FASEB J.
  doi: 10.1096/fj.12-208868
– volume: 87
  start-page: 3373
  year: 2002
  ident: 10.1016/j.cmet.2018.04.010_bib56
  article-title: Norepinephrine spillover from human adipose tissue before and after a 72-hour fast
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem.87.7.8695
– volume: 100
  start-page: 6216
  year: 2003
  ident: 10.1016/j.cmet.2018.04.010_bib1
  article-title: Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1035720100
– volume: 62
  start-page: 3027
  year: 2013
  ident: 10.1016/j.cmet.2018.04.010_bib37
  article-title: Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell Function in type 2 diabetic patients
  publication-title: Diabetes
  doi: 10.2337/db12-1762
– volume: 21
  start-page: 1370
  year: 2013
  ident: 10.1016/j.cmet.2018.04.010_bib8
  article-title: Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.20353
– volume: 12
  start-page: 4
  year: 2013
  ident: 10.1016/j.cmet.2018.04.010_bib21
  article-title: The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women
  publication-title: J. Diabetes Metab. Disord.
  doi: 10.1186/2251-6581-12-4
– volume: 36
  start-page: 2741
  year: 2013
  ident: 10.1016/j.cmet.2018.04.010_bib48
  article-title: Rapid improvement in diabetes after gastric bypass surgery: is it the diet or surgery?
  publication-title: Diabetes Care
  doi: 10.2337/dc12-2316
– reference: 29874561 - Cell Metab. 2018 Jun 5;27(6):1159-1160
SSID ssj0036393
Score 2.699572
Snippet Intermittent fasting (IF) improves cardiometabolic health; however, it is unknown whether these effects are due solely to weight loss. We conducted the first...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1212
SubjectTerms Adult
Aged
Blood Pressure
circadian rhythms
circadian system
early time-restricted feeding
eTRF
Fasting - metabolism
Humans
Insulin Resistance
insulin sensitivity
Insulin-Secreting Cells - metabolism
intermittent fasting
Male
meal timing
Middle Aged
Oxidative Stress
prediabetes
Prediabetic State - diet therapy
Prediabetic State - metabolism
Proof of Concept Study
Weight Loss
Title Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes
URI https://dx.doi.org/10.1016/j.cmet.2018.04.010
https://www.ncbi.nlm.nih.gov/pubmed/29754952
https://www.proquest.com/docview/2038702316
https://pubmed.ncbi.nlm.nih.gov/PMC5990470
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF0hJCQuVUu_0pZqKvVWrKy9u459BEREK6BSU9TcVvtlNQgcBInU_gz-MTO7dtS0FQeOicfOxrs7Mx6_94axjxgTghnRO0PhTSbrxmWmEC7LS4yurhI-lQZOz8rjc_llqqYb7LDnwhCssvP9yadHb919M-zu5vB6NhtOKLmWpBZDElZKENFcyCqS-KYHvTcWGIEjyB6NM7LuiDMJ4-WuAuEp8yrKnRKL9v_B6d_k828M5R9BafyUPemySdhPA37GNkK7w7ZSf8nfz9ldlC8Gonlk3wJ16HCYYMI4RSxIBYVwC58TIB0mhGZP7ST24IAg7ZDogzdhD0zr4euvmY9K4TCJHBM4Ql8JVMudLxfwI5ZZ4QT_GuDVTrtDdI2-xPuCnY-Pvh8eZ10PhsxJpRaZtLVpKsMdtzKn3UopghHGFKYuC0wfgw9KFVJY5bnnVoycJNm6htcND74RL9lmO2_Dawa1LKwPVVn70krprM1Nzp1QwYvKVFIOWN7ffO06gXLqk3GpeyTahaYJ0zRhmkuNvzNgn1bnXCd5jgetVT-nem2RaYwfD573oV8AGncfvVIxbZgvb9FIoMPDHLkcsFdpQazGQZxlfPwsBmy0tlRWBqTsvX6knf2MCt8KcwQ54m8eOd63bJs-RUSbesc2FzfLsIu508K-j5vjHtCOGWE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQQviP-Uv0aCJxY1ie00eeCBwaqWtUOim-ib59iOKIJ0WlvBPgafhS_InZ1UFNAekPYaO47jO99dLr_7GeA5-gSne_TPkFsdiaIykU65iZIMvavJuQ2pgfFBNjgS76ZyugU_21oYglU2tj_YdG-tmyvdZjW7J7NZd0LBtSC2GKKwkrxFVu67s2_43bZ4NXyLQn6Rpv29wzeDqDlaIDJCymUkykJXuY5NXIqElJA8n-Zap7rIUoyKnHVSpoKX0sY2LnnPCGJjq-Kiip2tOI57CS5j9NEjazCc7rbmn6PL96h-nF1E02sqdQKozHx1BOBMcs-vSmW7__aGf0e7f4I2f_OC_RtwvQlf2euwQjdhy9W34Eo40PLsNvzwfMmM6kqiD46OBDEY0bJ-cJEsZDDcgg0DAp5NCD4fzq_YYbuEoWehXvHU7TBdW_b--8x6anI28UUtbA-NM6Pk8Xy1ZB99XpeN8NUYjjZummiMNqd8B44uRDJ3Ybue1-4-sEKkpXV5VtisFMKUZaKT2HDpLM91LkQHknbxlWkY0elgji-qhb59ViQwRQJTsVD4nA68XN9zEvhAzu0tW5mqDa1W6LDOve9ZqwAKtzv9w9G1m68W2ImjhcWgPOvAvaAQ63lQkTR-76Yd6G2oyroDUYlvttSzT55SXGJQInrxg_-c71O4Ojgcj9RoeLD_EK5Ri4fTyUewvTxduccYuC3LJ36jMDi-6J35C6goVZ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Time-Restricted+Feeding+Improves+Insulin+Sensitivity%2C+Blood+Pressure%2C+and+Oxidative+Stress+Even+without+Weight+Loss+in+Men+with+Prediabetes&rft.jtitle=Cell+metabolism&rft.au=Sutton%2C+Elizabeth+F&rft.au=Beyl%2C+Robbie&rft.au=Early%2C+Kate+S&rft.au=Cefalu%2C+William+T&rft.date=2018-06-05&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=27&rft.issue=6&rft.spage=1212&rft_id=info:doi/10.1016%2Fj.cmet.2018.04.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon