A meta-analysis of phosphatase activity in agricultural settings in response to phosphorus deficiency
Phosphorus (P) is a key limiting factor in crop growth and essential for agriculture. As plant uptake of P is inefficient, it is commonly applied to maintain crop yields leading to a range of negative environmental issues when applied in excess. Additionally, P in mineral fertilisers is derived from...
Saved in:
Published in | Soil biology & biochemistry Vol. 165; p. 108537 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phosphorus (P) is a key limiting factor in crop growth and essential for agriculture. As plant uptake of P is inefficient, it is commonly applied to maintain crop yields leading to a range of negative environmental issues when applied in excess. Additionally, P in mineral fertilisers is derived from mined rock phosphate, which is a finite resource that needs to be sustainably managed in order to maintain food security in the long-term.
Phosphatase activity is one of several mechanistic responses to P deficiency in the plant-soil system, enabling the mineralization of organic P to increase P availability for both plants and soil organisms. In this study we address the need to further understanding of the role of phosphatase enzyme activity in P acquisition in agricultural settings, using a systematic review of the literature and subsequent meta-analysis.
We find that monoesterase activity is inhibited by availability of inorganic P (−23%, −39.8 to −2.2%) yet is enhanced by the availability of organic P (+74%, 8.4–232.1%). This indicates that phosphatase enzyme activity is important in P deficient agricultural systems, yet that the availability of organic P is more important in determining phosphatase activity than the level of P deficiency. We also investigated the role of other factors such as nitrogen addition, pH of growth substrate and changes in plant composition and physiology but, none of these factors explained significant variance in the data. We highlight need for consistent recording and reporting of additional variables in association with phosphatase enzyme assay data, which is required to enable quantification of the potential utilisation of organic P resources in agriculture, and the contribution of phosphatase activity to P acquisition in both agricultural and semi-natural ecosystems.
[Display omitted]
•Phosphatase activity is one of many plant-soil system responses to P deficiency.•Their importance in agricultural settings is not well understood.•Meta-analysis compares activity in P deficient and sufficient conditions.•Phosphatase is suppressed by availability of inorganic P and enhanced by organic P.•Availability of organic P is more important in determining phosphatase activity. |
---|---|
AbstractList | Phosphorus (P) is a key limiting factor in crop growth and essential for agriculture. As plant uptake of P is inefficient, it is commonly applied to maintain crop yields leading to a range of negative environmental issues when applied in excess. Additionally, P in mineral fertilisers is derived from mined rock phosphate, which is a finite resource that needs to be sustainably managed in order to maintain food security in the long-term.Phosphatase activity is one of several mechanistic responses to P deficiency in the plant-soil system, enabling the mineralization of organic P to increase P availability for both plants and soil organisms. In this study we address the need to further understanding of the role of phosphatase enzyme activity in P acquisition in agricultural settings, using a systematic review of the literature and subsequent meta-analysis.We find that monoesterase activity is inhibited by availability of inorganic P (−23%, −39.8 to −2.2%) yet is enhanced by the availability of organic P (+74%, 8.4–232.1%). This indicates that phosphatase enzyme activity is important in P deficient agricultural systems, yet that the availability of organic P is more important in determining phosphatase activity than the level of P deficiency. We also investigated the role of other factors such as nitrogen addition, pH of growth substrate and changes in plant composition and physiology but, none of these factors explained significant variance in the data. We highlight need for consistent recording and reporting of additional variables in association with phosphatase enzyme assay data, which is required to enable quantification of the potential utilisation of organic P resources in agriculture, and the contribution of phosphatase activity to P acquisition in both agricultural and semi-natural ecosystems. Phosphorus (P) is a key limiting factor in crop growth and essential for agriculture. As plant uptake of P is inefficient, it is commonly applied to maintain crop yields leading to a range of negative environmental issues when applied in excess. Additionally, P in mineral fertilisers is derived from mined rock phosphate, which is a finite resource that needs to be sustainably managed in order to maintain food security in the long-term. Phosphatase activity is one of several mechanistic responses to P deficiency in the plant-soil system, enabling the mineralization of organic P to increase P availability for both plants and soil organisms. In this study we address the need to further understanding of the role of phosphatase enzyme activity in P acquisition in agricultural settings, using a systematic review of the literature and subsequent meta-analysis. We find that monoesterase activity is inhibited by availability of inorganic P (−23%, −39.8 to −2.2%) yet is enhanced by the availability of organic P (+74%, 8.4–232.1%). This indicates that phosphatase enzyme activity is important in P deficient agricultural systems, yet that the availability of organic P is more important in determining phosphatase activity than the level of P deficiency. We also investigated the role of other factors such as nitrogen addition, pH of growth substrate and changes in plant composition and physiology but, none of these factors explained significant variance in the data. We highlight need for consistent recording and reporting of additional variables in association with phosphatase enzyme assay data, which is required to enable quantification of the potential utilisation of organic P resources in agriculture, and the contribution of phosphatase activity to P acquisition in both agricultural and semi-natural ecosystems. [Display omitted] •Phosphatase activity is one of many plant-soil system responses to P deficiency.•Their importance in agricultural settings is not well understood.•Meta-analysis compares activity in P deficient and sufficient conditions.•Phosphatase is suppressed by availability of inorganic P and enhanced by organic P.•Availability of organic P is more important in determining phosphatase activity. |
ArticleNumber | 108537 |
Author | Blair, Gordon Haygarth, Philip M. Blackwell, Martin S.A. Stewart, Gavin Davies, Jess Mezeli, Malika M. Janes-Bassett, Victoria |
Author_xml | – sequence: 1 givenname: Victoria orcidid: 0000-0002-4882-6202 surname: Janes-Bassett fullname: Janes-Bassett, Victoria email: v.janes@lancaster.ac.uk, v.janes@lancaster.ac.uk organization: Lancaster Environment Centre, Lancaster University, Bailrigg, LA1 4YQ, UK – sequence: 2 givenname: Martin S.A. surname: Blackwell fullname: Blackwell, Martin S.A. organization: Sustainable Agricultural Systems, Rothamsted Research, North Wyke, EX20 2SB, UK – sequence: 3 givenname: Gordon orcidid: 0000-0001-6212-1906 surname: Blair fullname: Blair, Gordon organization: School of Computing and Communications, Lancaster University, Bailrigg, LA1 4YQ, UK – sequence: 4 givenname: Jess orcidid: 0000-0001-9832-7412 surname: Davies fullname: Davies, Jess organization: Lancaster Environment Centre, Lancaster University, Bailrigg, LA1 4YQ, UK – sequence: 5 givenname: Philip M. surname: Haygarth fullname: Haygarth, Philip M. organization: Lancaster Environment Centre, Lancaster University, Bailrigg, LA1 4YQ, UK – sequence: 6 givenname: Malika M. surname: Mezeli fullname: Mezeli, Malika M. organization: Lancaster Environment Centre, Lancaster University, Bailrigg, LA1 4YQ, UK – sequence: 7 givenname: Gavin surname: Stewart fullname: Stewart, Gavin organization: School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK |
BookMark | eNqFkE1r3DAQhkVJoZu0P6HgYy_eSpZsyfRQQugXBHJJz2KsHSezeCVXIwf239fb3VMvYQ4DM-_zHp5rcRVTRCE-KrlVUnWf91tONA2Uto1s1HpzrbZvxEY529faNO5KbKTUrpZW2XfimnkvpWxapTcCb6sDFqghwnRk4iqN1fyceH6GAowVhEIvVI4VxQqeMoVlKkuGqWIsheITnx4ZeU5xTZd0gVNeuNrhSIEwhuN78XaEifHDZd-I39-_Pd79rO8ffvy6u72vg2nbUpt-UN060hjtcEDd9dahk42xvR3BgYXQu9GoMIYhdNA5oyBI53bDaFqr9I34dO6dc_qzIBd_IA44TRAxLeybTnemdbq1a_TLORpyYs44-kAFCqVYMtDklfQnuX7vL3L9Sa4_y13p9j96znSAfHyV-3rmcLXwQpg9_zOEO8oYit8leqXhLwb-my0 |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2022_104570 crossref_primary_10_1016_j_still_2024_106241 crossref_primary_10_3390_plants13213046 crossref_primary_10_3390_f15020341 crossref_primary_10_1016_j_agee_2024_109219 crossref_primary_10_1016_j_apsoil_2024_105764 crossref_primary_10_1016_j_ecoenv_2023_115388 crossref_primary_10_1016_j_geoderma_2023_116755 crossref_primary_10_3390_agronomy15020260 crossref_primary_10_56093_ijas_v94i6_145572 crossref_primary_10_1016_j_micres_2023_127350 crossref_primary_10_3390_plants13141989 crossref_primary_10_1007_s42729_023_01365_6 crossref_primary_10_1186_s40538_024_00586_w crossref_primary_10_3390_environments11090208 crossref_primary_10_1016_j_apsoil_2024_105748 crossref_primary_10_1016_j_soilbio_2024_109447 crossref_primary_10_3389_fmicb_2023_1104077 crossref_primary_10_1016_j_scitotenv_2023_161685 crossref_primary_10_3390_agronomy13051308 crossref_primary_10_1016_j_pedsph_2024_06_002 crossref_primary_10_1016_j_copbio_2024_103197 crossref_primary_10_1111_1365_2664_14780 crossref_primary_10_3390_agronomy14020389 crossref_primary_10_3390_agriculture14020288 crossref_primary_10_1016_j_ejsobi_2024_103600 crossref_primary_10_1080_00380768_2023_2283487 crossref_primary_10_1016_j_apsoil_2025_106040 crossref_primary_10_1016_j_ijbiomac_2023_127124 crossref_primary_10_3390_agriculture14112081 crossref_primary_10_1016_j_agee_2024_109006 crossref_primary_10_1016_j_ecolind_2022_109374 crossref_primary_10_1016_j_scitotenv_2024_173553 crossref_primary_10_1016_j_biteb_2022_101117 crossref_primary_10_1016_j_eja_2024_127358 crossref_primary_10_1016_j_scitotenv_2024_176386 crossref_primary_10_1039_D3EN00415E crossref_primary_10_1016_j_ejsobi_2024_103678 crossref_primary_10_1016_j_still_2023_105823 crossref_primary_10_1016_j_soilbio_2025_109753 crossref_primary_10_3389_ffgc_2023_1322660 crossref_primary_10_1016_j_rhisph_2024_100904 crossref_primary_10_1007_s00374_024_01808_x crossref_primary_10_1007_s11104_024_07164_x crossref_primary_10_3389_fpls_2024_1451073 crossref_primary_10_3390_microorganisms11071748 |
Cites_doi | 10.1007/s11099-014-0067-0 10.1016/j.rhisph.2016.11.004 10.1007/s003740100387 10.3389/fpls.2014.00027 10.1186/s13750-017-0108-9 10.1007/s11427-010-4008-2 10.5194/essd-9-181-2017 10.1097/SS.0b013e318272f83f 10.1016/j.pedobi.2006.08.001 10.1111/gcb.15218 10.1034/j.1399-3054.1998.1030203.x 10.1007/s11104-005-3936-2 10.1038/s43016-021-00301-0 10.1007/s11104-019-03972-8 10.1016/0038-0717(78)90100-1 10.1111/j.1461-0248.2008.01245.x 10.1016/0038-0717(79)90110-X 10.1016/j.soilbio.2013.08.015 10.1016/j.jplph.2013.04.015 10.1016/j.soilbio.2015.06.026 10.1016/j.plantsci.2016.11.002 10.1016/j.gloenvcha.2008.10.009 10.1016/j.soilbio.2019.107695 10.1016/j.geoderma.2019.04.039 10.1007/s11104-019-04110-0 10.3389/fpls.2016.01939 10.1007/s11104-019-04250-3 10.1021/es502852s 10.1016/S0038-0717(00)00155-3 10.1007/s11104-010-0296-3 10.1002/1522-2624(200104)164:2<141::AID-JPLN141>3.0.CO;2-Z 10.1007/BF00640630 10.1016/j.soilbio.2004.10.016 10.1111/gcb.15832 10.1046/j.1469-8137.2003.00910.x 10.1007/s42729-019-00024-z 10.1007/s003740100376 10.1038/ngeo2693 10.1126/science.1167755 10.1016/j.soilbio.2013.05.028 10.3389/fpls.2018.01614 10.1016/j.soilbio.2015.06.018 10.18637/jss.v034.i12 10.1007/s11104-018-3887-z 10.1007/s00374-003-0671-9 10.1038/s41467-017-00232-0 10.1007/s11104-008-9873-0 10.3390/soilsystems4040074 10.18637/jss.v036.i03 10.1046/j.1469-8137.1999.00360.x 10.1080/01448765.2004.9754989 10.1007/s00248-018-1264-3 10.1126/science.1259855 10.1046/j.1469-8137.2003.00695.x 10.1007/s11104-015-2757-1 10.1007/s11104-017-3362-2 10.1016/j.plaphy.2008.09.002 10.1016/j.soilbio.2012.04.012 10.1016/j.plaphy.2018.03.028 10.1093/aob/mcp074 10.1007/s003740100411 10.1007/s10661-019-7378-3 10.1007/s11104-017-3391-x 10.1111/j.1469-8137.2011.03967.x 10.1016/j.plantsci.2004.02.026 10.1021/es200942v 10.1093/aobpla/ply054 10.1016/j.scitotenv.2020.136599 10.1007/s11104-011-0783-1 10.1017/S0021859615000702 10.1016/j.scitotenv.2018.02.263 10.3390/agronomy8110241 10.1007/BF00337200 10.15244/pjoes/110345 10.1016/j.soilbio.2019.107628 10.1046/j.1365-3040.2000.00557.x 10.1046/j.1365-3040.1999.00441.x 10.1002/1522-2624(200110)164:5<533::AID-JPLN533>3.0.CO;2-D 10.1073/pnas.1113675109 10.1016/j.soilbio.2018.05.001 10.1016/S0378-1119(96)00425-8 10.1111/j.1365-3040.2004.01225.x 10.5586/asbp.3571 10.3389/fpls.2016.01664 10.1016/j.pedobi.2019.150612 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2021.108537 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
ExternalDocumentID | 10_1016_j_soilbio_2021_108537 S0038071721004119 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-49b1616104438ebe36978e8024797fa8a7ac98f41cfcbc6a6841ac088dbf45713 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Thu Jul 10 23:46:39 EDT 2025 Tue Jul 01 03:20:05 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Fri Feb 23 02:39:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phytase Agriculture Phosphatase Phosphorus deficiency Monoesterase |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-49b1616104438ebe36978e8024797fa8a7ac98f41cfcbc6a6841ac088dbf45713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6212-1906 0000-0001-9832-7412 0000-0002-4882-6202 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0038071721004119 |
PQID | 2636458357 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636458357 crossref_citationtrail_10_1016_j_soilbio_2021_108537 crossref_primary_10_1016_j_soilbio_2021_108537 elsevier_sciencedirect_doi_10_1016_j_soilbio_2021_108537 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | George, Richardson, Hadobas, Simpson (bib27) 2004; 27 Naureen, Sham, Al Ashram, Gilani, Al Gheilani, Mabood, Hussain, Al Harrasi, AbuQamar (bib55) 2018; 127 Steffen, Richardson, Rockström, Cornell, Fetzer, Bennett, Biggs, Carpenter, de Vries, de Wit, Folke, Gerten, Heinke, Mace, Persson, Ramanathan, Reyers, Sörlin (bib76) 2015; 347 Doydora, Gatiboni, Grieger, Hesterberg, Jones, McLamore, Peters, Sozzani, Van den Broeck, Duckworth (bib21) 2020; 4 Al-Amri, Elhindi, Sharaf El-Din (bib2) 2016; 18 Giles, George, Brown, Mezeli, Shand, Richardson, Mackay, Wendler, Darch, Menezes-Blackburn, Cooper, Stutter, Lumsdon, Blackwell, Wearing, Zhang, Haygarth (bib31) 2017; 3 Giles, Richardson, Druschel, Hill (bib32) 2012; 177 Xiao, Chen, Jing, Zhu (bib91) 2018; 123 Ikoyi, Fowler, Schmalenberger (bib40) 2018; 630 Wang, Lambers (bib88) 2020; 447 Du, Tian, Liao, Bai, Yan, Liu (bib22) 2009; 103 Fries, Pacovsky, Safir, Kaminski (bib24) 1998; 103 Jones, Oburger (bib44) 2011 Speir, Cowling (bib71) 1991; 12 Zebrowska, Zujko, Kuleszewicz, Ciereszko (bib95) 2018; 87 Tarafdar, Claassen (bib83) 2003; 39 Spiers, McGill (bib72) 1979; 11 Yuan, Blackwell, McGrath, George, Granger, Hawkins, Dunham, Shen (bib93) 2016; 154 Bechtaoui, Raklami, Benidire, Tahiri, Gottfert, Oufdou (bib3) 2020; 29 Goicoechea, Sánchez-Díaz, Sáez, Irañeta (bib33) 2004; 22 Conley, Paerl, Howarth, Boesch, Seitzinger, Havens, Lancelot, Likens (bib13) 2009; 323 Hunter, Teakle, Bending (bib39) 2014; 5 Oshima, Ogawa, Harashima (bib58) 1996; 179 Liu, Mi, Chen, Zhang, Zhang (bib45) 2004; 167 Dolan (bib20) 2001; 164 Gilbert, Knight, Vance, Allan (bib29) 1999; 22 Lyu, Tang, Li, Zhang, Rengel, Whalley, Shen (bib47) 2016; 7 Cardinale, Suarez, Steffens, Ratering, Schnell (bib8) 2019; 77 Phoenix, Booth, Leake, Read, Grime, Lee (bib59) 2004; 161 Sharma, Sahi (bib68) 2011; 45 Zhang, Huang, Ye, Xu (bib97) 2010; 53 Spohn, Kuzyakov (bib74) 2013; 67 George, Fransson, Hammond, White (bib25) 2011 Margalef, Sardans, Maspons, Molowny‐Horas, Fernández‐Martínez, Janssens, Richter, Ciais, Obersteiner, Peñuelas (bib48) 2021 Giles, Brown, Adu, Mezeli, Sandral, Simpson, Wendler, Shand, Menezes-Blackburn, Darch, Stutter, Lumsdon, Zhang, Blackwell, Wearing, Cooper, Haygarth, George (bib30) 2017; 255 Lu, Tian (bib46) 2017; 9 Chen, van Groenigen, Hungate, Terrer, van Groenigen, Maestre, Ying, Luo, Jørgensen, Sinsabaugh, Olesen, Elsgaard (bib9) 2020; 26 Tang, Li, Zu, Zhang, Shen (bib82) 2013; 170 Fragoso, Martínez-Barajas, Vázquez-Santana, Acosta, Coello (bib23) 2005; 39 Hedges, Gurevitch, Curtis (bib38) 1999; 80 Grierson, Adams (bib34) 2000; 32 Nash, Haygarth, Turner, Condron, McDowell, Richardson, Watkins, Heaven (bib54) 2014 Sun, Gao, Wu, Ma, Zheng, Wang, Zhang, Li, Yang (bib80) 2020; 447 Spohn, Ermak, Kuzyakov (bib73) 2013; 65 Zhang, Huang, Ye, Shi, Xu (bib96) 2009; 320 Colvan, Syers, O'Donnell (bib12) 2001; 34 Rotaru (bib65) 2015; 58 Štursová, Baldrian (bib78) 2011; 338 Schneider, Turrion, Grierson, Gallardo (bib67) 2001; 34 Nannipieri, Giagnoni, Landi, Renella (bib52) 2011 Mezeli, Page, George, Neilson, Mead, Blackwell, Haygarth (bib51) 2020; 142 Haygarth, Rufino (bib37) 2021; 2 Shen, Wen, Dong, Li, Miao, Shen (bib69) 2018; 10 Nannipieri, Johnson, Paul (bib53) 1978; 10 Ding, Guo, Kupper, McNear (bib18) 2016; 401 Calcagno, de Mazancourt (bib7) 2010; 34 de Medeiros, Silva, Duda, dos Santos, de Souza Junior (bib15) 2019; 435 Stutter, Shand, George, Blackwell (bib79) 2012 Priya, Sahi (bib61) 2009; 47 Janes-Bassett, Davies, Rowe, Tipping (bib41) 2020; 714 Deng, Teng, Tong, Chen, Zou (bib16) 2018; 9 George, Richardson, Simpson (bib28) 2005; 37 Abdel-Fattah, Asrar, Al-Amri, Abdel-Salam (bib1) 2014; 52 Marklein, Houlton (bib49) 2012; 193 Richardson, Hadobas, Hayes (bib64) 2000; 23 Ockenden, Hollaway, Beven, Collins, Evans, Falloon, Forber, Hiscock, Kahana, MacLeod, Tych, Villamizar, Wearing, Withers, Zhou, Barker, Burke, Freer, Johnes, Snell, Surridge, Haygarth (bib57) 2017; 8 Sinsabaugh, Lauber, Weintraub, Ahmed, Allison, Crenshaw, Contosta, Cusack, Frey, Gallo, Gartner, Hobbie, Holland, Keeler, Powers, Stursova, Takacs-Vesbach, Waldrop, Wallenstein, Zak, Zeglin (bib70) 2008; 11 Spohn, Treichel, Cormann, Schloter, Fischer (bib75) 2015; 89 Brandt, Balko, Eichler-Loebermann (bib4) 2011; 61 Chen, Jiang, Condron, Dunfield, Chen, Wang, Chen (bib11) 2019; 349 Johnson, Leake, Lee (bib43) 1999; 141 Bünemann, Oberson, Liebisch, Keller, Annaheim, Huguenin-Elie, Frossard (bib6) 2012 Wasaya, Zhang, Fang, Yan (bib90) 2018; 8 Chen, Hao, Jing, He, Ma, Zhu (bib10) 2019; 444 Haygarth, Jarvie, Powers, Sharpley, Elser, Shen, Peterson, Chan, Howden, Burt, Worrall, Zhang, Liu (bib36) 2014 Menezes-Blackburn, Giles, Darch, George, Blackwell, Stutter, Shand, Lumsdon, Cooper, Wendler, Brown, Almeida, Wearing, Zhang, Haygarth (bib50) 2018; 427 Steingrobe (bib77) 2001; 164 Vance, Uhde-Stone, Allan (bib85) 2003; 157 Wang, Yang, Wang, Xu, Feng, Feng, Li, Liu, Ma, Li, Jiang (bib89) 2020; 78 Powers, Bruulsema, Burt, Chan, Elser, Haygarth, Howden, Jarvie, Lyu, Peterson, Sharpley, Shen, Worrall, Zhang (bib60) 2016; 9 George, Giles, Menezes-Blackburn, Condron, Gama-Rodrigues, Jaisi, Lang, Neal, Stutter I, Almeida, Bol, Cabugao, Celi, Cotner, Feng, Goll, Hallama, Krueger, Plassard, Rosling, Darch, Fraser, Giesler, Richardson, Tamburini, Shand, Lumsdon, Zhang, Blackwell, Wearing, Mezeli, Almas, Audette, Bertrand, Beyhaut, Boitt, Bradshaw, Brearley, Bruulsema, Ciais, Cozzolino, Duran, Mora, de Menezes, Dodd, Dunfield, Engl, Frazao, Garland, Jimenez, Graca, Granger, Harrison, Heuck, Hou, Johnes, Kaiser, Kjaer, Klumpp, Lamb, Macintosh, Mackay, McGrath, McIntyre, McLaren, Meszaros, Missong, Mooshammer, Negron, Nelson, Pfahler, Poblete-Grant, Randall, Seguel, Seth, Smith, Smits, Sobarzo, Spohn, Tawaraya, Tibbett, Voroney, Wallander, Wang, Wasaki, Haygarth (bib26) 2018; 427 Raiesi, Ghollarata (bib62) 2006; 50 Tarafdar, Jungk (bib84) 1987; 3 Dey, Chakrabarti, Purakayastha, Prasanna, Mittal, Singh, Pathak (bib17) 2019; 191 Sattari, Bouwman, Giller, Van Ittersum (bib66) 2012; 109 Jarosch, Kandeler, Frossard, Bunemann (bib42) 2019; 139 Yadav, Tarafdar (bib92) 2001; 34 Bünemann (bib5) 2015; 89 Haddaway, Hedlund, Jackson, Kätterer, Lugato, Thomsen, Jørgensen, Isberg (bib35) 2017 Syers, Johnston, Curtin (bib81) 2008 Ding, Fu, Liu, Chen, Hoffland, Shen, Zhang, Feng (bib19) 2011; 349 Redel, Staunton, Durán, Gianfreda, Rumpel, de la Luz Mora (bib63) 2019; 19 Viechtbauer (bib86) 2010; 36 Cordell, Drangert, White (bib14) 2009; 19 Wang, Krogstad, Clarke, Hallama, Ogaard, Eich-Greatorex, Kandeler, Clarke (bib87) 2016; 7 Nuruzzaman, Lambers, Bolland, Veneklaas (bib56) 2006; 281 Zebrowska, Milewska, Ciereszko (bib94) 2017; 2017 Steingrobe (10.1016/j.soilbio.2021.108537_bib77) 2001; 164 Redel (10.1016/j.soilbio.2021.108537_bib63) 2019; 19 Yuan (10.1016/j.soilbio.2021.108537_bib93) 2016; 154 Spohn (10.1016/j.soilbio.2021.108537_bib73) 2013; 65 Phoenix (10.1016/j.soilbio.2021.108537_bib59) 2004; 161 Spiers (10.1016/j.soilbio.2021.108537_bib72) 1979; 11 Lu (10.1016/j.soilbio.2021.108537_bib46) 2017; 9 Nash (10.1016/j.soilbio.2021.108537_bib54) 2014 Spohn (10.1016/j.soilbio.2021.108537_bib75) 2015; 89 Hunter (10.1016/j.soilbio.2021.108537_bib39) 2014; 5 Spohn (10.1016/j.soilbio.2021.108537_bib74) 2013; 67 Cardinale (10.1016/j.soilbio.2021.108537_bib8) 2019; 77 Giles (10.1016/j.soilbio.2021.108537_bib32) 2012; 177 Liu (10.1016/j.soilbio.2021.108537_bib45) 2004; 167 George (10.1016/j.soilbio.2021.108537_bib27) 2004; 27 Cordell (10.1016/j.soilbio.2021.108537_bib14) 2009; 19 Giles (10.1016/j.soilbio.2021.108537_bib30) 2017; 255 Zebrowska (10.1016/j.soilbio.2021.108537_bib94) 2017; 2017 Du (10.1016/j.soilbio.2021.108537_bib22) 2009; 103 Ikoyi (10.1016/j.soilbio.2021.108537_bib40) 2018; 630 Janes-Bassett (10.1016/j.soilbio.2021.108537_bib41) 2020; 714 Nannipieri (10.1016/j.soilbio.2021.108537_bib52) 2011 Deng (10.1016/j.soilbio.2021.108537_bib16) 2018; 9 Bünemann (10.1016/j.soilbio.2021.108537_bib6) 2012 Bünemann (10.1016/j.soilbio.2021.108537_bib5) 2015; 89 Goicoechea (10.1016/j.soilbio.2021.108537_bib33) 2004; 22 Raiesi (10.1016/j.soilbio.2021.108537_bib62) 2006; 50 Haygarth (10.1016/j.soilbio.2021.108537_bib36) 2014 Stutter (10.1016/j.soilbio.2021.108537_bib79) 2012 Wasaya (10.1016/j.soilbio.2021.108537_bib90) 2018; 8 Zebrowska (10.1016/j.soilbio.2021.108537_bib95) 2018; 87 Yadav (10.1016/j.soilbio.2021.108537_bib92) 2001; 34 Lyu (10.1016/j.soilbio.2021.108537_bib47) 2016; 7 Sharma (10.1016/j.soilbio.2021.108537_bib68) 2011; 45 Shen (10.1016/j.soilbio.2021.108537_bib69) 2018; 10 Dey (10.1016/j.soilbio.2021.108537_bib17) 2019; 191 Hedges (10.1016/j.soilbio.2021.108537_bib38) 1999; 80 Wang (10.1016/j.soilbio.2021.108537_bib88) 2020; 447 George (10.1016/j.soilbio.2021.108537_bib25) 2011 Margalef (10.1016/j.soilbio.2021.108537_bib48) 2021 Steffen (10.1016/j.soilbio.2021.108537_bib76) 2015; 347 Johnson (10.1016/j.soilbio.2021.108537_bib43) 1999; 141 Priya (10.1016/j.soilbio.2021.108537_bib61) 2009; 47 Richardson (10.1016/j.soilbio.2021.108537_bib64) 2000; 23 Fries (10.1016/j.soilbio.2021.108537_bib24) 1998; 103 George (10.1016/j.soilbio.2021.108537_bib28) 2005; 37 Naureen (10.1016/j.soilbio.2021.108537_bib55) 2018; 127 Speir (10.1016/j.soilbio.2021.108537_bib71) 1991; 12 Tarafdar (10.1016/j.soilbio.2021.108537_bib83) 2003; 39 George (10.1016/j.soilbio.2021.108537_bib26) 2018; 427 Chen (10.1016/j.soilbio.2021.108537_bib10) 2019; 444 Xiao (10.1016/j.soilbio.2021.108537_bib91) 2018; 123 Al-Amri (10.1016/j.soilbio.2021.108537_bib2) 2016; 18 Haddaway (10.1016/j.soilbio.2021.108537_bib35) 2017 Gilbert (10.1016/j.soilbio.2021.108537_bib29) 1999; 22 Nannipieri (10.1016/j.soilbio.2021.108537_bib53) 1978; 10 Ockenden (10.1016/j.soilbio.2021.108537_bib57) 2017; 8 Chen (10.1016/j.soilbio.2021.108537_bib11) 2019; 349 Grierson (10.1016/j.soilbio.2021.108537_bib34) 2000; 32 Marklein (10.1016/j.soilbio.2021.108537_bib49) 2012; 193 Wang (10.1016/j.soilbio.2021.108537_bib89) 2020; 78 Zhang (10.1016/j.soilbio.2021.108537_bib96) 2009; 320 Doydora (10.1016/j.soilbio.2021.108537_bib21) 2020; 4 Jarosch (10.1016/j.soilbio.2021.108537_bib42) 2019; 139 Tang (10.1016/j.soilbio.2021.108537_bib82) 2013; 170 Sattari (10.1016/j.soilbio.2021.108537_bib66) 2012; 109 Syers (10.1016/j.soilbio.2021.108537_bib81) 2008 Conley (10.1016/j.soilbio.2021.108537_bib13) 2009; 323 Sinsabaugh (10.1016/j.soilbio.2021.108537_bib70) 2008; 11 Tarafdar (10.1016/j.soilbio.2021.108537_bib84) 1987; 3 Schneider (10.1016/j.soilbio.2021.108537_bib67) 2001; 34 Dolan (10.1016/j.soilbio.2021.108537_bib20) 2001; 164 Wang (10.1016/j.soilbio.2021.108537_bib87) 2016; 7 Rotaru (10.1016/j.soilbio.2021.108537_bib65) 2015; 58 Nuruzzaman (10.1016/j.soilbio.2021.108537_bib56) 2006; 281 Bechtaoui (10.1016/j.soilbio.2021.108537_bib3) 2020; 29 Fragoso (10.1016/j.soilbio.2021.108537_bib23) 2005; 39 Štursová (10.1016/j.soilbio.2021.108537_bib78) 2011; 338 Vance (10.1016/j.soilbio.2021.108537_bib85) 2003; 157 Viechtbauer (10.1016/j.soilbio.2021.108537_bib86) 2010; 36 Brandt (10.1016/j.soilbio.2021.108537_bib4) 2011; 61 Giles (10.1016/j.soilbio.2021.108537_bib31) 2017; 3 Sun (10.1016/j.soilbio.2021.108537_bib80) 2020; 447 Ding (10.1016/j.soilbio.2021.108537_bib18) 2016; 401 Haygarth (10.1016/j.soilbio.2021.108537_bib37) 2021; 2 Powers (10.1016/j.soilbio.2021.108537_bib60) 2016; 9 Colvan (10.1016/j.soilbio.2021.108537_bib12) 2001; 34 Mezeli (10.1016/j.soilbio.2021.108537_bib51) 2020; 142 Menezes-Blackburn (10.1016/j.soilbio.2021.108537_bib50) 2018; 427 de Medeiros (10.1016/j.soilbio.2021.108537_bib15) 2019; 435 Ding (10.1016/j.soilbio.2021.108537_bib19) 2011; 349 Jones (10.1016/j.soilbio.2021.108537_bib44) 2011 Zhang (10.1016/j.soilbio.2021.108537_bib97) 2010; 53 Oshima (10.1016/j.soilbio.2021.108537_bib58) 1996; 179 Calcagno (10.1016/j.soilbio.2021.108537_bib7) 2010; 34 Chen (10.1016/j.soilbio.2021.108537_bib9) 2020; 26 Abdel-Fattah (10.1016/j.soilbio.2021.108537_bib1) 2014; 52 |
References_xml | – volume: 435 start-page: 175 year: 2019 end-page: 185 ident: bib15 article-title: The combination of Arachis pintoi green manure and natural phosphate improves maize growth, soil microbial community structure and enzymatic activities publication-title: Plant and Soil – volume: 170 start-page: 1243 year: 2013 end-page: 1250 ident: bib82 article-title: Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin publication-title: Journal of Plant Physiology – volume: 444 start-page: 21 year: 2019 end-page: 37 ident: bib10 article-title: Minor responses of soil microbial biomass, community structure and enzyme activities to nitrogen and phosphorus addition in three grassland ecosystems publication-title: Plant and Soil – volume: 323 start-page: 1014 year: 2009 end-page: 1015 ident: bib13 article-title: Ecology - controlling eutrophication: nitrogen and phosphorus publication-title: Science – volume: 10 start-page: 223 year: 1978 end-page: 229 ident: bib53 article-title: Criteria for measurement of microbial growth and activity in soil publication-title: Soil Biology and Biochemistry – volume: 26 start-page: 5077 year: 2020 end-page: 5086 ident: bib9 article-title: Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems publication-title: Global Change Biology – volume: 401 start-page: 291 year: 2016 end-page: 305 ident: bib18 article-title: Shoot specific fungal endophytes alter soil phosphorus (P) fractions and potential acid phosphatase activity but do not increase P uptake in tall fescue publication-title: Plant and Soil – start-page: 8417 year: 2014 end-page: 8419 ident: bib36 article-title: Sustainable phosphorus management and the need for a long-term perspective: the legacy hypothesis publication-title: Environmental Science & Technology – volume: 19 start-page: 292 year: 2009 end-page: 305 ident: bib14 article-title: The story of phosphorus: global food security and food for thought publication-title: Global Environmental Change – volume: 142 year: 2020 ident: bib51 article-title: Using a meta-analysis approach to understand complexity in soil biodiversity and phosphorus acquisition in plants publication-title: Soil Biology and Biochemistry – volume: 34 start-page: 151 year: 2001 end-page: 155 ident: bib67 article-title: Phosphatase activity, microbial phosphorus, and fine root growth in forest soils in the Sierra de Gata, western central Spain publication-title: Biology and Fertility of Soils – volume: 139 year: 2019 ident: bib42 article-title: Is the enzymatic hydrolysis of soil organic phosphorus compounds limited by enzyme or substrate availability? publication-title: Soil Biology and Biochemistry – volume: 127 start-page: 211 year: 2018 end-page: 222 ident: bib55 article-title: Effect of phosphate nutrition on growth, physiology and phosphate transporter expression of cucumber seedlings publication-title: Plant Physiology and Biochemistry – volume: 9 start-page: 353 year: 2016 end-page: 356 ident: bib60 article-title: Long-term accumulation and transport of anthropogenic phosphorus in three river basins publication-title: Nature Geoscience – volume: 58 start-page: 295 year: 2015 end-page: 300 ident: bib65 article-title: Responses of acid phosphatase activity on the root surface and rhizospheric soil of soybean plants to phosphorus fertilization and Rhizobacteria application under low water supply publication-title: Scientific Papers Series A-Agronomy – volume: 34 start-page: 29 year: 2010 ident: bib7 article-title: glmulti: an R package for easy automated model selection with (generalized) linear models publication-title: Journal of Statistical Software – volume: 2 start-page: 459 year: 2021 end-page: 460 ident: bib37 article-title: Local solutions to global phosphorus imbalances publication-title: Nature Food – year: 2011 ident: bib44 article-title: Solubilization of phosphorus by soil microorganisms publication-title: Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling – volume: 11 start-page: 3 year: 1979 end-page: 8 ident: bib72 article-title: Effects of phosphorus addition and energy supply on acid phosphatase production and activity in soils publication-title: Soil Biology and Biochemistry – volume: 34 start-page: 258 year: 2001 end-page: 263 ident: bib12 article-title: Effect of long-term fertiliser use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland publication-title: Biology and Fertility of Soils – volume: 32 start-page: 1817 year: 2000 end-page: 1827 ident: bib34 article-title: Plant species affect acid phosphatase, ergosterol and microbial P in a Jarrah (Eucalyptus marginata Donn ex Sm.) forest in south-western Australia publication-title: Soil Biology and Biochemistry – volume: 177 start-page: 591 year: 2012 end-page: 598 ident: bib32 article-title: Organic anion-driven solubilization of precipitated and sorbed phytate improves hydrolysis by phytases and bioavailability to Nicotiana tabacum publication-title: Soil Science – year: 2021 ident: bib48 article-title: The effect of global change on soil phosphatase activity publication-title: Global Change Biology – volume: 3 start-page: 199 year: 1987 end-page: 204 ident: bib84 article-title: Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus publication-title: Biology and Fertility of Soils – volume: 447 start-page: 117 year: 2020 end-page: 133 ident: bib80 article-title: The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture publication-title: Plant and Soil – volume: 78 start-page: 150612 year: 2020 ident: bib89 article-title: Compositional and functional responses of soil microbial communities to long-term nitrogen and phosphorus addition in a calcareous grassland publication-title: Pedobiologia – volume: 7 year: 2016 ident: bib47 article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply publication-title: Frontiers of Plant Science – volume: 67 start-page: 106 year: 2013 end-page: 113 ident: bib74 article-title: Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation - coupling soil zymography with 14C imaging publication-title: Soil Biology and Biochemistry – volume: 5 year: 2014 ident: bib39 article-title: Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica publication-title: Frontiers of Plant Science – volume: 36 start-page: 1 year: 2010 end-page: 48 ident: bib86 article-title: Conducting meta-analyses in R with the metafor publication-title: Journal of Statistical Software – volume: 161 start-page: 279 year: 2004 end-page: 290 ident: bib59 article-title: Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland publication-title: New Phytologist – volume: 47 start-page: 31 year: 2009 end-page: 36 ident: bib61 article-title: Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium) publication-title: Plant Physiology and Biochemistry – volume: 8 year: 2017 ident: bib57 article-title: Major agricultural changes required to mitigate phosphorus losses under climate change publication-title: Nature Communications – volume: 45 start-page: 10531 year: 2011 end-page: 10537 ident: bib68 article-title: Enhanced organic phosphorus assimilation promoting biomass and shoot P hyperaccumulations in Lolium multiflorum grown under sterile conditions publication-title: Environmental Science and Technology – volume: 80 start-page: 1150 year: 1999 end-page: 1156 ident: bib38 article-title: The meta-analysis of response ratios in experimental ecology publication-title: Ecological Society of America – volume: 89 start-page: 44 year: 2015 end-page: 51 ident: bib75 article-title: Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability publication-title: Soil Biology and Biochemistry – volume: 77 start-page: 689 year: 2019 end-page: 700 ident: bib8 article-title: Effect of different soil phosphate sources on the active bacterial microbiota is greater in the rhizosphere than in the endorhiza of barley (Hordeum vulgare L.) publication-title: Microbial Ecology – volume: 7 year: 2016 ident: bib87 article-title: Rhizosphere organic anions play a minor role in improving crop species' ability to take up residual phosphorus (P) in agricultural soils low in P availability publication-title: Frontiers of Plant Science – volume: 123 start-page: 21 year: 2018 end-page: 32 ident: bib91 article-title: A meta-analysis of soil extracellular enzyme activities in response to global change publication-title: Soil Biology and Biochemistry – volume: 89 start-page: 82 year: 2015 end-page: 98 ident: bib5 article-title: Assessment of gross and net mineralization rates of soil organic phosphorus - a review publication-title: Soil Biology and Biochemistry – volume: 103 start-page: 1239 year: 2009 end-page: 1247 ident: bib22 article-title: Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils publication-title: Annals of Botany – volume: 281 start-page: 109 year: 2006 end-page: 120 ident: bib56 article-title: Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes publication-title: Plant and Soil – volume: 34 start-page: 140 year: 2001 end-page: 143 ident: bib92 article-title: Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants publication-title: Biology and Fertility of Soils – volume: 349 start-page: 13 year: 2011 end-page: 24 ident: bib19 article-title: Positive feedback between acidification and organic phosphate mineralization in the rhizosphere of maize (Zea mays L.) publication-title: Plant and Soil – year: 2017 ident: bib35 article-title: How does tillage intensity affect soil organic carbon? A systematic review publication-title: Environmental Evidence – volume: 9 start-page: 1614 year: 2018 ident: bib16 article-title: Phosphorus efficiency mechanisms of two wheat cultivars as affected by a range of phosphorus levels in the field publication-title: Frontiers of Plant Science – volume: 29 start-page: 1557 year: 2020 end-page: 1565 ident: bib3 article-title: Effects of PGPR Co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions publication-title: Polish Journal of Environmental Studies – volume: 109 start-page: 6348 year: 2012 end-page: 6358 ident: bib66 article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle publication-title: Proc. Natl. Acad. Sci. U.S.A. – year: 2012 ident: bib6 article-title: Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability publication-title: Soil Biology and Biochemistry – volume: 347 start-page: 1259855 year: 2015 ident: bib76 article-title: Planetary boundaries: guiding human development on a changing planet publication-title: Science – volume: 630 start-page: 849 year: 2018 end-page: 858 ident: bib40 article-title: One-time phosphate fertilizer application to grassland columns modifies the soil microbiota and limits its role in ecosystem services publication-title: The Science of the Total Environment – start-page: 1 year: 2014 end-page: 41 ident: bib54 article-title: Using organic phosphorus to sustain pasture productivity: a perspective publication-title: Geoderma – volume: 255 start-page: 12 year: 2017 end-page: 28 ident: bib30 article-title: Response-based selection of barley cultivars and legume species for complementarity: root morphology and exudation in relation to nutrient source publication-title: Plant Science – volume: 4 start-page: 1 year: 2020 end-page: 22 ident: bib21 article-title: Accessing legacy phosphorus in soils publication-title: Soil Systems – volume: 39 start-page: 25 year: 2003 end-page: 29 ident: bib83 article-title: Organic phosphorus utilization by wheat plants under sterile conditions publication-title: Biology and Fertility of Soils – volume: 65 start-page: 254 year: 2013 end-page: 263 ident: bib73 article-title: Microbial gross organic phosphorus mineralization can be stimulated by root exudates - a 33P isotopic dilution study publication-title: Soil Biology and Biochemistry – volume: 50 start-page: 413 year: 2006 end-page: 425 ident: bib62 article-title: Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil publication-title: Pedobiologia – volume: 18 start-page: 443 year: 2016 end-page: 454 ident: bib2 article-title: Effects of arbuscular mycorrhizal fungus Glomus mosseae and phosphorus application on plant growth rate, essential oil content and composition of coriander (Coriander sativum L.) publication-title: Progress in Nutrition – volume: 349 start-page: 36 year: 2019 end-page: 44 ident: bib11 article-title: Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs publication-title: Geoderma – volume: 179 start-page: 171 year: 1996 end-page: 177 ident: bib58 article-title: Regulation of phosphatase synthesis in Saccharomyces cerevisiae - a review publication-title: Gene – volume: 10 year: 2018 ident: bib69 article-title: The responses of root morphology and phosphorus-mobilizing exudations in wheat to increasing shoot phosphorus concentration publication-title: AOB PLANTS – volume: 9 start-page: 181 year: 2017 end-page: 192 ident: bib46 article-title: Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance publication-title: Earth System Science Data – volume: 22 start-page: 801 year: 1999 end-page: 810 ident: bib29 article-title: Acid phosphatase activity in phosphorus-deficient white lupin roots publication-title: Plant, Cell and Environment – volume: 8 start-page: 1 year: 2018 end-page: 19 ident: bib90 article-title: Root phenotyping for drought tolerance: a review publication-title: Agronomy – volume: 27 start-page: 1351 year: 2004 end-page: 1361 ident: bib27 article-title: Characterization of transgenic Trifolium subterraneum L. which expresses phyA and releases extracellular phytase: growth and P nutrition in laboratory media and soil publication-title: Plant, Cell and Environment – volume: 2017 year: 2017 ident: bib94 article-title: Mechanisms of oat (Avena sativa L.) acclimation to phosphate deficiency publication-title: PeerJ – volume: 157 start-page: 423 year: 2003 end-page: 447 ident: bib85 article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource publication-title: New Phytologist – volume: 19 start-page: 166 year: 2019 end-page: 174 ident: bib63 article-title: Fertilizer P uptake determined by soil P fractionation and phosphatase activity publication-title: Journal of Soil Science and Plant Nutrition – year: 2008 ident: bib81 article-title: Efficiency of Soil and Fertilizer Phosphorus Use – volume: 61 start-page: 317 year: 2011 end-page: 325 ident: bib4 article-title: Interactive effects of soil water content and phytin supply on phosphorus nutrition of different crops species publication-title: Landbauforschung – volume: 427 start-page: 191 year: 2018 end-page: 208 ident: bib26 article-title: Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities publication-title: Plant and Soil – volume: 23 start-page: 397 year: 2000 end-page: 405 ident: bib64 article-title: Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture publication-title: Plant, Cell and Environment – volume: 87 start-page: 1 year: 2018 end-page: 13 ident: bib95 article-title: The effects of diversified phosphorus nutrition on the growth of oat (Avena sativa L.) and acid phosphatase activity publication-title: Acta Societatis Botanicorum Poloniae – volume: 191 year: 2019 ident: bib17 article-title: Interplay of phosphorus doses, cyanobacterial inoculation, and elevated carbon dioxide on yield and phosphorus dynamics in cowpea publication-title: Environmental Monitoring and Assessment – volume: 193 start-page: 696 year: 2012 end-page: 704 ident: bib49 article-title: Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems publication-title: New Phytologist – volume: 53 start-page: 709 year: 2010 end-page: 717 ident: bib97 article-title: Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus conditions publication-title: Science China Life Sciences – start-page: 215 year: 2011 end-page: 243 ident: bib52 article-title: Role of phosphatase enzymes in soil publication-title: Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling – volume: 37 start-page: 977 year: 2005 end-page: 988 ident: bib28 article-title: Behaviour of plant-derived extracellular phytase upon addition to soil publication-title: Soil Biology and Biochemistry – volume: 3 start-page: 82 year: 2017 end-page: 91 ident: bib31 article-title: Linking the depletion of rhizosphere phosphorus to the heterologous expression of a fungal phytase in Nicotiana tabacum as revealed by enzyme-labile P and solution 31P NMR spectroscopy publication-title: Rhizosphere – volume: 338 start-page: 99 year: 2011 end-page: 110 ident: bib78 article-title: Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity publication-title: Plant and Soil – volume: 39 start-page: 303 year: 2005 end-page: 310 ident: bib23 article-title: Soybean (Glycine max) response to phosphate deficiency publication-title: Agrociencia – year: 2012 ident: bib79 article-title: Recovering Phosphorus from Soil: a Root Solution – volume: 167 start-page: 217 year: 2004 end-page: 223 ident: bib45 article-title: Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability publication-title: Plant Science – volume: 103 start-page: 162 year: 1998 end-page: 171 ident: bib24 article-title: Phosphorus effect on phosphatase activity in endomycorrhizal maize publication-title: Physiologia Plantarum – volume: 141 start-page: 433 year: 1999 end-page: 442 ident: bib43 article-title: The effects of quantity and duration of simulated pollutant nitrogen deposition on root-surface phosphatase activities in calcareous and acid grasslands: a bioassay approach publication-title: New Phytologist – start-page: 245 year: 2011 end-page: 271 ident: bib25 article-title: Phosphorus nutrition: rhizosphere processes, plant response and adaptations publication-title: Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling – volume: 11 start-page: 1252 year: 2008 end-page: 1264 ident: bib70 article-title: Stoichiometry of soil enzyme activity at global scale publication-title: Ecology Letters – volume: 154 start-page: 98 year: 2016 end-page: 108 ident: bib93 article-title: Morphological responses of wheat (Triticum aestivum L.) roots to phosphorus supply in two contrasting soils publication-title: Journal of Agricultural Science – volume: 320 start-page: 91 year: 2009 end-page: 102 ident: bib96 article-title: Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress publication-title: Plant and Soil – volume: 427 start-page: 5 year: 2018 end-page: 16 ident: bib50 article-title: Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review publication-title: Plant and Soil – volume: 22 start-page: 69 year: 2004 end-page: 80 ident: bib33 article-title: The association of barley with AM fungi can result in similar yield and grain quality as a long term application of P or P-K fertilizers by enhancing root phosphatase activity and sugars in leaves at tillering publication-title: Biological Agriculture & Horticulture – volume: 714 year: 2020 ident: bib41 article-title: Simulating long-term carbon nitrogen and phosphorus biogeochemical cycling in agricultural environments publication-title: The Science of the Total Environment – volume: 447 start-page: 135 year: 2020 end-page: 156 ident: bib88 article-title: Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives publication-title: Plant and Soil – volume: 12 start-page: 189 year: 1991 end-page: 194 ident: bib71 article-title: Phosphatase activities of pasture plants and soils: relationship with plant productivity and soil P fertility indices publication-title: Biology and Fertility of Soils – volume: 164 start-page: 141 year: 2001 end-page: 145 ident: bib20 article-title: The role of ethylene in root hair growth in Arabidopsis publication-title: Journal of Plant Nutrition and Soil Science – volume: 52 start-page: 581 year: 2014 end-page: 588 ident: bib1 article-title: Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants publication-title: Photosynthetica – volume: 164 start-page: 533 year: 2001 end-page: 539 ident: bib77 article-title: Root renewal of sugar beet as a mechanism of P uptake efficiency publication-title: Journal of Plant Nutrition and Soil Science – volume: 52 start-page: 581 year: 2014 ident: 10.1016/j.soilbio.2021.108537_bib1 article-title: Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants publication-title: Photosynthetica doi: 10.1007/s11099-014-0067-0 – volume: 3 start-page: 82 year: 2017 ident: 10.1016/j.soilbio.2021.108537_bib31 article-title: Linking the depletion of rhizosphere phosphorus to the heterologous expression of a fungal phytase in Nicotiana tabacum as revealed by enzyme-labile P and solution 31P NMR spectroscopy publication-title: Rhizosphere doi: 10.1016/j.rhisph.2016.11.004 – volume: 34 start-page: 151 year: 2001 ident: 10.1016/j.soilbio.2021.108537_bib67 article-title: Phosphatase activity, microbial phosphorus, and fine root growth in forest soils in the Sierra de Gata, western central Spain publication-title: Biology and Fertility of Soils doi: 10.1007/s003740100387 – volume: 5 year: 2014 ident: 10.1016/j.soilbio.2021.108537_bib39 article-title: Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica publication-title: Frontiers of Plant Science doi: 10.3389/fpls.2014.00027 – year: 2017 ident: 10.1016/j.soilbio.2021.108537_bib35 article-title: How does tillage intensity affect soil organic carbon? A systematic review publication-title: Environmental Evidence doi: 10.1186/s13750-017-0108-9 – volume: 53 start-page: 709 year: 2010 ident: 10.1016/j.soilbio.2021.108537_bib97 article-title: Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus conditions publication-title: Science China Life Sciences doi: 10.1007/s11427-010-4008-2 – volume: 9 start-page: 181 year: 2017 ident: 10.1016/j.soilbio.2021.108537_bib46 article-title: Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance publication-title: Earth System Science Data doi: 10.5194/essd-9-181-2017 – volume: 177 start-page: 591 year: 2012 ident: 10.1016/j.soilbio.2021.108537_bib32 article-title: Organic anion-driven solubilization of precipitated and sorbed phytate improves hydrolysis by phytases and bioavailability to Nicotiana tabacum publication-title: Soil Science doi: 10.1097/SS.0b013e318272f83f – volume: 50 start-page: 413 year: 2006 ident: 10.1016/j.soilbio.2021.108537_bib62 article-title: Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil publication-title: Pedobiologia doi: 10.1016/j.pedobi.2006.08.001 – volume: 26 start-page: 5077 year: 2020 ident: 10.1016/j.soilbio.2021.108537_bib9 article-title: Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems publication-title: Global Change Biology doi: 10.1111/gcb.15218 – volume: 103 start-page: 162 year: 1998 ident: 10.1016/j.soilbio.2021.108537_bib24 article-title: Phosphorus effect on phosphatase activity in endomycorrhizal maize publication-title: Physiologia Plantarum doi: 10.1034/j.1399-3054.1998.1030203.x – volume: 281 start-page: 109 year: 2006 ident: 10.1016/j.soilbio.2021.108537_bib56 article-title: Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes publication-title: Plant and Soil doi: 10.1007/s11104-005-3936-2 – volume: 18 start-page: 443 year: 2016 ident: 10.1016/j.soilbio.2021.108537_bib2 article-title: Effects of arbuscular mycorrhizal fungus Glomus mosseae and phosphorus application on plant growth rate, essential oil content and composition of coriander (Coriander sativum L.) publication-title: Progress in Nutrition – start-page: 245 year: 2011 ident: 10.1016/j.soilbio.2021.108537_bib25 article-title: Phosphorus nutrition: rhizosphere processes, plant response and adaptations – volume: 2 start-page: 459 year: 2021 ident: 10.1016/j.soilbio.2021.108537_bib37 article-title: Local solutions to global phosphorus imbalances publication-title: Nature Food doi: 10.1038/s43016-021-00301-0 – volume: 447 start-page: 135 year: 2020 ident: 10.1016/j.soilbio.2021.108537_bib88 article-title: Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives publication-title: Plant and Soil doi: 10.1007/s11104-019-03972-8 – volume: 10 start-page: 223 year: 1978 ident: 10.1016/j.soilbio.2021.108537_bib53 article-title: Criteria for measurement of microbial growth and activity in soil publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(78)90100-1 – volume: 11 start-page: 1252 year: 2008 ident: 10.1016/j.soilbio.2021.108537_bib70 article-title: Stoichiometry of soil enzyme activity at global scale publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2008.01245.x – volume: 11 start-page: 3 year: 1979 ident: 10.1016/j.soilbio.2021.108537_bib72 article-title: Effects of phosphorus addition and energy supply on acid phosphatase production and activity in soils publication-title: Soil Biology and Biochemistry doi: 10.1016/0038-0717(79)90110-X – volume: 67 start-page: 106 year: 2013 ident: 10.1016/j.soilbio.2021.108537_bib74 article-title: Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation - coupling soil zymography with 14C imaging publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2013.08.015 – volume: 170 start-page: 1243 year: 2013 ident: 10.1016/j.soilbio.2021.108537_bib82 article-title: Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2013.04.015 – volume: 89 start-page: 82 year: 2015 ident: 10.1016/j.soilbio.2021.108537_bib5 article-title: Assessment of gross and net mineralization rates of soil organic phosphorus - a review publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.06.026 – volume: 255 start-page: 12 year: 2017 ident: 10.1016/j.soilbio.2021.108537_bib30 article-title: Response-based selection of barley cultivars and legume species for complementarity: root morphology and exudation in relation to nutrient source publication-title: Plant Science doi: 10.1016/j.plantsci.2016.11.002 – volume: 19 start-page: 292 year: 2009 ident: 10.1016/j.soilbio.2021.108537_bib14 article-title: The story of phosphorus: global food security and food for thought publication-title: Global Environmental Change doi: 10.1016/j.gloenvcha.2008.10.009 – volume: 142 year: 2020 ident: 10.1016/j.soilbio.2021.108537_bib51 article-title: Using a meta-analysis approach to understand complexity in soil biodiversity and phosphorus acquisition in plants publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2019.107695 – volume: 349 start-page: 36 year: 2019 ident: 10.1016/j.soilbio.2021.108537_bib11 article-title: Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs publication-title: Geoderma doi: 10.1016/j.geoderma.2019.04.039 – volume: 447 start-page: 117 year: 2020 ident: 10.1016/j.soilbio.2021.108537_bib80 article-title: The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture publication-title: Plant and Soil doi: 10.1007/s11104-019-04110-0 – volume: 7 year: 2016 ident: 10.1016/j.soilbio.2021.108537_bib47 article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply publication-title: Frontiers of Plant Science doi: 10.3389/fpls.2016.01939 – volume: 444 start-page: 21 year: 2019 ident: 10.1016/j.soilbio.2021.108537_bib10 article-title: Minor responses of soil microbial biomass, community structure and enzyme activities to nitrogen and phosphorus addition in three grassland ecosystems publication-title: Plant and Soil doi: 10.1007/s11104-019-04250-3 – start-page: 8417 year: 2014 ident: 10.1016/j.soilbio.2021.108537_bib36 article-title: Sustainable phosphorus management and the need for a long-term perspective: the legacy hypothesis publication-title: Environmental Science & Technology doi: 10.1021/es502852s – volume: 32 start-page: 1817 year: 2000 ident: 10.1016/j.soilbio.2021.108537_bib34 article-title: Plant species affect acid phosphatase, ergosterol and microbial P in a Jarrah (Eucalyptus marginata Donn ex Sm.) forest in south-western Australia publication-title: Soil Biology and Biochemistry doi: 10.1016/S0038-0717(00)00155-3 – volume: 338 start-page: 99 year: 2011 ident: 10.1016/j.soilbio.2021.108537_bib78 article-title: Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity publication-title: Plant and Soil doi: 10.1007/s11104-010-0296-3 – volume: 164 start-page: 141 year: 2001 ident: 10.1016/j.soilbio.2021.108537_bib20 article-title: The role of ethylene in root hair growth in Arabidopsis publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/1522-2624(200104)164:2<141::AID-JPLN141>3.0.CO;2-Z – volume: 3 start-page: 199 year: 1987 ident: 10.1016/j.soilbio.2021.108537_bib84 article-title: Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus publication-title: Biology and Fertility of Soils doi: 10.1007/BF00640630 – volume: 37 start-page: 977 year: 2005 ident: 10.1016/j.soilbio.2021.108537_bib28 article-title: Behaviour of plant-derived extracellular phytase upon addition to soil publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2004.10.016 – year: 2021 ident: 10.1016/j.soilbio.2021.108537_bib48 article-title: The effect of global change on soil phosphatase activity publication-title: Global Change Biology doi: 10.1111/gcb.15832 – volume: 161 start-page: 279 year: 2004 ident: 10.1016/j.soilbio.2021.108537_bib59 article-title: Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland publication-title: New Phytologist doi: 10.1046/j.1469-8137.2003.00910.x – volume: 19 start-page: 166 year: 2019 ident: 10.1016/j.soilbio.2021.108537_bib63 article-title: Fertilizer P uptake determined by soil P fractionation and phosphatase activity publication-title: Journal of Soil Science and Plant Nutrition doi: 10.1007/s42729-019-00024-z – year: 2012 ident: 10.1016/j.soilbio.2021.108537_bib79 – volume: 34 start-page: 140 year: 2001 ident: 10.1016/j.soilbio.2021.108537_bib92 article-title: Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants publication-title: Biology and Fertility of Soils doi: 10.1007/s003740100376 – volume: 9 start-page: 353 year: 2016 ident: 10.1016/j.soilbio.2021.108537_bib60 article-title: Long-term accumulation and transport of anthropogenic phosphorus in three river basins publication-title: Nature Geoscience doi: 10.1038/ngeo2693 – volume: 323 start-page: 1014 year: 2009 ident: 10.1016/j.soilbio.2021.108537_bib13 article-title: Ecology - controlling eutrophication: nitrogen and phosphorus publication-title: Science doi: 10.1126/science.1167755 – volume: 65 start-page: 254 year: 2013 ident: 10.1016/j.soilbio.2021.108537_bib73 article-title: Microbial gross organic phosphorus mineralization can be stimulated by root exudates - a 33P isotopic dilution study publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2013.05.028 – volume: 9 start-page: 1614 year: 2018 ident: 10.1016/j.soilbio.2021.108537_bib16 article-title: Phosphorus efficiency mechanisms of two wheat cultivars as affected by a range of phosphorus levels in the field publication-title: Frontiers of Plant Science doi: 10.3389/fpls.2018.01614 – volume: 89 start-page: 44 year: 2015 ident: 10.1016/j.soilbio.2021.108537_bib75 article-title: Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2015.06.018 – start-page: 215 year: 2011 ident: 10.1016/j.soilbio.2021.108537_bib52 article-title: Role of phosphatase enzymes in soil – volume: 34 start-page: 29 year: 2010 ident: 10.1016/j.soilbio.2021.108537_bib7 article-title: glmulti: an R package for easy automated model selection with (generalized) linear models publication-title: Journal of Statistical Software doi: 10.18637/jss.v034.i12 – volume: 435 start-page: 175 year: 2019 ident: 10.1016/j.soilbio.2021.108537_bib15 article-title: The combination of Arachis pintoi green manure and natural phosphate improves maize growth, soil microbial community structure and enzymatic activities publication-title: Plant and Soil doi: 10.1007/s11104-018-3887-z – volume: 58 start-page: 295 year: 2015 ident: 10.1016/j.soilbio.2021.108537_bib65 article-title: Responses of acid phosphatase activity on the root surface and rhizospheric soil of soybean plants to phosphorus fertilization and Rhizobacteria application under low water supply publication-title: Scientific Papers Series A-Agronomy – volume: 39 start-page: 25 year: 2003 ident: 10.1016/j.soilbio.2021.108537_bib83 article-title: Organic phosphorus utilization by wheat plants under sterile conditions publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-003-0671-9 – volume: 8 year: 2017 ident: 10.1016/j.soilbio.2021.108537_bib57 article-title: Major agricultural changes required to mitigate phosphorus losses under climate change publication-title: Nature Communications doi: 10.1038/s41467-017-00232-0 – volume: 320 start-page: 91 year: 2009 ident: 10.1016/j.soilbio.2021.108537_bib96 article-title: Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress publication-title: Plant and Soil doi: 10.1007/s11104-008-9873-0 – volume: 4 start-page: 1 year: 2020 ident: 10.1016/j.soilbio.2021.108537_bib21 article-title: Accessing legacy phosphorus in soils publication-title: Soil Systems doi: 10.3390/soilsystems4040074 – volume: 36 start-page: 1 year: 2010 ident: 10.1016/j.soilbio.2021.108537_bib86 article-title: Conducting meta-analyses in R with the metafor publication-title: Journal of Statistical Software doi: 10.18637/jss.v036.i03 – volume: 141 start-page: 433 year: 1999 ident: 10.1016/j.soilbio.2021.108537_bib43 article-title: The effects of quantity and duration of simulated pollutant nitrogen deposition on root-surface phosphatase activities in calcareous and acid grasslands: a bioassay approach publication-title: New Phytologist doi: 10.1046/j.1469-8137.1999.00360.x – volume: 22 start-page: 69 year: 2004 ident: 10.1016/j.soilbio.2021.108537_bib33 article-title: The association of barley with AM fungi can result in similar yield and grain quality as a long term application of P or P-K fertilizers by enhancing root phosphatase activity and sugars in leaves at tillering publication-title: Biological Agriculture & Horticulture doi: 10.1080/01448765.2004.9754989 – volume: 77 start-page: 689 year: 2019 ident: 10.1016/j.soilbio.2021.108537_bib8 article-title: Effect of different soil phosphate sources on the active bacterial microbiota is greater in the rhizosphere than in the endorhiza of barley (Hordeum vulgare L.) publication-title: Microbial Ecology doi: 10.1007/s00248-018-1264-3 – volume: 347 start-page: 1259855 year: 2015 ident: 10.1016/j.soilbio.2021.108537_bib76 article-title: Planetary boundaries: guiding human development on a changing planet publication-title: Science doi: 10.1126/science.1259855 – year: 2008 ident: 10.1016/j.soilbio.2021.108537_bib81 – volume: 157 start-page: 423 year: 2003 ident: 10.1016/j.soilbio.2021.108537_bib85 article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource publication-title: New Phytologist doi: 10.1046/j.1469-8137.2003.00695.x – volume: 401 start-page: 291 year: 2016 ident: 10.1016/j.soilbio.2021.108537_bib18 article-title: Shoot specific fungal endophytes alter soil phosphorus (P) fractions and potential acid phosphatase activity but do not increase P uptake in tall fescue publication-title: Plant and Soil doi: 10.1007/s11104-015-2757-1 – volume: 427 start-page: 5 year: 2018 ident: 10.1016/j.soilbio.2021.108537_bib50 article-title: Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review publication-title: Plant and Soil doi: 10.1007/s11104-017-3362-2 – volume: 47 start-page: 31 year: 2009 ident: 10.1016/j.soilbio.2021.108537_bib61 article-title: Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium) publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2008.09.002 – year: 2012 ident: 10.1016/j.soilbio.2021.108537_bib6 article-title: Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2012.04.012 – volume: 127 start-page: 211 year: 2018 ident: 10.1016/j.soilbio.2021.108537_bib55 article-title: Effect of phosphate nutrition on growth, physiology and phosphate transporter expression of cucumber seedlings publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2018.03.028 – volume: 103 start-page: 1239 year: 2009 ident: 10.1016/j.soilbio.2021.108537_bib22 article-title: Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils publication-title: Annals of Botany doi: 10.1093/aob/mcp074 – volume: 34 start-page: 258 year: 2001 ident: 10.1016/j.soilbio.2021.108537_bib12 article-title: Effect of long-term fertiliser use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland publication-title: Biology and Fertility of Soils doi: 10.1007/s003740100411 – volume: 191 year: 2019 ident: 10.1016/j.soilbio.2021.108537_bib17 article-title: Interplay of phosphorus doses, cyanobacterial inoculation, and elevated carbon dioxide on yield and phosphorus dynamics in cowpea publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-019-7378-3 – volume: 427 start-page: 191 year: 2018 ident: 10.1016/j.soilbio.2021.108537_bib26 article-title: Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities publication-title: Plant and Soil doi: 10.1007/s11104-017-3391-x – volume: 193 start-page: 696 year: 2012 ident: 10.1016/j.soilbio.2021.108537_bib49 article-title: Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems publication-title: New Phytologist doi: 10.1111/j.1469-8137.2011.03967.x – volume: 167 start-page: 217 year: 2004 ident: 10.1016/j.soilbio.2021.108537_bib45 article-title: Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability publication-title: Plant Science doi: 10.1016/j.plantsci.2004.02.026 – volume: 45 start-page: 10531 year: 2011 ident: 10.1016/j.soilbio.2021.108537_bib68 article-title: Enhanced organic phosphorus assimilation promoting biomass and shoot P hyperaccumulations in Lolium multiflorum grown under sterile conditions publication-title: Environmental Science and Technology doi: 10.1021/es200942v – volume: 10 year: 2018 ident: 10.1016/j.soilbio.2021.108537_bib69 article-title: The responses of root morphology and phosphorus-mobilizing exudations in wheat to increasing shoot phosphorus concentration publication-title: AOB PLANTS doi: 10.1093/aobpla/ply054 – volume: 714 year: 2020 ident: 10.1016/j.soilbio.2021.108537_bib41 article-title: Simulating long-term carbon nitrogen and phosphorus biogeochemical cycling in agricultural environments publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2020.136599 – volume: 349 start-page: 13 year: 2011 ident: 10.1016/j.soilbio.2021.108537_bib19 article-title: Positive feedback between acidification and organic phosphate mineralization in the rhizosphere of maize (Zea mays L.) publication-title: Plant and Soil doi: 10.1007/s11104-011-0783-1 – volume: 2017 year: 2017 ident: 10.1016/j.soilbio.2021.108537_bib94 article-title: Mechanisms of oat (Avena sativa L.) acclimation to phosphate deficiency publication-title: PeerJ – volume: 154 start-page: 98 year: 2016 ident: 10.1016/j.soilbio.2021.108537_bib93 article-title: Morphological responses of wheat (Triticum aestivum L.) roots to phosphorus supply in two contrasting soils publication-title: Journal of Agricultural Science doi: 10.1017/S0021859615000702 – volume: 61 start-page: 317 year: 2011 ident: 10.1016/j.soilbio.2021.108537_bib4 article-title: Interactive effects of soil water content and phytin supply on phosphorus nutrition of different crops species publication-title: Landbauforschung – volume: 630 start-page: 849 year: 2018 ident: 10.1016/j.soilbio.2021.108537_bib40 article-title: One-time phosphate fertilizer application to grassland columns modifies the soil microbiota and limits its role in ecosystem services publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2018.02.263 – start-page: 1 year: 2014 ident: 10.1016/j.soilbio.2021.108537_bib54 article-title: Using organic phosphorus to sustain pasture productivity: a perspective publication-title: Geoderma – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.soilbio.2021.108537_bib90 article-title: Root phenotyping for drought tolerance: a review publication-title: Agronomy doi: 10.3390/agronomy8110241 – volume: 80 start-page: 1150 year: 1999 ident: 10.1016/j.soilbio.2021.108537_bib38 article-title: The meta-analysis of response ratios in experimental ecology publication-title: Ecological Society of America – year: 2011 ident: 10.1016/j.soilbio.2021.108537_bib44 article-title: Solubilization of phosphorus by soil microorganisms – volume: 12 start-page: 189 year: 1991 ident: 10.1016/j.soilbio.2021.108537_bib71 article-title: Phosphatase activities of pasture plants and soils: relationship with plant productivity and soil P fertility indices publication-title: Biology and Fertility of Soils doi: 10.1007/BF00337200 – volume: 29 start-page: 1557 year: 2020 ident: 10.1016/j.soilbio.2021.108537_bib3 article-title: Effects of PGPR Co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions publication-title: Polish Journal of Environmental Studies doi: 10.15244/pjoes/110345 – volume: 139 year: 2019 ident: 10.1016/j.soilbio.2021.108537_bib42 article-title: Is the enzymatic hydrolysis of soil organic phosphorus compounds limited by enzyme or substrate availability? publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2019.107628 – volume: 23 start-page: 397 year: 2000 ident: 10.1016/j.soilbio.2021.108537_bib64 article-title: Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture publication-title: Plant, Cell and Environment doi: 10.1046/j.1365-3040.2000.00557.x – volume: 22 start-page: 801 year: 1999 ident: 10.1016/j.soilbio.2021.108537_bib29 article-title: Acid phosphatase activity in phosphorus-deficient white lupin roots publication-title: Plant, Cell and Environment doi: 10.1046/j.1365-3040.1999.00441.x – volume: 164 start-page: 533 year: 2001 ident: 10.1016/j.soilbio.2021.108537_bib77 article-title: Root renewal of sugar beet as a mechanism of P uptake efficiency publication-title: Journal of Plant Nutrition and Soil Science doi: 10.1002/1522-2624(200110)164:5<533::AID-JPLN533>3.0.CO;2-D – volume: 109 start-page: 6348 year: 2012 ident: 10.1016/j.soilbio.2021.108537_bib66 article-title: Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1113675109 – volume: 123 start-page: 21 year: 2018 ident: 10.1016/j.soilbio.2021.108537_bib91 article-title: A meta-analysis of soil extracellular enzyme activities in response to global change publication-title: Soil Biology and Biochemistry doi: 10.1016/j.soilbio.2018.05.001 – volume: 179 start-page: 171 year: 1996 ident: 10.1016/j.soilbio.2021.108537_bib58 article-title: Regulation of phosphatase synthesis in Saccharomyces cerevisiae - a review publication-title: Gene doi: 10.1016/S0378-1119(96)00425-8 – volume: 27 start-page: 1351 year: 2004 ident: 10.1016/j.soilbio.2021.108537_bib27 article-title: Characterization of transgenic Trifolium subterraneum L. which expresses phyA and releases extracellular phytase: growth and P nutrition in laboratory media and soil publication-title: Plant, Cell and Environment doi: 10.1111/j.1365-3040.2004.01225.x – volume: 87 start-page: 1 year: 2018 ident: 10.1016/j.soilbio.2021.108537_bib95 article-title: The effects of diversified phosphorus nutrition on the growth of oat (Avena sativa L.) and acid phosphatase activity publication-title: Acta Societatis Botanicorum Poloniae doi: 10.5586/asbp.3571 – volume: 7 year: 2016 ident: 10.1016/j.soilbio.2021.108537_bib87 article-title: Rhizosphere organic anions play a minor role in improving crop species' ability to take up residual phosphorus (P) in agricultural soils low in P availability publication-title: Frontiers of Plant Science doi: 10.3389/fpls.2016.01664 – volume: 78 start-page: 150612 year: 2020 ident: 10.1016/j.soilbio.2021.108537_bib89 article-title: Compositional and functional responses of soil microbial communities to long-term nitrogen and phosphorus addition in a calcareous grassland publication-title: Pedobiologia doi: 10.1016/j.pedobi.2019.150612 – volume: 39 start-page: 303 year: 2005 ident: 10.1016/j.soilbio.2021.108537_bib23 article-title: Soybean (Glycine max) response to phosphate deficiency publication-title: Agrociencia |
SSID | ssj0002513 |
Score | 2.5877066 |
Snippet | Phosphorus (P) is a key limiting factor in crop growth and essential for agriculture. As plant uptake of P is inefficient, it is commonly applied to maintain... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108537 |
SubjectTerms | Agriculture enzyme activity enzymes food security meta-analysis mineralization Monoesterase nitrogen Phosphatase Phosphorus deficiency physiology Phytase rock phosphate soil systematic review variance |
Title | A meta-analysis of phosphatase activity in agricultural settings in response to phosphorus deficiency |
URI | https://dx.doi.org/10.1016/j.soilbio.2021.108537 https://www.proquest.com/docview/2636458357 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHtSD6FScP0YEr93WLm2z4xiOqbiTg91CkiZuY7al7a7-7ea16UQRBl5bXlreC--9kO_7HkIPg6E2bbkAoVtXOSQAEIDyiMO1x6mggeyXOtuvs2A6J88Lf9FA45oLA7BKm_urnF5ma_ukZ73ZS1cr4PiCWDocYUA0qpT-JCSEXd79_IZ5mPpthXcpkHXCbxZPbw16uRuxAg6g5wLazodx6H_Xp1-Zuiw_k1N0YvtGPKp-7Qw1VNxCx6P3zGpnqBY6HNfD286RGuEPVXCHW80RnGicLpM8XfLC1C0MdAaYGoFXMea7RcwHclUCoXN4kVX4WYWLxBon2TbHkQLVCaBsXqD55PFtPHXsRAVHEt8vHDIUpsMzHRMhA2rCNwjMIVJRU6fDYag55SGXQ6qJK7UUMuABJS6XJhFFQhPfnGcvUTNOYnUFkCjd51FfaupHREQRlSTyvEjJQOtQ-F4bkdqPTFq5cZh6sWE1rmzNrPsZuJ9V7m-j7s4srfQ29hnQOkjsx8ZhpibsM72vg8pMeOCmhMcq2ebMC-B21jSn4fX_l79BRx5wJUqI9y1qFtlW3ZkOphCdcot20MHo6WU6-wKLu_KI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IHtCDUdSIP2vidfwY3VaOhEhQgRMk3Jq2awWCG2Hj6t9u39ZBNCYkXre8bnmve-81-77vIfTc7mjTlgsQum0ph_gAAlAucbh2ORXUl81MZ3s09gdT8jbzZiXUK7gwAKu0uT_P6Vm2tlca1puN9WIBHF8QS4cjDIhGgfTnETGfL4wxqH_tcR6mgFvlXQpsnWBP42ksQTB3JRZAAnRbALfzYB763wXqV6rO6k__DJ3axhF383c7RyUVVdFJ92NjxTNUFVV6xfS2C6S6-FOl3OFWdATHGq_ncbKe89QULgx8BhgbgRcR5rtFzAMSlSGhE7ixyQG0CqexNY432wSHCmQngLN5iab9l0lv4NiRCo4knpc6pCNMi2daJkLa1MSv7ZtTpKKmUAedQHPKAy47VJOW1FJIn_uUtLg0mSgUmnjmQHuFylEcqWvAROkmD5tSUy8kIgypJKHrhkr6WgfCc2uIFH5k0uqNw9iLFSuAZUtm3c_A_Sx3fw3Vd2brXHDjkAEtgsR-7BxmisIh06ciqMyEB36V8EjF24S5PvyeNd1pcPP_5R9RZTAZDdnwdfx-i45dIE5keO87VE43W3Vv2plUPGTb9RsWyPQW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+meta-analysis+of+phosphatase+activity+in+agricultural+settings+in+response+to+phosphorus+deficiency&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Janes-Bassett%2C+Victoria&rft.au=Blackwell%2C+Martin+S.A.&rft.au=Blair%2C+Gordon&rft.au=Davies%2C+Jess&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=0038-0717&rft.eissn=1879-3428&rft.volume=165&rft_id=info:doi/10.1016%2Fj.soilbio.2021.108537&rft.externalDocID=S0038071721004119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |