New approaches for extracting and recovering metals from mine tailings

[Display omitted] •Mineral tailings from two copper mines were bioleached under different conditions.•Greatest copper extraction was achieved at extremely low pH, at 45°C and under oxidative/reductive conditions.•Copper present in tailings PLS was selectively precipitated as CuS by biogenic H2S.•Mic...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 106; pp. 71 - 78
Main Authors Falagán, Carmen, Grail, Barry M., Johnson, D. Barrie
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Mineral tailings from two copper mines were bioleached under different conditions.•Greatest copper extraction was achieved at extremely low pH, at 45°C and under oxidative/reductive conditions.•Copper present in tailings PLS was selectively precipitated as CuS by biogenic H2S.•Microbial communities were dominated by Sb. thermosulfidooxidans and Acidithiobacillus spp.•The microbial community composition was affected by temperature and the tailings used. Waste materials from metal mining, such as mineral tailings, often contain significant amounts of potentially valuable metals particularly where, as in many historic operations, the efficiency of flotation technologies used to concentrate target minerals was not as good as those currently available. A two-stage mineral leaching and metal recovery protocol was developed to extract copper from tailings generated as waste materials in two mines currently operating in Spain and Serbia. The most effective extraction of copper (84 to >90%) was achieved by bioleaching the tailings at 45°C, using a defined microbial consortium, where elemental sulfur was added to the tailings and the pH of leach liquors allowed to fall to ∼pH 1, at which point anaerobic conditions were imposed. The thermo-tolerant acidophiles Acidithiobacillus caldus and Sulfobacillus thermosulfidooxidans emerged as the dominant bacteria present in both tailings leachates under these conditions. Copper present in the pregnant leach solutions (PLS) produced were next precipitated as a sulfide phase using hydrogen sulfide generated in a low pH (4.0) sulfidogenic bioreactor. The off-line system used allowed the copper present in PLS to be precipitated selectively without the need to adjust the pH of the PLS, though small amounts of silver present in PLS from one of the tailings samples co-precipitated with copper sulfide. Experimental data also suggested that it would be possible to extract silver from bioleached solid residues (where it was mostly found) using a simple chemical extractant. The results suggested that bio-processing these waste materials would have economic as well as environmental benefits.
AbstractList [Display omitted] •Mineral tailings from two copper mines were bioleached under different conditions.•Greatest copper extraction was achieved at extremely low pH, at 45°C and under oxidative/reductive conditions.•Copper present in tailings PLS was selectively precipitated as CuS by biogenic H2S.•Microbial communities were dominated by Sb. thermosulfidooxidans and Acidithiobacillus spp.•The microbial community composition was affected by temperature and the tailings used. Waste materials from metal mining, such as mineral tailings, often contain significant amounts of potentially valuable metals particularly where, as in many historic operations, the efficiency of flotation technologies used to concentrate target minerals was not as good as those currently available. A two-stage mineral leaching and metal recovery protocol was developed to extract copper from tailings generated as waste materials in two mines currently operating in Spain and Serbia. The most effective extraction of copper (84 to >90%) was achieved by bioleaching the tailings at 45°C, using a defined microbial consortium, where elemental sulfur was added to the tailings and the pH of leach liquors allowed to fall to ∼pH 1, at which point anaerobic conditions were imposed. The thermo-tolerant acidophiles Acidithiobacillus caldus and Sulfobacillus thermosulfidooxidans emerged as the dominant bacteria present in both tailings leachates under these conditions. Copper present in the pregnant leach solutions (PLS) produced were next precipitated as a sulfide phase using hydrogen sulfide generated in a low pH (4.0) sulfidogenic bioreactor. The off-line system used allowed the copper present in PLS to be precipitated selectively without the need to adjust the pH of the PLS, though small amounts of silver present in PLS from one of the tailings samples co-precipitated with copper sulfide. Experimental data also suggested that it would be possible to extract silver from bioleached solid residues (where it was mostly found) using a simple chemical extractant. The results suggested that bio-processing these waste materials would have economic as well as environmental benefits.
Author Johnson, D. Barrie
Falagán, Carmen
Grail, Barry M.
Author_xml – sequence: 1
  givenname: Carmen
  surname: Falagán
  fullname: Falagán, Carmen
  email: c.falagan@bangor.ac.uk
– sequence: 2
  givenname: Barry M.
  surname: Grail
  fullname: Grail, Barry M.
  email: b.m.grail@bangor.ac.uk
– sequence: 3
  givenname: D. Barrie
  surname: Johnson
  fullname: Johnson, D. Barrie
  email: d.b.johnson@bangor.ac.uk
BookMark eNqFkE1LAzEQhoNUsFX_gYf9A1vztZvEgyDFqlD0oueQJrM1pZuUbKj6781STx70NMy8887HM0OTEAMgdEXwnGDSXm_nvQ8QNnNaslKaYyxP0JRIQWvFOZ-gKZaK1q0UzRmaDcMWY9wIqaZo-QwfldnvUzT2HYaqi6mCz5yMzT5sKhNclcDGA6Qx7SGbXWlKsa_GlVU2fleE4QKddkWBy594jt6W96-Lx3r18vC0uFvVljdNrrlgSrZEWLAdo44xSjrLGDhFHFlbJ1rHjWgaStdW8UZ1hivZtUwKLBtqgZ2jm-Ncm-IwJOi09dlkH0M52e80wXokorf6SESPRMZqIVLM_Jd5n3xv0td_ttujDcpjBw9JD9ZDsOB8QZO1i_7vAd84qX_J
CitedBy_id crossref_primary_10_2138_am_2019_6848
crossref_primary_10_1016_j_gexplo_2019_01_002
crossref_primary_10_3390_min8100454
crossref_primary_10_1063_5_0040331
crossref_primary_10_1016_j_jclepro_2018_04_116
crossref_primary_10_1016_j_resourpol_2021_102197
crossref_primary_10_1002_tqem_22085
crossref_primary_10_4236_jmmce_2017_53010
crossref_primary_10_1016_j_matpr_2020_01_616
crossref_primary_10_7494_geol_2024_50_4_401
crossref_primary_10_1016_j_oregeorev_2023_105337
crossref_primary_10_1016_j_mineng_2022_107629
crossref_primary_10_1016_j_mineng_2022_107628
crossref_primary_10_1016_j_mineng_2023_108534
crossref_primary_10_1016_j_gexplo_2024_107439
crossref_primary_10_1007_s10854_020_05048_1
crossref_primary_10_1007_s42461_018_0016_8
crossref_primary_10_3390_min8070295
crossref_primary_10_3390_min10020158
crossref_primary_10_3390_w13213123
crossref_primary_10_1016_j_jclepro_2019_04_171
crossref_primary_10_1016_j_hydromet_2022_105995
crossref_primary_10_35208_ert_1411298
crossref_primary_10_1016_j_jsames_2018_08_013
crossref_primary_10_1016_j_mineng_2022_107514
crossref_primary_10_1016_j_mtsust_2024_100704
crossref_primary_10_1016_j_seppur_2021_118963
crossref_primary_10_3389_feart_2024_1480706
crossref_primary_10_3390_molecules29071550
crossref_primary_10_1038_s41561_020_0531_3
crossref_primary_10_4236_ojg_2020_1012055
crossref_primary_10_3390_min12050545
crossref_primary_10_1016_j_gsd_2022_100839
crossref_primary_10_1080_08827508_2023_2181346
crossref_primary_10_1016_j_hydromet_2021_105566
crossref_primary_10_1080_08827508_2019_1667778
crossref_primary_10_3390_molecules30010069
crossref_primary_10_3390_met11050780
crossref_primary_10_3749_2300052
crossref_primary_10_1016_j_chemosphere_2020_127288
crossref_primary_10_1016_j_mineng_2021_107343
crossref_primary_10_1016_j_chemosphere_2017_07_124
crossref_primary_10_1007_s10661_024_12894_7
crossref_primary_10_3390_min10060513
crossref_primary_10_1088_1755_1315_459_4_042004
crossref_primary_10_1016_j_jclepro_2021_130129
crossref_primary_10_1016_j_powtec_2021_07_008
crossref_primary_10_1016_j_mineng_2018_04_007
crossref_primary_10_1007_s42461_024_01059_2
crossref_primary_10_1016_j_marpolbul_2018_06_060
crossref_primary_10_1007_s42452_020_03447_x
crossref_primary_10_1016_j_seppur_2024_127938
crossref_primary_10_1016_j_hydromet_2020_105376
crossref_primary_10_1016_j_chemosphere_2020_126227
crossref_primary_10_1128_aem_01266_22
crossref_primary_10_4028_www_scientific_net_MSF_989_554
crossref_primary_10_1016_j_jenvman_2021_112060
crossref_primary_10_1016_j_jclepro_2024_143114
crossref_primary_10_3390_min12010100
crossref_primary_10_3390_su142013570
crossref_primary_10_1080_00194506_2022_2128904
crossref_primary_10_1007_s41748_022_00306_0
crossref_primary_10_1016_j_hydromet_2020_105484
crossref_primary_10_1061__ASCE_MT_1943_5533_0004209
crossref_primary_10_4236_ijg_2024_155025
crossref_primary_10_1007_s13762_022_04072_4
crossref_primary_10_1016_j_mineng_2018_12_016
crossref_primary_10_1039_C8RA00454D
crossref_primary_10_1080_17480930_2023_2229689
crossref_primary_10_1016_j_apgeochem_2019_03_014
crossref_primary_10_1016_j_jece_2019_102964
crossref_primary_10_1016_j_jenvman_2021_113013
crossref_primary_10_3390_coatings13050946
crossref_primary_10_1016_j_jhazmat_2022_130498
crossref_primary_10_3390_min10080682
crossref_primary_10_3390_microorganisms11010222
crossref_primary_10_1016_j_watres_2023_119948
crossref_primary_10_20964_2022_09_08
crossref_primary_10_3390_min11010028
crossref_primary_10_3390_min14111094
crossref_primary_10_3390_min15030254
crossref_primary_10_1007_s10230_021_00754_6
crossref_primary_10_1016_j_rser_2024_114665
crossref_primary_10_3390_min14101051
crossref_primary_10_3390_geosciences12050214
crossref_primary_10_2478_ama_2023_0041
crossref_primary_10_3389_feart_2022_1083436
crossref_primary_10_3389_fsufs_2021_701870
crossref_primary_10_1080_15226514_2024_2373427
crossref_primary_10_5194_bg_16_573_2019
crossref_primary_10_1038_s43017_022_00387_5
crossref_primary_10_1016_j_jclepro_2023_137163
crossref_primary_10_1088_1755_1315_666_2_022046
crossref_primary_10_1016_j_jag_2018_09_006
crossref_primary_10_1038_s41598_024_58366_3
crossref_primary_10_1155_2019_2130617
crossref_primary_10_1016_j_mineng_2018_05_005
crossref_primary_10_1038_s43017_021_00211_6
crossref_primary_10_3390_min8080343
crossref_primary_10_3390_min14090893
crossref_primary_10_1016_j_jclepro_2022_133857
crossref_primary_10_1016_j_clet_2022_100499
crossref_primary_10_21923_jesd_472343
crossref_primary_10_1016_j_memsci_2020_117832
crossref_primary_10_3390_su151310222
crossref_primary_10_1016_j_jenvman_2018_07_050
crossref_primary_10_1016_j_gexplo_2022_106997
crossref_primary_10_1016_j_jece_2025_116136
crossref_primary_10_3390_met11091335
crossref_primary_10_1016_j_mineng_2018_11_028
crossref_primary_10_1016_j_rineng_2021_100207
crossref_primary_10_1007_s40789_025_00756_7
crossref_primary_10_1134_S0036024423070294
crossref_primary_10_3390_min9070401
crossref_primary_10_1016_j_conbuildmat_2020_121217
crossref_primary_10_1029_2022GB007515
crossref_primary_10_1016_j_conbuildmat_2023_134382
crossref_primary_10_1016_j_psep_2024_06_086
crossref_primary_10_1144_geochem2018_054
crossref_primary_10_18011_bioeng2020v14n4p389_401
crossref_primary_10_1016_j_envpol_2019_113290
crossref_primary_10_1520_ACEM20230031
crossref_primary_10_1016_j_jclepro_2021_126806
crossref_primary_10_1016_j_conengprac_2022_105385
crossref_primary_10_1080_08827508_2024_2316060
crossref_primary_10_1016_j_jenvman_2023_118511
crossref_primary_10_1016_j_conbuildmat_2022_129973
crossref_primary_10_1016_j_hydromet_2020_105443
crossref_primary_10_1016_j_mineng_2022_107587
crossref_primary_10_1016_j_mineng_2021_107051
crossref_primary_10_1016_j_resourpol_2025_105513
crossref_primary_10_1016_j_seppur_2024_127447
crossref_primary_10_1021_acs_est_1c01786
crossref_primary_10_3390_met11010103
crossref_primary_10_1016_j_watres_2018_11_018
crossref_primary_10_1002_cite_202300094
crossref_primary_10_3390_min10050446
crossref_primary_10_1128_aem_00143_24
crossref_primary_10_1016_j_gexplo_2022_106974
crossref_primary_10_1007_s40831_021_00446_z
crossref_primary_10_1007_s43153_023_00350_x
crossref_primary_10_1007_s11356_021_12844_7
crossref_primary_10_3390_chemosensors13020041
crossref_primary_10_3390_met11060978
crossref_primary_10_3390_su151512081
crossref_primary_10_3390_microorganisms8070990
crossref_primary_10_1016_j_mineng_2020_106585
crossref_primary_10_1016_j_jece_2021_106233
crossref_primary_10_3390_min8120558
crossref_primary_10_1016_j_gexplo_2022_107142
crossref_primary_10_3390_met15030330
crossref_primary_10_1088_1742_6596_1811_1_012045
crossref_primary_10_3389_fmicb_2024_1386120
crossref_primary_10_1080_15567036_2020_1800865
crossref_primary_10_31857_S0044453723070294
crossref_primary_10_3390_min12121481
crossref_primary_10_1080_25726838_2019_1602956
crossref_primary_10_1016_j_scitotenv_2019_06_449
crossref_primary_10_34185_tpm_4_2021_04
crossref_primary_10_1016_j_rse_2023_113910
crossref_primary_10_1007_s11356_022_24190_3
crossref_primary_10_53360_2788_7995_2024_2_14__67
crossref_primary_10_1016_j_geogeo_2022_100136
crossref_primary_10_1007_s11783_021_1412_8
crossref_primary_10_1016_j_rineng_2020_100181
crossref_primary_10_1016_j_jclepro_2019_118436
crossref_primary_10_3390_ma17092131
crossref_primary_10_3390_min11030317
crossref_primary_10_1016_j_mineng_2019_04_026
crossref_primary_10_1080_08827508_2021_1986706
crossref_primary_10_1007_s11837_022_05691_5
crossref_primary_10_1038_s41598_023_31133_6
crossref_primary_10_1680_jenge_23_00062
crossref_primary_10_3390_ma17215218
crossref_primary_10_3390_su152115515
crossref_primary_10_3390_suschem2040038
crossref_primary_10_3389_fmicb_2024_1359991
crossref_primary_10_4028_www_scientific_net_SSP_298_116
crossref_primary_10_1002_tqem_21984
crossref_primary_10_1007_s10661_023_11475_4
crossref_primary_10_1016_j_jhazmat_2018_08_024
crossref_primary_10_1016_j_hydromet_2020_105418
crossref_primary_10_1016_j_mineng_2018_10_023
crossref_primary_10_1016_j_seppur_2024_131233
crossref_primary_10_1007_s00253_022_12085_9
crossref_primary_10_3390_resources10110110
crossref_primary_10_1007_s11837_021_05097_9
crossref_primary_10_1016_j_rsma_2024_103452
crossref_primary_10_1016_j_cej_2020_124596
crossref_primary_10_1016_j_wmb_2024_04_003
crossref_primary_10_1016_j_jclepro_2020_122303
crossref_primary_10_1016_j_conbuildmat_2021_124664
crossref_primary_10_1016_j_mineng_2024_109053
crossref_primary_10_1016_j_jclepro_2020_125257
crossref_primary_10_3390_min10060531
crossref_primary_10_1016_j_seppur_2024_128973
crossref_primary_10_1088_1755_1315_408_1_012079
crossref_primary_10_1016_j_mineng_2018_04_022
crossref_primary_10_1007_s11696_019_00844_4
crossref_primary_10_1016_j_apradiso_2021_109911
crossref_primary_10_1515_corrrev_2023_0145
crossref_primary_10_12677_AEP_2019_93040
crossref_primary_10_1016_j_conbuildmat_2022_127109
crossref_primary_10_1016_j_jece_2025_116238
crossref_primary_10_3390_min12050506
crossref_primary_10_1016_j_resconrec_2024_107513
crossref_primary_10_3390_min8020035
crossref_primary_10_1016_j_jclepro_2024_144388
crossref_primary_10_1016_j_mineng_2022_107831
crossref_primary_10_3390_environments10010008
crossref_primary_10_1007_s10311_022_01541_7
crossref_primary_10_1007_s10661_020_08550_5
crossref_primary_10_1016_j_checat_2022_10_035
crossref_primary_10_1016_j_mineng_2024_109025
crossref_primary_10_1016_j_conbuildmat_2020_119129
crossref_primary_10_1007_s11270_022_05910_4
crossref_primary_10_1007_s12666_018_1516_4
crossref_primary_10_1007_s13762_023_04901_0
crossref_primary_10_1016_j_jclepro_2020_121555
crossref_primary_10_1016_j_jece_2024_112140
crossref_primary_10_1039_D4EN01176G
crossref_primary_10_1016_j_chemosphere_2021_131108
crossref_primary_10_3390_min13040486
crossref_primary_10_1016_j_jclepro_2019_01_175
crossref_primary_10_1016_j_scp_2020_100224
crossref_primary_10_3390_ma13143146
crossref_primary_10_1016_j_mineng_2024_108611
crossref_primary_10_1007_s42461_018_0015_9
crossref_primary_10_1016_j_hydromet_2019_05_022
crossref_primary_10_1016_j_chemosphere_2023_138582
Cites_doi 10.1007/s00253-013-4954-2
10.1016/j.hydromet.2006.05.001
10.1111/j.1751-7915.2011.00285.x
10.1016/j.hydromet.2010.02.024
10.1023/A:1008978501177
10.1016/j.hydromet.2006.03.023
10.1016/j.jiec.2014.03.004
10.1016/S0304-386X(03)00081-1
10.2298/JSC140411097S
10.1016/j.resmic.2014.07.007
10.1093/femsle/fnw083
10.3390/min3010049
10.1016/S0048-9697(99)00372-1
10.1021/ac60289a016
10.1016/j.copbio.2014.04.008
10.1016/j.hydromet.2015.03.006
10.1021/es5030367
10.2113/gselements.7.6.405
10.4028/www.scientific.net/AMR.825.483
10.1016/j.hydromet.2008.06.005
10.1016/j.jhazmat.2008.01.063
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.mineng.2016.10.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
EndPage 78
ExternalDocumentID 10_1016_j_mineng_2016_10_008
S0892687516303454
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSG
SSZ
T5K
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
SEP
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c455t-47398617cecf32d3321fc33ed91d1bcd76d4a75522bc9459fa498f63870852ce3
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Tue Jul 01 01:13:22 EDT 2025
Thu Apr 24 22:53:33 EDT 2025
Fri Feb 23 02:35:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Silver
Bioleaching
Acidophile
Copper
Tailings
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-47398617cecf32d3321fc33ed91d1bcd76d4a75522bc9459fa498f63870852ce3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0892687516303454
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_mineng_2016_10_008
crossref_primary_10_1016_j_mineng_2016_10_008
elsevier_sciencedirect_doi_10_1016_j_mineng_2016_10_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-15
PublicationDateYYYYMMDD 2017-05-15
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-15
  day: 15
PublicationDecade 2010
PublicationTitle Minerals engineering
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ericksson, Adamek (b0025) 2000
Johnson (b0045) 2014; 30C
Hedrich, du Plessis, Mora, Johnson (b0035) 2013; 825
Nguyen, Lee, Park, Lee (b0075) 2015; 21
Watling (b0115) 2006; 84
Stookey (b0105) 1970; 42
Stankovic, Moric, Pavic, Vojnonovic, Vasiljevic, Cvetkovic (b0100) 2015; 80
Kay, Haanela, Johnson (b0060) 2014; 165
Antonijević, Dimitrijević, Stevanović, Serbula, Bogdanovic (b0010) 2008; 158
Johnson, Grail, Hallberg (b0050) 2013; 3
Hedrich, Johnson (b0040) 2014; 48
Gericke, Govender, Pinches (b9000) 2010; 104
Johnson, Okibe, Wakeman, Liu (b0055) 2008; 94
Ahmadi, Khezri, Abdollahzadeh, Askari (b0005) 2015; 154
Romero, Mazuelos, Palencia, Carranza (b0090) 2003; 70
Sasaki, Tsunekawa, Konno (b0095) 1995; 33
Ñancucheo, Rowe, Hedrich, Johnson (b0085) 2016; 363
Anwar, Iqbal, Qamar, Rehman, Khalid (b0015) 2000; 16
Grimalt, Ferrer, Macpherson (b0030) 1999; 242
Ñancucheo, Johnson (b0080) 2012; 5
Bryan, Hallberg, Johnson (b0020) 2006; 83
Morin, D’Hugues (b0070) 2007
Lottermoser (b0065) 2011; 7
Vera, Schippers, Sand (b0110) 2013; 97
Johnson (10.1016/j.mineng.2016.10.008_b0045) 2014; 30C
Romero (10.1016/j.mineng.2016.10.008_b0090) 2003; 70
Gericke (10.1016/j.mineng.2016.10.008_b9000) 2010; 104
Johnson (10.1016/j.mineng.2016.10.008_b0050) 2013; 3
Ahmadi (10.1016/j.mineng.2016.10.008_b0005) 2015; 154
Kay (10.1016/j.mineng.2016.10.008_b0060) 2014; 165
Ericksson (10.1016/j.mineng.2016.10.008_b0025) 2000
Morin (10.1016/j.mineng.2016.10.008_b0070) 2007
Stankovic (10.1016/j.mineng.2016.10.008_b0100) 2015; 80
Nguyen (10.1016/j.mineng.2016.10.008_b0075) 2015; 21
Lottermoser (10.1016/j.mineng.2016.10.008_b0065) 2011; 7
Watling (10.1016/j.mineng.2016.10.008_b0115) 2006; 84
Stookey (10.1016/j.mineng.2016.10.008_b0105) 1970; 42
Grimalt (10.1016/j.mineng.2016.10.008_b0030) 1999; 242
Ñancucheo (10.1016/j.mineng.2016.10.008_b0085) 2016; 363
Bryan (10.1016/j.mineng.2016.10.008_b0020) 2006; 83
Antonijević (10.1016/j.mineng.2016.10.008_b0010) 2008; 158
Anwar (10.1016/j.mineng.2016.10.008_b0015) 2000; 16
Hedrich (10.1016/j.mineng.2016.10.008_b0040) 2014; 48
Ñancucheo (10.1016/j.mineng.2016.10.008_b0080) 2012; 5
Hedrich (10.1016/j.mineng.2016.10.008_b0035) 2013; 825
Vera (10.1016/j.mineng.2016.10.008_b0110) 2013; 97
Sasaki (10.1016/j.mineng.2016.10.008_b0095) 1995; 33
Johnson (10.1016/j.mineng.2016.10.008_b0055) 2008; 94
References_xml – volume: 158
  start-page: 23
  year: 2008
  end-page: 34
  ident: b0010
  article-title: Investigation of the possibility of copper recovery from the flotation tailings by acid leaching
  publication-title: J. Hazard. Mater.
– volume: 21
  start-page: 451
  year: 2015
  end-page: 458
  ident: b0075
  article-title: Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of
  publication-title: J. Ind. Eng. Chem.
– volume: 80
  start-page: 391
  year: 2015
  end-page: 405
  ident: b0100
  article-title: Bioleaching of copper from samples of old flotation tailings (Copper Mine Bor, Serbia)
  publication-title: J. Serb. Chem. Soc.
– volume: 165
  start-page: 705
  year: 2014
  end-page: 712
  ident: b0060
  article-title: Microorganisms in subterranean acidic waters within Europe’s deepest metal mine
  publication-title: Res. Microbiol.
– start-page: 35
  year: 2007
  end-page: 55
  ident: b0070
  article-title: Bioleaching of a cobalt-containing pyrite in stirred reactors: a case study from laboratory scale to industrial application
  publication-title: Biomining
– volume: 5
  start-page: 34
  year: 2012
  end-page: 44
  ident: b0080
  article-title: Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria
  publication-title: Microb. Biotechnol.
– volume: 154
  start-page: 1
  year: 2015
  end-page: 8
  ident: b0005
  article-title: Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran
  publication-title: Hydrometallurgy
– volume: 48
  start-page: 12206
  year: 2014
  end-page: 12212
  ident: b0040
  article-title: Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors
  publication-title: Environ. Sci. Technol.
– volume: 83
  start-page: 184
  year: 2006
  end-page: 194
  ident: b0020
  article-title: Mobilisation of metals in mineral tailings at the abandoned São Domingos copper mine (Portugal) by indigenous acidophilic bacteria
  publication-title: Hydrometallurgy
– volume: 33
  start-page: 1311
  year: 1995
  end-page: 1319
  ident: b0095
  article-title: Characterization of argentojarosite formed from biologically oxidized Fe
  publication-title: Can. Mineral.
– volume: 3
  start-page: 49
  year: 2013
  end-page: 58
  ident: b0050
  article-title: A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores
  publication-title: Minerals
– start-page: 109
  year: 2000
  end-page: 116
  ident: b0025
  article-title: The tailings pond failure at the Aznalcóllar mine, Spain
  publication-title: Environmental Issues and Management of Waste in Energy and Mineral Production
– volume: 104
  start-page: 414
  year: 2010
  end-page: 419
  ident: b9000
  article-title: Tank leaching of low-grade chalcopyrite concentrates using redox control
  publication-title: Hydrometallurgy
– volume: 242
  start-page: 3
  year: 1999
  end-page: 11
  ident: b0030
  article-title: The mine tailing accident in Aznalcollar
  publication-title: Sci. Total Environ.
– volume: 30C
  start-page: 24
  year: 2014
  end-page: 31
  ident: b0045
  article-title: Biomining – biotechnologies for extracting and recovering metals from ores and waste materials
  publication-title: Curr. Opin. Biotechnol.
– volume: 70
  start-page: 205
  year: 2003
  end-page: 215
  ident: b0090
  article-title: Copper recovery from chalcopyrite concentrates by the BRISA process
  publication-title: Hydrometallurgy
– volume: 84
  start-page: 81
  year: 2006
  end-page: 108
  ident: b0115
  article-title: The bioleaching of sulphide minerals with emphasis on copper sulphides – a review
  publication-title: Hydrometallurgy
– volume: 825
  start-page: 483
  year: 2013
  end-page: 486
  ident: b0035
  article-title: Reduction and complexation of copper in a novel bioreduction system developed to recover base metals from mine process waters
  publication-title: Adv. Mater. Res.
– volume: 16
  start-page: 135
  year: 2000
  end-page: 138
  ident: b0015
  article-title: Technical communication: determination of cuprous ions in bacterial leachates and for environmental monitoring
  publication-title: World J. Microbiol. Biotechnol.
– volume: 7
  start-page: 405
  year: 2011
  end-page: 410
  ident: b0065
  article-title: Recycling, reuse and rehabilitation of mine wastes
  publication-title: Elements
– volume: 97
  start-page: 7529
  year: 2013
  end-page: 7541
  ident: b0110
  article-title: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation – part A
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 42
  start-page: 779
  year: 1970
  end-page: 781
  ident: b0105
  article-title: Ferrozine –a new spectrophotometric reagent for iron
  publication-title: Anal. Chem.
– volume: 363
  start-page: fnw083
  year: 2016
  ident: b0085
  article-title: Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria
  publication-title: FEMS Microbiol. Lett.
– volume: 94
  start-page: 42
  year: 2008
  end-page: 47
  ident: b0055
  article-title: Effect of temperature on bioleaching of chalcopyrite concentrates containing high concentrations of silver: opposite rules apply
  publication-title: Hydrometallurgy
– volume: 97
  start-page: 7529
  year: 2013
  ident: 10.1016/j.mineng.2016.10.008_b0110
  article-title: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation – part A
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-4954-2
– volume: 84
  start-page: 81
  year: 2006
  ident: 10.1016/j.mineng.2016.10.008_b0115
  article-title: The bioleaching of sulphide minerals with emphasis on copper sulphides – a review
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2006.05.001
– volume: 5
  start-page: 34
  year: 2012
  ident: 10.1016/j.mineng.2016.10.008_b0080
  article-title: Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria
  publication-title: Microb. Biotechnol.
  doi: 10.1111/j.1751-7915.2011.00285.x
– volume: 104
  start-page: 414
  year: 2010
  ident: 10.1016/j.mineng.2016.10.008_b9000
  article-title: Tank leaching of low-grade chalcopyrite concentrates using redox control
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2010.02.024
– volume: 16
  start-page: 135
  year: 2000
  ident: 10.1016/j.mineng.2016.10.008_b0015
  article-title: Technical communication: determination of cuprous ions in bacterial leachates and for environmental monitoring
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1023/A:1008978501177
– volume: 83
  start-page: 184
  year: 2006
  ident: 10.1016/j.mineng.2016.10.008_b0020
  article-title: Mobilisation of metals in mineral tailings at the abandoned São Domingos copper mine (Portugal) by indigenous acidophilic bacteria
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2006.03.023
– volume: 21
  start-page: 451
  year: 2015
  ident: 10.1016/j.mineng.2016.10.008_b0075
  article-title: Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2014.03.004
– volume: 70
  start-page: 205
  year: 2003
  ident: 10.1016/j.mineng.2016.10.008_b0090
  article-title: Copper recovery from chalcopyrite concentrates by the BRISA process
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(03)00081-1
– volume: 80
  start-page: 391
  year: 2015
  ident: 10.1016/j.mineng.2016.10.008_b0100
  article-title: Bioleaching of copper from samples of old flotation tailings (Copper Mine Bor, Serbia)
  publication-title: J. Serb. Chem. Soc.
  doi: 10.2298/JSC140411097S
– volume: 165
  start-page: 705
  year: 2014
  ident: 10.1016/j.mineng.2016.10.008_b0060
  article-title: Microorganisms in subterranean acidic waters within Europe’s deepest metal mine
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2014.07.007
– volume: 363
  start-page: fnw083
  year: 2016
  ident: 10.1016/j.mineng.2016.10.008_b0085
  article-title: Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1093/femsle/fnw083
– volume: 3
  start-page: 49
  year: 2013
  ident: 10.1016/j.mineng.2016.10.008_b0050
  article-title: A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores
  publication-title: Minerals
  doi: 10.3390/min3010049
– start-page: 35
  year: 2007
  ident: 10.1016/j.mineng.2016.10.008_b0070
  article-title: Bioleaching of a cobalt-containing pyrite in stirred reactors: a case study from laboratory scale to industrial application
– volume: 242
  start-page: 3
  year: 1999
  ident: 10.1016/j.mineng.2016.10.008_b0030
  article-title: The mine tailing accident in Aznalcollar
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(99)00372-1
– volume: 42
  start-page: 779
  year: 1970
  ident: 10.1016/j.mineng.2016.10.008_b0105
  article-title: Ferrozine –a new spectrophotometric reagent for iron
  publication-title: Anal. Chem.
  doi: 10.1021/ac60289a016
– volume: 30C
  start-page: 24
  year: 2014
  ident: 10.1016/j.mineng.2016.10.008_b0045
  article-title: Biomining – biotechnologies for extracting and recovering metals from ores and waste materials
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2014.04.008
– volume: 154
  start-page: 1
  year: 2015
  ident: 10.1016/j.mineng.2016.10.008_b0005
  article-title: Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.03.006
– volume: 48
  start-page: 12206
  year: 2014
  ident: 10.1016/j.mineng.2016.10.008_b0040
  article-title: Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5030367
– volume: 33
  start-page: 1311
  year: 1995
  ident: 10.1016/j.mineng.2016.10.008_b0095
  article-title: Characterization of argentojarosite formed from biologically oxidized Fe3+ ions
  publication-title: Can. Mineral.
– volume: 7
  start-page: 405
  year: 2011
  ident: 10.1016/j.mineng.2016.10.008_b0065
  article-title: Recycling, reuse and rehabilitation of mine wastes
  publication-title: Elements
  doi: 10.2113/gselements.7.6.405
– start-page: 109
  year: 2000
  ident: 10.1016/j.mineng.2016.10.008_b0025
  article-title: The tailings pond failure at the Aznalcóllar mine, Spain
– volume: 825
  start-page: 483
  year: 2013
  ident: 10.1016/j.mineng.2016.10.008_b0035
  article-title: Reduction and complexation of copper in a novel bioreduction system developed to recover base metals from mine process waters
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.825.483
– volume: 94
  start-page: 42
  year: 2008
  ident: 10.1016/j.mineng.2016.10.008_b0055
  article-title: Effect of temperature on bioleaching of chalcopyrite concentrates containing high concentrations of silver: opposite rules apply
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2008.06.005
– volume: 158
  start-page: 23
  year: 2008
  ident: 10.1016/j.mineng.2016.10.008_b0010
  article-title: Investigation of the possibility of copper recovery from the flotation tailings by acid leaching
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.01.063
SSID ssj0005789
Score 2.5903065
Snippet [Display omitted] •Mineral tailings from two copper mines were bioleached under different conditions.•Greatest copper extraction was achieved at extremely low...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Acidophile
Bioleaching
Copper
Silver
Tailings
Title New approaches for extracting and recovering metals from mine tailings
URI https://dx.doi.org/10.1016/j.mineng.2016.10.008
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5e0-7msdkcS7FUxV600Nuym2RLxW5LXT36251kd6WCKHgNMxC-TWa-LN_MIHRNM2uYilOig8jCAyUwROWZI3KWW5oBCfa1MA-TaDzldzMxa6FhUwvjZJV17K9iuo_W9Uq_RrO_Xiz6j0GsaAR0GxhFwLhwPUE5l-6U9z62ZB7Sj8FzxsRZN-VzXuO1BCZXzJ3AK-p5jVf8c3raSjmjA7Rfc0U8qLZziFq2OEJ7Wx0Ej9EIghRu-oLbVwwUFEO49aVPxRynhcHuyfvuzfHSAtUGo81qid2msJOPul_lJ2g6unkajkk9GoFoLkRJuASAgXxoq3NGDWM0zDVj1qjQhJk2MjI8lQLIVaYVFypPuYpzuGsSKBbVlp2idrEq7BnCjEoTGyBiaRRBNo8z8FLAI2ExhQQqOog1iCS67hvuxle8JI1A7DmpcEwcjm4VcOwg8uW1rvpm_GEvG7CTb98_gdD-q-f5vz0v0C71wy0ECcUlapebN3sFFKPMuv4MddHO4PZ-PPkEcZzQhA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qPagH8Yn1mYPXbbd57G6OUixV215sobdlN8kWxW5LrR797U6yu1JBFLyGGQgfycyX8M0MwDVNjWYySjzlBwYfKL72ZJZaIme4oSmSYFcLMxgGvTG_n4hJDTpVLYyVVZaxv4jpLlqXK60Szdbi6an16EeSBki3kVH4jAu-AZscr68dY9D8WNN5hG4OnrX2rHlVP-dEXjOkcvnUKryCphN5RT_np7Wc092D3ZIskptiP_tQM_kB7Ky1EDyELkYpUjUGN68EOSjBeOtqn_IpSXJN7Jv33ZmTmUGujUbL-YzYTRGrH7V_5Ucw7t6OOj2vnI3gKS7EyuMhIozsQxmVMaoZo-1MMWa0bOt2qnQYaJ6EAtlVqiQXMku4jDK8bCFyLKoMO4Z6Ps_NCRBGQx1pZGJJEGA6j1L0kkgkcTHBDCoawCpEYlU2DrfzK17iSiH2HBc4xhZHu4o4NsD78loUjTP-sA8rsONvByDG2P6r5-m_Pa9gqzca9OP-3fDhDLapzdi2Mas4h_pq-WYukG-s0kt3nj4BYqfSFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+approaches+for+extracting+and+recovering+metals+from+mine+tailings&rft.jtitle=Minerals+engineering&rft.au=Falag%C3%A1n%2C+Carmen&rft.au=Grail%2C+Barry+M.&rft.au=Johnson%2C+D.+Barrie&rft.date=2017-05-15&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=106&rft.spage=71&rft.epage=78&rft_id=info:doi/10.1016%2Fj.mineng.2016.10.008&rft.externalDocID=S0892687516303454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon