New approaches for extracting and recovering metals from mine tailings
[Display omitted] •Mineral tailings from two copper mines were bioleached under different conditions.•Greatest copper extraction was achieved at extremely low pH, at 45°C and under oxidative/reductive conditions.•Copper present in tailings PLS was selectively precipitated as CuS by biogenic H2S.•Mic...
Saved in:
Published in | Minerals engineering Vol. 106; pp. 71 - 78 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Mineral tailings from two copper mines were bioleached under different conditions.•Greatest copper extraction was achieved at extremely low pH, at 45°C and under oxidative/reductive conditions.•Copper present in tailings PLS was selectively precipitated as CuS by biogenic H2S.•Microbial communities were dominated by Sb. thermosulfidooxidans and Acidithiobacillus spp.•The microbial community composition was affected by temperature and the tailings used.
Waste materials from metal mining, such as mineral tailings, often contain significant amounts of potentially valuable metals particularly where, as in many historic operations, the efficiency of flotation technologies used to concentrate target minerals was not as good as those currently available. A two-stage mineral leaching and metal recovery protocol was developed to extract copper from tailings generated as waste materials in two mines currently operating in Spain and Serbia. The most effective extraction of copper (84 to >90%) was achieved by bioleaching the tailings at 45°C, using a defined microbial consortium, where elemental sulfur was added to the tailings and the pH of leach liquors allowed to fall to ∼pH 1, at which point anaerobic conditions were imposed. The thermo-tolerant acidophiles Acidithiobacillus caldus and Sulfobacillus thermosulfidooxidans emerged as the dominant bacteria present in both tailings leachates under these conditions. Copper present in the pregnant leach solutions (PLS) produced were next precipitated as a sulfide phase using hydrogen sulfide generated in a low pH (4.0) sulfidogenic bioreactor. The off-line system used allowed the copper present in PLS to be precipitated selectively without the need to adjust the pH of the PLS, though small amounts of silver present in PLS from one of the tailings samples co-precipitated with copper sulfide. Experimental data also suggested that it would be possible to extract silver from bioleached solid residues (where it was mostly found) using a simple chemical extractant. The results suggested that bio-processing these waste materials would have economic as well as environmental benefits. |
---|---|
AbstractList | [Display omitted]
•Mineral tailings from two copper mines were bioleached under different conditions.•Greatest copper extraction was achieved at extremely low pH, at 45°C and under oxidative/reductive conditions.•Copper present in tailings PLS was selectively precipitated as CuS by biogenic H2S.•Microbial communities were dominated by Sb. thermosulfidooxidans and Acidithiobacillus spp.•The microbial community composition was affected by temperature and the tailings used.
Waste materials from metal mining, such as mineral tailings, often contain significant amounts of potentially valuable metals particularly where, as in many historic operations, the efficiency of flotation technologies used to concentrate target minerals was not as good as those currently available. A two-stage mineral leaching and metal recovery protocol was developed to extract copper from tailings generated as waste materials in two mines currently operating in Spain and Serbia. The most effective extraction of copper (84 to >90%) was achieved by bioleaching the tailings at 45°C, using a defined microbial consortium, where elemental sulfur was added to the tailings and the pH of leach liquors allowed to fall to ∼pH 1, at which point anaerobic conditions were imposed. The thermo-tolerant acidophiles Acidithiobacillus caldus and Sulfobacillus thermosulfidooxidans emerged as the dominant bacteria present in both tailings leachates under these conditions. Copper present in the pregnant leach solutions (PLS) produced were next precipitated as a sulfide phase using hydrogen sulfide generated in a low pH (4.0) sulfidogenic bioreactor. The off-line system used allowed the copper present in PLS to be precipitated selectively without the need to adjust the pH of the PLS, though small amounts of silver present in PLS from one of the tailings samples co-precipitated with copper sulfide. Experimental data also suggested that it would be possible to extract silver from bioleached solid residues (where it was mostly found) using a simple chemical extractant. The results suggested that bio-processing these waste materials would have economic as well as environmental benefits. |
Author | Johnson, D. Barrie Falagán, Carmen Grail, Barry M. |
Author_xml | – sequence: 1 givenname: Carmen surname: Falagán fullname: Falagán, Carmen email: c.falagan@bangor.ac.uk – sequence: 2 givenname: Barry M. surname: Grail fullname: Grail, Barry M. email: b.m.grail@bangor.ac.uk – sequence: 3 givenname: D. Barrie surname: Johnson fullname: Johnson, D. Barrie email: d.b.johnson@bangor.ac.uk |
BookMark | eNqFkE1LAzEQhoNUsFX_gYf9A1vztZvEgyDFqlD0oueQJrM1pZuUbKj6781STx70NMy8887HM0OTEAMgdEXwnGDSXm_nvQ8QNnNaslKaYyxP0JRIQWvFOZ-gKZaK1q0UzRmaDcMWY9wIqaZo-QwfldnvUzT2HYaqi6mCz5yMzT5sKhNclcDGA6Qx7SGbXWlKsa_GlVU2fleE4QKddkWBy594jt6W96-Lx3r18vC0uFvVljdNrrlgSrZEWLAdo44xSjrLGDhFHFlbJ1rHjWgaStdW8UZ1hivZtUwKLBtqgZ2jm-Ncm-IwJOi09dlkH0M52e80wXokorf6SESPRMZqIVLM_Jd5n3xv0td_ttujDcpjBw9JD9ZDsOB8QZO1i_7vAd84qX_J |
CitedBy_id | crossref_primary_10_2138_am_2019_6848 crossref_primary_10_1016_j_gexplo_2019_01_002 crossref_primary_10_3390_min8100454 crossref_primary_10_1063_5_0040331 crossref_primary_10_1016_j_jclepro_2018_04_116 crossref_primary_10_1016_j_resourpol_2021_102197 crossref_primary_10_1002_tqem_22085 crossref_primary_10_4236_jmmce_2017_53010 crossref_primary_10_1016_j_matpr_2020_01_616 crossref_primary_10_7494_geol_2024_50_4_401 crossref_primary_10_1016_j_oregeorev_2023_105337 crossref_primary_10_1016_j_mineng_2022_107629 crossref_primary_10_1016_j_mineng_2022_107628 crossref_primary_10_1016_j_mineng_2023_108534 crossref_primary_10_1016_j_gexplo_2024_107439 crossref_primary_10_1007_s10854_020_05048_1 crossref_primary_10_1007_s42461_018_0016_8 crossref_primary_10_3390_min8070295 crossref_primary_10_3390_min10020158 crossref_primary_10_3390_w13213123 crossref_primary_10_1016_j_jclepro_2019_04_171 crossref_primary_10_1016_j_hydromet_2022_105995 crossref_primary_10_35208_ert_1411298 crossref_primary_10_1016_j_jsames_2018_08_013 crossref_primary_10_1016_j_mineng_2022_107514 crossref_primary_10_1016_j_mtsust_2024_100704 crossref_primary_10_1016_j_seppur_2021_118963 crossref_primary_10_3389_feart_2024_1480706 crossref_primary_10_3390_molecules29071550 crossref_primary_10_1038_s41561_020_0531_3 crossref_primary_10_4236_ojg_2020_1012055 crossref_primary_10_3390_min12050545 crossref_primary_10_1016_j_gsd_2022_100839 crossref_primary_10_1080_08827508_2023_2181346 crossref_primary_10_1016_j_hydromet_2021_105566 crossref_primary_10_1080_08827508_2019_1667778 crossref_primary_10_3390_molecules30010069 crossref_primary_10_3390_met11050780 crossref_primary_10_3749_2300052 crossref_primary_10_1016_j_chemosphere_2020_127288 crossref_primary_10_1016_j_mineng_2021_107343 crossref_primary_10_1016_j_chemosphere_2017_07_124 crossref_primary_10_1007_s10661_024_12894_7 crossref_primary_10_3390_min10060513 crossref_primary_10_1088_1755_1315_459_4_042004 crossref_primary_10_1016_j_jclepro_2021_130129 crossref_primary_10_1016_j_powtec_2021_07_008 crossref_primary_10_1016_j_mineng_2018_04_007 crossref_primary_10_1007_s42461_024_01059_2 crossref_primary_10_1016_j_marpolbul_2018_06_060 crossref_primary_10_1007_s42452_020_03447_x crossref_primary_10_1016_j_seppur_2024_127938 crossref_primary_10_1016_j_hydromet_2020_105376 crossref_primary_10_1016_j_chemosphere_2020_126227 crossref_primary_10_1128_aem_01266_22 crossref_primary_10_4028_www_scientific_net_MSF_989_554 crossref_primary_10_1016_j_jenvman_2021_112060 crossref_primary_10_1016_j_jclepro_2024_143114 crossref_primary_10_3390_min12010100 crossref_primary_10_3390_su142013570 crossref_primary_10_1080_00194506_2022_2128904 crossref_primary_10_1007_s41748_022_00306_0 crossref_primary_10_1016_j_hydromet_2020_105484 crossref_primary_10_1061__ASCE_MT_1943_5533_0004209 crossref_primary_10_4236_ijg_2024_155025 crossref_primary_10_1007_s13762_022_04072_4 crossref_primary_10_1016_j_mineng_2018_12_016 crossref_primary_10_1039_C8RA00454D crossref_primary_10_1080_17480930_2023_2229689 crossref_primary_10_1016_j_apgeochem_2019_03_014 crossref_primary_10_1016_j_jece_2019_102964 crossref_primary_10_1016_j_jenvman_2021_113013 crossref_primary_10_3390_coatings13050946 crossref_primary_10_1016_j_jhazmat_2022_130498 crossref_primary_10_3390_min10080682 crossref_primary_10_3390_microorganisms11010222 crossref_primary_10_1016_j_watres_2023_119948 crossref_primary_10_20964_2022_09_08 crossref_primary_10_3390_min11010028 crossref_primary_10_3390_min14111094 crossref_primary_10_3390_min15030254 crossref_primary_10_1007_s10230_021_00754_6 crossref_primary_10_1016_j_rser_2024_114665 crossref_primary_10_3390_min14101051 crossref_primary_10_3390_geosciences12050214 crossref_primary_10_2478_ama_2023_0041 crossref_primary_10_3389_feart_2022_1083436 crossref_primary_10_3389_fsufs_2021_701870 crossref_primary_10_1080_15226514_2024_2373427 crossref_primary_10_5194_bg_16_573_2019 crossref_primary_10_1038_s43017_022_00387_5 crossref_primary_10_1016_j_jclepro_2023_137163 crossref_primary_10_1088_1755_1315_666_2_022046 crossref_primary_10_1016_j_jag_2018_09_006 crossref_primary_10_1038_s41598_024_58366_3 crossref_primary_10_1155_2019_2130617 crossref_primary_10_1016_j_mineng_2018_05_005 crossref_primary_10_1038_s43017_021_00211_6 crossref_primary_10_3390_min8080343 crossref_primary_10_3390_min14090893 crossref_primary_10_1016_j_jclepro_2022_133857 crossref_primary_10_1016_j_clet_2022_100499 crossref_primary_10_21923_jesd_472343 crossref_primary_10_1016_j_memsci_2020_117832 crossref_primary_10_3390_su151310222 crossref_primary_10_1016_j_jenvman_2018_07_050 crossref_primary_10_1016_j_gexplo_2022_106997 crossref_primary_10_1016_j_jece_2025_116136 crossref_primary_10_3390_met11091335 crossref_primary_10_1016_j_mineng_2018_11_028 crossref_primary_10_1016_j_rineng_2021_100207 crossref_primary_10_1007_s40789_025_00756_7 crossref_primary_10_1134_S0036024423070294 crossref_primary_10_3390_min9070401 crossref_primary_10_1016_j_conbuildmat_2020_121217 crossref_primary_10_1029_2022GB007515 crossref_primary_10_1016_j_conbuildmat_2023_134382 crossref_primary_10_1016_j_psep_2024_06_086 crossref_primary_10_1144_geochem2018_054 crossref_primary_10_18011_bioeng2020v14n4p389_401 crossref_primary_10_1016_j_envpol_2019_113290 crossref_primary_10_1520_ACEM20230031 crossref_primary_10_1016_j_jclepro_2021_126806 crossref_primary_10_1016_j_conengprac_2022_105385 crossref_primary_10_1080_08827508_2024_2316060 crossref_primary_10_1016_j_jenvman_2023_118511 crossref_primary_10_1016_j_conbuildmat_2022_129973 crossref_primary_10_1016_j_hydromet_2020_105443 crossref_primary_10_1016_j_mineng_2022_107587 crossref_primary_10_1016_j_mineng_2021_107051 crossref_primary_10_1016_j_resourpol_2025_105513 crossref_primary_10_1016_j_seppur_2024_127447 crossref_primary_10_1021_acs_est_1c01786 crossref_primary_10_3390_met11010103 crossref_primary_10_1016_j_watres_2018_11_018 crossref_primary_10_1002_cite_202300094 crossref_primary_10_3390_min10050446 crossref_primary_10_1128_aem_00143_24 crossref_primary_10_1016_j_gexplo_2022_106974 crossref_primary_10_1007_s40831_021_00446_z crossref_primary_10_1007_s43153_023_00350_x crossref_primary_10_1007_s11356_021_12844_7 crossref_primary_10_3390_chemosensors13020041 crossref_primary_10_3390_met11060978 crossref_primary_10_3390_su151512081 crossref_primary_10_3390_microorganisms8070990 crossref_primary_10_1016_j_mineng_2020_106585 crossref_primary_10_1016_j_jece_2021_106233 crossref_primary_10_3390_min8120558 crossref_primary_10_1016_j_gexplo_2022_107142 crossref_primary_10_3390_met15030330 crossref_primary_10_1088_1742_6596_1811_1_012045 crossref_primary_10_3389_fmicb_2024_1386120 crossref_primary_10_1080_15567036_2020_1800865 crossref_primary_10_31857_S0044453723070294 crossref_primary_10_3390_min12121481 crossref_primary_10_1080_25726838_2019_1602956 crossref_primary_10_1016_j_scitotenv_2019_06_449 crossref_primary_10_34185_tpm_4_2021_04 crossref_primary_10_1016_j_rse_2023_113910 crossref_primary_10_1007_s11356_022_24190_3 crossref_primary_10_53360_2788_7995_2024_2_14__67 crossref_primary_10_1016_j_geogeo_2022_100136 crossref_primary_10_1007_s11783_021_1412_8 crossref_primary_10_1016_j_rineng_2020_100181 crossref_primary_10_1016_j_jclepro_2019_118436 crossref_primary_10_3390_ma17092131 crossref_primary_10_3390_min11030317 crossref_primary_10_1016_j_mineng_2019_04_026 crossref_primary_10_1080_08827508_2021_1986706 crossref_primary_10_1007_s11837_022_05691_5 crossref_primary_10_1038_s41598_023_31133_6 crossref_primary_10_1680_jenge_23_00062 crossref_primary_10_3390_ma17215218 crossref_primary_10_3390_su152115515 crossref_primary_10_3390_suschem2040038 crossref_primary_10_3389_fmicb_2024_1359991 crossref_primary_10_4028_www_scientific_net_SSP_298_116 crossref_primary_10_1002_tqem_21984 crossref_primary_10_1007_s10661_023_11475_4 crossref_primary_10_1016_j_jhazmat_2018_08_024 crossref_primary_10_1016_j_hydromet_2020_105418 crossref_primary_10_1016_j_mineng_2018_10_023 crossref_primary_10_1016_j_seppur_2024_131233 crossref_primary_10_1007_s00253_022_12085_9 crossref_primary_10_3390_resources10110110 crossref_primary_10_1007_s11837_021_05097_9 crossref_primary_10_1016_j_rsma_2024_103452 crossref_primary_10_1016_j_cej_2020_124596 crossref_primary_10_1016_j_wmb_2024_04_003 crossref_primary_10_1016_j_jclepro_2020_122303 crossref_primary_10_1016_j_conbuildmat_2021_124664 crossref_primary_10_1016_j_mineng_2024_109053 crossref_primary_10_1016_j_jclepro_2020_125257 crossref_primary_10_3390_min10060531 crossref_primary_10_1016_j_seppur_2024_128973 crossref_primary_10_1088_1755_1315_408_1_012079 crossref_primary_10_1016_j_mineng_2018_04_022 crossref_primary_10_1007_s11696_019_00844_4 crossref_primary_10_1016_j_apradiso_2021_109911 crossref_primary_10_1515_corrrev_2023_0145 crossref_primary_10_12677_AEP_2019_93040 crossref_primary_10_1016_j_conbuildmat_2022_127109 crossref_primary_10_1016_j_jece_2025_116238 crossref_primary_10_3390_min12050506 crossref_primary_10_1016_j_resconrec_2024_107513 crossref_primary_10_3390_min8020035 crossref_primary_10_1016_j_jclepro_2024_144388 crossref_primary_10_1016_j_mineng_2022_107831 crossref_primary_10_3390_environments10010008 crossref_primary_10_1007_s10311_022_01541_7 crossref_primary_10_1007_s10661_020_08550_5 crossref_primary_10_1016_j_checat_2022_10_035 crossref_primary_10_1016_j_mineng_2024_109025 crossref_primary_10_1016_j_conbuildmat_2020_119129 crossref_primary_10_1007_s11270_022_05910_4 crossref_primary_10_1007_s12666_018_1516_4 crossref_primary_10_1007_s13762_023_04901_0 crossref_primary_10_1016_j_jclepro_2020_121555 crossref_primary_10_1016_j_jece_2024_112140 crossref_primary_10_1039_D4EN01176G crossref_primary_10_1016_j_chemosphere_2021_131108 crossref_primary_10_3390_min13040486 crossref_primary_10_1016_j_jclepro_2019_01_175 crossref_primary_10_1016_j_scp_2020_100224 crossref_primary_10_3390_ma13143146 crossref_primary_10_1016_j_mineng_2024_108611 crossref_primary_10_1007_s42461_018_0015_9 crossref_primary_10_1016_j_hydromet_2019_05_022 crossref_primary_10_1016_j_chemosphere_2023_138582 |
Cites_doi | 10.1007/s00253-013-4954-2 10.1016/j.hydromet.2006.05.001 10.1111/j.1751-7915.2011.00285.x 10.1016/j.hydromet.2010.02.024 10.1023/A:1008978501177 10.1016/j.hydromet.2006.03.023 10.1016/j.jiec.2014.03.004 10.1016/S0304-386X(03)00081-1 10.2298/JSC140411097S 10.1016/j.resmic.2014.07.007 10.1093/femsle/fnw083 10.3390/min3010049 10.1016/S0048-9697(99)00372-1 10.1021/ac60289a016 10.1016/j.copbio.2014.04.008 10.1016/j.hydromet.2015.03.006 10.1021/es5030367 10.2113/gselements.7.6.405 10.4028/www.scientific.net/AMR.825.483 10.1016/j.hydromet.2008.06.005 10.1016/j.jhazmat.2008.01.063 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.mineng.2016.10.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
EndPage | 78 |
ExternalDocumentID | 10_1016_j_mineng_2016_10_008 S0892687516303454 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSE SSG SSZ T5K ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ R2- SEP SET SEW SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c455t-47398617cecf32d3321fc33ed91d1bcd76d4a75522bc9459fa498f63870852ce3 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Tue Jul 01 01:13:22 EDT 2025 Thu Apr 24 22:53:33 EDT 2025 Fri Feb 23 02:35:41 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Silver Bioleaching Acidophile Copper Tailings |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-47398617cecf32d3321fc33ed91d1bcd76d4a75522bc9459fa498f63870852ce3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0892687516303454 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mineng_2016_10_008 crossref_primary_10_1016_j_mineng_2016_10_008 elsevier_sciencedirect_doi_10_1016_j_mineng_2016_10_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-15 |
PublicationDateYYYYMMDD | 2017-05-15 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Minerals engineering |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ericksson, Adamek (b0025) 2000 Johnson (b0045) 2014; 30C Hedrich, du Plessis, Mora, Johnson (b0035) 2013; 825 Nguyen, Lee, Park, Lee (b0075) 2015; 21 Watling (b0115) 2006; 84 Stookey (b0105) 1970; 42 Stankovic, Moric, Pavic, Vojnonovic, Vasiljevic, Cvetkovic (b0100) 2015; 80 Kay, Haanela, Johnson (b0060) 2014; 165 Antonijević, Dimitrijević, Stevanović, Serbula, Bogdanovic (b0010) 2008; 158 Johnson, Grail, Hallberg (b0050) 2013; 3 Hedrich, Johnson (b0040) 2014; 48 Gericke, Govender, Pinches (b9000) 2010; 104 Johnson, Okibe, Wakeman, Liu (b0055) 2008; 94 Ahmadi, Khezri, Abdollahzadeh, Askari (b0005) 2015; 154 Romero, Mazuelos, Palencia, Carranza (b0090) 2003; 70 Sasaki, Tsunekawa, Konno (b0095) 1995; 33 Ñancucheo, Rowe, Hedrich, Johnson (b0085) 2016; 363 Anwar, Iqbal, Qamar, Rehman, Khalid (b0015) 2000; 16 Grimalt, Ferrer, Macpherson (b0030) 1999; 242 Ñancucheo, Johnson (b0080) 2012; 5 Bryan, Hallberg, Johnson (b0020) 2006; 83 Morin, D’Hugues (b0070) 2007 Lottermoser (b0065) 2011; 7 Vera, Schippers, Sand (b0110) 2013; 97 Johnson (10.1016/j.mineng.2016.10.008_b0045) 2014; 30C Romero (10.1016/j.mineng.2016.10.008_b0090) 2003; 70 Gericke (10.1016/j.mineng.2016.10.008_b9000) 2010; 104 Johnson (10.1016/j.mineng.2016.10.008_b0050) 2013; 3 Ahmadi (10.1016/j.mineng.2016.10.008_b0005) 2015; 154 Kay (10.1016/j.mineng.2016.10.008_b0060) 2014; 165 Ericksson (10.1016/j.mineng.2016.10.008_b0025) 2000 Morin (10.1016/j.mineng.2016.10.008_b0070) 2007 Stankovic (10.1016/j.mineng.2016.10.008_b0100) 2015; 80 Nguyen (10.1016/j.mineng.2016.10.008_b0075) 2015; 21 Lottermoser (10.1016/j.mineng.2016.10.008_b0065) 2011; 7 Watling (10.1016/j.mineng.2016.10.008_b0115) 2006; 84 Stookey (10.1016/j.mineng.2016.10.008_b0105) 1970; 42 Grimalt (10.1016/j.mineng.2016.10.008_b0030) 1999; 242 Ñancucheo (10.1016/j.mineng.2016.10.008_b0085) 2016; 363 Bryan (10.1016/j.mineng.2016.10.008_b0020) 2006; 83 Antonijević (10.1016/j.mineng.2016.10.008_b0010) 2008; 158 Anwar (10.1016/j.mineng.2016.10.008_b0015) 2000; 16 Hedrich (10.1016/j.mineng.2016.10.008_b0040) 2014; 48 Ñancucheo (10.1016/j.mineng.2016.10.008_b0080) 2012; 5 Hedrich (10.1016/j.mineng.2016.10.008_b0035) 2013; 825 Vera (10.1016/j.mineng.2016.10.008_b0110) 2013; 97 Sasaki (10.1016/j.mineng.2016.10.008_b0095) 1995; 33 Johnson (10.1016/j.mineng.2016.10.008_b0055) 2008; 94 |
References_xml | – volume: 158 start-page: 23 year: 2008 end-page: 34 ident: b0010 article-title: Investigation of the possibility of copper recovery from the flotation tailings by acid leaching publication-title: J. Hazard. Mater. – volume: 21 start-page: 451 year: 2015 end-page: 458 ident: b0075 article-title: Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of publication-title: J. Ind. Eng. Chem. – volume: 80 start-page: 391 year: 2015 end-page: 405 ident: b0100 article-title: Bioleaching of copper from samples of old flotation tailings (Copper Mine Bor, Serbia) publication-title: J. Serb. Chem. Soc. – volume: 165 start-page: 705 year: 2014 end-page: 712 ident: b0060 article-title: Microorganisms in subterranean acidic waters within Europe’s deepest metal mine publication-title: Res. Microbiol. – start-page: 35 year: 2007 end-page: 55 ident: b0070 article-title: Bioleaching of a cobalt-containing pyrite in stirred reactors: a case study from laboratory scale to industrial application publication-title: Biomining – volume: 5 start-page: 34 year: 2012 end-page: 44 ident: b0080 article-title: Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria publication-title: Microb. Biotechnol. – volume: 154 start-page: 1 year: 2015 end-page: 8 ident: b0005 article-title: Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran publication-title: Hydrometallurgy – volume: 48 start-page: 12206 year: 2014 end-page: 12212 ident: b0040 article-title: Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors publication-title: Environ. Sci. Technol. – volume: 83 start-page: 184 year: 2006 end-page: 194 ident: b0020 article-title: Mobilisation of metals in mineral tailings at the abandoned São Domingos copper mine (Portugal) by indigenous acidophilic bacteria publication-title: Hydrometallurgy – volume: 33 start-page: 1311 year: 1995 end-page: 1319 ident: b0095 article-title: Characterization of argentojarosite formed from biologically oxidized Fe publication-title: Can. Mineral. – volume: 3 start-page: 49 year: 2013 end-page: 58 ident: b0050 article-title: A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores publication-title: Minerals – start-page: 109 year: 2000 end-page: 116 ident: b0025 article-title: The tailings pond failure at the Aznalcóllar mine, Spain publication-title: Environmental Issues and Management of Waste in Energy and Mineral Production – volume: 104 start-page: 414 year: 2010 end-page: 419 ident: b9000 article-title: Tank leaching of low-grade chalcopyrite concentrates using redox control publication-title: Hydrometallurgy – volume: 242 start-page: 3 year: 1999 end-page: 11 ident: b0030 article-title: The mine tailing accident in Aznalcollar publication-title: Sci. Total Environ. – volume: 30C start-page: 24 year: 2014 end-page: 31 ident: b0045 article-title: Biomining – biotechnologies for extracting and recovering metals from ores and waste materials publication-title: Curr. Opin. Biotechnol. – volume: 70 start-page: 205 year: 2003 end-page: 215 ident: b0090 article-title: Copper recovery from chalcopyrite concentrates by the BRISA process publication-title: Hydrometallurgy – volume: 84 start-page: 81 year: 2006 end-page: 108 ident: b0115 article-title: The bioleaching of sulphide minerals with emphasis on copper sulphides – a review publication-title: Hydrometallurgy – volume: 825 start-page: 483 year: 2013 end-page: 486 ident: b0035 article-title: Reduction and complexation of copper in a novel bioreduction system developed to recover base metals from mine process waters publication-title: Adv. Mater. Res. – volume: 16 start-page: 135 year: 2000 end-page: 138 ident: b0015 article-title: Technical communication: determination of cuprous ions in bacterial leachates and for environmental monitoring publication-title: World J. Microbiol. Biotechnol. – volume: 7 start-page: 405 year: 2011 end-page: 410 ident: b0065 article-title: Recycling, reuse and rehabilitation of mine wastes publication-title: Elements – volume: 97 start-page: 7529 year: 2013 end-page: 7541 ident: b0110 article-title: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation – part A publication-title: Appl. Microbiol. Biotechnol. – volume: 42 start-page: 779 year: 1970 end-page: 781 ident: b0105 article-title: Ferrozine –a new spectrophotometric reagent for iron publication-title: Anal. Chem. – volume: 363 start-page: fnw083 year: 2016 ident: b0085 article-title: Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria publication-title: FEMS Microbiol. Lett. – volume: 94 start-page: 42 year: 2008 end-page: 47 ident: b0055 article-title: Effect of temperature on bioleaching of chalcopyrite concentrates containing high concentrations of silver: opposite rules apply publication-title: Hydrometallurgy – volume: 97 start-page: 7529 year: 2013 ident: 10.1016/j.mineng.2016.10.008_b0110 article-title: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation – part A publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-4954-2 – volume: 84 start-page: 81 year: 2006 ident: 10.1016/j.mineng.2016.10.008_b0115 article-title: The bioleaching of sulphide minerals with emphasis on copper sulphides – a review publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2006.05.001 – volume: 5 start-page: 34 year: 2012 ident: 10.1016/j.mineng.2016.10.008_b0080 article-title: Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria publication-title: Microb. Biotechnol. doi: 10.1111/j.1751-7915.2011.00285.x – volume: 104 start-page: 414 year: 2010 ident: 10.1016/j.mineng.2016.10.008_b9000 article-title: Tank leaching of low-grade chalcopyrite concentrates using redox control publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2010.02.024 – volume: 16 start-page: 135 year: 2000 ident: 10.1016/j.mineng.2016.10.008_b0015 article-title: Technical communication: determination of cuprous ions in bacterial leachates and for environmental monitoring publication-title: World J. Microbiol. Biotechnol. doi: 10.1023/A:1008978501177 – volume: 83 start-page: 184 year: 2006 ident: 10.1016/j.mineng.2016.10.008_b0020 article-title: Mobilisation of metals in mineral tailings at the abandoned São Domingos copper mine (Portugal) by indigenous acidophilic bacteria publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2006.03.023 – volume: 21 start-page: 451 year: 2015 ident: 10.1016/j.mineng.2016.10.008_b0075 article-title: Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2014.03.004 – volume: 70 start-page: 205 year: 2003 ident: 10.1016/j.mineng.2016.10.008_b0090 article-title: Copper recovery from chalcopyrite concentrates by the BRISA process publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(03)00081-1 – volume: 80 start-page: 391 year: 2015 ident: 10.1016/j.mineng.2016.10.008_b0100 article-title: Bioleaching of copper from samples of old flotation tailings (Copper Mine Bor, Serbia) publication-title: J. Serb. Chem. Soc. doi: 10.2298/JSC140411097S – volume: 165 start-page: 705 year: 2014 ident: 10.1016/j.mineng.2016.10.008_b0060 article-title: Microorganisms in subterranean acidic waters within Europe’s deepest metal mine publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2014.07.007 – volume: 363 start-page: fnw083 year: 2016 ident: 10.1016/j.mineng.2016.10.008_b0085 article-title: Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria publication-title: FEMS Microbiol. Lett. doi: 10.1093/femsle/fnw083 – volume: 3 start-page: 49 year: 2013 ident: 10.1016/j.mineng.2016.10.008_b0050 article-title: A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores publication-title: Minerals doi: 10.3390/min3010049 – start-page: 35 year: 2007 ident: 10.1016/j.mineng.2016.10.008_b0070 article-title: Bioleaching of a cobalt-containing pyrite in stirred reactors: a case study from laboratory scale to industrial application – volume: 242 start-page: 3 year: 1999 ident: 10.1016/j.mineng.2016.10.008_b0030 article-title: The mine tailing accident in Aznalcollar publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(99)00372-1 – volume: 42 start-page: 779 year: 1970 ident: 10.1016/j.mineng.2016.10.008_b0105 article-title: Ferrozine –a new spectrophotometric reagent for iron publication-title: Anal. Chem. doi: 10.1021/ac60289a016 – volume: 30C start-page: 24 year: 2014 ident: 10.1016/j.mineng.2016.10.008_b0045 article-title: Biomining – biotechnologies for extracting and recovering metals from ores and waste materials publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.04.008 – volume: 154 start-page: 1 year: 2015 ident: 10.1016/j.mineng.2016.10.008_b0005 article-title: Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.03.006 – volume: 48 start-page: 12206 year: 2014 ident: 10.1016/j.mineng.2016.10.008_b0040 article-title: Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors publication-title: Environ. Sci. Technol. doi: 10.1021/es5030367 – volume: 33 start-page: 1311 year: 1995 ident: 10.1016/j.mineng.2016.10.008_b0095 article-title: Characterization of argentojarosite formed from biologically oxidized Fe3+ ions publication-title: Can. Mineral. – volume: 7 start-page: 405 year: 2011 ident: 10.1016/j.mineng.2016.10.008_b0065 article-title: Recycling, reuse and rehabilitation of mine wastes publication-title: Elements doi: 10.2113/gselements.7.6.405 – start-page: 109 year: 2000 ident: 10.1016/j.mineng.2016.10.008_b0025 article-title: The tailings pond failure at the Aznalcóllar mine, Spain – volume: 825 start-page: 483 year: 2013 ident: 10.1016/j.mineng.2016.10.008_b0035 article-title: Reduction and complexation of copper in a novel bioreduction system developed to recover base metals from mine process waters publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.825.483 – volume: 94 start-page: 42 year: 2008 ident: 10.1016/j.mineng.2016.10.008_b0055 article-title: Effect of temperature on bioleaching of chalcopyrite concentrates containing high concentrations of silver: opposite rules apply publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2008.06.005 – volume: 158 start-page: 23 year: 2008 ident: 10.1016/j.mineng.2016.10.008_b0010 article-title: Investigation of the possibility of copper recovery from the flotation tailings by acid leaching publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.01.063 |
SSID | ssj0005789 |
Score | 2.5903065 |
Snippet | [Display omitted]
•Mineral tailings from two copper mines were bioleached under different conditions.•Greatest copper extraction was achieved at extremely low... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 71 |
SubjectTerms | Acidophile Bioleaching Copper Silver Tailings |
Title | New approaches for extracting and recovering metals from mine tailings |
URI | https://dx.doi.org/10.1016/j.mineng.2016.10.008 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5e0-7msdkcS7FUxV600Nuym2RLxW5LXT36251kd6WCKHgNMxC-TWa-LN_MIHRNM2uYilOig8jCAyUwROWZI3KWW5oBCfa1MA-TaDzldzMxa6FhUwvjZJV17K9iuo_W9Uq_RrO_Xiz6j0GsaAR0GxhFwLhwPUE5l-6U9z62ZB7Sj8FzxsRZN-VzXuO1BCZXzJ3AK-p5jVf8c3raSjmjA7Rfc0U8qLZziFq2OEJ7Wx0Ej9EIghRu-oLbVwwUFEO49aVPxRynhcHuyfvuzfHSAtUGo81qid2msJOPul_lJ2g6unkajkk9GoFoLkRJuASAgXxoq3NGDWM0zDVj1qjQhJk2MjI8lQLIVaYVFypPuYpzuGsSKBbVlp2idrEq7BnCjEoTGyBiaRRBNo8z8FLAI2ExhQQqOog1iCS67hvuxle8JI1A7DmpcEwcjm4VcOwg8uW1rvpm_GEvG7CTb98_gdD-q-f5vz0v0C71wy0ECcUlapebN3sFFKPMuv4MddHO4PZ-PPkEcZzQhA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qPagH8Yn1mYPXbbd57G6OUixV215sobdlN8kWxW5LrR797U6yu1JBFLyGGQgfycyX8M0MwDVNjWYySjzlBwYfKL72ZJZaIme4oSmSYFcLMxgGvTG_n4hJDTpVLYyVVZaxv4jpLlqXK60Szdbi6an16EeSBki3kVH4jAu-AZscr68dY9D8WNN5hG4OnrX2rHlVP-dEXjOkcvnUKryCphN5RT_np7Wc092D3ZIskptiP_tQM_kB7Ky1EDyELkYpUjUGN68EOSjBeOtqn_IpSXJN7Jv33ZmTmUGujUbL-YzYTRGrH7V_5Ucw7t6OOj2vnI3gKS7EyuMhIozsQxmVMaoZo-1MMWa0bOt2qnQYaJ6EAtlVqiQXMku4jDK8bCFyLKoMO4Z6Ps_NCRBGQx1pZGJJEGA6j1L0kkgkcTHBDCoawCpEYlU2DrfzK17iSiH2HBc4xhZHu4o4NsD78loUjTP-sA8rsONvByDG2P6r5-m_Pa9gqzca9OP-3fDhDLapzdi2Mas4h_pq-WYukG-s0kt3nj4BYqfSFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+approaches+for+extracting+and+recovering+metals+from+mine+tailings&rft.jtitle=Minerals+engineering&rft.au=Falag%C3%A1n%2C+Carmen&rft.au=Grail%2C+Barry+M.&rft.au=Johnson%2C+D.+Barrie&rft.date=2017-05-15&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=106&rft.spage=71&rft.epage=78&rft_id=info:doi/10.1016%2Fj.mineng.2016.10.008&rft.externalDocID=S0892687516303454 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |