Influence of environmental factors on autotrophic, soil and ecosystem respirations in Canadian boreal forest
•Regional-scale modelling of ecosystem (Reco) and autotrophic respiration (Ra).•Temperature and dissolved oxygen (DO) levels mostly influence Reco and Ra.•Water-filled pore space has lowest influence on Reco, Ra and soil respiration (Rs).•Soil and air temperature and DO contributes >65% for Reco,...
Saved in:
Published in | Ecological indicators Vol. 125; p. 107517 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Regional-scale modelling of ecosystem (Reco) and autotrophic respiration (Ra).•Temperature and dissolved oxygen (DO) levels mostly influence Reco and Ra.•Water-filled pore space has lowest influence on Reco, Ra and soil respiration (Rs).•Soil and air temperature and DO contributes >65% for Reco, Ra and Rs simulation.•First time Reco, Ra modelling using the Soil and Water Assessment Tool (SWAT).
Ecosystem respiration (Reco) and its components, the autotrophic respiration (Ra) and soil respiration (Rs) are the essential indicators of the global carbon cycle. They are represented as functions of either temperature or soil moisture, or a combination of both in the widely-used Earth System Models (ESMs). Thus, it is difficult to evaluate the influence of other environmental factors (such as, precipitation, soil temperature, dissolved oxygen level and oxidation reduction potential (ORP)) on Ra, Rs and Reco. Here we introduced microbially mediated, detailed carbon cycle processes within our mechanistic model to address this issue. Dominance analysis using a multivariate approach was performed to find out the influence of individual environmental factors on Ra, Rs and Reco in the cold climate regions of Athabasca River Basin (ARB), Canada. Contribution of the 6 predictor variables, including air temperature, precipitation, soil temperature, water-filled pore space (WFPS) used as a proxy of soil moisture, dissolved oxygen level, and ORP, on Ra, Rs and Reco were estimated based on the R2 values originated from multiple regression analyses. Our results showed that the prevailing temperature (both air and soil) and dissolved oxygen levels are the major influencing factors on Ra, Rs and Reco. WFPS is found to be the least influential factor on respiration estimation. Output of this study can be used to consider the crucial roles of environmental drivers in Ra, Rs and Reco estimation in the development of future ESMs. |
---|---|
AbstractList | •Regional-scale modelling of ecosystem (Reco) and autotrophic respiration (Ra).•Temperature and dissolved oxygen (DO) levels mostly influence Reco and Ra.•Water-filled pore space has lowest influence on Reco, Ra and soil respiration (Rs).•Soil and air temperature and DO contributes >65% for Reco, Ra and Rs simulation.•First time Reco, Ra modelling using the Soil and Water Assessment Tool (SWAT).
Ecosystem respiration (Reco) and its components, the autotrophic respiration (Ra) and soil respiration (Rs) are the essential indicators of the global carbon cycle. They are represented as functions of either temperature or soil moisture, or a combination of both in the widely-used Earth System Models (ESMs). Thus, it is difficult to evaluate the influence of other environmental factors (such as, precipitation, soil temperature, dissolved oxygen level and oxidation reduction potential (ORP)) on Ra, Rs and Reco. Here we introduced microbially mediated, detailed carbon cycle processes within our mechanistic model to address this issue. Dominance analysis using a multivariate approach was performed to find out the influence of individual environmental factors on Ra, Rs and Reco in the cold climate regions of Athabasca River Basin (ARB), Canada. Contribution of the 6 predictor variables, including air temperature, precipitation, soil temperature, water-filled pore space (WFPS) used as a proxy of soil moisture, dissolved oxygen level, and ORP, on Ra, Rs and Reco were estimated based on the R2 values originated from multiple regression analyses. Our results showed that the prevailing temperature (both air and soil) and dissolved oxygen levels are the major influencing factors on Ra, Rs and Reco. WFPS is found to be the least influential factor on respiration estimation. Output of this study can be used to consider the crucial roles of environmental drivers in Ra, Rs and Reco estimation in the development of future ESMs. Ecosystem respiration (Rₑcₒ) and its components, the autotrophic respiration (Rₐ) and soil respiration (Rₛ) are the essential indicators of the global carbon cycle. They are represented as functions of either temperature or soil moisture, or a combination of both in the widely-used Earth System Models (ESMs). Thus, it is difficult to evaluate the influence of other environmental factors (such as, precipitation, soil temperature, dissolved oxygen level and oxidation reduction potential (ORP)) on Rₐ, Rₛ and Rₑcₒ. Here we introduced microbially mediated, detailed carbon cycle processes within our mechanistic model to address this issue. Dominance analysis using a multivariate approach was performed to find out the influence of individual environmental factors on Rₐ, Rₛ and Rₑcₒ in the cold climate regions of Athabasca River Basin (ARB), Canada. Contribution of the 6 predictor variables, including air temperature, precipitation, soil temperature, water-filled pore space (WFPS) used as a proxy of soil moisture, dissolved oxygen level, and ORP, on Rₐ, Rₛ and Rₑcₒ were estimated based on the R² values originated from multiple regression analyses. Our results showed that the prevailing temperature (both air and soil) and dissolved oxygen levels are the major influencing factors on Rₐ, Rₛ and Rₑcₒ. WFPS is found to be the least influential factor on respiration estimation. Output of this study can be used to consider the crucial roles of environmental drivers in Rₐ, Rₛ and Rₑcₒ estimation in the development of future ESMs. Ecosystem respiration (Reco) and its components, the autotrophic respiration (Ra) and soil respiration (Rs) are the essential indicators of the global carbon cycle. They are represented as functions of either temperature or soil moisture, or a combination of both in the widely-used Earth System Models (ESMs). Thus, it is difficult to evaluate the influence of other environmental factors (such as, precipitation, soil temperature, dissolved oxygen level and oxidation reduction potential (ORP)) on Ra, Rs and Reco. Here we introduced microbially mediated, detailed carbon cycle processes within our mechanistic model to address this issue. Dominance analysis using a multivariate approach was performed to find out the influence of individual environmental factors on Ra, Rs and Reco in the cold climate regions of Athabasca River Basin (ARB), Canada. Contribution of the 6 predictor variables, including air temperature, precipitation, soil temperature, water-filled pore space (WFPS) used as a proxy of soil moisture, dissolved oxygen level, and ORP, on Ra, Rs and Reco were estimated based on the R2 values originated from multiple regression analyses. Our results showed that the prevailing temperature (both air and soil) and dissolved oxygen levels are the major influencing factors on Ra, Rs and Reco. WFPS is found to be the least influential factor on respiration estimation. Output of this study can be used to consider the crucial roles of environmental drivers in Ra, Rs and Reco estimation in the development of future ESMs. |
ArticleNumber | 107517 |
Author | Wang, Junye Bhanja, Soumendra N. |
Author_xml | – sequence: 1 givenname: Soumendra N. surname: Bhanja fullname: Bhanja, Soumendra N. email: soumendrabhanja@gmail.com organization: Interdisciplinary Centre for Water Research, Indian Institute of Science, CV Raman Rd, Bangalore, Karnataka 560012, India – sequence: 2 givenname: Junye surname: Wang fullname: Wang, Junye organization: Athabasca River Basin Research Institute (ARBRI), Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada |
BookMark | eNqFkT1vFDEQhlcoSCSBn4DkkoK9-Ht3RYHQCchJkWhS0Fn-GINPPvuwfZHy7_FlIwqaVDMazfuM3nmvhouUEwzDe4I3BBN5s9-AzTEkt6GYkj6bBJleDZdknug4YcYves8nPBKJf74Zrmrd465bFnk5xF3y8QTJAsoeQXoIJacDpKYj8tq2XCrKCelTy63k4-9gP6KaQ0Q6OdTP1sfa4IAK1GMouoWcKgoJbXXSLuiETC5wRvVS29vhtdexwrvnej3cf_t6v70d7358322_3I2WC9FGPlHuuhNuJkOoEFpqDsQ55rAxHstFMMCzt8Y4O0tqZimdtxSwgYUyzK6H3Yp1We_VsYSDLo8q66CeBrn8Urq0YCMoIqQExtgk5oUTwYzGbiZi8Z5yrLHtrA8r61jyn1P3oA6hWohRJ8inqqignGE6T3NfFeuqLbnWAv7faYLVOSi1V89BqXNQag2q6z79p7OhPb2yFR3ii-rPqxr6Qx8CFFVtOOfpQgHbuuXwAuEv7361nw |
CitedBy_id | crossref_primary_10_3389_fenvs_2022_834371 crossref_primary_10_3390_agriculture12071063 crossref_primary_10_3390_environments12010025 crossref_primary_10_1016_j_geoderma_2025_117172 crossref_primary_10_1016_j_scitotenv_2023_165949 crossref_primary_10_3390_w14091458 crossref_primary_10_1016_j_seh_2024_100062 crossref_primary_10_1002_ecs2_4985 crossref_primary_10_3389_fpls_2021_756956 crossref_primary_10_3390_f15111982 crossref_primary_10_1038_s41598_023_45121_3 crossref_primary_10_1016_j_agwat_2022_108024 crossref_primary_10_1016_j_scitotenv_2024_172605 |
Cites_doi | 10.1126/science.aav0550 10.1016/j.atmosenv.2019.04.014 10.1029/2000GB001278 10.1007/s10533-007-9132-0 10.1038/s41586-018-0358-x 10.1016/j.agrformet.2007.01.006 10.1007/s00374-005-0858-3 10.1002/ehs2.1259 10.1016/j.agrformet.2010.02.004 10.1038/s41586-018-0424-4 10.1111/gcb.12620 10.1111/gcb.12058 10.5194/gmd-11-497-2018 10.1111/j.1365-2486.2004.00816.x 10.5194/bg-10-1717-2013 10.3102/10769986031002157 10.1038/nature08930 10.5194/bg-7-1915-2010 10.1016/j.scitotenv.2019.06.054 10.1111/j.1365-2745.2011.01925.x 10.1126/science.aan2874 10.1029/2004GB002301 10.1037/0033-2909.114.3.542 10.1016/j.envpol.2019.01.062 10.1890/01-6012 10.1017/CBO9780511546013 10.1016/j.geoderma.2009.09.002 10.1038/nature04514 10.1017/S0376892915000181 10.1016/j.envpol.2019.113630 10.1111/gcb.13489 10.1080/014311600210191 10.1007/s10533-004-0898-z 10.2136/sssaj1987.03615995005100050015x 10.1111/j.1752-1688.1998.tb05961.x 10.1007/s10533-014-0012-0 10.1007/s00442-009-1556-x 10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2 10.1029/94GB00767 10.1038/ncomms9960 10.5194/gmd-4-701-2011 10.1016/j.envsoft.2016.11.013 10.1002/2013GB004595 10.1038/ngeo846 10.1007/s11356-018-2719-2 10.1016/j.scitotenv.2017.05.013 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ecolind.2021.107517 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1872-7034 |
ExternalDocumentID | oai_doaj_org_article_1566e33375894153ba0d8159ff240a0c 10_1016_j_ecolind_2021_107517 S1470160X21001825 |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c455t-4724d0214b7b1255a6a4e1dd3d0bbf06953e08fcbbdc862b866dfc2e0be92303 |
IEDL.DBID | .~1 |
ISSN | 1470-160X |
IngestDate | Wed Aug 27 00:58:59 EDT 2025 Fri Jul 11 12:20:54 EDT 2025 Tue Jul 01 01:32:43 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Fri Feb 23 02:42:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon cycle SWAT Cold climate region Canadian boreal forest Autotrophic respiration Ecosystem respiration Soil respiration Dissolved oxygen Root respiration |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-4724d0214b7b1255a6a4e1dd3d0bbf06953e08fcbbdc862b866dfc2e0be92303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1470160X21001825 |
PQID | 2524302878 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1566e33375894153ba0d8159ff240a0c proquest_miscellaneous_2524302878 crossref_primary_10_1016_j_ecolind_2021_107517 crossref_citationtrail_10_1016_j_ecolind_2021_107517 elsevier_sciencedirect_doi_10_1016_j_ecolind_2021_107517 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Ecological indicators |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Shrestha, Du, Wang (b0290) 2017; 601 Andrews, Schlesinger (b0010) 2001; 15 Wang, Liu, Piao, Janssens, Tang, Liu, Chi, Wang, Xu (b0325) 2014; 20 Crowther, Van den Hoogen, Wan, Mayes, Keiser, Mo, Averill, Maynard (b0130) 2019; 365 Parton, Morgan, Kelly, Ojima (b0265) 2001 Ciais, Sabine, Bala, Bopp, Brovkin, Canadell, Chhabra, DeFries, Galloway, Heimann, Jones (b0110) 2014 Bethke (b0045) 2007 Ryan, Linder, Vose, Hubbard (b0285) 1994 Arnold, Srinivasan, Muttiah, Williams (b0020) 1998; 34 Allison, Wallenstein, Bradford (b0005) 2010; 3 Hicks Pries, Schuur, Crummer (b0170) 2013; 19 Bhanja, S.N., Wang, J. In-Press. Emerging Groundwater and Surface Water Trends in Alberta, Canada. Elsevier, Netherlands: Global Groundwater. ISBN: 9780128181720. Qiu, Zhu, Ciais, Guenet, Krinner, Peng, Aurela, Bernhofer, Brümmer, Bret-Harte, Chu, Chen, Desai, Dušek, Euskirchen, Fortuniak, Flanagan, Friborg, Grygoruk, Gogo, Grünwald, Hansen, Holl, Humphreys, Hurkuck, Kiely, Klatt, Kutzbach, Largeron, Laggoun-Défarge, Lund, Lafleur, Li, Mammarella, Merbold, Nilsson, Olejnik, Ottosson-Löfvenius, Oechel, Parmentier, Peichl, Pirk, Peltola, Pawlak, Rasse, Rinne, Shaver, Schmid, Sottocornola, Steinbrecher, Sachs, Urbaniak, Zona, Klaudia Ziemblinska (b0275) 2018; 11 Hursh, Ballantyne, Cooper, Maneta, Kimball, Watts (b0185) 2017; 23 Shrestha, Thomas, Du, Hao, Wang (b0295) 2018; 25 GoC (b0160) 2016 White, Thornton, Running, Nemani (b0330) 2000; 4 Lawrence, D. et al. 2019. Technical Description of version 5.0 of the Community Land Model (CLM). Misson, Baldocchi, Black, Blanken, Brunet, Yuste, Dorsey, Falk, Granier, Irvine, Jarosz (b0230) 2007; 144 Bhanja, Wang (b9000) 2021 Bateman, Baggs (b0035) 2005; 41 Fujita, Witte, van Bodegom (b0155) 2014; 28 Parton, Schimel, Cole, Ojima (b0255) 1987; 51 Bond-Lamberty, Wang, Gower (b0070) 2004; 10 Knohl, Buchmann (b0200) 2005; 19 Veen (b0315) 1981 Pastorello, Papale, Chu, Trotta, Agarwal, Canfora, Baldocchi, Torn (b0270) 2017; 98 Li, Frolking, Harriss (b0210) 1994; 8 Bhanja, Wang (b0060) 2020; 257 Bates, B., Kundzewicz, Z., Wu, S. 2008. Climate change and water. Intergovernmental Panel on Climate Change Secretariat. Anthony, von Deimling, Nitze, Frolking, Emond, Daanen, Anthony, Lindgren, Jones, Grosse (b0015) 2018; 9 . Neitsch, Arnold, Kiniry, Williams (b0240) 2011 Cui, Wang (b0135) 2019; 687 Kaiser, Franklin, Richter, Dieckmann (b0195) 2015; 6 Wagena, Bock, Sommerlot, Fuka, Easton (b0320) 2017; 89 SLC. 2010. Agriculture and Agri-Food Canada (Ed.), Soil Landscapes of Canada Version 3.2 Bond-Lamberty, Thomson (b0080) 2010; 7 Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E. 2008. Hole-filled SRTM for the Globe Version 4, Available from the CGIAR-CSI SRTM90m Database. CGIAR Bhanja, Wang, Shrestha, Zhang (b0050) 2019; 247 CFSR, 2016. Global Weather Data for SWAT (Ed.), Climate Forecast System Reanalysis. Loveland, Reed, Brown, Ohlen, Zhu, Yang, Merchant (b0215) 2000; 21 Hardie, Garnett, Fallick, Ostle, Rowland (b0165) 2009; 153 Nowinski, Taneva, Trumbore, Welker (b0245) 2010; 163 Fan, Neff, Waldrop, Ballantyne, Turetsky (b0150) 2014; 121 Cleveland, Liptzin (b0120) 2007; 85 Todd-Brown, Randerson, Post, Hoffman, Tarnocai, Schuur, Allison (b0305) 2013; 10 Humphrey, Zscheischler, Ciais, Gudmundsson, Sitch, Seneviratne (b0180) 2018; 560 Melillo, Frey, DeAngelis, Werner, Bernard, Bowles, Pold, Knorr, Grandy (b0225) 2017; 358 Davidson, Janssens (b0140) 2006; 440 Natali, Schuur, Rubin (b0235) 2012; 100 Oleson, K.W., et al. 2010. Technical description of version 4.0 of the Community Land Model (CLM), NCAR Tech. Note NCAR/TN-478+STR Chen, Huang, Zou, Shen, Hu, Qin, Chen, Pan (b0105) 2010; 150 Bond-Lamberty, Thomson (b0075) 2010; 464 Bhanja, Wang, Shrestha, Zhang (b0055) 2019; 209 Clark (b0115) 2011; 4 Yang, Zhang, Abraha, Del Grosso, Robertson, Chen (b0340) 2017; 3 Chambers, Tribuzy, Toledo, Crispim, Higuchi, Santos, Araújo, Kruijt, Nobre, Trumbore (b0100) 2004; 14 Weber, Hauer, Farr (b0335) 2015; 42 Reddy, DeLaune (b0280) 2008 Del Grosso, Parton, Mosier, Holland, Pendall, Schimel, Ojima (b0145) 2005; 73 Azen, Budescu (b0030) 2006; 31 Bond-Lamberty, Bailey, Chen, Gough, Vargas (b0085) 2018; 560 Budescu (b0090) 1993; 114 Parton, Ojima, Cole, Schimel (b0260) 1994 Bateman (10.1016/j.ecolind.2021.107517_b0035) 2005; 41 Cleveland (10.1016/j.ecolind.2021.107517_b0120) 2007; 85 Shrestha (10.1016/j.ecolind.2021.107517_b0295) 2018; 25 Crowther (10.1016/j.ecolind.2021.107517_b0130) 2019; 365 Parton (10.1016/j.ecolind.2021.107517_b0265) 2001 Ciais (10.1016/j.ecolind.2021.107517_b0110) 2014 Bhanja (10.1016/j.ecolind.2021.107517_b0055) 2019; 209 Natali (10.1016/j.ecolind.2021.107517_b0235) 2012; 100 Misson (10.1016/j.ecolind.2021.107517_b0230) 2007; 144 Fan (10.1016/j.ecolind.2021.107517_b0150) 2014; 121 Arnold (10.1016/j.ecolind.2021.107517_b0020) 1998; 34 Andrews (10.1016/j.ecolind.2021.107517_b0010) 2001; 15 10.1016/j.ecolind.2021.107517_b0190 Wagena (10.1016/j.ecolind.2021.107517_b0320) 2017; 89 Bethke (10.1016/j.ecolind.2021.107517_b0045) 2007 Bond-Lamberty (10.1016/j.ecolind.2021.107517_b0075) 2010; 464 Cui (10.1016/j.ecolind.2021.107517_b0135) 2019; 687 Bond-Lamberty (10.1016/j.ecolind.2021.107517_b0080) 2010; 7 Melillo (10.1016/j.ecolind.2021.107517_b0225) 2017; 358 10.1016/j.ecolind.2021.107517_b0300 Anthony (10.1016/j.ecolind.2021.107517_b0015) 2018; 9 Knohl (10.1016/j.ecolind.2021.107517_b0200) 2005; 19 Budescu (10.1016/j.ecolind.2021.107517_b0090) 1993; 114 Hursh (10.1016/j.ecolind.2021.107517_b0185) 2017; 23 Chambers (10.1016/j.ecolind.2021.107517_b0100) 2004; 14 10.1016/j.ecolind.2021.107517_b0065 Reddy (10.1016/j.ecolind.2021.107517_b0280) 2008 Allison (10.1016/j.ecolind.2021.107517_b0005) 2010; 3 Del Grosso (10.1016/j.ecolind.2021.107517_b0145) 2005; 73 Kaiser (10.1016/j.ecolind.2021.107517_b0195) 2015; 6 Bond-Lamberty (10.1016/j.ecolind.2021.107517_b0085) 2018; 560 Todd-Brown (10.1016/j.ecolind.2021.107517_b0305) 2013; 10 Bhanja (10.1016/j.ecolind.2021.107517_b9000) 2021 Neitsch (10.1016/j.ecolind.2021.107517_b0240) 2011 Shrestha (10.1016/j.ecolind.2021.107517_b0290) 2017; 601 Parton (10.1016/j.ecolind.2021.107517_b0260) 1994 Weber (10.1016/j.ecolind.2021.107517_b0335) 2015; 42 Chen (10.1016/j.ecolind.2021.107517_b0105) 2010; 150 Li (10.1016/j.ecolind.2021.107517_b0210) 1994; 8 10.1016/j.ecolind.2021.107517_b0095 Parton (10.1016/j.ecolind.2021.107517_b0255) 1987; 51 10.1016/j.ecolind.2021.107517_b0250 Yang (10.1016/j.ecolind.2021.107517_b0340) 2017; 3 Azen (10.1016/j.ecolind.2021.107517_b0030) 2006; 31 Loveland (10.1016/j.ecolind.2021.107517_b0215) 2000; 21 GoC (10.1016/j.ecolind.2021.107517_b0160) 2016 Davidson (10.1016/j.ecolind.2021.107517_b0140) 2006; 440 Bhanja (10.1016/j.ecolind.2021.107517_b0060) 2020; 257 Wang (10.1016/j.ecolind.2021.107517_b0325) 2014; 20 Bhanja (10.1016/j.ecolind.2021.107517_b0050) 2019; 247 Nowinski (10.1016/j.ecolind.2021.107517_b0245) 2010; 163 Pastorello (10.1016/j.ecolind.2021.107517_b0270) 2017; 98 Ryan (10.1016/j.ecolind.2021.107517_b0285) 1994 Hardie (10.1016/j.ecolind.2021.107517_b0165) 2009; 153 10.1016/j.ecolind.2021.107517_b0205 10.1016/j.ecolind.2021.107517_b0040 Veen (10.1016/j.ecolind.2021.107517_b0315) 1981 Bond-Lamberty (10.1016/j.ecolind.2021.107517_b0070) 2004; 10 Hicks Pries (10.1016/j.ecolind.2021.107517_b0170) 2013; 19 Clark (10.1016/j.ecolind.2021.107517_b0115) 2011; 4 Qiu (10.1016/j.ecolind.2021.107517_b0275) 2018; 11 Fujita (10.1016/j.ecolind.2021.107517_b0155) 2014; 28 Humphrey (10.1016/j.ecolind.2021.107517_b0180) 2018; 560 White (10.1016/j.ecolind.2021.107517_b0330) 2000; 4 |
References_xml | – volume: 163 start-page: 785 year: 2010 end-page: 792 ident: b0245 article-title: Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment publication-title: Oecologia – volume: 4 start-page: 1 year: 2000 end-page: 85 ident: b0330 article-title: Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls publication-title: Earth Interact. – reference: Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E. 2008. Hole-filled SRTM for the Globe Version 4, Available from the CGIAR-CSI SRTM90m Database. CGIAR – year: 2008 ident: b0280 article-title: Biogeochemistry of Wetlands: Science and Applications – volume: 31 start-page: 157 year: 2006 end-page: 180 ident: b0030 article-title: Comparing predictors in multivariate regression models: An extension of dominance analysis publication-title: J. Educ. Behav. Statis. – volume: 28 start-page: 223 year: 2014 end-page: 238 ident: b0155 article-title: Incorporating microbial ecology concepts into global soil mineralization models to improve predictions of carbon and nitrogen fluxes publication-title: Global Biogeochem. Cycles – year: 2016 ident: b0160 article-title: Environment and Natural Resources; Weather, Climate and Hazard – volume: 8 start-page: 237 year: 1994 end-page: 254 ident: b0210 article-title: Modeling carbon biogeochemistry in agricultural soils publication-title: Global Biogeochem. Cycles – volume: 23 start-page: 2090 year: 2017 end-page: 2103 ident: b0185 article-title: The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale publication-title: Glob. Change Biol. – volume: 51 start-page: 1173 year: 1987 end-page: 1179 ident: b0255 article-title: Analysis of factors controlling soil organic matter levels in Great Plains Grasslands 1 publication-title: Soil Sci. Soc. Am. J. – volume: 153 start-page: 393 year: 2009 end-page: 401 ident: b0165 article-title: Bomb-C-14 analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon publication-title: Geoderma – volume: 10 start-page: 1717 year: 2013 end-page: 1736 ident: b0305 article-title: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations publication-title: Biogeosciences – volume: 358 start-page: 101 year: 2017 end-page: 105 ident: b0225 article-title: Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world publication-title: Science – reference: Oleson, K.W., et al. 2010. Technical description of version 4.0 of the Community Land Model (CLM), NCAR Tech. Note NCAR/TN-478+STR, – volume: 85 start-page: 235 year: 2007 end-page: 252 ident: b0120 article-title: C:N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? publication-title: Biogeochemistry – reference: Lawrence, D. et al. 2019. Technical Description of version 5.0 of the Community Land Model (CLM). – volume: 560 start-page: 628 year: 2018 end-page: 631 ident: b0180 article-title: Sensitivity of atmospheric CO publication-title: Nature – start-page: 277 year: 1981 end-page: 280 ident: b0315 article-title: Relation between root respiration and root activity publication-title: Structure and Function of Plant Roots – volume: 6 start-page: 1 year: 2015 end-page: 10 ident: b0195 article-title: Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils publication-title: Nat. Commun. – volume: 144 start-page: 14 year: 2007 end-page: 31 ident: b0230 article-title: Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: A synthesis based on FLUXNET data publication-title: Agric. For. Meteorol. – start-page: 50 year: 1994 end-page: 63 ident: b0285 article-title: Dark respiration of pines publication-title: Ecol. Bull. – volume: 464 start-page: 579 year: 2010 ident: b0075 article-title: Temperature-associated increases in the global soil respiration record publication-title: Nature – volume: 4 start-page: 701 year: 2011 end-page: 722 ident: b0115 article-title: The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics publication-title: Geosci. Model Dev. – volume: 42 start-page: 315 year: 2015 end-page: 324 ident: b0335 article-title: Economic-ecological evaluation of temporary biodiversity offsets in Alberta's boreal forest publication-title: Environ. Conserv. – reference: Bates, B., Kundzewicz, Z., Wu, S. 2008. Climate change and water. Intergovernmental Panel on Climate Change Secretariat. – reference: CFSR, 2016. Global Weather Data for SWAT (Ed.), Climate Forecast System Reanalysis. – volume: 209 start-page: 125 year: 2019 end-page: 135 ident: b0055 article-title: Modeling microbial kinetics and thermodynamic processes for quantifying soil CO publication-title: Atmos. Environ. – year: 2011 ident: b0240 article-title: Soil and Water Assessment Tool Theoretical Documentation Version 2009 – volume: 11 start-page: 497 year: 2018 end-page: 519 ident: b0275 article-title: ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO publication-title: Geosci. Model Dev. – volume: 19 start-page: 649 year: 2013 end-page: 661 ident: b0170 article-title: Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and Δ14C publication-title: Glob. Change Biol. – volume: 7 start-page: 1321 year: 2010 end-page: 1344 ident: b0080 article-title: A global database of soil respiration measurements publication-title: Biogeosciences – reference: SLC. 2010. Agriculture and Agri-Food Canada (Ed.), Soil Landscapes of Canada Version 3.2 – volume: 440 start-page: 165 year: 2006 ident: b0140 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 73 start-page: 71 year: 2005 end-page: 91 ident: b0145 article-title: Modeling soil CO publication-title: Biogeochemistry – volume: 19 year: 2005 ident: b0200 article-title: Partitioning the net CO publication-title: Global Biogeochem. Cycles – volume: 150 start-page: 590 year: 2010 end-page: 605 ident: b0105 article-title: Modeling interannual variability of global soil respiration from climate and soil properties publication-title: Agric. For. Meteorol. – volume: 41 start-page: 379 year: 2005 end-page: 388 ident: b0035 article-title: Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space publication-title: Biol. Fertil. Soils – volume: 100 start-page: 488 year: 2012 end-page: 498 ident: b0235 article-title: Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost publication-title: J. Ecol. – volume: 560 start-page: 80 year: 2018 ident: b0085 article-title: Globally rising soil heterotrophic respiration over recent decades publication-title: Nature – start-page: 371 year: 2001 end-page: 398 ident: b0265 publication-title: The Potential of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect – reference: Bhanja, S.N., Wang, J. In-Press. Emerging Groundwater and Surface Water Trends in Alberta, Canada. Elsevier, Netherlands: Global Groundwater. ISBN: 9780128181720. – year: 2007 ident: b0045 article-title: Geochemical and Biogeochemical Reaction Modeling – volume: 14 start-page: 72 year: 2004 end-page: 88 ident: b0100 article-title: Respiration from a tropical forest ecosystem: Partitioning of sources and low carbon use efficiency publication-title: Ecol. Appl. – volume: 121 start-page: 455 year: 2014 end-page: 470 ident: b0150 article-title: Transport of oxygen in soil pore-water systems: implications for modeling emissions of carbon dioxide and methane from peatlands publication-title: Biogeochemistry – volume: 3 start-page: 336 year: 2010 end-page: 340 ident: b0005 article-title: Soil-carbon response to warming dependent on microbial physiology publication-title: Nat. Geosci. – volume: 9 start-page: 1 year: 2018 end-page: 11 ident: b0015 article-title: 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes publication-title: Nat. Commun. – volume: 20 start-page: 3229 year: 2014 end-page: 3237 ident: b0325 article-title: Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration publication-title: Glob. Change Biol. – volume: 687 start-page: 61 year: 2019 end-page: 70 ident: b0135 article-title: Improving the DNDC biogeochemistry model to simulate soil temperature and emissions of nitrous oxide and carbon dioxide in cold regions publication-title: Sci. Total Environ. – volume: 247 start-page: 812 year: 2019 end-page: 823 ident: b0050 article-title: Microbial kinetics and thermodynamic (MKT) processes for soil organic matter decomposition and dynamic oxidation-reduction potential: Model descriptions and applications to soil N publication-title: Environ. Pollut. – volume: 114 start-page: 542 year: 1993 ident: b0090 article-title: Dominance analysis: a new approach to the problem of relative importance of predictors in multiple regression publication-title: Psychol. Bull. – volume: 98 year: 2017 ident: b0270 article-title: A new data set to keep a sharper eye on land-air exchanges publication-title: Eos, Trans. Am. Geophys. Union Online – reference: . – volume: 25 start-page: 27362 year: 2018 end-page: 27377 ident: b0295 article-title: Modeling nitrous oxide emissions from rough fescue grassland soils subjected to long-term grazing of different intensities using the Soil and Water Assessment Tool (SWAT) publication-title: Environ. Sci. Pollut. Res. – start-page: 73 year: 2021 end-page: 79 ident: b9000 article-title: Emerging groundwater and surface water trends in Alberta, Canada publication-title: Global Groundwater – volume: 89 start-page: 131 year: 2017 end-page: 143 ident: b0320 article-title: Development of a nitrous oxide routine for the SWAT model to assess greenhouse gas emissions from agroecosystems publication-title: Environ. Model. Softw. – volume: 15 start-page: 149 year: 2001 end-page: 162 ident: b0010 article-title: Soil CO publication-title: Global Biogeochem. Cy. – start-page: 147 year: 1994 end-page: 167 ident: b0260 article-title: A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management publication-title: Quantitative Model. Soil Forming Process. – volume: 21 start-page: 1303 year: 2000 end-page: 1330 ident: b0215 article-title: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data publication-title: Int. J. Rem. Sens. – start-page: 465 year: 2014 end-page: 570 ident: b0110 article-title: Carbon and other biogeochemical cycles publication-title: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 3 year: 2017 ident: b0340 article-title: Enhancing the soil and water assessment tool model for simulating N2O emissions of three agricultural systems publication-title: Ecosyst. Health Sustain. – volume: 601 start-page: 425 year: 2017 end-page: 440 ident: b0290 article-title: Assessing climate change impacts on fresh water resources of the Athabasca River Basin publication-title: Canada. Sci. Total Environ. – volume: 257 year: 2020 ident: b0060 article-title: Estimating influences of environmental drivers on soil heterotrophic respiration in the Athabasca River Basin, Canada publication-title: Environ. Pollut. – volume: 34 start-page: 73 year: 1998 end-page: 89 ident: b0020 article-title: Large area hydrologic modeling and assessment part I: Model development publication-title: J. Am. Water Resour. Assoc. – volume: 365 start-page: p.eaav0550 year: 2019 ident: b0130 article-title: The global soil community and its influence on biogeochemistry publication-title: Science – volume: 10 start-page: 1756 year: 2004 end-page: 1766 ident: b0070 article-title: A global relationship between the heterotrophic and autotrophic components of soil respiration? publication-title: Glob. Change Biol. – volume: 365 start-page: p.eaav0550 issue: 6455 year: 2019 ident: 10.1016/j.ecolind.2021.107517_b0130 article-title: The global soil community and its influence on biogeochemistry publication-title: Science doi: 10.1126/science.aav0550 – volume: 209 start-page: 125 year: 2019 ident: 10.1016/j.ecolind.2021.107517_b0055 article-title: Modeling microbial kinetics and thermodynamic processes for quantifying soil CO2 emission publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.04.014 – volume: 15 start-page: 149 year: 2001 ident: 10.1016/j.ecolind.2021.107517_b0010 article-title: Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment publication-title: Global Biogeochem. Cy. doi: 10.1029/2000GB001278 – volume: 85 start-page: 235 issue: 3 year: 2007 ident: 10.1016/j.ecolind.2021.107517_b0120 article-title: C:N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? publication-title: Biogeochemistry doi: 10.1007/s10533-007-9132-0 – volume: 560 start-page: 80 year: 2018 ident: 10.1016/j.ecolind.2021.107517_b0085 article-title: Globally rising soil heterotrophic respiration over recent decades publication-title: Nature doi: 10.1038/s41586-018-0358-x – volume: 144 start-page: 14 issue: 1–2 year: 2007 ident: 10.1016/j.ecolind.2021.107517_b0230 article-title: Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: A synthesis based on FLUXNET data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2007.01.006 – volume: 41 start-page: 379 year: 2005 ident: 10.1016/j.ecolind.2021.107517_b0035 article-title: Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-005-0858-3 – volume: 3 year: 2017 ident: 10.1016/j.ecolind.2021.107517_b0340 article-title: Enhancing the soil and water assessment tool model for simulating N2O emissions of three agricultural systems publication-title: Ecosyst. Health Sustain. doi: 10.1002/ehs2.1259 – volume: 150 start-page: 590 issue: 4 year: 2010 ident: 10.1016/j.ecolind.2021.107517_b0105 article-title: Modeling interannual variability of global soil respiration from climate and soil properties publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2010.02.004 – start-page: 277 year: 1981 ident: 10.1016/j.ecolind.2021.107517_b0315 article-title: Relation between root respiration and root activity – ident: 10.1016/j.ecolind.2021.107517_b0065 – start-page: 73 year: 2021 ident: 10.1016/j.ecolind.2021.107517_b9000 article-title: Emerging groundwater and surface water trends in Alberta, Canada – volume: 560 start-page: 628 issue: 7720 year: 2018 ident: 10.1016/j.ecolind.2021.107517_b0180 article-title: Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage publication-title: Nature doi: 10.1038/s41586-018-0424-4 – volume: 20 start-page: 3229 issue: 10 year: 2014 ident: 10.1016/j.ecolind.2021.107517_b0325 article-title: Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration publication-title: Glob. Change Biol. doi: 10.1111/gcb.12620 – ident: 10.1016/j.ecolind.2021.107517_b0250 – start-page: 465 year: 2014 ident: 10.1016/j.ecolind.2021.107517_b0110 article-title: Carbon and other biogeochemical cycles – year: 2016 ident: 10.1016/j.ecolind.2021.107517_b0160 – volume: 19 start-page: 649 year: 2013 ident: 10.1016/j.ecolind.2021.107517_b0170 article-title: Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and Δ14C publication-title: Glob. Change Biol. doi: 10.1111/gcb.12058 – volume: 11 start-page: 497 year: 2018 ident: 10.1016/j.ecolind.2021.107517_b0275 article-title: ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales publication-title: Geosci. Model Dev. doi: 10.5194/gmd-11-497-2018 – ident: 10.1016/j.ecolind.2021.107517_b0300 – volume: 10 start-page: 1756 year: 2004 ident: 10.1016/j.ecolind.2021.107517_b0070 article-title: A global relationship between the heterotrophic and autotrophic components of soil respiration? publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2004.00816.x – volume: 10 start-page: 1717 year: 2013 ident: 10.1016/j.ecolind.2021.107517_b0305 article-title: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations publication-title: Biogeosciences doi: 10.5194/bg-10-1717-2013 – year: 2008 ident: 10.1016/j.ecolind.2021.107517_b0280 – ident: 10.1016/j.ecolind.2021.107517_b0205 – volume: 31 start-page: 157 issue: 2 year: 2006 ident: 10.1016/j.ecolind.2021.107517_b0030 article-title: Comparing predictors in multivariate regression models: An extension of dominance analysis publication-title: J. Educ. Behav. Statis. doi: 10.3102/10769986031002157 – start-page: 371 year: 2001 ident: 10.1016/j.ecolind.2021.107517_b0265 – year: 2011 ident: 10.1016/j.ecolind.2021.107517_b0240 – volume: 464 start-page: 579 year: 2010 ident: 10.1016/j.ecolind.2021.107517_b0075 article-title: Temperature-associated increases in the global soil respiration record publication-title: Nature doi: 10.1038/nature08930 – volume: 7 start-page: 1321 year: 2010 ident: 10.1016/j.ecolind.2021.107517_b0080 article-title: A global database of soil respiration measurements publication-title: Biogeosciences doi: 10.5194/bg-7-1915-2010 – volume: 687 start-page: 61 year: 2019 ident: 10.1016/j.ecolind.2021.107517_b0135 article-title: Improving the DNDC biogeochemistry model to simulate soil temperature and emissions of nitrous oxide and carbon dioxide in cold regions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.054 – volume: 100 start-page: 488 issue: 2 year: 2012 ident: 10.1016/j.ecolind.2021.107517_b0235 article-title: Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2011.01925.x – volume: 358 start-page: 101 year: 2017 ident: 10.1016/j.ecolind.2021.107517_b0225 article-title: Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world publication-title: Science doi: 10.1126/science.aan2874 – volume: 19 issue: 4 year: 2005 ident: 10.1016/j.ecolind.2021.107517_b0200 article-title: Partitioning the net CO2 flux of a deciduous forest into respiration and assimilation using stable carbon isotopes publication-title: Global Biogeochem. Cycles doi: 10.1029/2004GB002301 – start-page: 50 year: 1994 ident: 10.1016/j.ecolind.2021.107517_b0285 article-title: Dark respiration of pines publication-title: Ecol. Bull. – volume: 114 start-page: 542 issue: 3 year: 1993 ident: 10.1016/j.ecolind.2021.107517_b0090 article-title: Dominance analysis: a new approach to the problem of relative importance of predictors in multiple regression publication-title: Psychol. Bull. doi: 10.1037/0033-2909.114.3.542 – volume: 247 start-page: 812 year: 2019 ident: 10.1016/j.ecolind.2021.107517_b0050 article-title: Microbial kinetics and thermodynamic (MKT) processes for soil organic matter decomposition and dynamic oxidation-reduction potential: Model descriptions and applications to soil N2O emissions publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.01.062 – volume: 14 start-page: 72 issue: sp4 year: 2004 ident: 10.1016/j.ecolind.2021.107517_b0100 article-title: Respiration from a tropical forest ecosystem: Partitioning of sources and low carbon use efficiency publication-title: Ecol. Appl. doi: 10.1890/01-6012 – ident: 10.1016/j.ecolind.2021.107517_b0095 – ident: 10.1016/j.ecolind.2021.107517_b0040 doi: 10.1017/CBO9780511546013 – volume: 153 start-page: 393 year: 2009 ident: 10.1016/j.ecolind.2021.107517_b0165 article-title: Bomb-C-14 analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon publication-title: Geoderma doi: 10.1016/j.geoderma.2009.09.002 – volume: 440 start-page: 165 year: 2006 ident: 10.1016/j.ecolind.2021.107517_b0140 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature doi: 10.1038/nature04514 – volume: 42 start-page: 315 issue: 4 year: 2015 ident: 10.1016/j.ecolind.2021.107517_b0335 article-title: Economic-ecological evaluation of temporary biodiversity offsets in Alberta's boreal forest publication-title: Environ. Conserv. doi: 10.1017/S0376892915000181 – volume: 257 year: 2020 ident: 10.1016/j.ecolind.2021.107517_b0060 article-title: Estimating influences of environmental drivers on soil heterotrophic respiration in the Athabasca River Basin, Canada publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113630 – volume: 23 start-page: 2090 issue: 5 year: 2017 ident: 10.1016/j.ecolind.2021.107517_b0185 article-title: The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale publication-title: Glob. Change Biol. doi: 10.1111/gcb.13489 – volume: 21 start-page: 1303 year: 2000 ident: 10.1016/j.ecolind.2021.107517_b0215 article-title: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data publication-title: Int. J. Rem. Sens. doi: 10.1080/014311600210191 – volume: 9 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ecolind.2021.107517_b0015 article-title: 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes publication-title: Nat. Commun. – volume: 73 start-page: 71 issue: 1 year: 2005 ident: 10.1016/j.ecolind.2021.107517_b0145 article-title: Modeling soil CO2 emissions from ecosystems publication-title: Biogeochemistry doi: 10.1007/s10533-004-0898-z – volume: 51 start-page: 1173 year: 1987 ident: 10.1016/j.ecolind.2021.107517_b0255 article-title: Analysis of factors controlling soil organic matter levels in Great Plains Grasslands 1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1987.03615995005100050015x – ident: 10.1016/j.ecolind.2021.107517_b0190 – volume: 34 start-page: 73 year: 1998 ident: 10.1016/j.ecolind.2021.107517_b0020 article-title: Large area hydrologic modeling and assessment part I: Model development publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.1998.tb05961.x – start-page: 147 year: 1994 ident: 10.1016/j.ecolind.2021.107517_b0260 article-title: A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management publication-title: Quantitative Model. Soil Forming Process. – volume: 121 start-page: 455 year: 2014 ident: 10.1016/j.ecolind.2021.107517_b0150 article-title: Transport of oxygen in soil pore-water systems: implications for modeling emissions of carbon dioxide and methane from peatlands publication-title: Biogeochemistry doi: 10.1007/s10533-014-0012-0 – volume: 163 start-page: 785 year: 2010 ident: 10.1016/j.ecolind.2021.107517_b0245 article-title: Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment publication-title: Oecologia doi: 10.1007/s00442-009-1556-x – volume: 4 start-page: 1 issue: 3 year: 2000 ident: 10.1016/j.ecolind.2021.107517_b0330 article-title: Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls publication-title: Earth Interact. doi: 10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2 – volume: 8 start-page: 237 year: 1994 ident: 10.1016/j.ecolind.2021.107517_b0210 article-title: Modeling carbon biogeochemistry in agricultural soils publication-title: Global Biogeochem. Cycles doi: 10.1029/94GB00767 – volume: 6 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.ecolind.2021.107517_b0195 article-title: Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils publication-title: Nat. Commun. doi: 10.1038/ncomms9960 – volume: 4 start-page: 701 year: 2011 ident: 10.1016/j.ecolind.2021.107517_b0115 article-title: The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics publication-title: Geosci. Model Dev. doi: 10.5194/gmd-4-701-2011 – volume: 89 start-page: 131 year: 2017 ident: 10.1016/j.ecolind.2021.107517_b0320 article-title: Development of a nitrous oxide routine for the SWAT model to assess greenhouse gas emissions from agroecosystems publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2016.11.013 – year: 2007 ident: 10.1016/j.ecolind.2021.107517_b0045 – volume: 28 start-page: 223 issue: 3 year: 2014 ident: 10.1016/j.ecolind.2021.107517_b0155 article-title: Incorporating microbial ecology concepts into global soil mineralization models to improve predictions of carbon and nitrogen fluxes publication-title: Global Biogeochem. Cycles doi: 10.1002/2013GB004595 – volume: 98 issue: 8 year: 2017 ident: 10.1016/j.ecolind.2021.107517_b0270 article-title: A new data set to keep a sharper eye on land-air exchanges publication-title: Eos, Trans. Am. Geophys. Union Online – volume: 3 start-page: 336 issue: 5 year: 2010 ident: 10.1016/j.ecolind.2021.107517_b0005 article-title: Soil-carbon response to warming dependent on microbial physiology publication-title: Nat. Geosci. doi: 10.1038/ngeo846 – volume: 25 start-page: 27362 year: 2018 ident: 10.1016/j.ecolind.2021.107517_b0295 article-title: Modeling nitrous oxide emissions from rough fescue grassland soils subjected to long-term grazing of different intensities using the Soil and Water Assessment Tool (SWAT) publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-2719-2 – volume: 601 start-page: 425 year: 2017 ident: 10.1016/j.ecolind.2021.107517_b0290 article-title: Assessing climate change impacts on fresh water resources of the Athabasca River Basin publication-title: Canada. Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.013 |
SSID | ssj0016996 |
Score | 2.3897657 |
Snippet | •Regional-scale modelling of ecosystem (Reco) and autotrophic respiration (Ra).•Temperature and dissolved oxygen (DO) levels mostly influence Reco and... Ecosystem respiration (Rₑcₒ) and its components, the autotrophic respiration (Rₐ) and soil respiration (Rₛ) are the essential indicators of the global carbon... Ecosystem respiration (Reco) and its components, the autotrophic respiration (Ra) and soil respiration (Rs) are the essential indicators of the global carbon... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107517 |
SubjectTerms | air air temperature Autotrophic respiration boreal forests Canada Canadian boreal forest Carbon cycle Cold climate region cold zones Dissolved oxygen Ecosystem respiration ecosystems global carbon budget mechanistic models oxygen redox potential regression analysis Root respiration Soil respiration soil temperature soil water SWAT watersheds |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPVFBI9W0yZN26OKooKeFPYW8iquLK3sdv-_M03qqpe9eE2bB5lJvm9I8g0h57IEjpDWOjHCcwhQpE104XyCUMdsXjpm8L3z84t8eBNP43z8I9UX3gkL8sBh4q4wvvCcc-C1FYANN5q5EjC4rgGLNLO4-wLmDcFUPD-QVRXeFRUsSSUbL9_uXH1cQlwHFA5lQrMUyoq8z1a2RKVevP8XOP3Zpnvsud8im5E00usw2G2y5psdsn-3fKMGH-Mine-S6eOQeIS2NfW__orpdWjbUL3o2m7Wfr5P7AWdt5Mp1Y2jMOog7kxn8RAe_ZJOGjroGFDwGo9NtZjWY4-83t-93j4kMalCYkWed4koMuFQKM0UBshNrqUWPnWOg1VMzWSVc8_K2hrjLEQ7ppTS1TbzzHjggozvk_WmbfwBoTxNNdAVaEhWwjBXlTYrPAY0ovBAY0ZEDHOqbBQcx7wXUzXcLPtQ0RQKTaGCKUbk8rvaZ1DcWFXhBg32_TMKZvcF4EYqupFa5UYjUg7mVpF7BE4BTU1W9X82uIeCtYkHLrrx7WKusjwTHAhcUR7-xxiPyAZ2Gy6qHZP1brbwJ0CJOnPae_8X-NMHqQ priority: 102 providerName: Directory of Open Access Journals |
Title | Influence of environmental factors on autotrophic, soil and ecosystem respirations in Canadian boreal forest |
URI | https://dx.doi.org/10.1016/j.ecolind.2021.107517 https://www.proquest.com/docview/2524302878 https://doaj.org/article/1566e33375894153ba0d8159ff240a0c |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCdOlS9BXUfRgMkLGyKZEipTENEjgNmqUp4I3gS60CQzJsee1v751E2XCXABlFkRTBO5LfiXffEXIhC8AIaWUSKwIHA0W6xCgfEjzqmMsLzyzGO_-4l4tf4vsyX56QqzEWBt0q494_7On9bh1L5nE25-u6nv9MhUJ6tGWGNEJg6GAEu1Co5bO_ezePVJblEGGkWIK1D1E888cZWHgA5pAwNEuhTOV93rLD-dTT-B8dU_9t2P0pdPOavIrwkV4OI3xDTkLzlpxdH6LV4GVcrtt3ZHU7piChbUXDUa2YaIe2DTW7ru027fpP7b7SbVuvqGk8hVEPNM90E6_jUUNp3dCR0YCC_gTsqsUEH-_Jw831w9UiiekVEifyvEuEyoRHyjSrLMCc3EgjQuo9B_nYisky54EVlbPWO7B7bCGlr1wWmA2AChk_I6dN24QPhPI0NQBcoCNZCst8WbhMBTRthAoAaCZEjHOqXaQexwwYKz36mD3qKAqNotCDKCZktm-2Hrg3nmrwDQW2r4zU2X1Bu_mto-5oNFgD5xwMpRLQC7eG-QJAXVUBuDHMTUgxilsfaSJ0VT_1_fNRPTSsUrx6MU1od1ud5ZngAOVU8fH53X8iL_FpcFT7TE67zS58AUjU2Wmv81Py4vL2bnE_7X8s_ANrqg0b |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5QAXxGtFeRqJI2md2LGTI6x21YXdvVCk3iy_AllVSdWmV347M4nTqlxW4upXIs945hvZ8w0hn2QBGCGtTGJF4BCgSJcY5UOCro65vPDMYr7zza2c_xTflvnyhJyPuTD4rDLa_sGm99Y6tszibs7WdT37kQqF9GjLDGmEINB5QB4KOL5YxmD6Z__OI5VlOaQYKZbg8EMaz-xuCiEeoDlkDM1SaFN5X7js4KB6Hv8jP_WPxe7d0OVT8iTiR_pl-MVn5CQ0z8nZxSFdDTrjed2-IKursQYJbSsajkbFSju0bajZdW23ade_a_eZbtt6RU3jKfz1wPNMN_E-HlWU1g0dKQ0oKFDApVqs8PGSLC4vFufzJNZXSJzI8y4RKhMeOdOssoBzciONCKn3HARkKybLnAdWVM5a7yDwsYWUvnJZYDYALGT8jJw2bRNeEcrT1ABygYVkKSzzZeEyFTC2ESoAopkQMe6pdpF7HEtgrPT4yOxOR1FoFIUeRDEh0_209UC-cd-Eryiw_WDkzu4b2s0vHZVHY8QaOOcQKZUAX7g1zBeA6qoK0I1hbkKKUdz6SBVhqfq-738c1UPDMcW7F9OEdrfVWZ4JDlhOFa__f_kP5NF8cXOtr69uv78hj7FneLX2lpx2m114B_ios-97_f8LIgMNtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+environmental+factors+on+autotrophic%2C+soil+and+ecosystem+respirations+in+Canadian+boreal+forest&rft.jtitle=Ecological+indicators&rft.au=Bhanja%2C+Soumendra+N.&rft.au=Wang%2C+Junye&rft.date=2021-06-01&rft.issn=1470-160X&rft.volume=125&rft.spage=107517&rft_id=info:doi/10.1016%2Fj.ecolind.2021.107517&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolind_2021_107517 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |