A dynamic system model-based technique for functional MRI data analysis

Signals in functional magnetic resonance imaging (fMRI) are influenced by physiological fluctuations in addition to local brain activity. We have proposed a dynamic system model-based technique for separation of signal changes related to brain activation inputs from those related to physiological fl...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 22; no. 1; pp. 179 - 187
Main Authors Kamba, Masayuki, Sung, Yul-Wan, Ogawa, Seiji
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2004
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1016/j.neuroimage.2003.12.037

Cover

Loading…
Abstract Signals in functional magnetic resonance imaging (fMRI) are influenced by physiological fluctuations in addition to local brain activity. We have proposed a dynamic system model-based technique for separation of signal changes related to brain activation inputs from those related to physiological fluctuations. We applied this technique to a visual fMRI experiment to determine the validity and feasibility of this technique for fMRI data analyses. Gradient-echo echo planar images were obtained from 12 healthy volunteers with a Siemens ALLEGRA operating at 3 T, with a repetition time of 500 ms, echo time of 20 ms, field of view of 200–210 mm, matrix size of 64 × 64, and slice thickness of 5 mm. Twelve runs with two stimulation periods of varied duration (2–8 s) with 8-Hz flickering illumination were obtained for each subject. Local signal changes were modeled by an autoregressive model with two exogenous inputs, a visual stimulation input and a global reference signal. Local signal changes were appropriately predicted not only for stimulation periods but also resting periods. A significant linear relationship was found between model static gain based on the dynamic system modeling and beta coefficient based on a general linear model (GLM) analysis for active voxels in the primary visual cortex (analysis of covariance [ANCOVA], P < 0.001; estimated parameter, 0.967; 95% confidence interval, 0.734–1.201). This dynamic system model-based technique is sufficiently accurate and feasible for use in extracting signal changes related to brain activation inputs from measured signals with physiological fluctuations.
AbstractList Signals in functional magnetic resonance imaging (fMRI) are influenced by physiological fluctuations in addition to local brain activity. We have proposed a dynamic system model-based technique for separation of signal changes related to brain activation inputs from those related to physiological fluctuations. We applied this technique to a visual fMRI experiment to determine the validity and feasibility of this technique for fMRI data analyses. Gradient-echo echo planar images were obtained from 12 healthy volunteers with a Siemens ALLEGRA operating at 3 T, with a repetition time of 500 ms, echo time of 20 ms, field of view of 200-210 mm, matrix size of 64 x 64, and slice thickness of 5 mm. Twelve runs with two stimulation periods of varied duration (2-8 s) with 8-Hz flickering illumination were obtained for each subject. Local signal changes were modeled by an autoregressive model with two exogenous inputs, a visual stimulation input and a global reference signal. Local signal changes were appropriately predicted not only for stimulation periods but also resting periods. A significant linear relationship was found between model static gain based on the dynamic system modeling and beta coefficient based on a general linear model (GLM) analysis for active voxels in the primary visual cortex (analysis of covariance [ANCOVA], P < 0.001; estimated parameter, 0.967; 95% confidence interval, 0.734-1.201). This dynamic system model-based technique is sufficiently accurate and feasible for use in extracting signal changes related to brain activation inputs from measured signals with physiological fluctuations.
Signals in functional magnetic resonance imaging (fMRI) are influenced by physiological fluctuations in addition to local brain activity. We have proposed a dynamic system model-based technique for separation of signal changes related to brain activation inputs from those related to physiological fluctuations. We applied this technique to a visual fMRI experiment to determine the validity and feasibility of this technique for fMRI data analyses. Gradient-echo echo planar images were obtained from 12 healthy volunteers with a Siemens ALLEGRA operating at 3 T, with a repetition time of 500 ms, echo time of 20 ms, field of view of 200–210 mm, matrix size of 64 × 64, and slice thickness of 5 mm. Twelve runs with two stimulation periods of varied duration (2–8 s) with 8-Hz flickering illumination were obtained for each subject. Local signal changes were modeled by an autoregressive model with two exogenous inputs, a visual stimulation input and a global reference signal. Local signal changes were appropriately predicted not only for stimulation periods but also resting periods. A significant linear relationship was found between model static gain based on the dynamic system modeling and beta coefficient based on a general linear model (GLM) analysis for active voxels in the primary visual cortex (analysis of covariance [ANCOVA], P < 0.001; estimated parameter, 0.967; 95% confidence interval, 0.734–1.201). This dynamic system model-based technique is sufficiently accurate and feasible for use in extracting signal changes related to brain activation inputs from measured signals with physiological fluctuations.
Signals in functional magnetic resonance imaging (fMRI) are influenced by physiological fluctuations in addition to local brain activity. We have proposed a dynamic system model-based technique for separation of signal changes related to brain activation inputs from those related to physiological fluctuations. We applied this technique to a visual fMRI experiment to determine the validity and feasibility of this technique for fMRI data analyses. Gradient-echo echo planar images were obtained from 12 healthy volunteers with a Siemens ALLEGRA operating at 3 T, with a repetition time of 500 ms, echo time of 20 ms, field of view of 200-210 mm, matrix size of 64 x 64, and slice thickness of 5 mm. Twelve runs with two stimulation periods of varied duration (2-8 s) with 8-Hz flickering illumination were obtained for each subject. Local signal changes were modeled by an autoregressive model with two exogenous inputs, a visual stimulation input and a global reference signal. Local signal changes were appropriately predicted not only for stimulation periods but also resting periods. A significant linear relationship was found between model static gain based on the dynamic system modeling and beta coefficient based on a general linear model (GLM) analysis for active voxels in the primary visual cortex (analysis of covariance [ANCOVA], P < 0.001; estimated parameter, 0.967; 95% confidence interval, 0.734-1.201). This dynamic system model-based technique is sufficiently accurate and feasible for use in extracting signal changes related to brain activation inputs from measured signals with physiological fluctuations.Signals in functional magnetic resonance imaging (fMRI) are influenced by physiological fluctuations in addition to local brain activity. We have proposed a dynamic system model-based technique for separation of signal changes related to brain activation inputs from those related to physiological fluctuations. We applied this technique to a visual fMRI experiment to determine the validity and feasibility of this technique for fMRI data analyses. Gradient-echo echo planar images were obtained from 12 healthy volunteers with a Siemens ALLEGRA operating at 3 T, with a repetition time of 500 ms, echo time of 20 ms, field of view of 200-210 mm, matrix size of 64 x 64, and slice thickness of 5 mm. Twelve runs with two stimulation periods of varied duration (2-8 s) with 8-Hz flickering illumination were obtained for each subject. Local signal changes were modeled by an autoregressive model with two exogenous inputs, a visual stimulation input and a global reference signal. Local signal changes were appropriately predicted not only for stimulation periods but also resting periods. A significant linear relationship was found between model static gain based on the dynamic system modeling and beta coefficient based on a general linear model (GLM) analysis for active voxels in the primary visual cortex (analysis of covariance [ANCOVA], P < 0.001; estimated parameter, 0.967; 95% confidence interval, 0.734-1.201). This dynamic system model-based technique is sufficiently accurate and feasible for use in extracting signal changes related to brain activation inputs from measured signals with physiological fluctuations.
Signals in functional magnetic resonance imaging (fMRI) are influenced by physiological fluctuations in addition to local brain activity. We have proposed a dynamic system model-based technique for separation of signal changes related to brain activation inputs from those related to physiological fluctuations. We applied this technique to a visual fMRI experiment to determine the validity and feasibility of this technique for fMRI data analyses. Gradient-echo echo planar images were obtained from 12 healthy volunteers with a Siemens ALLEGRA operating at 3 T, with a repetition time of 500 ms, echo time of 20 ms, field of view of 200-210 mm, matrix size of 64 × 64, and slice thickness of 5 mm. Twelve runs with two stimulation periods of varied duration (2-8 s) with 8-Hz flickering illumination were obtained for each subject. Local signal changes were modeled by an autoregressive model with two exogenous inputs, a visual stimulation input and a global reference signal. Local signal changes were appropriately predicted not only for stimulation periods but also resting periods. A significant linear relationship was found between model static gain based on the dynamic system modeling and beta coefficient based on a general linear model (GLM) analysis for activevoxelsin the primary visual cortex (analysis of covariance [ANCOVA],P< 0.001; estimated parameter, 0.967; 95% confidence interval, 0.734-1.201). This dynamic system model-based technique is sufficiently accurate and feasible for use in extracting signal changes related to brain activation inputs from measured signals with physiological fluctuations.
Author Sung, Yul-Wan
Ogawa, Seiji
Kamba, Masayuki
Author_xml – sequence: 1
  givenname: Masayuki
  surname: Kamba
  fullname: Kamba, Masayuki
  email: kamba@hlsrf.or.jp
– sequence: 2
  givenname: Yul-Wan
  surname: Sung
  fullname: Sung, Yul-Wan
– sequence: 3
  givenname: Seiji
  surname: Ogawa
  fullname: Ogawa, Seiji
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15110008$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEUhoNU7If-BQkI3s2Yj8ls5kZsi7aFiiB6HbLJiWadSWqSEebfm2FbCnu1V8mB5zwc3vccnYQYACFMSUsJ7T_s2gBzin7Sv6BlhPCWspbwzQt0RskgmkFs2Mn6F7yRlA6n6DznHSFkoJ18hU6poLRO8gzdXGK7BD15g_OSC0x4ihbGZqszWFzA_A7-7wzYxYTdHEzxMegRf_1-h60uGus6Ldnn1-il02OGN4_vBfr55fOP69vm_tvN3fXlfWM6IUrDnZVbJ6mQ0kFnjNj09XwL2rCeg-sGJ8FqM_CeGmG3lnVdz7imjjKnLZH8Ar3fex9SrHfloiafDYyjDhDnrDZU9n3HV_DdAbiLc6rXZkUF6XsycLZSbx-peTuBVQ-pZpoW9RRQBeQeMCnmnMA9I0StXaideu5CrV0oylTtoq5-PFg1vug1wJK0H48RXO0FUAP95yGpbDwEA9YnMEXZ6I-RfDqQmNEHb_T4B5bjFP8BbNbBuA
CitedBy_id crossref_primary_10_1007_s00429_007_0166_9
crossref_primary_10_3390_brainsci13010008
crossref_primary_10_1002_jmri_21193
crossref_primary_10_2967_jnumed_116_175208
crossref_primary_10_3724_SP_J_1041_2010_00111
Cites_doi 10.1038/jcbfm.1988.111
10.1006/nimg.2001.0760
10.1097/00004647-200008000-00011
10.1109/TAC.1974.1100705
10.1073/pnas.95.3.803
10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z
10.1002/mrm.1910370407
10.1002/hbm.460020402
10.1038/jcbfm.1990.88
10.1093/biomet/65.2.297
10.1172/JCI103159
10.1152/ajplegacy.1964.206.1.25
ContentType Journal Article
Copyright 2004 Elsevier Inc.
Copyright Elsevier Limited May 1, 2004
Copyright_xml – notice: 2004 Elsevier Inc.
– notice: Copyright Elsevier Limited May 1, 2004
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2003.12.037
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 187
ExternalDocumentID 3244234111
15110008
10_1016_j_neuroimage_2003_12_037
S1053811904000138
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c455t-3fd8bf81588fe4cc576200deac263ef49f8edac9361c5dbd244623a1f12fad083
IEDL.DBID .~1
ISSN 1053-8119
IngestDate Thu Sep 04 21:24:58 EDT 2025
Thu Aug 21 00:48:36 EDT 2025
Wed Feb 19 01:35:26 EST 2025
Thu Apr 24 23:10:54 EDT 2025
Tue Jul 01 00:49:24 EDT 2025
Fri Feb 23 02:29:06 EST 2024
Tue Aug 26 18:14:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords fMRI
Brain activation
Dynamic system
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-3fd8bf81588fe4cc576200deac263ef49f8edac9361c5dbd244623a1f12fad083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 15110008
PQID 1506609328
PQPubID 2031077
PageCount 9
ParticipantIDs proquest_miscellaneous_71866438
proquest_journals_1506609328
pubmed_primary_15110008
crossref_primary_10_1016_j_neuroimage_2003_12_037
crossref_citationtrail_10_1016_j_neuroimage_2003_12_037
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2003_12_037
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2003_12_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-05-01
PublicationDateYYYYMMDD 2004-05-01
PublicationDate_xml – month: 05
  year: 2004
  text: 2004-05-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2004
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Friston, Frith, Liddle, Dolan, Lammertsma, Frackowiak (BIB5) 1990; 10
Sokoloff, Mangold, Wechsler, Kennedy, Kety (BIB15) 1955; 34
Reivich (BIB14) 1964; 206
Akaike (BIB1) 1974; 19
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (BIB6) 1995; 2
Ljung, Box (BIB11) 1978; 65
Hoge, Atkinson, Gill, Crelier, Marrett, Pike (BIB7) 1999; 42
Corfield, Murphy, Josephs, Adams, Turner (BIB3) 2001; 13
Ito, Yokoyama, Iida, Kinoshita, Hatazawa, Shimosegawa, Okudera, Kanno (BIB8) 2000; 20
McKeown, Jung, Makeig, Brown, Kindermann, Lee, Sejnowski (BIB12) 1998; 95
Ljung (BIB10) 2001
Brockwell, Davis (BIB2) 2002
Kamba, Chen, Kato (BIB9) 2002
Mitra, Ogawa, Hu, Uğurbil (BIB13) 1997; 37
Fox, Mintun, Reiman, Raichle (BIB4) 1988; 8
Corfield (10.1016/j.neuroimage.2003.12.037_BIB3) 2001; 13
Hoge (10.1016/j.neuroimage.2003.12.037_BIB7) 1999; 42
Brockwell (10.1016/j.neuroimage.2003.12.037_BIB2) 2002
Ito (10.1016/j.neuroimage.2003.12.037_BIB8) 2000; 20
Mitra (10.1016/j.neuroimage.2003.12.037_BIB13) 1997; 37
Sokoloff (10.1016/j.neuroimage.2003.12.037_BIB15) 1955; 34
Ljung (10.1016/j.neuroimage.2003.12.037_BIB11) 1978; 65
Fox (10.1016/j.neuroimage.2003.12.037_BIB4) 1988; 8
McKeown (10.1016/j.neuroimage.2003.12.037_BIB12) 1998; 95
Friston (10.1016/j.neuroimage.2003.12.037_BIB5) 1990; 10
Friston (10.1016/j.neuroimage.2003.12.037_BIB6) 1995; 2
Ljung (10.1016/j.neuroimage.2003.12.037_BIB10) 2001
Reivich (10.1016/j.neuroimage.2003.12.037_BIB14) 1964; 206
Akaike (10.1016/j.neuroimage.2003.12.037_BIB1) 1974; 19
Kamba (10.1016/j.neuroimage.2003.12.037_BIB9) 2002
References_xml – volume: 8
  start-page: 642
  year: 1988
  end-page: 653
  ident: BIB4
  article-title: Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 34
  start-page: 1101
  year: 1955
  end-page: 1108
  ident: BIB15
  article-title: The effect of mental arithmetic on cerebral circulation and metabolism
  publication-title: J. Clin. Invest.
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: BIB1
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
– volume: 42
  start-page: 849
  year: 1999
  end-page: 863
  ident: BIB7
  article-title: Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model
  publication-title: Magn. Reson. Med.
– year: 2002
  ident: BIB2
  article-title: Introduction to Time Series and Forecasting
– year: 2001
  ident: BIB10
  article-title: System Identification Toolbox User's Guide
– volume: 65
  start-page: 297
  year: 1978
  end-page: 303
  ident: BIB11
  article-title: On a measure of lack of fit in time series models
  publication-title: Biometrika
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  ident: BIB6
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– volume: 20
  start-page: 1264
  year: 2000
  end-page: 1270
  ident: BIB8
  article-title: Regional differences in cerebral vascular response to P
  publication-title: J. Cereb. Blood Flow Metab.
– year: 2002
  ident: BIB9
  article-title: Association of sympathetic nervous activity with resting-state synchronous low-frequency signal fluctuations in rat brain
– volume: 95
  start-page: 803
  year: 1998
  end-page: 810
  ident: BIB12
  article-title: Spatially independent activity patterns in functional MRI data during the Stroop color-naming task
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 206
  start-page: 25
  year: 1964
  end-page: 35
  ident: BIB14
  article-title: Arterial P
  publication-title: Am. J. Physiol.
– volume: 13
  start-page: 1207
  year: 2001
  end-page: 1211
  ident: BIB3
  article-title: Does hypercapnia-induced cerebral vasodilation modulate the hemodynamic response to neural activation?
  publication-title: NeuroImage
– volume: 10
  start-page: 458
  year: 1990
  end-page: 466
  ident: BIB5
  article-title: The relationship between global and local changes in PET scans
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 37
  start-page: 511
  year: 1997
  end-page: 518
  ident: BIB13
  article-title: The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– year: 2002
  ident: 10.1016/j.neuroimage.2003.12.037_BIB9
  article-title: Association of sympathetic nervous activity with resting-state synchronous low-frequency signal fluctuations in rat brain
– volume: 8
  start-page: 642
  year: 1988
  ident: 10.1016/j.neuroimage.2003.12.037_BIB4
  article-title: Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.1988.111
– volume: 13
  start-page: 1207
  year: 2001
  ident: 10.1016/j.neuroimage.2003.12.037_BIB3
  article-title: Does hypercapnia-induced cerebral vasodilation modulate the hemodynamic response to neural activation?
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0760
– volume: 20
  start-page: 1264
  year: 2000
  ident: 10.1016/j.neuroimage.2003.12.037_BIB8
  article-title: Regional differences in cerebral vascular response to PaCO2 changes in humans measured by positron emission tomography
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-200008000-00011
– volume: 19
  start-page: 716
  year: 1974
  ident: 10.1016/j.neuroimage.2003.12.037_BIB1
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– year: 2002
  ident: 10.1016/j.neuroimage.2003.12.037_BIB2
– volume: 95
  start-page: 803
  year: 1998
  ident: 10.1016/j.neuroimage.2003.12.037_BIB12
  article-title: Spatially independent activity patterns in functional MRI data during the Stroop color-naming task
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.3.803
– volume: 42
  start-page: 849
  year: 1999
  ident: 10.1016/j.neuroimage.2003.12.037_BIB7
  article-title: Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z
– volume: 37
  start-page: 511
  year: 1997
  ident: 10.1016/j.neuroimage.2003.12.037_BIB13
  article-title: The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910370407
– volume: 2
  start-page: 189
  year: 1995
  ident: 10.1016/j.neuroimage.2003.12.037_BIB6
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
– year: 2001
  ident: 10.1016/j.neuroimage.2003.12.037_BIB10
– volume: 10
  start-page: 458
  year: 1990
  ident: 10.1016/j.neuroimage.2003.12.037_BIB5
  article-title: The relationship between global and local changes in PET scans
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.1990.88
– volume: 65
  start-page: 297
  year: 1978
  ident: 10.1016/j.neuroimage.2003.12.037_BIB11
  article-title: On a measure of lack of fit in time series models
  publication-title: Biometrika
  doi: 10.1093/biomet/65.2.297
– volume: 34
  start-page: 1101
  year: 1955
  ident: 10.1016/j.neuroimage.2003.12.037_BIB15
  article-title: The effect of mental arithmetic on cerebral circulation and metabolism
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI103159
– volume: 206
  start-page: 25
  year: 1964
  ident: 10.1016/j.neuroimage.2003.12.037_BIB14
  article-title: Arterial PCO2 and cerebral hemodynamics
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1964.206.1.25
SSID ssj0009148
Score 1.7930329
Snippet Signals in functional magnetic resonance imaging (fMRI) are influenced by physiological fluctuations in addition to local brain activity. We have proposed a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 179
SubjectTerms Adult
Algorithms
Brain
Brain activation
Brain research
Computer Simulation
Dynamic system
Echo-Planar Imaging
Female
fMRI
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - statistics & numerical data
Male
Models, Neurological
NMR
Nuclear magnetic resonance
Photic Stimulation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA3agrgR31arZuE2aCZJm8GFVLFWQZFiwV3I5AGKttW2_-_NJNNuVLqeuQN53XsmOTkHoTMHJUK0tSfWSUY4M4YUWnCSWer9hWEBpQe2xVOrN-APr-I1bbhNEq2yyollorYjE_bIz4MSXgt-vzN5Nf4iwTUqnK4mC41VVIcULEUN1a9vn577C9ldyuNlOMGIpDRPXJ7I8CoVI98-Yd2WuqDltmDwQ_-9QP0FQMtC1N1EGwlB4k4c8i204obbaO0xnZHvoLsOttFmHkeZZly63ZBQryyea7ZiQKs4VLW4GYgf-_c40EWxTjIlu2jQvX256ZFkl0AMF2JKmLey8JIKKb3jxsCfBDTLQmbNWsx5nnvprDY5a1EjbGGhsAP20dTTzGsLUGwP1YajoTtA2DnHfSGclp7xtmTaOuq8N4XPrAOM1EDtqo-USVriwdLiQ1WksXe16N1gdckUzRT0bgPReeQ46mksEZNXw6Cq-6KQ4RQk_SViL-exCVNErLBkdLMadZXW9kQtZmIDnc4fw6oMRy166EaziWoHHUHO4I39OFcWjRVBpO9CHv7_6SO0HjlCgVrZRLXp98wdA_yZFidpjv8AlwEGlA
  priority: 102
  providerName: ProQuest
Title A dynamic system model-based technique for functional MRI data analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811904000138
https://dx.doi.org/10.1016/j.neuroimage.2003.12.037
https://www.ncbi.nlm.nih.gov/pubmed/15110008
https://www.proquest.com/docview/1506609328
https://www.proquest.com/docview/71866438
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELUQlSouiFI-Uij1gatJvLazjjilERBaiFBapNwsrz-kIBoQhCu_nZm1N1GlIkXqZVfa3ZHWY3vm7fr5DSHHAVKEKm1kPmjBpHCOVVZJVngeY8cJROnIthh1h7fyx0RN1sig2QuDtMoc-1NMr6N1vtLO3mw_TqftX4AMIN1AQpNpvQ13sMsS9fNPXpc0jx6XaTucEgyfzmyexPGqNSOnf2Dm1sqg9Y9BrIj-7xT1HgStU9H5FtnMGJL202t-Imthtk0-XudV8s_kok99KjRPk1AzrevdMMxYni5UWyngVYp5Lf0OpNfjS4qEUWqzUMkOuT0_-z0YslwwgTmp1JyJ6HUVNVdaxyCdg28JaJaH2Fp0RYiyF3Xw1vVElzvlKw-pHdCP5ZEX0XoAY7tkffYwC_uEhhBkrFSwOgpZamF94CFGV8XCB0BJLVI2PjIuq4ljUYt709DG7szSu1jsUhheGPBui_CF5WNS1FjBptd0g2l2jEKMMxD2V7A9Xdj-NbJWtD5set3k2f1sUJWx2wHkq1vk2-I2zEtcbLGz8PDybEpUEpQCnthLY2XZWIUyfR395b9e7IBsJBIRci8Pyfr86SV8BXw0r47qCQDHclIekQ_9wfjqBs-XP4cjOH8_G92M3wB3SRYs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VVgIuiM8SKNQHOFrUazvxCiFUoCWhTYSqVurNeO2xBIKkkFSIP8VvZLz2JhdAufS8O5Z2PJ55az-_AXiGVCL0wEUe0EiupPe8cVrxKogY97xMKD2xLSb94Zn6cK7PN-B3dxcm0Sq7nNgm6jDzaY_8RVLC69Pvd2VeX3znqWtUOl3tWmjksDjCXz_pl23-avSO5vd5VR0enL4d8tJVgHul9YLLGEwTjdDGRFTeE-CmSAmUgKq-xKjqaDA4X8u-8Do0geofQQQnoqiiC4RYaNxrsEUwo6ZVtPXmYPLxZCXzK1S-fKclN0LUhTuUGWWtQuXnb5QnWh3Sdhsy9V__e0H8F-BtC9_hbbhVECvbzyF2BzZweheuj8uZ_D14v89CbmvPsiw0a7vr8FQfA1tqxDJCxyxV0bz5yMYnI5boqcwVWZT7cHYljnwAm9PZFB8CQ0QVG43ORKkGRrqAAmP0TawCEibrwaDzkfVFuzy10PhqO5LaF7vybmqtKa2oLHm3B2JpeZH1O9awqbtpsN39VMqolorMGrYvl7YFw2Rssqb1TjfrtuSSuV1Ffg92l48pC6SjHTfF2eXcDpJuoZL0xnaOldXH6iQKuGce_X_oXbgxPB0f2-PR5Ogx3Mz8pETr3IHNxY9LfELQa9E8LfHO4NNVL7E_ywRE0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VVKq4IL4JFOoDHK3WazvrCCFUaENDaVRVVOrNeO2xBIKkkFSIv8avY7z2JhdAufS8O5Z2PJ55az-_AXiOVCJ07SIPaCRX0nveOK14FUSMe14mlJ7YFpPB0bl6f6EvNuB3dxcm0Sq7nNgm6jDzaY98NynhDej3uzK7sdAiTg9Gry-_89RBKp20du00cogc46-f9Ps2fzU-oLl-UVWjw49vj3jpMMC90nrBZQymiUZoYyIq7wl8U9QESkbVQGJUw2gwOD-UA-F1aALVQoILTkRRRRcIvdC4N2CzpqpoerD55nByeraS_BUqX8TTkhshhoVHlNllrVrl52-UM1pN0nZLMvVi_3tx_Bf4bYvg6DbcKuiV7edwuwMbOL0LWyflfP4evNtnIbe4Z1kimrWddniqlYEt9WIZIWWWKmreiGQnZ2OWqKrMFYmU-3B-LY58AL3pbIqPgCGiio1GZ6JUtZEuoMAYfROrgITP-lB3PrK-6JindhpfbUdY-2JX3k1tNqUVlSXv9kEsLS-zlscaNsNuGmx3V5Wyq6WCs4bty6VtwTMZp6xpvd3Nui15ZW5Xq6APO8vHlBHSMY-b4uxqbuukYagkvfEwx8rqY3USCNwzj_8_9A5s0dKyH8aT4ydwM1OVEsNzG3qLH1f4lFDYonlWwp3Bp-teYX8AkQlI_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+system+model-based+technique+for+functional+MRI+data+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kamba%2C+Masayuki&rft.au=Sung%2C+Yul-Wan&rft.au=Ogawa%2C+Seiji&rft.date=2004-05-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=22&rft.issue=1&rft.spage=179&rft.epage=187&rft_id=info:doi/10.1016%2Fj.neuroimage.2003.12.037&rft.externalDocID=S1053811904000138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon