Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse
The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a...
Saved in:
Published in | Desalination Vol. 280; no. 1; pp. 160 - 166 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
03.10.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~
1.5
kWh/m³) of the energy used for high pressure seawater RO (SWRO) desalination (2.5–4
kWh/m³), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14
days. After 10
days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5
L/m²-h is needed to compete with water reuse using UF–LPRO, and 5.5
L/m²-h is needed to recover and desalinate water at less cost than SWRO.
► A new immersed forward osmosis (FO) membrane cell was designed and tested. ► The FO cell dilutes seawater in cycles by using a wastewater effluent as feed. ► Fouling of the FO membrane will reduce flux by 28% over a period of 10
days. ► Cleaning the FO membrane by air scouring with clean water recovers flux by 98%. ► The system consumes only 50% of the energy used for normal high pressure RO. |
---|---|
AbstractList | The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~1.5kWh/m super(3)) of the energy used for high pressure seawater RO (SWRO) desalination (2.5-4kWh/m super(3)), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14days. After 10days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5L/m super(2)-h is needed to compete with water reuse using UF-LPRO, and 5.5L/m super(2)-h is needed to recover and desalinate water at less cost than SWRO. The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~ 1.5 kWh/m³) of the energy used for high pressure seawater RO (SWRO) desalination (2.5–4 kWh/m³), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14 days. After 10 days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5 L/m²-h is needed to compete with water reuse using UF–LPRO, and 5.5 L/m²-h is needed to recover and desalinate water at less cost than SWRO. ► A new immersed forward osmosis (FO) membrane cell was designed and tested. ► The FO cell dilutes seawater in cycles by using a wastewater effluent as feed. ► Fouling of the FO membrane will reduce flux by 28% over a period of 10 days. ► Cleaning the FO membrane by air scouring with clean water recovers flux by 98%. ► The system consumes only 50% of the energy used for normal high pressure RO. The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~1.5kWh/m³) of the energy used for high pressure seawater RO (SWRO) desalination (2.5–4kWh/m³), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14days. After 10days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5L/m²-h is needed to compete with water reuse using UF–LPRO, and 5.5L/m²-h is needed to recover and desalinate water at less cost than SWRO. |
Author | Yangali-Quintanilla, Victor Li, Zhenyu Li, Qingyu Valladares, Rodrigo Amy, Gary |
Author_xml | – sequence: 1 givenname: Victor surname: Yangali-Quintanilla fullname: Yangali-Quintanilla, Victor email: victor.yangali@kaust.edu.sa, victor.yangali@gmail.com – sequence: 2 givenname: Zhenyu surname: Li fullname: Li, Zhenyu – sequence: 3 givenname: Rodrigo surname: Valladares fullname: Valladares, Rodrigo – sequence: 4 givenname: Qingyu surname: Li fullname: Li, Qingyu – sequence: 5 givenname: Gary surname: Amy fullname: Amy, Gary |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24693125$$DView record in Pascal Francis |
BookMark | eNqFks1rFDEYh4NUcFv9CzyYi-hl1nxNZnLwIMWPQkGw9hzeSd5oltnJmsx28b833Vl68NBCIF_P8ybkl3NyNqUJCXnN2Zozrj9s1h4LjGvBOF8zXZt-Rla872SjlFZnZMXqTmO4Vi_IeSmbOhVGyhUZryYfM7qZHivECeaYJpoC_YGe3iDQA8yY6SHOv2lI-QDZ01S2qcRCYfJ0TAe6y1jKPiPNeIe54ANQhZOfcV_wJXkeYCz46tRfkNsvn39efmuuv3-9uvx03TjVtnMjexHqQATouWbeBWkGcBzq4sBEkN73weDQBtS8H0JwppPK9Nj5ATqhhLwg75a6u5z-7LHMdhuLw3GECdO-WMOEVPWN-kq-f5TkXddxJiXvnka1lm1veskq-vaEQnEwhgyTi8XuctxC_muF0kZy0VZOLpzLqZSM4QHhzN4Hazf2GIu9D9YyXZuulvnPcnE-xjZniOMT7pvFDZAs_Mr1Vrc3FWgZY4bJTlXi40JgDeguYrbFRZwcLt_E-hQfPeEf5rvL8A |
CODEN | DSLNAH |
CitedBy_id | crossref_primary_10_1016_j_desal_2019_114087 crossref_primary_10_1016_j_cej_2015_05_080 crossref_primary_10_1039_D0EW00490A crossref_primary_10_1016_j_watres_2013_11_031 crossref_primary_10_1016_j_desal_2019_114082 crossref_primary_10_1007_s40899_023_00912_4 crossref_primary_10_1016_j_jclepro_2021_129129 crossref_primary_10_1016_j_desal_2016_03_015 crossref_primary_10_1007_s11356_018_2239_0 crossref_primary_10_1016_j_cherd_2023_03_048 crossref_primary_10_1021_am508387d crossref_primary_10_1016_j_desal_2016_07_032 crossref_primary_10_1016_j_memsci_2019_117607 crossref_primary_10_1016_j_desal_2016_03_021 crossref_primary_10_1007_s11356_019_06079_w crossref_primary_10_1016_j_desal_2019_114071 crossref_primary_10_1016_j_memsci_2011_12_023 crossref_primary_10_1016_j_desal_2017_05_036 crossref_primary_10_3390_membranes6030037 crossref_primary_10_1016_j_cherd_2016_11_023 crossref_primary_10_1016_j_rser_2017_10_087 crossref_primary_10_1016_j_jece_2021_105775 crossref_primary_10_1016_j_jwpe_2019_101092 crossref_primary_10_1039_C9EW00608G crossref_primary_10_1016_j_desal_2017_09_017 crossref_primary_10_1016_j_memsci_2012_10_031 crossref_primary_10_1016_j_seppur_2016_04_044 crossref_primary_10_1016_j_watres_2016_09_031 crossref_primary_10_1016_j_memsci_2013_07_018 crossref_primary_10_1039_C7EW00507E crossref_primary_10_1080_19443994_2015_1079740 crossref_primary_10_1002_ente_201600703 crossref_primary_10_1016_j_memsci_2020_118838 crossref_primary_10_1016_j_watres_2014_08_021 crossref_primary_10_1016_j_psep_2018_05_006 crossref_primary_10_1016_j_chemosphere_2022_134716 crossref_primary_10_3390_polym14132710 crossref_primary_10_1021_acssuschemeng_3c03161 crossref_primary_10_1016_j_carbon_2024_118909 crossref_primary_10_1016_j_seppur_2018_04_077 crossref_primary_10_1016_j_memsci_2013_04_056 crossref_primary_10_1016_j_cjche_2017_10_003 crossref_primary_10_1016_j_desal_2020_114569 crossref_primary_10_1039_C7EW00550D crossref_primary_10_1016_j_desal_2022_116083 crossref_primary_10_1002_mawe_202200014 crossref_primary_10_1016_j_cej_2024_158022 crossref_primary_10_1016_j_desal_2016_12_010 crossref_primary_10_1016_j_watres_2012_02_023 crossref_primary_10_1080_19443994_2016_1190108 crossref_primary_10_1016_j_desal_2013_10_003 crossref_primary_10_1016_j_desal_2014_12_011 crossref_primary_10_1016_j_cherd_2022_05_002 crossref_primary_10_1016_j_watres_2015_02_032 crossref_primary_10_1016_j_watres_2019_115157 crossref_primary_10_1080_10643389_2019_1657762 crossref_primary_10_1016_j_desal_2014_02_010 crossref_primary_10_1016_j_cej_2021_129250 crossref_primary_10_1016_j_jclepro_2022_131769 crossref_primary_10_1016_j_scitotenv_2019_134169 crossref_primary_10_1016_j_jiec_2019_05_025 crossref_primary_10_1016_j_seppur_2016_12_025 crossref_primary_10_1016_j_memsci_2015_09_041 crossref_primary_10_1016_j_desal_2015_08_020 crossref_primary_10_1016_j_desal_2017_08_026 crossref_primary_10_1016_j_dwt_2024_100551 crossref_primary_10_1016_j_desal_2016_12_005 crossref_primary_10_3390_membranes8030047 crossref_primary_10_1016_j_watres_2019_114879 crossref_primary_10_1016_j_seppur_2021_120196 crossref_primary_10_1016_j_desal_2014_12_009 crossref_primary_10_1016_j_desal_2017_08_024 crossref_primary_10_1016_j_desal_2015_09_006 crossref_primary_10_2166_wrd_2020_065 crossref_primary_10_1016_j_desal_2021_114963 crossref_primary_10_1080_19443994_2013_827299 crossref_primary_10_1016_j_cej_2024_157169 crossref_primary_10_1016_j_desal_2019_02_008 crossref_primary_10_1021_acssuschemeng_0c09362 crossref_primary_10_1039_c4cc01603c crossref_primary_10_1016_j_watres_2012_09_003 crossref_primary_10_1016_j_desal_2014_06_008 crossref_primary_10_1016_j_watres_2024_121282 crossref_primary_10_1016_j_seppur_2012_03_030 crossref_primary_10_1016_j_chemosphere_2021_132726 crossref_primary_10_1016_j_cep_2021_108583 crossref_primary_10_1016_j_desal_2014_06_001 crossref_primary_10_1016_j_memsci_2015_07_014 crossref_primary_10_1021_es501051b crossref_primary_10_1016_j_memsci_2021_120168 crossref_primary_10_1016_j_envint_2019_05_033 crossref_primary_10_1016_j_memsci_2012_07_019 crossref_primary_10_1016_j_desal_2017_07_015 crossref_primary_10_1016_j_apenergy_2023_121950 crossref_primary_10_5004_dwt_2018_23195 crossref_primary_10_1016_j_jwpe_2014_10_006 crossref_primary_10_1007_s11783_023_1616_1 crossref_primary_10_1007_s00449_018_1938_8 crossref_primary_10_1039_C5EW00103J crossref_primary_10_3390_membranes13040379 crossref_primary_10_3390_w11040695 crossref_primary_10_1080_19443994_2016_1190113 crossref_primary_10_3390_membranes10120439 crossref_primary_10_1016_j_jece_2021_105473 crossref_primary_10_1021_acs_est_8b05587 crossref_primary_10_1080_19443994_2014_940660 crossref_primary_10_1016_j_memsci_2019_117757 crossref_primary_10_1016_j_desal_2019_06_008 crossref_primary_10_1016_j_desal_2024_117511 crossref_primary_10_1016_j_desal_2014_01_002 crossref_primary_10_1016_j_desal_2021_115190 crossref_primary_10_1016_j_desal_2016_01_008 crossref_primary_10_1021_es304060d crossref_primary_10_1016_j_mtsust_2023_100361 crossref_primary_10_1016_j_seppur_2018_02_056 crossref_primary_10_1002_gch2_202300304 crossref_primary_10_1016_j_desal_2019_03_013 crossref_primary_10_1016_j_jclepro_2020_124354 crossref_primary_10_1016_j_watres_2020_116064 crossref_primary_10_1007_s13369_019_04102_3 crossref_primary_10_1016_j_jiec_2015_10_005 crossref_primary_10_1016_j_memsci_2015_06_038 crossref_primary_10_1016_j_memsci_2017_06_036 crossref_primary_10_1016_j_desal_2024_117767 crossref_primary_10_1080_19443994_2013_768757 crossref_primary_10_1016_j_resconrec_2020_105273 crossref_primary_10_1016_j_jenvman_2025_124094 crossref_primary_10_1080_01496395_2020_1826968 crossref_primary_10_1021_acssuschemeng_6b01039 crossref_primary_10_1088_1361_6528_aaf063 crossref_primary_10_1016_j_memsci_2013_03_046 crossref_primary_10_1016_j_memsci_2015_02_001 crossref_primary_10_1016_j_desal_2015_03_005 crossref_primary_10_1080_19443994_2016_1154712 crossref_primary_10_1016_j_memsci_2014_08_046 crossref_primary_10_1016_j_jwpe_2022_103479 crossref_primary_10_1039_D2EW00051B crossref_primary_10_1080_19443994_2013_795345 crossref_primary_10_1016_j_memsci_2023_121691 crossref_primary_10_1016_j_watres_2019_04_003 crossref_primary_10_1016_j_desal_2015_11_028 crossref_primary_10_1016_j_ijft_2024_100915 crossref_primary_10_1016_j_memsci_2014_04_010 crossref_primary_10_1016_j_cscee_2021_100165 crossref_primary_10_1016_j_desal_2012_09_030 crossref_primary_10_1039_D4VA00378K crossref_primary_10_1016_j_chemosphere_2023_137790 crossref_primary_10_1016_j_desal_2019_114229 crossref_primary_10_1016_j_watres_2018_11_015 crossref_primary_10_1016_j_memsci_2013_05_004 crossref_primary_10_1007_s10098_015_0927_8 crossref_primary_10_1016_j_desal_2016_09_017 crossref_primary_10_1016_j_jece_2024_113968 crossref_primary_10_1016_j_jwpe_2017_12_012 crossref_primary_10_31857_S2218117223040028 crossref_primary_10_3390_membranes7020030 crossref_primary_10_1016_j_desal_2015_07_016 crossref_primary_10_1039_c3cc43951h crossref_primary_10_1080_19443994_2014_985727 crossref_primary_10_1016_j_jwpe_2022_102828 crossref_primary_10_1016_j_memsci_2019_117668 crossref_primary_10_1016_j_memsci_2014_04_008 crossref_primary_10_1088_1742_6596_1378_3_032047 crossref_primary_10_3390_w14132092 crossref_primary_10_1007_s11814_021_0935_9 crossref_primary_10_1016_j_memsci_2015_02_025 crossref_primary_10_1016_j_desal_2020_114844 crossref_primary_10_1080_10408398_2012_724734 crossref_primary_10_1080_19443994_2013_786655 crossref_primary_10_1080_19443994_2012_714926 crossref_primary_10_3390_pr6090165 crossref_primary_10_1016_j_memsci_2017_08_001 crossref_primary_10_1016_j_jiec_2017_03_011 crossref_primary_10_1016_j_desal_2016_04_026 crossref_primary_10_1016_j_jenvman_2020_111804 crossref_primary_10_1007_s11356_017_0930_1 crossref_primary_10_1016_j_scitotenv_2019_05_062 crossref_primary_10_1021_acsnano_0c04471 crossref_primary_10_1016_j_watres_2020_116255 crossref_primary_10_1016_j_jwpe_2020_101492 crossref_primary_10_1016_j_desal_2020_114584 crossref_primary_10_1016_j_watres_2017_10_042 crossref_primary_10_3390_membranes10090243 crossref_primary_10_1016_j_memsci_2018_07_041 crossref_primary_10_5004_dwt_2017_20680 crossref_primary_10_1016_j_aej_2022_08_002 crossref_primary_10_1016_j_psep_2019_04_004 crossref_primary_10_1016_j_memsci_2020_118624 crossref_primary_10_3390_w12041111 crossref_primary_10_1080_19443994_2014_1002434 crossref_primary_10_3390_su14063328 crossref_primary_10_1016_j_memsci_2015_12_040 crossref_primary_10_1016_j_scitotenv_2019_136047 crossref_primary_10_1016_j_seppur_2019_115719 crossref_primary_10_5004_dwt_2018_22015 crossref_primary_10_12989_mwt_2015_6_1_043 crossref_primary_10_1039_D0EW00181C crossref_primary_10_1016_j_watres_2022_118943 crossref_primary_10_1016_j_memsci_2012_11_039 crossref_primary_10_1016_j_watres_2014_03_046 crossref_primary_10_1021_acs_est_3c00084 crossref_primary_10_1016_j_watres_2013_05_013 crossref_primary_10_1111_1541_4337_12691 crossref_primary_10_1134_S2517751623040029 crossref_primary_10_5004_dwt_2020_24934 crossref_primary_10_1007_s40726_018_0097_5 crossref_primary_10_1080_21622515_2019_1623324 crossref_primary_10_1016_j_cej_2017_07_181 crossref_primary_10_1016_j_watres_2015_10_017 crossref_primary_10_1016_j_desal_2017_12_044 crossref_primary_10_1021_acsomega_8b02827 crossref_primary_10_1016_j_cej_2017_05_108 crossref_primary_10_2166_ws_2017_229 crossref_primary_10_1016_j_watres_2014_07_039 crossref_primary_10_1016_j_desal_2024_117477 |
Cites_doi | 10.1016/j.memsci.2011.02.019 10.1016/j.memsci.2004.07.039 10.1016/j.desal.2006.12.009 10.1016/j.desal.2008.12.028 10.1016/j.memsci.2010.02.059 10.1016/j.desal.2006.02.003 10.1016/j.desal.2006.08.028 10.1016/j.memsci.2010.06.058 10.1016/j.watres.2010.06.039 10.1016/j.memsci.2004.08.039 10.1016/j.desal.2006.08.024 10.2166/wst.2010.426 10.1016/j.memsci.2010.06.056 10.1016/j.watres.2007.05.054 10.2166/wst.2010.835 10.1016/j.desal.2008.02.022 10.1016/S0376-7388(96)00354-7 10.1016/j.desal.2004.11.002 10.1016/S0011-9164(99)00076-4 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 7SU 8FD C1K FR3 KR7 7ST 7TN 7UA F1W H96 L.G SOI |
DOI | 10.1016/j.desal.2011.06.066 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts Oceanic Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Engineering Research Database Technology Research Database Environmental Engineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Environment Abstracts Water Resources Abstracts |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-4464 |
EndPage | 166 |
ExternalDocumentID | 24693125 10_1016_j_desal_2011_06_066 US201500090374 S0011916411006084 |
GeographicLocations | Red Sea ISW, Red Sea |
GeographicLocations_xml | – name: Red Sea – name: ISW, Red Sea |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABLST ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KCYFY KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SST SSZ T5K WUQ ZY4 ~02 ~G- ~KM ABPIF ABPTK FBQ AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 7SU 8FD C1K FR3 KR7 7ST 7TN 7UA F1W H96 L.G SOI |
ID | FETCH-LOGICAL-c455t-382f4552fa8160dcf39bac1af45b02f3dd8f9eb5fe618bffc973498e7dba72423 |
IEDL.DBID | .~1 |
ISSN | 0011-9164 |
IngestDate | Mon Jul 21 10:18:43 EDT 2025 Thu Jul 10 20:30:16 EDT 2025 Thu Jul 10 18:29:59 EDT 2025 Mon Jul 21 09:16:21 EDT 2025 Tue Jul 01 04:13:32 EDT 2025 Thu Apr 24 22:51:33 EDT 2025 Wed Dec 27 19:18:22 EST 2023 Fri Feb 23 02:34:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cleaning Reverse osmosis Fouling Forward osmosis Desalination Water reuse Reuse Extract Long term Waste water Membrane separation Cost analysis Seawater |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-382f4552fa8160dcf39bac1af45b02f3dd8f9eb5fe618bffc973498e7dba72423 |
Notes | http://dx.doi.org/10.1016/j.desal.2011.06.066 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1663589830 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_902340668 proquest_miscellaneous_1777103317 proquest_miscellaneous_1663589830 pascalfrancis_primary_24693125 crossref_primary_10_1016_j_desal_2011_06_066 crossref_citationtrail_10_1016_j_desal_2011_06_066 fao_agris_US201500090374 elsevier_sciencedirect_doi_10_1016_j_desal_2011_06_066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-03 |
PublicationDateYYYYMMDD | 2011-10-03 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Desalination |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Holloway, Childress, Dennett, Cath (bb0050) 2007; 41 Tang, She, Lay, Wang, Fane (bb0110) 2010; 354 Global Water (bb0035) 2005 de Koning, Bixio, Karabelas, Salgot, Schäfer (bb0130) 2008; 218 Kennedy, Yangali-Quintanilla, Heijman, Amy, Schippers (bb0120) 2007 Cath, Drewes, Lundin (bb0125) 2009 GBI Research (bb0025) 2010 Intelligence American Water (bb0065) 2011 Elarde, Bergman (bb0140) 2001 Global Water Intelligence (bb0015) 2006 Cath, Hancock, Lundin, Hoppe-Jones, Drewes (bb0060) 2010; 362 Gray, McCutcheon, Elimelech (bb0100) 2006; 197 Elarde, Bergman (bb0145) 2003 Cath, Adams, Childress (bb0075) 2005; 257 Lay, Chong, Tang, Fane, Zhang, Liu (bb0105) 2010; 61 Fritzmann, Löwenberg, Wintgens, Melin (bb0005) 2007; 216 Yangali-Quintanilla, Maeng, Fujioka, Kennedy, Amy (bb0150) 2010; 362 Van Houtte, Verbauwhede (bb0135) 2008; 218 Loeb, Titelman, Korngold, Freiman (bb0095) 1997; 129 Global Water Intelligence (bb0020) 2008 Cath, Gormly, Beaudry, Flynn, Adams, Childress (bb0040) 2005; 257 Hussain, Al-Saati (bb0165) 1999; 123 McCutcheon, McGinnis, Elimelech (bb0045) 2005; 174 Achilli, Cath, Marchand, Childress (bb0055) 2009; 239 Comprehensive Assessment of Water Management in Agriculture (bb0010) 2006 Choi, Choi, Oh, Lee, Yang, Kim (bb0080) 2009; 247 Qin, Kekre, Oo, Tao, Lay, Lew, Cornelissen, Ruiken (bb0085) 2010; 62 Yu, Seo, Kim, Lee (bb0155) 2011; 375 Ghaffour, Venkat (bb0030) 2009 Tan, Ng (bb0090) 2010; 8 Zheng, Ernst, Huck, Jekel (bb0115) 2010; 44 Szuster, Flaherty (bb0160) 2001 Winter (bb0070) 2011 Global Water (10.1016/j.desal.2011.06.066_bb0035) 2005 Zheng (10.1016/j.desal.2011.06.066_bb0115) 2010; 44 Cath (10.1016/j.desal.2011.06.066_bb0125) 2009 Szuster (10.1016/j.desal.2011.06.066_bb0160) 2001 Achilli (10.1016/j.desal.2011.06.066_bb0055) 2009; 239 Cath (10.1016/j.desal.2011.06.066_bb0060) 2010; 362 Tan (10.1016/j.desal.2011.06.066_bb0090) 2010; 8 Winter (10.1016/j.desal.2011.06.066_bb0070) 2011 GBI Research (10.1016/j.desal.2011.06.066_bb0025) 2010 Fritzmann (10.1016/j.desal.2011.06.066_bb0005) 2007; 216 Gray (10.1016/j.desal.2011.06.066_bb0100) 2006; 197 Cath (10.1016/j.desal.2011.06.066_bb0040) 2005; 257 Kennedy (10.1016/j.desal.2011.06.066_bb0120) 2007 Holloway (10.1016/j.desal.2011.06.066_bb0050) 2007; 41 Choi (10.1016/j.desal.2011.06.066_bb0080) 2009; 247 Global Water Intelligence (10.1016/j.desal.2011.06.066_bb0015) 2006 Comprehensive Assessment of Water Management in Agriculture (10.1016/j.desal.2011.06.066_bb0010) 2006 Yu (10.1016/j.desal.2011.06.066_bb0155) 2011; 375 Hussain (10.1016/j.desal.2011.06.066_bb0165) 1999; 123 Elarde (10.1016/j.desal.2011.06.066_bb0140) 2001 Global Water Intelligence (10.1016/j.desal.2011.06.066_bb0020) 2008 de Koning (10.1016/j.desal.2011.06.066_bb0130) 2008; 218 Yangali-Quintanilla (10.1016/j.desal.2011.06.066_bb0150) 2010; 362 McCutcheon (10.1016/j.desal.2011.06.066_bb0045) 2005; 174 Elarde (10.1016/j.desal.2011.06.066_bb0145) 2003 Intelligence American Water (10.1016/j.desal.2011.06.066_bb0065) 2011 Lay (10.1016/j.desal.2011.06.066_bb0105) 2010; 61 Cath (10.1016/j.desal.2011.06.066_bb0075) 2005; 257 Tang (10.1016/j.desal.2011.06.066_bb0110) 2010; 354 Van Houtte (10.1016/j.desal.2011.06.066_bb0135) 2008; 218 Qin (10.1016/j.desal.2011.06.066_bb0085) 2010; 62 Loeb (10.1016/j.desal.2011.06.066_bb0095) 1997; 129 Ghaffour (10.1016/j.desal.2011.06.066_bb0030) 2009 |
References_xml | – year: 2006 ident: bb0010 article-title: Insights from the Comprehensive Assessment of Water Management in Agriculture – volume: 239 start-page: 10 year: 2009 end-page: 21 ident: bb0055 article-title: The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes publication-title: Desalination – year: 2007 ident: bb0120 article-title: Colloidal and non-colloidal NOM fouling of UF membranes publication-title: Membrane Technology Conference and Exposition – volume: 197 start-page: 1 year: 2006 end-page: 8 ident: bb0100 article-title: Internal concentration polarization in forward osmosis: role of membrane orientation publication-title: Desalination – volume: 362 start-page: 334 year: 2010 end-page: 345 ident: bb0150 article-title: Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse publication-title: Journal of Membrane Science – year: 2009 ident: bb0030 article-title: The true cost of water desalination: review and evaluation publication-title: IDA World Congress Atlantis – volume: 123 start-page: 241 year: 1999 end-page: 251 ident: bb0165 article-title: Wastewater quality and its reuse in agriculture in Saudi Arabia publication-title: Desalination – year: 2005 ident: bb0035 article-title: Water Reuse Markets 2005–2015 publication-title: A Global Assessment and Forecast – volume: 362 start-page: 417 year: 2010 end-page: 426 ident: bb0060 article-title: A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water publication-title: Journal of Membrane Science – volume: 247 start-page: 239 year: 2009 end-page: 246 ident: bb0080 article-title: Toward a combined system of forward osmosis and reverse osmosis for seawater desalination publication-title: Desalination – volume: 8 start-page: 533 year: 2010 end-page: 539 ident: bb0090 article-title: Modeling of external and internal concentration polarization effect on flux behaviour of forward osmosis publication-title: Water Science and Technology – year: 2010 ident: bb0025 article-title: Desalination Market to 2020 — Technology Driven Cost Reduction in Membrane Based Processes Set to Drive Sustainability Investments into the Market – year: 2001 ident: bb0140 article-title: The cost of membrane filtration for municipal water supplies publication-title: Membrane Technology Conference – volume: 44 start-page: 5212 year: 2010 end-page: 5221 ident: bb0115 article-title: Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater publication-title: Water Research – year: 2011 ident: bb0065 article-title: The Race to Commercialize Forward Osmosis, American Water Intelligence – volume: 354 start-page: 123 year: 2010 end-page: 133 ident: bb0110 article-title: Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration publication-title: Journal of Membrane Science – volume: 218 start-page: 198 year: 2008 end-page: 207 ident: bb0135 article-title: Operational experience with indirect potable reuse at the Flemish Coast publication-title: Desalination – year: 2008 ident: bb0020 article-title: Desalination in 2008 Global Market Snapshot – year: 2009 ident: bb0125 article-title: A novel hybrid forward osmosis process for drinking water augmentation using impaired water and saline water sources publication-title: Colorado School of Mines Advanced Water Technology Center (AQWATEC) – year: 2006 ident: bb0015 article-title: Desal's Double Digit Future – volume: 61 start-page: 927 year: 2010 end-page: 935 ident: bb0105 article-title: Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon publication-title: Water Science and Technology – year: 2003 ident: bb0145 article-title: The cost of membrane softening and desalting for municipal water supplies publication-title: Membrane Technology Conference – volume: 375 start-page: 63 year: 2011 end-page: 68 ident: bb0155 article-title: Nanoporous polyethersulfone (PES) membrane with enhanced flux applied in forward osmosis process publication-title: Journal of Membrane Science – year: 2001 ident: bb0160 article-title: Inland Low-salinity Shrimp Farming in the Central Plains Region of Thailand – volume: 257 start-page: 111 year: 2005 end-page: 119 ident: bb0075 article-title: Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater publication-title: Journal of Membrane Science – volume: 41 start-page: 4005 year: 2007 end-page: 4014 ident: bb0050 article-title: Forward osmosis for concentration of anaerobic digester centrate publication-title: Water Research – volume: 129 start-page: 243 year: 1997 end-page: 249 ident: bb0095 article-title: Effect of porous support fabric on osmosis through a Loeb–Sourirajan type asymmetric membrane publication-title: Journal of Membrane Science – volume: 174 start-page: 1 year: 2005 end-page: 11 ident: bb0045 article-title: A novel ammonia–carbon dioxide forward (direct) osmosis desalination process publication-title: Desalination – year: 2011 ident: bb0070 article-title: Innovator publication-title: Robert McGinnis of Oasys Water – volume: 62 start-page: 1353 year: 2010 end-page: 1360 ident: bb0085 article-title: Preliminary study of osmotic membrane bioreactor: effects of draw solution on water flux and air scouring on fouling publication-title: Water Science and Technology – volume: 216 start-page: 1 year: 2007 end-page: 76 ident: bb0005 article-title: State-of-the-art of reverse osmosis desalination publication-title: Desalination – volume: 257 start-page: 85 year: 2005 end-page: 98 ident: bb0040 article-title: Membrane contactor processes for wastewater reclamation in space: part I. Direct osmotic concentration as pretreatment for reverse osmosis publication-title: Journal of Membrane Science – volume: 218 start-page: 92 year: 2008 end-page: 104 ident: bb0130 article-title: Characterisation and assessment of water treatment technologies for reuse publication-title: Desalination – year: 2008 ident: 10.1016/j.desal.2011.06.066_bb0020 – volume: 375 start-page: 63 year: 2011 ident: 10.1016/j.desal.2011.06.066_bb0155 article-title: Nanoporous polyethersulfone (PES) membrane with enhanced flux applied in forward osmosis process publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2011.02.019 – year: 2005 ident: 10.1016/j.desal.2011.06.066_bb0035 article-title: Water Reuse Markets 2005–2015 – year: 2006 ident: 10.1016/j.desal.2011.06.066_bb0010 – volume: 257 start-page: 111 year: 2005 ident: 10.1016/j.desal.2011.06.066_bb0075 article-title: Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2004.07.039 – volume: 8 start-page: 533 year: 2010 ident: 10.1016/j.desal.2011.06.066_bb0090 article-title: Modeling of external and internal concentration polarization effect on flux behaviour of forward osmosis publication-title: Water Science and Technology – volume: 216 start-page: 1 year: 2007 ident: 10.1016/j.desal.2011.06.066_bb0005 article-title: State-of-the-art of reverse osmosis desalination publication-title: Desalination doi: 10.1016/j.desal.2006.12.009 – volume: 247 start-page: 239 year: 2009 ident: 10.1016/j.desal.2011.06.066_bb0080 article-title: Toward a combined system of forward osmosis and reverse osmosis for seawater desalination publication-title: Desalination doi: 10.1016/j.desal.2008.12.028 – volume: 354 start-page: 123 year: 2010 ident: 10.1016/j.desal.2011.06.066_bb0110 article-title: Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2010.02.059 – year: 2007 ident: 10.1016/j.desal.2011.06.066_bb0120 article-title: Colloidal and non-colloidal NOM fouling of UF membranes – year: 2006 ident: 10.1016/j.desal.2011.06.066_bb0015 – volume: 197 start-page: 1 year: 2006 ident: 10.1016/j.desal.2011.06.066_bb0100 article-title: Internal concentration polarization in forward osmosis: role of membrane orientation publication-title: Desalination doi: 10.1016/j.desal.2006.02.003 – year: 2011 ident: 10.1016/j.desal.2011.06.066_bb0065 – volume: 218 start-page: 198 year: 2008 ident: 10.1016/j.desal.2011.06.066_bb0135 article-title: Operational experience with indirect potable reuse at the Flemish Coast publication-title: Desalination doi: 10.1016/j.desal.2006.08.028 – year: 2001 ident: 10.1016/j.desal.2011.06.066_bb0140 article-title: The cost of membrane filtration for municipal water supplies – volume: 362 start-page: 334 year: 2010 ident: 10.1016/j.desal.2011.06.066_bb0150 article-title: Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2010.06.058 – volume: 44 start-page: 5212 year: 2010 ident: 10.1016/j.desal.2011.06.066_bb0115 article-title: Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater publication-title: Water Research doi: 10.1016/j.watres.2010.06.039 – volume: 257 start-page: 85 year: 2005 ident: 10.1016/j.desal.2011.06.066_bb0040 article-title: Membrane contactor processes for wastewater reclamation in space: part I. Direct osmotic concentration as pretreatment for reverse osmosis publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2004.08.039 – year: 2011 ident: 10.1016/j.desal.2011.06.066_bb0070 article-title: Innovator – year: 2003 ident: 10.1016/j.desal.2011.06.066_bb0145 article-title: The cost of membrane softening and desalting for municipal water supplies – volume: 218 start-page: 92 year: 2008 ident: 10.1016/j.desal.2011.06.066_bb0130 article-title: Characterisation and assessment of water treatment technologies for reuse publication-title: Desalination doi: 10.1016/j.desal.2006.08.024 – volume: 62 start-page: 1353 year: 2010 ident: 10.1016/j.desal.2011.06.066_bb0085 article-title: Preliminary study of osmotic membrane bioreactor: effects of draw solution on water flux and air scouring on fouling publication-title: Water Science and Technology doi: 10.2166/wst.2010.426 – year: 2009 ident: 10.1016/j.desal.2011.06.066_bb0030 article-title: The true cost of water desalination: review and evaluation – volume: 362 start-page: 417 year: 2010 ident: 10.1016/j.desal.2011.06.066_bb0060 article-title: A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2010.06.056 – year: 2001 ident: 10.1016/j.desal.2011.06.066_bb0160 – year: 2010 ident: 10.1016/j.desal.2011.06.066_bb0025 – volume: 41 start-page: 4005 year: 2007 ident: 10.1016/j.desal.2011.06.066_bb0050 article-title: Forward osmosis for concentration of anaerobic digester centrate publication-title: Water Research doi: 10.1016/j.watres.2007.05.054 – volume: 61 start-page: 927 year: 2010 ident: 10.1016/j.desal.2011.06.066_bb0105 article-title: Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon publication-title: Water Science and Technology doi: 10.2166/wst.2010.835 – volume: 239 start-page: 10 year: 2009 ident: 10.1016/j.desal.2011.06.066_bb0055 article-title: The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes publication-title: Desalination doi: 10.1016/j.desal.2008.02.022 – volume: 129 start-page: 243 year: 1997 ident: 10.1016/j.desal.2011.06.066_bb0095 article-title: Effect of porous support fabric on osmosis through a Loeb–Sourirajan type asymmetric membrane publication-title: Journal of Membrane Science doi: 10.1016/S0376-7388(96)00354-7 – year: 2009 ident: 10.1016/j.desal.2011.06.066_bb0125 article-title: A novel hybrid forward osmosis process for drinking water augmentation using impaired water and saline water sources – volume: 174 start-page: 1 year: 2005 ident: 10.1016/j.desal.2011.06.066_bb0045 article-title: A novel ammonia–carbon dioxide forward (direct) osmosis desalination process publication-title: Desalination doi: 10.1016/j.desal.2004.11.002 – volume: 123 start-page: 241 year: 1999 ident: 10.1016/j.desal.2011.06.066_bb0165 article-title: Wastewater quality and its reuse in agriculture in Saudi Arabia publication-title: Desalination doi: 10.1016/S0011-9164(99)00076-4 |
SSID | ssj0012933 |
Score | 2.4701297 |
Snippet | The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 160 |
SubjectTerms | air Applied sciences Chemical engineering Cleaning cost analysis Costs Desalination Drinking water and swimming-pool water. Desalination energy Exact sciences and technology Flux Forward osmosis Fouling General purification processes long term experiments Marine Membrane separation (reverse osmosis, dialysis...) Membranes Natural water pollution Osmosis Pollution Red Sea Reverse osmosis seawater Seawaters, estuaries wastewater Wastewaters water quality Water reuse Water treatment and pollution |
Title | Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse |
URI | https://dx.doi.org/10.1016/j.desal.2011.06.066 https://www.proquest.com/docview/1663589830 https://www.proquest.com/docview/1777103317 https://www.proquest.com/docview/902340668 |
Volume | 280 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S9NIeSp_EfSwq9Fg3a0mW5GMIDZuW5tB0ITehZ9mysYO9S2797dX4sTSU7KHggxEj0HP0Mfr0DcAHEaOgVso8RitzbhzLDWZzZ86p0gXqyj7g9u1CLJb8y1V5dQCn01sYpFWOvn_w6b23HkuOx9E8vlmt8I0vipMJjqJnYq5QE5Rziav80-8dzQOPs-GWuShytJ6Uh3qOlw-dWY86niJ94r7T6UE0DdImTZdGLg4pL_7x3v2RdPYUnoxYkpwMzX0GB6F-Do__Uhh8Aevzeugg6RuxGmJ_pInke_DkMhhym8BmSzAcSxJ-RQ4tabrrplt1xNSerJtb0nNlt20gKPfUdmFnkCqM9duw7cJLWJ59_nG6yMcEC7njZbnJmaIx_dBoVCHm3kVWWeMKkwrtnEbmvYpVsGUMolA2RldJxisVpLdGIhB7BYd1U4cjIIVlgVvvnUuYIFpjlPIGE1xx6gsXZQZ0GljtRvVxTIKx1hPN7JfuB0LjbGgk2wmRwcddpZtBfGO_uZhmTN9ZQzodD_srHqX51eZn8qt6eUkxCjTHAJbkGczuTPquHZSLiiV0mMH7aRXotDPxusXUodl2ukAwpyrF5ntspEwQjyUQlwG5x6ZKsCrBLqFe_2__3sAjOlEX2Vs43LTb8C5hqY2d9ZtlBg9Pzr8uLv4AQk0fFQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJemh7KH0S95Gq0GPd2JYsyccSGjZtkkOThdyEnmHL1g72Lrn1t3fGj6WhZA8FH4wYgTQjjT5Gn2YI-ShiFIWVMo3RypQbx1KD1dyZc6p0oXBlH3A7OxezOf92VV7tkKPpLQzSKkffP_j03luPLYejNg9vFgt844vJyQTHpGciU3yXPOCwfbGMweffG54HnmfDNXOepyg-pR7qSV4-dGY5JvIU8In7jqfdaBrkTZoOVBeHmhf_uO_-TDp-Sp6MYJJ-Gcb7jOyE-jl5_FeKwRdkeVIPM6T9IBZD8I82kf4Inl4EQ28BbbYU47EUACySaGnT_Wq6RUdN7emyuaU9WXbdBor5ntoubASgw9i_DesuvCTz46-XR7N0rLCQOl6WqxS0FeGniEblIvMussoalxtotFkRmfcqVsGWMYhc2RhdJRmvVJDeGolI7BXZq5s67BOaWxa49d45AAXRGqOUN1jhihc-d1EmpJgUq92YfhyrYCz1xDP7qXtFaLSGRradEAn5tOl0M2Tf2C4uJovpO4tIw_mwveM-2Feba3Csen5RYBgowwiW5Ak5uGP0zTgKLioG8DAhH6ZVoGFr4n2LqUOz7nSOaE5VimVbZKQEjMcAxSWE3iNTAa4C3CXU6_-d33vycHZ5dqpPT86_vyGPionHyN6SvVW7Du8AWK3sQb9x_gCbRyCj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indirect+desalination+of+Red+Sea+water+with+forward+osmosis+and+low+pressure+reverse+osmosis+for+water+reuse&rft.jtitle=Desalination&rft.au=Yangali-Quintanilla%2C+Victor&rft.au=Li%2C+Zhenyu&rft.au=Valladares%2C+Rodrigo&rft.au=Li%2C+Qingyu&rft.date=2011-10-03&rft.issn=0011-9164&rft.volume=280&rft.issue=1-3&rft.spage=160&rft.epage=166&rft_id=info:doi/10.1016%2Fj.desal.2011.06.066&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-9164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-9164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-9164&client=summon |