Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse

The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a...

Full description

Saved in:
Bibliographic Details
Published inDesalination Vol. 280; no. 1; pp. 160 - 166
Main Authors Yangali-Quintanilla, Victor, Li, Zhenyu, Valladares, Rodrigo, Li, Qingyu, Amy, Gary
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 03.10.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~ 1.5 kWh/m³) of the energy used for high pressure seawater RO (SWRO) desalination (2.5–4 kWh/m³), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14 days. After 10 days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5 L/m²-h is needed to compete with water reuse using UF–LPRO, and 5.5 L/m²-h is needed to recover and desalinate water at less cost than SWRO. ► A new immersed forward osmosis (FO) membrane cell was designed and tested. ► The FO cell dilutes seawater in cycles by using a wastewater effluent as feed. ► Fouling of the FO membrane will reduce flux by 28% over a period of 10 days. ► Cleaning the FO membrane by air scouring with clean water recovers flux by 98%. ► The system consumes only 50% of the energy used for normal high pressure RO.
AbstractList The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~1.5kWh/m super(3)) of the energy used for high pressure seawater RO (SWRO) desalination (2.5-4kWh/m super(3)), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14days. After 10days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5L/m super(2)-h is needed to compete with water reuse using UF-LPRO, and 5.5L/m super(2)-h is needed to recover and desalinate water at less cost than SWRO.
The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~ 1.5 kWh/m³) of the energy used for high pressure seawater RO (SWRO) desalination (2.5–4 kWh/m³), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14 days. After 10 days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5 L/m²-h is needed to compete with water reuse using UF–LPRO, and 5.5 L/m²-h is needed to recover and desalinate water at less cost than SWRO. ► A new immersed forward osmosis (FO) membrane cell was designed and tested. ► The FO cell dilutes seawater in cycles by using a wastewater effluent as feed. ► Fouling of the FO membrane will reduce flux by 28% over a period of 10 days. ► Cleaning the FO membrane by air scouring with clean water recovers flux by 98%. ► The system consumes only 50% of the energy used for normal high pressure RO.
The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~1.5kWh/m³) of the energy used for high pressure seawater RO (SWRO) desalination (2.5–4kWh/m³), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14days. After 10days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5L/m²-h is needed to compete with water reuse using UF–LPRO, and 5.5L/m²-h is needed to recover and desalinate water at less cost than SWRO.
Author Yangali-Quintanilla, Victor
Li, Zhenyu
Li, Qingyu
Valladares, Rodrigo
Amy, Gary
Author_xml – sequence: 1
  givenname: Victor
  surname: Yangali-Quintanilla
  fullname: Yangali-Quintanilla, Victor
  email: victor.yangali@kaust.edu.sa, victor.yangali@gmail.com
– sequence: 2
  givenname: Zhenyu
  surname: Li
  fullname: Li, Zhenyu
– sequence: 3
  givenname: Rodrigo
  surname: Valladares
  fullname: Valladares, Rodrigo
– sequence: 4
  givenname: Qingyu
  surname: Li
  fullname: Li, Qingyu
– sequence: 5
  givenname: Gary
  surname: Amy
  fullname: Amy, Gary
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24693125$$DView record in Pascal Francis
BookMark eNqFks1rFDEYh4NUcFv9CzyYi-hl1nxNZnLwIMWPQkGw9hzeSd5oltnJmsx28b833Vl68NBCIF_P8ybkl3NyNqUJCXnN2Zozrj9s1h4LjGvBOF8zXZt-Rla872SjlFZnZMXqTmO4Vi_IeSmbOhVGyhUZryYfM7qZHivECeaYJpoC_YGe3iDQA8yY6SHOv2lI-QDZ01S2qcRCYfJ0TAe6y1jKPiPNeIe54ANQhZOfcV_wJXkeYCz46tRfkNsvn39efmuuv3-9uvx03TjVtnMjexHqQATouWbeBWkGcBzq4sBEkN73weDQBtS8H0JwppPK9Nj5ATqhhLwg75a6u5z-7LHMdhuLw3GECdO-WMOEVPWN-kq-f5TkXddxJiXvnka1lm1veskq-vaEQnEwhgyTi8XuctxC_muF0kZy0VZOLpzLqZSM4QHhzN4Hazf2GIu9D9YyXZuulvnPcnE-xjZniOMT7pvFDZAs_Mr1Vrc3FWgZY4bJTlXi40JgDeguYrbFRZwcLt_E-hQfPeEf5rvL8A
CODEN DSLNAH
CitedBy_id crossref_primary_10_1016_j_desal_2019_114087
crossref_primary_10_1016_j_cej_2015_05_080
crossref_primary_10_1039_D0EW00490A
crossref_primary_10_1016_j_watres_2013_11_031
crossref_primary_10_1016_j_desal_2019_114082
crossref_primary_10_1007_s40899_023_00912_4
crossref_primary_10_1016_j_jclepro_2021_129129
crossref_primary_10_1016_j_desal_2016_03_015
crossref_primary_10_1007_s11356_018_2239_0
crossref_primary_10_1016_j_cherd_2023_03_048
crossref_primary_10_1021_am508387d
crossref_primary_10_1016_j_desal_2016_07_032
crossref_primary_10_1016_j_memsci_2019_117607
crossref_primary_10_1016_j_desal_2016_03_021
crossref_primary_10_1007_s11356_019_06079_w
crossref_primary_10_1016_j_desal_2019_114071
crossref_primary_10_1016_j_memsci_2011_12_023
crossref_primary_10_1016_j_desal_2017_05_036
crossref_primary_10_3390_membranes6030037
crossref_primary_10_1016_j_cherd_2016_11_023
crossref_primary_10_1016_j_rser_2017_10_087
crossref_primary_10_1016_j_jece_2021_105775
crossref_primary_10_1016_j_jwpe_2019_101092
crossref_primary_10_1039_C9EW00608G
crossref_primary_10_1016_j_desal_2017_09_017
crossref_primary_10_1016_j_memsci_2012_10_031
crossref_primary_10_1016_j_seppur_2016_04_044
crossref_primary_10_1016_j_watres_2016_09_031
crossref_primary_10_1016_j_memsci_2013_07_018
crossref_primary_10_1039_C7EW00507E
crossref_primary_10_1080_19443994_2015_1079740
crossref_primary_10_1002_ente_201600703
crossref_primary_10_1016_j_memsci_2020_118838
crossref_primary_10_1016_j_watres_2014_08_021
crossref_primary_10_1016_j_psep_2018_05_006
crossref_primary_10_1016_j_chemosphere_2022_134716
crossref_primary_10_3390_polym14132710
crossref_primary_10_1021_acssuschemeng_3c03161
crossref_primary_10_1016_j_carbon_2024_118909
crossref_primary_10_1016_j_seppur_2018_04_077
crossref_primary_10_1016_j_memsci_2013_04_056
crossref_primary_10_1016_j_cjche_2017_10_003
crossref_primary_10_1016_j_desal_2020_114569
crossref_primary_10_1039_C7EW00550D
crossref_primary_10_1016_j_desal_2022_116083
crossref_primary_10_1002_mawe_202200014
crossref_primary_10_1016_j_cej_2024_158022
crossref_primary_10_1016_j_desal_2016_12_010
crossref_primary_10_1016_j_watres_2012_02_023
crossref_primary_10_1080_19443994_2016_1190108
crossref_primary_10_1016_j_desal_2013_10_003
crossref_primary_10_1016_j_desal_2014_12_011
crossref_primary_10_1016_j_cherd_2022_05_002
crossref_primary_10_1016_j_watres_2015_02_032
crossref_primary_10_1016_j_watres_2019_115157
crossref_primary_10_1080_10643389_2019_1657762
crossref_primary_10_1016_j_desal_2014_02_010
crossref_primary_10_1016_j_cej_2021_129250
crossref_primary_10_1016_j_jclepro_2022_131769
crossref_primary_10_1016_j_scitotenv_2019_134169
crossref_primary_10_1016_j_jiec_2019_05_025
crossref_primary_10_1016_j_seppur_2016_12_025
crossref_primary_10_1016_j_memsci_2015_09_041
crossref_primary_10_1016_j_desal_2015_08_020
crossref_primary_10_1016_j_desal_2017_08_026
crossref_primary_10_1016_j_dwt_2024_100551
crossref_primary_10_1016_j_desal_2016_12_005
crossref_primary_10_3390_membranes8030047
crossref_primary_10_1016_j_watres_2019_114879
crossref_primary_10_1016_j_seppur_2021_120196
crossref_primary_10_1016_j_desal_2014_12_009
crossref_primary_10_1016_j_desal_2017_08_024
crossref_primary_10_1016_j_desal_2015_09_006
crossref_primary_10_2166_wrd_2020_065
crossref_primary_10_1016_j_desal_2021_114963
crossref_primary_10_1080_19443994_2013_827299
crossref_primary_10_1016_j_cej_2024_157169
crossref_primary_10_1016_j_desal_2019_02_008
crossref_primary_10_1021_acssuschemeng_0c09362
crossref_primary_10_1039_c4cc01603c
crossref_primary_10_1016_j_watres_2012_09_003
crossref_primary_10_1016_j_desal_2014_06_008
crossref_primary_10_1016_j_watres_2024_121282
crossref_primary_10_1016_j_seppur_2012_03_030
crossref_primary_10_1016_j_chemosphere_2021_132726
crossref_primary_10_1016_j_cep_2021_108583
crossref_primary_10_1016_j_desal_2014_06_001
crossref_primary_10_1016_j_memsci_2015_07_014
crossref_primary_10_1021_es501051b
crossref_primary_10_1016_j_memsci_2021_120168
crossref_primary_10_1016_j_envint_2019_05_033
crossref_primary_10_1016_j_memsci_2012_07_019
crossref_primary_10_1016_j_desal_2017_07_015
crossref_primary_10_1016_j_apenergy_2023_121950
crossref_primary_10_5004_dwt_2018_23195
crossref_primary_10_1016_j_jwpe_2014_10_006
crossref_primary_10_1007_s11783_023_1616_1
crossref_primary_10_1007_s00449_018_1938_8
crossref_primary_10_1039_C5EW00103J
crossref_primary_10_3390_membranes13040379
crossref_primary_10_3390_w11040695
crossref_primary_10_1080_19443994_2016_1190113
crossref_primary_10_3390_membranes10120439
crossref_primary_10_1016_j_jece_2021_105473
crossref_primary_10_1021_acs_est_8b05587
crossref_primary_10_1080_19443994_2014_940660
crossref_primary_10_1016_j_memsci_2019_117757
crossref_primary_10_1016_j_desal_2019_06_008
crossref_primary_10_1016_j_desal_2024_117511
crossref_primary_10_1016_j_desal_2014_01_002
crossref_primary_10_1016_j_desal_2021_115190
crossref_primary_10_1016_j_desal_2016_01_008
crossref_primary_10_1021_es304060d
crossref_primary_10_1016_j_mtsust_2023_100361
crossref_primary_10_1016_j_seppur_2018_02_056
crossref_primary_10_1002_gch2_202300304
crossref_primary_10_1016_j_desal_2019_03_013
crossref_primary_10_1016_j_jclepro_2020_124354
crossref_primary_10_1016_j_watres_2020_116064
crossref_primary_10_1007_s13369_019_04102_3
crossref_primary_10_1016_j_jiec_2015_10_005
crossref_primary_10_1016_j_memsci_2015_06_038
crossref_primary_10_1016_j_memsci_2017_06_036
crossref_primary_10_1016_j_desal_2024_117767
crossref_primary_10_1080_19443994_2013_768757
crossref_primary_10_1016_j_resconrec_2020_105273
crossref_primary_10_1016_j_jenvman_2025_124094
crossref_primary_10_1080_01496395_2020_1826968
crossref_primary_10_1021_acssuschemeng_6b01039
crossref_primary_10_1088_1361_6528_aaf063
crossref_primary_10_1016_j_memsci_2013_03_046
crossref_primary_10_1016_j_memsci_2015_02_001
crossref_primary_10_1016_j_desal_2015_03_005
crossref_primary_10_1080_19443994_2016_1154712
crossref_primary_10_1016_j_memsci_2014_08_046
crossref_primary_10_1016_j_jwpe_2022_103479
crossref_primary_10_1039_D2EW00051B
crossref_primary_10_1080_19443994_2013_795345
crossref_primary_10_1016_j_memsci_2023_121691
crossref_primary_10_1016_j_watres_2019_04_003
crossref_primary_10_1016_j_desal_2015_11_028
crossref_primary_10_1016_j_ijft_2024_100915
crossref_primary_10_1016_j_memsci_2014_04_010
crossref_primary_10_1016_j_cscee_2021_100165
crossref_primary_10_1016_j_desal_2012_09_030
crossref_primary_10_1039_D4VA00378K
crossref_primary_10_1016_j_chemosphere_2023_137790
crossref_primary_10_1016_j_desal_2019_114229
crossref_primary_10_1016_j_watres_2018_11_015
crossref_primary_10_1016_j_memsci_2013_05_004
crossref_primary_10_1007_s10098_015_0927_8
crossref_primary_10_1016_j_desal_2016_09_017
crossref_primary_10_1016_j_jece_2024_113968
crossref_primary_10_1016_j_jwpe_2017_12_012
crossref_primary_10_31857_S2218117223040028
crossref_primary_10_3390_membranes7020030
crossref_primary_10_1016_j_desal_2015_07_016
crossref_primary_10_1039_c3cc43951h
crossref_primary_10_1080_19443994_2014_985727
crossref_primary_10_1016_j_jwpe_2022_102828
crossref_primary_10_1016_j_memsci_2019_117668
crossref_primary_10_1016_j_memsci_2014_04_008
crossref_primary_10_1088_1742_6596_1378_3_032047
crossref_primary_10_3390_w14132092
crossref_primary_10_1007_s11814_021_0935_9
crossref_primary_10_1016_j_memsci_2015_02_025
crossref_primary_10_1016_j_desal_2020_114844
crossref_primary_10_1080_10408398_2012_724734
crossref_primary_10_1080_19443994_2013_786655
crossref_primary_10_1080_19443994_2012_714926
crossref_primary_10_3390_pr6090165
crossref_primary_10_1016_j_memsci_2017_08_001
crossref_primary_10_1016_j_jiec_2017_03_011
crossref_primary_10_1016_j_desal_2016_04_026
crossref_primary_10_1016_j_jenvman_2020_111804
crossref_primary_10_1007_s11356_017_0930_1
crossref_primary_10_1016_j_scitotenv_2019_05_062
crossref_primary_10_1021_acsnano_0c04471
crossref_primary_10_1016_j_watres_2020_116255
crossref_primary_10_1016_j_jwpe_2020_101492
crossref_primary_10_1016_j_desal_2020_114584
crossref_primary_10_1016_j_watres_2017_10_042
crossref_primary_10_3390_membranes10090243
crossref_primary_10_1016_j_memsci_2018_07_041
crossref_primary_10_5004_dwt_2017_20680
crossref_primary_10_1016_j_aej_2022_08_002
crossref_primary_10_1016_j_psep_2019_04_004
crossref_primary_10_1016_j_memsci_2020_118624
crossref_primary_10_3390_w12041111
crossref_primary_10_1080_19443994_2014_1002434
crossref_primary_10_3390_su14063328
crossref_primary_10_1016_j_memsci_2015_12_040
crossref_primary_10_1016_j_scitotenv_2019_136047
crossref_primary_10_1016_j_seppur_2019_115719
crossref_primary_10_5004_dwt_2018_22015
crossref_primary_10_12989_mwt_2015_6_1_043
crossref_primary_10_1039_D0EW00181C
crossref_primary_10_1016_j_watres_2022_118943
crossref_primary_10_1016_j_memsci_2012_11_039
crossref_primary_10_1016_j_watres_2014_03_046
crossref_primary_10_1021_acs_est_3c00084
crossref_primary_10_1016_j_watres_2013_05_013
crossref_primary_10_1111_1541_4337_12691
crossref_primary_10_1134_S2517751623040029
crossref_primary_10_5004_dwt_2020_24934
crossref_primary_10_1007_s40726_018_0097_5
crossref_primary_10_1080_21622515_2019_1623324
crossref_primary_10_1016_j_cej_2017_07_181
crossref_primary_10_1016_j_watres_2015_10_017
crossref_primary_10_1016_j_desal_2017_12_044
crossref_primary_10_1021_acsomega_8b02827
crossref_primary_10_1016_j_cej_2017_05_108
crossref_primary_10_2166_ws_2017_229
crossref_primary_10_1016_j_watres_2014_07_039
crossref_primary_10_1016_j_desal_2024_117477
Cites_doi 10.1016/j.memsci.2011.02.019
10.1016/j.memsci.2004.07.039
10.1016/j.desal.2006.12.009
10.1016/j.desal.2008.12.028
10.1016/j.memsci.2010.02.059
10.1016/j.desal.2006.02.003
10.1016/j.desal.2006.08.028
10.1016/j.memsci.2010.06.058
10.1016/j.watres.2010.06.039
10.1016/j.memsci.2004.08.039
10.1016/j.desal.2006.08.024
10.2166/wst.2010.426
10.1016/j.memsci.2010.06.056
10.1016/j.watres.2007.05.054
10.2166/wst.2010.835
10.1016/j.desal.2008.02.022
10.1016/S0376-7388(96)00354-7
10.1016/j.desal.2004.11.002
10.1016/S0011-9164(99)00076-4
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
7SU
8FD
C1K
FR3
KR7
7ST
7TN
7UA
F1W
H96
L.G
SOI
DOI 10.1016/j.desal.2011.06.066
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
Oceanic Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environment Abstracts
Water Resources Abstracts
DatabaseTitleList Civil Engineering Abstracts


AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-4464
EndPage 166
ExternalDocumentID 24693125
10_1016_j_desal_2011_06_066
US201500090374
S0011916411006084
GeographicLocations Red Sea
ISW, Red Sea
GeographicLocations_xml – name: Red Sea
– name: ISW, Red Sea
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KCYFY
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SST
SSZ
T5K
WUQ
ZY4
~02
~G-
~KM
ABPIF
ABPTK
FBQ
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7S9
L.6
7SU
8FD
C1K
FR3
KR7
7ST
7TN
7UA
F1W
H96
L.G
SOI
ID FETCH-LOGICAL-c455t-382f4552fa8160dcf39bac1af45b02f3dd8f9eb5fe618bffc973498e7dba72423
IEDL.DBID .~1
ISSN 0011-9164
IngestDate Mon Jul 21 10:18:43 EDT 2025
Thu Jul 10 20:30:16 EDT 2025
Thu Jul 10 18:29:59 EDT 2025
Mon Jul 21 09:16:21 EDT 2025
Tue Jul 01 04:13:32 EDT 2025
Thu Apr 24 22:51:33 EDT 2025
Wed Dec 27 19:18:22 EST 2023
Fri Feb 23 02:34:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cleaning
Reverse osmosis
Fouling
Forward osmosis
Desalination
Water reuse
Reuse
Extract
Long term
Waste water
Membrane separation
Cost analysis
Seawater
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-382f4552fa8160dcf39bac1af45b02f3dd8f9eb5fe618bffc973498e7dba72423
Notes http://dx.doi.org/10.1016/j.desal.2011.06.066
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663589830
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_902340668
proquest_miscellaneous_1777103317
proquest_miscellaneous_1663589830
pascalfrancis_primary_24693125
crossref_primary_10_1016_j_desal_2011_06_066
crossref_citationtrail_10_1016_j_desal_2011_06_066
fao_agris_US201500090374
elsevier_sciencedirect_doi_10_1016_j_desal_2011_06_066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-03
PublicationDateYYYYMMDD 2011-10-03
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-03
  day: 03
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Desalination
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Holloway, Childress, Dennett, Cath (bb0050) 2007; 41
Tang, She, Lay, Wang, Fane (bb0110) 2010; 354
Global Water (bb0035) 2005
de Koning, Bixio, Karabelas, Salgot, Schäfer (bb0130) 2008; 218
Kennedy, Yangali-Quintanilla, Heijman, Amy, Schippers (bb0120) 2007
Cath, Drewes, Lundin (bb0125) 2009
GBI Research (bb0025) 2010
Intelligence American Water (bb0065) 2011
Elarde, Bergman (bb0140) 2001
Global Water Intelligence (bb0015) 2006
Cath, Hancock, Lundin, Hoppe-Jones, Drewes (bb0060) 2010; 362
Gray, McCutcheon, Elimelech (bb0100) 2006; 197
Elarde, Bergman (bb0145) 2003
Cath, Adams, Childress (bb0075) 2005; 257
Lay, Chong, Tang, Fane, Zhang, Liu (bb0105) 2010; 61
Fritzmann, Löwenberg, Wintgens, Melin (bb0005) 2007; 216
Yangali-Quintanilla, Maeng, Fujioka, Kennedy, Amy (bb0150) 2010; 362
Van Houtte, Verbauwhede (bb0135) 2008; 218
Loeb, Titelman, Korngold, Freiman (bb0095) 1997; 129
Global Water Intelligence (bb0020) 2008
Cath, Gormly, Beaudry, Flynn, Adams, Childress (bb0040) 2005; 257
Hussain, Al-Saati (bb0165) 1999; 123
McCutcheon, McGinnis, Elimelech (bb0045) 2005; 174
Achilli, Cath, Marchand, Childress (bb0055) 2009; 239
Comprehensive Assessment of Water Management in Agriculture (bb0010) 2006
Choi, Choi, Oh, Lee, Yang, Kim (bb0080) 2009; 247
Qin, Kekre, Oo, Tao, Lay, Lew, Cornelissen, Ruiken (bb0085) 2010; 62
Yu, Seo, Kim, Lee (bb0155) 2011; 375
Ghaffour, Venkat (bb0030) 2009
Tan, Ng (bb0090) 2010; 8
Zheng, Ernst, Huck, Jekel (bb0115) 2010; 44
Szuster, Flaherty (bb0160) 2001
Winter (bb0070) 2011
Global Water (10.1016/j.desal.2011.06.066_bb0035) 2005
Zheng (10.1016/j.desal.2011.06.066_bb0115) 2010; 44
Cath (10.1016/j.desal.2011.06.066_bb0125) 2009
Szuster (10.1016/j.desal.2011.06.066_bb0160) 2001
Achilli (10.1016/j.desal.2011.06.066_bb0055) 2009; 239
Cath (10.1016/j.desal.2011.06.066_bb0060) 2010; 362
Tan (10.1016/j.desal.2011.06.066_bb0090) 2010; 8
Winter (10.1016/j.desal.2011.06.066_bb0070) 2011
GBI Research (10.1016/j.desal.2011.06.066_bb0025) 2010
Fritzmann (10.1016/j.desal.2011.06.066_bb0005) 2007; 216
Gray (10.1016/j.desal.2011.06.066_bb0100) 2006; 197
Cath (10.1016/j.desal.2011.06.066_bb0040) 2005; 257
Kennedy (10.1016/j.desal.2011.06.066_bb0120) 2007
Holloway (10.1016/j.desal.2011.06.066_bb0050) 2007; 41
Choi (10.1016/j.desal.2011.06.066_bb0080) 2009; 247
Global Water Intelligence (10.1016/j.desal.2011.06.066_bb0015) 2006
Comprehensive Assessment of Water Management in Agriculture (10.1016/j.desal.2011.06.066_bb0010) 2006
Yu (10.1016/j.desal.2011.06.066_bb0155) 2011; 375
Hussain (10.1016/j.desal.2011.06.066_bb0165) 1999; 123
Elarde (10.1016/j.desal.2011.06.066_bb0140) 2001
Global Water Intelligence (10.1016/j.desal.2011.06.066_bb0020) 2008
de Koning (10.1016/j.desal.2011.06.066_bb0130) 2008; 218
Yangali-Quintanilla (10.1016/j.desal.2011.06.066_bb0150) 2010; 362
McCutcheon (10.1016/j.desal.2011.06.066_bb0045) 2005; 174
Elarde (10.1016/j.desal.2011.06.066_bb0145) 2003
Intelligence American Water (10.1016/j.desal.2011.06.066_bb0065) 2011
Lay (10.1016/j.desal.2011.06.066_bb0105) 2010; 61
Cath (10.1016/j.desal.2011.06.066_bb0075) 2005; 257
Tang (10.1016/j.desal.2011.06.066_bb0110) 2010; 354
Van Houtte (10.1016/j.desal.2011.06.066_bb0135) 2008; 218
Qin (10.1016/j.desal.2011.06.066_bb0085) 2010; 62
Loeb (10.1016/j.desal.2011.06.066_bb0095) 1997; 129
Ghaffour (10.1016/j.desal.2011.06.066_bb0030) 2009
References_xml – year: 2006
  ident: bb0010
  article-title: Insights from the Comprehensive Assessment of Water Management in Agriculture
– volume: 239
  start-page: 10
  year: 2009
  end-page: 21
  ident: bb0055
  article-title: The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes
  publication-title: Desalination
– year: 2007
  ident: bb0120
  article-title: Colloidal and non-colloidal NOM fouling of UF membranes
  publication-title: Membrane Technology Conference and Exposition
– volume: 197
  start-page: 1
  year: 2006
  end-page: 8
  ident: bb0100
  article-title: Internal concentration polarization in forward osmosis: role of membrane orientation
  publication-title: Desalination
– volume: 362
  start-page: 334
  year: 2010
  end-page: 345
  ident: bb0150
  article-title: Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse
  publication-title: Journal of Membrane Science
– year: 2009
  ident: bb0030
  article-title: The true cost of water desalination: review and evaluation
  publication-title: IDA World Congress Atlantis
– volume: 123
  start-page: 241
  year: 1999
  end-page: 251
  ident: bb0165
  article-title: Wastewater quality and its reuse in agriculture in Saudi Arabia
  publication-title: Desalination
– year: 2005
  ident: bb0035
  article-title: Water Reuse Markets 2005–2015
  publication-title: A Global Assessment and Forecast
– volume: 362
  start-page: 417
  year: 2010
  end-page: 426
  ident: bb0060
  article-title: A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water
  publication-title: Journal of Membrane Science
– volume: 247
  start-page: 239
  year: 2009
  end-page: 246
  ident: bb0080
  article-title: Toward a combined system of forward osmosis and reverse osmosis for seawater desalination
  publication-title: Desalination
– volume: 8
  start-page: 533
  year: 2010
  end-page: 539
  ident: bb0090
  article-title: Modeling of external and internal concentration polarization effect on flux behaviour of forward osmosis
  publication-title: Water Science and Technology
– year: 2010
  ident: bb0025
  article-title: Desalination Market to 2020 — Technology Driven Cost Reduction in Membrane Based Processes Set to Drive Sustainability Investments into the Market
– year: 2001
  ident: bb0140
  article-title: The cost of membrane filtration for municipal water supplies
  publication-title: Membrane Technology Conference
– volume: 44
  start-page: 5212
  year: 2010
  end-page: 5221
  ident: bb0115
  article-title: Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater
  publication-title: Water Research
– year: 2011
  ident: bb0065
  article-title: The Race to Commercialize Forward Osmosis, American Water Intelligence
– volume: 354
  start-page: 123
  year: 2010
  end-page: 133
  ident: bb0110
  article-title: Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration
  publication-title: Journal of Membrane Science
– volume: 218
  start-page: 198
  year: 2008
  end-page: 207
  ident: bb0135
  article-title: Operational experience with indirect potable reuse at the Flemish Coast
  publication-title: Desalination
– year: 2008
  ident: bb0020
  article-title: Desalination in 2008 Global Market Snapshot
– year: 2009
  ident: bb0125
  article-title: A novel hybrid forward osmosis process for drinking water augmentation using impaired water and saline water sources
  publication-title: Colorado School of Mines Advanced Water Technology Center (AQWATEC)
– year: 2006
  ident: bb0015
  article-title: Desal's Double Digit Future
– volume: 61
  start-page: 927
  year: 2010
  end-page: 935
  ident: bb0105
  article-title: Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon
  publication-title: Water Science and Technology
– year: 2003
  ident: bb0145
  article-title: The cost of membrane softening and desalting for municipal water supplies
  publication-title: Membrane Technology Conference
– volume: 375
  start-page: 63
  year: 2011
  end-page: 68
  ident: bb0155
  article-title: Nanoporous polyethersulfone (PES) membrane with enhanced flux applied in forward osmosis process
  publication-title: Journal of Membrane Science
– year: 2001
  ident: bb0160
  article-title: Inland Low-salinity Shrimp Farming in the Central Plains Region of Thailand
– volume: 257
  start-page: 111
  year: 2005
  end-page: 119
  ident: bb0075
  article-title: Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater
  publication-title: Journal of Membrane Science
– volume: 41
  start-page: 4005
  year: 2007
  end-page: 4014
  ident: bb0050
  article-title: Forward osmosis for concentration of anaerobic digester centrate
  publication-title: Water Research
– volume: 129
  start-page: 243
  year: 1997
  end-page: 249
  ident: bb0095
  article-title: Effect of porous support fabric on osmosis through a Loeb–Sourirajan type asymmetric membrane
  publication-title: Journal of Membrane Science
– volume: 174
  start-page: 1
  year: 2005
  end-page: 11
  ident: bb0045
  article-title: A novel ammonia–carbon dioxide forward (direct) osmosis desalination process
  publication-title: Desalination
– year: 2011
  ident: bb0070
  article-title: Innovator
  publication-title: Robert McGinnis of Oasys Water
– volume: 62
  start-page: 1353
  year: 2010
  end-page: 1360
  ident: bb0085
  article-title: Preliminary study of osmotic membrane bioreactor: effects of draw solution on water flux and air scouring on fouling
  publication-title: Water Science and Technology
– volume: 216
  start-page: 1
  year: 2007
  end-page: 76
  ident: bb0005
  article-title: State-of-the-art of reverse osmosis desalination
  publication-title: Desalination
– volume: 257
  start-page: 85
  year: 2005
  end-page: 98
  ident: bb0040
  article-title: Membrane contactor processes for wastewater reclamation in space: part I. Direct osmotic concentration as pretreatment for reverse osmosis
  publication-title: Journal of Membrane Science
– volume: 218
  start-page: 92
  year: 2008
  end-page: 104
  ident: bb0130
  article-title: Characterisation and assessment of water treatment technologies for reuse
  publication-title: Desalination
– year: 2008
  ident: 10.1016/j.desal.2011.06.066_bb0020
– volume: 375
  start-page: 63
  year: 2011
  ident: 10.1016/j.desal.2011.06.066_bb0155
  article-title: Nanoporous polyethersulfone (PES) membrane with enhanced flux applied in forward osmosis process
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2011.02.019
– year: 2005
  ident: 10.1016/j.desal.2011.06.066_bb0035
  article-title: Water Reuse Markets 2005–2015
– year: 2006
  ident: 10.1016/j.desal.2011.06.066_bb0010
– volume: 257
  start-page: 111
  year: 2005
  ident: 10.1016/j.desal.2011.06.066_bb0075
  article-title: Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2004.07.039
– volume: 8
  start-page: 533
  year: 2010
  ident: 10.1016/j.desal.2011.06.066_bb0090
  article-title: Modeling of external and internal concentration polarization effect on flux behaviour of forward osmosis
  publication-title: Water Science and Technology
– volume: 216
  start-page: 1
  year: 2007
  ident: 10.1016/j.desal.2011.06.066_bb0005
  article-title: State-of-the-art of reverse osmosis desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.12.009
– volume: 247
  start-page: 239
  year: 2009
  ident: 10.1016/j.desal.2011.06.066_bb0080
  article-title: Toward a combined system of forward osmosis and reverse osmosis for seawater desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.12.028
– volume: 354
  start-page: 123
  year: 2010
  ident: 10.1016/j.desal.2011.06.066_bb0110
  article-title: Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2010.02.059
– year: 2007
  ident: 10.1016/j.desal.2011.06.066_bb0120
  article-title: Colloidal and non-colloidal NOM fouling of UF membranes
– year: 2006
  ident: 10.1016/j.desal.2011.06.066_bb0015
– volume: 197
  start-page: 1
  year: 2006
  ident: 10.1016/j.desal.2011.06.066_bb0100
  article-title: Internal concentration polarization in forward osmosis: role of membrane orientation
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.02.003
– year: 2011
  ident: 10.1016/j.desal.2011.06.066_bb0065
– volume: 218
  start-page: 198
  year: 2008
  ident: 10.1016/j.desal.2011.06.066_bb0135
  article-title: Operational experience with indirect potable reuse at the Flemish Coast
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.08.028
– year: 2001
  ident: 10.1016/j.desal.2011.06.066_bb0140
  article-title: The cost of membrane filtration for municipal water supplies
– volume: 362
  start-page: 334
  year: 2010
  ident: 10.1016/j.desal.2011.06.066_bb0150
  article-title: Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2010.06.058
– volume: 44
  start-page: 5212
  year: 2010
  ident: 10.1016/j.desal.2011.06.066_bb0115
  article-title: Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater
  publication-title: Water Research
  doi: 10.1016/j.watres.2010.06.039
– volume: 257
  start-page: 85
  year: 2005
  ident: 10.1016/j.desal.2011.06.066_bb0040
  article-title: Membrane contactor processes for wastewater reclamation in space: part I. Direct osmotic concentration as pretreatment for reverse osmosis
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2004.08.039
– year: 2011
  ident: 10.1016/j.desal.2011.06.066_bb0070
  article-title: Innovator
– year: 2003
  ident: 10.1016/j.desal.2011.06.066_bb0145
  article-title: The cost of membrane softening and desalting for municipal water supplies
– volume: 218
  start-page: 92
  year: 2008
  ident: 10.1016/j.desal.2011.06.066_bb0130
  article-title: Characterisation and assessment of water treatment technologies for reuse
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.08.024
– volume: 62
  start-page: 1353
  year: 2010
  ident: 10.1016/j.desal.2011.06.066_bb0085
  article-title: Preliminary study of osmotic membrane bioreactor: effects of draw solution on water flux and air scouring on fouling
  publication-title: Water Science and Technology
  doi: 10.2166/wst.2010.426
– year: 2009
  ident: 10.1016/j.desal.2011.06.066_bb0030
  article-title: The true cost of water desalination: review and evaluation
– volume: 362
  start-page: 417
  year: 2010
  ident: 10.1016/j.desal.2011.06.066_bb0060
  article-title: A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2010.06.056
– year: 2001
  ident: 10.1016/j.desal.2011.06.066_bb0160
– year: 2010
  ident: 10.1016/j.desal.2011.06.066_bb0025
– volume: 41
  start-page: 4005
  year: 2007
  ident: 10.1016/j.desal.2011.06.066_bb0050
  article-title: Forward osmosis for concentration of anaerobic digester centrate
  publication-title: Water Research
  doi: 10.1016/j.watres.2007.05.054
– volume: 61
  start-page: 927
  year: 2010
  ident: 10.1016/j.desal.2011.06.066_bb0105
  article-title: Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon
  publication-title: Water Science and Technology
  doi: 10.2166/wst.2010.835
– volume: 239
  start-page: 10
  year: 2009
  ident: 10.1016/j.desal.2011.06.066_bb0055
  article-title: The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.02.022
– volume: 129
  start-page: 243
  year: 1997
  ident: 10.1016/j.desal.2011.06.066_bb0095
  article-title: Effect of porous support fabric on osmosis through a Loeb–Sourirajan type asymmetric membrane
  publication-title: Journal of Membrane Science
  doi: 10.1016/S0376-7388(96)00354-7
– year: 2009
  ident: 10.1016/j.desal.2011.06.066_bb0125
  article-title: A novel hybrid forward osmosis process for drinking water augmentation using impaired water and saline water sources
– volume: 174
  start-page: 1
  year: 2005
  ident: 10.1016/j.desal.2011.06.066_bb0045
  article-title: A novel ammonia–carbon dioxide forward (direct) osmosis desalination process
  publication-title: Desalination
  doi: 10.1016/j.desal.2004.11.002
– volume: 123
  start-page: 241
  year: 1999
  ident: 10.1016/j.desal.2011.06.066_bb0165
  article-title: Wastewater quality and its reuse in agriculture in Saudi Arabia
  publication-title: Desalination
  doi: 10.1016/S0011-9164(99)00076-4
SSID ssj0012933
Score 2.4701297
Snippet The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 160
SubjectTerms air
Applied sciences
Chemical engineering
Cleaning
cost analysis
Costs
Desalination
Drinking water and swimming-pool water. Desalination
energy
Exact sciences and technology
Flux
Forward osmosis
Fouling
General purification processes
long term experiments
Marine
Membrane separation (reverse osmosis, dialysis...)
Membranes
Natural water pollution
Osmosis
Pollution
Red Sea
Reverse osmosis
seawater
Seawaters, estuaries
wastewater
Wastewaters
water quality
Water reuse
Water treatment and pollution
Title Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse
URI https://dx.doi.org/10.1016/j.desal.2011.06.066
https://www.proquest.com/docview/1663589830
https://www.proquest.com/docview/1777103317
https://www.proquest.com/docview/902340668
Volume 280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S9NIeSp_EfSwq9Fg3a0mW5GMIDZuW5tB0ITehZ9mysYO9S2797dX4sTSU7KHggxEj0HP0Mfr0DcAHEaOgVso8RitzbhzLDWZzZ86p0gXqyj7g9u1CLJb8y1V5dQCn01sYpFWOvn_w6b23HkuOx9E8vlmt8I0vipMJjqJnYq5QE5Rziav80-8dzQOPs-GWuShytJ6Uh3qOlw-dWY86niJ94r7T6UE0DdImTZdGLg4pL_7x3v2RdPYUnoxYkpwMzX0GB6F-Do__Uhh8Aevzeugg6RuxGmJ_pInke_DkMhhym8BmSzAcSxJ-RQ4tabrrplt1xNSerJtb0nNlt20gKPfUdmFnkCqM9duw7cJLWJ59_nG6yMcEC7njZbnJmaIx_dBoVCHm3kVWWeMKkwrtnEbmvYpVsGUMolA2RldJxisVpLdGIhB7BYd1U4cjIIVlgVvvnUuYIFpjlPIGE1xx6gsXZQZ0GljtRvVxTIKx1hPN7JfuB0LjbGgk2wmRwcddpZtBfGO_uZhmTN9ZQzodD_srHqX51eZn8qt6eUkxCjTHAJbkGczuTPquHZSLiiV0mMH7aRXotDPxusXUodl2ukAwpyrF5ntspEwQjyUQlwG5x6ZKsCrBLqFe_2__3sAjOlEX2Vs43LTb8C5hqY2d9ZtlBg9Pzr8uLv4AQk0fFQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJemh7KH0S95Gq0GPd2JYsyccSGjZtkkOThdyEnmHL1g72Lrn1t3fGj6WhZA8FH4wYgTQjjT5Gn2YI-ShiFIWVMo3RypQbx1KD1dyZc6p0oXBlH3A7OxezOf92VV7tkKPpLQzSKkffP_j03luPLYejNg9vFgt844vJyQTHpGciU3yXPOCwfbGMweffG54HnmfDNXOepyg-pR7qSV4-dGY5JvIU8In7jqfdaBrkTZoOVBeHmhf_uO_-TDp-Sp6MYJJ-Gcb7jOyE-jl5_FeKwRdkeVIPM6T9IBZD8I82kf4Inl4EQ28BbbYU47EUACySaGnT_Wq6RUdN7emyuaU9WXbdBor5ntoubASgw9i_DesuvCTz46-XR7N0rLCQOl6WqxS0FeGniEblIvMussoalxtotFkRmfcqVsGWMYhc2RhdJRmvVJDeGolI7BXZq5s67BOaWxa49d45AAXRGqOUN1jhihc-d1EmpJgUq92YfhyrYCz1xDP7qXtFaLSGRradEAn5tOl0M2Tf2C4uJovpO4tIw_mwveM-2Feba3Csen5RYBgowwiW5Ak5uGP0zTgKLioG8DAhH6ZVoGFr4n2LqUOz7nSOaE5VimVbZKQEjMcAxSWE3iNTAa4C3CXU6_-d33vycHZ5dqpPT86_vyGPionHyN6SvVW7Du8AWK3sQb9x_gCbRyCj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indirect+desalination+of+Red+Sea+water+with+forward+osmosis+and+low+pressure+reverse+osmosis+for+water+reuse&rft.jtitle=Desalination&rft.au=Yangali-Quintanilla%2C+Victor&rft.au=Li%2C+Zhenyu&rft.au=Valladares%2C+Rodrigo&rft.au=Li%2C+Qingyu&rft.date=2011-10-03&rft.issn=0011-9164&rft.volume=280&rft.issue=1-3&rft.spage=160&rft.epage=166&rft_id=info:doi/10.1016%2Fj.desal.2011.06.066&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-9164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-9164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-9164&client=summon