Predicting trajectories of coastal area vessels with a lightweight Slice-Diff self attention
Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing trajectory prediction studies predominantly employ recurrent neural network (RNN) and Transformer-based methods. However, the former often encounter c...
Saved in:
Published in | Complex & intelligent systems Vol. 11; no. 5; pp. 239 - 17 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.05.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 2199-4536 2198-6053 |
DOI | 10.1007/s40747-025-01877-x |
Cover
Abstract | Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing trajectory prediction studies predominantly employ recurrent neural network (RNN) and Transformer-based methods. However, the former often encounter challenges such as gradient vanishing or exploding, and the latter tend to focus on global temporal dependencies, making it difficult to capture local irregular trajectory features in coastal maritime areas. Recently, graph-based methods have also been used to predict trajectories, however processing graph-structured data introduces significant increase in computation. In responding to these, this paper proposes a framework based on a novel lightweight Slice-Diff self attention, which consists of several key components. Firstly, the trajectory slice difference encoder (TSDE) utilizes slice embedding (SE) to enrich the cross dimensional dependencies contained in the input sequence, and then combines Slice-Diff self attention (SDSA) and fine-grained convolution (FGC) to comprehensively capture sequence-specific positional and directional information. Additionally, an auxiliary model, stepping bidirectional long short-term memory (S-BiLSTM) is developed to capture global temporal dependencies within the whole sequence. Finally, the fine-grained trajectory features obtained from TSDE and the global temporal dependencies compensated by S-BiLSTM are combined through the fully connected layer to predict coastal vessel trajectories. Extensive experimental results on three real-world automatic identification system (AIS) datasets demonstrate the effectiveness of proposed framework against other baselines. |
---|---|
AbstractList | Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing trajectory prediction studies predominantly employ recurrent neural network (RNN) and Transformer-based methods. However, the former often encounter challenges such as gradient vanishing or exploding, and the latter tend to focus on global temporal dependencies, making it difficult to capture local irregular trajectory features in coastal maritime areas. Recently, graph-based methods have also been used to predict trajectories, however processing graph-structured data introduces significant increase in computation. In responding to these, this paper proposes a framework based on a novel lightweight Slice-Diff self attention, which consists of several key components. Firstly, the trajectory slice difference encoder (TSDE) utilizes slice embedding (SE) to enrich the cross dimensional dependencies contained in the input sequence, and then combines Slice-Diff self attention (SDSA) and fine-grained convolution (FGC) to comprehensively capture sequence-specific positional and directional information. Additionally, an auxiliary model, stepping bidirectional long short-term memory (S-BiLSTM) is developed to capture global temporal dependencies within the whole sequence. Finally, the fine-grained trajectory features obtained from TSDE and the global temporal dependencies compensated by S-BiLSTM are combined through the fully connected layer to predict coastal vessel trajectories. Extensive experimental results on three real-world automatic identification system (AIS) datasets demonstrate the effectiveness of proposed framework against other baselines. Abstract Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing trajectory prediction studies predominantly employ recurrent neural network (RNN) and Transformer-based methods. However, the former often encounter challenges such as gradient vanishing or exploding, and the latter tend to focus on global temporal dependencies, making it difficult to capture local irregular trajectory features in coastal maritime areas. Recently, graph-based methods have also been used to predict trajectories, however processing graph-structured data introduces significant increase in computation. In responding to these, this paper proposes a framework based on a novel lightweight Slice-Diff self attention, which consists of several key components. Firstly, the trajectory slice difference encoder (TSDE) utilizes slice embedding (SE) to enrich the cross dimensional dependencies contained in the input sequence, and then combines Slice-Diff self attention (SDSA) and fine-grained convolution (FGC) to comprehensively capture sequence-specific positional and directional information. Additionally, an auxiliary model, stepping bidirectional long short-term memory (S-BiLSTM) is developed to capture global temporal dependencies within the whole sequence. Finally, the fine-grained trajectory features obtained from TSDE and the global temporal dependencies compensated by S-BiLSTM are combined through the fully connected layer to predict coastal vessel trajectories. Extensive experimental results on three real-world automatic identification system (AIS) datasets demonstrate the effectiveness of proposed framework against other baselines. |
ArticleNumber | 239 |
Author | Wu, Zhongdai Wei, Lai Wang, Junxiang Liu, Jin Zhang, Xiliang Zhang, Jinxu |
Author_xml | – sequence: 1 givenname: Jinxu surname: Zhang fullname: Zhang, Jinxu organization: College of Information Engineering, Shanghai Maritime University – sequence: 2 givenname: Jin orcidid: 0000-0001-7249-698X surname: Liu fullname: Liu, Jin email: jinliu@shmtu.edu.cn organization: College of Information Engineering, Shanghai Maritime University – sequence: 3 givenname: Xiliang surname: Zhang fullname: Zhang, Xiliang organization: College of Information Engineering, Shanghai Maritime University – sequence: 4 givenname: Lai surname: Wei fullname: Wei, Lai organization: College of Information Engineering, Shanghai Maritime University – sequence: 5 givenname: Zhongdai surname: Wu fullname: Wu, Zhongdai email: wu.zhongdai@coscoshipping.com organization: State Key Laboratory of Maritime Technology and Safety, Shanghai Ship and Shipping Research Institute – sequence: 6 givenname: Junxiang surname: Wang fullname: Wang, Junxiang organization: COSCO Shipping Technology, Co., Ltd |
BookMark | eNp9UV1PFTEQbQwmIvIHfGric7Xf3X00oEhCAgn6ZtLM7U4vvVm30BbBf0-5a_SNlzOTyTlnZnLekoMlL0jIe8E_Cs7dp6q5045xaRgXg3Ps8RU5lGIcmOVGHez7kWmj7BtyXOuOcy6cGxSXh-TnVcEphZaWLW0FdhhaLgkrzZGGDLXBTKEg0N9YK86VPqR2Q4HOaXvTHvAZ6fWcArLTFCPtlEihNVxayss78jrCXPH4bz0iP75--X7yjV1cnp2ffL5gQRvTmNIoEUwHHforGIMQIQQT0EUZRj1JJYLYjDDipJQz0k5ObcAO0eqJj6COyPnqO2XY-duSfkH54zMkvx_ksvVQWgozesujGUYbQW6CtlEAajQSLAhQGJzpXh9Wr9uS7-6xNr_L92Xp53slhlFabY3qLLmyQsm1Foz_tgrun0Pxayi-h-L3ofjHLlKrqHbyssXy3_oF1RML1ZLM |
Cites_doi | 10.1109/TII.2022.3222366 10.1016/j.isci.2023.106383 10.1109/ITOEC49072.2020.9141702 10.1016/j.oceaneng.2021.108956 10.1007/978-3-030-60376-2_24 10.1109/ACCESS.2020.3018749 10.1109/ICASSP.2019.8683444 10.23919/ICIF.2018.8455607 10.1117/12.3015737 10.1186/s40537-022-00599-y 10.3390/jmse11040880 10.3390/app12084073 10.1007/s40747-024-01363-w 10.1109/ICTIS.2017.8047821 10.1109/JIOT.2020.3028743 10.1016/j.oceaneng.2023.116159 10.1016/j.oceaneng.2018.04.026 10.1016/j.knosys.2023.111126 10.1016/j.oceaneng.2024.117572 10.1117/12.2668566 10.1007/s40747-022-00683-z 10.3390/jmse9060609 10.1016/j.physa.2023.129275 10.1016/j.oceaneng.2023.114248 10.1016/j.oceaneng.2019.04.024 10.1109/TITS.2020.3040268 10.1177/03611981241258753 10.1016/j.oceaneng.2023.115886 10.1080/19475683.2020.1840434 10.1109/ACCESS.2021.3066463 10.1016/j.tre.2023.103152 10.1016/j.displa.2024.102814 10.1109/TIV.2024.3401864 10.1017/S0373463320000442 10.1109/TNSE.2022.3140529 10.1016/j.oceaneng.2024.117431 10.24963/ijcai.2022/277 10.1016/j.oceaneng.2017.04.017 10.1007/978-3-319-94268-1_12 10.1016/j.apor.2024.104231 10.1109/TIP.2020.2990346 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. May 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. May 2025 |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/s40747-025-01877-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 2198-6053 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_60f5896fa2bc46f1ae4e52a6a1a3ec75 10_1007_s40747_025_01877_x |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: (No. 2021YFC2801001) – fundername: Open Topic Fund Project of the State Key Laboratory of Maritime Technology and Safety |
GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN AASML ABEEZ ABFTD ACACY ACGFS ACULB ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC OK1 P62 PHGZT PIMPY PROAC SOJ AAYXX CITATION PHGZM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c455t-34e2ea5e2e4c407efc11ccc5ce7f2c94d231c1b9a9ed337526d73ba68f64d09a3 |
IEDL.DBID | C24 |
ISSN | 2199-4536 |
IngestDate | Wed Aug 27 00:36:02 EDT 2025 Fri Jul 25 09:39:02 EDT 2025 Tue Jul 01 04:56:35 EDT 2025 Wed Apr 30 01:15:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Automatic identification system Trajectory slice and difference Irregular trajectory feature extraction Coastal collision avoidance Vessel trajectory prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-34e2ea5e2e4c407efc11ccc5ce7f2c94d231c1b9a9ed337526d73ba68f64d09a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7249-698X |
OpenAccessLink | https://link.springer.com/10.1007/s40747-025-01877-x |
PQID | 3189264653 |
PQPubID | 2044308 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_60f5896fa2bc46f1ae4e52a6a1a3ec75 proquest_journals_3189264653 crossref_primary_10_1007_s40747_025_01877_x springer_journals_10_1007_s40747_025_01877_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Complex & intelligent systems |
PublicationTitleAbbrev | Complex Intell. Syst |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | 1877_CR32 RW Liu (1877_CR39) 2020; 8 X Huang (1877_CR45) 2024; 301 X Wang (1877_CR2) 2022; 8 J Zhao (1877_CR10) 2023; 289 M Abdelaal (1877_CR16) 2018; 160 1877_CR30 S Mehri (1877_CR27) 2021; 9 H Liu (1877_CR14) 2022; 19 Y Zhang (1877_CR28) 2023; 277 Z Xiao (1877_CR18) 2020; 23 1877_CR36 1877_CR15 D Alizadeh (1877_CR24) 2021; 74 1877_CR37 1877_CR12 H Rong (1877_CR20) 2019; 182 Y Wang (1877_CR33) 2023; 630 LP Perera (1877_CR17) 2017; 138 D-W Gao (1877_CR4) 2021; 228 Y Xiao (1877_CR25) 2022; 24 1877_CR21 AP Wibawa (1877_CR38) 2022; 9 1877_CR43 TX Pham (1877_CR13) 2020; 29 1877_CR22 1877_CR44 D Jiang (1877_CR34) 2023; 11 1877_CR41 RW Liu (1877_CR5) 2022; 9 1877_CR40 X Dong (1877_CR8) 2024; 84 1877_CR3 1877_CR6 S Guo (1877_CR11) 2021; 9 H Xue (1877_CR31) 2024; 300 1877_CR1 1877_CR23 1877_CR46 X Zhang (1877_CR7) 2023; 287 L Qian (1877_CR26) 2022; 12 X Li (1877_CR29) 2024; 283 1877_CR9 Z Liu (1877_CR42) 2024; 153 D Alizadeh (1877_CR19) 2021; 27 H Li (1877_CR35) 2023; 175 |
References_xml | – volume: 19 start-page: 8900 issue: 8 year: 2022 ident: 1877_CR14 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3222366 – ident: 1877_CR30 doi: 10.1016/j.isci.2023.106383 – ident: 1877_CR43 doi: 10.1109/ITOEC49072.2020.9141702 – volume: 228 year: 2021 ident: 1877_CR4 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.108956 – ident: 1877_CR36 – ident: 1877_CR22 doi: 10.1007/978-3-030-60376-2_24 – ident: 1877_CR40 doi: 10.1109/ACCESS.2020.3018749 – ident: 1877_CR6 – ident: 1877_CR23 doi: 10.1109/ICASSP.2019.8683444 – ident: 1877_CR21 doi: 10.23919/ICIF.2018.8455607 – ident: 1877_CR32 doi: 10.1117/12.3015737 – volume: 9 start-page: 44 issue: 1 year: 2022 ident: 1877_CR38 publication-title: J Big Data doi: 10.1186/s40537-022-00599-y – ident: 1877_CR46 – volume: 11 start-page: 880 issue: 4 year: 2023 ident: 1877_CR34 publication-title: J Mar Sci Eng doi: 10.3390/jmse11040880 – volume: 12 start-page: 4073 issue: 8 year: 2022 ident: 1877_CR26 publication-title: Appl Sci doi: 10.3390/app12084073 – ident: 1877_CR44 – ident: 1877_CR1 doi: 10.1007/s40747-024-01363-w – ident: 1877_CR12 doi: 10.1109/ICTIS.2017.8047821 – volume: 8 start-page: 5374 issue: 7 year: 2020 ident: 1877_CR39 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.3028743 – volume: 289 year: 2023 ident: 1877_CR10 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.116159 – volume: 160 start-page: 168 year: 2018 ident: 1877_CR16 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2018.04.026 – volume: 283 year: 2024 ident: 1877_CR29 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.111126 – volume: 301 year: 2024 ident: 1877_CR45 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.117572 – ident: 1877_CR41 doi: 10.1117/12.2668566 – volume: 8 start-page: 3881 issue: 5 year: 2022 ident: 1877_CR2 publication-title: Complex Intell Syst doi: 10.1007/s40747-022-00683-z – volume: 9 start-page: 609 issue: 6 year: 2021 ident: 1877_CR11 publication-title: J Mar Sci Eng doi: 10.3390/jmse9060609 – volume: 630 year: 2023 ident: 1877_CR33 publication-title: Physica A doi: 10.1016/j.physa.2023.129275 – volume: 277 year: 2023 ident: 1877_CR28 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.114248 – volume: 182 start-page: 499 year: 2019 ident: 1877_CR20 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2019.04.024 – volume: 23 start-page: 3696 issue: 4 year: 2020 ident: 1877_CR18 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3040268 – ident: 1877_CR3 doi: 10.1177/03611981241258753 – volume: 287 year: 2023 ident: 1877_CR7 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.115886 – volume: 27 start-page: 151 issue: 2 year: 2021 ident: 1877_CR19 publication-title: Ann GIS doi: 10.1080/19475683.2020.1840434 – volume: 9 start-page: 45600 year: 2021 ident: 1877_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3066463 – volume: 175 year: 2023 ident: 1877_CR35 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2023.103152 – volume: 84 year: 2024 ident: 1877_CR8 publication-title: Displays doi: 10.1016/j.displa.2024.102814 – ident: 1877_CR9 doi: 10.1109/TIV.2024.3401864 – volume: 74 start-page: 156 issue: 1 year: 2021 ident: 1877_CR24 publication-title: J Navig doi: 10.1017/S0373463320000442 – volume: 9 start-page: 3080 issue: 5 year: 2022 ident: 1877_CR5 publication-title: IEEE Trans Netw Sci Eng doi: 10.1109/TNSE.2022.3140529 – volume: 300 year: 2024 ident: 1877_CR31 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.117431 – ident: 1877_CR37 doi: 10.24963/ijcai.2022/277 – volume: 138 start-page: 151 year: 2017 ident: 1877_CR17 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2017.04.017 – ident: 1877_CR15 doi: 10.1007/978-3-319-94268-1_12 – volume: 24 start-page: 1773 issue: 2 year: 2022 ident: 1877_CR25 publication-title: IEEE Trans Intell Transp Syst – volume: 153 year: 2024 ident: 1877_CR42 publication-title: Appl Ocean Res doi: 10.1016/j.apor.2024.104231 – volume: 29 start-page: 6507 year: 2020 ident: 1877_CR13 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.2990346 |
SSID | ssj0001778302 ssib044733412 |
Score | 2.290178 |
Snippet | Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing... Abstract Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 239 |
SubjectTerms | Automatic identification system Coastal collision avoidance Coastal zone Coasts Complexity Computational Intelligence Data Structures and Information Theory Engineering Identification systems Intelligent systems Irregular trajectory feature extraction Kalman filters Maritime areas Neural networks Original Article Recurrent neural networks Structured data Trajectory slice and difference Vessel trajectory prediction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE1sf5OBNg7ubSbI5-kQERdCCByFkswkopZW2Pn6-k3RbW0G8eNnDbg7Zb74kM5PkG0IOqjLkXIFnGHk5BnXBmXY4HktulfMA3qbrYze38qoD14_icabUVzwTNpYHHgN3LLMgSi2DLSoHMuTWgxeFlTa33DuV1Esznc0EU8gkAMU5NAt3yrYoFYWuYqW5XGsGac-yPb1HB1FGnsXKrrFGnWKfc6tUEvOf80B_bJqmtehylaw0TiQ9GXd-jSz43jpZvpkqsA43yNPdIG7BxEPNdDSwLyk5j1Ex7Qfq-hZ9wi616DDS9yge3h3SmJCllnZjsP6R8qX0vouzCDt_DoFik0CjFGc6HLlJOpcXD2dXrKmkwBwIMWIcfIGo4wMc_qsPLs-dc8J5FQqno4lyl1faal9zrkQha8UrK8sgoc605Vtksdfv-W1Cs0pgE-ED1xlwX1YK0Cus66ArXZdWtcjhBDnzOhbMMFNp5ISzQZxNwtl8tshpBHfaMopdpxdIAdNQwPxFgRbZnZjGNCNwaHCu0ujsScFb5Ghiru_Pv3ep_R9d2iFLRaJTZNQuWRwN3vweei-jaj8R9QtD1ejo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZpcmkPpU-6aVJ06K0VXVsjyTqEkiehkCW0DeRQELIeIWFZp7vbNj8_M4q9IYX24oMtjD3zaWY0I33D2Pu2yZU0kASuvIKAWEthA87HRnoTEkDy5fjYyUQfn8GXc3W-xibDWRjaVjnYxGKoYxcoR_4JsWfReWslP1__FNQ1iqqrQwsN37dWiDuFYuwR20CT3CDuN_YOJ6dfB4QBGCmhd-glC2MMEWBRB7rKWgGllrm5Ol8HRC8vqOMr9a4z4uaB9yok_w8i07-KqcVHHT1jT_vgku_eoeE5W0uzF-zJyYqZdfGS_TidU2mGNjvz5dxflaQ9rpZ5l3noPMaKU-4xkOS_iVR8uuCUqOWeT2kR_6fkUfm3KVoXcXCZM8chmRNFZ9k0-YqdHR1-3z8WfYcFEUCppZCQatQGXiDgv6YcqiqEoEIyuQ6WVFeFqrXepiilUbWORrZeN1lDHFsvX7P1WTdLbxgftwqHqJSlHYNMTWsAo8UYs21tbLwZsQ-D5Nz1HZGGW1EmFzk7lLMrcnY3I7ZHwl2NJBLscqObX7h-Tjk9zqqxOvu6DaBz5RMkVXvtKy9TMGrEtgbVuH5mLtw9jkbs46Cu-8f__qTN_7_tLXtcF6AQVrbY-nL-K21jvLJs3_UgvAXrJOY1 priority: 102 providerName: ProQuest |
Title | Predicting trajectories of coastal area vessels with a lightweight Slice-Diff self attention |
URI | https://link.springer.com/article/10.1007/s40747-025-01877-x https://www.proquest.com/docview/3189264653 https://doaj.org/article/60f5896fa2bc46f1ae4e52a6a1a3ec75 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoXOihaoGqS-nKB27U0iYe2_Fx2bJFK4EQFIkDkuU4dtVqtVvtbh8_vzMmWR4SBy6JkoyiZMaPb2bsbxg7rKtUSANRoOcVBDSlFDZgf6ykNyECRJ-3j52d69NrmNyom3ZT2LJb7d6lJPNIvd7sBsT1Lqj8KhWSMwKR45ZC350KNozuOccBjJTQTto50mIMkVxRlbnCWgE5X7n__GsfzVCZyP8R-nySMM3z0Pgte9MCSD68s_g7thFnO-z1A1pBvDpbc7Eud9ntxYKSMbS8ma8W_mcO06N_zOeJh7lHdDjlHqEj_0M04tMlp9As93xKbvvfHDnlV1McT8SXHylxFEmcSDnzMsk9dj0--TY6FW1NBRFAqZWQEEvUPx4g4J_HFIoihKBCNKkMloxVhKK23sZGSqNK3RhZe10lDc3Aevmebc7ms_iB8UGtUETFJO0AZKxqA4gPmybZ2jaVNz121OnR_bqjznBrkuSsdYdad1nr7l-PHZOq15JEe51vzBffXduLnB4kVVmdfFkH0KnwEaIqvfaFlzEY1WMHnaFc2xeXDkcti7BPK9ljnzvj3T9-_pP2Xyb-kW2XuRlRSzpgm6vF7_gJEcuq7rNX1fhrn20Nh5OrCZ6PT84vLvu52dJRj_o5FvAfcP3nQw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5iSwEf4AQWm3gcx4cKUdpqS7urClqpByTXcWwEWm3K7kLLn-O34XGTrYoEt15ySKzIGo_H8_B8H8CLqgyZUOh5jLwcxzoXXLu4H0thlfOI3qb2sdG4GB7hh2N5vAK_u14YulbZ2cRkqOvGUY78TdQ9HQ_vQoq3p985sUZRdbWj0LAttUK9kSDG2saOPf_rLIZw843drbjeL_N8Z_vw_ZC3LAPcoZQLLtDncUbxgS5GNz64LHPOSedVyJ2m6Wcuq7TVvhZCybyolahsUYYC64G2Iv73Bqwidbj2YHVze3zwsdNoRCUEtg5EyvooRYBbxHiXac0x1U7Xlv18SHD2nBhmiStP8fMrp2UiFbjiCf9VvE1n4s5duNM6s-zdhfbdgxU_vQ-3R0sk2PkD-Hwwo1IQXa5mi5n9looEMTpnTWCusdE3nTAbHVf2k0DMJ3NGiWFm2YSSBmcpb8s-TaI141tfQ2BxSGAECZouaT6Eo2uR9SPoTZupfwxsUMk4RPog9ACFLyuF0Tut66ArXZdW9eFVJzlzegHcYZYQzUnOJsrZJDmb8z5sknCXIwl0O71oZl9Mu4dNMQiy1EWweeWwCJn16GVuC5tZ4Z2SfVjvlsa0lmBuLvW2D6-75br8_O8prf3_b8_h5vBwtG_2d8d7T-BWnpSG9GYdeovZD_80-kqL6lmrkAxOrnsP_AEIZCRv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYlgdIcSvqim1d16K0VWVsjyTo2jyVtHgTaQA4FIctSaFl2l1037c_vjNbeJoUccjHYHow9M_J8mtF8Yux9XaVCGogCZ15BQFNKYQOOx0p6EyJA9Ll97PxCn1zBl2t1faeLP69270uSy54GYmmatPuzJu2vGt-AeN8FbcVKm8oZgShyHSj0UblWH_YeBWCkhC6A56yLMUR4RTvOFdYKyLXLrYcfey9aZVL_e0j0v-JpjkmjTfa8A5P809L6L9iTOHnJNu5QDOLZ-YqXdfGKfb-cU2GGljrzdu5_5pQ9zpX5NPEw9YgUx9wjjOS3RCk-XnBK03LPxzSF_52zqPzrGP8t4uhHShxFEieCzrxk8jW7Gh1_OzwR3f4KIoBSrZAQS7QFHiDgl8cUiiKEoEI0qQyWDFeEorbexkZKo0rdGFl7XSUNzdB6-YatTaaT-JbxYa1QRMUk7RBkrGoDiBWbJtnaNpU3A_ah16ObLWk03IowOWvdodZd1rr7M2AHpOqVJFFg5wvT-Y3rRpTTw6Qqq5Mv6wA6FT5CVKXXvvAyBqMGbKc3lOvG5cLhH8wiBNRKDtjH3nj_bj_8SluPE3_Hnl4ejdzZ54vTbfaszB5FTrXD1tr5r7iLQKat97Kv_gVgaei9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+trajectories+of+coastal+area+vessels+with+a+lightweight+Slice-Diff+self+attention&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Zhang%2C+Jinxu&rft.au=Liu%2C+Jin&rft.au=Zhang%2C+Xiliang&rft.au=Wei%2C+Lai&rft.date=2025-05-01&rft.pub=Springer+International+Publishing&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1007%2Fs40747-025-01877-x&rft.externalDocID=10_1007_s40747_025_01877_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |