Predicting trajectories of coastal area vessels with a lightweight Slice-Diff self attention

Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing trajectory prediction studies predominantly employ recurrent neural network (RNN) and Transformer-based methods. However, the former often encounter c...

Full description

Saved in:
Bibliographic Details
Published inComplex & intelligent systems Vol. 11; no. 5; pp. 239 - 17
Main Authors Zhang, Jinxu, Liu, Jin, Zhang, Xiliang, Wei, Lai, Wu, Zhongdai, Wang, Junxiang
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.05.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2199-4536
2198-6053
DOI10.1007/s40747-025-01877-x

Cover

Abstract Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing trajectory prediction studies predominantly employ recurrent neural network (RNN) and Transformer-based methods. However, the former often encounter challenges such as gradient vanishing or exploding, and the latter tend to focus on global temporal dependencies, making it difficult to capture local irregular trajectory features in coastal maritime areas. Recently, graph-based methods have also been used to predict trajectories, however processing graph-structured data introduces significant increase in computation. In responding to these, this paper proposes a framework based on a novel lightweight Slice-Diff self attention, which consists of several key components. Firstly, the trajectory slice difference encoder (TSDE) utilizes slice embedding (SE) to enrich the cross dimensional dependencies contained in the input sequence, and then combines Slice-Diff self attention (SDSA) and fine-grained convolution (FGC) to comprehensively capture sequence-specific positional and directional information. Additionally, an auxiliary model, stepping bidirectional long short-term memory (S-BiLSTM) is developed to capture global temporal dependencies within the whole sequence. Finally, the fine-grained trajectory features obtained from TSDE and the global temporal dependencies compensated by S-BiLSTM are combined through the fully connected layer to predict coastal vessel trajectories. Extensive experimental results on three real-world automatic identification system (AIS) datasets demonstrate the effectiveness of proposed framework against other baselines.
AbstractList Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing trajectory prediction studies predominantly employ recurrent neural network (RNN) and Transformer-based methods. However, the former often encounter challenges such as gradient vanishing or exploding, and the latter tend to focus on global temporal dependencies, making it difficult to capture local irregular trajectory features in coastal maritime areas. Recently, graph-based methods have also been used to predict trajectories, however processing graph-structured data introduces significant increase in computation. In responding to these, this paper proposes a framework based on a novel lightweight Slice-Diff self attention, which consists of several key components. Firstly, the trajectory slice difference encoder (TSDE) utilizes slice embedding (SE) to enrich the cross dimensional dependencies contained in the input sequence, and then combines Slice-Diff self attention (SDSA) and fine-grained convolution (FGC) to comprehensively capture sequence-specific positional and directional information. Additionally, an auxiliary model, stepping bidirectional long short-term memory (S-BiLSTM) is developed to capture global temporal dependencies within the whole sequence. Finally, the fine-grained trajectory features obtained from TSDE and the global temporal dependencies compensated by S-BiLSTM are combined through the fully connected layer to predict coastal vessel trajectories. Extensive experimental results on three real-world automatic identification system (AIS) datasets demonstrate the effectiveness of proposed framework against other baselines.
Abstract Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing trajectory prediction studies predominantly employ recurrent neural network (RNN) and Transformer-based methods. However, the former often encounter challenges such as gradient vanishing or exploding, and the latter tend to focus on global temporal dependencies, making it difficult to capture local irregular trajectory features in coastal maritime areas. Recently, graph-based methods have also been used to predict trajectories, however processing graph-structured data introduces significant increase in computation. In responding to these, this paper proposes a framework based on a novel lightweight Slice-Diff self attention, which consists of several key components. Firstly, the trajectory slice difference encoder (TSDE) utilizes slice embedding (SE) to enrich the cross dimensional dependencies contained in the input sequence, and then combines Slice-Diff self attention (SDSA) and fine-grained convolution (FGC) to comprehensively capture sequence-specific positional and directional information. Additionally, an auxiliary model, stepping bidirectional long short-term memory (S-BiLSTM) is developed to capture global temporal dependencies within the whole sequence. Finally, the fine-grained trajectory features obtained from TSDE and the global temporal dependencies compensated by S-BiLSTM are combined through the fully connected layer to predict coastal vessel trajectories. Extensive experimental results on three real-world automatic identification system (AIS) datasets demonstrate the effectiveness of proposed framework against other baselines.
ArticleNumber 239
Author Wu, Zhongdai
Wei, Lai
Wang, Junxiang
Liu, Jin
Zhang, Xiliang
Zhang, Jinxu
Author_xml – sequence: 1
  givenname: Jinxu
  surname: Zhang
  fullname: Zhang, Jinxu
  organization: College of Information Engineering, Shanghai Maritime University
– sequence: 2
  givenname: Jin
  orcidid: 0000-0001-7249-698X
  surname: Liu
  fullname: Liu, Jin
  email: jinliu@shmtu.edu.cn
  organization: College of Information Engineering, Shanghai Maritime University
– sequence: 3
  givenname: Xiliang
  surname: Zhang
  fullname: Zhang, Xiliang
  organization: College of Information Engineering, Shanghai Maritime University
– sequence: 4
  givenname: Lai
  surname: Wei
  fullname: Wei, Lai
  organization: College of Information Engineering, Shanghai Maritime University
– sequence: 5
  givenname: Zhongdai
  surname: Wu
  fullname: Wu, Zhongdai
  email: wu.zhongdai@coscoshipping.com
  organization: State Key Laboratory of Maritime Technology and Safety, Shanghai Ship and Shipping Research Institute
– sequence: 6
  givenname: Junxiang
  surname: Wang
  fullname: Wang, Junxiang
  organization: COSCO Shipping Technology, Co., Ltd
BookMark eNp9UV1PFTEQbQwmIvIHfGric7Xf3X00oEhCAgn6ZtLM7U4vvVm30BbBf0-5a_SNlzOTyTlnZnLekoMlL0jIe8E_Cs7dp6q5045xaRgXg3Ps8RU5lGIcmOVGHez7kWmj7BtyXOuOcy6cGxSXh-TnVcEphZaWLW0FdhhaLgkrzZGGDLXBTKEg0N9YK86VPqR2Q4HOaXvTHvAZ6fWcArLTFCPtlEihNVxayss78jrCXPH4bz0iP75--X7yjV1cnp2ffL5gQRvTmNIoEUwHHforGIMQIQQT0EUZRj1JJYLYjDDipJQz0k5ObcAO0eqJj6COyPnqO2XY-duSfkH54zMkvx_ksvVQWgozesujGUYbQW6CtlEAajQSLAhQGJzpXh9Wr9uS7-6xNr_L92Xp53slhlFabY3qLLmyQsm1Foz_tgrun0Pxayi-h-L3ofjHLlKrqHbyssXy3_oF1RML1ZLM
Cites_doi 10.1109/TII.2022.3222366
10.1016/j.isci.2023.106383
10.1109/ITOEC49072.2020.9141702
10.1016/j.oceaneng.2021.108956
10.1007/978-3-030-60376-2_24
10.1109/ACCESS.2020.3018749
10.1109/ICASSP.2019.8683444
10.23919/ICIF.2018.8455607
10.1117/12.3015737
10.1186/s40537-022-00599-y
10.3390/jmse11040880
10.3390/app12084073
10.1007/s40747-024-01363-w
10.1109/ICTIS.2017.8047821
10.1109/JIOT.2020.3028743
10.1016/j.oceaneng.2023.116159
10.1016/j.oceaneng.2018.04.026
10.1016/j.knosys.2023.111126
10.1016/j.oceaneng.2024.117572
10.1117/12.2668566
10.1007/s40747-022-00683-z
10.3390/jmse9060609
10.1016/j.physa.2023.129275
10.1016/j.oceaneng.2023.114248
10.1016/j.oceaneng.2019.04.024
10.1109/TITS.2020.3040268
10.1177/03611981241258753
10.1016/j.oceaneng.2023.115886
10.1080/19475683.2020.1840434
10.1109/ACCESS.2021.3066463
10.1016/j.tre.2023.103152
10.1016/j.displa.2024.102814
10.1109/TIV.2024.3401864
10.1017/S0373463320000442
10.1109/TNSE.2022.3140529
10.1016/j.oceaneng.2024.117431
10.24963/ijcai.2022/277
10.1016/j.oceaneng.2017.04.017
10.1007/978-3-319-94268-1_12
10.1016/j.apor.2024.104231
10.1109/TIP.2020.2990346
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. May 2025
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s40747-025-01877-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 17
ExternalDocumentID oai_doaj_org_article_60f5896fa2bc46f1ae4e52a6a1a3ec75
10_1007_s40747_025_01877_x
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: (No. 2021YFC2801001)
– fundername: Open Topic Fund Project of the State Key Laboratory of Maritime Technology and Safety
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
AASML
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
OK1
P62
PHGZT
PIMPY
PROAC
SOJ
AAYXX
CITATION
PHGZM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c455t-34e2ea5e2e4c407efc11ccc5ce7f2c94d231c1b9a9ed337526d73ba68f64d09a3
IEDL.DBID C24
ISSN 2199-4536
IngestDate Wed Aug 27 00:36:02 EDT 2025
Fri Jul 25 09:39:02 EDT 2025
Tue Jul 01 04:56:35 EDT 2025
Wed Apr 30 01:15:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Automatic identification system
Trajectory slice and difference
Irregular trajectory feature extraction
Coastal collision avoidance
Vessel trajectory prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-34e2ea5e2e4c407efc11ccc5ce7f2c94d231c1b9a9ed337526d73ba68f64d09a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7249-698X
OpenAccessLink https://link.springer.com/10.1007/s40747-025-01877-x
PQID 3189264653
PQPubID 2044308
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_60f5896fa2bc46f1ae4e52a6a1a3ec75
proquest_journals_3189264653
crossref_primary_10_1007_s40747_025_01877_x
springer_journals_10_1007_s40747_025_01877_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References 1877_CR32
RW Liu (1877_CR39) 2020; 8
X Huang (1877_CR45) 2024; 301
X Wang (1877_CR2) 2022; 8
J Zhao (1877_CR10) 2023; 289
M Abdelaal (1877_CR16) 2018; 160
1877_CR30
S Mehri (1877_CR27) 2021; 9
H Liu (1877_CR14) 2022; 19
Y Zhang (1877_CR28) 2023; 277
Z Xiao (1877_CR18) 2020; 23
1877_CR36
1877_CR15
D Alizadeh (1877_CR24) 2021; 74
1877_CR37
1877_CR12
H Rong (1877_CR20) 2019; 182
Y Wang (1877_CR33) 2023; 630
LP Perera (1877_CR17) 2017; 138
D-W Gao (1877_CR4) 2021; 228
Y Xiao (1877_CR25) 2022; 24
1877_CR21
AP Wibawa (1877_CR38) 2022; 9
1877_CR43
TX Pham (1877_CR13) 2020; 29
1877_CR22
1877_CR44
D Jiang (1877_CR34) 2023; 11
1877_CR41
RW Liu (1877_CR5) 2022; 9
1877_CR40
X Dong (1877_CR8) 2024; 84
1877_CR3
1877_CR6
S Guo (1877_CR11) 2021; 9
H Xue (1877_CR31) 2024; 300
1877_CR1
1877_CR23
1877_CR46
X Zhang (1877_CR7) 2023; 287
L Qian (1877_CR26) 2022; 12
X Li (1877_CR29) 2024; 283
1877_CR9
Z Liu (1877_CR42) 2024; 153
D Alizadeh (1877_CR19) 2021; 27
H Li (1877_CR35) 2023; 175
References_xml – volume: 19
  start-page: 8900
  issue: 8
  year: 2022
  ident: 1877_CR14
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2022.3222366
– ident: 1877_CR30
  doi: 10.1016/j.isci.2023.106383
– ident: 1877_CR43
  doi: 10.1109/ITOEC49072.2020.9141702
– volume: 228
  year: 2021
  ident: 1877_CR4
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.108956
– ident: 1877_CR36
– ident: 1877_CR22
  doi: 10.1007/978-3-030-60376-2_24
– ident: 1877_CR40
  doi: 10.1109/ACCESS.2020.3018749
– ident: 1877_CR6
– ident: 1877_CR23
  doi: 10.1109/ICASSP.2019.8683444
– ident: 1877_CR21
  doi: 10.23919/ICIF.2018.8455607
– ident: 1877_CR32
  doi: 10.1117/12.3015737
– volume: 9
  start-page: 44
  issue: 1
  year: 2022
  ident: 1877_CR38
  publication-title: J Big Data
  doi: 10.1186/s40537-022-00599-y
– ident: 1877_CR46
– volume: 11
  start-page: 880
  issue: 4
  year: 2023
  ident: 1877_CR34
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse11040880
– volume: 12
  start-page: 4073
  issue: 8
  year: 2022
  ident: 1877_CR26
  publication-title: Appl Sci
  doi: 10.3390/app12084073
– ident: 1877_CR44
– ident: 1877_CR1
  doi: 10.1007/s40747-024-01363-w
– ident: 1877_CR12
  doi: 10.1109/ICTIS.2017.8047821
– volume: 8
  start-page: 5374
  issue: 7
  year: 2020
  ident: 1877_CR39
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.3028743
– volume: 289
  year: 2023
  ident: 1877_CR10
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.116159
– volume: 160
  start-page: 168
  year: 2018
  ident: 1877_CR16
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2018.04.026
– volume: 283
  year: 2024
  ident: 1877_CR29
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.111126
– volume: 301
  year: 2024
  ident: 1877_CR45
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.117572
– ident: 1877_CR41
  doi: 10.1117/12.2668566
– volume: 8
  start-page: 3881
  issue: 5
  year: 2022
  ident: 1877_CR2
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-022-00683-z
– volume: 9
  start-page: 609
  issue: 6
  year: 2021
  ident: 1877_CR11
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse9060609
– volume: 630
  year: 2023
  ident: 1877_CR33
  publication-title: Physica A
  doi: 10.1016/j.physa.2023.129275
– volume: 277
  year: 2023
  ident: 1877_CR28
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.114248
– volume: 182
  start-page: 499
  year: 2019
  ident: 1877_CR20
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.04.024
– volume: 23
  start-page: 3696
  issue: 4
  year: 2020
  ident: 1877_CR18
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3040268
– ident: 1877_CR3
  doi: 10.1177/03611981241258753
– volume: 287
  year: 2023
  ident: 1877_CR7
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.115886
– volume: 27
  start-page: 151
  issue: 2
  year: 2021
  ident: 1877_CR19
  publication-title: Ann GIS
  doi: 10.1080/19475683.2020.1840434
– volume: 9
  start-page: 45600
  year: 2021
  ident: 1877_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3066463
– volume: 175
  year: 2023
  ident: 1877_CR35
  publication-title: Transp Res Part E Logist Transp Rev
  doi: 10.1016/j.tre.2023.103152
– volume: 84
  year: 2024
  ident: 1877_CR8
  publication-title: Displays
  doi: 10.1016/j.displa.2024.102814
– ident: 1877_CR9
  doi: 10.1109/TIV.2024.3401864
– volume: 74
  start-page: 156
  issue: 1
  year: 2021
  ident: 1877_CR24
  publication-title: J Navig
  doi: 10.1017/S0373463320000442
– volume: 9
  start-page: 3080
  issue: 5
  year: 2022
  ident: 1877_CR5
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2022.3140529
– volume: 300
  year: 2024
  ident: 1877_CR31
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.117431
– ident: 1877_CR37
  doi: 10.24963/ijcai.2022/277
– volume: 138
  start-page: 151
  year: 2017
  ident: 1877_CR17
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2017.04.017
– ident: 1877_CR15
  doi: 10.1007/978-3-319-94268-1_12
– volume: 24
  start-page: 1773
  issue: 2
  year: 2022
  ident: 1877_CR25
  publication-title: IEEE Trans Intell Transp Syst
– volume: 153
  year: 2024
  ident: 1877_CR42
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2024.104231
– volume: 29
  start-page: 6507
  year: 2020
  ident: 1877_CR13
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.2990346
SSID ssj0001778302
ssib044733412
Score 2.290178
Snippet Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing...
Abstract Accurate prediction of vessel trajectories in coastal areas poses a significant challenge due to the large number of irregular trajectories. Existing...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 239
SubjectTerms Automatic identification system
Coastal collision avoidance
Coastal zone
Coasts
Complexity
Computational Intelligence
Data Structures and Information Theory
Engineering
Identification systems
Intelligent systems
Irregular trajectory feature extraction
Kalman filters
Maritime areas
Neural networks
Original Article
Recurrent neural networks
Structured data
Trajectory slice and difference
Vessel trajectory prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE1sf5OBNg7ubSbI5-kQERdCCByFkswkopZW2Pn6-k3RbW0G8eNnDbg7Zb74kM5PkG0IOqjLkXIFnGHk5BnXBmXY4HktulfMA3qbrYze38qoD14_icabUVzwTNpYHHgN3LLMgSi2DLSoHMuTWgxeFlTa33DuV1Esznc0EU8gkAMU5NAt3yrYoFYWuYqW5XGsGac-yPb1HB1FGnsXKrrFGnWKfc6tUEvOf80B_bJqmtehylaw0TiQ9GXd-jSz43jpZvpkqsA43yNPdIG7BxEPNdDSwLyk5j1Ex7Qfq-hZ9wi616DDS9yge3h3SmJCllnZjsP6R8qX0vouzCDt_DoFik0CjFGc6HLlJOpcXD2dXrKmkwBwIMWIcfIGo4wMc_qsPLs-dc8J5FQqno4lyl1faal9zrkQha8UrK8sgoc605Vtksdfv-W1Cs0pgE-ED1xlwX1YK0Cus66ArXZdWtcjhBDnzOhbMMFNp5ISzQZxNwtl8tshpBHfaMopdpxdIAdNQwPxFgRbZnZjGNCNwaHCu0ujsScFb5Ghiru_Pv3ep_R9d2iFLRaJTZNQuWRwN3vweei-jaj8R9QtD1ejo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZpcmkPpU-6aVJ06K0VXVsjyTqEkiehkCW0DeRQELIeIWFZp7vbNj8_M4q9IYX24oMtjD3zaWY0I33D2Pu2yZU0kASuvIKAWEthA87HRnoTEkDy5fjYyUQfn8GXc3W-xibDWRjaVjnYxGKoYxcoR_4JsWfReWslP1__FNQ1iqqrQwsN37dWiDuFYuwR20CT3CDuN_YOJ6dfB4QBGCmhd-glC2MMEWBRB7rKWgGllrm5Ol8HRC8vqOMr9a4z4uaB9yok_w8i07-KqcVHHT1jT_vgku_eoeE5W0uzF-zJyYqZdfGS_TidU2mGNjvz5dxflaQ9rpZ5l3noPMaKU-4xkOS_iVR8uuCUqOWeT2kR_6fkUfm3KVoXcXCZM8chmRNFZ9k0-YqdHR1-3z8WfYcFEUCppZCQatQGXiDgv6YcqiqEoEIyuQ6WVFeFqrXepiilUbWORrZeN1lDHFsvX7P1WTdLbxgftwqHqJSlHYNMTWsAo8UYs21tbLwZsQ-D5Nz1HZGGW1EmFzk7lLMrcnY3I7ZHwl2NJBLscqObX7h-Tjk9zqqxOvu6DaBz5RMkVXvtKy9TMGrEtgbVuH5mLtw9jkbs46Cu-8f__qTN_7_tLXtcF6AQVrbY-nL-K21jvLJs3_UgvAXrJOY1
  priority: 102
  providerName: ProQuest
Title Predicting trajectories of coastal area vessels with a lightweight Slice-Diff self attention
URI https://link.springer.com/article/10.1007/s40747-025-01877-x
https://www.proquest.com/docview/3189264653
https://doaj.org/article/60f5896fa2bc46f1ae4e52a6a1a3ec75
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoXOihaoGqS-nKB27U0iYe2_Fx2bJFK4EQFIkDkuU4dtVqtVvtbh8_vzMmWR4SBy6JkoyiZMaPb2bsbxg7rKtUSANRoOcVBDSlFDZgf6ykNyECRJ-3j52d69NrmNyom3ZT2LJb7d6lJPNIvd7sBsT1Lqj8KhWSMwKR45ZC350KNozuOccBjJTQTto50mIMkVxRlbnCWgE5X7n__GsfzVCZyP8R-nySMM3z0Pgte9MCSD68s_g7thFnO-z1A1pBvDpbc7Eud9ntxYKSMbS8ma8W_mcO06N_zOeJh7lHdDjlHqEj_0M04tMlp9As93xKbvvfHDnlV1McT8SXHylxFEmcSDnzMsk9dj0--TY6FW1NBRFAqZWQEEvUPx4g4J_HFIoihKBCNKkMloxVhKK23sZGSqNK3RhZe10lDc3Aevmebc7ms_iB8UGtUETFJO0AZKxqA4gPmybZ2jaVNz121OnR_bqjznBrkuSsdYdad1nr7l-PHZOq15JEe51vzBffXduLnB4kVVmdfFkH0KnwEaIqvfaFlzEY1WMHnaFc2xeXDkcti7BPK9ljnzvj3T9-_pP2Xyb-kW2XuRlRSzpgm6vF7_gJEcuq7rNX1fhrn20Nh5OrCZ6PT84vLvu52dJRj_o5FvAfcP3nQw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5iSwEf4AQWm3gcx4cKUdpqS7urClqpByTXcWwEWm3K7kLLn-O34XGTrYoEt15ySKzIGo_H8_B8H8CLqgyZUOh5jLwcxzoXXLu4H0thlfOI3qb2sdG4GB7hh2N5vAK_u14YulbZ2cRkqOvGUY78TdQ9HQ_vQoq3p985sUZRdbWj0LAttUK9kSDG2saOPf_rLIZw843drbjeL_N8Z_vw_ZC3LAPcoZQLLtDncUbxgS5GNz64LHPOSedVyJ2m6Wcuq7TVvhZCybyolahsUYYC64G2Iv73Bqwidbj2YHVze3zwsdNoRCUEtg5EyvooRYBbxHiXac0x1U7Xlv18SHD2nBhmiStP8fMrp2UiFbjiCf9VvE1n4s5duNM6s-zdhfbdgxU_vQ-3R0sk2PkD-Hwwo1IQXa5mi5n9looEMTpnTWCusdE3nTAbHVf2k0DMJ3NGiWFm2YSSBmcpb8s-TaI141tfQ2BxSGAECZouaT6Eo2uR9SPoTZupfwxsUMk4RPog9ACFLyuF0Tut66ArXZdW9eFVJzlzegHcYZYQzUnOJsrZJDmb8z5sknCXIwl0O71oZl9Mu4dNMQiy1EWweeWwCJn16GVuC5tZ4Z2SfVjvlsa0lmBuLvW2D6-75br8_O8prf3_b8_h5vBwtG_2d8d7T-BWnpSG9GYdeovZD_80-kqL6lmrkAxOrnsP_AEIZCRv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYlgdIcSvqim1d16K0VWVsjyTo2jyVtHgTaQA4FIctSaFl2l1037c_vjNbeJoUccjHYHow9M_J8mtF8Yux9XaVCGogCZ15BQFNKYQOOx0p6EyJA9Ll97PxCn1zBl2t1faeLP69270uSy54GYmmatPuzJu2vGt-AeN8FbcVKm8oZgShyHSj0UblWH_YeBWCkhC6A56yLMUR4RTvOFdYKyLXLrYcfey9aZVL_e0j0v-JpjkmjTfa8A5P809L6L9iTOHnJNu5QDOLZ-YqXdfGKfb-cU2GGljrzdu5_5pQ9zpX5NPEw9YgUx9wjjOS3RCk-XnBK03LPxzSF_52zqPzrGP8t4uhHShxFEieCzrxk8jW7Gh1_OzwR3f4KIoBSrZAQS7QFHiDgl8cUiiKEoEI0qQyWDFeEorbexkZKo0rdGFl7XSUNzdB6-YatTaaT-JbxYa1QRMUk7RBkrGoDiBWbJtnaNpU3A_ah16ObLWk03IowOWvdodZd1rr7M2AHpOqVJFFg5wvT-Y3rRpTTw6Qqq5Mv6wA6FT5CVKXXvvAyBqMGbKc3lOvG5cLhH8wiBNRKDtjH3nj_bj_8SluPE3_Hnl4ejdzZ54vTbfaszB5FTrXD1tr5r7iLQKat97Kv_gVgaei9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+trajectories+of+coastal+area+vessels+with+a+lightweight+Slice-Diff+self+attention&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Zhang%2C+Jinxu&rft.au=Liu%2C+Jin&rft.au=Zhang%2C+Xiliang&rft.au=Wei%2C+Lai&rft.date=2025-05-01&rft.pub=Springer+International+Publishing&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1007%2Fs40747-025-01877-x&rft.externalDocID=10_1007_s40747_025_01877_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon