Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization

•Bacillus pumilus improves tomato growth and N uptake under N fertilization.•B. pumilus does not influence tomato growth or N uptake under no N fertilization.•B. pumilus-induced N2 fixation contributes to N uptake by tomato.•B. pumilus-induced N2 fixation is associated with bacterial nifH gene.•Leaf...

Full description

Saved in:
Bibliographic Details
Published inScientia horticulturae Vol. 272; p. 109581
Main Authors Masood, Sajid, Zhao, Xue Qiang, Shen, Ren Fang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2020
Subjects
Online AccessGet full text
ISSN0304-4238
DOI10.1016/j.scienta.2020.109581

Cover

Loading…
Abstract •Bacillus pumilus improves tomato growth and N uptake under N fertilization.•B. pumilus does not influence tomato growth or N uptake under no N fertilization.•B. pumilus-induced N2 fixation contributes to N uptake by tomato.•B. pumilus-induced N2 fixation is associated with bacterial nifH gene.•Leaf transpiration stream is involved in B. pumilus-enhanced N uptake. Some plant growth-promoting bacteria (PGPB) are capable of fixing atmospheric N2 and can be used to reduce nitrogen (N) fertilizer application in agriculture. Large amounts of N fertilizers are applied in tomato (Solanum lycopersicum L.). However, less attention has been given to the role of PGPB in the N nutrition of tomato. The present study was carried out under greenhouse conditions to investigate the principal mechanisms underlying PGPB-improved N nutrition in tomato. Tomato plants were grown in pots under –N (native soil N without N fertilization) or + N (supply 150 mg N kg–1 dry soil in the form of urea), with or without Bacillus pumilus (PGPB) inoculation. Nitrogen supply improved the growth of tomato, soil NH4+ concentration, and plant N uptake. Nitrogen increased the rhizobacterial population, bacterial nifH gene expression, and soil nitrogenase activity only with the inoculation of B. pumilus. B. pumilus inoculation improved the tomato growth, N uptake, soil NH4+ concentrations, rhizobacterial population levels, soil bacterial gene expression, and soil nitrogenase activity only under + N condition. These results suggest that the inoculation of B. pumilus improves the growth of tomato under the condition of additional fertilizer N supply due to an increase in N uptake by roots from B. pumilus-assisted fixed N in soil.
AbstractList Some plant growth-promoting bacteria (PGPB) are capable of fixing atmospheric N₂ and can be used to reduce nitrogen (N) fertilizer application in agriculture. Large amounts of N fertilizers are applied in tomato (Solanum lycopersicum L.). However, less attention has been given to the role of PGPB in the N nutrition of tomato. The present study was carried out under greenhouse conditions to investigate the principal mechanisms underlying PGPB-improved N nutrition in tomato. Tomato plants were grown in pots under –N (native soil N without N fertilization) or + N (supply 150 mg N kg–¹ dry soil in the form of urea), with or without Bacillus pumilus (PGPB) inoculation. Nitrogen supply improved the growth of tomato, soil NH₄⁺ concentration, and plant N uptake. Nitrogen increased the rhizobacterial population, bacterial nifH gene expression, and soil nitrogenase activity only with the inoculation of B. pumilus. B. pumilus inoculation improved the tomato growth, N uptake, soil NH₄⁺ concentrations, rhizobacterial population levels, soil bacterial gene expression, and soil nitrogenase activity only under + N condition. These results suggest that the inoculation of B. pumilus improves the growth of tomato under the condition of additional fertilizer N supply due to an increase in N uptake by roots from B. pumilus-assisted fixed N in soil.
•Bacillus pumilus improves tomato growth and N uptake under N fertilization.•B. pumilus does not influence tomato growth or N uptake under no N fertilization.•B. pumilus-induced N2 fixation contributes to N uptake by tomato.•B. pumilus-induced N2 fixation is associated with bacterial nifH gene.•Leaf transpiration stream is involved in B. pumilus-enhanced N uptake. Some plant growth-promoting bacteria (PGPB) are capable of fixing atmospheric N2 and can be used to reduce nitrogen (N) fertilizer application in agriculture. Large amounts of N fertilizers are applied in tomato (Solanum lycopersicum L.). However, less attention has been given to the role of PGPB in the N nutrition of tomato. The present study was carried out under greenhouse conditions to investigate the principal mechanisms underlying PGPB-improved N nutrition in tomato. Tomato plants were grown in pots under –N (native soil N without N fertilization) or + N (supply 150 mg N kg–1 dry soil in the form of urea), with or without Bacillus pumilus (PGPB) inoculation. Nitrogen supply improved the growth of tomato, soil NH4+ concentration, and plant N uptake. Nitrogen increased the rhizobacterial population, bacterial nifH gene expression, and soil nitrogenase activity only with the inoculation of B. pumilus. B. pumilus inoculation improved the tomato growth, N uptake, soil NH4+ concentrations, rhizobacterial population levels, soil bacterial gene expression, and soil nitrogenase activity only under + N condition. These results suggest that the inoculation of B. pumilus improves the growth of tomato under the condition of additional fertilizer N supply due to an increase in N uptake by roots from B. pumilus-assisted fixed N in soil.
ArticleNumber 109581
Author Shen, Ren Fang
Masood, Sajid
Zhao, Xue Qiang
Author_xml – sequence: 1
  givenname: Sajid
  surname: Masood
  fullname: Masood, Sajid
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
– sequence: 2
  givenname: Xue Qiang
  orcidid: 0000-0003-3120-3858
  surname: Zhao
  fullname: Zhao, Xue Qiang
  email: xqzhao@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
– sequence: 3
  givenname: Ren Fang
  surname: Shen
  fullname: Shen, Ren Fang
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
BookMark eNqFkE1LAzEQhnOoYFv9CUKOXlqT3WyziwfR4hcUvOg5pMmkTd1NapJV9Ne77RYEL4WBgeF5h5lnhAbOO0DogpIpJXR2tZlGZcElOc1ItptVRUkHaEhywiYsy8tTNIpxQwihlFVDZO6ksnXdRrxtG7vvwTc-QcRpDXgV_FdaY-k0djYFvwKH222S74C9wck3Mnm8raVLEbdOQ_jDDIRka_sjk_XuDJ0YWUc4P_Qxenu4f50_TRYvj8_z28VEsaJIkzzTy4pTAMVNRbjicklms1zneckUECOZ0rzqijJtNN-xFS9NxnlWQFnQfIwu-73dFx8txCQaGxXU3YXg2yiyghFWclbwDi16VAUfYwAjtsE2MnwLSsTOpdiIg0uxcyl6l13u-l9O2bR_MgVp66Ppmz4NnYVPC6GnFGgbQCWhvT2y4RdaaZnv
CitedBy_id crossref_primary_10_3390_su151612547
crossref_primary_10_3390_horticulturae9020214
crossref_primary_10_1007_s00253_023_12787_8
crossref_primary_10_1038_s41598_021_96786_7
crossref_primary_10_1007_s00344_024_11251_9
crossref_primary_10_3389_fmicb_2022_1069053
crossref_primary_10_7717_peerj_15432
crossref_primary_10_3390_microorganisms12030558
crossref_primary_10_1016_j_stress_2023_100279
crossref_primary_10_3389_fmicb_2024_1366690
crossref_primary_10_3390_agriculture14071170
crossref_primary_10_1007_s11356_024_34181_1
crossref_primary_10_3389_fsufs_2021_617157
crossref_primary_10_3390_agronomy13020550
crossref_primary_10_54691_fsd_v3i11_5727
crossref_primary_10_1016_j_bcab_2024_103365
crossref_primary_10_1016_j_lwt_2024_115898
crossref_primary_10_7717_peerj_13405
crossref_primary_10_1088_1755_1315_1060_1_012016
crossref_primary_10_3389_fpls_2024_1451887
crossref_primary_10_1007_s11274_024_03903_5
crossref_primary_10_1128_spectrum_01147_24
crossref_primary_10_1088_1755_1315_1315_1_012018
crossref_primary_10_1007_s11270_023_06061_w
crossref_primary_10_17660_ActaHortic_2025_1416_19
crossref_primary_10_24154_jhs_v18i2_1922
crossref_primary_10_1007_s00203_022_03341_7
crossref_primary_10_1080_03650340_2023_2210071
crossref_primary_10_1016_j_psep_2022_12_029
crossref_primary_10_3390_microorganisms12091861
crossref_primary_10_3390_plants12030670
crossref_primary_10_1007_s41748_024_00552_4
crossref_primary_10_1016_j_rhisph_2023_100801
crossref_primary_10_1016_j_envexpbot_2022_105033
crossref_primary_10_3390_horticulturae8100910
crossref_primary_10_3389_fmicb_2022_945847
crossref_primary_10_3390_agronomy11061143
crossref_primary_10_1016_j_scienta_2023_112587
crossref_primary_10_5937_ZemBilj2402014B
crossref_primary_10_1007_s00253_022_11907_0
crossref_primary_10_1021_acs_est_2c02976
crossref_primary_10_3390_microorganisms10091700
crossref_primary_10_1016_j_scienta_2020_109658
crossref_primary_10_1016_j_apsoil_2024_105390
crossref_primary_10_3390_horticulturae9121299
crossref_primary_10_1080_15592324_2020_1855016
crossref_primary_10_3390_agronomy13061566
crossref_primary_10_1016_j_apsoil_2024_105591
crossref_primary_10_3390_plants12203576
crossref_primary_10_1016_j_btre_2023_e00781
crossref_primary_10_1016_j_plaphy_2021_03_059
crossref_primary_10_1016_j_eja_2022_126661
crossref_primary_10_1094_PBIOMES_09_23_0091_MF
crossref_primary_10_3390_microorganisms10071286
crossref_primary_10_3389_fpls_2023_1332864
crossref_primary_10_1007_s00344_024_11380_1
crossref_primary_10_3389_fmicb_2023_1132016
crossref_primary_10_17221_225_2023_PSE
crossref_primary_10_1016_j_micres_2024_127726
crossref_primary_10_3389_fpls_2024_1387187
crossref_primary_10_1002_jctb_6602
crossref_primary_10_1016_j_envpol_2022_119453
crossref_primary_10_3390_microorganisms9102099
Cites_doi 10.1002/jpln.201200054
10.2306/scienceasia1513-1874.2014.40.021
10.1007/s11104-009-9895-2
10.1016/j.plaphy.2004.05.009
10.1016/j.plaphy.2016.07.023
10.1016/j.geoderma.2004.07.003
10.1371/journal.pone.0087976
10.1093/jxb/erh010
10.1016/j.scienta.2006.09.002
10.1016/j.soilbio.2013.11.015
10.17221/3354-PSE
10.21273/HORTSCI.46.6.932
10.1016/j.scienta.2016.01.024
10.1023/A:1026037216893
10.1016/j.scienta.2009.12.012
10.1007/s11104-008-9606-4
10.1111/j.1365-2672.2005.02738.x
10.1111/j.1574-6941.2012.01480.x
10.1007/s00253-004-1696-1
10.1016/j.jcs.2013.12.001
10.1007/s11738-014-1514-z
10.1016/j.micres.2006.04.001
10.1002/jobm.200900317
10.1016/j.micres.2004.08.004
10.1038/nrmicro.2018.9
10.1080/01904160009381997
10.1023/A:1004295714181
10.1006/anbo.1996.0332
10.1016/j.envexpbot.2015.12.011
10.1051/agro:2004020
10.1093/molbev/msh047
10.1128/AEM.53.6.1263-1266.1987
10.1080/01904167.2011.531357
10.1093/jxb/ers033
10.1111/j.1574-6968.2007.00975.x
10.3906/tar-1308-62
10.1094/MPMI-20-6-0619
10.1023/A:1004358100856
10.1016/0038-0717(73)90093-X
10.1007/s11274-011-0979-9
10.1016/S0378-4290(02)00048-5
10.1111/j.1472-765X.2009.02566.x
10.1078/0944-5013-00095
10.1093/treephys/28.11.1693
10.1093/aobpla/plz036
10.1128/AEM.01624-09
10.1007/s11104-006-9057-8
10.1007/s11274-007-9591-4
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.scienta.2020.109581
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_scienta_2020_109581
S030442382030409X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSH
SSZ
T5K
Y6R
~G-
~KM
AALCJ
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XOL
7S9
L.6
ID FETCH-LOGICAL-c455t-32db971eec7f907c7ab0663d3384ce0fa4cd79d7914dfd7b971978f27725e8513
IEDL.DBID .~1
ISSN 0304-4238
IngestDate Fri Jul 11 11:13:13 EDT 2025
Tue Jul 01 02:35:48 EDT 2025
Thu Apr 24 23:07:54 EDT 2025
Sun Apr 06 06:53:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Aetylene reduction
Transpiration
PGPB
Tomato
nifH gene
N uptake
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-32db971eec7f907c7ab0663d3384ce0fa4cd79d7914dfd7b971978f27725e8513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3120-3858
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S030442382030409X
PQID 2540487457
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2540487457
crossref_primary_10_1016_j_scienta_2020_109581
crossref_citationtrail_10_1016_j_scienta_2020_109581
elsevier_sciencedirect_doi_10_1016_j_scienta_2020_109581
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Scientia horticulturae
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bashan, de-Bashan (bib0010) 2005
Sirajuddin, Khan, Ali, Chaudhary, Munis, Bano, Masood (bib0210) 2016; 200
Hardy, Burns, Holsten (bib0085) 1973; 5
Zahir, Akhtar, Ahmad, Saifullah, Nadeem (bib0270) 2012; 14
China Ministry of Agriculture (bib0030) 2008
Coelho, de Vos, Carneiro, Marriel, Paiva, Seldin (bib0035) 2008; 279
Valverde, Burgos, Fiscella, Rivas, Velázquez, Rodríguez-Barrueco, Cervantes, Chamber, Igual (bib0235) 2006; 287
Travers, Martin, Reichelderfer (bib0220) 1987; 53
Ding, Wang, Liu, Chen (bib0065) 2005; 99
Hawkesford (bib0090) 2014; 59
Orhan, Esitken, Ercisli, Turan, Sahin (bib0170) 2006; 111
Lee, Lee, Balaraju, Park, Nam, Park, Park (bib0125) 2014; 36
Wu, Cao, Li, Cheung, Wong (bib0250) 2005; 125
Mia, Shamsuddin, Wahab, Marziah (bib0160) 2010; 4
Remans, Ramaekers, Schelkens, Hernandez, Garcia, Reyes, Mendez, Toscano, Mulling, Galvez, Vanderleyden (bib0185) 2008; 312
Malik, Bilal, Mehnaz, Rasul, Mirza, Ali (bib0140) 1997; 194
Xiao, Tang, Pu, Sun, Ma, Yu, Duan (bib0255) 2010; 50
Lucas García, Probanza, Ramos, Ruiz Palomino, Gutiérrez Mañero (bib0135) 2004; 24
Khan, Sirajuddin, Zhao, Javed, Khan, Bano, Shen, Masood (bib0115) 2016; 124
Mantelin, Touraine (bib0145) 2004; 55
Ahmad, Ahmad, Khan (bib0005) 2008; 163
Yu, Liu, Zhu (bib0265) 2014; 40
Idris, Iglesias, Talon, Borriss (bib0095) 2007; 20
Liu, Ju, Zhang (bib0130) 2001; 6
Bhattacharyya, Jha (bib0020) 2012; 28
Israr, Mustafa, Khan, Shahzad, Ahmad, Masood (bib0100) 2016; 108
Molina, Caña-Roca, Osuna, Vilchez (bib0165) 2010; 76
Jorquera, Saavedra, Maruyama, Richardson, Crowley, Catrilaf, Henriquez, Mora (bib0105) 2013; 83
Bottini, Cassán, Piccoli (bib0025) 2004; 65
Karlidag, Esitken, Yildirim, Donmez, Turan (bib0110) 2010; 34
Dodd, Pérez-Alfocea (bib0070) 2012; 63
Masood, Zhao, Shen (bib0150) 2019; 11
Mayak, Tirosh, Glick (bib0155) 2004; 42
Couillerot, Prigent-Combaret, Caballero-Mellado, Moënne-Loccoz (bib0040) 2009; 48
Bellenger, Xu, Zhang, Morel, Kraepiel (bib0015) 2014; 69
Dey, Pal, Bhatt, Chauhan (bib0060) 2004; 159
Dashti, Zhang, Hynes, Smith (bib0050) 1998; 200
Salantur, Ozturk, Akten (bib0205) 2006; 52
de Bruijn (bib0055) 2015
Yildirim, Karlidag, Turan, Dursun, Goktepe (bib0260) 2011; 46
Sundara, Natarajan, Hari (bib0215) 2002; 77
Rincón, Valladares, Gimeno, Pueyo (bib0195) 2008; 28
Turan, Ekíncí, Yildirim, Günes, Karagöz, Kotan, Dursun (bib0230) 2014; 38
Turan, Gulluce, von Wirén, Sahin (bib0225) 2012; 175
Kuypers, Marchant, Kartal (bib0120) 2018; 16
Raymond, Siefert, Staples, Blankenship (bib0180) 2004; 21
Esitken, Yildiz, Ercisli, Donmez, Turan, Gunes (bib0075) 2010; 124
Richardson, Barea, McNeill, Prigent-Combaret (bib0190) 2009; 321
Zhang, Dashti, Hynes, Smith (bib0275) 1997; 79
Dai, Guo, Yin, Liang, Cong, Liu (bib0045) 2014; 9
Ryle (bib0200) 1988
Vessey (bib0240) 2003; 255
Figueiredo, Martinez, Burity, Chanway (bib0080) 2008; 24
Ratti, Kumar, Verma, Gautam (bib0175) 2001; 156
Woodard, Bly (bib0245) 2000; 23
Zahir (10.1016/j.scienta.2020.109581_bib0270) 2012; 14
Raymond (10.1016/j.scienta.2020.109581_bib0180) 2004; 21
Salantur (10.1016/j.scienta.2020.109581_bib0205) 2006; 52
China Ministry of Agriculture (10.1016/j.scienta.2020.109581_bib0030) 2008
Richardson (10.1016/j.scienta.2020.109581_bib0190) 2009; 321
Vessey (10.1016/j.scienta.2020.109581_bib0240) 2003; 255
Bellenger (10.1016/j.scienta.2020.109581_bib0015) 2014; 69
Sundara (10.1016/j.scienta.2020.109581_bib0215) 2002; 77
Zhang (10.1016/j.scienta.2020.109581_bib0275) 1997; 79
Esitken (10.1016/j.scienta.2020.109581_bib0075) 2010; 124
Mia (10.1016/j.scienta.2020.109581_bib0160) 2010; 4
Masood (10.1016/j.scienta.2020.109581_bib0150) 2019; 11
Turan (10.1016/j.scienta.2020.109581_bib0230) 2014; 38
Bashan (10.1016/j.scienta.2020.109581_bib0010) 2005
Dai (10.1016/j.scienta.2020.109581_bib0045) 2014; 9
Karlidag (10.1016/j.scienta.2020.109581_bib0110) 2010; 34
Mayak (10.1016/j.scienta.2020.109581_bib0155) 2004; 42
Ding (10.1016/j.scienta.2020.109581_bib0065) 2005; 99
Ahmad (10.1016/j.scienta.2020.109581_bib0005) 2008; 163
Travers (10.1016/j.scienta.2020.109581_bib0220) 1987; 53
Yildirim (10.1016/j.scienta.2020.109581_bib0260) 2011; 46
Figueiredo (10.1016/j.scienta.2020.109581_bib0080) 2008; 24
Lee (10.1016/j.scienta.2020.109581_bib0125) 2014; 36
de Bruijn (10.1016/j.scienta.2020.109581_bib0055) 2015
Lucas García (10.1016/j.scienta.2020.109581_bib0135) 2004; 24
Idris (10.1016/j.scienta.2020.109581_bib0095) 2007; 20
Israr (10.1016/j.scienta.2020.109581_bib0100) 2016; 108
Dashti (10.1016/j.scienta.2020.109581_bib0050) 1998; 200
Rincón (10.1016/j.scienta.2020.109581_bib0195) 2008; 28
Molina (10.1016/j.scienta.2020.109581_bib0165) 2010; 76
Couillerot (10.1016/j.scienta.2020.109581_bib0040) 2009; 48
Remans (10.1016/j.scienta.2020.109581_bib0185) 2008; 312
Jorquera (10.1016/j.scienta.2020.109581_bib0105) 2013; 83
Orhan (10.1016/j.scienta.2020.109581_bib0170) 2006; 111
Turan (10.1016/j.scienta.2020.109581_bib0225) 2012; 175
Xiao (10.1016/j.scienta.2020.109581_bib0255) 2010; 50
Bottini (10.1016/j.scienta.2020.109581_bib0025) 2004; 65
Wu (10.1016/j.scienta.2020.109581_bib0250) 2005; 125
Hardy (10.1016/j.scienta.2020.109581_bib0085) 1973; 5
Dodd (10.1016/j.scienta.2020.109581_bib0070) 2012; 63
Khan (10.1016/j.scienta.2020.109581_bib0115) 2016; 124
Sirajuddin (10.1016/j.scienta.2020.109581_bib0210) 2016; 200
Yu (10.1016/j.scienta.2020.109581_bib0265) 2014; 40
Dey (10.1016/j.scienta.2020.109581_bib0060) 2004; 159
Malik (10.1016/j.scienta.2020.109581_bib0140) 1997; 194
Ratti (10.1016/j.scienta.2020.109581_bib0175) 2001; 156
Mantelin (10.1016/j.scienta.2020.109581_bib0145) 2004; 55
Liu (10.1016/j.scienta.2020.109581_bib0130) 2001; 6
Ryle (10.1016/j.scienta.2020.109581_bib0200) 1988
Valverde (10.1016/j.scienta.2020.109581_bib0235) 2006; 287
Coelho (10.1016/j.scienta.2020.109581_bib0035) 2008; 279
Bhattacharyya (10.1016/j.scienta.2020.109581_bib0020) 2012; 28
Woodard (10.1016/j.scienta.2020.109581_bib0245) 2000; 23
Hawkesford (10.1016/j.scienta.2020.109581_bib0090) 2014; 59
Kuypers (10.1016/j.scienta.2020.109581_bib0120) 2018; 16
References_xml – volume: 200
  start-page: 178
  year: 2016
  end-page: 185
  ident: bib0210
  article-title: alleviates boron toxicity in tomato (
  publication-title: Sci. Hortic.
– volume: 28
  start-page: 1693
  year: 2008
  end-page: 1701
  ident: bib0195
  article-title: Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium
  publication-title: Tree Physiol.
– volume: 108
  start-page: 304
  year: 2016
  end-page: 312
  ident: bib0100
  article-title: Interactive effects of phosphorus and
  publication-title: Plant Physiol. Biochem.
– volume: 76
  start-page: 1320
  year: 2010
  end-page: 1327
  ident: bib0165
  article-title: Selection of a
  publication-title: Appl. Environ. Microbiol.
– volume: 156
  start-page: 145
  year: 2001
  end-page: 149
  ident: bib0175
  article-title: Improvement in bioavailability of tricalcium phosphate to
  publication-title: Microbiol. Res.
– start-page: 215
  year: 2015
  end-page: 224
  ident: bib0055
  article-title: Biological nitrogen fixation
  publication-title: Principles of Plant-Microbe Interactions
– volume: 200
  start-page: 205
  year: 1998
  end-page: 213
  ident: bib0050
  article-title: Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [
  publication-title: Plant Soil
– volume: 38
  start-page: 327
  year: 2014
  end-page: 333
  ident: bib0230
  article-title: Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (
  publication-title: Turk. J. Agric. For.
– volume: 125
  start-page: 155
  year: 2005
  end-page: 166
  ident: bib0250
  article-title: Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial
  publication-title: Geoderma
– volume: 159
  start-page: 371
  year: 2004
  end-page: 394
  ident: bib0060
  article-title: Growth promotion and yield enhancement of peanut (
  publication-title: Microbiol. Res.
– volume: 14
  start-page: 337
  year: 2012
  end-page: 344
  ident: bib0270
  article-title: Comparative effectiveness of
  publication-title: Int. J. Agric. Biol.
– volume: 6
  start-page: 63
  year: 2001
  end-page: 68
  ident: bib0130
  article-title: Effect of basal application of urea on inorganic nitrogen in soil profile
  publication-title: J. China Agric. Uni.
– volume: 79
  start-page: 243
  year: 1997
  end-page: 249
  ident: bib0275
  article-title: Plant growth-promoting rhizobacteria and soybean [
  publication-title: Ann. Bot.
– volume: 77
  start-page: 43
  year: 2002
  end-page: 49
  ident: bib0215
  article-title: Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields
  publication-title: Field Crop Res.
– volume: 279
  start-page: 15
  year: 2008
  end-page: 22
  ident: bib0035
  article-title: Diversity of
  publication-title: FEMS Microbiol. Lett.
– volume: 23
  start-page: 55
  year: 2000
  end-page: 65
  ident: bib0245
  article-title: Maize growth and yield responses to seed-inoculated N
  publication-title: J. Plant Nutr.
– volume: 321
  start-page: 305
  year: 2009
  end-page: 339
  ident: bib0190
  article-title: Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms
  publication-title: Plant Soil
– volume: 175
  start-page: 818
  year: 2012
  end-page: 826
  ident: bib0225
  article-title: Yield promotion and phosphorus solubilization by plant growth-promoting rhizobacteria in extensive wheat production in Turkey
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 34
  start-page: 34
  year: 2010
  end-page: 45
  ident: bib0110
  article-title: Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability and ionic composition of strawberry under saline conditions
  publication-title: J. Plant Nutr.
– volume: 40
  start-page: 21
  year: 2014
  end-page: 27
  ident: bib0265
  article-title: Walnut growth and soil quality after inoculating soil containing rock phosphate with phosphate-solubilizing bacteria
  publication-title: Sci. Asia
– volume: 124
  start-page: 120
  year: 2016
  end-page: 129
  ident: bib0115
  article-title: enhances tolerance in rice (
  publication-title: Environ. Exp. Bot.
– volume: 83
  start-page: 352
  year: 2013
  end-page: 360
  ident: bib0105
  article-title: Phytate addition to soil induces changes in the abundance and expression of
  publication-title: FEMS Microbiol. Ecol.
– volume: 99
  start-page: 1271
  year: 2005
  end-page: 1281
  ident: bib0065
  article-title: Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region
  publication-title: J. Appl. Microbiol.
– volume: 24
  start-page: 1187
  year: 2008
  end-page: 1193
  ident: bib0080
  article-title: Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (
  publication-title: World J. Microbiol. Biotechnol.
– volume: 4
  start-page: 85
  year: 2010
  end-page: 90
  ident: bib0160
  article-title: Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured
  publication-title: Aust. J. Crop Sci.
– volume: 20
  start-page: 619
  year: 2007
  end-page: 626
  ident: bib0095
  article-title: Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by
  publication-title: Mol. Plant Microbe Int.
– volume: 16
  start-page: 263
  year: 2018
  end-page: 276
  ident: bib0120
  article-title: The microbial nitrogen-cycling network
  publication-title: Nat. Rev. Microbiol.
– volume: 50
  start-page: 373
  year: 2010
  end-page: 379
  ident: bib0255
  article-title: Diversity of nitrogenase (
  publication-title: J. Basic Microbiol.
– volume: 42
  start-page: 565
  year: 2004
  end-page: 572
  ident: bib0155
  article-title: Plant growth-promoting bacteria that confer resistance in tomato to salt stress
  publication-title: Plant Physiol. Biochem.
– start-page: 3
  year: 1988
  end-page: 10
  ident: bib0200
  article-title: The influence of host plant energy supply on nitrogen fixation
  publication-title: Physiological Limitations and the Genetic Improvement of Symbiotic Nitrogen Fixation
– volume: 5
  start-page: 47
  year: 1973
  end-page: 81
  ident: bib0085
  article-title: Application of the acetylene-ethylene assay for measurement of nitrogen fixation
  publication-title: Soil Biol. Biochem.
– volume: 11
  start-page: plz036
  year: 2019
  ident: bib0150
  article-title: increases boron uptake and inhibits rapeseed growth under boron supply irrespective of phosphorus fertilization
  publication-title: AoB Plants
– volume: 52
  start-page: 111
  year: 2006
  end-page: 118
  ident: bib0205
  article-title: Growth and yield response of spring wheat (
  publication-title: Plant Soil Environ.
– year: 2008
  ident: bib0030
  article-title: China Agriculture Statistical Data
– volume: 111
  start-page: 38
  year: 2006
  end-page: 43
  ident: bib0170
  article-title: Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry
  publication-title: Sci. Hortic.
– volume: 36
  start-page: 1353
  year: 2014
  end-page: 1362
  ident: bib0125
  article-title: Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain
  publication-title: Acta Physiol. Plant.
– volume: 9
  start-page: e87976
  year: 2014
  ident: bib0045
  article-title: Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage
  publication-title: PLoS One
– volume: 21
  start-page: 541
  year: 2004
  end-page: 554
  ident: bib0180
  article-title: The natural history of nitrogen fixation
  publication-title: Mol. Biol. Evol.
– volume: 48
  start-page: 505
  year: 2009
  end-page: 512
  ident: bib0040
  article-title: and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens
  publication-title: Lett. Appl. Microbiol.
– volume: 46
  start-page: 932
  year: 2011
  end-page: 936
  ident: bib0260
  article-title: Growth, nutrient uptake and yield promotion of broccoli by plant growth promoting rhizobacteria with manure
  publication-title: HortScience
– volume: 163
  start-page: 173
  year: 2008
  end-page: 181
  ident: bib0005
  article-title: Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities
  publication-title: Microbiol. Res.
– volume: 69
  start-page: 413
  year: 2014
  end-page: 420
  ident: bib0015
  article-title: Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N
  publication-title: Soil Biol. Biochem.
– volume: 194
  start-page: 37
  year: 1997
  end-page: 44
  ident: bib0140
  article-title: Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice
  publication-title: Plant Soil
– volume: 63
  start-page: 3415
  year: 2012
  end-page: 3428
  ident: bib0070
  article-title: Microbial amelioration of crop salinity stress
  publication-title: J. Exp. Bot.
– volume: 65
  start-page: 497
  year: 2004
  end-page: 503
  ident: bib0025
  article-title: Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 124
  start-page: 62
  year: 2010
  end-page: 66
  ident: bib0075
  article-title: Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry
  publication-title: Sci. Hortic.
– volume: 24
  start-page: 169
  year: 2004
  end-page: 176
  ident: bib0135
  article-title: Effect of inoculation of
  publication-title: Agronmie
– volume: 55
  start-page: 27
  year: 2004
  end-page: 34
  ident: bib0145
  article-title: Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake
  publication-title: J. Exp. Bot.
– volume: 312
  start-page: 25
  year: 2008
  end-page: 37
  ident: bib0185
  article-title: Effect of
  publication-title: Plant Soil
– volume: 255
  start-page: 571
  year: 2003
  end-page: 586
  ident: bib0240
  article-title: Plant growth promoting rhizobacteria as biofertilizers
  publication-title: Plant Soil
– volume: 59
  start-page: 276
  year: 2014
  end-page: 283
  ident: bib0090
  article-title: Reducing the reliance on nitrogen fertilizer for wheat production
  publication-title: J. Cereal Sci.
– start-page: 103
  year: 2005
  end-page: 115
  ident: bib0010
  article-title: Bacteria/plant growth promotion
  publication-title: Encyclopedia of Soils in the Environment
– volume: 53
  start-page: 1263
  year: 1987
  end-page: 1266
  ident: bib0220
  article-title: Selective process for efficient isolation of soil
  publication-title: Appl. Environ. Microbiol.
– volume: 28
  start-page: 1327
  year: 2012
  end-page: 1350
  ident: bib0020
  article-title: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
  publication-title: World J. Microbiol. Biotechnol.
– volume: 287
  start-page: 43
  year: 2006
  end-page: 50
  ident: bib0235
  article-title: Differential effects of coinoculations with
  publication-title: Plant Soil
– volume: 175
  start-page: 818
  year: 2012
  ident: 10.1016/j.scienta.2020.109581_bib0225
  article-title: Yield promotion and phosphorus solubilization by plant growth-promoting rhizobacteria in extensive wheat production in Turkey
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201200054
– volume: 40
  start-page: 21
  year: 2014
  ident: 10.1016/j.scienta.2020.109581_bib0265
  article-title: Walnut growth and soil quality after inoculating soil containing rock phosphate with phosphate-solubilizing bacteria
  publication-title: Sci. Asia
  doi: 10.2306/scienceasia1513-1874.2014.40.021
– volume: 14
  start-page: 337
  year: 2012
  ident: 10.1016/j.scienta.2020.109581_bib0270
  article-title: Comparative effectiveness of Enterobacter aerogenes and Pseudomonas fluorescens for mitigating the depressing effect of brackish water on maize
  publication-title: Int. J. Agric. Biol.
– volume: 321
  start-page: 305
  year: 2009
  ident: 10.1016/j.scienta.2020.109581_bib0190
  article-title: Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9895-2
– volume: 42
  start-page: 565
  year: 2004
  ident: 10.1016/j.scienta.2020.109581_bib0155
  article-title: Plant growth-promoting bacteria that confer resistance in tomato to salt stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2004.05.009
– volume: 108
  start-page: 304
  year: 2016
  ident: 10.1016/j.scienta.2020.109581_bib0100
  article-title: Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.07.023
– volume: 125
  start-page: 155
  year: 2005
  ident: 10.1016/j.scienta.2020.109581_bib0250
  article-title: Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.07.003
– volume: 9
  start-page: e87976
  year: 2014
  ident: 10.1016/j.scienta.2020.109581_bib0045
  article-title: Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0087976
– volume: 55
  start-page: 27
  year: 2004
  ident: 10.1016/j.scienta.2020.109581_bib0145
  article-title: Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erh010
– volume: 111
  start-page: 38
  year: 2006
  ident: 10.1016/j.scienta.2020.109581_bib0170
  article-title: Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2006.09.002
– volume: 69
  start-page: 413
  year: 2014
  ident: 10.1016/j.scienta.2020.109581_bib0015
  article-title: Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.11.015
– volume: 52
  start-page: 111
  year: 2006
  ident: 10.1016/j.scienta.2020.109581_bib0205
  article-title: Growth and yield response of spring wheat (Triticum aestivum L.) to inoculation with rhizobacteria
  publication-title: Plant Soil Environ.
  doi: 10.17221/3354-PSE
– volume: 46
  start-page: 932
  year: 2011
  ident: 10.1016/j.scienta.2020.109581_bib0260
  article-title: Growth, nutrient uptake and yield promotion of broccoli by plant growth promoting rhizobacteria with manure
  publication-title: HortScience
  doi: 10.21273/HORTSCI.46.6.932
– volume: 200
  start-page: 178
  year: 2016
  ident: 10.1016/j.scienta.2020.109581_bib0210
  article-title: Bacillus pumilus alleviates boron toxicity in tomato (Lycopersicum esculentum L.) due to enhanced antioxidant enzymatic activity
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2016.01.024
– volume: 255
  start-page: 571
  year: 2003
  ident: 10.1016/j.scienta.2020.109581_bib0240
  article-title: Plant growth promoting rhizobacteria as biofertilizers
  publication-title: Plant Soil
  doi: 10.1023/A:1026037216893
– volume: 124
  start-page: 62
  year: 2010
  ident: 10.1016/j.scienta.2020.109581_bib0075
  article-title: Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2009.12.012
– volume: 312
  start-page: 25
  year: 2008
  ident: 10.1016/j.scienta.2020.109581_bib0185
  article-title: Effect of Rhizobium/Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9606-4
– volume: 99
  start-page: 1271
  year: 2005
  ident: 10.1016/j.scienta.2020.109581_bib0065
  article-title: Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2005.02738.x
– volume: 83
  start-page: 352
  year: 2013
  ident: 10.1016/j.scienta.2020.109581_bib0105
  article-title: Phytate addition to soil induces changes in the abundance and expression of Bacillus ß-propeller phytase genes in the rhizosphere
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2012.01480.x
– volume: 65
  start-page: 497
  year: 2004
  ident: 10.1016/j.scienta.2020.109581_bib0025
  article-title: Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-004-1696-1
– volume: 59
  start-page: 276
  year: 2014
  ident: 10.1016/j.scienta.2020.109581_bib0090
  article-title: Reducing the reliance on nitrogen fertilizer for wheat production
  publication-title: J. Cereal Sci.
  doi: 10.1016/j.jcs.2013.12.001
– volume: 36
  start-page: 1353
  year: 2014
  ident: 10.1016/j.scienta.2020.109581_bib0125
  article-title: Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain Bacillus subtilis 21-1 under two different soil conditions
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-014-1514-z
– volume: 163
  start-page: 173
  year: 2008
  ident: 10.1016/j.scienta.2020.109581_bib0005
  article-title: Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2006.04.001
– volume: 50
  start-page: 373
  year: 2010
  ident: 10.1016/j.scienta.2020.109581_bib0255
  article-title: Diversity of nitrogenase (nifH) genes pool in soybean field soil after continuous and rotational cropping
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.200900317
– volume: 159
  start-page: 371
  year: 2004
  ident: 10.1016/j.scienta.2020.109581_bib0060
  article-title: Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2004.08.004
– volume: 16
  start-page: 263
  year: 2018
  ident: 10.1016/j.scienta.2020.109581_bib0120
  article-title: The microbial nitrogen-cycling network
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2018.9
– volume: 23
  start-page: 55
  year: 2000
  ident: 10.1016/j.scienta.2020.109581_bib0245
  article-title: Maize growth and yield responses to seed-inoculated N2-fixing bacteria under dryland production conditions
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904160009381997
– start-page: 3
  year: 1988
  ident: 10.1016/j.scienta.2020.109581_bib0200
  article-title: The influence of host plant energy supply on nitrogen fixation
– volume: 194
  start-page: 37
  year: 1997
  ident: 10.1016/j.scienta.2020.109581_bib0140
  article-title: Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice
  publication-title: Plant Soil
  doi: 10.1023/A:1004295714181
– volume: 4
  start-page: 85
  year: 2010
  ident: 10.1016/j.scienta.2020.109581_bib0160
  article-title: Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen-free hydroponics condition
  publication-title: Aust. J. Crop Sci.
– volume: 79
  start-page: 243
  year: 1997
  ident: 10.1016/j.scienta.2020.109581_bib0275
  article-title: Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr.] growth and physiology at suboptimal root zone temperatures
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.1996.0332
– volume: 124
  start-page: 120
  year: 2016
  ident: 10.1016/j.scienta.2020.109581_bib0115
  article-title: Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2015.12.011
– start-page: 215
  year: 2015
  ident: 10.1016/j.scienta.2020.109581_bib0055
  article-title: Biological nitrogen fixation
– volume: 24
  start-page: 169
  year: 2004
  ident: 10.1016/j.scienta.2020.109581_bib0135
  article-title: Effect of inoculation of Bacillus licheniformis on tomato and pepper
  publication-title: Agronmie
  doi: 10.1051/agro:2004020
– volume: 21
  start-page: 541
  year: 2004
  ident: 10.1016/j.scienta.2020.109581_bib0180
  article-title: The natural history of nitrogen fixation
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msh047
– volume: 6
  start-page: 63
  year: 2001
  ident: 10.1016/j.scienta.2020.109581_bib0130
  article-title: Effect of basal application of urea on inorganic nitrogen in soil profile
  publication-title: J. China Agric. Uni.
– year: 2008
  ident: 10.1016/j.scienta.2020.109581_bib0030
– volume: 53
  start-page: 1263
  year: 1987
  ident: 10.1016/j.scienta.2020.109581_bib0220
  article-title: Selective process for efficient isolation of soil Bacillus spp
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.53.6.1263-1266.1987
– volume: 34
  start-page: 34
  year: 2010
  ident: 10.1016/j.scienta.2020.109581_bib0110
  article-title: Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability and ionic composition of strawberry under saline conditions
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2011.531357
– volume: 63
  start-page: 3415
  year: 2012
  ident: 10.1016/j.scienta.2020.109581_bib0070
  article-title: Microbial amelioration of crop salinity stress
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers033
– volume: 279
  start-page: 15
  year: 2008
  ident: 10.1016/j.scienta.2020.109581_bib0035
  article-title: Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2007.00975.x
– volume: 38
  start-page: 327
  year: 2014
  ident: 10.1016/j.scienta.2020.109581_bib0230
  article-title: Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings
  publication-title: Turk. J. Agric. For.
  doi: 10.3906/tar-1308-62
– volume: 20
  start-page: 619
  year: 2007
  ident: 10.1016/j.scienta.2020.109581_bib0095
  article-title: Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42
  publication-title: Mol. Plant Microbe Int.
  doi: 10.1094/MPMI-20-6-0619
– volume: 200
  start-page: 205
  year: 1998
  ident: 10.1016/j.scienta.2020.109581_bib0050
  article-title: Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions
  publication-title: Plant Soil
  doi: 10.1023/A:1004358100856
– volume: 5
  start-page: 47
  year: 1973
  ident: 10.1016/j.scienta.2020.109581_bib0085
  article-title: Application of the acetylene-ethylene assay for measurement of nitrogen fixation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(73)90093-X
– volume: 28
  start-page: 1327
  year: 2012
  ident: 10.1016/j.scienta.2020.109581_bib0020
  article-title: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-011-0979-9
– start-page: 103
  year: 2005
  ident: 10.1016/j.scienta.2020.109581_bib0010
  article-title: Bacteria/plant growth promotion
– volume: 77
  start-page: 43
  year: 2002
  ident: 10.1016/j.scienta.2020.109581_bib0215
  article-title: Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields
  publication-title: Field Crop Res.
  doi: 10.1016/S0378-4290(02)00048-5
– volume: 48
  start-page: 505
  year: 2009
  ident: 10.1016/j.scienta.2020.109581_bib0040
  article-title: Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/j.1472-765X.2009.02566.x
– volume: 156
  start-page: 145
  year: 2001
  ident: 10.1016/j.scienta.2020.109581_bib0175
  article-title: Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation
  publication-title: Microbiol. Res.
  doi: 10.1078/0944-5013-00095
– volume: 28
  start-page: 1693
  year: 2008
  ident: 10.1016/j.scienta.2020.109581_bib0195
  article-title: Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/28.11.1693
– volume: 11
  start-page: plz036
  year: 2019
  ident: 10.1016/j.scienta.2020.109581_bib0150
  article-title: Bacillus pumilus increases boron uptake and inhibits rapeseed growth under boron supply irrespective of phosphorus fertilization
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plz036
– volume: 76
  start-page: 1320
  year: 2010
  ident: 10.1016/j.scienta.2020.109581_bib0165
  article-title: Selection of a Bacillus pumilus strain highly active against Ceratitis capitata (Wiedemann) larvae
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01624-09
– volume: 287
  start-page: 43
  year: 2006
  ident: 10.1016/j.scienta.2020.109581_bib0235
  article-title: Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9057-8
– volume: 24
  start-page: 1187
  year: 2008
  ident: 10.1016/j.scienta.2020.109581_bib0080
  article-title: Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.)
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-007-9591-4
SSID ssj0001149
Score 2.5383544
Snippet •Bacillus pumilus improves tomato growth and N uptake under N fertilization.•B. pumilus does not influence tomato growth or N uptake under no N...
Some plant growth-promoting bacteria (PGPB) are capable of fixing atmospheric N₂ and can be used to reduce nitrogen (N) fertilizer application in agriculture....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109581
SubjectTerms Aetylene reduction
Bacillus pumilus
fertilizer application
gene expression
greenhouses
N uptake
nifH gene
nitrogen
nitrogen fertilizers
nitrogen fixation
nitrogenase
nutrition
PGPB
soil
Solanum lycopersicum
Tomato
tomatoes
Transpiration
urea
Title Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization
URI https://dx.doi.org/10.1016/j.scienta.2020.109581
https://www.proquest.com/docview/2540487457
Volume 272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBehe9keStttrO1aVNirk9iRLPsxKytpC3nZAnkTsj6ytK5tEvu1f3vvbLmhhREYGPyBJMxJuvsd97sTIT_CiXaGiTSIJhzDjM4EqbZpoACMJ1yxOO6qfc7j2YLdLflyQK77XBikVXrd3-n0Vlv7LyMvzVG1Xo9-Y1APwACYMHgYp0vMYGcCaX3D5x3NA_B-2kUSWICtd1k8o4ehTzoENzFqCyvxJPyXfXqnqVvzc3NEDj1upNPu147JwBYn5NN0tfG1M-xn4n4qvc7zZkur5mnd3luund1SQHl0BQ53_ZeqwlDYxpsSVg5tqlo9Wlo6WpcAXUta5ciLoZhZttk1c0i-zn3G5heyuPn153oW-GMUAs04r4NJZLJUhNZq4cAV1kJliDMMOKdM27FTTBuRwhUy44zAtuBaughwN7cAyCZfyUFRFvYboVmSxHGahVpjUR4bZTHnsYmUTgwPnXKnhPXCk9rXGMejLnLZk8kepJe5RJnLTuanZPjareqKbOzrkPQzI9-sFgmGYF_Xq34mJewkDI-owpbNVoKrDOpMMC7O_n_4c_IR39C6hfw7Oag3jb0A2FJnl-26vCQfprf3s_kLs4_u0Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8sD2MMEAjW0wT-I1bZPa-XjsKlAZ0BdaqW-W4w8oy5KoTf7_nROnCCSEhBQpUeKLorN99zvd3S8A5_5IGkWjxAtGzKYZjfISqRNPIBiPmaBh2LJ9zsLpgv5ZsuUOTLpeGFtW6Wx_a9Mba-3uDJw2B-VqNbizST0EA-jC8GKYLD_ArmWnoj3YHV9dT2dbg4yQP2mTCdSzAk-NPIPHvus7xEgxaLiVWOy_5qJeGOvGA13uw2cHHcm4_boD2NH5F_g0vl87-gx9COa3kKssqzekrP-tmnNTbqc3BIEeuceYu3ogIlcEd_K6wMVD6rISfzUpDKkKRK8FKTNbGkNsc9n6aZix9deZa9o8gsXlxXwy9dyfFDxJGau8UaDSJPK1lpHBaFhGIrVQQ2F8SqUeGkGlihI8fKqMiuxYjC5NgNCbacRko2Po5UWuvwJJ4zgMk9SX0vLy6CANGQtVIGSsmG-EOQHaKY9LRzNu_3aR8a6e7JE7nXOrc97q_AT6W7Gy5dl4SyDuZoY_WzAcfcFbor-6meS4mWyGROS6qDcco2W0aBFl0bf3v_4n7E3ntzf85mp2_R0-2ifW2fnsB_Sqda1PEcVU6Zlbpf8B3wbxgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacillus+pumilus+promotes+the+growth+and+nitrogen+uptake+of+tomato+plants+under+nitrogen+fertilization&rft.jtitle=Scientia+horticulturae&rft.au=Masood%2C+Sajid&rft.au=Zhao%2C+Xue+Qiang&rft.au=Shen%2C+Ren+Fang&rft.date=2020-10-15&rft.issn=0304-4238&rft.volume=272&rft.spage=109581&rft_id=info:doi/10.1016%2Fj.scienta.2020.109581&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scienta_2020_109581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4238&client=summon