Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization
•Bacillus pumilus improves tomato growth and N uptake under N fertilization.•B. pumilus does not influence tomato growth or N uptake under no N fertilization.•B. pumilus-induced N2 fixation contributes to N uptake by tomato.•B. pumilus-induced N2 fixation is associated with bacterial nifH gene.•Leaf...
Saved in:
Published in | Scientia horticulturae Vol. 272; p. 109581 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4238 |
DOI | 10.1016/j.scienta.2020.109581 |
Cover
Loading…
Abstract | •Bacillus pumilus improves tomato growth and N uptake under N fertilization.•B. pumilus does not influence tomato growth or N uptake under no N fertilization.•B. pumilus-induced N2 fixation contributes to N uptake by tomato.•B. pumilus-induced N2 fixation is associated with bacterial nifH gene.•Leaf transpiration stream is involved in B. pumilus-enhanced N uptake.
Some plant growth-promoting bacteria (PGPB) are capable of fixing atmospheric N2 and can be used to reduce nitrogen (N) fertilizer application in agriculture. Large amounts of N fertilizers are applied in tomato (Solanum lycopersicum L.). However, less attention has been given to the role of PGPB in the N nutrition of tomato. The present study was carried out under greenhouse conditions to investigate the principal mechanisms underlying PGPB-improved N nutrition in tomato. Tomato plants were grown in pots under –N (native soil N without N fertilization) or + N (supply 150 mg N kg–1 dry soil in the form of urea), with or without Bacillus pumilus (PGPB) inoculation. Nitrogen supply improved the growth of tomato, soil NH4+ concentration, and plant N uptake. Nitrogen increased the rhizobacterial population, bacterial nifH gene expression, and soil nitrogenase activity only with the inoculation of B. pumilus. B. pumilus inoculation improved the tomato growth, N uptake, soil NH4+ concentrations, rhizobacterial population levels, soil bacterial gene expression, and soil nitrogenase activity only under + N condition. These results suggest that the inoculation of B. pumilus improves the growth of tomato under the condition of additional fertilizer N supply due to an increase in N uptake by roots from B. pumilus-assisted fixed N in soil. |
---|---|
AbstractList | Some plant growth-promoting bacteria (PGPB) are capable of fixing atmospheric N₂ and can be used to reduce nitrogen (N) fertilizer application in agriculture. Large amounts of N fertilizers are applied in tomato (Solanum lycopersicum L.). However, less attention has been given to the role of PGPB in the N nutrition of tomato. The present study was carried out under greenhouse conditions to investigate the principal mechanisms underlying PGPB-improved N nutrition in tomato. Tomato plants were grown in pots under –N (native soil N without N fertilization) or + N (supply 150 mg N kg–¹ dry soil in the form of urea), with or without Bacillus pumilus (PGPB) inoculation. Nitrogen supply improved the growth of tomato, soil NH₄⁺ concentration, and plant N uptake. Nitrogen increased the rhizobacterial population, bacterial nifH gene expression, and soil nitrogenase activity only with the inoculation of B. pumilus. B. pumilus inoculation improved the tomato growth, N uptake, soil NH₄⁺ concentrations, rhizobacterial population levels, soil bacterial gene expression, and soil nitrogenase activity only under + N condition. These results suggest that the inoculation of B. pumilus improves the growth of tomato under the condition of additional fertilizer N supply due to an increase in N uptake by roots from B. pumilus-assisted fixed N in soil. •Bacillus pumilus improves tomato growth and N uptake under N fertilization.•B. pumilus does not influence tomato growth or N uptake under no N fertilization.•B. pumilus-induced N2 fixation contributes to N uptake by tomato.•B. pumilus-induced N2 fixation is associated with bacterial nifH gene.•Leaf transpiration stream is involved in B. pumilus-enhanced N uptake. Some plant growth-promoting bacteria (PGPB) are capable of fixing atmospheric N2 and can be used to reduce nitrogen (N) fertilizer application in agriculture. Large amounts of N fertilizers are applied in tomato (Solanum lycopersicum L.). However, less attention has been given to the role of PGPB in the N nutrition of tomato. The present study was carried out under greenhouse conditions to investigate the principal mechanisms underlying PGPB-improved N nutrition in tomato. Tomato plants were grown in pots under –N (native soil N without N fertilization) or + N (supply 150 mg N kg–1 dry soil in the form of urea), with or without Bacillus pumilus (PGPB) inoculation. Nitrogen supply improved the growth of tomato, soil NH4+ concentration, and plant N uptake. Nitrogen increased the rhizobacterial population, bacterial nifH gene expression, and soil nitrogenase activity only with the inoculation of B. pumilus. B. pumilus inoculation improved the tomato growth, N uptake, soil NH4+ concentrations, rhizobacterial population levels, soil bacterial gene expression, and soil nitrogenase activity only under + N condition. These results suggest that the inoculation of B. pumilus improves the growth of tomato under the condition of additional fertilizer N supply due to an increase in N uptake by roots from B. pumilus-assisted fixed N in soil. |
ArticleNumber | 109581 |
Author | Shen, Ren Fang Masood, Sajid Zhao, Xue Qiang |
Author_xml | – sequence: 1 givenname: Sajid surname: Masood fullname: Masood, Sajid organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China – sequence: 2 givenname: Xue Qiang orcidid: 0000-0003-3120-3858 surname: Zhao fullname: Zhao, Xue Qiang email: xqzhao@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China – sequence: 3 givenname: Ren Fang surname: Shen fullname: Shen, Ren Fang organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China |
BookMark | eNqFkE1LAzEQhnOoYFv9CUKOXlqT3WyziwfR4hcUvOg5pMmkTd1NapJV9Ne77RYEL4WBgeF5h5lnhAbOO0DogpIpJXR2tZlGZcElOc1ItptVRUkHaEhywiYsy8tTNIpxQwihlFVDZO6ksnXdRrxtG7vvwTc-QcRpDXgV_FdaY-k0djYFvwKH222S74C9wck3Mnm8raVLEbdOQ_jDDIRka_sjk_XuDJ0YWUc4P_Qxenu4f50_TRYvj8_z28VEsaJIkzzTy4pTAMVNRbjicklms1zneckUECOZ0rzqijJtNN-xFS9NxnlWQFnQfIwu-73dFx8txCQaGxXU3YXg2yiyghFWclbwDi16VAUfYwAjtsE2MnwLSsTOpdiIg0uxcyl6l13u-l9O2bR_MgVp66Ppmz4NnYVPC6GnFGgbQCWhvT2y4RdaaZnv |
CitedBy_id | crossref_primary_10_3390_su151612547 crossref_primary_10_3390_horticulturae9020214 crossref_primary_10_1007_s00253_023_12787_8 crossref_primary_10_1038_s41598_021_96786_7 crossref_primary_10_1007_s00344_024_11251_9 crossref_primary_10_3389_fmicb_2022_1069053 crossref_primary_10_7717_peerj_15432 crossref_primary_10_3390_microorganisms12030558 crossref_primary_10_1016_j_stress_2023_100279 crossref_primary_10_3389_fmicb_2024_1366690 crossref_primary_10_3390_agriculture14071170 crossref_primary_10_1007_s11356_024_34181_1 crossref_primary_10_3389_fsufs_2021_617157 crossref_primary_10_3390_agronomy13020550 crossref_primary_10_54691_fsd_v3i11_5727 crossref_primary_10_1016_j_bcab_2024_103365 crossref_primary_10_1016_j_lwt_2024_115898 crossref_primary_10_7717_peerj_13405 crossref_primary_10_1088_1755_1315_1060_1_012016 crossref_primary_10_3389_fpls_2024_1451887 crossref_primary_10_1007_s11274_024_03903_5 crossref_primary_10_1128_spectrum_01147_24 crossref_primary_10_1088_1755_1315_1315_1_012018 crossref_primary_10_1007_s11270_023_06061_w crossref_primary_10_17660_ActaHortic_2025_1416_19 crossref_primary_10_24154_jhs_v18i2_1922 crossref_primary_10_1007_s00203_022_03341_7 crossref_primary_10_1080_03650340_2023_2210071 crossref_primary_10_1016_j_psep_2022_12_029 crossref_primary_10_3390_microorganisms12091861 crossref_primary_10_3390_plants12030670 crossref_primary_10_1007_s41748_024_00552_4 crossref_primary_10_1016_j_rhisph_2023_100801 crossref_primary_10_1016_j_envexpbot_2022_105033 crossref_primary_10_3390_horticulturae8100910 crossref_primary_10_3389_fmicb_2022_945847 crossref_primary_10_3390_agronomy11061143 crossref_primary_10_1016_j_scienta_2023_112587 crossref_primary_10_5937_ZemBilj2402014B crossref_primary_10_1007_s00253_022_11907_0 crossref_primary_10_1021_acs_est_2c02976 crossref_primary_10_3390_microorganisms10091700 crossref_primary_10_1016_j_scienta_2020_109658 crossref_primary_10_1016_j_apsoil_2024_105390 crossref_primary_10_3390_horticulturae9121299 crossref_primary_10_1080_15592324_2020_1855016 crossref_primary_10_3390_agronomy13061566 crossref_primary_10_1016_j_apsoil_2024_105591 crossref_primary_10_3390_plants12203576 crossref_primary_10_1016_j_btre_2023_e00781 crossref_primary_10_1016_j_plaphy_2021_03_059 crossref_primary_10_1016_j_eja_2022_126661 crossref_primary_10_1094_PBIOMES_09_23_0091_MF crossref_primary_10_3390_microorganisms10071286 crossref_primary_10_3389_fpls_2023_1332864 crossref_primary_10_1007_s00344_024_11380_1 crossref_primary_10_3389_fmicb_2023_1132016 crossref_primary_10_17221_225_2023_PSE crossref_primary_10_1016_j_micres_2024_127726 crossref_primary_10_3389_fpls_2024_1387187 crossref_primary_10_1002_jctb_6602 crossref_primary_10_1016_j_envpol_2022_119453 crossref_primary_10_3390_microorganisms9102099 |
Cites_doi | 10.1002/jpln.201200054 10.2306/scienceasia1513-1874.2014.40.021 10.1007/s11104-009-9895-2 10.1016/j.plaphy.2004.05.009 10.1016/j.plaphy.2016.07.023 10.1016/j.geoderma.2004.07.003 10.1371/journal.pone.0087976 10.1093/jxb/erh010 10.1016/j.scienta.2006.09.002 10.1016/j.soilbio.2013.11.015 10.17221/3354-PSE 10.21273/HORTSCI.46.6.932 10.1016/j.scienta.2016.01.024 10.1023/A:1026037216893 10.1016/j.scienta.2009.12.012 10.1007/s11104-008-9606-4 10.1111/j.1365-2672.2005.02738.x 10.1111/j.1574-6941.2012.01480.x 10.1007/s00253-004-1696-1 10.1016/j.jcs.2013.12.001 10.1007/s11738-014-1514-z 10.1016/j.micres.2006.04.001 10.1002/jobm.200900317 10.1016/j.micres.2004.08.004 10.1038/nrmicro.2018.9 10.1080/01904160009381997 10.1023/A:1004295714181 10.1006/anbo.1996.0332 10.1016/j.envexpbot.2015.12.011 10.1051/agro:2004020 10.1093/molbev/msh047 10.1128/AEM.53.6.1263-1266.1987 10.1080/01904167.2011.531357 10.1093/jxb/ers033 10.1111/j.1574-6968.2007.00975.x 10.3906/tar-1308-62 10.1094/MPMI-20-6-0619 10.1023/A:1004358100856 10.1016/0038-0717(73)90093-X 10.1007/s11274-011-0979-9 10.1016/S0378-4290(02)00048-5 10.1111/j.1472-765X.2009.02566.x 10.1078/0944-5013-00095 10.1093/treephys/28.11.1693 10.1093/aobpla/plz036 10.1128/AEM.01624-09 10.1007/s11104-006-9057-8 10.1007/s11274-007-9591-4 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.scienta.2020.109581 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_scienta_2020_109581 S030442382030409X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO ABFRF ABGRD ABJNI ABMAC ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPCBC SSA SSH SSZ T5K Y6R ~G- ~KM AALCJ AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HVGLF HZ~ R2- RIG SEW WUQ XOL 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-32db971eec7f907c7ab0663d3384ce0fa4cd79d7914dfd7b971978f27725e8513 |
IEDL.DBID | .~1 |
ISSN | 0304-4238 |
IngestDate | Fri Jul 11 11:13:13 EDT 2025 Tue Jul 01 02:35:48 EDT 2025 Thu Apr 24 23:07:54 EDT 2025 Sun Apr 06 06:53:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aetylene reduction Transpiration PGPB Tomato nifH gene N uptake |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-32db971eec7f907c7ab0663d3384ce0fa4cd79d7914dfd7b971978f27725e8513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3120-3858 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S030442382030409X |
PQID | 2540487457 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2540487457 crossref_primary_10_1016_j_scienta_2020_109581 crossref_citationtrail_10_1016_j_scienta_2020_109581 elsevier_sciencedirect_doi_10_1016_j_scienta_2020_109581 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Scientia horticulturae |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bashan, de-Bashan (bib0010) 2005 Sirajuddin, Khan, Ali, Chaudhary, Munis, Bano, Masood (bib0210) 2016; 200 Hardy, Burns, Holsten (bib0085) 1973; 5 Zahir, Akhtar, Ahmad, Saifullah, Nadeem (bib0270) 2012; 14 China Ministry of Agriculture (bib0030) 2008 Coelho, de Vos, Carneiro, Marriel, Paiva, Seldin (bib0035) 2008; 279 Valverde, Burgos, Fiscella, Rivas, Velázquez, Rodríguez-Barrueco, Cervantes, Chamber, Igual (bib0235) 2006; 287 Travers, Martin, Reichelderfer (bib0220) 1987; 53 Ding, Wang, Liu, Chen (bib0065) 2005; 99 Hawkesford (bib0090) 2014; 59 Orhan, Esitken, Ercisli, Turan, Sahin (bib0170) 2006; 111 Lee, Lee, Balaraju, Park, Nam, Park, Park (bib0125) 2014; 36 Wu, Cao, Li, Cheung, Wong (bib0250) 2005; 125 Mia, Shamsuddin, Wahab, Marziah (bib0160) 2010; 4 Remans, Ramaekers, Schelkens, Hernandez, Garcia, Reyes, Mendez, Toscano, Mulling, Galvez, Vanderleyden (bib0185) 2008; 312 Malik, Bilal, Mehnaz, Rasul, Mirza, Ali (bib0140) 1997; 194 Xiao, Tang, Pu, Sun, Ma, Yu, Duan (bib0255) 2010; 50 Lucas García, Probanza, Ramos, Ruiz Palomino, Gutiérrez Mañero (bib0135) 2004; 24 Khan, Sirajuddin, Zhao, Javed, Khan, Bano, Shen, Masood (bib0115) 2016; 124 Mantelin, Touraine (bib0145) 2004; 55 Ahmad, Ahmad, Khan (bib0005) 2008; 163 Yu, Liu, Zhu (bib0265) 2014; 40 Idris, Iglesias, Talon, Borriss (bib0095) 2007; 20 Liu, Ju, Zhang (bib0130) 2001; 6 Bhattacharyya, Jha (bib0020) 2012; 28 Israr, Mustafa, Khan, Shahzad, Ahmad, Masood (bib0100) 2016; 108 Molina, Caña-Roca, Osuna, Vilchez (bib0165) 2010; 76 Jorquera, Saavedra, Maruyama, Richardson, Crowley, Catrilaf, Henriquez, Mora (bib0105) 2013; 83 Bottini, Cassán, Piccoli (bib0025) 2004; 65 Karlidag, Esitken, Yildirim, Donmez, Turan (bib0110) 2010; 34 Dodd, Pérez-Alfocea (bib0070) 2012; 63 Masood, Zhao, Shen (bib0150) 2019; 11 Mayak, Tirosh, Glick (bib0155) 2004; 42 Couillerot, Prigent-Combaret, Caballero-Mellado, Moënne-Loccoz (bib0040) 2009; 48 Bellenger, Xu, Zhang, Morel, Kraepiel (bib0015) 2014; 69 Dey, Pal, Bhatt, Chauhan (bib0060) 2004; 159 Dashti, Zhang, Hynes, Smith (bib0050) 1998; 200 Salantur, Ozturk, Akten (bib0205) 2006; 52 de Bruijn (bib0055) 2015 Yildirim, Karlidag, Turan, Dursun, Goktepe (bib0260) 2011; 46 Sundara, Natarajan, Hari (bib0215) 2002; 77 Rincón, Valladares, Gimeno, Pueyo (bib0195) 2008; 28 Turan, Ekíncí, Yildirim, Günes, Karagöz, Kotan, Dursun (bib0230) 2014; 38 Turan, Gulluce, von Wirén, Sahin (bib0225) 2012; 175 Kuypers, Marchant, Kartal (bib0120) 2018; 16 Raymond, Siefert, Staples, Blankenship (bib0180) 2004; 21 Esitken, Yildiz, Ercisli, Donmez, Turan, Gunes (bib0075) 2010; 124 Richardson, Barea, McNeill, Prigent-Combaret (bib0190) 2009; 321 Zhang, Dashti, Hynes, Smith (bib0275) 1997; 79 Dai, Guo, Yin, Liang, Cong, Liu (bib0045) 2014; 9 Ryle (bib0200) 1988 Vessey (bib0240) 2003; 255 Figueiredo, Martinez, Burity, Chanway (bib0080) 2008; 24 Ratti, Kumar, Verma, Gautam (bib0175) 2001; 156 Woodard, Bly (bib0245) 2000; 23 Zahir (10.1016/j.scienta.2020.109581_bib0270) 2012; 14 Raymond (10.1016/j.scienta.2020.109581_bib0180) 2004; 21 Salantur (10.1016/j.scienta.2020.109581_bib0205) 2006; 52 China Ministry of Agriculture (10.1016/j.scienta.2020.109581_bib0030) 2008 Richardson (10.1016/j.scienta.2020.109581_bib0190) 2009; 321 Vessey (10.1016/j.scienta.2020.109581_bib0240) 2003; 255 Bellenger (10.1016/j.scienta.2020.109581_bib0015) 2014; 69 Sundara (10.1016/j.scienta.2020.109581_bib0215) 2002; 77 Zhang (10.1016/j.scienta.2020.109581_bib0275) 1997; 79 Esitken (10.1016/j.scienta.2020.109581_bib0075) 2010; 124 Mia (10.1016/j.scienta.2020.109581_bib0160) 2010; 4 Masood (10.1016/j.scienta.2020.109581_bib0150) 2019; 11 Turan (10.1016/j.scienta.2020.109581_bib0230) 2014; 38 Bashan (10.1016/j.scienta.2020.109581_bib0010) 2005 Dai (10.1016/j.scienta.2020.109581_bib0045) 2014; 9 Karlidag (10.1016/j.scienta.2020.109581_bib0110) 2010; 34 Mayak (10.1016/j.scienta.2020.109581_bib0155) 2004; 42 Ding (10.1016/j.scienta.2020.109581_bib0065) 2005; 99 Ahmad (10.1016/j.scienta.2020.109581_bib0005) 2008; 163 Travers (10.1016/j.scienta.2020.109581_bib0220) 1987; 53 Yildirim (10.1016/j.scienta.2020.109581_bib0260) 2011; 46 Figueiredo (10.1016/j.scienta.2020.109581_bib0080) 2008; 24 Lee (10.1016/j.scienta.2020.109581_bib0125) 2014; 36 de Bruijn (10.1016/j.scienta.2020.109581_bib0055) 2015 Lucas García (10.1016/j.scienta.2020.109581_bib0135) 2004; 24 Idris (10.1016/j.scienta.2020.109581_bib0095) 2007; 20 Israr (10.1016/j.scienta.2020.109581_bib0100) 2016; 108 Dashti (10.1016/j.scienta.2020.109581_bib0050) 1998; 200 Rincón (10.1016/j.scienta.2020.109581_bib0195) 2008; 28 Molina (10.1016/j.scienta.2020.109581_bib0165) 2010; 76 Couillerot (10.1016/j.scienta.2020.109581_bib0040) 2009; 48 Remans (10.1016/j.scienta.2020.109581_bib0185) 2008; 312 Jorquera (10.1016/j.scienta.2020.109581_bib0105) 2013; 83 Orhan (10.1016/j.scienta.2020.109581_bib0170) 2006; 111 Turan (10.1016/j.scienta.2020.109581_bib0225) 2012; 175 Xiao (10.1016/j.scienta.2020.109581_bib0255) 2010; 50 Bottini (10.1016/j.scienta.2020.109581_bib0025) 2004; 65 Wu (10.1016/j.scienta.2020.109581_bib0250) 2005; 125 Hardy (10.1016/j.scienta.2020.109581_bib0085) 1973; 5 Dodd (10.1016/j.scienta.2020.109581_bib0070) 2012; 63 Khan (10.1016/j.scienta.2020.109581_bib0115) 2016; 124 Sirajuddin (10.1016/j.scienta.2020.109581_bib0210) 2016; 200 Yu (10.1016/j.scienta.2020.109581_bib0265) 2014; 40 Dey (10.1016/j.scienta.2020.109581_bib0060) 2004; 159 Malik (10.1016/j.scienta.2020.109581_bib0140) 1997; 194 Ratti (10.1016/j.scienta.2020.109581_bib0175) 2001; 156 Mantelin (10.1016/j.scienta.2020.109581_bib0145) 2004; 55 Liu (10.1016/j.scienta.2020.109581_bib0130) 2001; 6 Ryle (10.1016/j.scienta.2020.109581_bib0200) 1988 Valverde (10.1016/j.scienta.2020.109581_bib0235) 2006; 287 Coelho (10.1016/j.scienta.2020.109581_bib0035) 2008; 279 Bhattacharyya (10.1016/j.scienta.2020.109581_bib0020) 2012; 28 Woodard (10.1016/j.scienta.2020.109581_bib0245) 2000; 23 Hawkesford (10.1016/j.scienta.2020.109581_bib0090) 2014; 59 Kuypers (10.1016/j.scienta.2020.109581_bib0120) 2018; 16 |
References_xml | – volume: 200 start-page: 178 year: 2016 end-page: 185 ident: bib0210 article-title: alleviates boron toxicity in tomato ( publication-title: Sci. Hortic. – volume: 28 start-page: 1693 year: 2008 end-page: 1701 ident: bib0195 article-title: Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium publication-title: Tree Physiol. – volume: 108 start-page: 304 year: 2016 end-page: 312 ident: bib0100 article-title: Interactive effects of phosphorus and publication-title: Plant Physiol. Biochem. – volume: 76 start-page: 1320 year: 2010 end-page: 1327 ident: bib0165 article-title: Selection of a publication-title: Appl. Environ. Microbiol. – volume: 156 start-page: 145 year: 2001 end-page: 149 ident: bib0175 article-title: Improvement in bioavailability of tricalcium phosphate to publication-title: Microbiol. Res. – start-page: 215 year: 2015 end-page: 224 ident: bib0055 article-title: Biological nitrogen fixation publication-title: Principles of Plant-Microbe Interactions – volume: 200 start-page: 205 year: 1998 end-page: 213 ident: bib0050 article-title: Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [ publication-title: Plant Soil – volume: 38 start-page: 327 year: 2014 end-page: 333 ident: bib0230 article-title: Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage ( publication-title: Turk. J. Agric. For. – volume: 125 start-page: 155 year: 2005 end-page: 166 ident: bib0250 article-title: Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial publication-title: Geoderma – volume: 159 start-page: 371 year: 2004 end-page: 394 ident: bib0060 article-title: Growth promotion and yield enhancement of peanut ( publication-title: Microbiol. Res. – volume: 14 start-page: 337 year: 2012 end-page: 344 ident: bib0270 article-title: Comparative effectiveness of publication-title: Int. J. Agric. Biol. – volume: 6 start-page: 63 year: 2001 end-page: 68 ident: bib0130 article-title: Effect of basal application of urea on inorganic nitrogen in soil profile publication-title: J. China Agric. Uni. – volume: 79 start-page: 243 year: 1997 end-page: 249 ident: bib0275 article-title: Plant growth-promoting rhizobacteria and soybean [ publication-title: Ann. Bot. – volume: 77 start-page: 43 year: 2002 end-page: 49 ident: bib0215 article-title: Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields publication-title: Field Crop Res. – volume: 279 start-page: 15 year: 2008 end-page: 22 ident: bib0035 article-title: Diversity of publication-title: FEMS Microbiol. Lett. – volume: 23 start-page: 55 year: 2000 end-page: 65 ident: bib0245 article-title: Maize growth and yield responses to seed-inoculated N publication-title: J. Plant Nutr. – volume: 321 start-page: 305 year: 2009 end-page: 339 ident: bib0190 article-title: Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms publication-title: Plant Soil – volume: 175 start-page: 818 year: 2012 end-page: 826 ident: bib0225 article-title: Yield promotion and phosphorus solubilization by plant growth-promoting rhizobacteria in extensive wheat production in Turkey publication-title: J. Plant Nutr. Soil Sci. – volume: 34 start-page: 34 year: 2010 end-page: 45 ident: bib0110 article-title: Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability and ionic composition of strawberry under saline conditions publication-title: J. Plant Nutr. – volume: 40 start-page: 21 year: 2014 end-page: 27 ident: bib0265 article-title: Walnut growth and soil quality after inoculating soil containing rock phosphate with phosphate-solubilizing bacteria publication-title: Sci. Asia – volume: 124 start-page: 120 year: 2016 end-page: 129 ident: bib0115 article-title: enhances tolerance in rice ( publication-title: Environ. Exp. Bot. – volume: 83 start-page: 352 year: 2013 end-page: 360 ident: bib0105 article-title: Phytate addition to soil induces changes in the abundance and expression of publication-title: FEMS Microbiol. Ecol. – volume: 99 start-page: 1271 year: 2005 end-page: 1281 ident: bib0065 article-title: Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region publication-title: J. Appl. Microbiol. – volume: 24 start-page: 1187 year: 2008 end-page: 1193 ident: bib0080 article-title: Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean ( publication-title: World J. Microbiol. Biotechnol. – volume: 4 start-page: 85 year: 2010 end-page: 90 ident: bib0160 article-title: Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured publication-title: Aust. J. Crop Sci. – volume: 20 start-page: 619 year: 2007 end-page: 626 ident: bib0095 article-title: Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by publication-title: Mol. Plant Microbe Int. – volume: 16 start-page: 263 year: 2018 end-page: 276 ident: bib0120 article-title: The microbial nitrogen-cycling network publication-title: Nat. Rev. Microbiol. – volume: 50 start-page: 373 year: 2010 end-page: 379 ident: bib0255 article-title: Diversity of nitrogenase ( publication-title: J. Basic Microbiol. – volume: 42 start-page: 565 year: 2004 end-page: 572 ident: bib0155 article-title: Plant growth-promoting bacteria that confer resistance in tomato to salt stress publication-title: Plant Physiol. Biochem. – start-page: 3 year: 1988 end-page: 10 ident: bib0200 article-title: The influence of host plant energy supply on nitrogen fixation publication-title: Physiological Limitations and the Genetic Improvement of Symbiotic Nitrogen Fixation – volume: 5 start-page: 47 year: 1973 end-page: 81 ident: bib0085 article-title: Application of the acetylene-ethylene assay for measurement of nitrogen fixation publication-title: Soil Biol. Biochem. – volume: 11 start-page: plz036 year: 2019 ident: bib0150 article-title: increases boron uptake and inhibits rapeseed growth under boron supply irrespective of phosphorus fertilization publication-title: AoB Plants – volume: 52 start-page: 111 year: 2006 end-page: 118 ident: bib0205 article-title: Growth and yield response of spring wheat ( publication-title: Plant Soil Environ. – year: 2008 ident: bib0030 article-title: China Agriculture Statistical Data – volume: 111 start-page: 38 year: 2006 end-page: 43 ident: bib0170 article-title: Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry publication-title: Sci. Hortic. – volume: 36 start-page: 1353 year: 2014 end-page: 1362 ident: bib0125 article-title: Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain publication-title: Acta Physiol. Plant. – volume: 9 start-page: e87976 year: 2014 ident: bib0045 article-title: Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage publication-title: PLoS One – volume: 21 start-page: 541 year: 2004 end-page: 554 ident: bib0180 article-title: The natural history of nitrogen fixation publication-title: Mol. Biol. Evol. – volume: 48 start-page: 505 year: 2009 end-page: 512 ident: bib0040 article-title: and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens publication-title: Lett. Appl. Microbiol. – volume: 46 start-page: 932 year: 2011 end-page: 936 ident: bib0260 article-title: Growth, nutrient uptake and yield promotion of broccoli by plant growth promoting rhizobacteria with manure publication-title: HortScience – volume: 163 start-page: 173 year: 2008 end-page: 181 ident: bib0005 article-title: Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities publication-title: Microbiol. Res. – volume: 69 start-page: 413 year: 2014 end-page: 420 ident: bib0015 article-title: Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N publication-title: Soil Biol. Biochem. – volume: 194 start-page: 37 year: 1997 end-page: 44 ident: bib0140 article-title: Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice publication-title: Plant Soil – volume: 63 start-page: 3415 year: 2012 end-page: 3428 ident: bib0070 article-title: Microbial amelioration of crop salinity stress publication-title: J. Exp. Bot. – volume: 65 start-page: 497 year: 2004 end-page: 503 ident: bib0025 article-title: Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase publication-title: Appl. Microbiol. Biotechnol. – volume: 124 start-page: 62 year: 2010 end-page: 66 ident: bib0075 article-title: Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry publication-title: Sci. Hortic. – volume: 24 start-page: 169 year: 2004 end-page: 176 ident: bib0135 article-title: Effect of inoculation of publication-title: Agronmie – volume: 55 start-page: 27 year: 2004 end-page: 34 ident: bib0145 article-title: Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake publication-title: J. Exp. Bot. – volume: 312 start-page: 25 year: 2008 end-page: 37 ident: bib0185 article-title: Effect of publication-title: Plant Soil – volume: 255 start-page: 571 year: 2003 end-page: 586 ident: bib0240 article-title: Plant growth promoting rhizobacteria as biofertilizers publication-title: Plant Soil – volume: 59 start-page: 276 year: 2014 end-page: 283 ident: bib0090 article-title: Reducing the reliance on nitrogen fertilizer for wheat production publication-title: J. Cereal Sci. – start-page: 103 year: 2005 end-page: 115 ident: bib0010 article-title: Bacteria/plant growth promotion publication-title: Encyclopedia of Soils in the Environment – volume: 53 start-page: 1263 year: 1987 end-page: 1266 ident: bib0220 article-title: Selective process for efficient isolation of soil publication-title: Appl. Environ. Microbiol. – volume: 28 start-page: 1327 year: 2012 end-page: 1350 ident: bib0020 article-title: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture publication-title: World J. Microbiol. Biotechnol. – volume: 287 start-page: 43 year: 2006 end-page: 50 ident: bib0235 article-title: Differential effects of coinoculations with publication-title: Plant Soil – volume: 175 start-page: 818 year: 2012 ident: 10.1016/j.scienta.2020.109581_bib0225 article-title: Yield promotion and phosphorus solubilization by plant growth-promoting rhizobacteria in extensive wheat production in Turkey publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201200054 – volume: 40 start-page: 21 year: 2014 ident: 10.1016/j.scienta.2020.109581_bib0265 article-title: Walnut growth and soil quality after inoculating soil containing rock phosphate with phosphate-solubilizing bacteria publication-title: Sci. Asia doi: 10.2306/scienceasia1513-1874.2014.40.021 – volume: 14 start-page: 337 year: 2012 ident: 10.1016/j.scienta.2020.109581_bib0270 article-title: Comparative effectiveness of Enterobacter aerogenes and Pseudomonas fluorescens for mitigating the depressing effect of brackish water on maize publication-title: Int. J. Agric. Biol. – volume: 321 start-page: 305 year: 2009 ident: 10.1016/j.scienta.2020.109581_bib0190 article-title: Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms publication-title: Plant Soil doi: 10.1007/s11104-009-9895-2 – volume: 42 start-page: 565 year: 2004 ident: 10.1016/j.scienta.2020.109581_bib0155 article-title: Plant growth-promoting bacteria that confer resistance in tomato to salt stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2004.05.009 – volume: 108 start-page: 304 year: 2016 ident: 10.1016/j.scienta.2020.109581_bib0100 article-title: Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.07.023 – volume: 125 start-page: 155 year: 2005 ident: 10.1016/j.scienta.2020.109581_bib0250 article-title: Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial publication-title: Geoderma doi: 10.1016/j.geoderma.2004.07.003 – volume: 9 start-page: e87976 year: 2014 ident: 10.1016/j.scienta.2020.109581_bib0045 article-title: Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage publication-title: PLoS One doi: 10.1371/journal.pone.0087976 – volume: 55 start-page: 27 year: 2004 ident: 10.1016/j.scienta.2020.109581_bib0145 article-title: Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh010 – volume: 111 start-page: 38 year: 2006 ident: 10.1016/j.scienta.2020.109581_bib0170 article-title: Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2006.09.002 – volume: 69 start-page: 413 year: 2014 ident: 10.1016/j.scienta.2020.109581_bib0015 article-title: Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.11.015 – volume: 52 start-page: 111 year: 2006 ident: 10.1016/j.scienta.2020.109581_bib0205 article-title: Growth and yield response of spring wheat (Triticum aestivum L.) to inoculation with rhizobacteria publication-title: Plant Soil Environ. doi: 10.17221/3354-PSE – volume: 46 start-page: 932 year: 2011 ident: 10.1016/j.scienta.2020.109581_bib0260 article-title: Growth, nutrient uptake and yield promotion of broccoli by plant growth promoting rhizobacteria with manure publication-title: HortScience doi: 10.21273/HORTSCI.46.6.932 – volume: 200 start-page: 178 year: 2016 ident: 10.1016/j.scienta.2020.109581_bib0210 article-title: Bacillus pumilus alleviates boron toxicity in tomato (Lycopersicum esculentum L.) due to enhanced antioxidant enzymatic activity publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2016.01.024 – volume: 255 start-page: 571 year: 2003 ident: 10.1016/j.scienta.2020.109581_bib0240 article-title: Plant growth promoting rhizobacteria as biofertilizers publication-title: Plant Soil doi: 10.1023/A:1026037216893 – volume: 124 start-page: 62 year: 2010 ident: 10.1016/j.scienta.2020.109581_bib0075 article-title: Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2009.12.012 – volume: 312 start-page: 25 year: 2008 ident: 10.1016/j.scienta.2020.109581_bib0185 article-title: Effect of Rhizobium/Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba publication-title: Plant Soil doi: 10.1007/s11104-008-9606-4 – volume: 99 start-page: 1271 year: 2005 ident: 10.1016/j.scienta.2020.109581_bib0065 article-title: Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2005.02738.x – volume: 83 start-page: 352 year: 2013 ident: 10.1016/j.scienta.2020.109581_bib0105 article-title: Phytate addition to soil induces changes in the abundance and expression of Bacillus ß-propeller phytase genes in the rhizosphere publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2012.01480.x – volume: 65 start-page: 497 year: 2004 ident: 10.1016/j.scienta.2020.109581_bib0025 article-title: Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-004-1696-1 – volume: 59 start-page: 276 year: 2014 ident: 10.1016/j.scienta.2020.109581_bib0090 article-title: Reducing the reliance on nitrogen fertilizer for wheat production publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2013.12.001 – volume: 36 start-page: 1353 year: 2014 ident: 10.1016/j.scienta.2020.109581_bib0125 article-title: Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain Bacillus subtilis 21-1 under two different soil conditions publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-014-1514-z – volume: 163 start-page: 173 year: 2008 ident: 10.1016/j.scienta.2020.109581_bib0005 article-title: Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities publication-title: Microbiol. Res. doi: 10.1016/j.micres.2006.04.001 – volume: 50 start-page: 373 year: 2010 ident: 10.1016/j.scienta.2020.109581_bib0255 article-title: Diversity of nitrogenase (nifH) genes pool in soybean field soil after continuous and rotational cropping publication-title: J. Basic Microbiol. doi: 10.1002/jobm.200900317 – volume: 159 start-page: 371 year: 2004 ident: 10.1016/j.scienta.2020.109581_bib0060 article-title: Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria publication-title: Microbiol. Res. doi: 10.1016/j.micres.2004.08.004 – volume: 16 start-page: 263 year: 2018 ident: 10.1016/j.scienta.2020.109581_bib0120 article-title: The microbial nitrogen-cycling network publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2018.9 – volume: 23 start-page: 55 year: 2000 ident: 10.1016/j.scienta.2020.109581_bib0245 article-title: Maize growth and yield responses to seed-inoculated N2-fixing bacteria under dryland production conditions publication-title: J. Plant Nutr. doi: 10.1080/01904160009381997 – start-page: 3 year: 1988 ident: 10.1016/j.scienta.2020.109581_bib0200 article-title: The influence of host plant energy supply on nitrogen fixation – volume: 194 start-page: 37 year: 1997 ident: 10.1016/j.scienta.2020.109581_bib0140 article-title: Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice publication-title: Plant Soil doi: 10.1023/A:1004295714181 – volume: 4 start-page: 85 year: 2010 ident: 10.1016/j.scienta.2020.109581_bib0160 article-title: Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen-free hydroponics condition publication-title: Aust. J. Crop Sci. – volume: 79 start-page: 243 year: 1997 ident: 10.1016/j.scienta.2020.109581_bib0275 article-title: Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr.] growth and physiology at suboptimal root zone temperatures publication-title: Ann. Bot. doi: 10.1006/anbo.1996.0332 – volume: 124 start-page: 120 year: 2016 ident: 10.1016/j.scienta.2020.109581_bib0115 article-title: Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+ publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2015.12.011 – start-page: 215 year: 2015 ident: 10.1016/j.scienta.2020.109581_bib0055 article-title: Biological nitrogen fixation – volume: 24 start-page: 169 year: 2004 ident: 10.1016/j.scienta.2020.109581_bib0135 article-title: Effect of inoculation of Bacillus licheniformis on tomato and pepper publication-title: Agronmie doi: 10.1051/agro:2004020 – volume: 21 start-page: 541 year: 2004 ident: 10.1016/j.scienta.2020.109581_bib0180 article-title: The natural history of nitrogen fixation publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msh047 – volume: 6 start-page: 63 year: 2001 ident: 10.1016/j.scienta.2020.109581_bib0130 article-title: Effect of basal application of urea on inorganic nitrogen in soil profile publication-title: J. China Agric. Uni. – year: 2008 ident: 10.1016/j.scienta.2020.109581_bib0030 – volume: 53 start-page: 1263 year: 1987 ident: 10.1016/j.scienta.2020.109581_bib0220 article-title: Selective process for efficient isolation of soil Bacillus spp publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.53.6.1263-1266.1987 – volume: 34 start-page: 34 year: 2010 ident: 10.1016/j.scienta.2020.109581_bib0110 article-title: Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability and ionic composition of strawberry under saline conditions publication-title: J. Plant Nutr. doi: 10.1080/01904167.2011.531357 – volume: 63 start-page: 3415 year: 2012 ident: 10.1016/j.scienta.2020.109581_bib0070 article-title: Microbial amelioration of crop salinity stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers033 – volume: 279 start-page: 15 year: 2008 ident: 10.1016/j.scienta.2020.109581_bib0035 article-title: Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2007.00975.x – volume: 38 start-page: 327 year: 2014 ident: 10.1016/j.scienta.2020.109581_bib0230 article-title: Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings publication-title: Turk. J. Agric. For. doi: 10.3906/tar-1308-62 – volume: 20 start-page: 619 year: 2007 ident: 10.1016/j.scienta.2020.109581_bib0095 article-title: Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42 publication-title: Mol. Plant Microbe Int. doi: 10.1094/MPMI-20-6-0619 – volume: 200 start-page: 205 year: 1998 ident: 10.1016/j.scienta.2020.109581_bib0050 article-title: Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions publication-title: Plant Soil doi: 10.1023/A:1004358100856 – volume: 5 start-page: 47 year: 1973 ident: 10.1016/j.scienta.2020.109581_bib0085 article-title: Application of the acetylene-ethylene assay for measurement of nitrogen fixation publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(73)90093-X – volume: 28 start-page: 1327 year: 2012 ident: 10.1016/j.scienta.2020.109581_bib0020 article-title: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-011-0979-9 – start-page: 103 year: 2005 ident: 10.1016/j.scienta.2020.109581_bib0010 article-title: Bacteria/plant growth promotion – volume: 77 start-page: 43 year: 2002 ident: 10.1016/j.scienta.2020.109581_bib0215 article-title: Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields publication-title: Field Crop Res. doi: 10.1016/S0378-4290(02)00048-5 – volume: 48 start-page: 505 year: 2009 ident: 10.1016/j.scienta.2020.109581_bib0040 article-title: Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2009.02566.x – volume: 156 start-page: 145 year: 2001 ident: 10.1016/j.scienta.2020.109581_bib0175 article-title: Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation publication-title: Microbiol. Res. doi: 10.1078/0944-5013-00095 – volume: 28 start-page: 1693 year: 2008 ident: 10.1016/j.scienta.2020.109581_bib0195 article-title: Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium publication-title: Tree Physiol. doi: 10.1093/treephys/28.11.1693 – volume: 11 start-page: plz036 year: 2019 ident: 10.1016/j.scienta.2020.109581_bib0150 article-title: Bacillus pumilus increases boron uptake and inhibits rapeseed growth under boron supply irrespective of phosphorus fertilization publication-title: AoB Plants doi: 10.1093/aobpla/plz036 – volume: 76 start-page: 1320 year: 2010 ident: 10.1016/j.scienta.2020.109581_bib0165 article-title: Selection of a Bacillus pumilus strain highly active against Ceratitis capitata (Wiedemann) larvae publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01624-09 – volume: 287 start-page: 43 year: 2006 ident: 10.1016/j.scienta.2020.109581_bib0235 article-title: Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions publication-title: Plant Soil doi: 10.1007/s11104-006-9057-8 – volume: 24 start-page: 1187 year: 2008 ident: 10.1016/j.scienta.2020.109581_bib0080 article-title: Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.) publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-007-9591-4 |
SSID | ssj0001149 |
Score | 2.5383544 |
Snippet | •Bacillus pumilus improves tomato growth and N uptake under N fertilization.•B. pumilus does not influence tomato growth or N uptake under no N... Some plant growth-promoting bacteria (PGPB) are capable of fixing atmospheric N₂ and can be used to reduce nitrogen (N) fertilizer application in agriculture.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109581 |
SubjectTerms | Aetylene reduction Bacillus pumilus fertilizer application gene expression greenhouses N uptake nifH gene nitrogen nitrogen fertilizers nitrogen fixation nitrogenase nutrition PGPB soil Solanum lycopersicum Tomato tomatoes Transpiration urea |
Title | Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization |
URI | https://dx.doi.org/10.1016/j.scienta.2020.109581 https://www.proquest.com/docview/2540487457 |
Volume | 272 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBehe9keStttrO1aVNirk9iRLPsxKytpC3nZAnkTsj6ytK5tEvu1f3vvbLmhhREYGPyBJMxJuvsd97sTIT_CiXaGiTSIJhzDjM4EqbZpoACMJ1yxOO6qfc7j2YLdLflyQK77XBikVXrd3-n0Vlv7LyMvzVG1Xo9-Y1APwACYMHgYp0vMYGcCaX3D5x3NA_B-2kUSWICtd1k8o4ehTzoENzFqCyvxJPyXfXqnqVvzc3NEDj1upNPu147JwBYn5NN0tfG1M-xn4n4qvc7zZkur5mnd3luund1SQHl0BQ53_ZeqwlDYxpsSVg5tqlo9Wlo6WpcAXUta5ciLoZhZttk1c0i-zn3G5heyuPn153oW-GMUAs04r4NJZLJUhNZq4cAV1kJliDMMOKdM27FTTBuRwhUy44zAtuBaughwN7cAyCZfyUFRFvYboVmSxHGahVpjUR4bZTHnsYmUTgwPnXKnhPXCk9rXGMejLnLZk8kepJe5RJnLTuanZPjareqKbOzrkPQzI9-sFgmGYF_Xq34mJewkDI-owpbNVoKrDOpMMC7O_n_4c_IR39C6hfw7Oag3jb0A2FJnl-26vCQfprf3s_kLs4_u0Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8sD2MMEAjW0wT-I1bZPa-XjsKlAZ0BdaqW-W4w8oy5KoTf7_nROnCCSEhBQpUeKLorN99zvd3S8A5_5IGkWjxAtGzKYZjfISqRNPIBiPmaBh2LJ9zsLpgv5ZsuUOTLpeGFtW6Wx_a9Mba-3uDJw2B-VqNbizST0EA-jC8GKYLD_ArmWnoj3YHV9dT2dbg4yQP2mTCdSzAk-NPIPHvus7xEgxaLiVWOy_5qJeGOvGA13uw2cHHcm4_boD2NH5F_g0vl87-gx9COa3kKssqzekrP-tmnNTbqc3BIEeuceYu3ogIlcEd_K6wMVD6rISfzUpDKkKRK8FKTNbGkNsc9n6aZix9deZa9o8gsXlxXwy9dyfFDxJGau8UaDSJPK1lpHBaFhGIrVQQ2F8SqUeGkGlihI8fKqMiuxYjC5NgNCbacRko2Po5UWuvwJJ4zgMk9SX0vLy6CANGQtVIGSsmG-EOQHaKY9LRzNu_3aR8a6e7JE7nXOrc97q_AT6W7Gy5dl4SyDuZoY_WzAcfcFbor-6meS4mWyGROS6qDcco2W0aBFl0bf3v_4n7E3ntzf85mp2_R0-2ifW2fnsB_Sqda1PEcVU6Zlbpf8B3wbxgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacillus+pumilus+promotes+the+growth+and+nitrogen+uptake+of+tomato+plants+under+nitrogen+fertilization&rft.jtitle=Scientia+horticulturae&rft.au=Masood%2C+Sajid&rft.au=Zhao%2C+Xue+Qiang&rft.au=Shen%2C+Ren+Fang&rft.date=2020-10-15&rft.issn=0304-4238&rft.volume=272&rft.spage=109581&rft_id=info:doi/10.1016%2Fj.scienta.2020.109581&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scienta_2020_109581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4238&client=summon |