p53 Pre- and Post-Binding Event Theories Revisited: Stresses Reveal Specific and Dynamic p53-Binding Patterns on the p21 Gene Promoter

p53 is a master transcription factor that prevents neoplasia and genomic instability. It is an important target for anticancer drug design. Understanding the molecular mechanisms behind its transcriptional activities in normal cells is a prerequisite to further understand the deregulation effected b...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 69; no. 21; pp. 8463 - 8471
Main Authors Millau, Jean-François, Bastien, Nathalie, Bouchard, Éric F., Drouin, Régen
Format Journal Article
LanguageEnglish
Published United States 01.11.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract p53 is a master transcription factor that prevents neoplasia and genomic instability. It is an important target for anticancer drug design. Understanding the molecular mechanisms behind its transcriptional activities in normal cells is a prerequisite to further understand the deregulation effected by mutant p53 in cancerous cells. Currently, how p53 coordinates transcription programs in response to stress remains unclear. One theory proposes that stresses induce pre-binding events that direct p53 to bind to specific response elements, whereas a second posits that, in response to stress, p53 binds most response elements and post-binding events then regulate transcription initiation. It is critical to establish the relevance of both theories and investigate whether stresses induce specific p53-binding patterns correlated with effector gene induction. Using unique in cellulo genomic footprinting experiments, we studied p53 binding to the five response elements of p21 in response to stresses and monitored p21 mRNA variant transcription. We show clear footprints of p53 bound to response elements in living cells and reveal that the binding of p53 to response elements is transient, subject to dynamic changes during stress responses, and influenced by response element pentamer orientations. We show further that stresses lead to specific p53-binding patterns correlated with particular p21 mRNA variant transcription profiles and that p53 binding is necessary but not sufficient to induce p21 transcription. Our results indicate that pre- and post-binding events act together to regulate adapted stress responses; this paves the way to the unification of pre- and post-binding event theories. [Cancer Res 2009;69(21):8463–71]
AbstractList p53 is a master transcription factor that prevents neoplasia and genomic instability. It is an important target for anticancer drug design. Understanding the molecular mechanisms behind its transcriptional activities in normal cells is a prerequisite to further understand the deregulation effected by mutant p53 in cancerous cells. Currently, how p53 coordinates transcription programs in response to stress remains unclear. One theory proposes that stresses induce pre-binding events that direct p53 to bind to specific response elements, whereas a second posits that, in response to stress, p53 binds most response elements and post-binding events then regulate transcription initiation. It is critical to establish the relevance of both theories and investigate whether stresses induce specific p53-binding patterns correlated with effector gene induction. Using unique in cellulo genomic footprinting experiments, we studied p53 binding to the five response elements of p21 in response to stresses and monitored p21 mRNA variant transcription. We show clear footprints of p53 bound to response elements in living cells and reveal that the binding of p53 to response elements is transient, subject to dynamic changes during stress responses, and influenced by response element pentamer orientations. We show further that stresses lead to specific p53-binding patterns correlated with particular p21 mRNA variant transcription profiles and that p53 binding is necessary but not sufficient to induce p21 transcription. Our results indicate that pre- and post-binding events act together to regulate adapted stress responses; this paves the way to the unification of pre- and post-binding event theories.p53 is a master transcription factor that prevents neoplasia and genomic instability. It is an important target for anticancer drug design. Understanding the molecular mechanisms behind its transcriptional activities in normal cells is a prerequisite to further understand the deregulation effected by mutant p53 in cancerous cells. Currently, how p53 coordinates transcription programs in response to stress remains unclear. One theory proposes that stresses induce pre-binding events that direct p53 to bind to specific response elements, whereas a second posits that, in response to stress, p53 binds most response elements and post-binding events then regulate transcription initiation. It is critical to establish the relevance of both theories and investigate whether stresses induce specific p53-binding patterns correlated with effector gene induction. Using unique in cellulo genomic footprinting experiments, we studied p53 binding to the five response elements of p21 in response to stresses and monitored p21 mRNA variant transcription. We show clear footprints of p53 bound to response elements in living cells and reveal that the binding of p53 to response elements is transient, subject to dynamic changes during stress responses, and influenced by response element pentamer orientations. We show further that stresses lead to specific p53-binding patterns correlated with particular p21 mRNA variant transcription profiles and that p53 binding is necessary but not sufficient to induce p21 transcription. Our results indicate that pre- and post-binding events act together to regulate adapted stress responses; this paves the way to the unification of pre- and post-binding event theories.
p53 is a master transcription factor that prevents neoplasia and genomic instability. It is an important target for anticancer drug design. Understanding the molecular mechanisms behind its transcriptional activities in normal cells is a prerequisite to further understand the deregulation effected by mutant p53 in cancerous cells. Currently, how p53 coordinates transcription programs in response to stress remains unclear. One theory proposes that stresses induce pre-binding events that direct p53 to bind to specific response elements, whereas a second posits that, in response to stress, p53 binds most response elements and post-binding events then regulate transcription initiation. It is critical to establish the relevance of both theories and investigate whether stresses induce specific p53-binding patterns correlated with effector gene induction. Using unique in cellulo genomic footprinting experiments, we studied p53 binding to the five response elements of p21 in response to stresses and monitored p21 mRNA variant transcription. We show clear footprints of p53 bound to response elements in living cells and reveal that the binding of p53 to response elements is transient, subject to dynamic changes during stress responses, and influenced by response element pentamer orientations. We show further that stresses lead to specific p53-binding patterns correlated with particular p21 mRNA variant transcription profiles and that p53 binding is necessary but not sufficient to induce p21 transcription. Our results indicate that pre- and post-binding events act together to regulate adapted stress responses; this paves the way to the unification of pre- and post-binding event theories. [Cancer Res 2009;69(21):8463–71]
p53 is a master transcription factor that prevents neoplasia and genomic instability. It is an important target for anticancer drug design. Understanding the molecular mechanisms behind its transcriptional activities in normal cells is a prerequisite to further understand the deregulation effected by mutant p53 in cancerous cells. Currently, how p53 coordinates transcription programs in response to stress remains unclear. One theory proposes that stresses induce pre-binding events that direct p53 to bind to specific response elements, whereas a second posits that, in response to stress, p53 binds most response elements and post-binding events then regulate transcription initiation. It is critical to establish the relevance of both theories and investigate whether stresses induce specific p53-binding patterns correlated with effector gene induction. Using unique in cellulo genomic footprinting experiments, we studied p53 binding to the five response elements of p21 in response to stresses and monitored p21 mRNA variant transcription. We show clear footprints of p53 bound to response elements in living cells and reveal that the binding of p53 to response elements is transient, subject to dynamic changes during stress responses, and influenced by response element pentamer orientations. We show further that stresses lead to specific p53-binding patterns correlated with particular p21 mRNA variant transcription profiles and that p53 binding is necessary but not sufficient to induce p21 transcription. Our results indicate that pre- and post-binding events act together to regulate adapted stress responses; this paves the way to the unification of pre- and post-binding event theories.
Author Bouchard, Éric F.
Bastien, Nathalie
Millau, Jean-François
Drouin, Régen
Author_xml – sequence: 1
  givenname: Jean-François
  surname: Millau
  fullname: Millau, Jean-François
– sequence: 2
  givenname: Nathalie
  surname: Bastien
  fullname: Bastien, Nathalie
– sequence: 3
  givenname: Éric F.
  surname: Bouchard
  fullname: Bouchard, Éric F.
– sequence: 4
  givenname: Régen
  surname: Drouin
  fullname: Drouin, Régen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19843844$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFOGzEQhq0KVBLaRyjyjZODvbbZXTilKaWVIogKPVve9Wwx2rUX24nEC_S56xCaAwdO9sx8_z_S_FN04LwDhL4wOmNMVmeU0opIURazxfyG0JoUlJ9_QBMmeUVKIeQBmuyZIzSN8TGXklH5ER2xuhK8EmKC_o6S41UAgrUzeOVjIl-tM9b9wVcbcAnfP4APFiL-BRsbbQJzge9SgBh3PdA9vhuhtZ1tXzy-PTs95H823lutdEoQXMTe4fQAeCwYvgYHebMffB59Qoed7iN8fn2P0e_vV_eLH2R5e_1zMV-SVkiZSAG10edQNV1ZdkALTZtCQKO10Y1oa2NMYRpes47KXHBRG6godKYTglXQGH6MTne-Y_BPa4hJDTa20PfagV9HVXLBGK-FzOTJK7luBjBqDHbQ4Vn9P10GLndAG3yMATrV2qST9S4FbXvFqNoGpbYhqG0IKgelaK22QWW1fKPeL3hX9w-YtJeU
CitedBy_id crossref_primary_10_1016_j_tig_2009_12_003
crossref_primary_10_1371_journal_pcbi_1000878
crossref_primary_10_4236_abc_2012_21005
crossref_primary_10_1016_j_taap_2015_06_008
crossref_primary_10_1093_nar_gkt504
crossref_primary_10_1002_bies_200900160
crossref_primary_10_1038_jid_2010_150
crossref_primary_10_1093_nar_gkq1209
crossref_primary_10_1002_jcb_23377
crossref_primary_10_1158_0008_5472_CAN_12_0949
crossref_primary_10_1093_nar_gkq764
crossref_primary_10_1016_j_ijmm_2013_06_001
Cites_doi 10.1093/nar/gkl861
10.1016/S1097-2765(03)00359-9
10.1101/gad.14.8.981
10.1038/sj.onc.1205191
10.1038/nrm2451
10.1074/jbc.M601083200
10.1002/humu.20269
10.1126/science.1092472
10.1158/0008-5472.CAN-08-0865
10.1074/jbc.M410233200
10.1002/humu.10081
10.1016/S1097-2765(01)00367-7
10.1006/excr.1998.4319
10.1016/j.jmb.2005.03.014
10.1093/nar/gkj460
10.1038/nrm2395
10.1126/science.274.5289.1001
10.1128/MCB.00322-06
10.1093/nar/gkm890
10.1038/sj.cdd.4402196
10.1038/sj.onc.1209195
10.1093/hmg/ddg082
10.1038/onc.2008.37
10.1038/nrc2604
10.1038/nrc864
10.1016/j.cell.2005.10.043
10.1016/j.mrrev.2008.06.002
10.1083/jcb.200512059
10.1038/416560a
10.1038/ng1293
10.1038/ng0492-45
10.1016/j.molcel.2007.05.026
10.1016/0092-8674(93)90719-7
10.1016/S0092-8674(00)00073-8
10.1016/j.jmb.2005.06.033
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/0008-5472.CAN-09-2036
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 8471
ExternalDocumentID 19843844
10_1158_0008_5472_CAN_09_2036
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
.55
18M
29B
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
6J9
8WZ
A6W
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AFUMD
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OHT
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
VH1
W2D
W8F
WH7
WOQ
X7M
XJT
YKV
YZZ
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VXZ
7X8
ID FETCH-LOGICAL-c455t-2e9da6e8bf77fe02a0b24ebaadab4c9ddd2db391f059dd349de80efdf4418ebd3
ISSN 0008-5472
1538-7445
IngestDate Mon Jul 21 11:41:21 EDT 2025
Wed Feb 19 01:46:14 EST 2025
Thu Apr 24 23:02:57 EDT 2025
Tue Jul 01 03:44:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-2e9da6e8bf77fe02a0b24ebaadab4c9ddd2db391f059dd349de80efdf4418ebd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aacrjournals.org/cancerres/article-pdf/69/21/8463/2618196/8463.pdf
PMID 19843844
PQID 734113945
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_734113945
pubmed_primary_19843844
crossref_citationtrail_10_1158_0008_5472_CAN_09_2036
crossref_primary_10_1158_0008_5472_CAN_09_2036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2009
References Flores (2022061701325758800_bib14) 2002; 416
Knights (2022061701325758800_bib13) 2006; 173
Samuels-Lev (2022061701325758800_bib15) 2001; 8
Donner (2022061701325758800_bib24) 2007; 27
Loignon (2022061701325758800_bib28) 1997; 57
Weinberg (2022061701325758800_bib16) 2005; 348
Olivier (2022061701325758800_bib1) 2002; 19
2022061701325758800_bib8
Oda (2022061701325758800_bib12) 2000; 102
Murray-Zmijewski (2022061701325758800_bib11) 2008; 9
Shaked (2022061701325758800_bib21) 2008; 68
el-Deiry (2022061701325758800_bib25) 1995; 55
Nozell (2022061701325758800_bib27) 2002; 21
Espinosa (2022061701325758800_bib23) 2003; 12
Radhakrishnan (2022061701325758800_bib29) 2006; 25
Millau (2022061701325758800_bib6) 2009; 681
Riley (2022061701325758800_bib4) 2008; 9
Vousden (2022061701325758800_bib5) 2002; 2
Gorina (2022061701325758800_bib19) 1996; 274
Hamroun (2022061701325758800_bib2) 2006; 27
Lowe (2022061701325758800_bib7) 1993; 74
Wei (2022061701325758800_bib20) 2006; 124
Deng (2022061701325758800_bib36) 2003; 12 Spec No 1
Olsson (2022061701325758800_bib32) 2007; 14
Ma (2022061701325758800_bib33) 2007; 35
Krieg (2022061701325758800_bib10) 2006; 26
Batchelor (2022061701325758800_bib37) 2009; 9
Zhao (2022061701325758800_bib9) 2000; 14
Rochette (2022061701325758800_bib30) 2005; 352
Drouin (2022061701325758800_bib31) 2001; 148
Espinosa (2022061701325758800_bib22) 2008; 27
Dhar (2022061701325758800_bib39) 2006; 281
Lahav (2022061701325758800_bib34) 2004; 36
el-Deiry (2022061701325758800_bib3) 1992; 1
Saramaki (2022061701325758800_bib26) 2006; 34
Vassilev (2022061701325758800_bib17) 2004; 303
Gartel (2022061701325758800_bib35) 1999; 246
Thompson (2022061701325758800_bib18) 2004; 279
Ouellet (2022061701325758800_bib38) 2006; 34
Cancer Res. 2012 Apr 15;72(8):2152
References_xml – volume: 34
  start-page: 6472
  year: 2006
  ident: 2022061701325758800_bib38
  article-title: Transcriptional regulation of the cyclin-dependent kinase inhibitor 1A (p21) gene by NFI in proliferating human cells
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl861
– ident: 2022061701325758800_bib8
– volume: 148
  start-page: 175
  year: 2001
  ident: 2022061701325758800_bib31
  article-title: In vivo DNA analysis
  publication-title: Methods Mol Biol
– volume: 12
  start-page: 1015
  year: 2003
  ident: 2022061701325758800_bib23
  article-title: p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00359-9
– volume: 14
  start-page: 981
  year: 2000
  ident: 2022061701325758800_bib9
  article-title: Analysis of p53-regulated gene expression patterns using oligonucleotide arrays
  publication-title: Genes Dev
  doi: 10.1101/gad.14.8.981
– volume: 21
  start-page: 1285
  year: 2002
  ident: 2022061701325758800_bib27
  article-title: p21B, a variant of p21(Waf1/Cip1), is induced by the p53 family
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1205191
– volume: 9
  start-page: 702
  year: 2008
  ident: 2022061701325758800_bib11
  article-title: A complex barcode underlies the heterogeneous response of p53 to stress
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2451
– volume: 281
  start-page: 21698
  year: 2006
  ident: 2022061701325758800_bib39
  article-title: Specificity protein 1-dependent p53-mediated suppression of human manganese superoxide dismutase gene expression
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M601083200
– volume: 27
  start-page: 14
  year: 2006
  ident: 2022061701325758800_bib2
  article-title: The UMD TP53 database and website: update and revisions
  publication-title: Hum Mutat
  doi: 10.1002/humu.20269
– volume: 303
  start-page: 844
  year: 2004
  ident: 2022061701325758800_bib17
  article-title: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2
  publication-title: Science
  doi: 10.1126/science.1092472
– volume: 68
  start-page: 9671
  year: 2008
  ident: 2022061701325758800_bib21
  article-title: Chromatin immunoprecipitation-on-Chip reveals stress-dependent p53 occupancy in primary normal cells but not in established cell lines
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-0865
– volume: 279
  start-page: 53015
  year: 2004
  ident: 2022061701325758800_bib18
  article-title: Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M410233200
– volume: 19
  start-page: 607
  year: 2002
  ident: 2022061701325758800_bib1
  article-title: The IARC TP53 database: new online mutation analysis and recommendations to users
  publication-title: Hum Mutat
  doi: 10.1002/humu.10081
– volume: 8
  start-page: 781
  year: 2001
  ident: 2022061701325758800_bib15
  article-title: ASPP proteins specifically stimulate the apoptotic function of p53
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(01)00367-7
– volume: 57
  start-page: 3390
  year: 1997
  ident: 2022061701325758800_bib28
  article-title: A p53-independent pathway for induction of p21waf1cip1 and concomitant G1 arrest in UV-irradiated human skin fibroblasts
  publication-title: Cancer Res
– volume: 246
  start-page: 280
  year: 1999
  ident: 2022061701325758800_bib35
  article-title: Transcriptional regulation of the p21((WAF1/CIP1)) gene
  publication-title: Exp Cell Res
  doi: 10.1006/excr.1998.4319
– volume: 348
  start-page: 589
  year: 2005
  ident: 2022061701325758800_bib16
  article-title: Comparative binding of p53 to its promoter and DNA recognition elements
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.03.014
– volume: 34
  start-page: 543
  year: 2006
  ident: 2022061701325758800_bib26
  article-title: Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D3 receptor
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj460
– volume: 9
  start-page: 402
  year: 2008
  ident: 2022061701325758800_bib4
  article-title: Transcriptional control of human p53-regulated genes
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2395
– volume: 274
  start-page: 1001
  year: 1996
  ident: 2022061701325758800_bib19
  article-title: Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2
  publication-title: Science
  doi: 10.1126/science.274.5289.1001
– volume: 26
  start-page: 7030
  year: 2006
  ident: 2022061701325758800_bib10
  article-title: Functional analysis of p53 binding under differential stresses
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00322-06
– volume: 35
  start-page: 7733
  year: 2007
  ident: 2022061701325758800_bib33
  article-title: Probing potential binding modes of the p53 tetramer to DNA based on the symmetries encoded in p53 response elements
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm890
– volume: 55
  start-page: 2910
  year: 1995
  ident: 2022061701325758800_bib25
  article-title: Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues
  publication-title: Cancer Res
– volume: 14
  start-page: 1561
  year: 2007
  ident: 2022061701325758800_bib32
  article-title: How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression?
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4402196
– volume: 25
  start-page: 1812
  year: 2006
  ident: 2022061701325758800_bib29
  article-title: Multiple alternate p21 transcripts are regulated by p53 in human cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209195
– volume: 12 Spec No 1
  start-page: R113
  year: 2003
  ident: 2022061701325758800_bib36
  article-title: Roles of BRCA1 in DNA damage repair: a link between development and cancer
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddg082
– volume: 27
  start-page: 4013
  year: 2008
  ident: 2022061701325758800_bib22
  article-title: Mechanisms of regulatory diversity within the p53 transcriptional network
  publication-title: Oncogene
  doi: 10.1038/onc.2008.37
– volume: 9
  start-page: 371
  year: 2009
  ident: 2022061701325758800_bib37
  article-title: The ups and downs of p53: understanding protein dynamics in single cells
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2604
– volume: 2
  start-page: 594
  year: 2002
  ident: 2022061701325758800_bib5
  article-title: Live or let die: the cell's response to p53
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc864
– volume: 124
  start-page: 207
  year: 2006
  ident: 2022061701325758800_bib20
  article-title: A global map of p53 transcription-factor binding sites in the human genome
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.043
– volume: 681
  start-page: 118
  year: 2009
  ident: 2022061701325758800_bib6
  article-title: p53 transcriptional activities: a general overview and some thoughts
  publication-title: Mutat Res
  doi: 10.1016/j.mrrev.2008.06.002
– volume: 173
  start-page: 533
  year: 2006
  ident: 2022061701325758800_bib13
  article-title: Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200512059
– volume: 416
  start-page: 560
  year: 2002
  ident: 2022061701325758800_bib14
  article-title: p63 and p73 are required for p53-dependent apoptosis in response to DNA damage
  publication-title: Nature
  doi: 10.1038/416560a
– volume: 36
  start-page: 147
  year: 2004
  ident: 2022061701325758800_bib34
  article-title: Dynamics of the p53-2 feedback loop in individual cells
  publication-title: Nat Genet
  doi: 10.1038/ng1293
– volume: 1
  start-page: 45
  year: 1992
  ident: 2022061701325758800_bib3
  article-title: Definition of a consensus binding site for p53
  publication-title: Nat Genet
  doi: 10.1038/ng0492-45
– volume: 27
  start-page: 121
  year: 2007
  ident: 2022061701325758800_bib24
  article-title: CDK8 is a stimulus-specific positive coregulator of p53 target genes
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.05.026
– volume: 74
  start-page: 957
  year: 1993
  ident: 2022061701325758800_bib7
  article-title: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90719-7
– volume: 102
  start-page: 849
  year: 2000
  ident: 2022061701325758800_bib12
  article-title: p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00073-8
– volume: 352
  start-page: 44
  year: 2005
  ident: 2022061701325758800_bib30
  article-title: SW480, a p53 double-mutant cell line retains proficiency for some p53 functions
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.06.033
– reference: - Cancer Res. 2012 Apr 15;72(8):2152
SSID ssj0005105
Score 2.030332
Snippet p53 is a master transcription factor that prevents neoplasia and genomic instability. It is an important target for anticancer drug design. Understanding the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 8463
SubjectTerms Blotting, Western
Cells, Cultured
Cyclin-Dependent Kinase Inhibitor p21 - genetics
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
DNA Footprinting
DNA Primers - chemistry
Fibroblasts - metabolism
Fluorescent Antibody Technique
Humans
Neoplasms - metabolism
Neoplasms - pathology
Promoter Regions, Genetic
Protein Binding
Response Elements - genetics
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
RNA, Messenger - metabolism
Skin - cytology
Skin - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic - genetics
Transcriptional Activation
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Title p53 Pre- and Post-Binding Event Theories Revisited: Stresses Reveal Specific and Dynamic p53-Binding Patterns on the p21 Gene Promoter
URI https://www.ncbi.nlm.nih.gov/pubmed/19843844
https://www.proquest.com/docview/734113945
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDddHvKBW5WSOnbjcFstoBVokUC70t4iu3ZYpJJEbXLhB_Cb9ucx40cTUFc8LlHlNBOp83U8Y8_3mZCXepmnXOVZIgqpEy7xNMBcsaTIUmMyZllmkO98-nF5cs7fX4iLyeRq1LXUd3q--r6XV_I_XoUx8CuyZP_BszujMACfwb9wBQ_D9a983IoMeygSz_Zvth3WuY6l4nSZPEsRSmFHUMFtYnegs6eH-FGUFUayJTYMOSvGn1A_A9M7Y63T4KzjxsKsZQs8eRkpVtjLF_p7B7mDld3MgojQpdsl9u0eLhyt1_PR4gMyEVXvu2xUnWAW7Xbu8-brsHyvtij96qeC7hLqhqERoOkdaywG9KFN-c2m6b06wmffCvAlUN7iAkcRmH5ufhqCcs697GSM2v6Al4BOT7IOMRgyqmz_5CCk76aUieA5mx8f4TJVglux4--DJ9pvDjGLQvJMen3K31S5460b5CaDAgUj7IdPg049pq2BLwZvfbX3nU6v1lv5NSm6ptJxGc_ZXXInlCr0yOPuHpnY-j65dRqaMR6QH4ARivCjABw6hh918KMRfnQHv9c0go968NEIPmcjgI-OwEcj-GhTo0EK4KMIPhrB95Ccv3t7dnyShGM9khUXokuYLYxaWqmrPK9sylSqGbdaKaM0XxXGGGZ0ViwqyPwhXvDCWJnaylSQuUurTfaIHNRNbZ8QqiF9NgYlICXjItdSaqsUzEIWFwKUmhIef9dyFTTv8eiVdelqXyGx90KW6JkSPFOmRYmemZL57rHWi7786QEanVZCeMY9N1Xbpt-WOWSJUGRxMSWPvTMHi8H5h9feeUpuD3-IZ-Sg2_T2OeTAnX7h4PYTU7qs2g
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p53+Pre-+and+post-binding+event+theories+revisited%3A+stresses+reveal+specific+and+dynamic+p53-binding+patterns+on+the+p21+gene+promoter&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Millau%2C+Jean-Fran%C3%A7ois&rft.au=Bastien%2C+Nathalie&rft.au=Bouchard%2C+Eric+F&rft.au=Drouin%2C+R%C3%A9gen&rft.date=2009-11-01&rft.eissn=1538-7445&rft.volume=69&rft.issue=21&rft.spage=8463&rft_id=info:doi/10.1158%2F0008-5472.CAN-09-2036&rft_id=info%3Apmid%2F19843844&rft.externalDocID=19843844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon