Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression
Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system operation. This paper thus focuses on the short-term battery state of health estimation and long-term battery remaining useful lifetime predicti...
Saved in:
Published in | Journal of power sources Vol. 421; pp. 56 - 67 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system operation. This paper thus focuses on the short-term battery state of health estimation and long-term battery remaining useful lifetime prediction. A novel hybrid method by fusion of partial incremental capacity and Gaussian process regression is proposed and dual Gaussian process regression models are employed to forecast battery health conditions. First, the initial incremental capacity curves are filtered by using the advanced signal process technology. Second, the important health feature variables are extracted from partial incremental capacity curves using correlation analysis method. Third, the Gaussian process regression is applied to model the short-term battery SOH estimation using the feature variables. Forth, an autoregressive long-term battery remaining useful lifetime model is established using the results of battery SOH values and previous output. The predictive capability and effectiveness of two models are demonstrated by four battery datasets under different cycling test conditions. Otherwise, the robustness of the two models is verified using four datasets with different health levels. The experimental results show that the proposed method can provide accurate battery state of health estimation and remaining useful lifetime.
•Dual GPR-based models are proposed to establish battery degradation models.•The health indexes are extracted from partial IC curves as model input features.•Correlational coefficient analysis method is applied to extract feature variables.•An autoregressive RUL model is developed using the capacity vs. cycle number.•Four batteries with different initial health levels are used to verify robustness. |
---|---|
AbstractList | Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system operation. This paper thus focuses on the short-term battery state of health estimation and long-term battery remaining useful lifetime prediction. A novel hybrid method by fusion of partial incremental capacity and Gaussian process regression is proposed and dual Gaussian process regression models are employed to forecast battery health conditions. First, the initial incremental capacity curves are filtered by using the advanced signal process technology. Second, the important health feature variables are extracted from partial incremental capacity curves using correlation analysis method. Third, the Gaussian process regression is applied to model the short-term battery SOH estimation using the feature variables. Forth, an autoregressive long-term battery remaining useful lifetime model is established using the results of battery SOH values and previous output. The predictive capability and effectiveness of two models are demonstrated by four battery datasets under different cycling test conditions. Otherwise, the robustness of the two models is verified using four datasets with different health levels. The experimental results show that the proposed method can provide accurate battery state of health estimation and remaining useful lifetime.
•Dual GPR-based models are proposed to establish battery degradation models.•The health indexes are extracted from partial IC curves as model input features.•Correlational coefficient analysis method is applied to extract feature variables.•An autoregressive RUL model is developed using the capacity vs. cycle number.•Four batteries with different initial health levels are used to verify robustness. Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system operation. This paper thus focuses on the short-term battery state of health estimation and long-term battery remaining useful lifetime prediction. A novel hybrid method by fusion of partial incremental capacity and Gaussian process regression is proposed and dual Gaussian process regression models are employed to forecast battery health conditions. First, the initial incremental capacity curves are filtered by using the advanced signal process technology. Second, the important health feature variables are extracted from partial incremental capacity curves using correlation analysis method. Third, the Gaussian process regression is applied to model the short-term battery SOH estimation using the feature variables. Forth, an autoregressive long-term battery remaining useful lifetime model is established using the results of battery SOH values and previous output. The predictive capability and effectiveness of two models are demonstrated by four battery datasets under different cycling test conditions. Otherwise, the robustness of the two models is verified using four datasets with different health levels. The experimental results show that the proposed method can provide accurate battery state of health estimation and remaining useful lifetime. |
Author | Yan, Jinying Li, Xiaoyu Wang, Zhenpo |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Li fullname: Li, Xiaoyu email: xiaoyu_li@163.com organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China – sequence: 2 givenname: Zhenpo surname: Wang fullname: Wang, Zhenpo email: wangzhenpo@bit.edu.cn organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China – sequence: 3 givenname: Jinying surname: Yan fullname: Yan, Jinying organization: Chenmical Engineering, Royal Institute of Technology, Stockholm, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246422$$DView record from Swedish Publication Index |
BookMark | eNqFkEFP3DAQhS1EJRbav1D5DyS1kzh2pB6KaKGVkOihcLUcZ7KZbdaObAe0_75ebblw4fTm8N6bme-SnDvvgJDPnJWc8fbLrtwt_iX6NZQV413J6pIxdUY2XMm6qKQQ52TDaqkKKUV9QS5j3DHGOJdsQ55_B791Pia0dAIzp4la7wZM6B0dfaAzpgnXPe1NShAOdI3otjRNQBcTEpqZorMB9uBSnq1ZjMV0oMYN9M6sMaJxdAneQow0wDZkzdUfyYfRzBE-_dcr8nj748_Nz-L-4e7XzfV9YRshUj5e8VaOjVC8afrRCtHI3kimOqvGVhnZNGbobM-B8bFXbS2FhU7wjlve9WNXX5Hi1BtfYFl7vQTcm3DQ3qD-jk_X2oet_psmXTVtU1XZ__Xkt8HHGGDU-RtzhJGCwVlzpo_M9U6_MtdH5prVOjPP8fZN_HXhu8FvpyBkGM8IQUeL4CwMGMAmPXh8r-IfqJCmyA |
CitedBy_id | crossref_primary_10_1016_j_xcrp_2023_101743 crossref_primary_10_1016_j_est_2022_104371 crossref_primary_10_1016_j_jpowsour_2024_234781 crossref_primary_10_1109_TMECH_2022_3144351 crossref_primary_10_1109_TII_2023_3274218 crossref_primary_10_1016_j_energy_2022_125497 crossref_primary_10_1016_j_jpowsour_2022_231026 crossref_primary_10_1016_j_jpowsour_2022_231027 crossref_primary_10_1016_j_jpowsour_2024_234413 crossref_primary_10_1016_j_energy_2021_121857 crossref_primary_10_1016_j_est_2022_106319 crossref_primary_10_1002_int_22309 crossref_primary_10_1149_1945_7111_ad4397 crossref_primary_10_1038_s41598_023_33018_0 crossref_primary_10_3390_batteries10070234 crossref_primary_10_1016_j_est_2022_106323 crossref_primary_10_3390_en16010313 crossref_primary_10_1149_1945_7111_ad24c1 crossref_primary_10_1007_s42979_024_03046_2 crossref_primary_10_1109_TMECH_2020_2986364 crossref_primary_10_3390_batteries10080283 crossref_primary_10_1109_TVT_2020_3039553 crossref_primary_10_1016_j_rser_2021_111903 crossref_primary_10_3390_batteries8100155 crossref_primary_10_1016_j_apenergy_2023_121901 crossref_primary_10_1016_j_rser_2023_114264 crossref_primary_10_1155_2024_8892634 crossref_primary_10_1016_j_energy_2020_117852 crossref_primary_10_1016_j_est_2021_102570 crossref_primary_10_1007_s11708_023_0906_4 crossref_primary_10_1109_TTE_2021_3129479 crossref_primary_10_1016_j_measurement_2021_109057 crossref_primary_10_1109_TVT_2022_3205439 crossref_primary_10_1016_j_jclepro_2020_120813 crossref_primary_10_1149_1945_7111_ac0e4c crossref_primary_10_1088_1742_6596_2011_1_012082 crossref_primary_10_1016_j_est_2022_104480 crossref_primary_10_1002_batt_202300140 crossref_primary_10_1016_j_est_2025_115347 crossref_primary_10_1109_ACCESS_2020_3025766 crossref_primary_10_1016_j_seta_2020_100752 crossref_primary_10_1109_ACCESS_2019_2930680 crossref_primary_10_1016_j_apenergy_2023_122330 crossref_primary_10_1115_1_4052535 crossref_primary_10_1149_1945_7111_ab8f56 crossref_primary_10_1016_j_egyr_2023_04_033 crossref_primary_10_3390_batteries9010007 crossref_primary_10_1016_j_energy_2025_134697 crossref_primary_10_1115_1_4048703 crossref_primary_10_1109_TVT_2021_3138959 crossref_primary_10_1051_e3sconf_202338503025 crossref_primary_10_1038_s41524_024_01286_7 crossref_primary_10_1109_JSEN_2023_3292347 crossref_primary_10_1115_1_4049234 crossref_primary_10_1016_j_seta_2020_100853 crossref_primary_10_1002_ente_202200151 crossref_primary_10_1109_TPEL_2024_3512516 crossref_primary_10_3390_en13112781 crossref_primary_10_3390_electronics8101118 crossref_primary_10_1109_TMECH_2020_3040010 crossref_primary_10_1016_j_apenergy_2023_120841 crossref_primary_10_1177_01423312231184728 crossref_primary_10_3390_app10196637 crossref_primary_10_1007_s43236_021_00318_5 crossref_primary_10_1016_j_est_2023_107322 crossref_primary_10_3390_en15124399 crossref_primary_10_1002_er_5415 crossref_primary_10_1016_j_est_2021_103528 crossref_primary_10_1016_j_egyr_2022_09_082 crossref_primary_10_1016_j_est_2021_103644 crossref_primary_10_1016_j_apenergy_2020_115895 crossref_primary_10_1016_j_apenergy_2024_124190 crossref_primary_10_1109_TTE_2020_2979547 crossref_primary_10_1016_j_est_2021_103072 crossref_primary_10_1016_j_est_2024_114826 crossref_primary_10_1016_j_enconman_2019_111904 crossref_primary_10_1016_j_est_2024_113172 crossref_primary_10_1016_j_procir_2025_01_035 crossref_primary_10_1016_j_est_2022_104901 crossref_primary_10_1016_j_energy_2020_119078 crossref_primary_10_1016_j_egyr_2022_09_093 crossref_primary_10_3390_en15072448 crossref_primary_10_1109_TII_2021_3106593 crossref_primary_10_1016_j_microrel_2021_114405 crossref_primary_10_1016_j_est_2024_112655 crossref_primary_10_3389_fmech_2021_719718 crossref_primary_10_1016_j_est_2020_101805 crossref_primary_10_1016_j_jelechem_2023_117572 crossref_primary_10_1109_TTE_2021_3074638 crossref_primary_10_1016_j_energy_2021_121556 crossref_primary_10_1016_j_est_2021_102535 crossref_primary_10_1016_j_est_2023_109885 crossref_primary_10_1016_j_energy_2025_135772 crossref_primary_10_1016_j_est_2023_107347 crossref_primary_10_1002_er_5750 crossref_primary_10_1109_ACCESS_2025_3536166 crossref_primary_10_1016_j_est_2022_104562 crossref_primary_10_1016_j_est_2022_104560 crossref_primary_10_3390_en16093815 crossref_primary_10_1109_ACCESS_2019_2936213 crossref_primary_10_1016_j_etran_2022_100156 crossref_primary_10_1016_j_geits_2022_100020 crossref_primary_10_1109_ACCESS_2020_3048146 crossref_primary_10_3389_fenrg_2022_969168 crossref_primary_10_3390_fermentation9020120 crossref_primary_10_1016_j_est_2024_114286 crossref_primary_10_1016_j_apenergy_2020_115074 crossref_primary_10_3390_batteries8120289 crossref_primary_10_1002_qre_3459 crossref_primary_10_1007_s11708_024_0969_x crossref_primary_10_1088_1742_6596_1633_1_012131 crossref_primary_10_1016_j_ress_2025_110926 crossref_primary_10_1016_j_est_2019_101121 crossref_primary_10_1016_j_egyr_2022_11_016 crossref_primary_10_1016_j_est_2023_108732 crossref_primary_10_1016_j_est_2019_100951 crossref_primary_10_1016_j_est_2023_106797 crossref_primary_10_1109_TTE_2020_3028784 crossref_primary_10_1016_j_jpowsour_2020_227713 crossref_primary_10_1016_j_est_2022_105992 crossref_primary_10_1002_celc_202300393 crossref_primary_10_1109_TCE_2023_3279135 crossref_primary_10_1016_j_est_2024_110785 crossref_primary_10_3390_batteries9020080 crossref_primary_10_1016_j_est_2023_109010 crossref_primary_10_1109_ACCESS_2020_2972344 crossref_primary_10_1016_j_etran_2022_100214 crossref_primary_10_1016_j_energy_2021_120114 crossref_primary_10_1016_j_jpowsour_2021_229884 crossref_primary_10_1016_j_jpowsour_2020_228132 crossref_primary_10_1016_j_est_2021_103158 crossref_primary_10_3390_batteries9060323 crossref_primary_10_1016_j_est_2024_113829 crossref_primary_10_1016_j_jpowsour_2020_228358 crossref_primary_10_1016_j_ensm_2023_102785 crossref_primary_10_1016_j_energy_2024_131888 crossref_primary_10_1016_j_est_2024_113827 crossref_primary_10_1016_j_est_2024_111649 crossref_primary_10_1109_JIOT_2024_3511961 crossref_primary_10_1038_s41598_021_91241_z crossref_primary_10_3390_su14042313 crossref_primary_10_1016_j_est_2023_107424 crossref_primary_10_1016_j_est_2022_104512 crossref_primary_10_1016_j_ress_2020_107241 crossref_primary_10_20964_2022_12_111 crossref_primary_10_3389_fenrg_2021_748508 crossref_primary_10_1016_j_est_2022_105731 crossref_primary_10_1109_TIE_2021_3111585 crossref_primary_10_1016_j_egyr_2021_09_131 crossref_primary_10_3390_batteries9010013 crossref_primary_10_1109_ACCESS_2024_3406424 crossref_primary_10_1109_TTE_2020_3017090 crossref_primary_10_1016_j_est_2024_111897 crossref_primary_10_1016_j_energy_2019_116467 crossref_primary_10_3390_en16176144 crossref_primary_10_1002_ente_202400996 crossref_primary_10_1016_j_ress_2023_109913 crossref_primary_10_3390_en17205132 crossref_primary_10_1002_er_6910 crossref_primary_10_1016_j_energy_2020_119530 crossref_primary_10_1016_j_est_2022_104646 crossref_primary_10_3390_app10155330 crossref_primary_10_3233_JIFS_201129 crossref_primary_10_1016_j_heliyon_2024_e25808 crossref_primary_10_1002_er_5934 crossref_primary_10_1039_D1EE01812D crossref_primary_10_3390_en14092371 crossref_primary_10_1016_j_engappai_2023_106967 crossref_primary_10_3390_electronics10121497 crossref_primary_10_1002_ente_202401019 crossref_primary_10_1016_j_est_2023_107161 crossref_primary_10_1016_j_est_2022_105708 crossref_primary_10_3390_en13040830 crossref_primary_10_3390_en17174309 crossref_primary_10_1016_j_jpowsour_2020_228740 crossref_primary_10_1109_TIM_2023_3348894 crossref_primary_10_1109_JESTPE_2021_3112754 crossref_primary_10_3390_batteries9050251 crossref_primary_10_1115_1_4063430 crossref_primary_10_1016_j_neucom_2023_02_031 crossref_primary_10_1177_09544070241284065 crossref_primary_10_3390_su15021602 crossref_primary_10_1016_j_energy_2023_128956 crossref_primary_10_1016_j_egyr_2023_01_108 crossref_primary_10_1016_j_jelechem_2022_116011 crossref_primary_10_1252_jcej_20we039 crossref_primary_10_1007_s10338_025_00585_w crossref_primary_10_1016_j_etran_2024_100374 crossref_primary_10_1016_j_energy_2023_129364 crossref_primary_10_3390_batteries8040029 crossref_primary_10_1016_j_jpowsour_2020_229248 crossref_primary_10_1038_s44296_024_00011_1 crossref_primary_10_1016_j_jprocont_2021_12_012 crossref_primary_10_1186_s10033_021_00668_y crossref_primary_10_1007_s40747_023_01300_3 crossref_primary_10_1002_batt_202400201 crossref_primary_10_1061__ASCE_EY_1943_7897_0000865 crossref_primary_10_1016_j_est_2023_107063 crossref_primary_10_1149_1945_7111_ac6bc4 crossref_primary_10_3390_wevj15020038 crossref_primary_10_1016_j_est_2020_101400 crossref_primary_10_3233_JIFS_201952 crossref_primary_10_1016_j_jpowsour_2023_232737 crossref_primary_10_1007_s43236_020_00122_7 crossref_primary_10_3390_electronics10243126 crossref_primary_10_1115_1_4045008 crossref_primary_10_1016_j_egyr_2021_09_054 crossref_primary_10_1016_j_jechem_2024_01_047 crossref_primary_10_1016_j_jpowsour_2025_236235 crossref_primary_10_1115_1_4051802 crossref_primary_10_1016_j_apenergy_2024_123122 crossref_primary_10_1016_j_rser_2025_115522 crossref_primary_10_3390_en17061272 crossref_primary_10_1109_TIE_2020_3044779 crossref_primary_10_1016_j_energy_2021_120851 crossref_primary_10_1016_j_knosys_2022_110012 crossref_primary_10_3390_batteries8100134 crossref_primary_10_1016_j_energy_2020_118000 crossref_primary_10_1016_j_energy_2022_125802 crossref_primary_10_1016_j_jpowsour_2021_230526 crossref_primary_10_1016_j_est_2023_107734 |
Cites_doi | 10.1016/j.measurement.2017.11.034 10.1016/j.est.2018.12.011 10.1016/j.jpowsour.2015.01.129 10.1109/ACCESS.2017.2759094 10.1016/j.apenergy.2016.01.125 10.1016/j.jpowsour.2018.10.069 10.1016/j.rser.2015.11.042 10.1016/j.jpowsour.2016.07.036 10.1016/j.jpowsour.2015.12.122 10.1109/TIE.2018.2813964 10.1016/j.jpowsour.2018.09.028 10.1016/j.apenergy.2015.08.119 10.1016/j.jpowsour.2017.08.033 10.1016/j.jpowsour.2017.08.094 10.1016/j.jpowsour.2013.03.158 10.1016/j.ijepes.2013.10.020 10.1016/j.jpowsour.2010.11.134 10.1016/j.jpowsour.2014.12.105 10.1109/TIE.2017.2782224 10.1136/bmj.e4483 10.1016/j.apenergy.2018.01.011 10.1109/TIM.2008.2005965 10.1016/j.jpowsour.2018.03.015 10.1016/j.electacta.2018.11.134 10.1016/j.jpowsour.2017.11.040 10.1109/TIE.2018.2838078 10.1016/j.energy.2015.05.148 10.3390/en10050691 10.1016/j.jpowsour.2016.03.054 10.1016/j.rser.2017.05.283 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | AAYXX CITATION ADTPV AOWAS D8V |
DOI | 10.1016/j.jpowsour.2019.03.008 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
EndPage | 67 |
ExternalDocumentID | oai_DiVA_org_kth_246422 10_1016_j_jpowsour_2019_03_008 S0378775319302393 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW SSH T9H VH1 VOH WUQ ADTPV AOWAS D8V EFKBS |
ID | FETCH-LOGICAL-c455t-278167f458144bfc5547ba7089c8f68a744ad9cb1e01fb86375ce95191c19bf93 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 1873-2755 |
IngestDate | Thu Aug 21 06:46:55 EDT 2025 Tue Jul 01 01:40:15 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Fri Feb 23 02:28:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Correlation coefficient Incremental capacity analysis Gaussian regression process State of health |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-278167f458144bfc5547ba7089c8f68a744ad9cb1e01fb86375ce95191c19bf93 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_246422 crossref_citationtrail_10_1016_j_jpowsour_2019_03_008 crossref_primary_10_1016_j_jpowsour_2019_03_008 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2019_03_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of power sources |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Adewuyi, Lotfi, Landers, Park (bib22) 2018; 212 Merla, Wu, Yufit, Brandon, Martinez-Botas, Offer (bib29) 2016; 307 Li, Zhang, Wang, Dong (bib7) 2019; 21 Farmann, Waag, Marongiu, Sauer (bib13) 2015; 281 Chen, Mi, Fu, Xu, Gong (bib18) 2013; 240 Seeger (bib34) 2004; vol. 14 Park, Appiah, Byun, Jin, Ryou, Lee (bib16) 2017; 365 Goebel, Saha, Saxena, Celaya, Christophersen, magazine (bib31) 2008; vol. 11 Zhou, Zheng, Ouyang, Lu (bib20) 2017; 364 Li, Lei, Yan, Li, Han (bib10) 2019; 66 Yang, Zhang, Pan, Wang, Chen (bib26) 2018; 384 Li, Shu, Shen, Xiao, Yan, Chen (bib8) 2017; 10 Wang, Pan, Liu, Cheng, Zhao (bib28) 2016; 168 Saha, Goebel, Poll, Christophersen (bib25) 2009; 58 Zhang, Hu, Wang, Sun, Dorrell (bib2) 2018; 81 Rasmussen (bib35) 2004 Wang, Liu, Hicks-Garner, Sherman, Soukiazian, Verbrugge, Tataria, Musser, Finamore (bib6) 2011; 196 Wang, Ma, Zhang (bib30) 2017; 5 Lai, Gao, Zheng, Ouyang, Li, Han, Zhou (bib19) 2019; 295 Li, Li, Xiong, Chai, Zhang (bib27) 2014; 55 Dong, Chen, Wei, Ling (bib3) 2018; 65 Zheng, Ouyang, Lu, Li (bib4) 2015; 278 Isufi, Loukas, Simonetto, Leus (bib32) 2016 Patil, Tagade, Hariharan, Kolake, Song, Yeo, Doo (bib24) 2015; 159 Berecibar, Gandiaga, Villarreal, Omar, Van Mierlo, Van den Bossche (bib12) 2016; 56 Galeotti, Cinà, Giammanco, Cordiner, Di Carlo (bib23) 2015; 89 Kouchachvili, Yaïci, Entchev (bib1) 2018; 374 Li, Wang, Zhang, Zou, Dorrell (bib14) 2019; 410–411 Li, Wang (bib5) 2018; 116 Jokar, Rajabloo, Désilets, Lacroix (bib15) 2016; 327 Wei, Dong, Chen (bib9) 2018; 65 Sedgwick (bib33) 2012; 345 Wilke, Schweitzer, Khateeb, Al-Hallaj (bib17) 2016; vol. 73 Wei, Xiong, Lim, Meng, Skyllas-Kazacos (bib21) 2018; 402 Wang, Yang, Zhang, Chen (bib11) 2016; 315 Rasmussen (10.1016/j.jpowsour.2019.03.008_bib35) 2004 Li (10.1016/j.jpowsour.2019.03.008_bib8) 2017; 10 Sedgwick (10.1016/j.jpowsour.2019.03.008_bib33) 2012; 345 Galeotti (10.1016/j.jpowsour.2019.03.008_bib23) 2015; 89 Zheng (10.1016/j.jpowsour.2019.03.008_bib4) 2015; 278 Chen (10.1016/j.jpowsour.2019.03.008_bib18) 2013; 240 Wang (10.1016/j.jpowsour.2019.03.008_bib30) 2017; 5 Wilke (10.1016/j.jpowsour.2019.03.008_bib17) 2016; vol. 73 Wei (10.1016/j.jpowsour.2019.03.008_bib21) 2018; 402 Berecibar (10.1016/j.jpowsour.2019.03.008_bib12) 2016; 56 Seeger (10.1016/j.jpowsour.2019.03.008_bib34) 2004; vol. 14 Isufi (10.1016/j.jpowsour.2019.03.008_bib32) 2016 Li (10.1016/j.jpowsour.2019.03.008_bib5) 2018; 116 Wang (10.1016/j.jpowsour.2019.03.008_bib11) 2016; 315 Li (10.1016/j.jpowsour.2019.03.008_bib14) 2019; 410–411 Goebel (10.1016/j.jpowsour.2019.03.008_bib31) 2008; vol. 11 Jokar (10.1016/j.jpowsour.2019.03.008_bib15) 2016; 327 Wang (10.1016/j.jpowsour.2019.03.008_bib28) 2016; 168 Lai (10.1016/j.jpowsour.2019.03.008_bib19) 2019; 295 Wei (10.1016/j.jpowsour.2019.03.008_bib9) 2018; 65 Yang (10.1016/j.jpowsour.2019.03.008_bib26) 2018; 384 Saha (10.1016/j.jpowsour.2019.03.008_bib25) 2009; 58 Patil (10.1016/j.jpowsour.2019.03.008_bib24) 2015; 159 Li (10.1016/j.jpowsour.2019.03.008_bib22) 2018; 212 Park (10.1016/j.jpowsour.2019.03.008_bib16) 2017; 365 Li (10.1016/j.jpowsour.2019.03.008_bib10) 2019; 66 Zhou (10.1016/j.jpowsour.2019.03.008_bib20) 2017; 364 Dong (10.1016/j.jpowsour.2019.03.008_bib3) 2018; 65 Li (10.1016/j.jpowsour.2019.03.008_bib7) 2019; 21 Kouchachvili (10.1016/j.jpowsour.2019.03.008_bib1) 2018; 374 Zhang (10.1016/j.jpowsour.2019.03.008_bib2) 2018; 81 Li (10.1016/j.jpowsour.2019.03.008_bib27) 2014; 55 Farmann (10.1016/j.jpowsour.2019.03.008_bib13) 2015; 281 Wang (10.1016/j.jpowsour.2019.03.008_bib6) 2011; 196 Merla (10.1016/j.jpowsour.2019.03.008_bib29) 2016; 307 |
References_xml | – volume: 212 start-page: 1178 year: 2018 end-page: 1190 ident: bib22 article-title: A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation publication-title: Appl. Energy – volume: vol. 73 start-page: 109 year: 2016 end-page: 119 ident: bib17 publication-title: Semi-Empirical Modeling of Capacity Fade: A Practical Approach for Battery Pack Manufacturers – volume: 240 start-page: 184 year: 2013 end-page: 192 ident: bib18 article-title: Online battery state of health estimation based on Genetic Algorithm for electric and hybrid vehicle applications publication-title: J. Power Sources – volume: 374 start-page: 237 year: 2018 end-page: 248 ident: bib1 article-title: Hybrid battery/supercapacitor energy storage system for the electric vehicles publication-title: J. Power Sources – volume: 10 year: 2017 ident: bib8 article-title: An on-board remaining useful life estimation algorithm for lithium-ion batteries of electric vehicles publication-title: Energies – volume: 58 start-page: 291 year: 2009 end-page: 296 ident: bib25 article-title: Prognostics methods for battery health monitoring using a bayesian framework publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 345 start-page: e4483 year: 2012 ident: bib33 article-title: Pearson's correlation coefficient publication-title: BMJ – volume: 21 start-page: 510 year: 2019 end-page: 518 ident: bib7 article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks publication-title: Journal of Energy Storage – volume: 281 start-page: 114 year: 2015 end-page: 130 ident: bib13 article-title: Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles publication-title: J. Power Sources – volume: 66 start-page: 2092 year: 2019 end-page: 2101 ident: bib10 article-title: A wiener-process-model-based method for remaining useful life prediction considering unit-to-unit variability publication-title: IEEE Trans. Ind. Electron. – year: 2016 ident: bib32 article-title: Autoregressive Moving Average Graph Filtering – volume: 315 start-page: 199 year: 2016 end-page: 208 ident: bib11 article-title: Probability based remaining capacity estimation using data-driven and neural network model publication-title: J. Power Sources – volume: 89 start-page: 678 year: 2015 end-page: 686 ident: bib23 article-title: Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy publication-title: Energy – volume: 168 start-page: 465 year: 2016 end-page: 472 ident: bib28 article-title: On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis publication-title: Appl. Energy – volume: vol. 11 year: 2008 ident: bib31 publication-title: Prognostics in Battery Health Management – volume: 116 start-page: 402 year: 2018 end-page: 411 ident: bib5 article-title: A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles publication-title: Measurement – volume: 402 start-page: 252 year: 2018 end-page: 262 ident: bib21 article-title: Online monitoring of state of charge and capacity loss for vanadium redox flow battery based on autoregressive exogenous modeling publication-title: J. Power Sources – volume: 384 start-page: 387 year: 2018 end-page: 395 ident: bib26 article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve publication-title: J. Power Sources – year: 2004 ident: bib35 article-title: Gaussian processes in machine learning publication-title: Advanced Lectures on Machine Learning – volume: 196 start-page: 3942 year: 2011 end-page: 3948 ident: bib6 article-title: Cycle-life model for graphite-LiFePO4 cells publication-title: J. Power Sources – volume: 410–411 start-page: 106 year: 2019 end-page: 114 ident: bib14 article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis publication-title: J. Power Sources – volume: 364 start-page: 242 year: 2017 end-page: 252 ident: bib20 article-title: A study on parameter variation effects on battery packs for electric vehicles publication-title: J. Power Sources – volume: 65 start-page: 8646 year: 2018 end-page: 8655 ident: bib3 article-title: Battery health prognosis using brownian motion modeling and particle filtering publication-title: IEEE Trans. Ind. Electron. – volume: 278 start-page: 287 year: 2015 end-page: 295 ident: bib4 article-title: Understanding aging mechanisms in lithium-ion battery packs: from cell capacity loss to pack capacity evolution publication-title: J. Power Sources – volume: 365 start-page: 257 year: 2017 end-page: 265 ident: bib16 article-title: Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries publication-title: J. Power Sources – volume: 56 start-page: 572 year: 2016 end-page: 587 ident: bib12 article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications publication-title: Renew. Sustain. Energy Rev. – volume: 65 start-page: 5634 year: 2018 end-page: 5643 ident: bib9 article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression publication-title: IEEE Trans. Ind. Electron. – volume: 159 start-page: 285 year: 2015 end-page: 297 ident: bib24 article-title: A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation publication-title: Appl. Energy – volume: 55 start-page: 749 year: 2014 end-page: 759 ident: bib27 article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting publication-title: Int. J. Electr. Power Energy Syst. – volume: 327 start-page: 44 year: 2016 end-page: 55 ident: bib15 article-title: Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries publication-title: J. Power Sources – volume: 307 start-page: 308 year: 2016 end-page: 319 ident: bib29 article-title: Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries publication-title: J. Power Sources – volume: vol. 14 start-page: 69 year: 2004 end-page: 106 ident: bib34 publication-title: Gaussian Processes for Machine Learning – volume: 5 start-page: 21286 year: 2017 end-page: 21295 ident: bib30 article-title: State-of-Health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression publication-title: IEEE Access – volume: 81 start-page: 1868 year: 2018 end-page: 1878 ident: bib2 article-title: A review of supercapacitor modeling, estimation, and applications: a control/management perspective publication-title: Renew. Sustain. Energy Rev. – volume: 295 start-page: 1057 year: 2019 end-page: 1066 ident: bib19 article-title: A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries publication-title: Electrochim. Acta – volume: 116 start-page: 402 issue: Supplement C year: 2018 ident: 10.1016/j.jpowsour.2019.03.008_bib5 article-title: A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles publication-title: Measurement doi: 10.1016/j.measurement.2017.11.034 – volume: 21 start-page: 510 year: 2019 ident: 10.1016/j.jpowsour.2019.03.008_bib7 article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks publication-title: Journal of Energy Storage doi: 10.1016/j.est.2018.12.011 – volume: 281 start-page: 114 year: 2015 ident: 10.1016/j.jpowsour.2019.03.008_bib13 article-title: Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.129 – volume: 5 start-page: 21286 year: 2017 ident: 10.1016/j.jpowsour.2019.03.008_bib30 article-title: State-of-Health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2759094 – volume: 168 start-page: 465 year: 2016 ident: 10.1016/j.jpowsour.2019.03.008_bib28 article-title: On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.125 – volume: 410–411 start-page: 106 year: 2019 ident: 10.1016/j.jpowsour.2019.03.008_bib14 article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.069 – volume: 56 start-page: 572 year: 2016 ident: 10.1016/j.jpowsour.2019.03.008_bib12 article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.11.042 – volume: 327 start-page: 44 year: 2016 ident: 10.1016/j.jpowsour.2019.03.008_bib15 article-title: Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.07.036 – volume: 307 start-page: 308 year: 2016 ident: 10.1016/j.jpowsour.2019.03.008_bib29 article-title: Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.12.122 – volume: 65 start-page: 8646 issue: 11 year: 2018 ident: 10.1016/j.jpowsour.2019.03.008_bib3 article-title: Battery health prognosis using brownian motion modeling and particle filtering publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2813964 – volume: 402 start-page: 252 year: 2018 ident: 10.1016/j.jpowsour.2019.03.008_bib21 article-title: Online monitoring of state of charge and capacity loss for vanadium redox flow battery based on autoregressive exogenous modeling publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.09.028 – volume: 159 start-page: 285 year: 2015 ident: 10.1016/j.jpowsour.2019.03.008_bib24 article-title: A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.08.119 – volume: vol. 14 start-page: 69 year: 2004 ident: 10.1016/j.jpowsour.2019.03.008_bib34 – volume: 364 start-page: 242 year: 2017 ident: 10.1016/j.jpowsour.2019.03.008_bib20 article-title: A study on parameter variation effects on battery packs for electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.08.033 – volume: vol. 73 start-page: 109 year: 2016 ident: 10.1016/j.jpowsour.2019.03.008_bib17 – volume: 365 start-page: 257 year: 2017 ident: 10.1016/j.jpowsour.2019.03.008_bib16 article-title: Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.08.094 – volume: 240 start-page: 184 issue: Supplement C year: 2013 ident: 10.1016/j.jpowsour.2019.03.008_bib18 article-title: Online battery state of health estimation based on Genetic Algorithm for electric and hybrid vehicle applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.158 – volume: 55 start-page: 749 year: 2014 ident: 10.1016/j.jpowsour.2019.03.008_bib27 article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.10.020 – volume: 196 start-page: 3942 issue: 8 year: 2011 ident: 10.1016/j.jpowsour.2019.03.008_bib6 article-title: Cycle-life model for graphite-LiFePO4 cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.11.134 – volume: 278 start-page: 287 year: 2015 ident: 10.1016/j.jpowsour.2019.03.008_bib4 article-title: Understanding aging mechanisms in lithium-ion battery packs: from cell capacity loss to pack capacity evolution publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.105 – year: 2004 ident: 10.1016/j.jpowsour.2019.03.008_bib35 article-title: Gaussian processes in machine learning – volume: 65 start-page: 5634 issue: 7 year: 2018 ident: 10.1016/j.jpowsour.2019.03.008_bib9 article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2782224 – volume: 345 start-page: e4483 year: 2012 ident: 10.1016/j.jpowsour.2019.03.008_bib33 article-title: Pearson's correlation coefficient publication-title: BMJ doi: 10.1136/bmj.e4483 – volume: 212 start-page: 1178 year: 2018 ident: 10.1016/j.jpowsour.2019.03.008_bib22 article-title: A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.01.011 – volume: 58 start-page: 291 issue: 2 year: 2009 ident: 10.1016/j.jpowsour.2019.03.008_bib25 article-title: Prognostics methods for battery health monitoring using a bayesian framework publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2008.2005965 – volume: 384 start-page: 387 year: 2018 ident: 10.1016/j.jpowsour.2019.03.008_bib26 article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.015 – volume: 295 start-page: 1057 year: 2019 ident: 10.1016/j.jpowsour.2019.03.008_bib19 article-title: A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.134 – volume: 374 start-page: 237 year: 2018 ident: 10.1016/j.jpowsour.2019.03.008_bib1 article-title: Hybrid battery/supercapacitor energy storage system for the electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.11.040 – volume: 66 start-page: 2092 issue: 3 year: 2019 ident: 10.1016/j.jpowsour.2019.03.008_bib10 article-title: A wiener-process-model-based method for remaining useful life prediction considering unit-to-unit variability publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2838078 – volume: 89 start-page: 678 year: 2015 ident: 10.1016/j.jpowsour.2019.03.008_bib23 article-title: Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy publication-title: Energy doi: 10.1016/j.energy.2015.05.148 – volume: vol. 11 year: 2008 ident: 10.1016/j.jpowsour.2019.03.008_bib31 – volume: 10 issue: 5 year: 2017 ident: 10.1016/j.jpowsour.2019.03.008_bib8 article-title: An on-board remaining useful life estimation algorithm for lithium-ion batteries of electric vehicles publication-title: Energies doi: 10.3390/en10050691 – volume: 315 start-page: 199 year: 2016 ident: 10.1016/j.jpowsour.2019.03.008_bib11 article-title: Probability based remaining capacity estimation using data-driven and neural network model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.054 – volume: 81 start-page: 1868 year: 2018 ident: 10.1016/j.jpowsour.2019.03.008_bib2 article-title: A review of supercapacitor modeling, estimation, and applications: a control/management perspective publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.283 – year: 2016 ident: 10.1016/j.jpowsour.2019.03.008_bib32 |
SSID | ssj0001170 |
Score | 2.6685188 |
Snippet | Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 56 |
SubjectTerms | Correlation coefficient Gaussian regression process Incremental capacity analysis Lithium-ion batteries State of health |
Title | Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression |
URI | https://dx.doi.org/10.1016/j.jpowsour.2019.03.008 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246422 |
Volume | 421 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXMqh6oMKSot8qHoLm8TO2jmueG1bFVXiIW6WPYmXLCUbbXdb9cJvZyZOYDlUHHpzEjt2PCN7xvnmG8Y-OaB8tuidqNI6dFAERE6nNkoseBXLIpVAgcLfT4fjC_n1KrtaYwd9LAzBKru1P6zp7Wrd3Rl0szloqmpwFgtUNkU6JFoiL4pgl4q0fP_uEeZBmVXaPwk0Hqy9EiU83Z82sz90SE4Qr57s9J8b1CqTaLv7HL9iLzuzkY_CyF6ztbJ-wzZXyATfst8_5jNCzWENHqIbOfq6RQvJ4miacjS4r6vlLXctpeZfTpD3CUcDkDf0xfj6qoZwXIhlwF0U0ETnti74iV3-omhL3oS4Aj4vJwFAW2-xi-Oj84Nx1GVViEBm2SJKlU6GystMoy_lPKA9oZxVsc5B-6G2Skpb5OCSMk6800OhMijRDssTSHLnc_GOrdezutxmHJQHL0qdgrbSZfjMOZFL4V1hsWB3WNZPpYGOcpwyX_w0PbZsanoRGBKBiYVBEeywwUO7JpBuPNsi7yVlnqiPwZ3h2bafg2gf-iLK7cPqcmRm84m5WVybVKKblr7_j0522Qu6ClDJD2x9MV-WH9GcWbi9Vl_32Mboy7fx6T3iU_sZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKewAOVctDLaXUB8Qt3SR21s6xKpTtU0i0qDfLnsTbLJCNll1QL_3tzMRJWQ6oB25WbCeOZ2J_43wzw9hbB5TPFq0TVVqHBoqAyOnURokFr2JZpBLIUfj8Yji6kifX2fUKO-x9YYhW2a39YU1vV-vuyqCbzUFTVYPPsUBlU6RDog3k9YitSfx8KY3B_t0fngelVml_JdCAsPmSm_Bkf9JMf9EpOXG8-min_9yhlkOJttvP0QZb73AjPwhD22QrZf2MPV2KJvic_fw0mxJtDlvw4N7I0dgtWk4WR2zKEXHfVIvv3LUxNW85cd7HHBEgb-iV8fZVDeG8EMuA2yggRue2LvhHu_hB7pa8CY4FfFaOA4O2fsGujj5cHo6iLq1CBDLL5lGqdDJUXmYajSnnAQGFclbFOgfth9oqKW2Rg0vKOPFOD4XKoEQglieQ5M7n4iVbrad1ucU4KA9elDoFbaXLsM45kUvhXWGxYLdZ1k-lgS7mOKW--GZ6ctnE9CIwJAITC4Mi2GaD-35NiLrxYI-8l5T5S38Mbg0P9n0XRHv_LIq5_b76cmCms7H5Or8xqUQ7LX31Hw_ZY49Hl-dn5uz44nSHPaGawJt8zVbns0W5i9hm7t60uvsbkrr8pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostic+health+condition+for+lithium+battery+using+the+partial+incremental+capacity+and+Gaussian+process+regression&rft.jtitle=Journal+of+power+sources&rft.au=Li%2C+Xiaoyu&rft.au=Wang%2C+Zhenpo&rft.au=Yan%2C+Jinying&rft.date=2019-05-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=421&rft.spage=56&rft.epage=67&rft_id=info:doi/10.1016%2Fj.jpowsour.2019.03.008&rft.externalDocID=S0378775319302393 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |