Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression

Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system operation. This paper thus focuses on the short-term battery state of health estimation and long-term battery remaining useful lifetime predicti...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 421; pp. 56 - 67
Main Authors Li, Xiaoyu, Wang, Zhenpo, Yan, Jinying
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system operation. This paper thus focuses on the short-term battery state of health estimation and long-term battery remaining useful lifetime prediction. A novel hybrid method by fusion of partial incremental capacity and Gaussian process regression is proposed and dual Gaussian process regression models are employed to forecast battery health conditions. First, the initial incremental capacity curves are filtered by using the advanced signal process technology. Second, the important health feature variables are extracted from partial incremental capacity curves using correlation analysis method. Third, the Gaussian process regression is applied to model the short-term battery SOH estimation using the feature variables. Forth, an autoregressive long-term battery remaining useful lifetime model is established using the results of battery SOH values and previous output. The predictive capability and effectiveness of two models are demonstrated by four battery datasets under different cycling test conditions. Otherwise, the robustness of the two models is verified using four datasets with different health levels. The experimental results show that the proposed method can provide accurate battery state of health estimation and remaining useful lifetime. •Dual GPR-based models are proposed to establish battery degradation models.•The health indexes are extracted from partial IC curves as model input features.•Correlational coefficient analysis method is applied to extract feature variables.•An autoregressive RUL model is developed using the capacity vs. cycle number.•Four batteries with different initial health levels are used to verify robustness.
AbstractList Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system operation. This paper thus focuses on the short-term battery state of health estimation and long-term battery remaining useful lifetime prediction. A novel hybrid method by fusion of partial incremental capacity and Gaussian process regression is proposed and dual Gaussian process regression models are employed to forecast battery health conditions. First, the initial incremental capacity curves are filtered by using the advanced signal process technology. Second, the important health feature variables are extracted from partial incremental capacity curves using correlation analysis method. Third, the Gaussian process regression is applied to model the short-term battery SOH estimation using the feature variables. Forth, an autoregressive long-term battery remaining useful lifetime model is established using the results of battery SOH values and previous output. The predictive capability and effectiveness of two models are demonstrated by four battery datasets under different cycling test conditions. Otherwise, the robustness of the two models is verified using four datasets with different health levels. The experimental results show that the proposed method can provide accurate battery state of health estimation and remaining useful lifetime. •Dual GPR-based models are proposed to establish battery degradation models.•The health indexes are extracted from partial IC curves as model input features.•Correlational coefficient analysis method is applied to extract feature variables.•An autoregressive RUL model is developed using the capacity vs. cycle number.•Four batteries with different initial health levels are used to verify robustness.
Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system operation. This paper thus focuses on the short-term battery state of health estimation and long-term battery remaining useful lifetime prediction. A novel hybrid method by fusion of partial incremental capacity and Gaussian process regression is proposed and dual Gaussian process regression models are employed to forecast battery health conditions. First, the initial incremental capacity curves are filtered by using the advanced signal process technology. Second, the important health feature variables are extracted from partial incremental capacity curves using correlation analysis method. Third, the Gaussian process regression is applied to model the short-term battery SOH estimation using the feature variables. Forth, an autoregressive long-term battery remaining useful lifetime model is established using the results of battery SOH values and previous output. The predictive capability and effectiveness of two models are demonstrated by four battery datasets under different cycling test conditions. Otherwise, the robustness of the two models is verified using four datasets with different health levels. The experimental results show that the proposed method can provide accurate battery state of health estimation and remaining useful lifetime.
Author Yan, Jinying
Li, Xiaoyu
Wang, Zhenpo
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Li
  fullname: Li, Xiaoyu
  email: xiaoyu_li@163.com
  organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 2
  givenname: Zhenpo
  surname: Wang
  fullname: Wang, Zhenpo
  email: wangzhenpo@bit.edu.cn
  organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 3
  givenname: Jinying
  surname: Yan
  fullname: Yan, Jinying
  organization: Chenmical Engineering, Royal Institute of Technology, Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246422$$DView record from Swedish Publication Index
BookMark eNqFkEFP3DAQhS1EJRbav1D5DyS1kzh2pB6KaKGVkOihcLUcZ7KZbdaObAe0_75ebblw4fTm8N6bme-SnDvvgJDPnJWc8fbLrtwt_iX6NZQV413J6pIxdUY2XMm6qKQQ52TDaqkKKUV9QS5j3DHGOJdsQ55_B791Pia0dAIzp4la7wZM6B0dfaAzpgnXPe1NShAOdI3otjRNQBcTEpqZorMB9uBSnq1ZjMV0oMYN9M6sMaJxdAneQow0wDZkzdUfyYfRzBE-_dcr8nj748_Nz-L-4e7XzfV9YRshUj5e8VaOjVC8afrRCtHI3kimOqvGVhnZNGbobM-B8bFXbS2FhU7wjlve9WNXX5Hi1BtfYFl7vQTcm3DQ3qD-jk_X2oet_psmXTVtU1XZ__Xkt8HHGGDU-RtzhJGCwVlzpo_M9U6_MtdH5prVOjPP8fZN_HXhu8FvpyBkGM8IQUeL4CwMGMAmPXh8r-IfqJCmyA
CitedBy_id crossref_primary_10_1016_j_xcrp_2023_101743
crossref_primary_10_1016_j_est_2022_104371
crossref_primary_10_1016_j_jpowsour_2024_234781
crossref_primary_10_1109_TMECH_2022_3144351
crossref_primary_10_1109_TII_2023_3274218
crossref_primary_10_1016_j_energy_2022_125497
crossref_primary_10_1016_j_jpowsour_2022_231026
crossref_primary_10_1016_j_jpowsour_2022_231027
crossref_primary_10_1016_j_jpowsour_2024_234413
crossref_primary_10_1016_j_energy_2021_121857
crossref_primary_10_1016_j_est_2022_106319
crossref_primary_10_1002_int_22309
crossref_primary_10_1149_1945_7111_ad4397
crossref_primary_10_1038_s41598_023_33018_0
crossref_primary_10_3390_batteries10070234
crossref_primary_10_1016_j_est_2022_106323
crossref_primary_10_3390_en16010313
crossref_primary_10_1149_1945_7111_ad24c1
crossref_primary_10_1007_s42979_024_03046_2
crossref_primary_10_1109_TMECH_2020_2986364
crossref_primary_10_3390_batteries10080283
crossref_primary_10_1109_TVT_2020_3039553
crossref_primary_10_1016_j_rser_2021_111903
crossref_primary_10_3390_batteries8100155
crossref_primary_10_1016_j_apenergy_2023_121901
crossref_primary_10_1016_j_rser_2023_114264
crossref_primary_10_1155_2024_8892634
crossref_primary_10_1016_j_energy_2020_117852
crossref_primary_10_1016_j_est_2021_102570
crossref_primary_10_1007_s11708_023_0906_4
crossref_primary_10_1109_TTE_2021_3129479
crossref_primary_10_1016_j_measurement_2021_109057
crossref_primary_10_1109_TVT_2022_3205439
crossref_primary_10_1016_j_jclepro_2020_120813
crossref_primary_10_1149_1945_7111_ac0e4c
crossref_primary_10_1088_1742_6596_2011_1_012082
crossref_primary_10_1016_j_est_2022_104480
crossref_primary_10_1002_batt_202300140
crossref_primary_10_1016_j_est_2025_115347
crossref_primary_10_1109_ACCESS_2020_3025766
crossref_primary_10_1016_j_seta_2020_100752
crossref_primary_10_1109_ACCESS_2019_2930680
crossref_primary_10_1016_j_apenergy_2023_122330
crossref_primary_10_1115_1_4052535
crossref_primary_10_1149_1945_7111_ab8f56
crossref_primary_10_1016_j_egyr_2023_04_033
crossref_primary_10_3390_batteries9010007
crossref_primary_10_1016_j_energy_2025_134697
crossref_primary_10_1115_1_4048703
crossref_primary_10_1109_TVT_2021_3138959
crossref_primary_10_1051_e3sconf_202338503025
crossref_primary_10_1038_s41524_024_01286_7
crossref_primary_10_1109_JSEN_2023_3292347
crossref_primary_10_1115_1_4049234
crossref_primary_10_1016_j_seta_2020_100853
crossref_primary_10_1002_ente_202200151
crossref_primary_10_1109_TPEL_2024_3512516
crossref_primary_10_3390_en13112781
crossref_primary_10_3390_electronics8101118
crossref_primary_10_1109_TMECH_2020_3040010
crossref_primary_10_1016_j_apenergy_2023_120841
crossref_primary_10_1177_01423312231184728
crossref_primary_10_3390_app10196637
crossref_primary_10_1007_s43236_021_00318_5
crossref_primary_10_1016_j_est_2023_107322
crossref_primary_10_3390_en15124399
crossref_primary_10_1002_er_5415
crossref_primary_10_1016_j_est_2021_103528
crossref_primary_10_1016_j_egyr_2022_09_082
crossref_primary_10_1016_j_est_2021_103644
crossref_primary_10_1016_j_apenergy_2020_115895
crossref_primary_10_1016_j_apenergy_2024_124190
crossref_primary_10_1109_TTE_2020_2979547
crossref_primary_10_1016_j_est_2021_103072
crossref_primary_10_1016_j_est_2024_114826
crossref_primary_10_1016_j_enconman_2019_111904
crossref_primary_10_1016_j_est_2024_113172
crossref_primary_10_1016_j_procir_2025_01_035
crossref_primary_10_1016_j_est_2022_104901
crossref_primary_10_1016_j_energy_2020_119078
crossref_primary_10_1016_j_egyr_2022_09_093
crossref_primary_10_3390_en15072448
crossref_primary_10_1109_TII_2021_3106593
crossref_primary_10_1016_j_microrel_2021_114405
crossref_primary_10_1016_j_est_2024_112655
crossref_primary_10_3389_fmech_2021_719718
crossref_primary_10_1016_j_est_2020_101805
crossref_primary_10_1016_j_jelechem_2023_117572
crossref_primary_10_1109_TTE_2021_3074638
crossref_primary_10_1016_j_energy_2021_121556
crossref_primary_10_1016_j_est_2021_102535
crossref_primary_10_1016_j_est_2023_109885
crossref_primary_10_1016_j_energy_2025_135772
crossref_primary_10_1016_j_est_2023_107347
crossref_primary_10_1002_er_5750
crossref_primary_10_1109_ACCESS_2025_3536166
crossref_primary_10_1016_j_est_2022_104562
crossref_primary_10_1016_j_est_2022_104560
crossref_primary_10_3390_en16093815
crossref_primary_10_1109_ACCESS_2019_2936213
crossref_primary_10_1016_j_etran_2022_100156
crossref_primary_10_1016_j_geits_2022_100020
crossref_primary_10_1109_ACCESS_2020_3048146
crossref_primary_10_3389_fenrg_2022_969168
crossref_primary_10_3390_fermentation9020120
crossref_primary_10_1016_j_est_2024_114286
crossref_primary_10_1016_j_apenergy_2020_115074
crossref_primary_10_3390_batteries8120289
crossref_primary_10_1002_qre_3459
crossref_primary_10_1007_s11708_024_0969_x
crossref_primary_10_1088_1742_6596_1633_1_012131
crossref_primary_10_1016_j_ress_2025_110926
crossref_primary_10_1016_j_est_2019_101121
crossref_primary_10_1016_j_egyr_2022_11_016
crossref_primary_10_1016_j_est_2023_108732
crossref_primary_10_1016_j_est_2019_100951
crossref_primary_10_1016_j_est_2023_106797
crossref_primary_10_1109_TTE_2020_3028784
crossref_primary_10_1016_j_jpowsour_2020_227713
crossref_primary_10_1016_j_est_2022_105992
crossref_primary_10_1002_celc_202300393
crossref_primary_10_1109_TCE_2023_3279135
crossref_primary_10_1016_j_est_2024_110785
crossref_primary_10_3390_batteries9020080
crossref_primary_10_1016_j_est_2023_109010
crossref_primary_10_1109_ACCESS_2020_2972344
crossref_primary_10_1016_j_etran_2022_100214
crossref_primary_10_1016_j_energy_2021_120114
crossref_primary_10_1016_j_jpowsour_2021_229884
crossref_primary_10_1016_j_jpowsour_2020_228132
crossref_primary_10_1016_j_est_2021_103158
crossref_primary_10_3390_batteries9060323
crossref_primary_10_1016_j_est_2024_113829
crossref_primary_10_1016_j_jpowsour_2020_228358
crossref_primary_10_1016_j_ensm_2023_102785
crossref_primary_10_1016_j_energy_2024_131888
crossref_primary_10_1016_j_est_2024_113827
crossref_primary_10_1016_j_est_2024_111649
crossref_primary_10_1109_JIOT_2024_3511961
crossref_primary_10_1038_s41598_021_91241_z
crossref_primary_10_3390_su14042313
crossref_primary_10_1016_j_est_2023_107424
crossref_primary_10_1016_j_est_2022_104512
crossref_primary_10_1016_j_ress_2020_107241
crossref_primary_10_20964_2022_12_111
crossref_primary_10_3389_fenrg_2021_748508
crossref_primary_10_1016_j_est_2022_105731
crossref_primary_10_1109_TIE_2021_3111585
crossref_primary_10_1016_j_egyr_2021_09_131
crossref_primary_10_3390_batteries9010013
crossref_primary_10_1109_ACCESS_2024_3406424
crossref_primary_10_1109_TTE_2020_3017090
crossref_primary_10_1016_j_est_2024_111897
crossref_primary_10_1016_j_energy_2019_116467
crossref_primary_10_3390_en16176144
crossref_primary_10_1002_ente_202400996
crossref_primary_10_1016_j_ress_2023_109913
crossref_primary_10_3390_en17205132
crossref_primary_10_1002_er_6910
crossref_primary_10_1016_j_energy_2020_119530
crossref_primary_10_1016_j_est_2022_104646
crossref_primary_10_3390_app10155330
crossref_primary_10_3233_JIFS_201129
crossref_primary_10_1016_j_heliyon_2024_e25808
crossref_primary_10_1002_er_5934
crossref_primary_10_1039_D1EE01812D
crossref_primary_10_3390_en14092371
crossref_primary_10_1016_j_engappai_2023_106967
crossref_primary_10_3390_electronics10121497
crossref_primary_10_1002_ente_202401019
crossref_primary_10_1016_j_est_2023_107161
crossref_primary_10_1016_j_est_2022_105708
crossref_primary_10_3390_en13040830
crossref_primary_10_3390_en17174309
crossref_primary_10_1016_j_jpowsour_2020_228740
crossref_primary_10_1109_TIM_2023_3348894
crossref_primary_10_1109_JESTPE_2021_3112754
crossref_primary_10_3390_batteries9050251
crossref_primary_10_1115_1_4063430
crossref_primary_10_1016_j_neucom_2023_02_031
crossref_primary_10_1177_09544070241284065
crossref_primary_10_3390_su15021602
crossref_primary_10_1016_j_energy_2023_128956
crossref_primary_10_1016_j_egyr_2023_01_108
crossref_primary_10_1016_j_jelechem_2022_116011
crossref_primary_10_1252_jcej_20we039
crossref_primary_10_1007_s10338_025_00585_w
crossref_primary_10_1016_j_etran_2024_100374
crossref_primary_10_1016_j_energy_2023_129364
crossref_primary_10_3390_batteries8040029
crossref_primary_10_1016_j_jpowsour_2020_229248
crossref_primary_10_1038_s44296_024_00011_1
crossref_primary_10_1016_j_jprocont_2021_12_012
crossref_primary_10_1186_s10033_021_00668_y
crossref_primary_10_1007_s40747_023_01300_3
crossref_primary_10_1002_batt_202400201
crossref_primary_10_1061__ASCE_EY_1943_7897_0000865
crossref_primary_10_1016_j_est_2023_107063
crossref_primary_10_1149_1945_7111_ac6bc4
crossref_primary_10_3390_wevj15020038
crossref_primary_10_1016_j_est_2020_101400
crossref_primary_10_3233_JIFS_201952
crossref_primary_10_1016_j_jpowsour_2023_232737
crossref_primary_10_1007_s43236_020_00122_7
crossref_primary_10_3390_electronics10243126
crossref_primary_10_1115_1_4045008
crossref_primary_10_1016_j_egyr_2021_09_054
crossref_primary_10_1016_j_jechem_2024_01_047
crossref_primary_10_1016_j_jpowsour_2025_236235
crossref_primary_10_1115_1_4051802
crossref_primary_10_1016_j_apenergy_2024_123122
crossref_primary_10_1016_j_rser_2025_115522
crossref_primary_10_3390_en17061272
crossref_primary_10_1109_TIE_2020_3044779
crossref_primary_10_1016_j_energy_2021_120851
crossref_primary_10_1016_j_knosys_2022_110012
crossref_primary_10_3390_batteries8100134
crossref_primary_10_1016_j_energy_2020_118000
crossref_primary_10_1016_j_energy_2022_125802
crossref_primary_10_1016_j_jpowsour_2021_230526
crossref_primary_10_1016_j_est_2023_107734
Cites_doi 10.1016/j.measurement.2017.11.034
10.1016/j.est.2018.12.011
10.1016/j.jpowsour.2015.01.129
10.1109/ACCESS.2017.2759094
10.1016/j.apenergy.2016.01.125
10.1016/j.jpowsour.2018.10.069
10.1016/j.rser.2015.11.042
10.1016/j.jpowsour.2016.07.036
10.1016/j.jpowsour.2015.12.122
10.1109/TIE.2018.2813964
10.1016/j.jpowsour.2018.09.028
10.1016/j.apenergy.2015.08.119
10.1016/j.jpowsour.2017.08.033
10.1016/j.jpowsour.2017.08.094
10.1016/j.jpowsour.2013.03.158
10.1016/j.ijepes.2013.10.020
10.1016/j.jpowsour.2010.11.134
10.1016/j.jpowsour.2014.12.105
10.1109/TIE.2017.2782224
10.1136/bmj.e4483
10.1016/j.apenergy.2018.01.011
10.1109/TIM.2008.2005965
10.1016/j.jpowsour.2018.03.015
10.1016/j.electacta.2018.11.134
10.1016/j.jpowsour.2017.11.040
10.1109/TIE.2018.2838078
10.1016/j.energy.2015.05.148
10.3390/en10050691
10.1016/j.jpowsour.2016.03.054
10.1016/j.rser.2017.05.283
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
ADTPV
AOWAS
D8V
DOI 10.1016/j.jpowsour.2019.03.008
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 67
ExternalDocumentID oai_DiVA_org_kth_246422
10_1016_j_jpowsour_2019_03_008
S0378775319302393
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
ADTPV
AOWAS
D8V
EFKBS
ID FETCH-LOGICAL-c455t-278167f458144bfc5547ba7089c8f68a744ad9cb1e01fb86375ce95191c19bf93
IEDL.DBID .~1
ISSN 0378-7753
1873-2755
IngestDate Thu Aug 21 06:46:55 EDT 2025
Tue Jul 01 01:40:15 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Fri Feb 23 02:28:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Correlation coefficient
Incremental capacity analysis
Gaussian regression process
State of health
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-278167f458144bfc5547ba7089c8f68a744ad9cb1e01fb86375ce95191c19bf93
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_kth_246422
crossref_citationtrail_10_1016_j_jpowsour_2019_03_008
crossref_primary_10_1016_j_jpowsour_2019_03_008
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2019_03_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Adewuyi, Lotfi, Landers, Park (bib22) 2018; 212
Merla, Wu, Yufit, Brandon, Martinez-Botas, Offer (bib29) 2016; 307
Li, Zhang, Wang, Dong (bib7) 2019; 21
Farmann, Waag, Marongiu, Sauer (bib13) 2015; 281
Chen, Mi, Fu, Xu, Gong (bib18) 2013; 240
Seeger (bib34) 2004; vol. 14
Park, Appiah, Byun, Jin, Ryou, Lee (bib16) 2017; 365
Goebel, Saha, Saxena, Celaya, Christophersen, magazine (bib31) 2008; vol. 11
Zhou, Zheng, Ouyang, Lu (bib20) 2017; 364
Li, Lei, Yan, Li, Han (bib10) 2019; 66
Yang, Zhang, Pan, Wang, Chen (bib26) 2018; 384
Li, Shu, Shen, Xiao, Yan, Chen (bib8) 2017; 10
Wang, Pan, Liu, Cheng, Zhao (bib28) 2016; 168
Saha, Goebel, Poll, Christophersen (bib25) 2009; 58
Zhang, Hu, Wang, Sun, Dorrell (bib2) 2018; 81
Rasmussen (bib35) 2004
Wang, Liu, Hicks-Garner, Sherman, Soukiazian, Verbrugge, Tataria, Musser, Finamore (bib6) 2011; 196
Wang, Ma, Zhang (bib30) 2017; 5
Lai, Gao, Zheng, Ouyang, Li, Han, Zhou (bib19) 2019; 295
Li, Li, Xiong, Chai, Zhang (bib27) 2014; 55
Dong, Chen, Wei, Ling (bib3) 2018; 65
Zheng, Ouyang, Lu, Li (bib4) 2015; 278
Isufi, Loukas, Simonetto, Leus (bib32) 2016
Patil, Tagade, Hariharan, Kolake, Song, Yeo, Doo (bib24) 2015; 159
Berecibar, Gandiaga, Villarreal, Omar, Van Mierlo, Van den Bossche (bib12) 2016; 56
Galeotti, Cinà, Giammanco, Cordiner, Di Carlo (bib23) 2015; 89
Kouchachvili, Yaïci, Entchev (bib1) 2018; 374
Li, Wang, Zhang, Zou, Dorrell (bib14) 2019; 410–411
Li, Wang (bib5) 2018; 116
Jokar, Rajabloo, Désilets, Lacroix (bib15) 2016; 327
Wei, Dong, Chen (bib9) 2018; 65
Sedgwick (bib33) 2012; 345
Wilke, Schweitzer, Khateeb, Al-Hallaj (bib17) 2016; vol. 73
Wei, Xiong, Lim, Meng, Skyllas-Kazacos (bib21) 2018; 402
Wang, Yang, Zhang, Chen (bib11) 2016; 315
Rasmussen (10.1016/j.jpowsour.2019.03.008_bib35) 2004
Li (10.1016/j.jpowsour.2019.03.008_bib8) 2017; 10
Sedgwick (10.1016/j.jpowsour.2019.03.008_bib33) 2012; 345
Galeotti (10.1016/j.jpowsour.2019.03.008_bib23) 2015; 89
Zheng (10.1016/j.jpowsour.2019.03.008_bib4) 2015; 278
Chen (10.1016/j.jpowsour.2019.03.008_bib18) 2013; 240
Wang (10.1016/j.jpowsour.2019.03.008_bib30) 2017; 5
Wilke (10.1016/j.jpowsour.2019.03.008_bib17) 2016; vol. 73
Wei (10.1016/j.jpowsour.2019.03.008_bib21) 2018; 402
Berecibar (10.1016/j.jpowsour.2019.03.008_bib12) 2016; 56
Seeger (10.1016/j.jpowsour.2019.03.008_bib34) 2004; vol. 14
Isufi (10.1016/j.jpowsour.2019.03.008_bib32) 2016
Li (10.1016/j.jpowsour.2019.03.008_bib5) 2018; 116
Wang (10.1016/j.jpowsour.2019.03.008_bib11) 2016; 315
Li (10.1016/j.jpowsour.2019.03.008_bib14) 2019; 410–411
Goebel (10.1016/j.jpowsour.2019.03.008_bib31) 2008; vol. 11
Jokar (10.1016/j.jpowsour.2019.03.008_bib15) 2016; 327
Wang (10.1016/j.jpowsour.2019.03.008_bib28) 2016; 168
Lai (10.1016/j.jpowsour.2019.03.008_bib19) 2019; 295
Wei (10.1016/j.jpowsour.2019.03.008_bib9) 2018; 65
Yang (10.1016/j.jpowsour.2019.03.008_bib26) 2018; 384
Saha (10.1016/j.jpowsour.2019.03.008_bib25) 2009; 58
Patil (10.1016/j.jpowsour.2019.03.008_bib24) 2015; 159
Li (10.1016/j.jpowsour.2019.03.008_bib22) 2018; 212
Park (10.1016/j.jpowsour.2019.03.008_bib16) 2017; 365
Li (10.1016/j.jpowsour.2019.03.008_bib10) 2019; 66
Zhou (10.1016/j.jpowsour.2019.03.008_bib20) 2017; 364
Dong (10.1016/j.jpowsour.2019.03.008_bib3) 2018; 65
Li (10.1016/j.jpowsour.2019.03.008_bib7) 2019; 21
Kouchachvili (10.1016/j.jpowsour.2019.03.008_bib1) 2018; 374
Zhang (10.1016/j.jpowsour.2019.03.008_bib2) 2018; 81
Li (10.1016/j.jpowsour.2019.03.008_bib27) 2014; 55
Farmann (10.1016/j.jpowsour.2019.03.008_bib13) 2015; 281
Wang (10.1016/j.jpowsour.2019.03.008_bib6) 2011; 196
Merla (10.1016/j.jpowsour.2019.03.008_bib29) 2016; 307
References_xml – volume: 212
  start-page: 1178
  year: 2018
  end-page: 1190
  ident: bib22
  article-title: A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation
  publication-title: Appl. Energy
– volume: vol. 73
  start-page: 109
  year: 2016
  end-page: 119
  ident: bib17
  publication-title: Semi-Empirical Modeling of Capacity Fade: A Practical Approach for Battery Pack Manufacturers
– volume: 240
  start-page: 184
  year: 2013
  end-page: 192
  ident: bib18
  article-title: Online battery state of health estimation based on Genetic Algorithm for electric and hybrid vehicle applications
  publication-title: J. Power Sources
– volume: 374
  start-page: 237
  year: 2018
  end-page: 248
  ident: bib1
  article-title: Hybrid battery/supercapacitor energy storage system for the electric vehicles
  publication-title: J. Power Sources
– volume: 10
  year: 2017
  ident: bib8
  article-title: An on-board remaining useful life estimation algorithm for lithium-ion batteries of electric vehicles
  publication-title: Energies
– volume: 58
  start-page: 291
  year: 2009
  end-page: 296
  ident: bib25
  article-title: Prognostics methods for battery health monitoring using a bayesian framework
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 345
  start-page: e4483
  year: 2012
  ident: bib33
  article-title: Pearson's correlation coefficient
  publication-title: BMJ
– volume: 21
  start-page: 510
  year: 2019
  end-page: 518
  ident: bib7
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks
  publication-title: Journal of Energy Storage
– volume: 281
  start-page: 114
  year: 2015
  end-page: 130
  ident: bib13
  article-title: Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles
  publication-title: J. Power Sources
– volume: 66
  start-page: 2092
  year: 2019
  end-page: 2101
  ident: bib10
  article-title: A wiener-process-model-based method for remaining useful life prediction considering unit-to-unit variability
  publication-title: IEEE Trans. Ind. Electron.
– year: 2016
  ident: bib32
  article-title: Autoregressive Moving Average Graph Filtering
– volume: 315
  start-page: 199
  year: 2016
  end-page: 208
  ident: bib11
  article-title: Probability based remaining capacity estimation using data-driven and neural network model
  publication-title: J. Power Sources
– volume: 89
  start-page: 678
  year: 2015
  end-page: 686
  ident: bib23
  article-title: Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy
  publication-title: Energy
– volume: 168
  start-page: 465
  year: 2016
  end-page: 472
  ident: bib28
  article-title: On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis
  publication-title: Appl. Energy
– volume: vol. 11
  year: 2008
  ident: bib31
  publication-title: Prognostics in Battery Health Management
– volume: 116
  start-page: 402
  year: 2018
  end-page: 411
  ident: bib5
  article-title: A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles
  publication-title: Measurement
– volume: 402
  start-page: 252
  year: 2018
  end-page: 262
  ident: bib21
  article-title: Online monitoring of state of charge and capacity loss for vanadium redox flow battery based on autoregressive exogenous modeling
  publication-title: J. Power Sources
– volume: 384
  start-page: 387
  year: 2018
  end-page: 395
  ident: bib26
  article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
  publication-title: J. Power Sources
– year: 2004
  ident: bib35
  article-title: Gaussian processes in machine learning
  publication-title: Advanced Lectures on Machine Learning
– volume: 196
  start-page: 3942
  year: 2011
  end-page: 3948
  ident: bib6
  article-title: Cycle-life model for graphite-LiFePO4 cells
  publication-title: J. Power Sources
– volume: 410–411
  start-page: 106
  year: 2019
  end-page: 114
  ident: bib14
  article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis
  publication-title: J. Power Sources
– volume: 364
  start-page: 242
  year: 2017
  end-page: 252
  ident: bib20
  article-title: A study on parameter variation effects on battery packs for electric vehicles
  publication-title: J. Power Sources
– volume: 65
  start-page: 8646
  year: 2018
  end-page: 8655
  ident: bib3
  article-title: Battery health prognosis using brownian motion modeling and particle filtering
  publication-title: IEEE Trans. Ind. Electron.
– volume: 278
  start-page: 287
  year: 2015
  end-page: 295
  ident: bib4
  article-title: Understanding aging mechanisms in lithium-ion battery packs: from cell capacity loss to pack capacity evolution
  publication-title: J. Power Sources
– volume: 365
  start-page: 257
  year: 2017
  end-page: 265
  ident: bib16
  article-title: Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries
  publication-title: J. Power Sources
– volume: 56
  start-page: 572
  year: 2016
  end-page: 587
  ident: bib12
  article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 65
  start-page: 5634
  year: 2018
  end-page: 5643
  ident: bib9
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression
  publication-title: IEEE Trans. Ind. Electron.
– volume: 159
  start-page: 285
  year: 2015
  end-page: 297
  ident: bib24
  article-title: A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation
  publication-title: Appl. Energy
– volume: 55
  start-page: 749
  year: 2014
  end-page: 759
  ident: bib27
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 327
  start-page: 44
  year: 2016
  end-page: 55
  ident: bib15
  article-title: Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries
  publication-title: J. Power Sources
– volume: 307
  start-page: 308
  year: 2016
  end-page: 319
  ident: bib29
  article-title: Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries
  publication-title: J. Power Sources
– volume: vol. 14
  start-page: 69
  year: 2004
  end-page: 106
  ident: bib34
  publication-title: Gaussian Processes for Machine Learning
– volume: 5
  start-page: 21286
  year: 2017
  end-page: 21295
  ident: bib30
  article-title: State-of-Health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression
  publication-title: IEEE Access
– volume: 81
  start-page: 1868
  year: 2018
  end-page: 1878
  ident: bib2
  article-title: A review of supercapacitor modeling, estimation, and applications: a control/management perspective
  publication-title: Renew. Sustain. Energy Rev.
– volume: 295
  start-page: 1057
  year: 2019
  end-page: 1066
  ident: bib19
  article-title: A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries
  publication-title: Electrochim. Acta
– volume: 116
  start-page: 402
  issue: Supplement C
  year: 2018
  ident: 10.1016/j.jpowsour.2019.03.008_bib5
  article-title: A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.11.034
– volume: 21
  start-page: 510
  year: 2019
  ident: 10.1016/j.jpowsour.2019.03.008_bib7
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2018.12.011
– volume: 281
  start-page: 114
  year: 2015
  ident: 10.1016/j.jpowsour.2019.03.008_bib13
  article-title: Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.129
– volume: 5
  start-page: 21286
  year: 2017
  ident: 10.1016/j.jpowsour.2019.03.008_bib30
  article-title: State-of-Health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2759094
– volume: 168
  start-page: 465
  year: 2016
  ident: 10.1016/j.jpowsour.2019.03.008_bib28
  article-title: On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.125
– volume: 410–411
  start-page: 106
  year: 2019
  ident: 10.1016/j.jpowsour.2019.03.008_bib14
  article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.069
– volume: 56
  start-page: 572
  year: 2016
  ident: 10.1016/j.jpowsour.2019.03.008_bib12
  article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.042
– volume: 327
  start-page: 44
  year: 2016
  ident: 10.1016/j.jpowsour.2019.03.008_bib15
  article-title: Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.07.036
– volume: 307
  start-page: 308
  year: 2016
  ident: 10.1016/j.jpowsour.2019.03.008_bib29
  article-title: Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.12.122
– volume: 65
  start-page: 8646
  issue: 11
  year: 2018
  ident: 10.1016/j.jpowsour.2019.03.008_bib3
  article-title: Battery health prognosis using brownian motion modeling and particle filtering
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2813964
– volume: 402
  start-page: 252
  year: 2018
  ident: 10.1016/j.jpowsour.2019.03.008_bib21
  article-title: Online monitoring of state of charge and capacity loss for vanadium redox flow battery based on autoregressive exogenous modeling
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.09.028
– volume: 159
  start-page: 285
  year: 2015
  ident: 10.1016/j.jpowsour.2019.03.008_bib24
  article-title: A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.119
– volume: vol. 14
  start-page: 69
  year: 2004
  ident: 10.1016/j.jpowsour.2019.03.008_bib34
– volume: 364
  start-page: 242
  year: 2017
  ident: 10.1016/j.jpowsour.2019.03.008_bib20
  article-title: A study on parameter variation effects on battery packs for electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.08.033
– volume: vol. 73
  start-page: 109
  year: 2016
  ident: 10.1016/j.jpowsour.2019.03.008_bib17
– volume: 365
  start-page: 257
  year: 2017
  ident: 10.1016/j.jpowsour.2019.03.008_bib16
  article-title: Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.08.094
– volume: 240
  start-page: 184
  issue: Supplement C
  year: 2013
  ident: 10.1016/j.jpowsour.2019.03.008_bib18
  article-title: Online battery state of health estimation based on Genetic Algorithm for electric and hybrid vehicle applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.158
– volume: 55
  start-page: 749
  year: 2014
  ident: 10.1016/j.jpowsour.2019.03.008_bib27
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.10.020
– volume: 196
  start-page: 3942
  issue: 8
  year: 2011
  ident: 10.1016/j.jpowsour.2019.03.008_bib6
  article-title: Cycle-life model for graphite-LiFePO4 cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.11.134
– volume: 278
  start-page: 287
  year: 2015
  ident: 10.1016/j.jpowsour.2019.03.008_bib4
  article-title: Understanding aging mechanisms in lithium-ion battery packs: from cell capacity loss to pack capacity evolution
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.105
– year: 2004
  ident: 10.1016/j.jpowsour.2019.03.008_bib35
  article-title: Gaussian processes in machine learning
– volume: 65
  start-page: 5634
  issue: 7
  year: 2018
  ident: 10.1016/j.jpowsour.2019.03.008_bib9
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2782224
– volume: 345
  start-page: e4483
  year: 2012
  ident: 10.1016/j.jpowsour.2019.03.008_bib33
  article-title: Pearson's correlation coefficient
  publication-title: BMJ
  doi: 10.1136/bmj.e4483
– volume: 212
  start-page: 1178
  year: 2018
  ident: 10.1016/j.jpowsour.2019.03.008_bib22
  article-title: A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.01.011
– volume: 58
  start-page: 291
  issue: 2
  year: 2009
  ident: 10.1016/j.jpowsour.2019.03.008_bib25
  article-title: Prognostics methods for battery health monitoring using a bayesian framework
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2008.2005965
– volume: 384
  start-page: 387
  year: 2018
  ident: 10.1016/j.jpowsour.2019.03.008_bib26
  article-title: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.015
– volume: 295
  start-page: 1057
  year: 2019
  ident: 10.1016/j.jpowsour.2019.03.008_bib19
  article-title: A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.134
– volume: 374
  start-page: 237
  year: 2018
  ident: 10.1016/j.jpowsour.2019.03.008_bib1
  article-title: Hybrid battery/supercapacitor energy storage system for the electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.040
– volume: 66
  start-page: 2092
  issue: 3
  year: 2019
  ident: 10.1016/j.jpowsour.2019.03.008_bib10
  article-title: A wiener-process-model-based method for remaining useful life prediction considering unit-to-unit variability
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2838078
– volume: 89
  start-page: 678
  year: 2015
  ident: 10.1016/j.jpowsour.2019.03.008_bib23
  article-title: Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy
  publication-title: Energy
  doi: 10.1016/j.energy.2015.05.148
– volume: vol. 11
  year: 2008
  ident: 10.1016/j.jpowsour.2019.03.008_bib31
– volume: 10
  issue: 5
  year: 2017
  ident: 10.1016/j.jpowsour.2019.03.008_bib8
  article-title: An on-board remaining useful life estimation algorithm for lithium-ion batteries of electric vehicles
  publication-title: Energies
  doi: 10.3390/en10050691
– volume: 315
  start-page: 199
  year: 2016
  ident: 10.1016/j.jpowsour.2019.03.008_bib11
  article-title: Probability based remaining capacity estimation using data-driven and neural network model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.054
– volume: 81
  start-page: 1868
  year: 2018
  ident: 10.1016/j.jpowsour.2019.03.008_bib2
  article-title: A review of supercapacitor modeling, estimation, and applications: a control/management perspective
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.283
– year: 2016
  ident: 10.1016/j.jpowsour.2019.03.008_bib32
SSID ssj0001170
Score 2.6685188
Snippet Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 56
SubjectTerms Correlation coefficient
Gaussian regression process
Incremental capacity analysis
Lithium-ion batteries
State of health
Title Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression
URI https://dx.doi.org/10.1016/j.jpowsour.2019.03.008
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246422
Volume 421
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXMqh6oMKSot8qHoLm8TO2jmueG1bFVXiIW6WPYmXLCUbbXdb9cJvZyZOYDlUHHpzEjt2PCN7xvnmG8Y-OaB8tuidqNI6dFAERE6nNkoseBXLIpVAgcLfT4fjC_n1KrtaYwd9LAzBKru1P6zp7Wrd3Rl0szloqmpwFgtUNkU6JFoiL4pgl4q0fP_uEeZBmVXaPwk0Hqy9EiU83Z82sz90SE4Qr57s9J8b1CqTaLv7HL9iLzuzkY_CyF6ztbJ-wzZXyATfst8_5jNCzWENHqIbOfq6RQvJ4miacjS4r6vlLXctpeZfTpD3CUcDkDf0xfj6qoZwXIhlwF0U0ETnti74iV3-omhL3oS4Aj4vJwFAW2-xi-Oj84Nx1GVViEBm2SJKlU6GystMoy_lPKA9oZxVsc5B-6G2Skpb5OCSMk6800OhMijRDssTSHLnc_GOrdezutxmHJQHL0qdgrbSZfjMOZFL4V1hsWB3WNZPpYGOcpwyX_w0PbZsanoRGBKBiYVBEeywwUO7JpBuPNsi7yVlnqiPwZ3h2bafg2gf-iLK7cPqcmRm84m5WVybVKKblr7_j0522Qu6ClDJD2x9MV-WH9GcWbi9Vl_32Mboy7fx6T3iU_sZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKewAOVctDLaXUB8Qt3SR21s6xKpTtU0i0qDfLnsTbLJCNll1QL_3tzMRJWQ6oB25WbCeOZ2J_43wzw9hbB5TPFq0TVVqHBoqAyOnURokFr2JZpBLIUfj8Yji6kifX2fUKO-x9YYhW2a39YU1vV-vuyqCbzUFTVYPPsUBlU6RDog3k9YitSfx8KY3B_t0fngelVml_JdCAsPmSm_Bkf9JMf9EpOXG8-min_9yhlkOJttvP0QZb73AjPwhD22QrZf2MPV2KJvic_fw0mxJtDlvw4N7I0dgtWk4WR2zKEXHfVIvv3LUxNW85cd7HHBEgb-iV8fZVDeG8EMuA2yggRue2LvhHu_hB7pa8CY4FfFaOA4O2fsGujj5cHo6iLq1CBDLL5lGqdDJUXmYajSnnAQGFclbFOgfth9oqKW2Rg0vKOPFOD4XKoEQglieQ5M7n4iVbrad1ucU4KA9elDoFbaXLsM45kUvhXWGxYLdZ1k-lgS7mOKW--GZ6ctnE9CIwJAITC4Mi2GaD-35NiLrxYI-8l5T5S38Mbg0P9n0XRHv_LIq5_b76cmCms7H5Or8xqUQ7LX31Hw_ZY49Hl-dn5uz44nSHPaGawJt8zVbns0W5i9hm7t60uvsbkrr8pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostic+health+condition+for+lithium+battery+using+the+partial+incremental+capacity+and+Gaussian+process+regression&rft.jtitle=Journal+of+power+sources&rft.au=Li%2C+Xiaoyu&rft.au=Wang%2C+Zhenpo&rft.au=Yan%2C+Jinying&rft.date=2019-05-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=421&rft.spage=56&rft.epage=67&rft_id=info:doi/10.1016%2Fj.jpowsour.2019.03.008&rft.externalDocID=S0378775319302393
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon