Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs
•Optimal LED light intensity for lettuce and basil indoor growing is addressed;•Maximum yield and leaf area is achieved at 250 μmol m-2 s-1;•250 μmol m-2 s-1 increased chlorophyll and improved stomatal functions in leaves;•In lettuce, PPFD ≥ 200 μmol m-2 s-1 raised antioxidant capacity, phenolics an...
Saved in:
Published in | Scientia horticulturae Vol. 272; p. 109508 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Optimal LED light intensity for lettuce and basil indoor growing is addressed;•Maximum yield and leaf area is achieved at 250 μmol m-2 s-1;•250 μmol m-2 s-1 increased chlorophyll and improved stomatal functions in leaves;•In lettuce, PPFD ≥ 200 μmol m-2 s-1 raised antioxidant capacity, phenolics and flavonoids;•Water, energy and light use efficiencies were optimized at 250 μmol m-2 s-1;
Indoor plant cultivation systems are gaining increasing popularity because of their ability to meet the needs of producing food in unfavourable climatic contexts and in urban environments, allowing high yield, high quality, and great efficiency in the use of resources such as water and nutrients. While light is one of the most important environmental factors affecting plant development and morphology, electricity costs can limit the widespread adoption of indoor plant cultivation systems at a commercial scale. LED lighting technologies for plant cultivation are also rapidly evolving, and lamps for indoor cultivation are often designed to optimize their light emissions in the photosynthetically active spectrum (i.e. red and blue), in order to reduce energetic requirements for satisfactory yield. Under these light regimens, however, little information is available in literature about minimum photosynthetic photon flux density (PPFD) for indoor production of leafy vegetables and herbs, while existing literature often adopts light intensities from 100 to 300 μmol m-2 s-1. This study aims at defining the optimal PPFD for indoor cultivation of basil (Ocimum basilicum L.) and lettuce (Lactuca sativa L.), by linking resource use efficiency to physiological responses and biomass production under different light intensities. Basil and lettuce plants were cultivated at 24 °C and 450 μmol mol-1 CO2 under red and blue light (with red:blue ratio of 3) and a photoperiod of 16 h d-1 of light in growth chambers using five PPFD (100, 150, 200, 250 and 300 μmol m-2 s-1, resulting in daily light integrals, DLI, of 5.8, 8.6, 11.5, 14.4 and 17.3 mol m-2 d-1, respectively). A progressive increase of biomass production for both lettuce and basil up to a PPFD of 250 μmol m-2 s-1 was observed, whereas no further yield increases were associated with higher PPFD (300 μmol m-2 s-1). Despite the highest stomatal conductance associated to a PPFD of 250 μmol m-2 s-1 in lettuce and to a PPFD ≥ 200 μmol m-2 s-1 in basil, water use efficiency was maximized under a PPFD ≥ 200 μmol m-2 s-1 in lettuce and PPFD ≥ 250 μmol m-2 s-1 in basil. Energy and light use efficiencies were increased under a PPFD of 200 and 250 μmol m-2 s-1 in lettuce and under a PPFD of 250 μmol m-2 s-1 in basil. Furthermore, in lettuce grown under 250 μmol m-2 s-1 antioxidant capacity, phenolics and flavonoids were higher as compared with plants supplied with PPFD ≤ 150 μmol m-2 s-1. Accordingly, a PPFD of 250 μmol m-2 s-1 seems suitable for optimizing yield and resource use efficiency in red and blue LED lighting for indoor cultivation of lettuce and basil under the prevailing conditions of the used indoor farming set-up. |
---|---|
AbstractList | Indoor plant cultivation systems are gaining increasing popularity because of their ability to meet the needs of producing food in unfavourable climatic contexts and in urban environments, allowing high yield, high quality, and great efficiency in the use of resources such as water and nutrients. While light is one of the most important environmental factors affecting plant development and morphology, electricity costs can limit the widespread adoption of indoor plant cultivation systems at a commercial scale. LED lighting technologies for plant cultivation are also rapidly evolving, and lamps for indoor cultivation are often designed to optimize their light emissions in the photosynthetically active spectrum (i.e. red and blue), in order to reduce energetic requirements for satisfactory yield. Under these light regimens, however, little information is available in literature about minimum photosynthetic photon flux density (PPFD) for indoor production of leafy vegetables and herbs, while existing literature often adopts light intensities from 100 to 300 μmol m⁻² s⁻¹. This study aims at defining the optimal PPFD for indoor cultivation of basil (Ocimum basilicum L.) and lettuce (Lactuca sativa L.), by linking resource use efficiency to physiological responses and biomass production under different light intensities. Basil and lettuce plants were cultivated at 24 °C and 450 μmol mol⁻¹ CO₂ under red and blue light (with red:blue ratio of 3) and a photoperiod of 16 h d⁻¹ of light in growth chambers using five PPFD (100, 150, 200, 250 and 300 μmol m⁻² s⁻¹, resulting in daily light integrals, DLI, of 5.8, 8.6, 11.5, 14.4 and 17.3 mol m⁻² d⁻¹, respectively). A progressive increase of biomass production for both lettuce and basil up to a PPFD of 250 μmol m⁻² s⁻¹ was observed, whereas no further yield increases were associated with higher PPFD (300 μmol m⁻² s⁻¹). Despite the highest stomatal conductance associated to a PPFD of 250 μmol m⁻² s⁻¹ in lettuce and to a PPFD ≥ 200 μmol m⁻² s⁻¹ in basil, water use efficiency was maximized under a PPFD ≥ 200 μmol m⁻² s⁻¹ in lettuce and PPFD ≥ 250 μmol m⁻² s⁻¹ in basil. Energy and light use efficiencies were increased under a PPFD of 200 and 250 μmol m⁻² s⁻¹ in lettuce and under a PPFD of 250 μmol m⁻² s⁻¹ in basil. Furthermore, in lettuce grown under 250 μmol m⁻² s⁻¹ antioxidant capacity, phenolics and flavonoids were higher as compared with plants supplied with PPFD ≤ 150 μmol m⁻² s⁻¹. Accordingly, a PPFD of 250 μmol m⁻² s⁻¹ seems suitable for optimizing yield and resource use efficiency in red and blue LED lighting for indoor cultivation of lettuce and basil under the prevailing conditions of the used indoor farming set-up. •Optimal LED light intensity for lettuce and basil indoor growing is addressed;•Maximum yield and leaf area is achieved at 250 μmol m-2 s-1;•250 μmol m-2 s-1 increased chlorophyll and improved stomatal functions in leaves;•In lettuce, PPFD ≥ 200 μmol m-2 s-1 raised antioxidant capacity, phenolics and flavonoids;•Water, energy and light use efficiencies were optimized at 250 μmol m-2 s-1; Indoor plant cultivation systems are gaining increasing popularity because of their ability to meet the needs of producing food in unfavourable climatic contexts and in urban environments, allowing high yield, high quality, and great efficiency in the use of resources such as water and nutrients. While light is one of the most important environmental factors affecting plant development and morphology, electricity costs can limit the widespread adoption of indoor plant cultivation systems at a commercial scale. LED lighting technologies for plant cultivation are also rapidly evolving, and lamps for indoor cultivation are often designed to optimize their light emissions in the photosynthetically active spectrum (i.e. red and blue), in order to reduce energetic requirements for satisfactory yield. Under these light regimens, however, little information is available in literature about minimum photosynthetic photon flux density (PPFD) for indoor production of leafy vegetables and herbs, while existing literature often adopts light intensities from 100 to 300 μmol m-2 s-1. This study aims at defining the optimal PPFD for indoor cultivation of basil (Ocimum basilicum L.) and lettuce (Lactuca sativa L.), by linking resource use efficiency to physiological responses and biomass production under different light intensities. Basil and lettuce plants were cultivated at 24 °C and 450 μmol mol-1 CO2 under red and blue light (with red:blue ratio of 3) and a photoperiod of 16 h d-1 of light in growth chambers using five PPFD (100, 150, 200, 250 and 300 μmol m-2 s-1, resulting in daily light integrals, DLI, of 5.8, 8.6, 11.5, 14.4 and 17.3 mol m-2 d-1, respectively). A progressive increase of biomass production for both lettuce and basil up to a PPFD of 250 μmol m-2 s-1 was observed, whereas no further yield increases were associated with higher PPFD (300 μmol m-2 s-1). Despite the highest stomatal conductance associated to a PPFD of 250 μmol m-2 s-1 in lettuce and to a PPFD ≥ 200 μmol m-2 s-1 in basil, water use efficiency was maximized under a PPFD ≥ 200 μmol m-2 s-1 in lettuce and PPFD ≥ 250 μmol m-2 s-1 in basil. Energy and light use efficiencies were increased under a PPFD of 200 and 250 μmol m-2 s-1 in lettuce and under a PPFD of 250 μmol m-2 s-1 in basil. Furthermore, in lettuce grown under 250 μmol m-2 s-1 antioxidant capacity, phenolics and flavonoids were higher as compared with plants supplied with PPFD ≤ 150 μmol m-2 s-1. Accordingly, a PPFD of 250 μmol m-2 s-1 seems suitable for optimizing yield and resource use efficiency in red and blue LED lighting for indoor cultivation of lettuce and basil under the prevailing conditions of the used indoor farming set-up. |
ArticleNumber | 109508 |
Author | Fernandez, Juan A. Crepaldi, Andrea Orsini, Francesco Nicola, Silvana Pistillo, Alessandro Gianquinto, Giorgio Cellini, Antonio Pennisi, Giuseppina Spinelli, Francesco Marcelis, Leo F.M. |
Author_xml | – sequence: 1 givenname: Giuseppina surname: Pennisi fullname: Pennisi, Giuseppina organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy – sequence: 2 givenname: Alessandro surname: Pistillo fullname: Pistillo, Alessandro organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy – sequence: 3 givenname: Francesco orcidid: 0000-0001-6956-7054 surname: Orsini fullname: Orsini, Francesco email: f.orsini@unibo.it organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy – sequence: 4 givenname: Antonio orcidid: 0000-0001-7959-7118 surname: Cellini fullname: Cellini, Antonio organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy – sequence: 5 givenname: Francesco orcidid: 0000-0003-3870-1227 surname: Spinelli fullname: Spinelli, Francesco organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy – sequence: 6 givenname: Silvana orcidid: 0000-0003-4458-5939 surname: Nicola fullname: Nicola, Silvana organization: DISAFA-VEGMAP, Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy – sequence: 7 givenname: Juan A. surname: Fernandez fullname: Fernandez, Juan A. organization: Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain – sequence: 8 givenname: Andrea surname: Crepaldi fullname: Crepaldi, Andrea organization: Flytech s.r.l., Belluno, Italy – sequence: 9 givenname: Giorgio surname: Gianquinto fullname: Gianquinto, Giorgio organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy – sequence: 10 givenname: Leo F.M. orcidid: 0000-0002-8088-7232 surname: Marcelis fullname: Marcelis, Leo F.M. organization: Horticulture & Product Physiology Group, Wageningen University, Wageningen, the Netherlands |
BookMark | eNqFkMtOAyEUQFnUxPr4BBOWblqBwnQmLoypz6SJG10TBu5UGgoVmJqu_HWp48qNCYHk5pybcE7QyAcPCF1QMqWEVlfradIWfFZTRthh1ghSj9CYzAifcDarj9FJSmtCCKW8GaOvl222G-Wws6v3jK3P4JPNe9yFiFOfsrJetQ7wp8oQsfIGg4e42uM-QcHLMaGgunfZ7lS2wePQYQc59xp--FYl63DvTfEjmGHmesDL-7t0ho465RKc_76n6O3h_nXxNFm-PD4vbpcTzYXIEzafC8FazaniLQfektbUdbmUMZWpRcNU3VSCkkrxeatVVdUAne54xTqYMzY7RZfD3m0MHz2kLDc2aXBOeQh9kkxwwpuKU1HQ6wHVMaQUoZPa5p-f5aisk5TIQ2q5lr-p5SG1HFIXW_yxt7EEjvt_vZvBg1JhZyEOlAZjI-gsTbD_bPgGY7-iDw |
CitedBy_id | crossref_primary_10_3390_su142114186 crossref_primary_10_17660_ActaHortic_2023_1369_14 crossref_primary_10_1002_jsfa_11513 crossref_primary_10_17660_ActaHortic_2022_1345_24 crossref_primary_10_1039_D1NJ00951F crossref_primary_10_2525_ecb_61_17 crossref_primary_10_3390_agronomy13102582 crossref_primary_10_1038_s43016_021_00302_z crossref_primary_10_1016_j_apenergy_2024_123756 crossref_primary_10_1021_acsagscitech_3c00128 crossref_primary_10_1038_s41598_023_33855_z crossref_primary_10_1155_2021_1159567 crossref_primary_10_3390_ijms242015350 crossref_primary_10_22314_2658_4859_2023_70_2_10_18 crossref_primary_10_3390_horticulturae11020220 crossref_primary_10_1007_s13580_023_00547_6 crossref_primary_10_1016_j_fbio_2024_103984 crossref_primary_10_1590_0034_737x202370030005 crossref_primary_10_3390_agronomy11020303 crossref_primary_10_3390_ai5030073 crossref_primary_10_3390_plants10061203 crossref_primary_10_1016_j_scienta_2024_113264 crossref_primary_10_3390_horticulturae7100361 crossref_primary_10_1186_s12870_024_05200_7 crossref_primary_10_1016_j_scienta_2023_112396 crossref_primary_10_2503_hortj_UTD_273 crossref_primary_10_7717_peerj_17085 crossref_primary_10_1186_s12870_025_06354_8 crossref_primary_10_1371_journal_pone_0273562 crossref_primary_10_3390_horticulturae10090931 crossref_primary_10_3390_horticulturae7060124 crossref_primary_10_3390_agriculture14112079 crossref_primary_10_1016_j_envexpbot_2024_105711 crossref_primary_10_3389_fpls_2020_597906 crossref_primary_10_3390_plants12203622 crossref_primary_10_1016_j_enbuild_2025_115483 crossref_primary_10_3390_horticulturae11040343 crossref_primary_10_3390_plants11131709 crossref_primary_10_1016_j_fbio_2023_102506 crossref_primary_10_1007_s11105_024_01480_3 crossref_primary_10_3390_agriculture14010084 crossref_primary_10_3389_fpls_2022_1055352 crossref_primary_10_1051_bioconf_20249002002 crossref_primary_10_3390_agronomy11061106 crossref_primary_10_3389_fpls_2020_592171 crossref_primary_10_3389_fpls_2024_1467443 crossref_primary_10_1016_j_scienta_2021_110486 crossref_primary_10_3389_fpls_2023_1093883 crossref_primary_10_3390_horticulturae9111168 crossref_primary_10_1016_j_elstat_2024_103902 crossref_primary_10_1016_j_apenergy_2024_124669 crossref_primary_10_17660_eJHS_2020_85_5_4 crossref_primary_10_3390_horticulturae10060574 crossref_primary_10_3390_agronomy14010224 crossref_primary_10_3390_horticulturae9030404 crossref_primary_10_3390_plants11010121 crossref_primary_10_3389_fpls_2020_609977 crossref_primary_10_1016_j_postharvbio_2021_111500 crossref_primary_10_3389_fpls_2024_1515457 crossref_primary_10_1016_j_plaphy_2024_108783 crossref_primary_10_3390_ijms232113145 crossref_primary_10_1016_j_indcrop_2024_118495 crossref_primary_10_3390_s22249671 crossref_primary_10_3390_plants11212843 crossref_primary_10_1016_j_compag_2023_108553 crossref_primary_10_3390_horticulturae8020114 crossref_primary_10_1186_s40538_023_00532_2 crossref_primary_10_1016_j_scienta_2022_111035 crossref_primary_10_3390_plants13182616 crossref_primary_10_1002_fes3_391 crossref_primary_10_1177_14771535231223871 crossref_primary_10_1016_j_compag_2024_108809 crossref_primary_10_1016_j_scienta_2024_113693 crossref_primary_10_3390_w16111524 crossref_primary_10_3389_fpls_2023_1106394 crossref_primary_10_3390_su141610204 crossref_primary_10_3389_fpls_2021_615355 crossref_primary_10_1016_j_ceramint_2021_06_185 crossref_primary_10_3390_foods11213487 crossref_primary_10_3390_agriculture11100989 crossref_primary_10_3390_s21206833 crossref_primary_10_3390_horticulturae9050551 crossref_primary_10_1088_2053_1591_ac5d06 crossref_primary_10_3390_pr11020365 crossref_primary_10_1016_j_jarmap_2024_100583 crossref_primary_10_3390_agronomy15030744 crossref_primary_10_17660_eJHS_2024_025 crossref_primary_10_3390_app13032004 crossref_primary_10_3390_horticulturae9020287 crossref_primary_10_1016_j_scienta_2023_112351 crossref_primary_10_17660_eJHS_2024_026 crossref_primary_10_3389_fpls_2023_1111338 crossref_primary_10_3390_foods13142273 crossref_primary_10_1016_j_sajb_2024_11_023 crossref_primary_10_1109_TIM_2023_3336448 crossref_primary_10_3390_horticulturae7050096 crossref_primary_10_3390_plants12051075 crossref_primary_10_3390_agriculture12101593 crossref_primary_10_3390_su15021024 crossref_primary_10_3390_s22114046 crossref_primary_10_1021_acsagscitech_1c00241 crossref_primary_10_17660_ActaHortic_2022_1356_20 crossref_primary_10_15835_nbha49212314 crossref_primary_10_3390_plants12061355 crossref_primary_10_1016_j_postharvbio_2022_112113 crossref_primary_10_3390_horticulturae10060650 crossref_primary_10_3390_horticulturae7090328 crossref_primary_10_3390_plants11091153 crossref_primary_10_3390_plants12040731 crossref_primary_10_3390_plants13172466 crossref_primary_10_1016_j_scienta_2022_111807 crossref_primary_10_21273_HORTSCI16153_21 crossref_primary_10_1038_s41598_023_36997_2 crossref_primary_10_3390_plants12071450 crossref_primary_10_3390_horticulturae9040493 crossref_primary_10_1016_j_buildenv_2021_107766 crossref_primary_10_1016_j_plantsci_2022_111505 crossref_primary_10_3390_horticulturae9010063 crossref_primary_10_17660_ActaHortic_2024_1391_33 crossref_primary_10_17660_ActaHortic_2022_1337_15 crossref_primary_10_2525_ecb_60_171 crossref_primary_10_3390_horticulturae10040411 crossref_primary_10_1029_2022EF002900 crossref_primary_10_1186_s13007_025_01347_y crossref_primary_10_3389_fsufs_2024_1403580 |
Cites_doi | 10.1006/anbo.2000.1268 10.1007/s13580-018-0118-8 10.21273/HORTSCI.50.8.1128 10.21273/HORTSCI12785-17 10.1007/s13580-013-0109-8 10.3390/su11154063 10.21273/HORTSCI.44.1.64 10.1016/j.envexpbot.2016.06.004 10.1002/jsfa.9948 10.1016/0168-1923(93)90069-T 10.1038/s41467-017-01237-5 10.21273/HORTSCI.44.1.79 10.1002/jsfa.6008 10.2525/ecb.57.39 10.1016/j.scienta.2016.11.020 10.1016/j.envexpbot.2009.06.011 10.3390/ijms15034657 10.1016/j.agsy.2017.11.003 10.1016/j.indcrop.2018.05.073 10.1016/j.scienta.2015.07.015 10.1016/j.rser.2015.04.117 10.1111/nph.15754 10.1016/j.scienta.2019.01.002 10.1007/s11356-017-0333-3 10.3390/ijerph120606879 10.1002/jsfa.9985 10.12791/KSBEC.2012.21.4.305 10.21273/HORTSCI.45.12.1809 10.1016/j.jplph.2012.07.001 10.1016/j.agwat.2012.03.004 10.1016/j.rser.2009.01.027 10.13031/2013.2721 10.1016/j.scienta.2018.01.019 10.1146/annurev.arplant.57.032905.105434 10.5511/plantbiotechnology.26.255 10.1016/j.agwat.2018.02.019 10.1016/j.scienta.2017.09.011 10.1016/j.envexpbot.2011.08.010 10.1016/j.aoas.2016.10.001 10.21273/HORTSCI12796-17 10.1016/j.foodchem.2014.10.077 10.17660/eJHS.2018/83.5.3 10.1016/j.plaphy.2014.07.019 10.3389/fpls.2019.00305 10.1016/j.jplph.2013.06.004 10.1111/j.1469-8137.2011.03952.x 10.1016/S0308-8146(98)00102-2 10.1016/j.scienta.2011.12.004 10.17660/ActaHortic.2011.907.8 10.1021/jf070467u 10.17660/ActaHortic.2012.956.17 10.21273/HORTSCI.44.7.1857 10.3390/agronomy9050224 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.scienta.2020.109508 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_scienta_2020_109508 S0304423820303368 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO ABFRF ABGRD ABJNI ABMAC ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPCBC SSA SSH SSZ T5K Y6R ~G- ~KM AALCJ AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HVGLF HZ~ R2- RIG SEW WUQ XOL 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c455t-277552bc41a4b4e4b0bd880bdadd6d8592a8965106a47bca668eefcf462fe7223 |
IEDL.DBID | .~1 |
ISSN | 0304-4238 |
IngestDate | Wed Jul 30 11:08:19 EDT 2025 Tue Jul 01 02:35:47 EDT 2025 Thu Apr 24 23:07:21 EDT 2025 Sun Apr 06 06:53:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy Use Efficiency (EUE) Daily Light Integral (DLI) Light Use Efficiency (LUE) Plant factory with artificial lighting (PFALs) Photosynthetic Photon Flux Density (PPFD) Water Use Efficiency (WUE) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-277552bc41a4b4e4b0bd880bdadd6d8592a8965106a47bca668eefcf462fe7223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4458-5939 0000-0001-6956-7054 0000-0003-3870-1227 0000-0001-7959-7118 0000-0002-8088-7232 |
OpenAccessLink | http://hdl.handle.net/2318/1766055 |
PQID | 2540496415 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2540496415 crossref_citationtrail_10_1016_j_scienta_2020_109508 crossref_primary_10_1016_j_scienta_2020_109508 elsevier_sciencedirect_doi_10_1016_j_scienta_2020_109508 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Scientia horticulturae |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Saha, Monroe, Day (bib0270) 2016; 61 Shiga, Shoji, Shimada, Hashida, Goto, Yoshihara (bib0275) 2009; 26 Anjum, Xie, Wang, Saleem, Man, Lei (bib0015) 2011; 6 Montesano, van Iersel, Boari, Cantore, D’Amato, Parente (bib0180) 2018; 203 Yeh, Chung (bib0330) 2009; 13 Zhishen, Mengcheng, Jianming (bib0340) 1999; 64 Choi, Paek, Lee (bib0050) 2000 Lin, Huang, Xu (bib0165) 2018; 53 He, Kozai, Niu, Zhang (bib0105) 2019 Poorter, Niklas, Reich, Oleksyn, Poot, Mommer (bib0245) 2012; 193 Shimazaki, Doi, Assmann, Kinoshita (bib0280) 2007; 58 Piovene, Orsini, Bosi, Sanoubar, Bregola, Dinelli, Gianquinto (bib0240) 2015; 193 Mancarella, Orsini, Van Oosten, Sanoubar, Stanghellini, Kondo, Gianquinto, Maggio (bib0170) 2016; 130 Barbieri, Vallone, Orsini, Paradiso, De Pascale, Negre-Zakharov, Maggio (bib0020) 2012; 169 Kozai, Niu (bib0150) 2020 Frąszczak, Golcz, Zawirska-Wojtasiak, Janowska (bib0080) 2014; 13 Yan, He, Niu, Zhai (bib0320) 2019; 248 Aaby, Wrolstad, Ekeberg, Skrede (bib0005) 2007; 55 De Pinheiro Henriques, Marcelis (bib0055) 2000; 86 Žukauskas, Bliznikas, Breivė, Novičkovas, Samuolienė, Urbonavičiūtė, Brazaitytė, Jankauskienė, Duchovskis (bib0345) 2011; 907 Hiyama, Takemiya, Munemasa, Okuma, Sugiyama, Tada, Shimazaki (bib0110) 2017; 8 Kozai (bib0145) 2016 Barbosa, Gadelha, Kublik, Proctor, Reichelm, Weissinger, Wohlleb, Halden (bib0025) 2015; 12 Pérez-López, Miranda-Apodaca, Muñoz-Rueda, Mena-Petite (bib0235) 2013; 170 El-Nakhel, Pannico, Kyriacou, Giordano, De Pascale, Rouphael (bib0070) 2019; 99 Matsuda (bib0175) 2016 Cha, Kim, Cho (bib0045) 2012; 21 Johkan, Shoji, Goto, Hahida, Yoshihara (bib0125) 2010; 45 Viršilė, Brazaitytė, Vaštakaitė‐Kairienė, Miliauskienė, Jankauskienė, Novičkovas, Samuolienė (bib0305) 2019; 99 Zhang, He, Niu, Yan, Song (bib0335) 2018; 11 Fernández, Orsini, Baeza, Oztekin, Muñoz, Contreras, Montero (bib0075) 2018; 83 Okazaki, Yamashita (bib0200) 2019; 57 Li, Kubota (bib0160) 2009; 67 Ouhibi, Attia, Rebah, Msilini, Chebbi, Aarrouf, Urban, Lachaal (bib0210) 2014; 83 Orsini, Pennisi, Mancarella, Al Nayef, Sanoubar, Nicola, Gianquinto (bib0205) 2018; 233 Fu, Li, Yu, Liu, Cao, Manukovsky, Liu (bib0090) 2017; 214 Johkan, Shoji, Goto, Hahida, Yoshihara (bib0130) 2012; 75 Pennisi, Sanyé-Mengual, Orsini, Crepaldi, Nicola, Ochoa, Fernandez, Gianquinto (bib0230) 2019; 11 Pennisi, Blasioli, Cellini, Maia, Crepaldi, Braschi, Spinelli, Nicola, Fernandez, Stanghellini, Marcelis, Orsini, Gianquinto (bib0225) 2019; 10 Stutte, Edney, Skerritt (bib0295) 2009; 44 Rehman, Ullah, Bao, Wang, Peng, Liu (bib0255) 2017; 24 Rouphael, Cardarelli, Bassal, Leonardi, Giuffrida, Colla (bib0260) 2012; 10 Hammock (bib0100) 2018 Jensen, Clausen, Kjaer (bib0120) 2018; 227 Beaman, Gladon, Schrader (bib0030) 2009; 44 Fu, Li, Wu (bib0085) 2012; 135 Benke, Tomkins (bib0035) 2017; 13 Samuolienė, Urbonavičiūtė, Duchovskis, Bliznikas, Vitta, Žukauskas (bib0265) 2009; 44 Nguyen, Lu, Kagawa, Takagaki (bib0195) 2019; 9 Brazaitytė, Sakalauskienė, Samuolienė, Jankauskienė, Viršilė, Novičkovas, Sirtautas, Miliauskienė, Vaštakaitė, Dabašinskas, Duchovskis (bib0040) 2015; 173 Waterhouse (bib0310) 2002 Yan, He, Niu, Zhou, Qu (bib0325) 2020; 13 Ekren, Sönmez, Özçakal, Kurtta¸s, Bayram, Gürgülü (bib0065) 2012; 109 Poorter, Niinemets, Ntagkas, Siebenkäs, Mäenpää, Matsubara, Pons (bib0250) 2019; 223 Pennisi, Orsini, Blasioli, Cellini, Crepaldi, Braschi, Spinelli, Nicola, Fernandez, Stanghellini, Gianquinto, Marcelis (bib0220) 2019; 9 Albright, Both, Chiu (bib0010) 2000; 43 Kang, KrishnaKumar, Atulba, Jeong, Hwang (bib0135) 2013; 54 Singh, Basu, Meinhardt-Wollweber, Roth (bib0285) 2015; 49 Tarakanov, Yakovleva, Konovalova, Paliutina, Anisimov (bib0300) 2012; 956 Dou, Niu, Gu, Masabni (bib0060) 2018; 53 Muneer, Kim, Park, Lee (bib0190) 2014; 15 Ouzounis, Rosenqvist, Ottosen (bib0215) 2015; 50 Kozai (bib0140) 2016 Graamans, Baeza, Van Den Dobbelsteen, Tsafaras, Stanghellini (bib0095) 2018; 160 Wheeler, Hadley, Ellis, Morison (bib0315) 1993; 66 Janssen, Krijn, van den Bergh, van Elmpt, Nicole, van Slooten (bib0115) 2019 Lee, Bhandari, Lee, Lee (bib0155) 2019; 60 Msilini, Oueslati, Amdouni, Chebbi, Ksouri, Lachaâl, Ouerghi (bib0185) 2013; 93 Stagnari, Di Mattia, Galieni, Santarelli, D’Egidio, Pagnani, Pisante (bib0290) 2018; 122 Jensen (10.1016/j.scienta.2020.109508_bib0120) 2018; 227 Shiga (10.1016/j.scienta.2020.109508_bib0275) 2009; 26 Matsuda (10.1016/j.scienta.2020.109508_bib0175) 2016 He (10.1016/j.scienta.2020.109508_bib0105) 2019 Lee (10.1016/j.scienta.2020.109508_bib0155) 2019; 60 Rehman (10.1016/j.scienta.2020.109508_bib0255) 2017; 24 Wheeler (10.1016/j.scienta.2020.109508_bib0315) 1993; 66 Benke (10.1016/j.scienta.2020.109508_bib0035) 2017; 13 Orsini (10.1016/j.scienta.2020.109508_bib0205) 2018; 233 Hammock (10.1016/j.scienta.2020.109508_bib0100) 2018 Fu (10.1016/j.scienta.2020.109508_bib0085) 2012; 135 Anjum (10.1016/j.scienta.2020.109508_bib0015) 2011; 6 Graamans (10.1016/j.scienta.2020.109508_bib0095) 2018; 160 Poorter (10.1016/j.scienta.2020.109508_bib0250) 2019; 223 Dou (10.1016/j.scienta.2020.109508_bib0060) 2018; 53 Yeh (10.1016/j.scienta.2020.109508_bib0330) 2009; 13 Ekren (10.1016/j.scienta.2020.109508_bib0065) 2012; 109 Piovene (10.1016/j.scienta.2020.109508_bib0240) 2015; 193 Samuolienė (10.1016/j.scienta.2020.109508_bib0265) 2009; 44 Beaman (10.1016/j.scienta.2020.109508_bib0030) 2009; 44 Yan (10.1016/j.scienta.2020.109508_bib0325) 2020; 13 Tarakanov (10.1016/j.scienta.2020.109508_bib0300) 2012; 956 Barbieri (10.1016/j.scienta.2020.109508_bib0020) 2012; 169 Johkan (10.1016/j.scienta.2020.109508_bib0130) 2012; 75 Choi (10.1016/j.scienta.2020.109508_bib0050) 2000 Shimazaki (10.1016/j.scienta.2020.109508_bib0280) 2007; 58 Cha (10.1016/j.scienta.2020.109508_bib0045) 2012; 21 Nguyen (10.1016/j.scienta.2020.109508_bib0195) 2019; 9 Žukauskas (10.1016/j.scienta.2020.109508_bib0345) 2011; 907 Poorter (10.1016/j.scienta.2020.109508_bib0245) 2012; 193 Viršilė (10.1016/j.scienta.2020.109508_bib0305) 2019; 99 Mancarella (10.1016/j.scienta.2020.109508_bib0170) 2016; 130 Kozai (10.1016/j.scienta.2020.109508_bib0140) 2016 Pennisi (10.1016/j.scienta.2020.109508_bib0220) 2019; 9 De Pinheiro Henriques (10.1016/j.scienta.2020.109508_bib0055) 2000; 86 Fernández (10.1016/j.scienta.2020.109508_bib0075) 2018; 83 Montesano (10.1016/j.scienta.2020.109508_bib0180) 2018; 203 El-Nakhel (10.1016/j.scienta.2020.109508_bib0070) 2019; 99 Yan (10.1016/j.scienta.2020.109508_bib0320) 2019; 248 Hiyama (10.1016/j.scienta.2020.109508_bib0110) 2017; 8 Zhang (10.1016/j.scienta.2020.109508_bib0335) 2018; 11 Brazaitytė (10.1016/j.scienta.2020.109508_bib0040) 2015; 173 Stagnari (10.1016/j.scienta.2020.109508_bib0290) 2018; 122 Li (10.1016/j.scienta.2020.109508_bib0160) 2009; 67 Rouphael (10.1016/j.scienta.2020.109508_bib0260) 2012; 10 Kang (10.1016/j.scienta.2020.109508_bib0135) 2013; 54 Waterhouse (10.1016/j.scienta.2020.109508_bib0310) 2002 Okazaki (10.1016/j.scienta.2020.109508_bib0200) 2019; 57 Saha (10.1016/j.scienta.2020.109508_bib0270) 2016; 61 Albright (10.1016/j.scienta.2020.109508_bib0010) 2000; 43 Pérez-López (10.1016/j.scienta.2020.109508_bib0235) 2013; 170 Pennisi (10.1016/j.scienta.2020.109508_bib0225) 2019; 10 Johkan (10.1016/j.scienta.2020.109508_bib0125) 2010; 45 Kozai (10.1016/j.scienta.2020.109508_bib0150) 2020 Lin (10.1016/j.scienta.2020.109508_bib0165) 2018; 53 Fu (10.1016/j.scienta.2020.109508_bib0090) 2017; 214 Ouhibi (10.1016/j.scienta.2020.109508_bib0210) 2014; 83 Zhishen (10.1016/j.scienta.2020.109508_bib0340) 1999; 64 Aaby (10.1016/j.scienta.2020.109508_bib0005) 2007; 55 Msilini (10.1016/j.scienta.2020.109508_bib0185) 2013; 93 Ouzounis (10.1016/j.scienta.2020.109508_bib0215) 2015; 50 Pennisi (10.1016/j.scienta.2020.109508_bib0230) 2019; 11 Stutte (10.1016/j.scienta.2020.109508_bib0295) 2009; 44 Frąszczak (10.1016/j.scienta.2020.109508_bib0080) 2014; 13 Singh (10.1016/j.scienta.2020.109508_bib0285) 2015; 49 Barbosa (10.1016/j.scienta.2020.109508_bib0025) 2015; 12 Muneer (10.1016/j.scienta.2020.109508_bib0190) 2014; 15 Janssen (10.1016/j.scienta.2020.109508_bib0115) 2019 Kozai (10.1016/j.scienta.2020.109508_bib0145) 2016 |
References_xml | – volume: 9 start-page: 14127 year: 2019 ident: bib0220 article-title: Resource use efficiency of indoor lettuce ( publication-title: Nature Sci. Rep. – volume: 99 start-page: 6608 year: 2019 end-page: 6619 ident: bib0305 article-title: Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce publication-title: J. Sci. Food Agr. – volume: 99 start-page: 6962 year: 2019 end-page: 6972 ident: bib0070 article-title: Macronutrient deprivation eustress elicits differential secondary metabolites in red and green‐pigmented butterhead lettuce grown in closed soilless system publication-title: J. Sci. Food Agric. – start-page: 513 year: 2019 end-page: 547 ident: bib0105 article-title: Light-emitting diodes for horticulture publication-title: Light Emitting Diodes – start-page: 281 year: 2019 end-page: 293 ident: bib0115 article-title: Optimizing plant factory performance for local requirements publication-title: Plant factory using artificial light: adapting to environmental disruption and clues to agricultural innovation – volume: 24 start-page: 24743 year: 2017 end-page: 24752 ident: bib0255 article-title: Light-emitting diodes: whether an efficient source of light for indoor plants? Environ publication-title: Sci. Poll. Res. – volume: 53 start-page: 1157 year: 2018 end-page: 1163 ident: bib0165 article-title: Influence of light quality and intensity on biomass and biochemical contents of hydroponically grown lettuce publication-title: HortScience – volume: 6 start-page: 2026 year: 2011 end-page: 2032 ident: bib0015 article-title: Morphological, physiological and biochemical responses of plants to drought stress publication-title: Afr. J Agric. Res. – volume: 11 start-page: 4063 year: 2019 ident: bib0230 article-title: Modelling environmental burdens of indoor-grown vegetables and herbs as affected by red and blue LED lighting publication-title: Sustainability – volume: 64 start-page: 555 year: 1999 end-page: 559 ident: bib0340 article-title: The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals publication-title: Food Chem. – start-page: 166 year: 2000 end-page: 171 ident: bib0050 article-title: Effect of air temperature on tipburn incidence of butterhead and leaf lettuce in a plant factory publication-title: Transplant Production in the 21 – volume: 223 start-page: 1073 year: 2019 end-page: 1105 ident: bib0250 article-title: A meta‐analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance publication-title: New Phytol. – volume: 26 start-page: 255 year: 2009 end-page: 259 ident: bib0275 article-title: Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, publication-title: Plant Biotechnol. – start-page: 35 year: 2016 end-page: 68 ident: bib0145 article-title: PFAL business and R&D in the world: current status and perspectives publication-title: Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production – volume: 9 start-page: 224 year: 2019 ident: bib0195 article-title: Optimization of photosynthetic photon flux density and root-zone temperature for enhancing secondary metabolite accumulation and production of coriander in plant factory publication-title: Agronomy – volume: 60 start-page: 207 year: 2019 end-page: 216 ident: bib0155 article-title: Optimization of temperature and light, and cultivar selection for the production of high-quality head lettuce in a closed-type plant factory publication-title: Hortic. Environ. Biotechnol. – volume: 135 start-page: 45 year: 2012 end-page: 51 ident: bib0085 article-title: Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce publication-title: Sci. Hortic. – volume: 907 start-page: 87 year: 2011 end-page: 90 ident: bib0345 article-title: Effect of supplementary pre-harvest LED lighting on the antioxidant properties of lettuce cultivars publication-title: Acta Hortic. – volume: 170 start-page: 1517 year: 2013 end-page: 1525 ident: bib0235 article-title: Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO publication-title: J. Plant Physiol. – volume: 83 start-page: 294 year: 2018 end-page: 305 ident: bib0075 article-title: Current trends in protected cultivation in Mediterranean climates publication-title: Eur. J. Hortic. Sci. – volume: 54 start-page: 501 year: 2013 end-page: 509 ident: bib0135 article-title: Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system publication-title: Hortic. Environ. Biotechnol. – volume: 122 start-page: 277 year: 2018 end-page: 289 ident: bib0290 article-title: Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil publication-title: Ind. Crop. Prod. – volume: 11 start-page: 33 year: 2018 end-page: 40 ident: bib0335 article-title: Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory publication-title: Int. J. Agric.Biol. Eng. – volume: 248 start-page: 138 year: 2019 end-page: 144 ident: bib0320 article-title: Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage publication-title: Sci. Hortic. – volume: 21 start-page: 305 year: 2012 end-page: 311 ident: bib0045 article-title: Growth response of lettuce to various levels of EC and light intensity in plant factory publication-title: J. Bio-Environ. Control – start-page: 1 year: 2002 end-page: 8 ident: bib0310 article-title: Determination of total phenolics publication-title: Current Protocols in Food Analytical Chemistry – volume: 53 start-page: 496 year: 2018 end-page: 503 ident: bib0060 article-title: Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality publication-title: HortScience – volume: 45 start-page: 1809 year: 2010 end-page: 1814 ident: bib0125 article-title: Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce publication-title: HortScience – volume: 67 start-page: 59 year: 2009 end-page: 64 ident: bib0160 article-title: Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce publication-title: Env. Exp. Bot. – volume: 233 start-page: 283 year: 2018 end-page: 293 ident: bib0205 article-title: Hydroponic lettuce yields are improved under salt stress by utilizing white plastic film and exogenous applications of proline publication-title: Sci. Hortic. – volume: 12 start-page: 6879 year: 2015 end-page: 6891 ident: bib0025 article-title: Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods publication-title: Int. J. Environ. Res. Public Health – volume: 58 start-page: 219 year: 2007 end-page: 247 ident: bib0280 article-title: Light regulation of stomatal movement publication-title: Ann. Rev. Plant Biol. – volume: 203 start-page: 20 year: 2018 end-page: 29 ident: bib0180 article-title: Sensor-based irrigation management of soilless basil using a new smart irrigation system: effects of set-point on plant physiological responses and crop performance publication-title: Agric. Water Manag. – volume: 66 start-page: 173 year: 1993 end-page: 186 ident: bib0315 article-title: Changes in growth and radiation use by lettuce crops in relation to temperature and ontogeny publication-title: Agr. Forest Meteorol. – volume: 43 start-page: 421 year: 2000 ident: bib0010 article-title: Controlling greenhouse light to a consistent daily integral publication-title: Transact. ASAE – volume: 173 start-page: 600 year: 2015 end-page: 606 ident: bib0040 article-title: The effects of LED illumination spectra and intensity on carotenoid content in publication-title: Food Chem. – volume: 130 start-page: 162 year: 2016 end-page: 173 ident: bib0170 article-title: Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed publication-title: Environ. Exp. Bot. – volume: 193 start-page: 30 year: 2012 end-page: 50 ident: bib0245 article-title: Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control publication-title: New Phytol. – volume: 956 start-page: 171 year: 2012 end-page: 178 ident: bib0300 article-title: Light-emitting diodes: on the way to combinatorial lighting technologies for basic research and crop production publication-title: Acta Hortic. – volume: 10 start-page: 305 year: 2019 ident: bib0225 article-title: Unravelling the role of Red: Blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil publication-title: Front. Plant Sci. – volume: 160 start-page: 31 year: 2018 end-page: 43 ident: bib0095 article-title: Plant factories versus greenhouses: comparison of resource use efficiency publication-title: Agric. Syst. – volume: 15 start-page: 4657 year: 2014 end-page: 4670 ident: bib0190 article-title: Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves ( publication-title: Int. J. Mol. Sci. – volume: 44 start-page: 64 year: 2009 end-page: 67 ident: bib0030 article-title: Sweet basil requires an irradiance of 500 μmol m publication-title: HortScience – volume: 193 start-page: 202 year: 2015 end-page: 208 ident: bib0240 article-title: Optimal red: blue ratio in led lighting for nutraceutical indoor horticulture publication-title: Sci. Hortic. – volume: 8 start-page: 1284 year: 2017 ident: bib0110 article-title: Blue light and CO publication-title: Nature Comm. – volume: 57 start-page: 39 year: 2019 end-page: 44 ident: bib0200 article-title: A manipulation of air temperature and light quality and intensity can maximize growth and folate biosynthesis in leaf lettuce publication-title: Environ. Control Biol. – start-page: 281 year: 2018 ident: bib0100 article-title: The Impact of Blue and Red LED Lighting on biomass accumulation, flavor volatile production, and nutrient uptake in hydroponically grown Genovese basil. Master’s Thesis – start-page: 93 year: 2020 end-page: 115 ident: bib0150 article-title: Plant factory as a resource-efficient closed plant production system publication-title: Plant Factory (2 – volume: 75 start-page: 128 year: 2012 end-page: 133 ident: bib0130 article-title: Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in publication-title: Env. Exp. Bot. – volume: 169 start-page: 1737 year: 2012 end-page: 1746 ident: bib0020 article-title: Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil ( publication-title: J. Plant Physiol. – volume: 55 start-page: 5156 year: 2007 end-page: 5166 ident: bib0005 article-title: Polyphenol composition and antioxidant activity in strawberry purees; impact of achene level and storage publication-title: J. Agric. Food Chem. – start-page: 3 year: 2016 end-page: 118 ident: bib0140 article-title: Why LED Lighting for Urban Agriculture? publication-title: LED Lighting for Urban Agriculture – volume: 214 start-page: 51 year: 2017 end-page: 57 ident: bib0090 article-title: Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce ( publication-title: Sci. Hortic. – volume: 109 start-page: 155 year: 2012 end-page: 161 ident: bib0065 article-title: The effect of different irrigation water levels on yield and quality characteristics of purple basil ( publication-title: Agric. Water Manag. – volume: 10 start-page: 680 year: 2012 end-page: 688 ident: bib0260 article-title: Vegetable quality as affected by genetic, agronomic and environmental factors publication-title: J. Food Agric. Environ. – volume: 61 start-page: 181 year: 2016 end-page: 186 ident: bib0270 article-title: Growth, yield, plant quality and nutrition of basil ( publication-title: Ann. Agric. Sci. – volume: 13 start-page: 2175 year: 2009 end-page: 2180 ident: bib0330 article-title: High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation publication-title: Renew. Sust. Energy Rev. – volume: 93 start-page: 2016 year: 2013 end-page: 2021 ident: bib0185 article-title: Variability of phenolic content and antioxidant activity of two lettuce varieties under Fe deficiency publication-title: J. Sci. Food Agric. – volume: 49 start-page: 139 year: 2015 end-page: 147 ident: bib0285 article-title: LEDs for energy efficient greenhouse lighting publication-title: Renew. Sust. Energ. Rev. – volume: 227 start-page: 38 year: 2018 end-page: 47 ident: bib0120 article-title: Spectral quality of supplemental LED grow light permanently alters stomatal functioning and chilling tolerance in basil ( publication-title: Sci. Hortic. – start-page: 163 year: 2016 end-page: 175 ident: bib0175 article-title: Effects of Physical Environment on Photosynthesis, Respiration, and Transpiration publication-title: LED Lighting for Urban Agriculture – volume: 50 start-page: 1128 year: 2015 end-page: 1135 ident: bib0215 article-title: Spectral effects of artificial light on plant physiology and secondary metabolism: a review publication-title: HortScience – volume: 13 start-page: 3 year: 2014 end-page: 13 ident: bib0080 article-title: Growth rate of sweet basil and lemon balm plants grown under fluorescent lamps and LED modules publication-title: Acta Sci. Pol. Hortorum Cultus – volume: 44 start-page: 1857 year: 2009 end-page: 1860 ident: bib0265 article-title: Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator publication-title: HortScience – volume: 44 start-page: 79 year: 2009 end-page: 82 ident: bib0295 article-title: Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes publication-title: HortScience – volume: 13 start-page: 33 year: 2020 end-page: 40 ident: bib0325 article-title: Growth, nutritional quality, and energy use efficiency in two lettuce cultivars as influenced by white plus red versus red plus blue LEDs publication-title: Int. J. Agric. Biol. Eng. – volume: 13 start-page: 13 year: 2017 end-page: 26 ident: bib0035 article-title: Future food-production systems: vertical farming and controlled-environment agriculture publication-title: Sustain. Sci. Prac. Policy – volume: 86 start-page: 1073 year: 2000 end-page: 1080 ident: bib0055 article-title: Regulation of growth at steady-state nitrogen nutrition in lettuce ( publication-title: Ann. Bot. – volume: 83 start-page: 126 year: 2014 end-page: 133 ident: bib0210 article-title: Salt stress mitigation by seed priming with UV-C in lettuce plants: growth, antioxidant activity and phenolic compounds publication-title: Plant Physiol. Biochem. – volume: 6 start-page: 2026 year: 2011 ident: 10.1016/j.scienta.2020.109508_bib0015 article-title: Morphological, physiological and biochemical responses of plants to drought stress publication-title: Afr. J Agric. Res. – volume: 86 start-page: 1073 year: 2000 ident: 10.1016/j.scienta.2020.109508_bib0055 article-title: Regulation of growth at steady-state nitrogen nutrition in lettuce (Lactuca sativa L.): interactive effects of nitrogen and irradiance publication-title: Ann. Bot. doi: 10.1006/anbo.2000.1268 – volume: 60 start-page: 207 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0155 article-title: Optimization of temperature and light, and cultivar selection for the production of high-quality head lettuce in a closed-type plant factory publication-title: Hortic. Environ. Biotechnol. doi: 10.1007/s13580-018-0118-8 – volume: 13 start-page: 3 year: 2014 ident: 10.1016/j.scienta.2020.109508_bib0080 article-title: Growth rate of sweet basil and lemon balm plants grown under fluorescent lamps and LED modules publication-title: Acta Sci. Pol. Hortorum Cultus – volume: 50 start-page: 1128 year: 2015 ident: 10.1016/j.scienta.2020.109508_bib0215 article-title: Spectral effects of artificial light on plant physiology and secondary metabolism: a review publication-title: HortScience doi: 10.21273/HORTSCI.50.8.1128 – volume: 53 start-page: 496 year: 2018 ident: 10.1016/j.scienta.2020.109508_bib0060 article-title: Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality publication-title: HortScience doi: 10.21273/HORTSCI12785-17 – volume: 54 start-page: 501 year: 2013 ident: 10.1016/j.scienta.2020.109508_bib0135 article-title: Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system publication-title: Hortic. Environ. Biotechnol. doi: 10.1007/s13580-013-0109-8 – volume: 11 start-page: 4063 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0230 article-title: Modelling environmental burdens of indoor-grown vegetables and herbs as affected by red and blue LED lighting publication-title: Sustainability doi: 10.3390/su11154063 – volume: 44 start-page: 64 year: 2009 ident: 10.1016/j.scienta.2020.109508_bib0030 article-title: Sweet basil requires an irradiance of 500 μmol m-2·s-1 for greatest edible biomass production publication-title: HortScience doi: 10.21273/HORTSCI.44.1.64 – volume: 130 start-page: 162 year: 2016 ident: 10.1016/j.scienta.2020.109508_bib0170 article-title: Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.06.004 – volume: 99 start-page: 6608 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0305 article-title: Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce publication-title: J. Sci. Food Agr. doi: 10.1002/jsfa.9948 – volume: 66 start-page: 173 year: 1993 ident: 10.1016/j.scienta.2020.109508_bib0315 article-title: Changes in growth and radiation use by lettuce crops in relation to temperature and ontogeny publication-title: Agr. Forest Meteorol. doi: 10.1016/0168-1923(93)90069-T – volume: 10 start-page: 680 year: 2012 ident: 10.1016/j.scienta.2020.109508_bib0260 article-title: Vegetable quality as affected by genetic, agronomic and environmental factors publication-title: J. Food Agric. Environ. – volume: 8 start-page: 1284 year: 2017 ident: 10.1016/j.scienta.2020.109508_bib0110 article-title: Blue light and CO2 signals converge to regulate light-induced stomatal opening publication-title: Nature Comm. doi: 10.1038/s41467-017-01237-5 – volume: 44 start-page: 79 year: 2009 ident: 10.1016/j.scienta.2020.109508_bib0295 article-title: Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes publication-title: HortScience doi: 10.21273/HORTSCI.44.1.79 – volume: 93 start-page: 2016 year: 2013 ident: 10.1016/j.scienta.2020.109508_bib0185 article-title: Variability of phenolic content and antioxidant activity of two lettuce varieties under Fe deficiency publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.6008 – volume: 57 start-page: 39 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0200 article-title: A manipulation of air temperature and light quality and intensity can maximize growth and folate biosynthesis in leaf lettuce publication-title: Environ. Control Biol. doi: 10.2525/ecb.57.39 – volume: 214 start-page: 51 year: 2017 ident: 10.1016/j.scienta.2020.109508_bib0090 article-title: Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai) publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2016.11.020 – volume: 67 start-page: 59 year: 2009 ident: 10.1016/j.scienta.2020.109508_bib0160 article-title: Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce publication-title: Env. Exp. Bot. doi: 10.1016/j.envexpbot.2009.06.011 – volume: 15 start-page: 4657 year: 2014 ident: 10.1016/j.scienta.2020.109508_bib0190 article-title: Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.) publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms15034657 – volume: 160 start-page: 31 year: 2018 ident: 10.1016/j.scienta.2020.109508_bib0095 article-title: Plant factories versus greenhouses: comparison of resource use efficiency publication-title: Agric. Syst. doi: 10.1016/j.agsy.2017.11.003 – volume: 122 start-page: 277 year: 2018 ident: 10.1016/j.scienta.2020.109508_bib0290 article-title: Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2018.05.073 – start-page: 166 year: 2000 ident: 10.1016/j.scienta.2020.109508_bib0050 article-title: Effect of air temperature on tipburn incidence of butterhead and leaf lettuce in a plant factory – volume: 193 start-page: 202 year: 2015 ident: 10.1016/j.scienta.2020.109508_bib0240 article-title: Optimal red: blue ratio in led lighting for nutraceutical indoor horticulture publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.07.015 – volume: 49 start-page: 139 year: 2015 ident: 10.1016/j.scienta.2020.109508_bib0285 article-title: LEDs for energy efficient greenhouse lighting publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.04.117 – start-page: 1 year: 2002 ident: 10.1016/j.scienta.2020.109508_bib0310 article-title: Determination of total phenolics – volume: 13 start-page: 13 year: 2017 ident: 10.1016/j.scienta.2020.109508_bib0035 article-title: Future food-production systems: vertical farming and controlled-environment agriculture publication-title: Sustain. Sci. Prac. Policy – start-page: 513 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0105 article-title: Light-emitting diodes for horticulture – volume: 223 start-page: 1073 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0250 article-title: A meta‐analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance publication-title: New Phytol. doi: 10.1111/nph.15754 – start-page: 163 year: 2016 ident: 10.1016/j.scienta.2020.109508_bib0175 article-title: Effects of Physical Environment on Photosynthesis, Respiration, and Transpiration – volume: 248 start-page: 138 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0320 article-title: Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2019.01.002 – volume: 13 start-page: 33 year: 2020 ident: 10.1016/j.scienta.2020.109508_bib0325 article-title: Growth, nutritional quality, and energy use efficiency in two lettuce cultivars as influenced by white plus red versus red plus blue LEDs publication-title: Int. J. Agric. Biol. Eng. – volume: 24 start-page: 24743 year: 2017 ident: 10.1016/j.scienta.2020.109508_bib0255 article-title: Light-emitting diodes: whether an efficient source of light for indoor plants? Environ publication-title: Sci. Poll. Res. doi: 10.1007/s11356-017-0333-3 – volume: 11 start-page: 33 year: 2018 ident: 10.1016/j.scienta.2020.109508_bib0335 article-title: Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory publication-title: Int. J. Agric.Biol. Eng. – volume: 12 start-page: 6879 year: 2015 ident: 10.1016/j.scienta.2020.109508_bib0025 article-title: Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph120606879 – volume: 99 start-page: 6962 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0070 article-title: Macronutrient deprivation eustress elicits differential secondary metabolites in red and green‐pigmented butterhead lettuce grown in closed soilless system publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.9985 – volume: 21 start-page: 305 year: 2012 ident: 10.1016/j.scienta.2020.109508_bib0045 article-title: Growth response of lettuce to various levels of EC and light intensity in plant factory publication-title: J. Bio-Environ. Control doi: 10.12791/KSBEC.2012.21.4.305 – volume: 45 start-page: 1809 year: 2010 ident: 10.1016/j.scienta.2020.109508_bib0125 article-title: Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce publication-title: HortScience doi: 10.21273/HORTSCI.45.12.1809 – start-page: 93 year: 2020 ident: 10.1016/j.scienta.2020.109508_bib0150 article-title: Plant factory as a resource-efficient closed plant production system – volume: 169 start-page: 1737 year: 2012 ident: 10.1016/j.scienta.2020.109508_bib0020 article-title: Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.) publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2012.07.001 – volume: 109 start-page: 155 year: 2012 ident: 10.1016/j.scienta.2020.109508_bib0065 article-title: The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.) publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2012.03.004 – volume: 13 start-page: 2175 year: 2009 ident: 10.1016/j.scienta.2020.109508_bib0330 article-title: High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2009.01.027 – volume: 43 start-page: 421 year: 2000 ident: 10.1016/j.scienta.2020.109508_bib0010 article-title: Controlling greenhouse light to a consistent daily integral publication-title: Transact. ASAE doi: 10.13031/2013.2721 – start-page: 35 year: 2016 ident: 10.1016/j.scienta.2020.109508_bib0145 article-title: PFAL business and R&D in the world: current status and perspectives – volume: 9 start-page: 14127 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0220 article-title: Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting publication-title: Nature Sci. Rep. – volume: 233 start-page: 283 year: 2018 ident: 10.1016/j.scienta.2020.109508_bib0205 article-title: Hydroponic lettuce yields are improved under salt stress by utilizing white plastic film and exogenous applications of proline publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.01.019 – volume: 58 start-page: 219 year: 2007 ident: 10.1016/j.scienta.2020.109508_bib0280 article-title: Light regulation of stomatal movement publication-title: Ann. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105434 – volume: 26 start-page: 255 year: 2009 ident: 10.1016/j.scienta.2020.109508_bib0275 article-title: Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, Ocimum basilicum L publication-title: Plant Biotechnol. doi: 10.5511/plantbiotechnology.26.255 – volume: 203 start-page: 20 year: 2018 ident: 10.1016/j.scienta.2020.109508_bib0180 article-title: Sensor-based irrigation management of soilless basil using a new smart irrigation system: effects of set-point on plant physiological responses and crop performance publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.02.019 – volume: 227 start-page: 38 year: 2018 ident: 10.1016/j.scienta.2020.109508_bib0120 article-title: Spectral quality of supplemental LED grow light permanently alters stomatal functioning and chilling tolerance in basil (Ocimum basilicum L.) publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2017.09.011 – volume: 75 start-page: 128 year: 2012 ident: 10.1016/j.scienta.2020.109508_bib0130 article-title: Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa publication-title: Env. Exp. Bot. doi: 10.1016/j.envexpbot.2011.08.010 – start-page: 281 year: 2018 ident: 10.1016/j.scienta.2020.109508_bib0100 – volume: 61 start-page: 181 year: 2016 ident: 10.1016/j.scienta.2020.109508_bib0270 article-title: Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems publication-title: Ann. Agric. Sci. doi: 10.1016/j.aoas.2016.10.001 – start-page: 3 year: 2016 ident: 10.1016/j.scienta.2020.109508_bib0140 article-title: Why LED Lighting for Urban Agriculture? – volume: 53 start-page: 1157 year: 2018 ident: 10.1016/j.scienta.2020.109508_bib0165 article-title: Influence of light quality and intensity on biomass and biochemical contents of hydroponically grown lettuce publication-title: HortScience doi: 10.21273/HORTSCI12796-17 – volume: 173 start-page: 600 year: 2015 ident: 10.1016/j.scienta.2020.109508_bib0040 article-title: The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.10.077 – volume: 83 start-page: 294 year: 2018 ident: 10.1016/j.scienta.2020.109508_bib0075 article-title: Current trends in protected cultivation in Mediterranean climates publication-title: Eur. J. Hortic. Sci. doi: 10.17660/eJHS.2018/83.5.3 – volume: 83 start-page: 126 year: 2014 ident: 10.1016/j.scienta.2020.109508_bib0210 article-title: Salt stress mitigation by seed priming with UV-C in lettuce plants: growth, antioxidant activity and phenolic compounds publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.07.019 – volume: 10 start-page: 305 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0225 article-title: Unravelling the role of Red: Blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00305 – volume: 170 start-page: 1517 year: 2013 ident: 10.1016/j.scienta.2020.109508_bib0235 article-title: Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2 publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2013.06.004 – volume: 193 start-page: 30 year: 2012 ident: 10.1016/j.scienta.2020.109508_bib0245 article-title: Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03952.x – volume: 64 start-page: 555 year: 1999 ident: 10.1016/j.scienta.2020.109508_bib0340 article-title: The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals publication-title: Food Chem. doi: 10.1016/S0308-8146(98)00102-2 – volume: 135 start-page: 45 year: 2012 ident: 10.1016/j.scienta.2020.109508_bib0085 article-title: Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2011.12.004 – volume: 907 start-page: 87 year: 2011 ident: 10.1016/j.scienta.2020.109508_bib0345 article-title: Effect of supplementary pre-harvest LED lighting on the antioxidant properties of lettuce cultivars publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2011.907.8 – volume: 55 start-page: 5156 year: 2007 ident: 10.1016/j.scienta.2020.109508_bib0005 article-title: Polyphenol composition and antioxidant activity in strawberry purees; impact of achene level and storage publication-title: J. Agric. Food Chem. doi: 10.1021/jf070467u – volume: 956 start-page: 171 year: 2012 ident: 10.1016/j.scienta.2020.109508_bib0300 article-title: Light-emitting diodes: on the way to combinatorial lighting technologies for basic research and crop production publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2012.956.17 – volume: 44 start-page: 1857 year: 2009 ident: 10.1016/j.scienta.2020.109508_bib0265 article-title: Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator publication-title: HortScience doi: 10.21273/HORTSCI.44.7.1857 – start-page: 281 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0115 article-title: Optimizing plant factory performance for local requirements – volume: 9 start-page: 224 year: 2019 ident: 10.1016/j.scienta.2020.109508_bib0195 article-title: Optimization of photosynthetic photon flux density and root-zone temperature for enhancing secondary metabolite accumulation and production of coriander in plant factory publication-title: Agronomy doi: 10.3390/agronomy9050224 |
SSID | ssj0001149 |
Score | 2.6043918 |
Snippet | •Optimal LED light intensity for lettuce and basil indoor growing is addressed;•Maximum yield and leaf area is achieved at 250 μmol m-2 s-1;•250 μmol m-2 s-1... Indoor plant cultivation systems are gaining increasing popularity because of their ability to meet the needs of producing food in unfavourable climatic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109508 |
SubjectTerms | antioxidant activity basil biomass production blue light carbon dioxide Daily Light Integral (DLI) electricity energy Energy Use Efficiency (EUE) flavonoids Lactuca sativa lettuce light intensity Light Use Efficiency (LUE) Ocimum basilicum phenolic compounds photons photosynthesis Photosynthetic Photon Flux Density (PPFD) plant development Plant factory with artificial lighting (PFALs) stomatal conductance water use efficiency Water Use Efficiency (WUE) |
Title | Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs |
URI | https://dx.doi.org/10.1016/j.scienta.2020.109508 https://www.proquest.com/docview/2540496415 |
Volume | 272 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTwWt31-4kaY-LD9b3QQVvIW0TWVm70u0iXvSvO9OmLoogCL20TELJJPPNkPlmGDtwHZM5FcdBloELIO5AgCgHAaJPR7lIdQUQG_nqWvbv4fxBPMywo4YLQ2mV3vbXNr2y1v5L269m-2UwaN_SpR46AwhhaIa7kgi_AIp2eet9muaB_n5c3yRAQNJTFk_7qeVJhxgmhlVhJUFdJn_Hpx-WuoKf0yW26P1G3qt_bZnN2HyFLfQeC187w66yjxs8_s8oNKSAmw_q5PTyjaNfysdTohR_Rf-y4CbPuK2Yf3wytiiOTzZCUZrQ9zzjI8dRsSXqv5JHzBsMOfHOCl7YrP42nFh-eXI8XmP3pyd3R_3A91cIUhCiDEKlhAiTFA4NJGAh6SQZHuckM9RmKhJxaKJY4qGVBlSSGikja13qQIbOKvQr1tlsPsrtBuOoWSkR2RyCHYiuiePQGUXEYAy_E9vdZNCsqk598XHqgTHUTZbZk_bK0KQMXStjk7W-hr3U1Tf-GhA1KtPftpFGhPhr6H6jYo1HjO5NTG5Hk7HGGBrjKImuztb_p99m8_RGsHcodthsWUzsLvozZbJXbdg9Ntc7u-hffwJ3aPWP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PqgP4id-G8HX7qNL0vZxqGPTbT6o4FtI20Q6Ziddh_jkv-6lTR2KIAh9Su9KySX3uyP53QFc6KaMtRcEThxT7dCgSR1EOeog-jQ97XttRg0beTjivUd688SeluCy4sKYa5XW95c-vfDWdqRhZ7PxmiSNe3Ooh8EAQhi64Tb3l2HFVKdiNVjp9G97oy-HjCF_UB4mUMcoLIg8jXHd8g4xU3SL2krMNJr8HaJ-OOsCgbqbsGFDR9Ip_24LllS6Deud58yWz1A78HGHHuAFhSYm5yZJeT89fycYmpLZgitF3jDEzIhMY6IK8h-ZzxSK4xNPUdR80LY9I1NN0LY5LoFCHmEvmRBDPctIpuJybDJXZHB9NduFx-71w2XPsS0WnIgyljuu5zHmhhFtSRpSRcNmGOOODmNpOk35LHClH3Dct1xSL4wk575SOtKUu1p5GFrsQS2dpmofCBqXcwQ3jXhHWVsGgaulZ7jBmIGHqn0AtJpVEdn646YNxkRUF83GwhpDGGOI0hgHUP9Sey0LcPyl4FcmE99WkkCQ-Ev1vDKxwF1mjk5kqqbzmcA0GlMpjtHO4f8_fwarvYfhQAz6o9sjWDNvDAq22DHU8myuTjC8ycNTu3w_Ad4j-EA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+light+intensity+for+sustainable+water+and+energy+use+in+indoor+cultivation+of+lettuce+and+basil+under+red+and+blue+LEDs&rft.jtitle=Scientia+horticulturae&rft.au=Pennisi%2C+Giuseppina&rft.au=Pistillo%2C+Alessandro&rft.au=Orsini%2C+Francesco&rft.au=Cellini%2C+A.+%28Antonio%29&rft.date=2020-10-15&rft.issn=0304-4238&rft.volume=272+p.109508-&rft_id=info:doi/10.1016%2Fj.scienta.2020.109508&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4238&client=summon |