Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs

•Optimal LED light intensity for lettuce and basil indoor growing is addressed;•Maximum yield and leaf area is achieved at 250 μmol m-2 s-1;•250 μmol m-2 s-1 increased chlorophyll and improved stomatal functions in leaves;•In lettuce, PPFD ≥ 200 μmol m-2 s-1 raised antioxidant capacity, phenolics an...

Full description

Saved in:
Bibliographic Details
Published inScientia horticulturae Vol. 272; p. 109508
Main Authors Pennisi, Giuseppina, Pistillo, Alessandro, Orsini, Francesco, Cellini, Antonio, Spinelli, Francesco, Nicola, Silvana, Fernandez, Juan A., Crepaldi, Andrea, Gianquinto, Giorgio, Marcelis, Leo F.M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Optimal LED light intensity for lettuce and basil indoor growing is addressed;•Maximum yield and leaf area is achieved at 250 μmol m-2 s-1;•250 μmol m-2 s-1 increased chlorophyll and improved stomatal functions in leaves;•In lettuce, PPFD ≥ 200 μmol m-2 s-1 raised antioxidant capacity, phenolics and flavonoids;•Water, energy and light use efficiencies were optimized at 250 μmol m-2 s-1; Indoor plant cultivation systems are gaining increasing popularity because of their ability to meet the needs of producing food in unfavourable climatic contexts and in urban environments, allowing high yield, high quality, and great efficiency in the use of resources such as water and nutrients. While light is one of the most important environmental factors affecting plant development and morphology, electricity costs can limit the widespread adoption of indoor plant cultivation systems at a commercial scale. LED lighting technologies for plant cultivation are also rapidly evolving, and lamps for indoor cultivation are often designed to optimize their light emissions in the photosynthetically active spectrum (i.e. red and blue), in order to reduce energetic requirements for satisfactory yield. Under these light regimens, however, little information is available in literature about minimum photosynthetic photon flux density (PPFD) for indoor production of leafy vegetables and herbs, while existing literature often adopts light intensities from 100 to 300 μmol m-2 s-1. This study aims at defining the optimal PPFD for indoor cultivation of basil (Ocimum basilicum L.) and lettuce (Lactuca sativa L.), by linking resource use efficiency to physiological responses and biomass production under different light intensities. Basil and lettuce plants were cultivated at 24 °C and 450 μmol mol-1 CO2 under red and blue light (with red:blue ratio of 3) and a photoperiod of 16 h d-1 of light in growth chambers using five PPFD (100, 150, 200, 250 and 300 μmol m-2 s-1, resulting in daily light integrals, DLI, of 5.8, 8.6, 11.5, 14.4 and 17.3 mol m-2 d-1, respectively). A progressive increase of biomass production for both lettuce and basil up to a PPFD of 250 μmol m-2 s-1 was observed, whereas no further yield increases were associated with higher PPFD (300 μmol m-2 s-1). Despite the highest stomatal conductance associated to a PPFD of 250 μmol m-2 s-1 in lettuce and to a PPFD ≥ 200 μmol m-2 s-1 in basil, water use efficiency was maximized under a PPFD ≥ 200 μmol m-2 s-1 in lettuce and PPFD ≥ 250 μmol m-2 s-1 in basil. Energy and light use efficiencies were increased under a PPFD of 200 and 250 μmol m-2 s-1 in lettuce and under a PPFD of 250 μmol m-2 s-1 in basil. Furthermore, in lettuce grown under 250 μmol m-2 s-1 antioxidant capacity, phenolics and flavonoids were higher as compared with plants supplied with PPFD ≤ 150 μmol m-2 s-1. Accordingly, a PPFD of 250 μmol m-2 s-1 seems suitable for optimizing yield and resource use efficiency in red and blue LED lighting for indoor cultivation of lettuce and basil under the prevailing conditions of the used indoor farming set-up.
AbstractList Indoor plant cultivation systems are gaining increasing popularity because of their ability to meet the needs of producing food in unfavourable climatic contexts and in urban environments, allowing high yield, high quality, and great efficiency in the use of resources such as water and nutrients. While light is one of the most important environmental factors affecting plant development and morphology, electricity costs can limit the widespread adoption of indoor plant cultivation systems at a commercial scale. LED lighting technologies for plant cultivation are also rapidly evolving, and lamps for indoor cultivation are often designed to optimize their light emissions in the photosynthetically active spectrum (i.e. red and blue), in order to reduce energetic requirements for satisfactory yield. Under these light regimens, however, little information is available in literature about minimum photosynthetic photon flux density (PPFD) for indoor production of leafy vegetables and herbs, while existing literature often adopts light intensities from 100 to 300 μmol m⁻² s⁻¹. This study aims at defining the optimal PPFD for indoor cultivation of basil (Ocimum basilicum L.) and lettuce (Lactuca sativa L.), by linking resource use efficiency to physiological responses and biomass production under different light intensities. Basil and lettuce plants were cultivated at 24 °C and 450 μmol mol⁻¹ CO₂ under red and blue light (with red:blue ratio of 3) and a photoperiod of 16 h d⁻¹ of light in growth chambers using five PPFD (100, 150, 200, 250 and 300 μmol m⁻² s⁻¹, resulting in daily light integrals, DLI, of 5.8, 8.6, 11.5, 14.4 and 17.3 mol m⁻² d⁻¹, respectively). A progressive increase of biomass production for both lettuce and basil up to a PPFD of 250 μmol m⁻² s⁻¹ was observed, whereas no further yield increases were associated with higher PPFD (300 μmol m⁻² s⁻¹). Despite the highest stomatal conductance associated to a PPFD of 250 μmol m⁻² s⁻¹ in lettuce and to a PPFD ≥ 200 μmol m⁻² s⁻¹ in basil, water use efficiency was maximized under a PPFD ≥ 200 μmol m⁻² s⁻¹ in lettuce and PPFD ≥ 250 μmol m⁻² s⁻¹ in basil. Energy and light use efficiencies were increased under a PPFD of 200 and 250 μmol m⁻² s⁻¹ in lettuce and under a PPFD of 250 μmol m⁻² s⁻¹ in basil. Furthermore, in lettuce grown under 250 μmol m⁻² s⁻¹ antioxidant capacity, phenolics and flavonoids were higher as compared with plants supplied with PPFD ≤ 150 μmol m⁻² s⁻¹. Accordingly, a PPFD of 250 μmol m⁻² s⁻¹ seems suitable for optimizing yield and resource use efficiency in red and blue LED lighting for indoor cultivation of lettuce and basil under the prevailing conditions of the used indoor farming set-up.
•Optimal LED light intensity for lettuce and basil indoor growing is addressed;•Maximum yield and leaf area is achieved at 250 μmol m-2 s-1;•250 μmol m-2 s-1 increased chlorophyll and improved stomatal functions in leaves;•In lettuce, PPFD ≥ 200 μmol m-2 s-1 raised antioxidant capacity, phenolics and flavonoids;•Water, energy and light use efficiencies were optimized at 250 μmol m-2 s-1; Indoor plant cultivation systems are gaining increasing popularity because of their ability to meet the needs of producing food in unfavourable climatic contexts and in urban environments, allowing high yield, high quality, and great efficiency in the use of resources such as water and nutrients. While light is one of the most important environmental factors affecting plant development and morphology, electricity costs can limit the widespread adoption of indoor plant cultivation systems at a commercial scale. LED lighting technologies for plant cultivation are also rapidly evolving, and lamps for indoor cultivation are often designed to optimize their light emissions in the photosynthetically active spectrum (i.e. red and blue), in order to reduce energetic requirements for satisfactory yield. Under these light regimens, however, little information is available in literature about minimum photosynthetic photon flux density (PPFD) for indoor production of leafy vegetables and herbs, while existing literature often adopts light intensities from 100 to 300 μmol m-2 s-1. This study aims at defining the optimal PPFD for indoor cultivation of basil (Ocimum basilicum L.) and lettuce (Lactuca sativa L.), by linking resource use efficiency to physiological responses and biomass production under different light intensities. Basil and lettuce plants were cultivated at 24 °C and 450 μmol mol-1 CO2 under red and blue light (with red:blue ratio of 3) and a photoperiod of 16 h d-1 of light in growth chambers using five PPFD (100, 150, 200, 250 and 300 μmol m-2 s-1, resulting in daily light integrals, DLI, of 5.8, 8.6, 11.5, 14.4 and 17.3 mol m-2 d-1, respectively). A progressive increase of biomass production for both lettuce and basil up to a PPFD of 250 μmol m-2 s-1 was observed, whereas no further yield increases were associated with higher PPFD (300 μmol m-2 s-1). Despite the highest stomatal conductance associated to a PPFD of 250 μmol m-2 s-1 in lettuce and to a PPFD ≥ 200 μmol m-2 s-1 in basil, water use efficiency was maximized under a PPFD ≥ 200 μmol m-2 s-1 in lettuce and PPFD ≥ 250 μmol m-2 s-1 in basil. Energy and light use efficiencies were increased under a PPFD of 200 and 250 μmol m-2 s-1 in lettuce and under a PPFD of 250 μmol m-2 s-1 in basil. Furthermore, in lettuce grown under 250 μmol m-2 s-1 antioxidant capacity, phenolics and flavonoids were higher as compared with plants supplied with PPFD ≤ 150 μmol m-2 s-1. Accordingly, a PPFD of 250 μmol m-2 s-1 seems suitable for optimizing yield and resource use efficiency in red and blue LED lighting for indoor cultivation of lettuce and basil under the prevailing conditions of the used indoor farming set-up.
ArticleNumber 109508
Author Fernandez, Juan A.
Crepaldi, Andrea
Orsini, Francesco
Nicola, Silvana
Pistillo, Alessandro
Gianquinto, Giorgio
Cellini, Antonio
Pennisi, Giuseppina
Spinelli, Francesco
Marcelis, Leo F.M.
Author_xml – sequence: 1
  givenname: Giuseppina
  surname: Pennisi
  fullname: Pennisi, Giuseppina
  organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy
– sequence: 2
  givenname: Alessandro
  surname: Pistillo
  fullname: Pistillo, Alessandro
  organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy
– sequence: 3
  givenname: Francesco
  orcidid: 0000-0001-6956-7054
  surname: Orsini
  fullname: Orsini, Francesco
  email: f.orsini@unibo.it
  organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy
– sequence: 4
  givenname: Antonio
  orcidid: 0000-0001-7959-7118
  surname: Cellini
  fullname: Cellini, Antonio
  organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy
– sequence: 5
  givenname: Francesco
  orcidid: 0000-0003-3870-1227
  surname: Spinelli
  fullname: Spinelli, Francesco
  organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy
– sequence: 6
  givenname: Silvana
  orcidid: 0000-0003-4458-5939
  surname: Nicola
  fullname: Nicola, Silvana
  organization: DISAFA-VEGMAP, Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
– sequence: 7
  givenname: Juan A.
  surname: Fernandez
  fullname: Fernandez, Juan A.
  organization: Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
– sequence: 8
  givenname: Andrea
  surname: Crepaldi
  fullname: Crepaldi, Andrea
  organization: Flytech s.r.l., Belluno, Italy
– sequence: 9
  givenname: Giorgio
  surname: Gianquinto
  fullname: Gianquinto, Giorgio
  organization: DISTAL – Department of Agricultural and Food Sciences, ALMA MATER STUDIORUM – Bologna University, Bologna, Italy
– sequence: 10
  givenname: Leo F.M.
  orcidid: 0000-0002-8088-7232
  surname: Marcelis
  fullname: Marcelis, Leo F.M.
  organization: Horticulture & Product Physiology Group, Wageningen University, Wageningen, the Netherlands
BookMark eNqFkMtOAyEUQFnUxPr4BBOWblqBwnQmLoypz6SJG10TBu5UGgoVmJqu_HWp48qNCYHk5pybcE7QyAcPCF1QMqWEVlfradIWfFZTRthh1ghSj9CYzAifcDarj9FJSmtCCKW8GaOvl222G-Wws6v3jK3P4JPNe9yFiFOfsrJetQ7wp8oQsfIGg4e42uM-QcHLMaGgunfZ7lS2wePQYQc59xp--FYl63DvTfEjmGHmesDL-7t0ho465RKc_76n6O3h_nXxNFm-PD4vbpcTzYXIEzafC8FazaniLQfektbUdbmUMZWpRcNU3VSCkkrxeatVVdUAne54xTqYMzY7RZfD3m0MHz2kLDc2aXBOeQh9kkxwwpuKU1HQ6wHVMaQUoZPa5p-f5aisk5TIQ2q5lr-p5SG1HFIXW_yxt7EEjvt_vZvBg1JhZyEOlAZjI-gsTbD_bPgGY7-iDw
CitedBy_id crossref_primary_10_3390_su142114186
crossref_primary_10_17660_ActaHortic_2023_1369_14
crossref_primary_10_1002_jsfa_11513
crossref_primary_10_17660_ActaHortic_2022_1345_24
crossref_primary_10_1039_D1NJ00951F
crossref_primary_10_2525_ecb_61_17
crossref_primary_10_3390_agronomy13102582
crossref_primary_10_1038_s43016_021_00302_z
crossref_primary_10_1016_j_apenergy_2024_123756
crossref_primary_10_1021_acsagscitech_3c00128
crossref_primary_10_1038_s41598_023_33855_z
crossref_primary_10_1155_2021_1159567
crossref_primary_10_3390_ijms242015350
crossref_primary_10_22314_2658_4859_2023_70_2_10_18
crossref_primary_10_3390_horticulturae11020220
crossref_primary_10_1007_s13580_023_00547_6
crossref_primary_10_1016_j_fbio_2024_103984
crossref_primary_10_1590_0034_737x202370030005
crossref_primary_10_3390_agronomy11020303
crossref_primary_10_3390_ai5030073
crossref_primary_10_3390_plants10061203
crossref_primary_10_1016_j_scienta_2024_113264
crossref_primary_10_3390_horticulturae7100361
crossref_primary_10_1186_s12870_024_05200_7
crossref_primary_10_1016_j_scienta_2023_112396
crossref_primary_10_2503_hortj_UTD_273
crossref_primary_10_7717_peerj_17085
crossref_primary_10_1186_s12870_025_06354_8
crossref_primary_10_1371_journal_pone_0273562
crossref_primary_10_3390_horticulturae10090931
crossref_primary_10_3390_horticulturae7060124
crossref_primary_10_3390_agriculture14112079
crossref_primary_10_1016_j_envexpbot_2024_105711
crossref_primary_10_3389_fpls_2020_597906
crossref_primary_10_3390_plants12203622
crossref_primary_10_1016_j_enbuild_2025_115483
crossref_primary_10_3390_horticulturae11040343
crossref_primary_10_3390_plants11131709
crossref_primary_10_1016_j_fbio_2023_102506
crossref_primary_10_1007_s11105_024_01480_3
crossref_primary_10_3390_agriculture14010084
crossref_primary_10_3389_fpls_2022_1055352
crossref_primary_10_1051_bioconf_20249002002
crossref_primary_10_3390_agronomy11061106
crossref_primary_10_3389_fpls_2020_592171
crossref_primary_10_3389_fpls_2024_1467443
crossref_primary_10_1016_j_scienta_2021_110486
crossref_primary_10_3389_fpls_2023_1093883
crossref_primary_10_3390_horticulturae9111168
crossref_primary_10_1016_j_elstat_2024_103902
crossref_primary_10_1016_j_apenergy_2024_124669
crossref_primary_10_17660_eJHS_2020_85_5_4
crossref_primary_10_3390_horticulturae10060574
crossref_primary_10_3390_agronomy14010224
crossref_primary_10_3390_horticulturae9030404
crossref_primary_10_3390_plants11010121
crossref_primary_10_3389_fpls_2020_609977
crossref_primary_10_1016_j_postharvbio_2021_111500
crossref_primary_10_3389_fpls_2024_1515457
crossref_primary_10_1016_j_plaphy_2024_108783
crossref_primary_10_3390_ijms232113145
crossref_primary_10_1016_j_indcrop_2024_118495
crossref_primary_10_3390_s22249671
crossref_primary_10_3390_plants11212843
crossref_primary_10_1016_j_compag_2023_108553
crossref_primary_10_3390_horticulturae8020114
crossref_primary_10_1186_s40538_023_00532_2
crossref_primary_10_1016_j_scienta_2022_111035
crossref_primary_10_3390_plants13182616
crossref_primary_10_1002_fes3_391
crossref_primary_10_1177_14771535231223871
crossref_primary_10_1016_j_compag_2024_108809
crossref_primary_10_1016_j_scienta_2024_113693
crossref_primary_10_3390_w16111524
crossref_primary_10_3389_fpls_2023_1106394
crossref_primary_10_3390_su141610204
crossref_primary_10_3389_fpls_2021_615355
crossref_primary_10_1016_j_ceramint_2021_06_185
crossref_primary_10_3390_foods11213487
crossref_primary_10_3390_agriculture11100989
crossref_primary_10_3390_s21206833
crossref_primary_10_3390_horticulturae9050551
crossref_primary_10_1088_2053_1591_ac5d06
crossref_primary_10_3390_pr11020365
crossref_primary_10_1016_j_jarmap_2024_100583
crossref_primary_10_3390_agronomy15030744
crossref_primary_10_17660_eJHS_2024_025
crossref_primary_10_3390_app13032004
crossref_primary_10_3390_horticulturae9020287
crossref_primary_10_1016_j_scienta_2023_112351
crossref_primary_10_17660_eJHS_2024_026
crossref_primary_10_3389_fpls_2023_1111338
crossref_primary_10_3390_foods13142273
crossref_primary_10_1016_j_sajb_2024_11_023
crossref_primary_10_1109_TIM_2023_3336448
crossref_primary_10_3390_horticulturae7050096
crossref_primary_10_3390_plants12051075
crossref_primary_10_3390_agriculture12101593
crossref_primary_10_3390_su15021024
crossref_primary_10_3390_s22114046
crossref_primary_10_1021_acsagscitech_1c00241
crossref_primary_10_17660_ActaHortic_2022_1356_20
crossref_primary_10_15835_nbha49212314
crossref_primary_10_3390_plants12061355
crossref_primary_10_1016_j_postharvbio_2022_112113
crossref_primary_10_3390_horticulturae10060650
crossref_primary_10_3390_horticulturae7090328
crossref_primary_10_3390_plants11091153
crossref_primary_10_3390_plants12040731
crossref_primary_10_3390_plants13172466
crossref_primary_10_1016_j_scienta_2022_111807
crossref_primary_10_21273_HORTSCI16153_21
crossref_primary_10_1038_s41598_023_36997_2
crossref_primary_10_3390_plants12071450
crossref_primary_10_3390_horticulturae9040493
crossref_primary_10_1016_j_buildenv_2021_107766
crossref_primary_10_1016_j_plantsci_2022_111505
crossref_primary_10_3390_horticulturae9010063
crossref_primary_10_17660_ActaHortic_2024_1391_33
crossref_primary_10_17660_ActaHortic_2022_1337_15
crossref_primary_10_2525_ecb_60_171
crossref_primary_10_3390_horticulturae10040411
crossref_primary_10_1029_2022EF002900
crossref_primary_10_1186_s13007_025_01347_y
crossref_primary_10_3389_fsufs_2024_1403580
Cites_doi 10.1006/anbo.2000.1268
10.1007/s13580-018-0118-8
10.21273/HORTSCI.50.8.1128
10.21273/HORTSCI12785-17
10.1007/s13580-013-0109-8
10.3390/su11154063
10.21273/HORTSCI.44.1.64
10.1016/j.envexpbot.2016.06.004
10.1002/jsfa.9948
10.1016/0168-1923(93)90069-T
10.1038/s41467-017-01237-5
10.21273/HORTSCI.44.1.79
10.1002/jsfa.6008
10.2525/ecb.57.39
10.1016/j.scienta.2016.11.020
10.1016/j.envexpbot.2009.06.011
10.3390/ijms15034657
10.1016/j.agsy.2017.11.003
10.1016/j.indcrop.2018.05.073
10.1016/j.scienta.2015.07.015
10.1016/j.rser.2015.04.117
10.1111/nph.15754
10.1016/j.scienta.2019.01.002
10.1007/s11356-017-0333-3
10.3390/ijerph120606879
10.1002/jsfa.9985
10.12791/KSBEC.2012.21.4.305
10.21273/HORTSCI.45.12.1809
10.1016/j.jplph.2012.07.001
10.1016/j.agwat.2012.03.004
10.1016/j.rser.2009.01.027
10.13031/2013.2721
10.1016/j.scienta.2018.01.019
10.1146/annurev.arplant.57.032905.105434
10.5511/plantbiotechnology.26.255
10.1016/j.agwat.2018.02.019
10.1016/j.scienta.2017.09.011
10.1016/j.envexpbot.2011.08.010
10.1016/j.aoas.2016.10.001
10.21273/HORTSCI12796-17
10.1016/j.foodchem.2014.10.077
10.17660/eJHS.2018/83.5.3
10.1016/j.plaphy.2014.07.019
10.3389/fpls.2019.00305
10.1016/j.jplph.2013.06.004
10.1111/j.1469-8137.2011.03952.x
10.1016/S0308-8146(98)00102-2
10.1016/j.scienta.2011.12.004
10.17660/ActaHortic.2011.907.8
10.1021/jf070467u
10.17660/ActaHortic.2012.956.17
10.21273/HORTSCI.44.7.1857
10.3390/agronomy9050224
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.scienta.2020.109508
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_scienta_2020_109508
S0304423820303368
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSH
SSZ
T5K
Y6R
~G-
~KM
AALCJ
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XOL
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c455t-277552bc41a4b4e4b0bd880bdadd6d8592a8965106a47bca668eefcf462fe7223
IEDL.DBID .~1
ISSN 0304-4238
IngestDate Wed Jul 30 11:08:19 EDT 2025
Tue Jul 01 02:35:47 EDT 2025
Thu Apr 24 23:07:21 EDT 2025
Sun Apr 06 06:53:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Energy Use Efficiency (EUE)
Daily Light Integral (DLI)
Light Use Efficiency (LUE)
Plant factory with artificial lighting (PFALs)
Photosynthetic Photon Flux Density (PPFD)
Water Use Efficiency (WUE)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-277552bc41a4b4e4b0bd880bdadd6d8592a8965106a47bca668eefcf462fe7223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4458-5939
0000-0001-6956-7054
0000-0003-3870-1227
0000-0001-7959-7118
0000-0002-8088-7232
OpenAccessLink http://hdl.handle.net/2318/1766055
PQID 2540496415
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2540496415
crossref_citationtrail_10_1016_j_scienta_2020_109508
crossref_primary_10_1016_j_scienta_2020_109508
elsevier_sciencedirect_doi_10_1016_j_scienta_2020_109508
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Scientia horticulturae
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Saha, Monroe, Day (bib0270) 2016; 61
Shiga, Shoji, Shimada, Hashida, Goto, Yoshihara (bib0275) 2009; 26
Anjum, Xie, Wang, Saleem, Man, Lei (bib0015) 2011; 6
Montesano, van Iersel, Boari, Cantore, D’Amato, Parente (bib0180) 2018; 203
Yeh, Chung (bib0330) 2009; 13
Zhishen, Mengcheng, Jianming (bib0340) 1999; 64
Choi, Paek, Lee (bib0050) 2000
Lin, Huang, Xu (bib0165) 2018; 53
He, Kozai, Niu, Zhang (bib0105) 2019
Poorter, Niklas, Reich, Oleksyn, Poot, Mommer (bib0245) 2012; 193
Shimazaki, Doi, Assmann, Kinoshita (bib0280) 2007; 58
Piovene, Orsini, Bosi, Sanoubar, Bregola, Dinelli, Gianquinto (bib0240) 2015; 193
Mancarella, Orsini, Van Oosten, Sanoubar, Stanghellini, Kondo, Gianquinto, Maggio (bib0170) 2016; 130
Barbieri, Vallone, Orsini, Paradiso, De Pascale, Negre-Zakharov, Maggio (bib0020) 2012; 169
Kozai, Niu (bib0150) 2020
Frąszczak, Golcz, Zawirska-Wojtasiak, Janowska (bib0080) 2014; 13
Yan, He, Niu, Zhai (bib0320) 2019; 248
Aaby, Wrolstad, Ekeberg, Skrede (bib0005) 2007; 55
De Pinheiro Henriques, Marcelis (bib0055) 2000; 86
Žukauskas, Bliznikas, Breivė, Novičkovas, Samuolienė, Urbonavičiūtė, Brazaitytė, Jankauskienė, Duchovskis (bib0345) 2011; 907
Hiyama, Takemiya, Munemasa, Okuma, Sugiyama, Tada, Shimazaki (bib0110) 2017; 8
Kozai (bib0145) 2016
Barbosa, Gadelha, Kublik, Proctor, Reichelm, Weissinger, Wohlleb, Halden (bib0025) 2015; 12
Pérez-López, Miranda-Apodaca, Muñoz-Rueda, Mena-Petite (bib0235) 2013; 170
El-Nakhel, Pannico, Kyriacou, Giordano, De Pascale, Rouphael (bib0070) 2019; 99
Matsuda (bib0175) 2016
Cha, Kim, Cho (bib0045) 2012; 21
Johkan, Shoji, Goto, Hahida, Yoshihara (bib0125) 2010; 45
Viršilė, Brazaitytė, Vaštakaitė‐Kairienė, Miliauskienė, Jankauskienė, Novičkovas, Samuolienė (bib0305) 2019; 99
Zhang, He, Niu, Yan, Song (bib0335) 2018; 11
Fernández, Orsini, Baeza, Oztekin, Muñoz, Contreras, Montero (bib0075) 2018; 83
Okazaki, Yamashita (bib0200) 2019; 57
Li, Kubota (bib0160) 2009; 67
Ouhibi, Attia, Rebah, Msilini, Chebbi, Aarrouf, Urban, Lachaal (bib0210) 2014; 83
Orsini, Pennisi, Mancarella, Al Nayef, Sanoubar, Nicola, Gianquinto (bib0205) 2018; 233
Fu, Li, Yu, Liu, Cao, Manukovsky, Liu (bib0090) 2017; 214
Johkan, Shoji, Goto, Hahida, Yoshihara (bib0130) 2012; 75
Pennisi, Sanyé-Mengual, Orsini, Crepaldi, Nicola, Ochoa, Fernandez, Gianquinto (bib0230) 2019; 11
Pennisi, Blasioli, Cellini, Maia, Crepaldi, Braschi, Spinelli, Nicola, Fernandez, Stanghellini, Marcelis, Orsini, Gianquinto (bib0225) 2019; 10
Stutte, Edney, Skerritt (bib0295) 2009; 44
Rehman, Ullah, Bao, Wang, Peng, Liu (bib0255) 2017; 24
Rouphael, Cardarelli, Bassal, Leonardi, Giuffrida, Colla (bib0260) 2012; 10
Hammock (bib0100) 2018
Jensen, Clausen, Kjaer (bib0120) 2018; 227
Beaman, Gladon, Schrader (bib0030) 2009; 44
Fu, Li, Wu (bib0085) 2012; 135
Benke, Tomkins (bib0035) 2017; 13
Samuolienė, Urbonavičiūtė, Duchovskis, Bliznikas, Vitta, Žukauskas (bib0265) 2009; 44
Nguyen, Lu, Kagawa, Takagaki (bib0195) 2019; 9
Brazaitytė, Sakalauskienė, Samuolienė, Jankauskienė, Viršilė, Novičkovas, Sirtautas, Miliauskienė, Vaštakaitė, Dabašinskas, Duchovskis (bib0040) 2015; 173
Waterhouse (bib0310) 2002
Yan, He, Niu, Zhou, Qu (bib0325) 2020; 13
Ekren, Sönmez, Özçakal, Kurtta¸s, Bayram, Gürgülü (bib0065) 2012; 109
Poorter, Niinemets, Ntagkas, Siebenkäs, Mäenpää, Matsubara, Pons (bib0250) 2019; 223
Pennisi, Orsini, Blasioli, Cellini, Crepaldi, Braschi, Spinelli, Nicola, Fernandez, Stanghellini, Gianquinto, Marcelis (bib0220) 2019; 9
Albright, Both, Chiu (bib0010) 2000; 43
Kang, KrishnaKumar, Atulba, Jeong, Hwang (bib0135) 2013; 54
Singh, Basu, Meinhardt-Wollweber, Roth (bib0285) 2015; 49
Tarakanov, Yakovleva, Konovalova, Paliutina, Anisimov (bib0300) 2012; 956
Dou, Niu, Gu, Masabni (bib0060) 2018; 53
Muneer, Kim, Park, Lee (bib0190) 2014; 15
Ouzounis, Rosenqvist, Ottosen (bib0215) 2015; 50
Kozai (bib0140) 2016
Graamans, Baeza, Van Den Dobbelsteen, Tsafaras, Stanghellini (bib0095) 2018; 160
Wheeler, Hadley, Ellis, Morison (bib0315) 1993; 66
Janssen, Krijn, van den Bergh, van Elmpt, Nicole, van Slooten (bib0115) 2019
Lee, Bhandari, Lee, Lee (bib0155) 2019; 60
Msilini, Oueslati, Amdouni, Chebbi, Ksouri, Lachaâl, Ouerghi (bib0185) 2013; 93
Stagnari, Di Mattia, Galieni, Santarelli, D’Egidio, Pagnani, Pisante (bib0290) 2018; 122
Jensen (10.1016/j.scienta.2020.109508_bib0120) 2018; 227
Shiga (10.1016/j.scienta.2020.109508_bib0275) 2009; 26
Matsuda (10.1016/j.scienta.2020.109508_bib0175) 2016
He (10.1016/j.scienta.2020.109508_bib0105) 2019
Lee (10.1016/j.scienta.2020.109508_bib0155) 2019; 60
Rehman (10.1016/j.scienta.2020.109508_bib0255) 2017; 24
Wheeler (10.1016/j.scienta.2020.109508_bib0315) 1993; 66
Benke (10.1016/j.scienta.2020.109508_bib0035) 2017; 13
Orsini (10.1016/j.scienta.2020.109508_bib0205) 2018; 233
Hammock (10.1016/j.scienta.2020.109508_bib0100) 2018
Fu (10.1016/j.scienta.2020.109508_bib0085) 2012; 135
Anjum (10.1016/j.scienta.2020.109508_bib0015) 2011; 6
Graamans (10.1016/j.scienta.2020.109508_bib0095) 2018; 160
Poorter (10.1016/j.scienta.2020.109508_bib0250) 2019; 223
Dou (10.1016/j.scienta.2020.109508_bib0060) 2018; 53
Yeh (10.1016/j.scienta.2020.109508_bib0330) 2009; 13
Ekren (10.1016/j.scienta.2020.109508_bib0065) 2012; 109
Piovene (10.1016/j.scienta.2020.109508_bib0240) 2015; 193
Samuolienė (10.1016/j.scienta.2020.109508_bib0265) 2009; 44
Beaman (10.1016/j.scienta.2020.109508_bib0030) 2009; 44
Yan (10.1016/j.scienta.2020.109508_bib0325) 2020; 13
Tarakanov (10.1016/j.scienta.2020.109508_bib0300) 2012; 956
Barbieri (10.1016/j.scienta.2020.109508_bib0020) 2012; 169
Johkan (10.1016/j.scienta.2020.109508_bib0130) 2012; 75
Choi (10.1016/j.scienta.2020.109508_bib0050) 2000
Shimazaki (10.1016/j.scienta.2020.109508_bib0280) 2007; 58
Cha (10.1016/j.scienta.2020.109508_bib0045) 2012; 21
Nguyen (10.1016/j.scienta.2020.109508_bib0195) 2019; 9
Žukauskas (10.1016/j.scienta.2020.109508_bib0345) 2011; 907
Poorter (10.1016/j.scienta.2020.109508_bib0245) 2012; 193
Viršilė (10.1016/j.scienta.2020.109508_bib0305) 2019; 99
Mancarella (10.1016/j.scienta.2020.109508_bib0170) 2016; 130
Kozai (10.1016/j.scienta.2020.109508_bib0140) 2016
Pennisi (10.1016/j.scienta.2020.109508_bib0220) 2019; 9
De Pinheiro Henriques (10.1016/j.scienta.2020.109508_bib0055) 2000; 86
Fernández (10.1016/j.scienta.2020.109508_bib0075) 2018; 83
Montesano (10.1016/j.scienta.2020.109508_bib0180) 2018; 203
El-Nakhel (10.1016/j.scienta.2020.109508_bib0070) 2019; 99
Yan (10.1016/j.scienta.2020.109508_bib0320) 2019; 248
Hiyama (10.1016/j.scienta.2020.109508_bib0110) 2017; 8
Zhang (10.1016/j.scienta.2020.109508_bib0335) 2018; 11
Brazaitytė (10.1016/j.scienta.2020.109508_bib0040) 2015; 173
Stagnari (10.1016/j.scienta.2020.109508_bib0290) 2018; 122
Li (10.1016/j.scienta.2020.109508_bib0160) 2009; 67
Rouphael (10.1016/j.scienta.2020.109508_bib0260) 2012; 10
Kang (10.1016/j.scienta.2020.109508_bib0135) 2013; 54
Waterhouse (10.1016/j.scienta.2020.109508_bib0310) 2002
Okazaki (10.1016/j.scienta.2020.109508_bib0200) 2019; 57
Saha (10.1016/j.scienta.2020.109508_bib0270) 2016; 61
Albright (10.1016/j.scienta.2020.109508_bib0010) 2000; 43
Pérez-López (10.1016/j.scienta.2020.109508_bib0235) 2013; 170
Pennisi (10.1016/j.scienta.2020.109508_bib0225) 2019; 10
Johkan (10.1016/j.scienta.2020.109508_bib0125) 2010; 45
Kozai (10.1016/j.scienta.2020.109508_bib0150) 2020
Lin (10.1016/j.scienta.2020.109508_bib0165) 2018; 53
Fu (10.1016/j.scienta.2020.109508_bib0090) 2017; 214
Ouhibi (10.1016/j.scienta.2020.109508_bib0210) 2014; 83
Zhishen (10.1016/j.scienta.2020.109508_bib0340) 1999; 64
Aaby (10.1016/j.scienta.2020.109508_bib0005) 2007; 55
Msilini (10.1016/j.scienta.2020.109508_bib0185) 2013; 93
Ouzounis (10.1016/j.scienta.2020.109508_bib0215) 2015; 50
Pennisi (10.1016/j.scienta.2020.109508_bib0230) 2019; 11
Stutte (10.1016/j.scienta.2020.109508_bib0295) 2009; 44
Frąszczak (10.1016/j.scienta.2020.109508_bib0080) 2014; 13
Singh (10.1016/j.scienta.2020.109508_bib0285) 2015; 49
Barbosa (10.1016/j.scienta.2020.109508_bib0025) 2015; 12
Muneer (10.1016/j.scienta.2020.109508_bib0190) 2014; 15
Janssen (10.1016/j.scienta.2020.109508_bib0115) 2019
Kozai (10.1016/j.scienta.2020.109508_bib0145) 2016
References_xml – volume: 9
  start-page: 14127
  year: 2019
  ident: bib0220
  article-title: Resource use efficiency of indoor lettuce (
  publication-title: Nature Sci. Rep.
– volume: 99
  start-page: 6608
  year: 2019
  end-page: 6619
  ident: bib0305
  article-title: Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce
  publication-title: J. Sci. Food Agr.
– volume: 99
  start-page: 6962
  year: 2019
  end-page: 6972
  ident: bib0070
  article-title: Macronutrient deprivation eustress elicits differential secondary metabolites in red and green‐pigmented butterhead lettuce grown in closed soilless system
  publication-title: J. Sci. Food Agric.
– start-page: 513
  year: 2019
  end-page: 547
  ident: bib0105
  article-title: Light-emitting diodes for horticulture
  publication-title: Light Emitting Diodes
– start-page: 281
  year: 2019
  end-page: 293
  ident: bib0115
  article-title: Optimizing plant factory performance for local requirements
  publication-title: Plant factory using artificial light: adapting to environmental disruption and clues to agricultural innovation
– volume: 24
  start-page: 24743
  year: 2017
  end-page: 24752
  ident: bib0255
  article-title: Light-emitting diodes: whether an efficient source of light for indoor plants? Environ
  publication-title: Sci. Poll. Res.
– volume: 53
  start-page: 1157
  year: 2018
  end-page: 1163
  ident: bib0165
  article-title: Influence of light quality and intensity on biomass and biochemical contents of hydroponically grown lettuce
  publication-title: HortScience
– volume: 6
  start-page: 2026
  year: 2011
  end-page: 2032
  ident: bib0015
  article-title: Morphological, physiological and biochemical responses of plants to drought stress
  publication-title: Afr. J Agric. Res.
– volume: 11
  start-page: 4063
  year: 2019
  ident: bib0230
  article-title: Modelling environmental burdens of indoor-grown vegetables and herbs as affected by red and blue LED lighting
  publication-title: Sustainability
– volume: 64
  start-page: 555
  year: 1999
  end-page: 559
  ident: bib0340
  article-title: The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals
  publication-title: Food Chem.
– start-page: 166
  year: 2000
  end-page: 171
  ident: bib0050
  article-title: Effect of air temperature on tipburn incidence of butterhead and leaf lettuce in a plant factory
  publication-title: Transplant Production in the 21
– volume: 223
  start-page: 1073
  year: 2019
  end-page: 1105
  ident: bib0250
  article-title: A meta‐analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance
  publication-title: New Phytol.
– volume: 26
  start-page: 255
  year: 2009
  end-page: 259
  ident: bib0275
  article-title: Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil,
  publication-title: Plant Biotechnol.
– start-page: 35
  year: 2016
  end-page: 68
  ident: bib0145
  article-title: PFAL business and R&D in the world: current status and perspectives
  publication-title: Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production
– volume: 9
  start-page: 224
  year: 2019
  ident: bib0195
  article-title: Optimization of photosynthetic photon flux density and root-zone temperature for enhancing secondary metabolite accumulation and production of coriander in plant factory
  publication-title: Agronomy
– volume: 60
  start-page: 207
  year: 2019
  end-page: 216
  ident: bib0155
  article-title: Optimization of temperature and light, and cultivar selection for the production of high-quality head lettuce in a closed-type plant factory
  publication-title: Hortic. Environ. Biotechnol.
– volume: 135
  start-page: 45
  year: 2012
  end-page: 51
  ident: bib0085
  article-title: Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce
  publication-title: Sci. Hortic.
– volume: 907
  start-page: 87
  year: 2011
  end-page: 90
  ident: bib0345
  article-title: Effect of supplementary pre-harvest LED lighting on the antioxidant properties of lettuce cultivars
  publication-title: Acta Hortic.
– volume: 170
  start-page: 1517
  year: 2013
  end-page: 1525
  ident: bib0235
  article-title: Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO
  publication-title: J. Plant Physiol.
– volume: 83
  start-page: 294
  year: 2018
  end-page: 305
  ident: bib0075
  article-title: Current trends in protected cultivation in Mediterranean climates
  publication-title: Eur. J. Hortic. Sci.
– volume: 54
  start-page: 501
  year: 2013
  end-page: 509
  ident: bib0135
  article-title: Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system
  publication-title: Hortic. Environ. Biotechnol.
– volume: 122
  start-page: 277
  year: 2018
  end-page: 289
  ident: bib0290
  article-title: Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil
  publication-title: Ind. Crop. Prod.
– volume: 11
  start-page: 33
  year: 2018
  end-page: 40
  ident: bib0335
  article-title: Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory
  publication-title: Int. J. Agric.Biol. Eng.
– volume: 248
  start-page: 138
  year: 2019
  end-page: 144
  ident: bib0320
  article-title: Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage
  publication-title: Sci. Hortic.
– volume: 21
  start-page: 305
  year: 2012
  end-page: 311
  ident: bib0045
  article-title: Growth response of lettuce to various levels of EC and light intensity in plant factory
  publication-title: J. Bio-Environ. Control
– start-page: 1
  year: 2002
  end-page: 8
  ident: bib0310
  article-title: Determination of total phenolics
  publication-title: Current Protocols in Food Analytical Chemistry
– volume: 53
  start-page: 496
  year: 2018
  end-page: 503
  ident: bib0060
  article-title: Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality
  publication-title: HortScience
– volume: 45
  start-page: 1809
  year: 2010
  end-page: 1814
  ident: bib0125
  article-title: Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce
  publication-title: HortScience
– volume: 67
  start-page: 59
  year: 2009
  end-page: 64
  ident: bib0160
  article-title: Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce
  publication-title: Env. Exp. Bot.
– volume: 233
  start-page: 283
  year: 2018
  end-page: 293
  ident: bib0205
  article-title: Hydroponic lettuce yields are improved under salt stress by utilizing white plastic film and exogenous applications of proline
  publication-title: Sci. Hortic.
– volume: 12
  start-page: 6879
  year: 2015
  end-page: 6891
  ident: bib0025
  article-title: Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods
  publication-title: Int. J. Environ. Res. Public Health
– volume: 58
  start-page: 219
  year: 2007
  end-page: 247
  ident: bib0280
  article-title: Light regulation of stomatal movement
  publication-title: Ann. Rev. Plant Biol.
– volume: 203
  start-page: 20
  year: 2018
  end-page: 29
  ident: bib0180
  article-title: Sensor-based irrigation management of soilless basil using a new smart irrigation system: effects of set-point on plant physiological responses and crop performance
  publication-title: Agric. Water Manag.
– volume: 66
  start-page: 173
  year: 1993
  end-page: 186
  ident: bib0315
  article-title: Changes in growth and radiation use by lettuce crops in relation to temperature and ontogeny
  publication-title: Agr. Forest Meteorol.
– volume: 43
  start-page: 421
  year: 2000
  ident: bib0010
  article-title: Controlling greenhouse light to a consistent daily integral
  publication-title: Transact. ASAE
– volume: 173
  start-page: 600
  year: 2015
  end-page: 606
  ident: bib0040
  article-title: The effects of LED illumination spectra and intensity on carotenoid content in
  publication-title: Food Chem.
– volume: 130
  start-page: 162
  year: 2016
  end-page: 173
  ident: bib0170
  article-title: Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed
  publication-title: Environ. Exp. Bot.
– volume: 193
  start-page: 30
  year: 2012
  end-page: 50
  ident: bib0245
  article-title: Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control
  publication-title: New Phytol.
– volume: 956
  start-page: 171
  year: 2012
  end-page: 178
  ident: bib0300
  article-title: Light-emitting diodes: on the way to combinatorial lighting technologies for basic research and crop production
  publication-title: Acta Hortic.
– volume: 10
  start-page: 305
  year: 2019
  ident: bib0225
  article-title: Unravelling the role of Red: Blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil
  publication-title: Front. Plant Sci.
– volume: 160
  start-page: 31
  year: 2018
  end-page: 43
  ident: bib0095
  article-title: Plant factories versus greenhouses: comparison of resource use efficiency
  publication-title: Agric. Syst.
– volume: 15
  start-page: 4657
  year: 2014
  end-page: 4670
  ident: bib0190
  article-title: Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (
  publication-title: Int. J. Mol. Sci.
– volume: 44
  start-page: 64
  year: 2009
  end-page: 67
  ident: bib0030
  article-title: Sweet basil requires an irradiance of 500 μmol m
  publication-title: HortScience
– volume: 193
  start-page: 202
  year: 2015
  end-page: 208
  ident: bib0240
  article-title: Optimal red: blue ratio in led lighting for nutraceutical indoor horticulture
  publication-title: Sci. Hortic.
– volume: 8
  start-page: 1284
  year: 2017
  ident: bib0110
  article-title: Blue light and CO
  publication-title: Nature Comm.
– volume: 57
  start-page: 39
  year: 2019
  end-page: 44
  ident: bib0200
  article-title: A manipulation of air temperature and light quality and intensity can maximize growth and folate biosynthesis in leaf lettuce
  publication-title: Environ. Control Biol.
– start-page: 281
  year: 2018
  ident: bib0100
  article-title: The Impact of Blue and Red LED Lighting on biomass accumulation, flavor volatile production, and nutrient uptake in hydroponically grown Genovese basil. Master’s Thesis
– start-page: 93
  year: 2020
  end-page: 115
  ident: bib0150
  article-title: Plant factory as a resource-efficient closed plant production system
  publication-title: Plant Factory (2
– volume: 75
  start-page: 128
  year: 2012
  end-page: 133
  ident: bib0130
  article-title: Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in
  publication-title: Env. Exp. Bot.
– volume: 169
  start-page: 1737
  year: 2012
  end-page: 1746
  ident: bib0020
  article-title: Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (
  publication-title: J. Plant Physiol.
– volume: 55
  start-page: 5156
  year: 2007
  end-page: 5166
  ident: bib0005
  article-title: Polyphenol composition and antioxidant activity in strawberry purees; impact of achene level and storage
  publication-title: J. Agric. Food Chem.
– start-page: 3
  year: 2016
  end-page: 118
  ident: bib0140
  article-title: Why LED Lighting for Urban Agriculture?
  publication-title: LED Lighting for Urban Agriculture
– volume: 214
  start-page: 51
  year: 2017
  end-page: 57
  ident: bib0090
  article-title: Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (
  publication-title: Sci. Hortic.
– volume: 109
  start-page: 155
  year: 2012
  end-page: 161
  ident: bib0065
  article-title: The effect of different irrigation water levels on yield and quality characteristics of purple basil (
  publication-title: Agric. Water Manag.
– volume: 10
  start-page: 680
  year: 2012
  end-page: 688
  ident: bib0260
  article-title: Vegetable quality as affected by genetic, agronomic and environmental factors
  publication-title: J. Food Agric. Environ.
– volume: 61
  start-page: 181
  year: 2016
  end-page: 186
  ident: bib0270
  article-title: Growth, yield, plant quality and nutrition of basil (
  publication-title: Ann. Agric. Sci.
– volume: 13
  start-page: 2175
  year: 2009
  end-page: 2180
  ident: bib0330
  article-title: High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation
  publication-title: Renew. Sust. Energy Rev.
– volume: 93
  start-page: 2016
  year: 2013
  end-page: 2021
  ident: bib0185
  article-title: Variability of phenolic content and antioxidant activity of two lettuce varieties under Fe deficiency
  publication-title: J. Sci. Food Agric.
– volume: 49
  start-page: 139
  year: 2015
  end-page: 147
  ident: bib0285
  article-title: LEDs for energy efficient greenhouse lighting
  publication-title: Renew. Sust. Energ. Rev.
– volume: 227
  start-page: 38
  year: 2018
  end-page: 47
  ident: bib0120
  article-title: Spectral quality of supplemental LED grow light permanently alters stomatal functioning and chilling tolerance in basil (
  publication-title: Sci. Hortic.
– start-page: 163
  year: 2016
  end-page: 175
  ident: bib0175
  article-title: Effects of Physical Environment on Photosynthesis, Respiration, and Transpiration
  publication-title: LED Lighting for Urban Agriculture
– volume: 50
  start-page: 1128
  year: 2015
  end-page: 1135
  ident: bib0215
  article-title: Spectral effects of artificial light on plant physiology and secondary metabolism: a review
  publication-title: HortScience
– volume: 13
  start-page: 3
  year: 2014
  end-page: 13
  ident: bib0080
  article-title: Growth rate of sweet basil and lemon balm plants grown under fluorescent lamps and LED modules
  publication-title: Acta Sci. Pol. Hortorum Cultus
– volume: 44
  start-page: 1857
  year: 2009
  end-page: 1860
  ident: bib0265
  article-title: Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator
  publication-title: HortScience
– volume: 44
  start-page: 79
  year: 2009
  end-page: 82
  ident: bib0295
  article-title: Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes
  publication-title: HortScience
– volume: 13
  start-page: 33
  year: 2020
  end-page: 40
  ident: bib0325
  article-title: Growth, nutritional quality, and energy use efficiency in two lettuce cultivars as influenced by white plus red versus red plus blue LEDs
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 13
  start-page: 13
  year: 2017
  end-page: 26
  ident: bib0035
  article-title: Future food-production systems: vertical farming and controlled-environment agriculture
  publication-title: Sustain. Sci. Prac. Policy
– volume: 86
  start-page: 1073
  year: 2000
  end-page: 1080
  ident: bib0055
  article-title: Regulation of growth at steady-state nitrogen nutrition in lettuce (
  publication-title: Ann. Bot.
– volume: 83
  start-page: 126
  year: 2014
  end-page: 133
  ident: bib0210
  article-title: Salt stress mitigation by seed priming with UV-C in lettuce plants: growth, antioxidant activity and phenolic compounds
  publication-title: Plant Physiol. Biochem.
– volume: 6
  start-page: 2026
  year: 2011
  ident: 10.1016/j.scienta.2020.109508_bib0015
  article-title: Morphological, physiological and biochemical responses of plants to drought stress
  publication-title: Afr. J Agric. Res.
– volume: 86
  start-page: 1073
  year: 2000
  ident: 10.1016/j.scienta.2020.109508_bib0055
  article-title: Regulation of growth at steady-state nitrogen nutrition in lettuce (Lactuca sativa L.): interactive effects of nitrogen and irradiance
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.2000.1268
– volume: 60
  start-page: 207
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0155
  article-title: Optimization of temperature and light, and cultivar selection for the production of high-quality head lettuce in a closed-type plant factory
  publication-title: Hortic. Environ. Biotechnol.
  doi: 10.1007/s13580-018-0118-8
– volume: 13
  start-page: 3
  year: 2014
  ident: 10.1016/j.scienta.2020.109508_bib0080
  article-title: Growth rate of sweet basil and lemon balm plants grown under fluorescent lamps and LED modules
  publication-title: Acta Sci. Pol. Hortorum Cultus
– volume: 50
  start-page: 1128
  year: 2015
  ident: 10.1016/j.scienta.2020.109508_bib0215
  article-title: Spectral effects of artificial light on plant physiology and secondary metabolism: a review
  publication-title: HortScience
  doi: 10.21273/HORTSCI.50.8.1128
– volume: 53
  start-page: 496
  year: 2018
  ident: 10.1016/j.scienta.2020.109508_bib0060
  article-title: Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality
  publication-title: HortScience
  doi: 10.21273/HORTSCI12785-17
– volume: 54
  start-page: 501
  year: 2013
  ident: 10.1016/j.scienta.2020.109508_bib0135
  article-title: Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system
  publication-title: Hortic. Environ. Biotechnol.
  doi: 10.1007/s13580-013-0109-8
– volume: 11
  start-page: 4063
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0230
  article-title: Modelling environmental burdens of indoor-grown vegetables and herbs as affected by red and blue LED lighting
  publication-title: Sustainability
  doi: 10.3390/su11154063
– volume: 44
  start-page: 64
  year: 2009
  ident: 10.1016/j.scienta.2020.109508_bib0030
  article-title: Sweet basil requires an irradiance of 500 μmol m-2·s-1 for greatest edible biomass production
  publication-title: HortScience
  doi: 10.21273/HORTSCI.44.1.64
– volume: 130
  start-page: 162
  year: 2016
  ident: 10.1016/j.scienta.2020.109508_bib0170
  article-title: Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2016.06.004
– volume: 99
  start-page: 6608
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0305
  article-title: Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce
  publication-title: J. Sci. Food Agr.
  doi: 10.1002/jsfa.9948
– volume: 66
  start-page: 173
  year: 1993
  ident: 10.1016/j.scienta.2020.109508_bib0315
  article-title: Changes in growth and radiation use by lettuce crops in relation to temperature and ontogeny
  publication-title: Agr. Forest Meteorol.
  doi: 10.1016/0168-1923(93)90069-T
– volume: 10
  start-page: 680
  year: 2012
  ident: 10.1016/j.scienta.2020.109508_bib0260
  article-title: Vegetable quality as affected by genetic, agronomic and environmental factors
  publication-title: J. Food Agric. Environ.
– volume: 8
  start-page: 1284
  year: 2017
  ident: 10.1016/j.scienta.2020.109508_bib0110
  article-title: Blue light and CO2 signals converge to regulate light-induced stomatal opening
  publication-title: Nature Comm.
  doi: 10.1038/s41467-017-01237-5
– volume: 44
  start-page: 79
  year: 2009
  ident: 10.1016/j.scienta.2020.109508_bib0295
  article-title: Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes
  publication-title: HortScience
  doi: 10.21273/HORTSCI.44.1.79
– volume: 93
  start-page: 2016
  year: 2013
  ident: 10.1016/j.scienta.2020.109508_bib0185
  article-title: Variability of phenolic content and antioxidant activity of two lettuce varieties under Fe deficiency
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.6008
– volume: 57
  start-page: 39
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0200
  article-title: A manipulation of air temperature and light quality and intensity can maximize growth and folate biosynthesis in leaf lettuce
  publication-title: Environ. Control Biol.
  doi: 10.2525/ecb.57.39
– volume: 214
  start-page: 51
  year: 2017
  ident: 10.1016/j.scienta.2020.109508_bib0090
  article-title: Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai)
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2016.11.020
– volume: 67
  start-page: 59
  year: 2009
  ident: 10.1016/j.scienta.2020.109508_bib0160
  article-title: Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce
  publication-title: Env. Exp. Bot.
  doi: 10.1016/j.envexpbot.2009.06.011
– volume: 15
  start-page: 4657
  year: 2014
  ident: 10.1016/j.scienta.2020.109508_bib0190
  article-title: Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.)
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15034657
– volume: 160
  start-page: 31
  year: 2018
  ident: 10.1016/j.scienta.2020.109508_bib0095
  article-title: Plant factories versus greenhouses: comparison of resource use efficiency
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2017.11.003
– volume: 122
  start-page: 277
  year: 2018
  ident: 10.1016/j.scienta.2020.109508_bib0290
  article-title: Light quantity and quality supplies sharply affect growth, morphological, physiological and quality traits of basil
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2018.05.073
– start-page: 166
  year: 2000
  ident: 10.1016/j.scienta.2020.109508_bib0050
  article-title: Effect of air temperature on tipburn incidence of butterhead and leaf lettuce in a plant factory
– volume: 193
  start-page: 202
  year: 2015
  ident: 10.1016/j.scienta.2020.109508_bib0240
  article-title: Optimal red: blue ratio in led lighting for nutraceutical indoor horticulture
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2015.07.015
– volume: 49
  start-page: 139
  year: 2015
  ident: 10.1016/j.scienta.2020.109508_bib0285
  article-title: LEDs for energy efficient greenhouse lighting
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.04.117
– start-page: 1
  year: 2002
  ident: 10.1016/j.scienta.2020.109508_bib0310
  article-title: Determination of total phenolics
– volume: 13
  start-page: 13
  year: 2017
  ident: 10.1016/j.scienta.2020.109508_bib0035
  article-title: Future food-production systems: vertical farming and controlled-environment agriculture
  publication-title: Sustain. Sci. Prac. Policy
– start-page: 513
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0105
  article-title: Light-emitting diodes for horticulture
– volume: 223
  start-page: 1073
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0250
  article-title: A meta‐analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance
  publication-title: New Phytol.
  doi: 10.1111/nph.15754
– start-page: 163
  year: 2016
  ident: 10.1016/j.scienta.2020.109508_bib0175
  article-title: Effects of Physical Environment on Photosynthesis, Respiration, and Transpiration
– volume: 248
  start-page: 138
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0320
  article-title: Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2019.01.002
– volume: 13
  start-page: 33
  year: 2020
  ident: 10.1016/j.scienta.2020.109508_bib0325
  article-title: Growth, nutritional quality, and energy use efficiency in two lettuce cultivars as influenced by white plus red versus red plus blue LEDs
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 24
  start-page: 24743
  year: 2017
  ident: 10.1016/j.scienta.2020.109508_bib0255
  article-title: Light-emitting diodes: whether an efficient source of light for indoor plants? Environ
  publication-title: Sci. Poll. Res.
  doi: 10.1007/s11356-017-0333-3
– volume: 11
  start-page: 33
  year: 2018
  ident: 10.1016/j.scienta.2020.109508_bib0335
  article-title: Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory
  publication-title: Int. J. Agric.Biol. Eng.
– volume: 12
  start-page: 6879
  year: 2015
  ident: 10.1016/j.scienta.2020.109508_bib0025
  article-title: Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph120606879
– volume: 99
  start-page: 6962
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0070
  article-title: Macronutrient deprivation eustress elicits differential secondary metabolites in red and green‐pigmented butterhead lettuce grown in closed soilless system
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.9985
– volume: 21
  start-page: 305
  year: 2012
  ident: 10.1016/j.scienta.2020.109508_bib0045
  article-title: Growth response of lettuce to various levels of EC and light intensity in plant factory
  publication-title: J. Bio-Environ. Control
  doi: 10.12791/KSBEC.2012.21.4.305
– volume: 45
  start-page: 1809
  year: 2010
  ident: 10.1016/j.scienta.2020.109508_bib0125
  article-title: Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce
  publication-title: HortScience
  doi: 10.21273/HORTSCI.45.12.1809
– start-page: 93
  year: 2020
  ident: 10.1016/j.scienta.2020.109508_bib0150
  article-title: Plant factory as a resource-efficient closed plant production system
– volume: 169
  start-page: 1737
  year: 2012
  ident: 10.1016/j.scienta.2020.109508_bib0020
  article-title: Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.)
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2012.07.001
– volume: 109
  start-page: 155
  year: 2012
  ident: 10.1016/j.scienta.2020.109508_bib0065
  article-title: The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.)
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2012.03.004
– volume: 13
  start-page: 2175
  year: 2009
  ident: 10.1016/j.scienta.2020.109508_bib0330
  article-title: High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2009.01.027
– volume: 43
  start-page: 421
  year: 2000
  ident: 10.1016/j.scienta.2020.109508_bib0010
  article-title: Controlling greenhouse light to a consistent daily integral
  publication-title: Transact. ASAE
  doi: 10.13031/2013.2721
– start-page: 35
  year: 2016
  ident: 10.1016/j.scienta.2020.109508_bib0145
  article-title: PFAL business and R&D in the world: current status and perspectives
– volume: 9
  start-page: 14127
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0220
  article-title: Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting
  publication-title: Nature Sci. Rep.
– volume: 233
  start-page: 283
  year: 2018
  ident: 10.1016/j.scienta.2020.109508_bib0205
  article-title: Hydroponic lettuce yields are improved under salt stress by utilizing white plastic film and exogenous applications of proline
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.01.019
– volume: 58
  start-page: 219
  year: 2007
  ident: 10.1016/j.scienta.2020.109508_bib0280
  article-title: Light regulation of stomatal movement
  publication-title: Ann. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105434
– volume: 26
  start-page: 255
  year: 2009
  ident: 10.1016/j.scienta.2020.109508_bib0275
  article-title: Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, Ocimum basilicum L
  publication-title: Plant Biotechnol.
  doi: 10.5511/plantbiotechnology.26.255
– volume: 203
  start-page: 20
  year: 2018
  ident: 10.1016/j.scienta.2020.109508_bib0180
  article-title: Sensor-based irrigation management of soilless basil using a new smart irrigation system: effects of set-point on plant physiological responses and crop performance
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.02.019
– volume: 227
  start-page: 38
  year: 2018
  ident: 10.1016/j.scienta.2020.109508_bib0120
  article-title: Spectral quality of supplemental LED grow light permanently alters stomatal functioning and chilling tolerance in basil (Ocimum basilicum L.)
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2017.09.011
– volume: 75
  start-page: 128
  year: 2012
  ident: 10.1016/j.scienta.2020.109508_bib0130
  article-title: Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa
  publication-title: Env. Exp. Bot.
  doi: 10.1016/j.envexpbot.2011.08.010
– start-page: 281
  year: 2018
  ident: 10.1016/j.scienta.2020.109508_bib0100
– volume: 61
  start-page: 181
  year: 2016
  ident: 10.1016/j.scienta.2020.109508_bib0270
  article-title: Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems
  publication-title: Ann. Agric. Sci.
  doi: 10.1016/j.aoas.2016.10.001
– start-page: 3
  year: 2016
  ident: 10.1016/j.scienta.2020.109508_bib0140
  article-title: Why LED Lighting for Urban Agriculture?
– volume: 53
  start-page: 1157
  year: 2018
  ident: 10.1016/j.scienta.2020.109508_bib0165
  article-title: Influence of light quality and intensity on biomass and biochemical contents of hydroponically grown lettuce
  publication-title: HortScience
  doi: 10.21273/HORTSCI12796-17
– volume: 173
  start-page: 600
  year: 2015
  ident: 10.1016/j.scienta.2020.109508_bib0040
  article-title: The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.10.077
– volume: 83
  start-page: 294
  year: 2018
  ident: 10.1016/j.scienta.2020.109508_bib0075
  article-title: Current trends in protected cultivation in Mediterranean climates
  publication-title: Eur. J. Hortic. Sci.
  doi: 10.17660/eJHS.2018/83.5.3
– volume: 83
  start-page: 126
  year: 2014
  ident: 10.1016/j.scienta.2020.109508_bib0210
  article-title: Salt stress mitigation by seed priming with UV-C in lettuce plants: growth, antioxidant activity and phenolic compounds
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.07.019
– volume: 10
  start-page: 305
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0225
  article-title: Unravelling the role of Red: Blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00305
– volume: 170
  start-page: 1517
  year: 2013
  ident: 10.1016/j.scienta.2020.109508_bib0235
  article-title: Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2013.06.004
– volume: 193
  start-page: 30
  year: 2012
  ident: 10.1016/j.scienta.2020.109508_bib0245
  article-title: Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.03952.x
– volume: 64
  start-page: 555
  year: 1999
  ident: 10.1016/j.scienta.2020.109508_bib0340
  article-title: The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals
  publication-title: Food Chem.
  doi: 10.1016/S0308-8146(98)00102-2
– volume: 135
  start-page: 45
  year: 2012
  ident: 10.1016/j.scienta.2020.109508_bib0085
  article-title: Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2011.12.004
– volume: 907
  start-page: 87
  year: 2011
  ident: 10.1016/j.scienta.2020.109508_bib0345
  article-title: Effect of supplementary pre-harvest LED lighting on the antioxidant properties of lettuce cultivars
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2011.907.8
– volume: 55
  start-page: 5156
  year: 2007
  ident: 10.1016/j.scienta.2020.109508_bib0005
  article-title: Polyphenol composition and antioxidant activity in strawberry purees; impact of achene level and storage
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf070467u
– volume: 956
  start-page: 171
  year: 2012
  ident: 10.1016/j.scienta.2020.109508_bib0300
  article-title: Light-emitting diodes: on the way to combinatorial lighting technologies for basic research and crop production
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2012.956.17
– volume: 44
  start-page: 1857
  year: 2009
  ident: 10.1016/j.scienta.2020.109508_bib0265
  article-title: Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator
  publication-title: HortScience
  doi: 10.21273/HORTSCI.44.7.1857
– start-page: 281
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0115
  article-title: Optimizing plant factory performance for local requirements
– volume: 9
  start-page: 224
  year: 2019
  ident: 10.1016/j.scienta.2020.109508_bib0195
  article-title: Optimization of photosynthetic photon flux density and root-zone temperature for enhancing secondary metabolite accumulation and production of coriander in plant factory
  publication-title: Agronomy
  doi: 10.3390/agronomy9050224
SSID ssj0001149
Score 2.6043918
Snippet •Optimal LED light intensity for lettuce and basil indoor growing is addressed;•Maximum yield and leaf area is achieved at 250 μmol m-2 s-1;•250 μmol m-2 s-1...
Indoor plant cultivation systems are gaining increasing popularity because of their ability to meet the needs of producing food in unfavourable climatic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109508
SubjectTerms antioxidant activity
basil
biomass production
blue light
carbon dioxide
Daily Light Integral (DLI)
electricity
energy
Energy Use Efficiency (EUE)
flavonoids
Lactuca sativa
lettuce
light intensity
Light Use Efficiency (LUE)
Ocimum basilicum
phenolic compounds
photons
photosynthesis
Photosynthetic Photon Flux Density (PPFD)
plant development
Plant factory with artificial lighting (PFALs)
stomatal conductance
water use efficiency
Water Use Efficiency (WUE)
Title Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs
URI https://dx.doi.org/10.1016/j.scienta.2020.109508
https://www.proquest.com/docview/2540496415
Volume 272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTwWt31-4kaY-LD9b3QQVvIW0TWVm70u0iXvSvO9OmLoogCL20TELJJPPNkPlmGDtwHZM5FcdBloELIO5AgCgHAaJPR7lIdQUQG_nqWvbv4fxBPMywo4YLQ2mV3vbXNr2y1v5L269m-2UwaN_SpR46AwhhaIa7kgi_AIp2eet9muaB_n5c3yRAQNJTFk_7qeVJhxgmhlVhJUFdJn_Hpx-WuoKf0yW26P1G3qt_bZnN2HyFLfQeC187w66yjxs8_s8oNKSAmw_q5PTyjaNfysdTohR_Rf-y4CbPuK2Yf3wytiiOTzZCUZrQ9zzjI8dRsSXqv5JHzBsMOfHOCl7YrP42nFh-eXI8XmP3pyd3R_3A91cIUhCiDEKlhAiTFA4NJGAh6SQZHuckM9RmKhJxaKJY4qGVBlSSGikja13qQIbOKvQr1tlsPsrtBuOoWSkR2RyCHYiuiePQGUXEYAy_E9vdZNCsqk598XHqgTHUTZbZk_bK0KQMXStjk7W-hr3U1Tf-GhA1KtPftpFGhPhr6H6jYo1HjO5NTG5Hk7HGGBrjKImuztb_p99m8_RGsHcodthsWUzsLvozZbJXbdg9Ntc7u-hffwJ3aPWP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PqgP4id-G8HX7qNL0vZxqGPTbT6o4FtI20Q6Ziddh_jkv-6lTR2KIAh9Su9KySX3uyP53QFc6KaMtRcEThxT7dCgSR1EOeog-jQ97XttRg0beTjivUd688SeluCy4sKYa5XW95c-vfDWdqRhZ7PxmiSNe3Ooh8EAQhi64Tb3l2HFVKdiNVjp9G97oy-HjCF_UB4mUMcoLIg8jXHd8g4xU3SL2krMNJr8HaJ-OOsCgbqbsGFDR9Ip_24LllS6Deud58yWz1A78HGHHuAFhSYm5yZJeT89fycYmpLZgitF3jDEzIhMY6IK8h-ZzxSK4xNPUdR80LY9I1NN0LY5LoFCHmEvmRBDPctIpuJybDJXZHB9NduFx-71w2XPsS0WnIgyljuu5zHmhhFtSRpSRcNmGOOODmNpOk35LHClH3Dct1xSL4wk575SOtKUu1p5GFrsQS2dpmofCBqXcwQ3jXhHWVsGgaulZ7jBmIGHqn0AtJpVEdn646YNxkRUF83GwhpDGGOI0hgHUP9Sey0LcPyl4FcmE99WkkCQ-Ev1vDKxwF1mjk5kqqbzmcA0GlMpjtHO4f8_fwarvYfhQAz6o9sjWDNvDAq22DHU8myuTjC8ycNTu3w_Ad4j-EA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+light+intensity+for+sustainable+water+and+energy+use+in+indoor+cultivation+of+lettuce+and+basil+under+red+and+blue+LEDs&rft.jtitle=Scientia+horticulturae&rft.au=Pennisi%2C+Giuseppina&rft.au=Pistillo%2C+Alessandro&rft.au=Orsini%2C+Francesco&rft.au=Cellini%2C+A.+%28Antonio%29&rft.date=2020-10-15&rft.issn=0304-4238&rft.volume=272+p.109508-&rft_id=info:doi/10.1016%2Fj.scienta.2020.109508&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4238&client=summon