Nano-Catalysts in Ozone-Based Advanced Oxidation Processes for Wastewater Treatment
Purpose of Review Pollution is now being varied with huge contaminants in wastewater especially with kind of recalcitrants that are emerging pollutants needed new advanced resolutions to mineralize them completely. Thus, the investigation of technology and technique processes is very important for r...
Saved in:
Published in | Current pollution reports Vol. 6; no. 3; pp. 217 - 229 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose of Review
Pollution is now being varied with huge contaminants in wastewater especially with kind of recalcitrants that are emerging pollutants needed new advanced resolutions to mineralize them completely. Thus, the investigation of technology and technique processes is very important for research and development. Moreover, these manual, research, and application of the advanced oxidation processes especially using ozone for water and wastewater are concentrated and appreciated in over the world. Recently, nanoparticles have researched into subjects to enhance new, advanced technology for many domains such as environment, biology, agriculture, and medicine. Hence, the purpose of this review is to summarize the important role of nano-particulars as nano-catalysts in ozone-based advanced oxidation processes for wastewater treatment and evaluate how to contribute into ozone-based advance oxidation processes by nano-catalysts for wastewater treatment.
Recent Findings
The advanced oxidation processes (AOPs) for wastewater treatment nowadays are being appreciated in the twenty-first century when economy development day by day is concentrated extremely in industry, agriculture, and pharmacy leading to various pollutants in the environment. According to these developments, amount of various contaminants is discharged in wastewater; thus, investigation of advance technology based on nano-catalysts combining the ozonation will meet the demands for wastewater treatment.
Summary
This review found potentials and prospects of nano-catalysts applied in the catalytic ozonation process for wastewater treatment. Efficiency of some well-known nano-catalysts with analytical properties for catalytic ozonation is also evaluated. Mechanisms of this process are identified to easily approach the catalytic ozonation using nano-materials for wastewater treatment in the future. |
---|---|
AbstractList | Purpose of ReviewPollution is now being varied with huge contaminants in wastewater especially with kind of recalcitrants that are emerging pollutants needed new advanced resolutions to mineralize them completely. Thus, the investigation of technology and technique processes is very important for research and development. Moreover, these manual, research, and application of the advanced oxidation processes especially using ozone for water and wastewater are concentrated and appreciated in over the world. Recently, nanoparticles have researched into subjects to enhance new, advanced technology for many domains such as environment, biology, agriculture, and medicine. Hence, the purpose of this review is to summarize the important role of nano-particulars as nano-catalysts in ozone-based advanced oxidation processes for wastewater treatment and evaluate how to contribute into ozone-based advance oxidation processes by nano-catalysts for wastewater treatment.Recent FindingsThe advanced oxidation processes (AOPs) for wastewater treatment nowadays are being appreciated in the twenty-first century when economy development day by day is concentrated extremely in industry, agriculture, and pharmacy leading to various pollutants in the environment. According to these developments, amount of various contaminants is discharged in wastewater; thus, investigation of advance technology based on nano-catalysts combining the ozonation will meet the demands for wastewater treatment.SummaryThis review found potentials and prospects of nano-catalysts applied in the catalytic ozonation process for wastewater treatment. Efficiency of some well-known nano-catalysts with analytical properties for catalytic ozonation is also evaluated. Mechanisms of this process are identified to easily approach the catalytic ozonation using nano-materials for wastewater treatment in the future. PURPOSE OF REVIEW: Pollution is now being varied with huge contaminants in wastewater especially with kind of recalcitrants that are emerging pollutants needed new advanced resolutions to mineralize them completely. Thus, the investigation of technology and technique processes is very important for research and development. Moreover, these manual, research, and application of the advanced oxidation processes especially using ozone for water and wastewater are concentrated and appreciated in over the world. Recently, nanoparticles have researched into subjects to enhance new, advanced technology for many domains such as environment, biology, agriculture, and medicine. Hence, the purpose of this review is to summarize the important role of nano-particulars as nano-catalysts in ozone-based advanced oxidation processes for wastewater treatment and evaluate how to contribute into ozone-based advance oxidation processes by nano-catalysts for wastewater treatment. RECENT FINDINGS: The advanced oxidation processes (AOPs) for wastewater treatment nowadays are being appreciated in the twenty-first century when economy development day by day is concentrated extremely in industry, agriculture, and pharmacy leading to various pollutants in the environment. According to these developments, amount of various contaminants is discharged in wastewater; thus, investigation of advance technology based on nano-catalysts combining the ozonation will meet the demands for wastewater treatment. This review found potentials and prospects of nano-catalysts applied in the catalytic ozonation process for wastewater treatment. Efficiency of some well-known nano-catalysts with analytical properties for catalytic ozonation is also evaluated. Mechanisms of this process are identified to easily approach the catalytic ozonation using nano-materials for wastewater treatment in the future. Purpose of Review Pollution is now being varied with huge contaminants in wastewater especially with kind of recalcitrants that are emerging pollutants needed new advanced resolutions to mineralize them completely. Thus, the investigation of technology and technique processes is very important for research and development. Moreover, these manual, research, and application of the advanced oxidation processes especially using ozone for water and wastewater are concentrated and appreciated in over the world. Recently, nanoparticles have researched into subjects to enhance new, advanced technology for many domains such as environment, biology, agriculture, and medicine. Hence, the purpose of this review is to summarize the important role of nano-particulars as nano-catalysts in ozone-based advanced oxidation processes for wastewater treatment and evaluate how to contribute into ozone-based advance oxidation processes by nano-catalysts for wastewater treatment. Recent Findings The advanced oxidation processes (AOPs) for wastewater treatment nowadays are being appreciated in the twenty-first century when economy development day by day is concentrated extremely in industry, agriculture, and pharmacy leading to various pollutants in the environment. According to these developments, amount of various contaminants is discharged in wastewater; thus, investigation of advance technology based on nano-catalysts combining the ozonation will meet the demands for wastewater treatment. Summary This review found potentials and prospects of nano-catalysts applied in the catalytic ozonation process for wastewater treatment. Efficiency of some well-known nano-catalysts with analytical properties for catalytic ozonation is also evaluated. Mechanisms of this process are identified to easily approach the catalytic ozonation using nano-materials for wastewater treatment in the future. |
Author | Dang, Thi Thom Trinh, Van Tuyen Do, Van Manh |
Author_xml | – sequence: 1 givenname: Thi Thom surname: Dang fullname: Dang, Thi Thom email: thomdt@ietvn.vn organization: Institute of Environmental Technology, Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology – sequence: 2 givenname: Van Manh surname: Do fullname: Do, Van Manh organization: Institute of Environmental Technology, Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology – sequence: 3 givenname: Van Tuyen surname: Trinh fullname: Trinh, Van Tuyen organization: Institute of Environmental Technology, Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology |
BookMark | eNp9kE1LAzEURYMoqNU_4GrAjZtovjOz1OIXFCtYcRkyMxkZmSaal6r11xutoLjoKi9w7n2Ps4s2ffAOoQNKjikh-gQE0UxhwggmhAqN-QbaYbQqsZIV2_wzb6N9gCdCMiryX--guxvrAx7bZIclJCh6X0w_cj0-s-Da4rR9tb7Jw_S9b23qgy9uY2gcgIOiC7F4sJDcm00uFrPobJo7n_bQVmcHcPs_7wjdX5zPxld4Mr28Hp9OcCOkTJiJlpRc112raEUZVbWoW1nWmpeKOtUKrZWkXVsq2TSu0ox3UktaEVV3TNuOj9DRqvc5hpeFg2TmPTRuGKx3YQGGSSYYU4LyjB7-Q5_CIvp8nWEVL5lQnLBMsRXVxAAQXWeeYz-3cWkoMV-qzUq1yf7Mt2rzVV3-CzV9-laVou2H9VG-ikLe4x9d_L1qTeoTECuTNQ |
CitedBy_id | crossref_primary_10_1016_j_dwt_2024_100047 crossref_primary_10_3390_catal13091315 crossref_primary_10_3390_pr11051345 crossref_primary_10_1016_j_dwt_2024_100387 crossref_primary_10_1016_j_envres_2022_114652 crossref_primary_10_1016_j_jwpe_2023_104392 crossref_primary_10_3390_pr9061013 crossref_primary_10_1016_j_clwat_2024_100018 crossref_primary_10_1007_s11270_024_07130_4 crossref_primary_10_1080_15421406_2021_1905287 crossref_primary_10_3390_pr12081596 crossref_primary_10_1016_j_apcatb_2023_122924 crossref_primary_10_1016_j_colsurfa_2024_135336 crossref_primary_10_3103_S0027131422040046 crossref_primary_10_1002_jctb_7529 crossref_primary_10_1016_j_chemosphere_2022_134031 crossref_primary_10_11648_j_wros_20241305_12 crossref_primary_10_1061_JHTRBP_HZENG_1313 crossref_primary_10_3390_catal15010023 crossref_primary_10_1016_j_dwt_2024_100394 crossref_primary_10_1016_j_scitotenv_2023_163233 crossref_primary_10_1016_j_ceramint_2024_01_086 crossref_primary_10_1016_j_chemosphere_2023_138666 crossref_primary_10_1016_j_jece_2021_105758 crossref_primary_10_1016_j_jece_2022_107319 |
Cites_doi | 10.1002/adma.200601822 10.1016/j.jhazmat.2009.05.113 10.1039/C7RA07553G 10.1002/adma.200502696 10.1021/es702926q 10.1016/j.cej.2015.12.051 10.1155/2014/825910 10.1039/C9EN00204A 10.1039/C9RA00320G 10.1016/j.molcata.2006.09.010 10.1063/1.5558050 10.1080/01919512.2018.1435110 10.1016/j.jhazmat.2008.04.075 10.1021/es803125h 10.1016/S0926-3373(03)00326-6 10.1063/1674-0068/cjcp19030622 10.4491/eer.2018.322 10.4209/aaqr.2018.05.0156 10.1080/01919510008547213 10.1021/jp711463e 10.1016/j.colsurfa.2005.01.031 10.1016/0043-1354(83)90098-2 10.1016/j.chemosphere.2008.02.037 10.1016/S0043-1354(03)00269-0 10.1155/2012/696418 10.1016/j.apcatb.2010.03.036 10.1021/ar300029v 10.1021/es00104a009 10.1021/es00029a021 10.4172/1662-100X.1000113 10.5004/dwt.2019.24016 10.1016/S0040-6090(01)01509-7 10.1016/j.jtice.2018.06.030 10.1016/j.seppur.2008.03.002 10.1080/01919510590925239 10.1016/j.catcom.2007.01.016 10.1080/09593330.2019.1640800 10.1080/10643380701628933 10.1186/s40543-019-0185-1 10.1016/j.seppur.2019.05.048 10.1021/bk-2015-1206.ch018 10.1134/S0036024415060205 10.4172/2161-0525.1000150 10.3390/catal9030241 10.1016/j.seppur.2019.115961 10.1016/S0920-5861(99)00103-0 10.1039/C9RA10095D 10.1201/9781420061345 10.1016/S1452-3981(23)14695-5 10.1039/C5CY00315F 10.1016/j.eti.2020.100670 10.1016/j.jhazmat.2008.05.115 10.1155/2019/4376429 10.30955/gnj.000598 10.1016/j.cep.2016.08.016 10.1080/01919512.1993.10555733 10.3906/muh-1005-6 10.1007/s11051-005-7523-5 10.1016/j.cej.2007.07.100 10.1016/j.apcatb.2010.06.033 10.1155/2016/4964828 10.1016/j.desal.2010.05.016 10.1016/j.jenvman.2016.04.034 10.1080/03601234.2018.1530549 10.1080/01919518708552148 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2020 Springer Nature Switzerland AG 2020. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: Springer Nature Switzerland AG 2020. |
DBID | AAYXX CITATION 8FE 8FH AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 7S9 L.6 |
DOI | 10.1007/s40726-020-00147-3 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central Environmental Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Central Student AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture Medicine |
EISSN | 2198-6592 |
EndPage | 229 |
ExternalDocumentID | 10_1007_s40726_020_00147_3 |
GroupedDBID | -EM 0R~ 203 406 AAAVM AACDK AAHBH AAHNG AAIAL AAJBT AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATCPS AUKKA AVXWI AXYYD BBNVY BENPR BGNMA BHPHI CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HCIFZ HG6 HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y M7P NPVJJ NQJWS NU0 O9J PATMY PT4 PYCSY RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW Z5O Z7Y ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FH ABRTQ AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c455t-24d0837bfd6191216b4bd58b73861e6d477651fd865cce9723f5751906bf27af3 |
IEDL.DBID | BENPR |
ISSN | 2198-6592 |
IngestDate | Sun Aug 24 03:50:16 EDT 2025 Fri Jul 25 10:58:36 EDT 2025 Tue Jul 01 02:44:58 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Fri Feb 21 02:42:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Treatment Catalytic ozonation Wastewater Contaminants Nano-catalyst AOPs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-24d0837bfd6191216b4bd58b73861e6d477651fd865cce9723f5751906bf27af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2938246302 |
PQPubID | 2044259 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2524226413 proquest_journals_2938246302 crossref_primary_10_1007_s40726_020_00147_3 crossref_citationtrail_10_1007_s40726_020_00147_3 springer_journals_10_1007_s40726_020_00147_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Current pollution reports |
PublicationTitleAbbrev | Curr Pollution Rep |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | KhataeeARVatanpourVAmani GhadimARDecolorization of C.I. acid blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative studyJ Hazard Mater2009161122512331:CAS:528:DC%2BD1cXhsVSqsbvO10.1016/j.jhazmat.2008.04.075 SobanaNSelvamKSwaminathanMOptimization of photocatalytic degradation conditions of direct red 23 using nano-Ag doped TiO2Sep Purif Technol2008626486531:CAS:528:DC%2BD1cXptlelsrg%3D10.1016/j.seppur.2008.03.002 FontanierVFarinesVAlbetJBaigSMolinierJOxidation of organic pollutants of water to mineralization by catalytic ozonationOzone Sci Eng2005271151281:CAS:528:DC%2BD2MXksFamu70%3D10.1080/01919510590925239 WangBZhangHWangFXiongXTianKSunYYuTApplication of heterogeneous catalytic ozonation for refractory organics in wastewaterCatalysts201992411:CAS:528:DC%2BC1MXotlGju7k%3D10.3390/catal9030241 AlinejadAAkbariHGhaderpooriMJeihooniAKAdibzadehACatalytic ozonation process using a MgO nano-catalyst to degrade methotrexate from aqueous solutions and cytotoxicity studies in human lung epithelial cells (A549) after treatmentRSC Adv20199820482141:CAS:528:DC%2BC1MXks12mtr8%3D10.1039/C9RA00320G AllemaneHDelouaneBPaillardHLegubeBComparative efficiency of three systems (O3, O3/H2O2, and O3/TiO2) for the oxidation of natural organic matter in waterOzone Sci Eng1993154194321:CAS:528:DyaK2cXisl2lu78%3D10.1080/01919512.1993.10555733 AsgariGSeidmohammadiAEsrafiliAFaradmalJNoori SepehrMJafariniaMThe catalytic ozonation of diazinon using nano-MgO@CNT@Gr as a new heterogenous catalyst: the optimization of effective factors by response surface methodologyRSC Adv202010771877311:CAS:528:DC%2BB3cXktFSqt7g%3D10.1039/C9RA10095D BethiBSonawaneSHBhanvaseBAGumfekarSPNanomaterials-based advanced oxidation processes for wastewater treatment: a reviewChem Eng Process Process Intensif20161091781891:CAS:528:DC%2BC28XhsF2gtrvI10.1016/j.cep.2016.08.016 StasinakisASUse of selected advanced oxidation processes (AOPs) for wastewater treatment - a mini reviewGlob NEST J20081037638510.30955/gnj.000598 Naumann RJ. Introduction to the physics and chemistry of materials: CRC Press; 2008. MunterRAdvanced oxidation processes–current status and prospectsProc Est Acad Sci Chem20015059801:CAS:528:DC%2BD3MXltlaktbc%3D H Navon D (1975) Electronic materials and devices by David H. Navon: Fair (1975). https://www.abebooks.co.uk/Electronic-Materials-Devices-David-H-Navon/12452268774/bd. AlverABasturkERemoval of aspartame by catalytic ozonation by nano-TiO2 coated pumiceDesalination Water Treat20191522682751:CAS:528:DC%2BC1MXit1agsLrO10.5004/dwt.2019.24016 Chun Hu, Shengtao Xing, Jiuhui Qu and, He H. Catalytic ozonation of herbicide 2,4-D over cobalt oxide supported on mesoporous zirconia. 2008. https://pubs.acs.org/doi/pdf/10.1021/jp711463e. Accessed 17 Mar 2020. StaehelinJHoigneJDecomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxideEnviron Sci Technol1982166766811:CAS:528:DyaL38XltFGjtbc%3D10.1021/es00104a009 MehrizadAGharbaniPRemoval of methylene blue from aqueous solution using Nano-TiO2/UV process: optimization by response surface methodologyProg Color Colorants Coat201691351431:CAS:528:DC%2BC2sXhvFagtbnE ChengS-WLiY-HYuanC-STsaiPYShenHZHungCHAn innovative advanced oxidation Technology for Effective decomposition of formaldehyde by combining Iron modified nano-TiO2 (Fe/TiO2) photocatalytic degradation with ozone oxidationAerosol Air Qual Res201818322032331:CAS:528:DC%2BC1MXhvVGjtbnF10.4209/aaqr.2018.05.0156 BiardP-FWerghiBSoutrelIOrhandRCouvertADenicourt-NowickiARoucouxAEfficient catalytic ozonation by ruthenium nanoparticles supported on SiO 2 or TiO 2 : towards the use of a non-woven fiber paper as original supportChem Eng J20162893743811:CAS:528:DC%2BC2MXitV2ku73L10.1016/j.cej.2015.12.051 NawrockiJKasprzyk-HordernBThe efficiency and mechanisms of catalytic ozonationAppl Catal B Environ20109927421:CAS:528:DC%2BC3cXhtVGmt7fE10.1016/j.apcatb.2010.06.033 MoussaviGKhavaninAAlizadehRThe investigation of catalytic ozonation and integrated catalytic ozonation/biological processes for the removal of phenol from saline wastewatersJ Hazard Mater20091711751811:CAS:528:DC%2BD1MXhtFOrurvF10.1016/j.jhazmat.2009.05.113 BachAZach-MaorASemiatRCharacterization of iron oxide nanocatalyst in mineralization processesDesalination201026215201:CAS:528:DC%2BC3cXhtFWnsbrJ10.1016/j.desal.2010.05.016 Zhu Y, et al. Study on catalytic ozone oxidation with Nano-TiO2 modified membrane for treatment of municipal wastewater. J Biomim Biomater Tissue Eng. 2013. https://doi.org/10.4172/1662-100X.1000113. Bidhendi GRN, Hoveidi H, Jafari HR, et al. Application of ozonation in drinking water disinfection based on an environmental management strategy approach using swot method. Iranian Journal of Environmental Health Science and Engineering. 2006;3(1). QuXBrameJLiQAlvarezPJJNanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuseAcc Chem Res2013468348431:CAS:528:DC%2BC38Xpt1Chtrs%3D10.1021/ar300029v AksuSKErSGCInvestigations on solar degradation of acid orange 7 (C.I. 15510) in textile wastewater with micro- and nanosized titanium dioxideTurkish J Eng Env Sci20103420102752791:CAS:528:DC%2BC3MXkvVKju7g%3D10.3906/muh-1005-6 WangJQuanXChenSYuHChenYPerforming homogeneous catalytic ozonation using heterogeneous Mn2+−bonded oxidized carbon nanotubes by self-driven pH variation induced reversible desorption and adsorption of Mn2+Environ Sci Nano20196193219401:CAS:528:DC%2BC1MXptFWlsbg%3D10.1039/C9EN00204A BuxtonGCritical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ·OH/·O− in aqueous solutionJ Phys Chem Ref Data1988175138861:CAS:528:DyaL1cXlvFyisLc%3D10.1063/1.5558050 KwonSFanMCooperATYangHPhotocatalytic applications of micro- and Nano-TiO 2 in environmental engineeringCrit Rev Environ Sci Technol2008381972261:CAS:528:DC%2BD1cXivVehtrs%3D10.1080/10643380701628933 Bahrami-asl F, Kermani M, Salahshour-Arian S, et al. Catalytic ozonation of azo dye reactive red 120 in the presence of MgO nanoparticles. J Health Field. 2017;2. Hammad KhanMJungJYOzonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phaseChemosphere2008726906961:CAS:528:DC%2BD1cXmsVags7c%3D10.1016/j.chemosphere.2008.02.037 SavageNDialloMSNanomaterials and water purification: opportunities and challengesJ Nanopart Res200573313421:CAS:528:DC%2BD2MXpsFWhsLw%3D10.1007/s11051-005-7523-5 LiottaLFGruttadauriaMDi CarloGHeterogeneous catalytic degradation of phenolic substrates: catalysts activityJ Hazard Mater20091625886061:CAS:528:DC%2BD1cXhsFWrsb3L10.1016/j.jhazmat.2008.05.115 RafieeMBashiriHKinetic Monte Carlo simulation of 4-nitrophenol ozonation in the presence of ZnO nanocatalystRuss J Phys Chem A2015899829861:CAS:528:DC%2BC2MXotlKltro%3D10.1134/S0036024415060205 DongYHeKZhaoBYinYYinLZhangACatalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral bruciteCatal Commun20078159916031:CAS:528:DC%2BD2sXhtVOlsr7O10.1016/j.catcom.2007.01.016 Amin MT, Alazba AA, Manzoor U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. In: Adv. Mater. Sci. Eng. 2014. https://www.hindawi.com/journals/amse/2014/825910 I. Gersten J, W.Smith F (2001) The physics and chemistry of materials | Wiley. In: Wiley.com. https://www.wiley.com/en-us/The Physics and Chemistry of Materials-p-9780471057949. RamanCDKanmaniSTextile dye degradation using nano zero valent iron: a reviewJ Environ Manag20161773413551:CAS:528:DC%2BC28XmvFyksr0%3D10.1016/j.jenvman.2016.04.034 HuangW-JFangG-CWangC-CA nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in waterColloids Surf Physicochem Eng Asp200526045511:CAS:528:DC%2BD2MXltlaisrk%3D10.1016/j.colsurfa.2005.01.031 VanHTNguyenLHHoangTKHeterogeneous Fenton oxidation of paracetamol in aqueous solution using iron slag as a catalyst: degradation mechanisms and kineticsEnviron Technol Innov20201810067010.1016/j.eti.2020.100670 MondalKSharmaAPhotocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials – a mini-review2014 GlazeWHKangJ-WChapinDHThe chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiationOzone Sci Eng198793353521:CAS:528:DyaL1cXotFOgtA%3D%3D10.1080/01919518708552148 Tabatabaei SM, Dastmalchi S, Mehrizad A, Gharbani P. Enhancement of 4-nitrophenol ozonation in water by nano ZnO catalyst. Iran. J. Environ. Health. Sci. Eng. 2011;8(4). Bahrami-aslFKermaniMSalahshour-ArianSCatalytic ozonation of azo dye reactive red 120 in the presence of MgO nanoparticlesJ Health Field201722Summer 2014 LekotaMWDimpeKMNomngongoPNMgO-ZnO/carbon nanofiber nanocomposite as an adsorbent for ultrasound-assisted dispersive solid-phase microextraction of carbamazepine from wastewater prior to high-performance liquid chromatographic detectionJ Anal Sci Technol201910251:CAS:528:DC%2BC1MXht12jtbbE10.1186/s40543-019-0185-1 WangBXiongXRenHHuangZPreparation of MgO nanocrystals and catalytic mechanism on phenol ozonationRSC Adv2017743464434731:CAS:528:DC%2BC2sXhsVGkurvK10.1039/C7RA07553G LiLZhuWZhangPChenZHanWPhotocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheetWater Res200337364636511:CAS:528:DC%2BD3sXltlGjsL8%3D10.1016/S0043-1354(03)00269-0 NdabankuluVOMaddilaSJonnalagaddaSBOzone facilitated degradation of caffeine using Ce-TiO2 catalystJ Environ Sci Health B2019541381461:CAS:528:DC%2BC1MXhtF2h10.1080/03601234.2018.1530549 YangYMaJQinQZhaiXDegradation of nitrobenzene by nano-TiO2 catalyzed ozonationJ Mol Catal Chem200726741481:CAS:528:DC%2BD2sXjsVOisLc%3D10.1016/j.molcata.2006.09.010 McGuinnessNBGarveyMWhelanAAhujaSde AndradeJBDionysiouDDNanotechnology solutions for global water challengesWater challenges and solutions on a global scale2015Washington, DCAmerican Chemical Society37541110.1021/bk-2015-1206.ch018 HaagWRYaoCCDRate constants for reaction of R Rajeswari (147_CR26) 2009; 6 Y Guo (147_CR74) 2012; 2 H Einaga (147_CR72) 2015; 5 B Bethi (147_CR54) 2016; 109 L Zhao (147_CR36) 2008; 42 147_CR48 WH Glaze (147_CR15) 1987; 9 MW Lekota (147_CR2) 2019; 10 J Staehelin (147_CR21) 1982; 16 DV Bavykin (147_CR66) 2006; 18 NT Hien (147_CR28) 2020; 233 M Hammad Khan (147_CR33) 2008; 72 S Shafieiyoun (147_CR62) 2011 S Shokrollahzadeh (147_CR57) 2018; 24 A Alver (147_CR69) 2019; 152 N Sobana (147_CR61) 2008; 62 B Legube (147_CR7) 1999; 53 S Mahadik (147_CR3) 2017; 7 W-J Huang (147_CR42) 2005; 260 B Kasprzyk-Hordern (147_CR79) 2003; 46 T Mizuno (147_CR14) 2018; 40 147_CR50 147_CR11 147_CR56 J Hoigné (147_CR22) 1983; 17 WR Haag (147_CR23) 1992; 26 G Moussavi (147_CR46) 2010; 97 147_CR59 A Bach (147_CR47) 2010; 262 S-W Cheng (147_CR4) 2018; 18 VO Ndabankulu (147_CR5) 2019; 54 H Allemane (147_CR68) 1993; 15 HT Van (147_CR29) 2020; 18 G Buxton (147_CR78) 1988; 17 AS Stasinakis (147_CR12) 2008; 10 F Bahrami-asl (147_CR73) 2017; 2 MT Amin (147_CR41) 2014; 2014 V Fontanier (147_CR8) 2005; 27 X Qu (147_CR39) 2013; 46 147_CR20 JL Acero (147_CR24) 2000; 22 147_CR64 L Li (147_CR71) 2003; 37 G Moussavi (147_CR10) 2009; 171 A Mehrizad (147_CR60) 2016; 9 J Wang (147_CR77) 2019; 6 147_CR25 LF Liotta (147_CR35) 2009; 162 M Koelsch (147_CR67) 2002; 403-404 147_CR19 N Savage (147_CR6) 2005; 7 M Rafiee (147_CR51) 2015; 89 L Qi (147_CR70) 2013; 8 147_CR17 147_CR18 CD Raman (147_CR53) 2016; 177 147_CR1 G Asgari (147_CR37) 2020; 10 HT Van (147_CR30) 2019; 224 F Iskandar (147_CR65) 2007; 19 R Munter (147_CR13) 2001; 50 F Erol (147_CR32) 2008; 139 S Kwon (147_CR44) 2008; 38 A Alinejad (147_CR58) 2019; 9 P-F Biard (147_CR52) 2016; 289 NB McGuinness (147_CR40) 2015 147_CR34 SS Sable (147_CR80) 2018; 91 147_CR75 SM Tabatabaei (147_CR49) 2012; 9 B Wang (147_CR55) 2017; 7 147_CR38 K Mondal (147_CR16) 2014 SK Aksu (147_CR63) 2010; 34 Y Yang (147_CR43) 2007; 267 AR Khataee (147_CR45) 2009; 161 B Wang (147_CR76) 2019; 9 L Zhao (147_CR9) 2009; 43 J Nawrocki (147_CR27) 2010; 99 Y Dong (147_CR31) 2007; 8 |
References_xml | – reference: MondalKSharmaAPhotocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials – a mini-review2014 – reference: SobanaNSelvamKSwaminathanMOptimization of photocatalytic degradation conditions of direct red 23 using nano-Ag doped TiO2Sep Purif Technol2008626486531:CAS:528:DC%2BD1cXptlelsrg%3D10.1016/j.seppur.2008.03.002 – reference: H Navon D (1975) Electronic materials and devices by David H. Navon: Fair (1975). https://www.abebooks.co.uk/Electronic-Materials-Devices-David-H-Navon/12452268774/bd. – reference: LekotaMWDimpeKMNomngongoPNMgO-ZnO/carbon nanofiber nanocomposite as an adsorbent for ultrasound-assisted dispersive solid-phase microextraction of carbamazepine from wastewater prior to high-performance liquid chromatographic detectionJ Anal Sci Technol201910251:CAS:528:DC%2BC1MXht12jtbbE10.1186/s40543-019-0185-1 – reference: DongYHeKZhaoBYinYYinLZhangACatalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral bruciteCatal Commun20078159916031:CAS:528:DC%2BD2sXhtVOlsr7O10.1016/j.catcom.2007.01.016 – reference: LiLZhuWZhangPChenZHanWPhotocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheetWater Res200337364636511:CAS:528:DC%2BD3sXltlGjsL8%3D10.1016/S0043-1354(03)00269-0 – reference: HuangW-JFangG-CWangC-CA nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in waterColloids Surf Physicochem Eng Asp200526045511:CAS:528:DC%2BD2MXltlaisrk%3D10.1016/j.colsurfa.2005.01.031 – reference: Hammad KhanMJungJYOzonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phaseChemosphere2008726906961:CAS:528:DC%2BD1cXmsVags7c%3D10.1016/j.chemosphere.2008.02.037 – reference: I. Gersten J, W.Smith F (2001) The physics and chemistry of materials | Wiley. In: Wiley.com. https://www.wiley.com/en-us/The Physics and Chemistry of Materials-p-9780471057949. – reference: McGuinnessNBGarveyMWhelanAAhujaSde AndradeJBDionysiouDDNanotechnology solutions for global water challengesWater challenges and solutions on a global scale2015Washington, DCAmerican Chemical Society37541110.1021/bk-2015-1206.ch018 – reference: Naumann RJ. Introduction to the physics and chemistry of materials: CRC Press; 2008. – reference: Tabatabaei SM, Dastmalchi S, Mehrizad A, Gharbani P. Enhancement of 4-nitrophenol ozonation in water by nano ZnO catalyst. Iran. J. Environ. Health. Sci. Eng. 2011;8(4). – reference: Yang Y, et al. Surface modification of (001) facets dominated TiO2 with ozone for adsorption and photocatalytic degradation of gaseous toluene. Chin J Chem Phys. 2019. https://doi.org/10.1063/1674-0068/cjcp19030622. – reference: BuxtonGCritical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ·OH/·O− in aqueous solutionJ Phys Chem Ref Data1988175138861:CAS:528:DyaL1cXlvFyisLc%3D10.1063/1.5558050 – reference: Kittel. Introduction to solid state physics, 7th edit: Wiley India Pvt. Limited; 2007. – reference: WangBXiongXRenHHuangZPreparation of MgO nanocrystals and catalytic mechanism on phenol ozonationRSC Adv2017743464434731:CAS:528:DC%2BC2sXhsVGkurvK10.1039/C7RA07553G – reference: QiLDegradation of 4-chlorophenol by catalytic ozonation using γ-Al2O3/TiO2 supportedmanaganese oxides in aqueous solutionInt J Electrochem Sci20138545754681:CAS:528:DC%2BC3sXms12rsL4%3D – reference: KoelschMCassaignonSGuillemolesJFJolivetJPComparison of optical and electrochemical properties of anatase and brookite Tio2 synthesized by the sol–gel methodThin Solid Films2002403-4043123191:CAS:528:DC%2BD38XotFOltQ%3D%3D10.1016/S0040-6090(01)01509-7 – reference: RajeswariRKanmaniSTiO2-based heterogeneous photocatalytic treatment combined with ozonation for carbendazim degradationIran J Environ Health Sci Eng20096261661:CAS:528:DC%2BD1MXpvF2gs7g%3D – reference: BachAZach-MaorASemiatRCharacterization of iron oxide nanocatalyst in mineralization processesDesalination201026215201:CAS:528:DC%2BC3cXhtFWnsbrJ10.1016/j.desal.2010.05.016 – reference: Cloete TE, et al. Nanotechnology in water treatment applications: Caister Academic Press Press; 2010. – reference: Bahrami-aslFKermaniMSalahshour-ArianSCatalytic ozonation of azo dye reactive red 120 in the presence of MgO nanoparticlesJ Health Field201722Summer 2014 – reference: Bidhendi GRN, Hoveidi H, Jafari HR, et al. Application of ozonation in drinking water disinfection based on an environmental management strategy approach using swot method. Iranian Journal of Environmental Health Science and Engineering. 2006;3(1). – reference: Duong THY, Nguyen TN, Oanh HT, et al. Synthesis of magnesium oxide nanoplates and their application in nitrogen dioxide and sulfur dioxide adsorption. In: J. Chem. 2019. https://www.hindawi.com/journals/jchem/2019/4376429/. – reference: EinagaHMaedaNNagaiYComparison of catalytic properties of supported metal oxides for benzene oxidation using ozoneCatal Sci Technol20155314731581:CAS:528:DC%2BC2MXlt1Chsro%3D10.1039/C5CY00315F – reference: ShokrollahzadehSAbassiMRanjbarMA new nano-ZnO/perlite as an efficient catalyst for catalytic ozonation of azo dyeEnviron Eng Res20182451352010.4491/eer.2018.322 – reference: AlinejadAAkbariHGhaderpooriMJeihooniAKAdibzadehACatalytic ozonation process using a MgO nano-catalyst to degrade methotrexate from aqueous solutions and cytotoxicity studies in human lung epithelial cells (A549) after treatmentRSC Adv20199820482141:CAS:528:DC%2BC1MXks12mtr8%3D10.1039/C9RA00320G – reference: BethiBSonawaneSHBhanvaseBAGumfekarSPNanomaterials-based advanced oxidation processes for wastewater treatment: a reviewChem Eng Process Process Intensif20161091781891:CAS:528:DC%2BC28XhsF2gtrvI10.1016/j.cep.2016.08.016 – reference: Kasprzyk-HordernBZiółekMNawrockiJCatalytic ozonation and methods of enhancing molecular ozone reactions in water treatmentAppl Catal B Environ2003466396691:CAS:528:DC%2BD3sXptlyjsLw%3D10.1016/S0926-3373(03)00326-6 – reference: HaagWRYaoCCDRate constants for reaction of hydroxyl radicals with several drinking water contaminantsEnv Sci Technol199226100510131:CAS:528:DyaK38XitVSkt7g%3D10.1021/es00029a021 – reference: AksuSKErSGCInvestigations on solar degradation of acid orange 7 (C.I. 15510) in textile wastewater with micro- and nanosized titanium dioxideTurkish J Eng Env Sci20103420102752791:CAS:528:DC%2BC3MXkvVKju7g%3D10.3906/muh-1005-6 – reference: GlazeWHKangJ-WChapinDHThe chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiationOzone Sci Eng198793353521:CAS:528:DyaL1cXotFOgtA%3D%3D10.1080/01919518708552148 – reference: YangYMaJQinQZhaiXDegradation of nitrobenzene by nano-TiO2 catalyzed ozonationJ Mol Catal Chem200726741481:CAS:528:DC%2BD2sXjsVOisLc%3D10.1016/j.molcata.2006.09.010 – reference: MizunoTHanFXuJKusudaYTsunoHPerformance evaluation of ozonation and an ozone/hydrogen peroxide process toward development of a new sewage treatment process—focusing on organic compounds and emerging contaminantsOzone Sci Eng2018403393551:CAS:528:DC%2BC1cXislyitbg%3D10.1080/01919512.2018.1435110 – reference: AlverABasturkERemoval of aspartame by catalytic ozonation by nano-TiO2 coated pumiceDesalination Water Treat20191522682751:CAS:528:DC%2BC1MXit1agsLrO10.5004/dwt.2019.24016 – reference: MahadikSApplications of nanotechnology in water and waste water treatmentAADYA - J Manag Technol JMT201779195 – reference: RamanCDKanmaniSTextile dye degradation using nano zero valent iron: a reviewJ Environ Manag20161773413551:CAS:528:DC%2BC28XmvFyksr0%3D10.1016/j.jenvman.2016.04.034 – reference: WangJQuanXChenSYuHChenYPerforming homogeneous catalytic ozonation using heterogeneous Mn2+−bonded oxidized carbon nanotubes by self-driven pH variation induced reversible desorption and adsorption of Mn2+Environ Sci Nano20196193219401:CAS:528:DC%2BC1MXptFWlsbg%3D10.1039/C9EN00204A – reference: LiottaLFGruttadauriaMDi CarloGHeterogeneous catalytic degradation of phenolic substrates: catalysts activityJ Hazard Mater20091625886061:CAS:528:DC%2BD1cXhsFWrsb3L10.1016/j.jhazmat.2008.05.115 – reference: Chun Hu, Shengtao Xing, Jiuhui Qu and, He H. Catalytic ozonation of herbicide 2,4-D over cobalt oxide supported on mesoporous zirconia. 2008. https://pubs.acs.org/doi/pdf/10.1021/jp711463e. Accessed 17 Mar 2020. – reference: AceroJLvon GuntenUInfluence of carbonate on the ozone/hydrogen peroxide based advanced oxidation process for drinking water treatmentOzone Sci Eng2000223053281:CAS:528:DC%2BD3cXks12isbk%3D10.1080/01919510008547213 – reference: AsgariGSeidmohammadiAEsrafiliAFaradmalJNoori SepehrMJafariniaMThe catalytic ozonation of diazinon using nano-MgO@CNT@Gr as a new heterogenous catalyst: the optimization of effective factors by response surface methodologyRSC Adv202010771877311:CAS:528:DC%2BB3cXktFSqt7g%3D10.1039/C9RA10095D – reference: MoussaviGKhavaninAAlizadehRThe investigation of catalytic ozonation and integrated catalytic ozonation/biological processes for the removal of phenol from saline wastewatersJ Hazard Mater20091711751811:CAS:528:DC%2BD1MXhtFOrurvF10.1016/j.jhazmat.2009.05.113 – reference: BavykinDVFriedrichJMWalshFCProtonated titanates and TiO2 nanostructured materials: synthesis, properties, and applicationsAdv Mater200618280728241:CAS:528:DC%2BD28Xht1yqsb7I10.1002/adma.200502696 – reference: Bahrami-asl F, Kermani M, Salahshour-Arian S, et al. Catalytic ozonation of azo dye reactive red 120 in the presence of MgO nanoparticles. J Health Field. 2017;2. – reference: KhataeeARVatanpourVAmani GhadimARDecolorization of C.I. acid blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative studyJ Hazard Mater2009161122512331:CAS:528:DC%2BD1cXhsVSqsbvO10.1016/j.jhazmat.2008.04.075 – reference: MoussaviGKhavaninAAlizadehRThe integration of ozonation catalyzed with MgO nanocrystals and the biodegradation for the removal of phenol from saline wastewaterAppl Catal B Environ2010971601671:CAS:528:DC%2BC3cXmsVeruro%3D10.1016/j.apcatb.2010.03.036 – reference: HienNTNguyenLHVanHTHeterogeneous catalyst ozonation of direct black 22 from aqueous solution in the presence of metal slags originating from industrial solid wastesSep Purif Technol20202331159611:CAS:528:DC%2BC1MXhs1ylt7nJ10.1016/j.seppur.2019.115961 – reference: ShafieiyounSOrganic load removal of landfill leachate by Fenton process using nano sized zero valent iron particles2011SingaporeIPCBEE vol.6 IACSIT Press – reference: FontanierVFarinesVAlbetJBaigSMolinierJOxidation of organic pollutants of water to mineralization by catalytic ozonationOzone Sci Eng2005271151281:CAS:528:DC%2BD2MXksFamu70%3D10.1080/01919510590925239 – reference: AminMTAlazbaAAManzoorUA review of removal of pollutants from water/wastewater using different types of nanomaterialsAdv Mater Sci Eng201420141241:CAS:528:DC%2BC2cXhslShsrvO10.1155/2014/825910 – reference: WangBZhangHWangFXiongXTianKSunYYuTApplication of heterogeneous catalytic ozonation for refractory organics in wastewaterCatalysts201992411:CAS:528:DC%2BC1MXotlGju7k%3D10.3390/catal9030241 – reference: VanHTNguyenLHHoangTKHeterogeneous Fenton oxidation of paracetamol in aqueous solution using iron slag as a catalyst: degradation mechanisms and kineticsEnviron Technol Innov20201810067010.1016/j.eti.2020.100670 – reference: StaehelinJHoigneJDecomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxideEnviron Sci Technol1982166766811:CAS:528:DyaL38XltFGjtbc%3D10.1021/es00104a009 – reference: RafieeMBashiriHKinetic Monte Carlo simulation of 4-nitrophenol ozonation in the presence of ZnO nanocatalystRuss J Phys Chem A2015899829861:CAS:528:DC%2BC2MXotlKltro%3D10.1134/S0036024415060205 – reference: GuoYYangLChengXWangXThe application and reaction mechanism of catalytic ozonation in water treatmentJ Environ Anal Toxicol20122161:CAS:528:DC%2BC2MXotVeitb4%3D10.4172/2161-0525.1000150 – reference: ChengS-WLiY-HYuanC-STsaiPYShenHZHungCHAn innovative advanced oxidation Technology for Effective decomposition of formaldehyde by combining Iron modified nano-TiO2 (Fe/TiO2) photocatalytic degradation with ozone oxidationAerosol Air Qual Res201818322032331:CAS:528:DC%2BC1MXhvVGjtbnF10.4209/aaqr.2018.05.0156 – reference: VanHTNguyenLHHoangTKUsing FeO-constituted iron slag wastes as heterogeneous catalyst for Fenton and ozonation processes to degrade reactive red 24 from aqueous solutionSep Purif Technol20192244314421:CAS:528:DC%2BC1MXpslGlt74%3D10.1016/j.seppur.2019.05.048 – reference: TabatabaeiSMMehrizadAGharbaniPNano-catalytic ozonation of 4-nitrochlorobenzene in aqueous solutionsE-J Chem20129196819751:CAS:528:DC%2BC38XmvVOjtr0%3D10.1155/2012/696418 – reference: HoignéJBaderHRate constants of reactions of ozone with organic and inorganic compounds in water—IWater Res19831717318310.1016/0043-1354(83)90098-2 – reference: QuXBrameJLiQAlvarezPJJNanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuseAcc Chem Res2013468348431:CAS:528:DC%2BC38Xpt1Chtrs%3D10.1021/ar300029v – reference: SavageNDialloMSNanomaterials and water purification: opportunities and challengesJ Nanopart Res200573313421:CAS:528:DC%2BD2MXpsFWhsLw%3D10.1007/s11051-005-7523-5 – reference: ZhaoLSunZMaJLiuHEnhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solutionEnviron Sci Technol200943204720531:CAS:528:DC%2BD1MXhs1Sls7g%3D10.1021/es803125h – reference: KwonSFanMCooperATYangHPhotocatalytic applications of micro- and Nano-TiO 2 in environmental engineeringCrit Rev Environ Sci Technol2008381972261:CAS:528:DC%2BD1cXivVehtrs%3D10.1080/10643380701628933 – reference: MunterRAdvanced oxidation processes–current status and prospectsProc Est Acad Sci Chem20015059801:CAS:528:DC%2BD3MXltlaktbc%3D – reference: LegubeBCatalytic ozonation: a promising advanced oxidation technology for water treatmentCatal Today19995361721:CAS:528:DyaK1MXmsFajsr4%3D10.1016/S0920-5861(99)00103-0 – reference: MehrizadAGharbaniPRemoval of methylene blue from aqueous solution using Nano-TiO2/UV process: optimization by response surface methodologyProg Color Colorants Coat201691351431:CAS:528:DC%2BC2sXhvFagtbnE – reference: Khuntia S, Sinha MK, Singh P. Theoretical and experimental investigation of the mechanism of the catalytic ozonation process by using a manganese-based catalyst. Environ Technol. 2019:1–8. https://doi.org/10.1080/09593330.2019.1640800. – reference: NawrockiJKasprzyk-HordernBThe efficiency and mechanisms of catalytic ozonationAppl Catal B Environ20109927421:CAS:528:DC%2BC3cXhtVGmt7fE10.1016/j.apcatb.2010.06.033 – reference: NdabankuluVOMaddilaSJonnalagaddaSBOzone facilitated degradation of caffeine using Ce-TiO2 catalystJ Environ Sci Health B2019541381461:CAS:528:DC%2BC1MXhtF2h10.1080/03601234.2018.1530549 – reference: BiardP-FWerghiBSoutrelIOrhandRCouvertADenicourt-NowickiARoucouxAEfficient catalytic ozonation by ruthenium nanoparticles supported on SiO 2 or TiO 2 : towards the use of a non-woven fiber paper as original supportChem Eng J20162893743811:CAS:528:DC%2BC2MXitV2ku73L10.1016/j.cej.2015.12.051 – reference: Lu H, Wang J, Stoller M, et al. An overview of nanomaterials for water and wastewater treatment. In: Adv. Mater. Sci. Eng. 2016. https://www.hindawi.com/journals/amse/2016/4964828/. Accessed 7 May 2018 – reference: Zhu Y, et al. Study on catalytic ozone oxidation with Nano-TiO2 modified membrane for treatment of municipal wastewater. J Biomim Biomater Tissue Eng. 2013. https://doi.org/10.4172/1662-100X.1000113. – reference: ZhaoLMaJSunZZhaiXMechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation | Environmental Science & TechnologyEnv Sci Technol200842400240071:CAS:528:DC%2BD1cXlt1Slt7Y%3D10.1021/es702926q – reference: Amin MT, Alazba AA, Manzoor U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. In: Adv. Mater. Sci. Eng. 2014. https://www.hindawi.com/journals/amse/2014/825910/ – reference: ErolFÖzbelgeTACatalytic ozonation with non-polar bonded alumina phases for treatment of aqueous dye solutions in a semi-batch reactorChem Eng J20081392722831:CAS:528:DC%2BD1cXlvVKqt7c%3D10.1016/j.cej.2007.07.100 – reference: IskandarFNandiyantoABDYunKMHoganCJOkuyamaKBiswasPEnhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templatingAdv Mater200719140814121:CAS:528:DC%2BD2sXmtlKnt7k%3D10.1002/adma.200601822 – reference: SableSSShahKJChiangP-CLoS-LCatalytic oxidative degradation of phenol using iron oxide promoted sulfonated-ZrO2 by advanced oxidation processes (AOPs)J Taiwan Inst Chem Eng2018914344401:CAS:528:DC%2BC1cXht12jtLbK10.1016/j.jtice.2018.06.030 – reference: StasinakisASUse of selected advanced oxidation processes (AOPs) for wastewater treatment - a mini reviewGlob NEST J20081037638510.30955/gnj.000598 – reference: AllemaneHDelouaneBPaillardHLegubeBComparative efficiency of three systems (O3, O3/H2O2, and O3/TiO2) for the oxidation of natural organic matter in waterOzone Sci Eng1993154194321:CAS:528:DyaK2cXisl2lu78%3D10.1080/01919512.1993.10555733 – volume: 19 start-page: 1408 year: 2007 ident: 147_CR65 publication-title: Adv Mater doi: 10.1002/adma.200601822 – volume: 171 start-page: 175 year: 2009 ident: 147_CR10 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2009.05.113 – volume: 7 start-page: 43464 year: 2017 ident: 147_CR55 publication-title: RSC Adv doi: 10.1039/C7RA07553G – volume: 2 start-page: Summer 2014 issue: 2 year: 2017 ident: 147_CR73 publication-title: J Health Field – volume: 18 start-page: 2807 year: 2006 ident: 147_CR66 publication-title: Adv Mater doi: 10.1002/adma.200502696 – volume: 42 start-page: 4002 year: 2008 ident: 147_CR36 publication-title: Env Sci Technol doi: 10.1021/es702926q – volume: 6 start-page: 61 issue: 2 year: 2009 ident: 147_CR26 publication-title: Iran J Environ Health Sci Eng – ident: 147_CR19 – ident: 147_CR20 – volume: 289 start-page: 374 year: 2016 ident: 147_CR52 publication-title: Chem Eng J doi: 10.1016/j.cej.2015.12.051 – ident: 147_CR11 doi: 10.1155/2014/825910 – ident: 147_CR38 – volume: 6 start-page: 1932 year: 2019 ident: 147_CR77 publication-title: Environ Sci Nano doi: 10.1039/C9EN00204A – volume: 9 start-page: 8204 year: 2019 ident: 147_CR58 publication-title: RSC Adv doi: 10.1039/C9RA00320G – volume: 267 start-page: 41 year: 2007 ident: 147_CR43 publication-title: J Mol Catal Chem doi: 10.1016/j.molcata.2006.09.010 – volume: 17 start-page: 513 year: 1988 ident: 147_CR78 publication-title: J Phys Chem Ref Data doi: 10.1063/1.5558050 – volume: 9 start-page: 135 year: 2016 ident: 147_CR60 publication-title: Prog Color Colorants Coat – volume: 40 start-page: 339 year: 2018 ident: 147_CR14 publication-title: Ozone Sci Eng doi: 10.1080/01919512.2018.1435110 – volume: 161 start-page: 1225 year: 2009 ident: 147_CR45 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2008.04.075 – volume: 43 start-page: 2047 year: 2009 ident: 147_CR9 publication-title: Environ Sci Technol doi: 10.1021/es803125h – ident: 147_CR48 – volume: 46 start-page: 639 year: 2003 ident: 147_CR79 publication-title: Appl Catal B Environ doi: 10.1016/S0926-3373(03)00326-6 – ident: 147_CR64 doi: 10.1063/1674-0068/cjcp19030622 – volume: 24 start-page: 513 year: 2018 ident: 147_CR57 publication-title: Environ Eng Res doi: 10.4491/eer.2018.322 – volume: 18 start-page: 3220 year: 2018 ident: 147_CR4 publication-title: Aerosol Air Qual Res doi: 10.4209/aaqr.2018.05.0156 – volume: 22 start-page: 305 year: 2000 ident: 147_CR24 publication-title: Ozone Sci Eng doi: 10.1080/01919510008547213 – ident: 147_CR34 doi: 10.1021/jp711463e – volume: 2014 start-page: 1 year: 2014 ident: 147_CR41 publication-title: Adv Mater Sci Eng doi: 10.1155/2014/825910 – volume: 260 start-page: 45 year: 2005 ident: 147_CR42 publication-title: Colloids Surf Physicochem Eng Asp doi: 10.1016/j.colsurfa.2005.01.031 – volume: 7 start-page: 91 year: 2017 ident: 147_CR3 publication-title: AADYA - J Manag Technol JMT – volume: 17 start-page: 173 year: 1983 ident: 147_CR22 publication-title: Water Res doi: 10.1016/0043-1354(83)90098-2 – volume-title: Organic load removal of landfill leachate by Fenton process using nano sized zero valent iron particles year: 2011 ident: 147_CR62 – volume: 72 start-page: 690 year: 2008 ident: 147_CR33 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.02.037 – volume: 37 start-page: 3646 year: 2003 ident: 147_CR71 publication-title: Water Res doi: 10.1016/S0043-1354(03)00269-0 – volume: 9 start-page: 1968 year: 2012 ident: 147_CR49 publication-title: E-J Chem doi: 10.1155/2012/696418 – volume: 97 start-page: 160 year: 2010 ident: 147_CR46 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2010.03.036 – volume: 46 start-page: 834 year: 2013 ident: 147_CR39 publication-title: Acc Chem Res doi: 10.1021/ar300029v – volume: 16 start-page: 676 year: 1982 ident: 147_CR21 publication-title: Environ Sci Technol doi: 10.1021/es00104a009 – volume: 26 start-page: 1005 year: 1992 ident: 147_CR23 publication-title: Env Sci Technol doi: 10.1021/es00029a021 – ident: 147_CR50 doi: 10.4172/1662-100X.1000113 – volume: 152 start-page: 268 year: 2019 ident: 147_CR69 publication-title: Desalination Water Treat doi: 10.5004/dwt.2019.24016 – volume: 403-404 start-page: 312 year: 2002 ident: 147_CR67 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(01)01509-7 – volume: 91 start-page: 434 year: 2018 ident: 147_CR80 publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2018.06.030 – volume-title: Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials – a mini-review year: 2014 ident: 147_CR16 – volume: 62 start-page: 648 year: 2008 ident: 147_CR61 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2008.03.002 – volume: 27 start-page: 115 year: 2005 ident: 147_CR8 publication-title: Ozone Sci Eng doi: 10.1080/01919510590925239 – volume: 8 start-page: 1599 year: 2007 ident: 147_CR31 publication-title: Catal Commun doi: 10.1016/j.catcom.2007.01.016 – ident: 147_CR75 doi: 10.1080/09593330.2019.1640800 – volume: 38 start-page: 197 year: 2008 ident: 147_CR44 publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643380701628933 – volume: 10 start-page: 25 year: 2019 ident: 147_CR2 publication-title: J Anal Sci Technol doi: 10.1186/s40543-019-0185-1 – volume: 224 start-page: 431 year: 2019 ident: 147_CR30 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.05.048 – start-page: 375 volume-title: Water challenges and solutions on a global scale year: 2015 ident: 147_CR40 doi: 10.1021/bk-2015-1206.ch018 – volume: 89 start-page: 982 year: 2015 ident: 147_CR51 publication-title: Russ J Phys Chem A doi: 10.1134/S0036024415060205 – volume: 2 start-page: 1 year: 2012 ident: 147_CR74 publication-title: J Environ Anal Toxicol doi: 10.4172/2161-0525.1000150 – volume: 9 start-page: 241 year: 2019 ident: 147_CR76 publication-title: Catalysts doi: 10.3390/catal9030241 – volume: 233 start-page: 115961 year: 2020 ident: 147_CR28 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.115961 – volume: 53 start-page: 61 year: 1999 ident: 147_CR7 publication-title: Catal Today doi: 10.1016/S0920-5861(99)00103-0 – volume: 50 start-page: 59 year: 2001 ident: 147_CR13 publication-title: Proc Est Acad Sci Chem – volume: 10 start-page: 7718 year: 2020 ident: 147_CR37 publication-title: RSC Adv doi: 10.1039/C9RA10095D – ident: 147_CR56 – ident: 147_CR17 doi: 10.1201/9781420061345 – volume: 8 start-page: 5457 year: 2013 ident: 147_CR70 publication-title: Int J Electrochem Sci doi: 10.1016/S1452-3981(23)14695-5 – volume: 5 start-page: 3147 year: 2015 ident: 147_CR72 publication-title: Catal Sci Technol doi: 10.1039/C5CY00315F – volume: 18 start-page: 100670 year: 2020 ident: 147_CR29 publication-title: Environ Technol Innov doi: 10.1016/j.eti.2020.100670 – volume: 162 start-page: 588 year: 2009 ident: 147_CR35 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2008.05.115 – ident: 147_CR59 doi: 10.1155/2019/4376429 – volume: 10 start-page: 376 year: 2008 ident: 147_CR12 publication-title: Glob NEST J doi: 10.30955/gnj.000598 – volume: 109 start-page: 178 year: 2016 ident: 147_CR54 publication-title: Chem Eng Process Process Intensif doi: 10.1016/j.cep.2016.08.016 – volume: 15 start-page: 419 year: 1993 ident: 147_CR68 publication-title: Ozone Sci Eng doi: 10.1080/01919512.1993.10555733 – volume: 34 start-page: 275 issue: 2010 year: 2010 ident: 147_CR63 publication-title: Turkish J Eng Env Sci doi: 10.3906/muh-1005-6 – volume: 7 start-page: 331 year: 2005 ident: 147_CR6 publication-title: J Nanopart Res doi: 10.1007/s11051-005-7523-5 – volume: 139 start-page: 272 year: 2008 ident: 147_CR32 publication-title: Chem Eng J doi: 10.1016/j.cej.2007.07.100 – volume: 99 start-page: 27 year: 2010 ident: 147_CR27 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2010.06.033 – ident: 147_CR1 doi: 10.1155/2016/4964828 – ident: 147_CR18 – volume: 262 start-page: 15 year: 2010 ident: 147_CR47 publication-title: Desalination doi: 10.1016/j.desal.2010.05.016 – volume: 177 start-page: 341 year: 2016 ident: 147_CR53 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2016.04.034 – volume: 54 start-page: 138 year: 2019 ident: 147_CR5 publication-title: J Environ Sci Health B doi: 10.1080/03601234.2018.1530549 – volume: 9 start-page: 335 year: 1987 ident: 147_CR15 publication-title: Ozone Sci Eng doi: 10.1080/01919518708552148 – ident: 147_CR25 |
SSID | ssj0002046597 |
Score | 2.2815328 |
SecondaryResourceType | review_article |
Snippet | Purpose of Review
Pollution is now being varied with huge contaminants in wastewater especially with kind of recalcitrants that are emerging pollutants needed... Purpose of ReviewPollution is now being varied with huge contaminants in wastewater especially with kind of recalcitrants that are emerging pollutants needed... PURPOSE OF REVIEW: Pollution is now being varied with huge contaminants in wastewater especially with kind of recalcitrants that are emerging pollutants needed... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 217 |
SubjectTerms | 21st century Agriculture Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Catalysts Chlorine Contaminants Decomposition Earth and Environmental Science Environment Environmental Law/Policy/Ecojustice Industrial Pollution Prevention industry Investigations medicine Monitoring/Environmental Analysis nanocatalysts Nanomaterials Nanoparticles Organic chemicals Oxidation Ozonation Ozone Pesticides Pollutants Pollution R&D Research & development research and development Section Editors Semiconductors Topical Collection on Water Pollution Waste Water Technology wastewater Wastewater treatment Water Management Water Pollution (G Toor and L Nghiem Water Pollution Control Water purification Water treatment |
Title | Nano-Catalysts in Ozone-Based Advanced Oxidation Processes for Wastewater Treatment |
URI | https://link.springer.com/article/10.1007/s40726-020-00147-3 https://www.proquest.com/docview/2938246302 https://www.proquest.com/docview/2524226413 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1NS8MwNOh20YP4idMpEbxpcEmTtjvJNjZEcBPdcLfSJqkMpJ3rBuqv96VLOxXcsTRNynsv7_sDoUtB_RCwGRHXbzLCm0oRkOMe4TLSIH9k2NCmUPih796N-P1YjK3DLbNplQVPzBm1SqXxkd-AWPIZd50Gu52-EzM1ykRX7QiNTVQFFuyD8VVtd_uPT6WXhYH5ByqzrZbJa-ZMRzCTd2sKqimHG_ZbIq3UzD-R0Vzg9HbRjtUUcWuJ2j20oZN9tN16ndluGRqefnQTPEDPwClT0jH-mM9snuFJggdfaaJJGySVwi0b7ceDj8lykBK2VQI6w6C64pcwM540ADQeFunnh2jU6w47d8TOTCCSCzEnjCtQqrwoVmAZUUbdiEdK-JGZ7Um1q7jnuYLGyneFlNqMHItN5KXZcKOYeWHsHKFKAr92jDD1FRgfXMaO4_CQOn5DSDAGQ8CgaULWrCFawC2QtqG4mWvxFpStkHNYBwDrIId14NTQVfnNdNlOY-3qeoGOwF6tLFgRQg1dlK_hUphIR5jodAFrBMsrhClscV2gcbXF_yeerD_xFG2xnHJMjlkdVeazhT4DpWQenVvK-wZ1g9wz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTttAcAThUDigPkUopVupPZVVs-td2zkgFF4KBUJFg5qbsXfXCAk5FAfx-Ci-kRlnnbSVyo2j5fWuNY-d9wzAZy3iFLGZ8TBuS67a1nKU4xFXJnMof0zaclQofNgLuyfq-0APZuChroWhtMr6Tqwuajs05CP_hmIplioMWnLj8jenqVEUXa1HaIzJYt_d3aDJVq7vbSN-v0i5u9Pf6nI_VYAbpfWIS2VR7Yiy3KLtIKQIM5VZHWc0_VK40KooCrXIbRxqYxwN5copNtFuhVkuozQPcN9ZmFMBmjINmNvc6f04nnh1JJqbqKL76pyqRo86kFGeLxVwC4Uc_bcEnKq1_0RiKwG3-xIWvWbKOmNSegUzrngNC52zK9-dw-HTH90L38BPvJmHfIv8P3flqGTnBTu6HxaOb6JktKzjswvY0e35eHAT81UJrmSoKrNfaUmeO0Qs69fp7m_h5Fmg-Q4aBf7aEjARWzR2lMmDIFCpCOKWNmh8pkgx1PSs3QRRwy0xvoE5zdG4SCatlytYJwjrpIJ1EjTh6-Sby3H7jidXr9ToSDwrl8mU8JrwafIamZAiK2nhhte4RsuqIlngFms1Gqdb_P_E5adP_Agvuv3Dg-Rgr7f_HuZlRUWU37YCjdHVtfuACtEoW_VUyOD0uQn_EcQaF50 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nano-Catalysts+in+Ozone-Based+Advanced+Oxidation+Processes+for+Wastewater+Treatment&rft.jtitle=Current+pollution+reports&rft.au=Dang%2C+Thi+Thom&rft.au=Do%2C+Van+Manh&rft.au=Trinh%2C+Van+Tuyen&rft.date=2020-09-01&rft.pub=Springer+International+Publishing&rft.eissn=2198-6592&rft.volume=6&rft.issue=3&rft.spage=217&rft.epage=229&rft_id=info:doi/10.1007%2Fs40726-020-00147-3&rft.externalDocID=10_1007_s40726_020_00147_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6592&client=summon |