Automatic 2-D/3-D Vessel Enhancement in Multiple Modality Images Using a Weighted Symmetry Filter
Automated detection of vascular structures is of great importance in understanding the mechanism, diagnosis, and treatment of many vascular pathologies. However, automatic vascular detection continues to be an open issue because of difficulties posed by multiple factors, such as poor contrast, inhom...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 37; no. 2; pp. 438 - 450 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automated detection of vascular structures is of great importance in understanding the mechanism, diagnosis, and treatment of many vascular pathologies. However, automatic vascular detection continues to be an open issue because of difficulties posed by multiple factors, such as poor contrast, inhomogeneous backgrounds, anatomical variations, and the presence of noise during image acquisition. In this paper, we propose a novel 2-D/3-D symmetry filter to tackle these challenging issues for enhancing vessels from different imaging modalities. The proposed filter not only considers local phase features by using a quadrature filter to distinguish between lines and edges, but also uses the weighted geometric mean of the blurred and shifted responses of the quadrature filter, which allows more tolerance of vessels with irregular appearance. As a result, this filter shows a strong response to the vascular features under typical imaging conditions. Results based on eight publicly available datasets (six 2-D data sets, one 3-D data set, and one 3-D synthetic data set) demonstrate its superior performance to other state-of-the-art methods. |
---|---|
AbstractList | Automated detection of vascular structures is of great importance in understanding the mechanism, diagnosis, and treatment of many vascular pathologies. However, automatic vascular detection continues to be an open issue because of difficulties posed by multiple factors, such as poor contrast, inhomogeneous backgrounds, anatomical variations, and the presence of noise during image acquisition. In this paper, we propose a novel 2-D/3-D symmetry filter to tackle these challenging issues for enhancing vessels from different imaging modalities. The proposed filter not only considers local phase features by using a quadrature filter to distinguish between lines and edges, but also uses the weighted geometric mean of the blurred and shifted responses of the quadrature filter, which allows more tolerance of vessels with irregular appearance. As a result, this filter shows a strong response to the vascular features under typical imaging conditions. Results based on eight publicly available datasets (six 2-D data sets, one 3-D data set, and one 3-D synthetic data set) demonstrate its superior performance to other state-of-the-art methods. |
Author | Zhao, Yifan Liu, Yonghuai Na, Tong Wang, Yongtian Liu, Jiang Zhao, Yitian Yang, Siyuan Zheng, Yalin Luo, Lingling |
Author_xml | – sequence: 1 givenname: Yitian orcidid: 0000-0003-4357-4592 surname: Zhao fullname: Zhao, Yitian email: yitian.zhao@nimte.ac.cn – sequence: 2 givenname: Yalin orcidid: 0000-0002-7873-0922 surname: Zheng fullname: Zheng, Yalin – sequence: 3 givenname: Yonghuai orcidid: 0000-0002-3774-2134 surname: Liu fullname: Liu, Yonghuai – sequence: 4 givenname: Yifan orcidid: 0000-0003-2383-5724 surname: Zhao fullname: Zhao, Yifan – sequence: 5 givenname: Lingling surname: Luo fullname: Luo, Lingling – sequence: 6 givenname: Siyuan orcidid: 0000-0002-0904-286X surname: Yang fullname: Yang, Siyuan – sequence: 7 givenname: Tong surname: Na fullname: Na, Tong – sequence: 8 givenname: Yongtian surname: Wang fullname: Wang, Yongtian – sequence: 9 givenname: Jiang surname: Liu fullname: Liu, Jiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28952938$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkDtPwzAURi0EgvLYkZCQJRaWFD9je0RAoRIVA88tcpObYpQ4JXaG_ntctTAw3eGe79O95xDt-s4DQqeUjCkl5uplNh0zQtWYKZkTxXfQiEqpMybFxy4aEaZ0RkjODtBhCF-EUCGJ2UcHTBvJDNcjZK-H2LU2uhKz7PaKZ7f4DUKABt_5T-tLaMFH7DyeDU10ywbwrKts4-IKT1u7gIBfg_MLbPE7uMVnhAo_r9oWYr_CE9dE6I_RXm2bACfbeYReJ3cvNw_Z49P99Ob6MSuFlDFj1ApBS6Cy5gC6ZnxeU6NJXtWaCLBKKWFyWslaz036mUmTIlQoSUtLaM6P0OWmd9l33wOEWLQulNA01kM3hIIawXOZK20SevEP_eqG3qfrEmWEyIngIlFkQ5V9F0IPdbHsXWv7VUFJsdZfJP3FWn-x1Z8i59viYd5C9Rf49Z2Asw3gAOBvnR40Qmn-A6d8iAY |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_media_2023_102937 crossref_primary_10_1142_S1793545823500098 crossref_primary_10_1109_TETCI_2023_3243920 crossref_primary_10_1002_jbio_202200067 crossref_primary_10_1016_j_engappai_2023_107454 crossref_primary_10_1016_j_compbiomed_2023_107609 crossref_primary_10_1109_TMI_2019_2948867 crossref_primary_10_1109_TIP_2019_2953361 crossref_primary_10_1002_jbio_202400168 crossref_primary_10_1016_j_bspc_2022_103930 crossref_primary_10_1109_TMI_2023_3326742 crossref_primary_10_1016_j_neucom_2024_127570 crossref_primary_10_1016_j_neucom_2019_10_092 crossref_primary_10_1016_j_neucom_2022_03_061 crossref_primary_10_1109_ACCESS_2020_2976575 crossref_primary_10_1109_TIP_2019_2946078 crossref_primary_10_1109_TMI_2021_3101937 crossref_primary_10_1177_17483026211065369 crossref_primary_10_1016_j_media_2020_101874 crossref_primary_10_1088_2516_1091_accc62 crossref_primary_10_1109_TMI_2019_2926492 crossref_primary_10_3389_fbioe_2021_697915 crossref_primary_10_1109_TMI_2022_3177626 crossref_primary_10_3390_app12010403 crossref_primary_10_1016_j_neucom_2022_12_039 crossref_primary_10_1109_TMI_2020_2974499 crossref_primary_10_2139_ssrn_4192615 crossref_primary_10_3390_app10144788 crossref_primary_10_3390_s24134326 crossref_primary_10_1016_j_compbiomed_2022_105972 crossref_primary_10_1016_j_patcog_2021_107998 crossref_primary_10_1364_BOE_458111 crossref_primary_10_3389_fnins_2021_744967 crossref_primary_10_1007_s11760_019_01501_9 crossref_primary_10_1016_j_neunet_2020_05_005 crossref_primary_10_1109_TMI_2018_2838550 crossref_primary_10_1002_mp_15280 crossref_primary_10_1109_JBHI_2020_3002985 crossref_primary_10_1109_TMI_2019_2950051 crossref_primary_10_1016_j_bspc_2023_104574 crossref_primary_10_1016_j_compmedimag_2022_102055 crossref_primary_10_11834_jig_220482 crossref_primary_10_1007_s10916_023_01992_7 crossref_primary_10_1007_s12652_021_03422_3 crossref_primary_10_1016_j_nicl_2021_102573 crossref_primary_10_1109_TMI_2022_3230943 crossref_primary_10_1109_TAI_2023_3296687 crossref_primary_10_1007_s12539_020_00385_5 crossref_primary_10_1109_TGRS_2022_3172227 crossref_primary_10_1016_j_artmed_2020_101871 crossref_primary_10_1117_1_JMI_6_1_014006 crossref_primary_10_1007_s13369_022_07311_5 crossref_primary_10_1016_j_neucom_2021_11_075 crossref_primary_10_1111_exsy_13207 crossref_primary_10_1364_AO_57_007287 crossref_primary_10_1002_mp_16720 crossref_primary_10_1109_JBHI_2019_2892072 crossref_primary_10_1002_mp_12953 crossref_primary_10_1177_1475921719890590 crossref_primary_10_1587_transfun_2023EAL2063 crossref_primary_10_1002_mp_15627 crossref_primary_10_1109_TMI_2020_3017275 crossref_primary_10_1016_j_media_2022_102581 crossref_primary_10_1080_03091902_2021_1906342 crossref_primary_10_1109_TMI_2020_3042802 crossref_primary_10_1016_j_irbm_2022_03_001 crossref_primary_10_1109_TMI_2022_3219436 crossref_primary_10_1364_JOSAA_422047 |
Cites_doi | 10.1109/TITB.2006.872042 10.1109/78.969520 10.1016/j.media.2007.01.002 10.1016/j.media.2009.07.011 10.1109/TMI.2015.2425535 10.1016/j.media.2014.08.002 10.1016/j.media.2006.06.003 10.1016/j.neucom.2016.07.077 10.1109/TMI.2016.2587062 10.1109/TVCG.2008.128 10.1109/TMI.2012.2227275 10.1118/1.3515749 10.1016/j.cmpb.2012.03.009 10.1109/TITB.2007.897782 10.1109/TBME.2015.2403295 10.1109/TITB.2009.2036604 10.1109/2945.856997 10.1016/j.compmedimag.2010.06.002 10.1109/TMI.2015.2409024 10.1371/journal.pone.0032435 10.1007/BFb0056195 10.1109/TBME.2016.2535311 10.1109/TMI.2014.2332571 10.1109/TIP.2015.2417683 10.1023/B:JMIV.0000026557.50965.09 10.1109/TMI.2012.2227118 10.1109/TMI.2016.2550102 10.1007/978-3-642-04268-3_28 10.1148/radiol.2473070436 10.1109/TMI.2013.2259595 10.1088/0031-9155/60/10/3905 10.1016/j.patrec.2009.09.020 10.1109/42.363096 10.1109/TIP.2015.2496279 10.1016/j.compbiomed.2010.02.008 10.1109/TMI.2015.2457891 10.1118/1.4945045 10.1016/j.media.2014.07.003 10.1109/TMI.2006.879967 10.1166/jmihi.2011.1006 10.1016/j.patcog.2012.12.014 10.1371/journal.pone.0122332 10.1006/cviu.2000.0866 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2017.2756073 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) Online IEEE Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 450 |
ExternalDocumentID | 10_1109_TMI_2017_2756073 28952938 8049478 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: China Association for Science and Technology grantid: 2016QNRC001 funderid: 10.13039/100010097 – fundername: National Key Research and Development Program of China grantid: 2016YFB1001502 – fundername: National Hi-Tech Research and Development Program grantid: 2015AA043203 – fundername: National Science Foundation Program of China grantid: 61601029; 61602322; 61631010 funderid: 10.13039/501100001809 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RIG RNS RXW TAE TN5 VH1 XFK CGR CUY CVF ECM EIF NPM AAYXX AGSQL CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c455t-21a441ce15f3ee8f23bf19806df804ea7774961d5f8b920125921a14751ca0163 |
IEDL.DBID | RIE |
ISSN | 0278-0062 |
IngestDate | Wed Jul 24 13:30:54 EDT 2024 Thu Oct 10 20:24:14 EDT 2024 Fri Dec 06 05:02:50 EST 2024 Sat Sep 28 08:34:27 EDT 2024 Wed Jun 26 19:18:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-21a441ce15f3ee8f23bf19806df804ea7774961d5f8b920125921a14751ca0163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7873-0922 0000-0003-4357-4592 0000-0002-0904-286X 0000-0003-2383-5724 0000-0002-3774-2134 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8049478 |
PMID | 28952938 |
PQID | 1994460434 |
PQPubID | 85460 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TMI_2017_2756073 pubmed_primary_28952938 proquest_miscellaneous_1943656789 ieee_primary_8049478 proquest_journals_1994460434 |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 pace (ref43) 2012; 7 ref19 kovesi (ref35) 1995 luo (ref18) 2017 ref24 ref45 ref23 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 jassi (ref46) 2011 |
References_xml | – ident: ref20 doi: 10.1109/TITB.2006.872042 – ident: ref33 doi: 10.1109/78.969520 – ident: ref28 doi: 10.1016/j.media.2007.01.002 – ident: ref2 doi: 10.1016/j.media.2009.07.011 – ident: ref14 doi: 10.1109/TMI.2015.2425535 – ident: ref17 doi: 10.1016/j.media.2014.08.002 – ident: ref19 doi: 10.1016/j.media.2006.06.003 – ident: ref11 doi: 10.1016/j.neucom.2016.07.077 – year: 1995 ident: ref35 article-title: Image features from phase congruency contributor: fullname: kovesi – ident: ref40 doi: 10.1109/TMI.2016.2587062 – ident: ref15 doi: 10.1109/TVCG.2008.128 – ident: ref25 doi: 10.1109/TMI.2012.2227275 – start-page: 1 year: 2011 ident: ref46 article-title: Vascusynth: Vascular tree synthesis software publication-title: Insight J contributor: fullname: jassi – ident: ref42 doi: 10.1118/1.3515749 – ident: ref1 doi: 10.1016/j.cmpb.2012.03.009 – ident: ref10 doi: 10.1109/TITB.2007.897782 – ident: ref39 doi: 10.1109/TBME.2015.2403295 – ident: ref30 doi: 10.1109/TITB.2009.2036604 – ident: ref6 doi: 10.1109/2945.856997 – ident: ref45 doi: 10.1016/j.compmedimag.2010.06.002 – ident: ref32 doi: 10.1109/TMI.2015.2409024 – ident: ref8 doi: 10.1371/journal.pone.0032435 – start-page: 942 year: 2017 ident: ref18 article-title: Multiscale vessel enhancement filtering publication-title: Proc Int Symp Biomed Imag contributor: fullname: luo – ident: ref5 doi: 10.1007/BFb0056195 – ident: ref37 doi: 10.1109/TBME.2016.2535311 – ident: ref36 doi: 10.1109/TMI.2014.2332571 – ident: ref47 doi: 10.1109/TIP.2015.2417683 – ident: ref34 doi: 10.1023/B:JMIV.0000026557.50965.09 – ident: ref13 doi: 10.1109/TMI.2012.2227118 – ident: ref7 doi: 10.1109/TMI.2016.2550102 – volume: 7 start-page: 79s year: 2012 ident: ref43 article-title: Tubetk: An open-source toolkit of algorithms operating on images of tubes publication-title: Proc Int Congr Exhib (CARS) contributor: fullname: pace – ident: ref12 doi: 10.1007/978-3-642-04268-3_28 – ident: ref27 doi: 10.1148/radiol.2473070436 – ident: ref44 doi: 10.1109/TMI.2013.2259595 – ident: ref22 doi: 10.1088/0031-9155/60/10/3905 – ident: ref29 doi: 10.1016/j.patrec.2009.09.020 – ident: ref38 doi: 10.1109/42.363096 – ident: ref3 doi: 10.1109/TIP.2015.2496279 – ident: ref9 doi: 10.1016/j.compbiomed.2010.02.008 – ident: ref41 doi: 10.1109/TMI.2015.2457891 – ident: ref4 doi: 10.1118/1.4945045 – ident: ref23 doi: 10.1016/j.media.2014.07.003 – ident: ref16 doi: 10.1109/TMI.2006.879967 – ident: ref26 doi: 10.1166/jmihi.2011.1006 – ident: ref24 doi: 10.1016/j.patcog.2012.12.014 – ident: ref31 doi: 10.1371/journal.pone.0122332 – ident: ref21 doi: 10.1006/cviu.2000.0866 |
SSID | ssj0014509 |
Score | 2.604004 |
Snippet | Automated detection of vascular structures is of great importance in understanding the mechanism, diagnosis, and treatment of many vascular pathologies.... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 438 |
SubjectTerms | Algorithms angiography Angiography - methods Automation Blood vessels Databases, Factual enhancement Humans Image acquisition Image contrast Image detection Image edge detection Image enhancement Image segmentation Imaging Imaging, Three-Dimensional - methods local phase Multimodal Imaging - methods Multiresolution analysis Nonhomogeneous media Retinal Vessels - diagnostic imaging Symmetry Symmetry filter Three-dimensional displays Two dimensional displays vascular |
Title | Automatic 2-D/3-D Vessel Enhancement in Multiple Modality Images Using a Weighted Symmetry Filter |
URI | https://ieeexplore.ieee.org/document/8049478 https://www.ncbi.nlm.nih.gov/pubmed/28952938 https://www.proquest.com/docview/1994460434 https://search.proquest.com/docview/1943656789 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT90wEB4BB1QOtGxtWkCu1Esl8l4Wr0dUeAKk9FJouUV24gjUvgRBcqC_vmNnUYuKxC1SHMf2jD3feMafAT4pjmamsBSnuKEhjakJtRJxyAtOK1NxbRN3djj7ys-u6MU1u16Bo-ksjLXWJ5_ZmXv0sfyyKTq3VTaXjsxEyFVYFUr0Z7WmiAFlfTpH4hhjI56MIclIzS-zc5fDJWaO6hxV2hEAS8XQ0Ml_rJG_XuV5pOktzuI1ZGNb-0STn7OuNbPi9xMax5d25g1sDtCTHPe6sgUrtt6Gjb8ICbdhPRtC7Tugj7u28XyuJAlP5ml4Qr47nvFf5LS-cariqie3NcmGlESSNaUH9eR8iYvUA_HZCESTH3731Zbk2-Nyadv7R7K4dTH6XbhanF5-OQuH-xjCgjLWhkmsETwVNmZVaq2sktRUsZIRLyvsjNUCoaTicckqaRQOOHpW-ElMBYsLjdAy3YO1uqntOyBYwERGoifPLOVFqnkpcOmgooykQtAfwOdRLvldT7uRe3clUjmKM3fizAdxBrDjRncqNwxsAPujIPNhXj7kjgmZ8oimNICP02ucUS5MomvbdK4MTRHlCqkCeNsrwFT3qDfv___PD_AKWyb7rO59WGvvO3uAoKU1h15b_wAAy-OK |
link.rule.ids | 315,781,785,797,27929,27930,54763 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVipwoPRBCRRwJS5IZDcP27GPFe1qF5pe2EJvkZ04oqKboDY5lF_P2HmIoiL1FimOY3tmPJ89488A7yVHN5MbiiauqU9Dqn0lk9DnOaelLrkykT07nJ7x-Tn9fMEu1uDjeBbGGOOSz8zEPrpYflHnrd0qmwpLZpKIR7DBKNpFd1prjBlQ1iV0RJYzNuDREJQM5HSZLmwWVzKxZOeo1JYCWEiGrk7c8UfugpX_Y03nc2ZbkA6t7VJNfk7aRk_y3_8QOT60O8_hWQ8-yVGnLduwZqodePoXJeEObKZ9sH0X1FHb1I7RlUT-8TT2j8k3yzR-RU6qH1ZZbPXksiJpn5RI0rpwsJ4sVjhN3RCXj0AU-e72X01Bvt6uVqa5viWzSxul34Pz2cny09zvb2Twc8pY40ehQviUm5CVsTGijGJdhlIEvCixM0YlCCYlDwtWCi1xwHFthZ-ENGFhrhBcxi9gvaor8xIIFtCBFriWZ4byPFa8SHDyoEkRCImw34MPg1yyXx3xRuYWLIHMUJyZFWfWi9ODXTu6Y7l-YD04GASZ9ZZ5k1kuZMoDGlMPDsfXaFM2UKIqU7e2DI0R5yZCerDfKcBY96A3r-7_5zt4PF-mp9np4uzLa3iCrRRdjvcBrDfXrXmDEKbRb53m_gEZvObY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+2-D%2F3-D+Vessel+Enhancement+in+Multiple+Modality+Images+Using+a+Weighted+Symmetry+Filter&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhao%2C+Yitian&rft.au=Zheng%2C+Yalin&rft.au=Liu%2C+Yonghuai&rft.au=Zhao%2C+Yifan&rft.date=2018-02-01&rft.eissn=1558-254X&rft.volume=37&rft.issue=2&rft.spage=438&rft_id=info:doi/10.1109%2Ftmi.2017.2756073&rft_id=info%3Apmid%2F28952938&rft.externalDocID=28952938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |