Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes

There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 169; p. 112576
Main Authors Xu, Lizhou, Chopdat, Raheemah, Li, Danyang, Al-Jamal, Khuloud T.
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H2O2 reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 103 particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting. •A bead-based aptamer assay with a colorimetric detection by the naked eye and an external reader (by a microplate spectrophotometer) was developed.•The aptasensor detects cancer-derived exosomes with outstanding sensitivity.•A promising diagnostic biomarker on exosomes is proposed for pancreatic cancer.•The aptasensor holds great potential for point-of-care diagnosis of cancers.
AbstractList There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H₂O₂ reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 10³ particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting.
There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H2O2 reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 103 particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting. •A bead-based aptamer assay with a colorimetric detection by the naked eye and an external reader (by a microplate spectrophotometer) was developed.•The aptasensor detects cancer-derived exosomes with outstanding sensitivity.•A promising diagnostic biomarker on exosomes is proposed for pancreatic cancer.•The aptasensor holds great potential for point-of-care diagnosis of cancers.
There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H O reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 10 particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting.
There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H2O2 reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 103 particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting.There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H2O2 reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 103 particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting.
ArticleNumber 112576
Author Li, Danyang
Chopdat, Raheemah
Xu, Lizhou
Al-Jamal, Khuloud T.
Author_xml – sequence: 1
  givenname: Lizhou
  surname: Xu
  fullname: Xu, Lizhou
  email: Lizhou.xu@kcl.ac.uk
– sequence: 2
  givenname: Raheemah
  surname: Chopdat
  fullname: Chopdat, Raheemah
– sequence: 3
  givenname: Danyang
  surname: Li
  fullname: Li, Danyang
– sequence: 4
  givenname: Khuloud T.
  surname: Al-Jamal
  fullname: Al-Jamal, Khuloud T.
  email: Khuloud.al-jamal@kcl.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32919211$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFP8AB5ciBLB47thOJCyqfUiUuvVuOPRZeJXGwvSv493XY9sKhHCxrRs8zh_e9IhdLXJCQ10D3QEG-P-zHEPOeUVYXwISSz8gOesXbjnFxQXZ0ELIVUvJLcpXzgVKqYKAvyCVnAwwMYEeOn_CEU1xnXEoTfWOaHOZ1wndNxiWHEk7YmMXVaUL7d7JxiinMWFKwjVmL2cCYGl9f-YmNw7KRcdnOWbNYTK3DVFXX4O-Y44z5JXnuzZTx1cN_Te6-fL67-dbe_vj6_ebjbWs7IUrL6CgpACjnqQRJpaD9OFrfAxppOsWRSyWsN8oo4WHwzA12UJZ7akCO_Jq8PZ9dU_x1xFz0HLLFaTILxmPWNbKOc-ik-D_adYzBoPq-om8e0OM4o9NrTcOkP_ox1Ar0Z8CmmHNCr20oZoukJBMmDVRv_emD3vrTW3_63F9V2T_q4_UnpQ9nCWuUp4BJZxuwBu9CqlVoF8NT-j1_vbS4
CitedBy_id crossref_primary_10_2174_1568026623666221124110016
crossref_primary_10_3389_fonc_2023_1131435
crossref_primary_10_1021_acsmeasuresciau_4c00043
crossref_primary_10_1021_acs_analchem_3c05550
crossref_primary_10_1016_j_aca_2022_339817
crossref_primary_10_1016_j_aca_2022_339938
crossref_primary_10_1021_acs_analchem_3c03135
crossref_primary_10_1039_D4NR00207E
crossref_primary_10_3390_cancers16193298
crossref_primary_10_1016_j_trac_2024_117978
crossref_primary_10_1021_acsptsci_2c00207
crossref_primary_10_1039_D4TC01594K
crossref_primary_10_1021_acsmeasuresciau_2c00068
crossref_primary_10_2147_IJN_S333969
crossref_primary_10_1002_anse_202400027
crossref_primary_10_1007_s11684_021_0884_z
crossref_primary_10_3390_bios15040207
crossref_primary_10_1021_acsabm_4c00782
crossref_primary_10_1016_j_vesic_2022_100006
crossref_primary_10_1021_acssensors_4c01357
crossref_primary_10_1016_j_talanta_2024_126534
crossref_primary_10_1007_s44211_024_00582_y
crossref_primary_10_1186_s12935_024_03379_1
crossref_primary_10_1039_D0TB02163F
crossref_primary_10_3390_s21227645
crossref_primary_10_1007_s00604_022_05278_6
crossref_primary_10_1186_s12951_024_02318_6
crossref_primary_10_1016_j_talanta_2025_127532
crossref_primary_10_3390_bios12050281
crossref_primary_10_1016_j_biosx_2022_100115
crossref_primary_10_1016_j_jcis_2022_01_174
crossref_primary_10_1016_j_aca_2021_339357
crossref_primary_10_1016_j_aca_2021_339279
crossref_primary_10_1021_acsami_1c09000
crossref_primary_10_1016_j_snb_2023_134686
crossref_primary_10_1016_j_bios_2022_114681
crossref_primary_10_1021_acssensors_4c00774
crossref_primary_10_2174_0929867329666220224155037
crossref_primary_10_1016_j_gene_2023_147905
crossref_primary_10_1016_j_jcis_2021_12_133
crossref_primary_10_1021_acssensors_3c00247
crossref_primary_10_1016_j_ccr_2021_214111
crossref_primary_10_3390_molecules27196673
crossref_primary_10_1021_acssensors_0c02237
crossref_primary_10_1039_D3NR05459D
crossref_primary_10_1016_j_trac_2023_117077
crossref_primary_10_1021_acs_analchem_1c02286
crossref_primary_10_1007_s13206_022_00089_6
crossref_primary_10_1016_j_snb_2023_134899
crossref_primary_10_1021_acssensors_2c00598
crossref_primary_10_1016_j_talo_2025_100398
crossref_primary_10_1021_acs_iecr_2c04097
crossref_primary_10_1021_acs_analchem_1c02004
crossref_primary_10_1111_cas_15194
crossref_primary_10_1016_j_chemosphere_2022_134077
crossref_primary_10_1016_j_ab_2023_115233
crossref_primary_10_1016_j_talanta_2022_123444
crossref_primary_10_1016_j_talanta_2024_126838
crossref_primary_10_1021_acs_analchem_1c01712
crossref_primary_10_1002_smll_202307262
crossref_primary_10_1016_j_microc_2022_107419
crossref_primary_10_1021_acsanm_4c01033
crossref_primary_10_3390_bios14040198
crossref_primary_10_1016_j_snb_2021_129471
crossref_primary_10_3389_fonc_2021_632165
crossref_primary_10_1039_D2SD00076H
crossref_primary_10_1002_smtd_202200236
crossref_primary_10_4103_ATN_ATN_D_24_00025
crossref_primary_10_1021_acs_analchem_1c02010
crossref_primary_10_3390_biomedicines10071606
crossref_primary_10_1002_adhm_202202123
crossref_primary_10_1080_10408347_2024_2339961
crossref_primary_10_3390_bios12080648
crossref_primary_10_1002_cbdv_202301008
crossref_primary_10_1016_j_snb_2025_137334
crossref_primary_10_1016_j_bios_2023_115590
crossref_primary_10_1039_D5BM00084J
Cites_doi 10.2174/138945009788680374
10.1074/jbc.C114.617662
10.1016/j.bios.2013.08.003
10.1016/j.plipres.2017.03.001
10.1158/0008-5472.CAN-10-2430
10.1038/s41551-017-0082
10.1038/bjc.2016.312
10.1021/acs.nanolett.8b01184
10.1038/nri855
10.1038/nature15756
10.1080/20013078.2018.1535750
10.1021/acs.chemrev.7b00534
10.1002/adma.200801222
10.1016/j.tibtech.2019.04.008
10.1373/clinchem.2018.291963
10.1038/nature22341
10.1080/20013078.2018.1535744
10.1038/s41571-018-0036-9
10.1016/S0140-6736(16)00141-0
10.1056/NEJMra1704286
10.1016/j.gassur.2006.08.018
10.1016/j.bios.2020.112222
10.1039/C7NR08360B
10.1016/j.bios.2004.11.006
10.1186/s12885-018-4418-2
10.1126/science.aau6977
10.1016/j.bios.2017.11.013
10.1002/anie.201711560
10.1083/jcb.201211138
10.1016/j.trac.2016.10.012
10.7150/thno.27891
10.18869/acadpub.rmm.1.3.6
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bios.2020.112576
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
ExternalDocumentID 32919211
10_1016_j_bios_2020_112576
S0956566320305674
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSU
SSZ
T5K
TN5
XPP
Y6R
YK3
ZMT
~G-
~KM
.HR
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLW
HMU
HVGLF
HZ~
R2-
RIG
SBG
SCB
SCH
SEW
SSH
WUQ
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c455t-20b601117df061606508bbcf81ea6a473e3675cfa7a75f19f2d9c97c3f0a16b3
IEDL.DBID .~1
ISSN 0956-5663
1873-4235
IngestDate Thu Jul 10 23:53:54 EDT 2025
Fri Jul 11 15:51:44 EDT 2025
Mon Jul 21 05:56:35 EDT 2025
Thu Apr 24 22:54:13 EDT 2025
Tue Jul 01 01:42:53 EDT 2025
Fri Feb 23 02:48:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Integrin αvβ6
Aptamer
Cancer diagnosis
HER2
Exosome
Aptasensor
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-20b601117df061606508bbcf81ea6a473e3675cfa7a75f19f2d9c97c3f0a16b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32919211
PQID 2442219788
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2574331465
proquest_miscellaneous_2442219788
pubmed_primary_32919211
crossref_citationtrail_10_1016_j_bios_2020_112576
crossref_primary_10_1016_j_bios_2020_112576
elsevier_sciencedirect_doi_10_1016_j_bios_2020_112576
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
2020-12-00
2020-Dec-01
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biosensors & bioelectronics
PublicationTitleAlternate Biosens Bioelectron
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Raposo, Stoorvogel (bib25) 2013; 200
Rayyan, Zheutlin, Byrd (bib26) 2018; 7
Shah, Patel, Freedman (bib27) 2018; 379
Winter, Cameron, Campbell, Arnold, Chang, Coleman, Hodgin, Sauter, Hruban, Riall, Schulick, Choti, Lillemoe, Yeo (bib34) 2006; 10
Xu, Callaway, Wang, Wang, Slavik, Wang, Li (bib35) 2015; 58
Tombelli, Minunni, Mascini (bib33) 2005
Arya, Zhurauski, Jolly, Batistuti, Mulato, Estrela (bib1) 2018; 102
Chia, Low, Wang, Li, Gao (bib7) 2017; 86
Liu, Xu, Li, Situ, Pan, Hu, An, Yao, Zheng (bib22) 2018; 18
Shao, Im, Castro, Breakefield, Weissleder, Lee (bib28) 2018; 118
Bunn, Helfrich, Soriano, Franklin, Varella-Garcia, Hirsch, Baron, Zeng, Chan (bib5) 2001; 7
Théry, Witwer, Aikawa, Alcaraz, Anderson, Andriantsitohaina, Antoniou, Arab, Archer, Atkin-Smith, Ayre, Bach, Bachurski, Baharvand, Balaj, Baldacchino, Bauer, Baxter, Bebawy, Beckham, Bedina Zavec, Benmoussa, Berardi, Bergese, Bielska, Blenkiron, Bobis-Wozowicz, Boilard, Boireau, Bongiovanni, Borràs, Bosch, Boulanger, Breakefield, Breglio, Brennan, Brigstock, Brisson, Broekman, Bromberg, Bryl-Górecka, Buch, Buck, Burger, Busatto, Buschmann, Bussolati, Buzás, Byrd, Camussi, Carter, Caruso, Chamley, Chang, Chaudhuri, Chen, Chen, Cheng, Chin, Clayton, Clerici, Cocks, Cocucci, Coffey, Cordeiro-da-Silva, Couch, Coumans, Coyle, Crescitelli, Criado, D'Souza-Schorey, Das, de Candia, De Santana, De Wever, del Portillo, Demaret, Deville, Devitt, Dhondt, Di Vizio, Dieterich, Dolo, Dominguez Rubio, Dominici, Dourado, Driedonks, Duarte, Duncan, Eichenberger, Ekström, EL Andaloussi, Elie-Caille, Erdbrügger, Falcón-Pérez, Fatima, Fish, Flores-Bellver, Försönits, Frelet-Barrand, Fricke, Fuhrmann, Gabrielsson, Gámez-Valero, Gardiner, Gärtner, Gaudin, Gho, Giebel, Gilbert, Gimona, Giusti, Goberdhan, Görgens, Gorski, Greening, Gross, Gualerzi, Gupta, Gustafson, Handberg, Haraszti, Harrison, Hegyesi, Hendrix, Hill, Hochberg, Hoffmann, Holder, Holthofer, Hosseinkhani, Hu, Huang, Huber, Hunt, Ibrahim, Ikezu, Inal, Isin, Ivanova, Jackson, Jacobsen, Jay, Jayachandran, Jenster, Jiang, Johnson, Jones, Jong, Jovanovic-Talisman, Jung, Kalluri, Kano, Kaur, Kawamura, Keller, Khamari, Khomyakova, Khvorova, Kierulf, Kim, Kislinger, Klingeborn, Klinke, Kornek, Kosanović, Kovács, Krämer-Albers, Krasemann, Krause, Kurochkin, Kusuma, Kuypers, Laitinen, Langevin, Languino, Lannigan, Lässer, Laurent, Lavieu, Lázaro-Ibáñez, Le Lay, Lee, Lee, Lemos, Lenassi, Leszczynska, Li, Liao, Libregts, Ligeti, Lim, Lim, Linē, Linnemannstöns, Llorente, Lombard, Lorenowicz, Lörincz, Lötvall, Lovett, Lowry, Loyer, Lu, Lukomska, Lunavat, Maas, Malhi, Marcilla, Mariani, Mariscal, Martens-Uzunova, Martin-Jaular, Martinez, Martins, Mathieu, Mathivanan, Maugeri, McGinnis, McVey, Meckes, Meehan, Mertens, Minciacchi, Möller, Møller Jørgensen, Morales-Kastresana, Morhayim, Mullier, Muraca, Musante, Mussack, Muth, Myburgh, Najrana, Nawaz, Nazarenko, Nejsum, Neri, Neri, Nieuwland, Nimrichter, Nolan, Nolte-’t Hoen, Noren Hooten, O'Driscoll, O'Grady, O'Loghlen, Ochiya, Olivier, Ortiz, Ortiz, Osteikoetxea, Ostegaard, Ostrowski, Park, Pegtel, Peinado, Perut, Pfaffl, Phinney, Pieters, Pink, Pisetsky, Pogge von Strandmann, Polakovicova, Poon, Powell, Prada, Pulliam, Quesenberry, Radeghieri, Raffai, Raimondo, Rak, Ramirez, Raposo, Rayyan, Regev-Rudzki, Ricklefs, Robbins, Roberts, Rodrigues, Rohde, Rome, Rouschop, Rughetti, Russell, Saá, Sahoo, Salas-Huenuleo, Sánchez, Saugstad, Saul, Schiffelers, Schneider, Schøyen, Scott, Shahaj, Sharma, Shatnyeva, Shekari, Shelke, Shetty, Shiba, Siljander, Silva, Skowronek, Snyder, Soares, Sódar, Soekmadji, Sotillo, Stahl, Stoorvogel, Stott, Strasser, Swift, Tahara, Tewari, Timms, Tiwari, Tixeira, Tkach, Toh, Tomasini, Torrecilhas, Tosar, Toxavidis, Urbanelli, Vader, van Balkom, van der Grein, Van Deun, van Herwijnen, Van Keuren-Jensen, van Niel, van Royen, van Wijnen, Vasconcelos, Vechetti, Veit, Vella, Velot, Verweij, Vestad, Viñas, Visnovitz, Vukman, Wahlgren, Watson, Wauben, Weaver, Webber, Weber, Wehman, Weiss, Welsh, Wendt, Wheelock, Wiener, Witte, Wolfram, Xagorari, Xander, Xu, Yan, Yáñez-Mó, Yin, Yuana, Zappulli, Zarubova, Žėkas, Zhang, Zhao, Zheng, Zheutlin, Zickler, Zimmermann, Zivkovic, Zocco, Zuba-Surma (bib30) 2018; 7
Hoshino, Costa-Silva, Shen (bib12) 2015
Faruqu, Wang, Xu, McNickle, Chong, Walters, Gurney, Clayton, Smyth, Hider, Sosabowski, Al-Jamal (bib8) 2019; 9
Xu, Shoaei, Jahanpeyma, Zhao, Azimzadeh, Al−Jamal (bib36) 2020; 161
Faruqu, Xu, Al-Jamal (bib9) 2018; 2018
Théry, Zitvogel, Amigorena (bib31) 2002; 2
Kamisawa, Wood, Itoi, Takaori (bib17) 2016; 388
Lee, Rho, Messersmith (bib20) 2009; 21
Tokura, Harvey, Chen, Wu, Ng, Weil (bib32) 2018; 57
Ramirez, Amorim, Gadelha, Milic, Welsh, Freitas, Nawaz, Akbar, Couch, Makin, Cooke, Vettore, Batista, Freezor, Pezuk, Rosa-Fernandes, Carreira, Devitt, Jacobs, Silva, Coakley, Nunes, Carter, Palmisano, Dias-Neto (bib24) 2018; 10
Xu, Rai, Chen, Suwakulsiri, Greening, Simpson (bib37) 2018; 15
Kim, Lee, Min, Lim, Jeong (bib18) 2014; 51
Bi, Koivisto, Dai, Zhuang, Jiang, Larjava, Shen, Bi, Liu, Haapasalo, Häkkinen, Larjava (bib4) 2019; 133
Cheng, Du, Wang, Liu, Xu, Luo, Lin (bib6) 2019
Hamidi, Pietilä, Ivaska (bib11) 2016
Paulista, Em, Biológicas (bib23) 2017
Kabe, Suematsu, Sakamoto, Hirai, Koike, Hishiki, Matsuda, Hasegawa, Tsujita, Ono, Minegishi, Hozawa, Murakami, Kubo, Itonaga, Handa (bib14) 2018; 64
Li, Baird, Davis, Tai, Zweifel, Waldorf, Gale, Rajagopal, Pierce, Gao (bib21) 2017; 1
Skotland, Sandvig, Llorente (bib29) 2017
Fedele, Singh, Zerlanko, Iozzo, Languino (bib10) 2015; 290
Barok, Puhka, Vereb, Szollosi, Isola, Joensuu (bib3) 2018; 18
Bandyopadhyay, Raghavan (bib2) 2009
Kamerkar, Lebleu, Sugimoto, Yang, Ruivo, Melo, Lee, Kalluri (bib16) 2017; 546
Kalluri, LeBleu (bib15) 2020; 367
LaBonte, Wilson, Fazzone, Russell, Louie, El-Khoueiry, Lenz, Ladner (bib19) 2011; 71
Hosseinzadeh Colagar, Amjadi, Valadan, Rafiei (bib13) 2013; 1
Chia (10.1016/j.bios.2020.112576_bib7) 2017; 86
Skotland (10.1016/j.bios.2020.112576_bib29) 2017
Arya (10.1016/j.bios.2020.112576_bib1) 2018; 102
Raposo (10.1016/j.bios.2020.112576_bib25) 2013; 200
Kamerkar (10.1016/j.bios.2020.112576_bib16) 2017; 546
Shao (10.1016/j.bios.2020.112576_bib28) 2018; 118
Liu (10.1016/j.bios.2020.112576_bib22) 2018; 18
Barok (10.1016/j.bios.2020.112576_bib3) 2018; 18
Cheng (10.1016/j.bios.2020.112576_bib6) 2019
LaBonte (10.1016/j.bios.2020.112576_bib19) 2011; 71
Xu (10.1016/j.bios.2020.112576_bib35) 2015; 58
Kabe (10.1016/j.bios.2020.112576_bib14) 2018; 64
Hosseinzadeh Colagar (10.1016/j.bios.2020.112576_bib13) 2013; 1
Théry (10.1016/j.bios.2020.112576_bib31) 2002; 2
Xu (10.1016/j.bios.2020.112576_bib37) 2018; 15
Kamisawa (10.1016/j.bios.2020.112576_bib17) 2016; 388
Tombelli (10.1016/j.bios.2020.112576_bib33) 2005
Hamidi (10.1016/j.bios.2020.112576_bib11) 2016
Kalluri (10.1016/j.bios.2020.112576_bib15) 2020; 367
Faruqu (10.1016/j.bios.2020.112576_bib8) 2019; 9
Bi (10.1016/j.bios.2020.112576_bib4) 2019; 133
Faruqu (10.1016/j.bios.2020.112576_bib9) 2018; 2018
Ramirez (10.1016/j.bios.2020.112576_bib24) 2018; 10
Rayyan (10.1016/j.bios.2020.112576_bib26) 2018; 7
Tokura (10.1016/j.bios.2020.112576_bib32) 2018; 57
Xu (10.1016/j.bios.2020.112576_bib36) 2020; 161
Kim (10.1016/j.bios.2020.112576_bib18) 2014; 51
Li (10.1016/j.bios.2020.112576_bib21) 2017; 1
Bunn (10.1016/j.bios.2020.112576_bib5) 2001; 7
Théry (10.1016/j.bios.2020.112576_bib30) 2018; 7
Shah (10.1016/j.bios.2020.112576_bib27) 2018; 379
Hoshino (10.1016/j.bios.2020.112576_bib12) 2015
Winter (10.1016/j.bios.2020.112576_bib34) 2006; 10
Paulista (10.1016/j.bios.2020.112576_bib23) 2017
Fedele (10.1016/j.bios.2020.112576_bib10) 2015; 290
Bandyopadhyay (10.1016/j.bios.2020.112576_bib2) 2009
Lee (10.1016/j.bios.2020.112576_bib20) 2009; 21
References_xml – year: 2009
  ident: bib2
  article-title: Defining the role of integrin alphavbeta6 in cancer
  publication-title: Curr. Drug Targets
– volume: 57
  start-page: 1587
  year: 2018
  end-page: 1591
  ident: bib32
  article-title: Fabrication of defined polydopamine nanostructures by DNA origami-templated polymerization
  publication-title: Angew. Chem. Int. Ed.
– volume: 118
  start-page: 1917
  year: 2018
  end-page: 1950
  ident: bib28
  article-title: New technologies for analysis of extracellular vesicles
  publication-title: Chem. Rev.
– volume: 161
  year: 2020
  ident: bib36
  article-title: Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: a comprehensive overview
  publication-title: Biosens. Bioelectron.
– volume: 86
  start-page: 93
  year: 2017
  end-page: 106
  ident: bib7
  article-title: Advances in exosome quantification techniques
  publication-title: TrAC Trends Anal. Chem.
– volume: 388
  start-page: 73
  year: 2016
  end-page: 85
  ident: bib17
  article-title: Pancreatic cancer
  publication-title: Lancet
– year: 2019
  ident: bib6
  article-title: Recent advances in biosensors for detecting cancer-derived exosomes
  publication-title: Trends Biotechnol.
– volume: 367
  year: 2020
  ident: bib15
  article-title: The biology, function, and biomedical applications of exosomes
  publication-title: Science
– volume: 58
  start-page: 891
  year: 2015
  end-page: 906
  ident: bib35
  article-title: A fluorescent aptasensor coupled with nanobead-based immunomagnetic separation for simultaneous detection of four foodborne pathogenic bacteria
  publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.)
– volume: 290
  start-page: 4545
  year: 2015
  end-page: 4551
  ident: bib10
  article-title: The α v β 6 integrin is transferred intercellularly via exosomes
  publication-title: J. Biol. Chem.
– volume: 546
  start-page: 498
  year: 2017
  end-page: 503
  ident: bib16
  article-title: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer
  publication-title: Nature
– volume: 200
  start-page: 373
  year: 2013
  end-page: 383
  ident: bib25
  article-title: Extracellular vesicles: exosomes, microvesicles, and friends
  publication-title: J. Cell Biol.
– volume: 2
  start-page: 569
  year: 2002
  end-page: 579
  ident: bib31
  article-title: Exosomes: composition, biogenesis and function
  publication-title: Nat. Rev. Immunol.
– volume: 51
  start-page: 426
  year: 2014
  end-page: 430
  ident: bib18
  article-title: An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk
  publication-title: Biosens. Bioelectron.
– volume: 18
  start-page: 504
  year: 2018
  ident: bib3
  article-title: Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation
  publication-title: BMC Canc.
– year: 2016
  ident: bib11
  article-title: The complexity of integrins in cancer and new scopes for therapeutic targeting
  publication-title: Br. J. Canc.
– year: 2017
  ident: bib23
  article-title: Pancreatic adenocarcinoma guidelines
  publication-title: Natl. Cancer Compr. Network
– volume: 102
  start-page: 106
  year: 2018
  end-page: 112
  ident: bib1
  article-title: Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum
  publication-title: Biosens. Bioelectron.
– volume: 10
  start-page: 881
  year: 2018
  end-page: 906
  ident: bib24
  article-title: Technical challenges of working with extracellular vesicles
  publication-title: Nanoscale
– year: 2017
  ident: bib29
  article-title: Lipids in exosomes: current knowledge and the way forward
  publication-title: Prog. Lipid Res.
– volume: 1
  year: 2017
  ident: bib21
  article-title: Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine
  publication-title: Nat. Biomed. Eng.
– volume: 15
  start-page: 617
  year: 2018
  end-page: 638
  ident: bib37
  article-title: Extracellular vesicles in cancer — implications for future improvements in cancer care
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 64
  start-page: 1463
  year: 2018
  end-page: 1473
  ident: bib14
  article-title: Development of a highly sensitive device for counting the number of disease-specific exosomes in human sera
  publication-title: Clin. Chem.
– volume: 21
  start-page: 431
  year: 2009
  end-page: 434
  ident: bib20
  article-title: Facile conjugation of biomolecu les onto surfaces via mussel adhesive protein inspired coatings
  publication-title: Adv. Mater.
– volume: 71
  start-page: 3635
  year: 2011
  end-page: 3648
  ident: bib19
  article-title: The dual EGFR/HER2 inhibitor lapatinib synergistically enhances the antitumor activity of the histone deacetylase inhibitor panobinostat in colorectal cancer models
  publication-title: Canc. Res.
– volume: 7
  start-page: 1535750
  year: 2018
  ident: bib30
  article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
  publication-title: J. Extracell. Vesicles
– volume: 10
  start-page: 1199
  year: 2006
  end-page: 1211
  ident: bib34
  article-title: 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience
  publication-title: J. Gastrointest. Surg.
– volume: 7
  year: 2018
  ident: bib26
  article-title: Clinical research using extracellular vesicles: insights from the international society for extracellular vesicles 2018 annual meeting
  publication-title: J. Extracell. Vesicles
– volume: 9
  start-page: 1666
  year: 2019
  end-page: 1682
  ident: bib8
  article-title: Membrane radiolabelling of exosomes for comparative biodistribution analysis in immunocompetent and immunodeficient mice – a novel and universal approach
  publication-title: Theranostics
– volume: 1
  start-page: 6
  year: 2013
  end-page: 12
  ident: bib13
  article-title: Minimal HER1 and HER2 expressions in CHO and HEK-293 cells cause them appropriate negative cells for HERs-related studies
  publication-title: Res. Mol. Med.
– volume: 379
  start-page: 958
  year: 2018
  end-page: 966
  ident: bib27
  article-title: Circulating extracellular vesicles in human disease
  publication-title: N. Engl. J. Med.
– year: 2005
  ident: bib33
  article-title: Analytical applications of aptamers
  publication-title: Biosens. Bioelectron.
– year: 2015
  ident: bib12
  article-title: Tumour exosome integrins determine organotropic metastasis
  publication-title: Nature
– volume: 18
  start-page: 4226
  year: 2018
  end-page: 4232
  ident: bib22
  article-title: Single-exosome-Counting immunoassays for cancer diagnostics
  publication-title: Nano Lett.
– volume: 7
  start-page: 3239
  year: 2001
  end-page: 3250
  ident: bib5
  article-title: Expression of Her-2/neu in human lung cancer cell lines by immunohistochemistry and fluorescence in situ hybridization and its relationship to in vitro cytotoxicity by trastuzumab and chemotherapeutic agents
  publication-title: Clin. Canc. Res.
– volume: 2018
  year: 2018
  ident: bib9
  article-title: Preparation of exosomes for siRNA delivery to cancer cells
  publication-title: J. Vis. Exp.
– volume: 133
  year: 2019
  ident: bib4
  article-title: Epidermal growth factor receptor signaling suppresses αvβ6 integrin and promotes periodontal inflammation and bone loss
  publication-title: J. Cell Sci.
– year: 2009
  ident: 10.1016/j.bios.2020.112576_bib2
  article-title: Defining the role of integrin alphavbeta6 in cancer
  publication-title: Curr. Drug Targets
  doi: 10.2174/138945009788680374
– volume: 290
  start-page: 4545
  year: 2015
  ident: 10.1016/j.bios.2020.112576_bib10
  article-title: The α v β 6 integrin is transferred intercellularly via exosomes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C114.617662
– volume: 51
  start-page: 426
  year: 2014
  ident: 10.1016/j.bios.2020.112576_bib18
  article-title: An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.08.003
– year: 2017
  ident: 10.1016/j.bios.2020.112576_bib29
  article-title: Lipids in exosomes: current knowledge and the way forward
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2017.03.001
– volume: 71
  start-page: 3635
  year: 2011
  ident: 10.1016/j.bios.2020.112576_bib19
  article-title: The dual EGFR/HER2 inhibitor lapatinib synergistically enhances the antitumor activity of the histone deacetylase inhibitor panobinostat in colorectal cancer models
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-10-2430
– volume: 1
  year: 2017
  ident: 10.1016/j.bios.2020.112576_bib21
  article-title: Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0082
– volume: 133
  year: 2019
  ident: 10.1016/j.bios.2020.112576_bib4
  article-title: Epidermal growth factor receptor signaling suppresses αvβ6 integrin and promotes periodontal inflammation and bone loss
  publication-title: J. Cell Sci.
– year: 2016
  ident: 10.1016/j.bios.2020.112576_bib11
  article-title: The complexity of integrins in cancer and new scopes for therapeutic targeting
  publication-title: Br. J. Canc.
  doi: 10.1038/bjc.2016.312
– volume: 18
  start-page: 4226
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib22
  article-title: Single-exosome-Counting immunoassays for cancer diagnostics
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01184
– year: 2017
  ident: 10.1016/j.bios.2020.112576_bib23
  article-title: Pancreatic adenocarcinoma guidelines
  publication-title: Natl. Cancer Compr. Network
– volume: 2
  start-page: 569
  year: 2002
  ident: 10.1016/j.bios.2020.112576_bib31
  article-title: Exosomes: composition, biogenesis and function
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri855
– year: 2015
  ident: 10.1016/j.bios.2020.112576_bib12
  article-title: Tumour exosome integrins determine organotropic metastasis
  publication-title: Nature
  doi: 10.1038/nature15756
– volume: 7
  start-page: 1535750
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib30
  article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
  publication-title: J. Extracell. Vesicles
  doi: 10.1080/20013078.2018.1535750
– volume: 118
  start-page: 1917
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib28
  article-title: New technologies for analysis of extracellular vesicles
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00534
– volume: 21
  start-page: 431
  year: 2009
  ident: 10.1016/j.bios.2020.112576_bib20
  article-title: Facile conjugation of biomolecu les onto surfaces via mussel adhesive protein inspired coatings
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801222
– year: 2019
  ident: 10.1016/j.bios.2020.112576_bib6
  article-title: Recent advances in biosensors for detecting cancer-derived exosomes
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2019.04.008
– volume: 64
  start-page: 1463
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib14
  article-title: Development of a highly sensitive device for counting the number of disease-specific exosomes in human sera
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2018.291963
– volume: 546
  start-page: 498
  year: 2017
  ident: 10.1016/j.bios.2020.112576_bib16
  article-title: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer
  publication-title: Nature
  doi: 10.1038/nature22341
– volume: 7
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib26
  article-title: Clinical research using extracellular vesicles: insights from the international society for extracellular vesicles 2018 annual meeting
  publication-title: J. Extracell. Vesicles
  doi: 10.1080/20013078.2018.1535744
– volume: 15
  start-page: 617
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib37
  article-title: Extracellular vesicles in cancer — implications for future improvements in cancer care
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-018-0036-9
– volume: 388
  start-page: 73
  year: 2016
  ident: 10.1016/j.bios.2020.112576_bib17
  article-title: Pancreatic cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00141-0
– volume: 379
  start-page: 958
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib27
  article-title: Circulating extracellular vesicles in human disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1704286
– volume: 10
  start-page: 1199
  year: 2006
  ident: 10.1016/j.bios.2020.112576_bib34
  article-title: 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience
  publication-title: J. Gastrointest. Surg.
  doi: 10.1016/j.gassur.2006.08.018
– volume: 7
  start-page: 3239
  year: 2001
  ident: 10.1016/j.bios.2020.112576_bib5
  article-title: Expression of Her-2/neu in human lung cancer cell lines by immunohistochemistry and fluorescence in situ hybridization and its relationship to in vitro cytotoxicity by trastuzumab and chemotherapeutic agents
  publication-title: Clin. Canc. Res.
– volume: 161
  year: 2020
  ident: 10.1016/j.bios.2020.112576_bib36
  article-title: Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: a comprehensive overview
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112222
– volume: 10
  start-page: 881
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib24
  article-title: Technical challenges of working with extracellular vesicles
  publication-title: Nanoscale
  doi: 10.1039/C7NR08360B
– year: 2005
  ident: 10.1016/j.bios.2020.112576_bib33
  article-title: Analytical applications of aptamers
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2004.11.006
– volume: 18
  start-page: 504
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib3
  article-title: Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation
  publication-title: BMC Canc.
  doi: 10.1186/s12885-018-4418-2
– volume: 2018
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib9
  article-title: Preparation of exosomes for siRNA delivery to cancer cells
  publication-title: J. Vis. Exp.
– volume: 367
  year: 2020
  ident: 10.1016/j.bios.2020.112576_bib15
  article-title: The biology, function, and biomedical applications of exosomes
  publication-title: Science
  doi: 10.1126/science.aau6977
– volume: 102
  start-page: 106
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib1
  article-title: Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.11.013
– volume: 57
  start-page: 1587
  year: 2018
  ident: 10.1016/j.bios.2020.112576_bib32
  article-title: Fabrication of defined polydopamine nanostructures by DNA origami-templated polymerization
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201711560
– volume: 200
  start-page: 373
  year: 2013
  ident: 10.1016/j.bios.2020.112576_bib25
  article-title: Extracellular vesicles: exosomes, microvesicles, and friends
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201211138
– volume: 86
  start-page: 93
  year: 2017
  ident: 10.1016/j.bios.2020.112576_bib7
  article-title: Advances in exosome quantification techniques
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2016.10.012
– volume: 58
  start-page: 891
  year: 2015
  ident: 10.1016/j.bios.2020.112576_bib35
  article-title: A fluorescent aptasensor coupled with nanobead-based immunomagnetic separation for simultaneous detection of four foodborne pathogenic bacteria
  publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.)
– volume: 9
  start-page: 1666
  year: 2019
  ident: 10.1016/j.bios.2020.112576_bib8
  article-title: Membrane radiolabelling of exosomes for comparative biodistribution analysis in immunocompetent and immunodeficient mice – a novel and universal approach
  publication-title: Theranostics
  doi: 10.7150/thno.27891
– volume: 1
  start-page: 6
  year: 2013
  ident: 10.1016/j.bios.2020.112576_bib13
  article-title: Minimal HER1 and HER2 expressions in CHO and HEK-293 cells cause them appropriate negative cells for HERs-related studies
  publication-title: Res. Mol. Med.
  doi: 10.18869/acadpub.rmm.1.3.6
SSID ssj0007190
Score 2.5804968
Snippet There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112576
SubjectTerms absorbance
aldimines
Aptamer
Aptamers, Nucleotide
Aptasensor
aptasensors
Biosensing Techniques
breasts
Cancer diagnosis
catalytic activity
color
Colorimetry
detection limit
dopamine
Exosome
Exosomes
HER2
Humans
Hydrogen Peroxide
Integrin αvβ6
integrins
latex
Neoplasms - diagnosis
oligonucleotides
peroxidase
point-of-care systems
polymerization
Title Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes
URI https://dx.doi.org/10.1016/j.bios.2020.112576
https://www.ncbi.nlm.nih.gov/pubmed/32919211
https://www.proquest.com/docview/2442219788
https://www.proquest.com/docview/2574331465
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUCU4VEB5LFBkpN5KWBLbcXJEqGgpggtU4hY59kRaBMlqk63aC78dT5zwkGAPHB2NE8sznvmSzHwD8OMYBddRLIM8sTYQCeogRQfkDMfQJqnlUULVyJdX8eiP-H0rbxfgtK-FobTKzvd7n9566-7KsNvN4WQ8Hl4ThZ4DIzxqYbAiTlAhFFn50eNLmocK_XcW4tsj6a5wxud45eOKKLujtpJGEu_I-8HpI_DZBqGzVfjaoUd24he4BgtYrsMX30_y_zqsvGIX_AazVwlBrCqYZvWYuIAPWU1Z6-TnmC4tq9tWODQiBmui-yfWfqYnjSbBasocsGUOKDKLTZu5VdLtDNnLNLDuaX_RMvxX1dUD1htwc_br5nQUdF0WAiOkbNwxyWNqOK9s4WJ73EK2PDdFEqKOtVAcuXupMIVWWskiTIvIpiZVhhfHOoxzvgmLZVXiNjCj8lho5Cpx2nBbr6UoHBywBiM0NtQDCPvdzUzHQE6NMO6zPtXsLiONZKSRzGtkAD-f50w8_8ZcadkrLXtjRZkLEHPnHfQaztzxon8musRq5oSEiJxTV0kyR0YqqjsTsRzAljeP57XyKCXGuXDnkyvbhWUa-QSaPVhspjP87mBQk--3dr4PSyfnF6OrJ_6HB1Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9RAEJ4gxggPRFHwBHFNfNNytLvbbR8NgRwKvHgmvG22u9PkCLSXa8_oC7_dnW6LmOg9-Nh2tt3szM58bWe-AXh_hIKbJJVRkTkXiQxNlKMHcpZj7LLc8SSjauSLy3TyTXy-kldrcDzUwlBaZe_7g0_vvHV_Ztyv5ng-m42_EoWeByM86WCwEo_gsfDbl9oYHN79zvNQcfjQQoR7JN5XzoQkr2JWE2d30pXSSCIe-Xt0-hf67KLQ6TPY6uEj-xRm-BzWsNqGJ6Gh5M9t2HxAL_gClg8yglhdMsOaGZEBf2QNpa2To2OmcqzpeuHQEVFYE98_0fYzM28NCdYL5pEt80iROWy71K2KbmfJYBaR80_7jo7hj7qpb7F5CdPTk-nxJOrbLERWSNn6fVKk1HFeudIH97TDbEVhyyxGkxqhOHL_VmFLo4ySZZyXicttriwvj0ycFnwH1qu6wlfArCpSYZCrzKvDL72RovR4wFlM0LrYjCAeVlfbnoKcOmHc6CHX7FqTRjRpRAeNjODD_Zh5IOBYKS0Hpek_zEj7CLFy3LtBw9rvL_ppYiqsl15IiMR7dZVlK2SkosIzkcoR7AbzuJ8rT3KinItf_-fM3sLTyfTiXJ-fXX7Zgw26ErJp9mG9XSzxjcdEbXHQ2fwv6vAI5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+simple%2C+sensitive+and+selective+colorimetric+aptasensor+for+the+detection+of+cancer-derived+exosomes&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Xu%2C+Lizhou&rft.au=Chopdat%2C+Raheemah&rft.au=Li%2C+Danyang&rft.au=Al-Jamal%2C+Khuloud+T.&rft.date=2020-12-01&rft.issn=0956-5663&rft.volume=169&rft.spage=112576&rft_id=info:doi/10.1016%2Fj.bios.2020.112576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bios_2020_112576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon