Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes
There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by...
Saved in:
Published in | Biosensors & bioelectronics Vol. 169; p. 112576 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H2O2 reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 103 particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting.
•A bead-based aptamer assay with a colorimetric detection by the naked eye and an external reader (by a microplate spectrophotometer) was developed.•The aptasensor detects cancer-derived exosomes with outstanding sensitivity.•A promising diagnostic biomarker on exosomes is proposed for pancreatic cancer.•The aptasensor holds great potential for point-of-care diagnosis of cancers. |
---|---|
AbstractList | There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H₂O₂ reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 10³ particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting. There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H2O2 reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 103 particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting. •A bead-based aptamer assay with a colorimetric detection by the naked eye and an external reader (by a microplate spectrophotometer) was developed.•The aptasensor detects cancer-derived exosomes with outstanding sensitivity.•A promising diagnostic biomarker on exosomes is proposed for pancreatic cancer.•The aptasensor holds great potential for point-of-care diagnosis of cancers. There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H O reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 10 particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting. There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H2O2 reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 103 particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting.There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric aptasensor for sensitive and specific detection of circulating cancer-derived exosomes. In this design, target exosomes were firstly captured by latex beads via aldimine condensation, followed by bio-recognition using a specific CD63 aptamer, which was conjugated to horseradish peroxidase (HRP) through biotin-streptavidin binding. Colorimetric detection was achieved in 10 min via enzymatic catalysis to produce dark coloured polydopamine (PDA) from colourless substrate dopamine (DA) in especially prepared H2O2 reaction solution. The sensitivity was enhanced by in situ deposition of PDA around exosome particles to strengthen the developed colorimetric signal, which could be directly observed by naked eye. Signal quantification was carried out by absorbance measurement. The colour intensity correlates to the CD63 amount and the limit of detection can be as low as 7.7 × 103 particle/mL, improved by 3-5 orders of magnitude from conventional Dot-blot methods. The aptasensor showed specificity to HER2 and integrin αvβ6 positive, cell culture-derived, breast and pancreatic cancer-derived exosomes, respectively, when the correct aptamer sequence was used. Overall, a sensitive and selective colorimetric aptasensor was successfully developed for detecting cancer-derived exosomes facilitated by HRP-accelerated DA polymerization and in situ PDA deposition. This versatile aptasensor holds great potential for future development of point-of-care detection kits for cancer diagnosis in a clinical setting. |
ArticleNumber | 112576 |
Author | Li, Danyang Chopdat, Raheemah Xu, Lizhou Al-Jamal, Khuloud T. |
Author_xml | – sequence: 1 givenname: Lizhou surname: Xu fullname: Xu, Lizhou email: Lizhou.xu@kcl.ac.uk – sequence: 2 givenname: Raheemah surname: Chopdat fullname: Chopdat, Raheemah – sequence: 3 givenname: Danyang surname: Li fullname: Li, Danyang – sequence: 4 givenname: Khuloud T. surname: Al-Jamal fullname: Al-Jamal, Khuloud T. email: Khuloud.al-jamal@kcl.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32919211$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFP8AB5ciBLB47thOJCyqfUiUuvVuOPRZeJXGwvSv493XY9sKhHCxrRs8zh_e9IhdLXJCQ10D3QEG-P-zHEPOeUVYXwISSz8gOesXbjnFxQXZ0ELIVUvJLcpXzgVKqYKAvyCVnAwwMYEeOn_CEU1xnXEoTfWOaHOZ1wndNxiWHEk7YmMXVaUL7d7JxiinMWFKwjVmL2cCYGl9f-YmNw7KRcdnOWbNYTK3DVFXX4O-Y44z5JXnuzZTx1cN_Te6-fL67-dbe_vj6_ebjbWs7IUrL6CgpACjnqQRJpaD9OFrfAxppOsWRSyWsN8oo4WHwzA12UJZ7akCO_Jq8PZ9dU_x1xFz0HLLFaTILxmPWNbKOc-ik-D_adYzBoPq-om8e0OM4o9NrTcOkP_ox1Ar0Z8CmmHNCr20oZoukJBMmDVRv_emD3vrTW3_63F9V2T_q4_UnpQ9nCWuUp4BJZxuwBu9CqlVoF8NT-j1_vbS4 |
CitedBy_id | crossref_primary_10_2174_1568026623666221124110016 crossref_primary_10_3389_fonc_2023_1131435 crossref_primary_10_1021_acsmeasuresciau_4c00043 crossref_primary_10_1021_acs_analchem_3c05550 crossref_primary_10_1016_j_aca_2022_339817 crossref_primary_10_1016_j_aca_2022_339938 crossref_primary_10_1021_acs_analchem_3c03135 crossref_primary_10_1039_D4NR00207E crossref_primary_10_3390_cancers16193298 crossref_primary_10_1016_j_trac_2024_117978 crossref_primary_10_1021_acsptsci_2c00207 crossref_primary_10_1039_D4TC01594K crossref_primary_10_1021_acsmeasuresciau_2c00068 crossref_primary_10_2147_IJN_S333969 crossref_primary_10_1002_anse_202400027 crossref_primary_10_1007_s11684_021_0884_z crossref_primary_10_3390_bios15040207 crossref_primary_10_1021_acsabm_4c00782 crossref_primary_10_1016_j_vesic_2022_100006 crossref_primary_10_1021_acssensors_4c01357 crossref_primary_10_1016_j_talanta_2024_126534 crossref_primary_10_1007_s44211_024_00582_y crossref_primary_10_1186_s12935_024_03379_1 crossref_primary_10_1039_D0TB02163F crossref_primary_10_3390_s21227645 crossref_primary_10_1007_s00604_022_05278_6 crossref_primary_10_1186_s12951_024_02318_6 crossref_primary_10_1016_j_talanta_2025_127532 crossref_primary_10_3390_bios12050281 crossref_primary_10_1016_j_biosx_2022_100115 crossref_primary_10_1016_j_jcis_2022_01_174 crossref_primary_10_1016_j_aca_2021_339357 crossref_primary_10_1016_j_aca_2021_339279 crossref_primary_10_1021_acsami_1c09000 crossref_primary_10_1016_j_snb_2023_134686 crossref_primary_10_1016_j_bios_2022_114681 crossref_primary_10_1021_acssensors_4c00774 crossref_primary_10_2174_0929867329666220224155037 crossref_primary_10_1016_j_gene_2023_147905 crossref_primary_10_1016_j_jcis_2021_12_133 crossref_primary_10_1021_acssensors_3c00247 crossref_primary_10_1016_j_ccr_2021_214111 crossref_primary_10_3390_molecules27196673 crossref_primary_10_1021_acssensors_0c02237 crossref_primary_10_1039_D3NR05459D crossref_primary_10_1016_j_trac_2023_117077 crossref_primary_10_1021_acs_analchem_1c02286 crossref_primary_10_1007_s13206_022_00089_6 crossref_primary_10_1016_j_snb_2023_134899 crossref_primary_10_1021_acssensors_2c00598 crossref_primary_10_1016_j_talo_2025_100398 crossref_primary_10_1021_acs_iecr_2c04097 crossref_primary_10_1021_acs_analchem_1c02004 crossref_primary_10_1111_cas_15194 crossref_primary_10_1016_j_chemosphere_2022_134077 crossref_primary_10_1016_j_ab_2023_115233 crossref_primary_10_1016_j_talanta_2022_123444 crossref_primary_10_1016_j_talanta_2024_126838 crossref_primary_10_1021_acs_analchem_1c01712 crossref_primary_10_1002_smll_202307262 crossref_primary_10_1016_j_microc_2022_107419 crossref_primary_10_1021_acsanm_4c01033 crossref_primary_10_3390_bios14040198 crossref_primary_10_1016_j_snb_2021_129471 crossref_primary_10_3389_fonc_2021_632165 crossref_primary_10_1039_D2SD00076H crossref_primary_10_1002_smtd_202200236 crossref_primary_10_4103_ATN_ATN_D_24_00025 crossref_primary_10_1021_acs_analchem_1c02010 crossref_primary_10_3390_biomedicines10071606 crossref_primary_10_1002_adhm_202202123 crossref_primary_10_1080_10408347_2024_2339961 crossref_primary_10_3390_bios12080648 crossref_primary_10_1002_cbdv_202301008 crossref_primary_10_1016_j_snb_2025_137334 crossref_primary_10_1016_j_bios_2023_115590 crossref_primary_10_1039_D5BM00084J |
Cites_doi | 10.2174/138945009788680374 10.1074/jbc.C114.617662 10.1016/j.bios.2013.08.003 10.1016/j.plipres.2017.03.001 10.1158/0008-5472.CAN-10-2430 10.1038/s41551-017-0082 10.1038/bjc.2016.312 10.1021/acs.nanolett.8b01184 10.1038/nri855 10.1038/nature15756 10.1080/20013078.2018.1535750 10.1021/acs.chemrev.7b00534 10.1002/adma.200801222 10.1016/j.tibtech.2019.04.008 10.1373/clinchem.2018.291963 10.1038/nature22341 10.1080/20013078.2018.1535744 10.1038/s41571-018-0036-9 10.1016/S0140-6736(16)00141-0 10.1056/NEJMra1704286 10.1016/j.gassur.2006.08.018 10.1016/j.bios.2020.112222 10.1039/C7NR08360B 10.1016/j.bios.2004.11.006 10.1186/s12885-018-4418-2 10.1126/science.aau6977 10.1016/j.bios.2017.11.013 10.1002/anie.201711560 10.1083/jcb.201211138 10.1016/j.trac.2016.10.012 10.7150/thno.27891 10.18869/acadpub.rmm.1.3.6 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bios.2020.112576 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
ExternalDocumentID | 32919211 10_1016_j_bios_2020_112576 S0956566320305674 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM .HR 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ R2- RIG SBG SCB SCH SEW SSH WUQ CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-20b601117df061606508bbcf81ea6a473e3675cfa7a75f19f2d9c97c3f0a16b3 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Thu Jul 10 23:53:54 EDT 2025 Fri Jul 11 15:51:44 EDT 2025 Mon Jul 21 05:56:35 EDT 2025 Thu Apr 24 22:54:13 EDT 2025 Tue Jul 01 01:42:53 EDT 2025 Fri Feb 23 02:48:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Integrin αvβ6 Aptamer Cancer diagnosis HER2 Exosome Aptasensor |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-20b601117df061606508bbcf81ea6a473e3675cfa7a75f19f2d9c97c3f0a16b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32919211 |
PQID | 2442219788 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2574331465 proquest_miscellaneous_2442219788 pubmed_primary_32919211 crossref_citationtrail_10_1016_j_bios_2020_112576 crossref_primary_10_1016_j_bios_2020_112576 elsevier_sciencedirect_doi_10_1016_j_bios_2020_112576 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 2020-12-00 2020-Dec-01 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Raposo, Stoorvogel (bib25) 2013; 200 Rayyan, Zheutlin, Byrd (bib26) 2018; 7 Shah, Patel, Freedman (bib27) 2018; 379 Winter, Cameron, Campbell, Arnold, Chang, Coleman, Hodgin, Sauter, Hruban, Riall, Schulick, Choti, Lillemoe, Yeo (bib34) 2006; 10 Xu, Callaway, Wang, Wang, Slavik, Wang, Li (bib35) 2015; 58 Tombelli, Minunni, Mascini (bib33) 2005 Arya, Zhurauski, Jolly, Batistuti, Mulato, Estrela (bib1) 2018; 102 Chia, Low, Wang, Li, Gao (bib7) 2017; 86 Liu, Xu, Li, Situ, Pan, Hu, An, Yao, Zheng (bib22) 2018; 18 Shao, Im, Castro, Breakefield, Weissleder, Lee (bib28) 2018; 118 Bunn, Helfrich, Soriano, Franklin, Varella-Garcia, Hirsch, Baron, Zeng, Chan (bib5) 2001; 7 Théry, Witwer, Aikawa, Alcaraz, Anderson, Andriantsitohaina, Antoniou, Arab, Archer, Atkin-Smith, Ayre, Bach, Bachurski, Baharvand, Balaj, Baldacchino, Bauer, Baxter, Bebawy, Beckham, Bedina Zavec, Benmoussa, Berardi, Bergese, Bielska, Blenkiron, Bobis-Wozowicz, Boilard, Boireau, Bongiovanni, Borràs, Bosch, Boulanger, Breakefield, Breglio, Brennan, Brigstock, Brisson, Broekman, Bromberg, Bryl-Górecka, Buch, Buck, Burger, Busatto, Buschmann, Bussolati, Buzás, Byrd, Camussi, Carter, Caruso, Chamley, Chang, Chaudhuri, Chen, Chen, Cheng, Chin, Clayton, Clerici, Cocks, Cocucci, Coffey, Cordeiro-da-Silva, Couch, Coumans, Coyle, Crescitelli, Criado, D'Souza-Schorey, Das, de Candia, De Santana, De Wever, del Portillo, Demaret, Deville, Devitt, Dhondt, Di Vizio, Dieterich, Dolo, Dominguez Rubio, Dominici, Dourado, Driedonks, Duarte, Duncan, Eichenberger, Ekström, EL Andaloussi, Elie-Caille, Erdbrügger, Falcón-Pérez, Fatima, Fish, Flores-Bellver, Försönits, Frelet-Barrand, Fricke, Fuhrmann, Gabrielsson, Gámez-Valero, Gardiner, Gärtner, Gaudin, Gho, Giebel, Gilbert, Gimona, Giusti, Goberdhan, Görgens, Gorski, Greening, Gross, Gualerzi, Gupta, Gustafson, Handberg, Haraszti, Harrison, Hegyesi, Hendrix, Hill, Hochberg, Hoffmann, Holder, Holthofer, Hosseinkhani, Hu, Huang, Huber, Hunt, Ibrahim, Ikezu, Inal, Isin, Ivanova, Jackson, Jacobsen, Jay, Jayachandran, Jenster, Jiang, Johnson, Jones, Jong, Jovanovic-Talisman, Jung, Kalluri, Kano, Kaur, Kawamura, Keller, Khamari, Khomyakova, Khvorova, Kierulf, Kim, Kislinger, Klingeborn, Klinke, Kornek, Kosanović, Kovács, Krämer-Albers, Krasemann, Krause, Kurochkin, Kusuma, Kuypers, Laitinen, Langevin, Languino, Lannigan, Lässer, Laurent, Lavieu, Lázaro-Ibáñez, Le Lay, Lee, Lee, Lemos, Lenassi, Leszczynska, Li, Liao, Libregts, Ligeti, Lim, Lim, Linē, Linnemannstöns, Llorente, Lombard, Lorenowicz, Lörincz, Lötvall, Lovett, Lowry, Loyer, Lu, Lukomska, Lunavat, Maas, Malhi, Marcilla, Mariani, Mariscal, Martens-Uzunova, Martin-Jaular, Martinez, Martins, Mathieu, Mathivanan, Maugeri, McGinnis, McVey, Meckes, Meehan, Mertens, Minciacchi, Möller, Møller Jørgensen, Morales-Kastresana, Morhayim, Mullier, Muraca, Musante, Mussack, Muth, Myburgh, Najrana, Nawaz, Nazarenko, Nejsum, Neri, Neri, Nieuwland, Nimrichter, Nolan, Nolte-’t Hoen, Noren Hooten, O'Driscoll, O'Grady, O'Loghlen, Ochiya, Olivier, Ortiz, Ortiz, Osteikoetxea, Ostegaard, Ostrowski, Park, Pegtel, Peinado, Perut, Pfaffl, Phinney, Pieters, Pink, Pisetsky, Pogge von Strandmann, Polakovicova, Poon, Powell, Prada, Pulliam, Quesenberry, Radeghieri, Raffai, Raimondo, Rak, Ramirez, Raposo, Rayyan, Regev-Rudzki, Ricklefs, Robbins, Roberts, Rodrigues, Rohde, Rome, Rouschop, Rughetti, Russell, Saá, Sahoo, Salas-Huenuleo, Sánchez, Saugstad, Saul, Schiffelers, Schneider, Schøyen, Scott, Shahaj, Sharma, Shatnyeva, Shekari, Shelke, Shetty, Shiba, Siljander, Silva, Skowronek, Snyder, Soares, Sódar, Soekmadji, Sotillo, Stahl, Stoorvogel, Stott, Strasser, Swift, Tahara, Tewari, Timms, Tiwari, Tixeira, Tkach, Toh, Tomasini, Torrecilhas, Tosar, Toxavidis, Urbanelli, Vader, van Balkom, van der Grein, Van Deun, van Herwijnen, Van Keuren-Jensen, van Niel, van Royen, van Wijnen, Vasconcelos, Vechetti, Veit, Vella, Velot, Verweij, Vestad, Viñas, Visnovitz, Vukman, Wahlgren, Watson, Wauben, Weaver, Webber, Weber, Wehman, Weiss, Welsh, Wendt, Wheelock, Wiener, Witte, Wolfram, Xagorari, Xander, Xu, Yan, Yáñez-Mó, Yin, Yuana, Zappulli, Zarubova, Žėkas, Zhang, Zhao, Zheng, Zheutlin, Zickler, Zimmermann, Zivkovic, Zocco, Zuba-Surma (bib30) 2018; 7 Hoshino, Costa-Silva, Shen (bib12) 2015 Faruqu, Wang, Xu, McNickle, Chong, Walters, Gurney, Clayton, Smyth, Hider, Sosabowski, Al-Jamal (bib8) 2019; 9 Xu, Shoaei, Jahanpeyma, Zhao, Azimzadeh, Al−Jamal (bib36) 2020; 161 Faruqu, Xu, Al-Jamal (bib9) 2018; 2018 Théry, Zitvogel, Amigorena (bib31) 2002; 2 Kamisawa, Wood, Itoi, Takaori (bib17) 2016; 388 Lee, Rho, Messersmith (bib20) 2009; 21 Tokura, Harvey, Chen, Wu, Ng, Weil (bib32) 2018; 57 Ramirez, Amorim, Gadelha, Milic, Welsh, Freitas, Nawaz, Akbar, Couch, Makin, Cooke, Vettore, Batista, Freezor, Pezuk, Rosa-Fernandes, Carreira, Devitt, Jacobs, Silva, Coakley, Nunes, Carter, Palmisano, Dias-Neto (bib24) 2018; 10 Xu, Rai, Chen, Suwakulsiri, Greening, Simpson (bib37) 2018; 15 Kim, Lee, Min, Lim, Jeong (bib18) 2014; 51 Bi, Koivisto, Dai, Zhuang, Jiang, Larjava, Shen, Bi, Liu, Haapasalo, Häkkinen, Larjava (bib4) 2019; 133 Cheng, Du, Wang, Liu, Xu, Luo, Lin (bib6) 2019 Hamidi, Pietilä, Ivaska (bib11) 2016 Paulista, Em, Biológicas (bib23) 2017 Kabe, Suematsu, Sakamoto, Hirai, Koike, Hishiki, Matsuda, Hasegawa, Tsujita, Ono, Minegishi, Hozawa, Murakami, Kubo, Itonaga, Handa (bib14) 2018; 64 Li, Baird, Davis, Tai, Zweifel, Waldorf, Gale, Rajagopal, Pierce, Gao (bib21) 2017; 1 Skotland, Sandvig, Llorente (bib29) 2017 Fedele, Singh, Zerlanko, Iozzo, Languino (bib10) 2015; 290 Barok, Puhka, Vereb, Szollosi, Isola, Joensuu (bib3) 2018; 18 Bandyopadhyay, Raghavan (bib2) 2009 Kamerkar, Lebleu, Sugimoto, Yang, Ruivo, Melo, Lee, Kalluri (bib16) 2017; 546 Kalluri, LeBleu (bib15) 2020; 367 LaBonte, Wilson, Fazzone, Russell, Louie, El-Khoueiry, Lenz, Ladner (bib19) 2011; 71 Hosseinzadeh Colagar, Amjadi, Valadan, Rafiei (bib13) 2013; 1 Chia (10.1016/j.bios.2020.112576_bib7) 2017; 86 Skotland (10.1016/j.bios.2020.112576_bib29) 2017 Arya (10.1016/j.bios.2020.112576_bib1) 2018; 102 Raposo (10.1016/j.bios.2020.112576_bib25) 2013; 200 Kamerkar (10.1016/j.bios.2020.112576_bib16) 2017; 546 Shao (10.1016/j.bios.2020.112576_bib28) 2018; 118 Liu (10.1016/j.bios.2020.112576_bib22) 2018; 18 Barok (10.1016/j.bios.2020.112576_bib3) 2018; 18 Cheng (10.1016/j.bios.2020.112576_bib6) 2019 LaBonte (10.1016/j.bios.2020.112576_bib19) 2011; 71 Xu (10.1016/j.bios.2020.112576_bib35) 2015; 58 Kabe (10.1016/j.bios.2020.112576_bib14) 2018; 64 Hosseinzadeh Colagar (10.1016/j.bios.2020.112576_bib13) 2013; 1 Théry (10.1016/j.bios.2020.112576_bib31) 2002; 2 Xu (10.1016/j.bios.2020.112576_bib37) 2018; 15 Kamisawa (10.1016/j.bios.2020.112576_bib17) 2016; 388 Tombelli (10.1016/j.bios.2020.112576_bib33) 2005 Hamidi (10.1016/j.bios.2020.112576_bib11) 2016 Kalluri (10.1016/j.bios.2020.112576_bib15) 2020; 367 Faruqu (10.1016/j.bios.2020.112576_bib8) 2019; 9 Bi (10.1016/j.bios.2020.112576_bib4) 2019; 133 Faruqu (10.1016/j.bios.2020.112576_bib9) 2018; 2018 Ramirez (10.1016/j.bios.2020.112576_bib24) 2018; 10 Rayyan (10.1016/j.bios.2020.112576_bib26) 2018; 7 Tokura (10.1016/j.bios.2020.112576_bib32) 2018; 57 Xu (10.1016/j.bios.2020.112576_bib36) 2020; 161 Kim (10.1016/j.bios.2020.112576_bib18) 2014; 51 Li (10.1016/j.bios.2020.112576_bib21) 2017; 1 Bunn (10.1016/j.bios.2020.112576_bib5) 2001; 7 Théry (10.1016/j.bios.2020.112576_bib30) 2018; 7 Shah (10.1016/j.bios.2020.112576_bib27) 2018; 379 Hoshino (10.1016/j.bios.2020.112576_bib12) 2015 Winter (10.1016/j.bios.2020.112576_bib34) 2006; 10 Paulista (10.1016/j.bios.2020.112576_bib23) 2017 Fedele (10.1016/j.bios.2020.112576_bib10) 2015; 290 Bandyopadhyay (10.1016/j.bios.2020.112576_bib2) 2009 Lee (10.1016/j.bios.2020.112576_bib20) 2009; 21 |
References_xml | – year: 2009 ident: bib2 article-title: Defining the role of integrin alphavbeta6 in cancer publication-title: Curr. Drug Targets – volume: 57 start-page: 1587 year: 2018 end-page: 1591 ident: bib32 article-title: Fabrication of defined polydopamine nanostructures by DNA origami-templated polymerization publication-title: Angew. Chem. Int. Ed. – volume: 118 start-page: 1917 year: 2018 end-page: 1950 ident: bib28 article-title: New technologies for analysis of extracellular vesicles publication-title: Chem. Rev. – volume: 161 year: 2020 ident: bib36 article-title: Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: a comprehensive overview publication-title: Biosens. Bioelectron. – volume: 86 start-page: 93 year: 2017 end-page: 106 ident: bib7 article-title: Advances in exosome quantification techniques publication-title: TrAC Trends Anal. Chem. – volume: 388 start-page: 73 year: 2016 end-page: 85 ident: bib17 article-title: Pancreatic cancer publication-title: Lancet – year: 2019 ident: bib6 article-title: Recent advances in biosensors for detecting cancer-derived exosomes publication-title: Trends Biotechnol. – volume: 367 year: 2020 ident: bib15 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science – volume: 58 start-page: 891 year: 2015 end-page: 906 ident: bib35 article-title: A fluorescent aptasensor coupled with nanobead-based immunomagnetic separation for simultaneous detection of four foodborne pathogenic bacteria publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.) – volume: 290 start-page: 4545 year: 2015 end-page: 4551 ident: bib10 article-title: The α v β 6 integrin is transferred intercellularly via exosomes publication-title: J. Biol. Chem. – volume: 546 start-page: 498 year: 2017 end-page: 503 ident: bib16 article-title: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer publication-title: Nature – volume: 200 start-page: 373 year: 2013 end-page: 383 ident: bib25 article-title: Extracellular vesicles: exosomes, microvesicles, and friends publication-title: J. Cell Biol. – volume: 2 start-page: 569 year: 2002 end-page: 579 ident: bib31 article-title: Exosomes: composition, biogenesis and function publication-title: Nat. Rev. Immunol. – volume: 51 start-page: 426 year: 2014 end-page: 430 ident: bib18 article-title: An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk publication-title: Biosens. Bioelectron. – volume: 18 start-page: 504 year: 2018 ident: bib3 article-title: Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation publication-title: BMC Canc. – year: 2016 ident: bib11 article-title: The complexity of integrins in cancer and new scopes for therapeutic targeting publication-title: Br. J. Canc. – year: 2017 ident: bib23 article-title: Pancreatic adenocarcinoma guidelines publication-title: Natl. Cancer Compr. Network – volume: 102 start-page: 106 year: 2018 end-page: 112 ident: bib1 article-title: Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum publication-title: Biosens. Bioelectron. – volume: 10 start-page: 881 year: 2018 end-page: 906 ident: bib24 article-title: Technical challenges of working with extracellular vesicles publication-title: Nanoscale – year: 2017 ident: bib29 article-title: Lipids in exosomes: current knowledge and the way forward publication-title: Prog. Lipid Res. – volume: 1 year: 2017 ident: bib21 article-title: Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine publication-title: Nat. Biomed. Eng. – volume: 15 start-page: 617 year: 2018 end-page: 638 ident: bib37 article-title: Extracellular vesicles in cancer — implications for future improvements in cancer care publication-title: Nat. Rev. Clin. Oncol. – volume: 64 start-page: 1463 year: 2018 end-page: 1473 ident: bib14 article-title: Development of a highly sensitive device for counting the number of disease-specific exosomes in human sera publication-title: Clin. Chem. – volume: 21 start-page: 431 year: 2009 end-page: 434 ident: bib20 article-title: Facile conjugation of biomolecu les onto surfaces via mussel adhesive protein inspired coatings publication-title: Adv. Mater. – volume: 71 start-page: 3635 year: 2011 end-page: 3648 ident: bib19 article-title: The dual EGFR/HER2 inhibitor lapatinib synergistically enhances the antitumor activity of the histone deacetylase inhibitor panobinostat in colorectal cancer models publication-title: Canc. Res. – volume: 7 start-page: 1535750 year: 2018 ident: bib30 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J. Extracell. Vesicles – volume: 10 start-page: 1199 year: 2006 end-page: 1211 ident: bib34 article-title: 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience publication-title: J. Gastrointest. Surg. – volume: 7 year: 2018 ident: bib26 article-title: Clinical research using extracellular vesicles: insights from the international society for extracellular vesicles 2018 annual meeting publication-title: J. Extracell. Vesicles – volume: 9 start-page: 1666 year: 2019 end-page: 1682 ident: bib8 article-title: Membrane radiolabelling of exosomes for comparative biodistribution analysis in immunocompetent and immunodeficient mice – a novel and universal approach publication-title: Theranostics – volume: 1 start-page: 6 year: 2013 end-page: 12 ident: bib13 article-title: Minimal HER1 and HER2 expressions in CHO and HEK-293 cells cause them appropriate negative cells for HERs-related studies publication-title: Res. Mol. Med. – volume: 379 start-page: 958 year: 2018 end-page: 966 ident: bib27 article-title: Circulating extracellular vesicles in human disease publication-title: N. Engl. J. Med. – year: 2005 ident: bib33 article-title: Analytical applications of aptamers publication-title: Biosens. Bioelectron. – year: 2015 ident: bib12 article-title: Tumour exosome integrins determine organotropic metastasis publication-title: Nature – volume: 18 start-page: 4226 year: 2018 end-page: 4232 ident: bib22 article-title: Single-exosome-Counting immunoassays for cancer diagnostics publication-title: Nano Lett. – volume: 7 start-page: 3239 year: 2001 end-page: 3250 ident: bib5 article-title: Expression of Her-2/neu in human lung cancer cell lines by immunohistochemistry and fluorescence in situ hybridization and its relationship to in vitro cytotoxicity by trastuzumab and chemotherapeutic agents publication-title: Clin. Canc. Res. – volume: 2018 year: 2018 ident: bib9 article-title: Preparation of exosomes for siRNA delivery to cancer cells publication-title: J. Vis. Exp. – volume: 133 year: 2019 ident: bib4 article-title: Epidermal growth factor receptor signaling suppresses αvβ6 integrin and promotes periodontal inflammation and bone loss publication-title: J. Cell Sci. – year: 2009 ident: 10.1016/j.bios.2020.112576_bib2 article-title: Defining the role of integrin alphavbeta6 in cancer publication-title: Curr. Drug Targets doi: 10.2174/138945009788680374 – volume: 290 start-page: 4545 year: 2015 ident: 10.1016/j.bios.2020.112576_bib10 article-title: The α v β 6 integrin is transferred intercellularly via exosomes publication-title: J. Biol. Chem. doi: 10.1074/jbc.C114.617662 – volume: 51 start-page: 426 year: 2014 ident: 10.1016/j.bios.2020.112576_bib18 article-title: An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.08.003 – year: 2017 ident: 10.1016/j.bios.2020.112576_bib29 article-title: Lipids in exosomes: current knowledge and the way forward publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2017.03.001 – volume: 71 start-page: 3635 year: 2011 ident: 10.1016/j.bios.2020.112576_bib19 article-title: The dual EGFR/HER2 inhibitor lapatinib synergistically enhances the antitumor activity of the histone deacetylase inhibitor panobinostat in colorectal cancer models publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-10-2430 – volume: 1 year: 2017 ident: 10.1016/j.bios.2020.112576_bib21 article-title: Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0082 – volume: 133 year: 2019 ident: 10.1016/j.bios.2020.112576_bib4 article-title: Epidermal growth factor receptor signaling suppresses αvβ6 integrin and promotes periodontal inflammation and bone loss publication-title: J. Cell Sci. – year: 2016 ident: 10.1016/j.bios.2020.112576_bib11 article-title: The complexity of integrins in cancer and new scopes for therapeutic targeting publication-title: Br. J. Canc. doi: 10.1038/bjc.2016.312 – volume: 18 start-page: 4226 year: 2018 ident: 10.1016/j.bios.2020.112576_bib22 article-title: Single-exosome-Counting immunoassays for cancer diagnostics publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01184 – year: 2017 ident: 10.1016/j.bios.2020.112576_bib23 article-title: Pancreatic adenocarcinoma guidelines publication-title: Natl. Cancer Compr. Network – volume: 2 start-page: 569 year: 2002 ident: 10.1016/j.bios.2020.112576_bib31 article-title: Exosomes: composition, biogenesis and function publication-title: Nat. Rev. Immunol. doi: 10.1038/nri855 – year: 2015 ident: 10.1016/j.bios.2020.112576_bib12 article-title: Tumour exosome integrins determine organotropic metastasis publication-title: Nature doi: 10.1038/nature15756 – volume: 7 start-page: 1535750 year: 2018 ident: 10.1016/j.bios.2020.112576_bib30 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2018.1535750 – volume: 118 start-page: 1917 year: 2018 ident: 10.1016/j.bios.2020.112576_bib28 article-title: New technologies for analysis of extracellular vesicles publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00534 – volume: 21 start-page: 431 year: 2009 ident: 10.1016/j.bios.2020.112576_bib20 article-title: Facile conjugation of biomolecu les onto surfaces via mussel adhesive protein inspired coatings publication-title: Adv. Mater. doi: 10.1002/adma.200801222 – year: 2019 ident: 10.1016/j.bios.2020.112576_bib6 article-title: Recent advances in biosensors for detecting cancer-derived exosomes publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2019.04.008 – volume: 64 start-page: 1463 year: 2018 ident: 10.1016/j.bios.2020.112576_bib14 article-title: Development of a highly sensitive device for counting the number of disease-specific exosomes in human sera publication-title: Clin. Chem. doi: 10.1373/clinchem.2018.291963 – volume: 546 start-page: 498 year: 2017 ident: 10.1016/j.bios.2020.112576_bib16 article-title: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer publication-title: Nature doi: 10.1038/nature22341 – volume: 7 year: 2018 ident: 10.1016/j.bios.2020.112576_bib26 article-title: Clinical research using extracellular vesicles: insights from the international society for extracellular vesicles 2018 annual meeting publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2018.1535744 – volume: 15 start-page: 617 year: 2018 ident: 10.1016/j.bios.2020.112576_bib37 article-title: Extracellular vesicles in cancer — implications for future improvements in cancer care publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-018-0036-9 – volume: 388 start-page: 73 year: 2016 ident: 10.1016/j.bios.2020.112576_bib17 article-title: Pancreatic cancer publication-title: Lancet doi: 10.1016/S0140-6736(16)00141-0 – volume: 379 start-page: 958 year: 2018 ident: 10.1016/j.bios.2020.112576_bib27 article-title: Circulating extracellular vesicles in human disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1704286 – volume: 10 start-page: 1199 year: 2006 ident: 10.1016/j.bios.2020.112576_bib34 article-title: 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience publication-title: J. Gastrointest. Surg. doi: 10.1016/j.gassur.2006.08.018 – volume: 7 start-page: 3239 year: 2001 ident: 10.1016/j.bios.2020.112576_bib5 article-title: Expression of Her-2/neu in human lung cancer cell lines by immunohistochemistry and fluorescence in situ hybridization and its relationship to in vitro cytotoxicity by trastuzumab and chemotherapeutic agents publication-title: Clin. Canc. Res. – volume: 161 year: 2020 ident: 10.1016/j.bios.2020.112576_bib36 article-title: Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: a comprehensive overview publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112222 – volume: 10 start-page: 881 year: 2018 ident: 10.1016/j.bios.2020.112576_bib24 article-title: Technical challenges of working with extracellular vesicles publication-title: Nanoscale doi: 10.1039/C7NR08360B – year: 2005 ident: 10.1016/j.bios.2020.112576_bib33 article-title: Analytical applications of aptamers publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2004.11.006 – volume: 18 start-page: 504 year: 2018 ident: 10.1016/j.bios.2020.112576_bib3 article-title: Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation publication-title: BMC Canc. doi: 10.1186/s12885-018-4418-2 – volume: 2018 year: 2018 ident: 10.1016/j.bios.2020.112576_bib9 article-title: Preparation of exosomes for siRNA delivery to cancer cells publication-title: J. Vis. Exp. – volume: 367 year: 2020 ident: 10.1016/j.bios.2020.112576_bib15 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science doi: 10.1126/science.aau6977 – volume: 102 start-page: 106 year: 2018 ident: 10.1016/j.bios.2020.112576_bib1 article-title: Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.11.013 – volume: 57 start-page: 1587 year: 2018 ident: 10.1016/j.bios.2020.112576_bib32 article-title: Fabrication of defined polydopamine nanostructures by DNA origami-templated polymerization publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201711560 – volume: 200 start-page: 373 year: 2013 ident: 10.1016/j.bios.2020.112576_bib25 article-title: Extracellular vesicles: exosomes, microvesicles, and friends publication-title: J. Cell Biol. doi: 10.1083/jcb.201211138 – volume: 86 start-page: 93 year: 2017 ident: 10.1016/j.bios.2020.112576_bib7 article-title: Advances in exosome quantification techniques publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2016.10.012 – volume: 58 start-page: 891 year: 2015 ident: 10.1016/j.bios.2020.112576_bib35 article-title: A fluorescent aptasensor coupled with nanobead-based immunomagnetic separation for simultaneous detection of four foodborne pathogenic bacteria publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.) – volume: 9 start-page: 1666 year: 2019 ident: 10.1016/j.bios.2020.112576_bib8 article-title: Membrane radiolabelling of exosomes for comparative biodistribution analysis in immunocompetent and immunodeficient mice – a novel and universal approach publication-title: Theranostics doi: 10.7150/thno.27891 – volume: 1 start-page: 6 year: 2013 ident: 10.1016/j.bios.2020.112576_bib13 article-title: Minimal HER1 and HER2 expressions in CHO and HEK-293 cells cause them appropriate negative cells for HERs-related studies publication-title: Res. Mol. Med. doi: 10.18869/acadpub.rmm.1.3.6 |
SSID | ssj0007190 |
Score | 2.5804968 |
Snippet | There is a growing need for cancerous exosome detection towards potential non-invasive cancer diagnosis. This study aims to develop a reliable colorimetric... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 112576 |
SubjectTerms | absorbance aldimines Aptamer Aptamers, Nucleotide Aptasensor aptasensors Biosensing Techniques breasts Cancer diagnosis catalytic activity color Colorimetry detection limit dopamine Exosome Exosomes HER2 Humans Hydrogen Peroxide Integrin αvβ6 integrins latex Neoplasms - diagnosis oligonucleotides peroxidase point-of-care systems polymerization |
Title | Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes |
URI | https://dx.doi.org/10.1016/j.bios.2020.112576 https://www.ncbi.nlm.nih.gov/pubmed/32919211 https://www.proquest.com/docview/2442219788 https://www.proquest.com/docview/2574331465 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUCU4VEB5LFBkpN5KWBLbcXJEqGgpggtU4hY59kRaBMlqk63aC78dT5zwkGAPHB2NE8sznvmSzHwD8OMYBddRLIM8sTYQCeogRQfkDMfQJqnlUULVyJdX8eiP-H0rbxfgtK-FobTKzvd7n9566-7KsNvN4WQ8Hl4ThZ4DIzxqYbAiTlAhFFn50eNLmocK_XcW4tsj6a5wxud45eOKKLujtpJGEu_I-8HpI_DZBqGzVfjaoUd24he4BgtYrsMX30_y_zqsvGIX_AazVwlBrCqYZvWYuIAPWU1Z6-TnmC4tq9tWODQiBmui-yfWfqYnjSbBasocsGUOKDKLTZu5VdLtDNnLNLDuaX_RMvxX1dUD1htwc_br5nQUdF0WAiOkbNwxyWNqOK9s4WJ73EK2PDdFEqKOtVAcuXupMIVWWskiTIvIpiZVhhfHOoxzvgmLZVXiNjCj8lho5Cpx2nBbr6UoHBywBiM0NtQDCPvdzUzHQE6NMO6zPtXsLiONZKSRzGtkAD-f50w8_8ZcadkrLXtjRZkLEHPnHfQaztzxon8musRq5oSEiJxTV0kyR0YqqjsTsRzAljeP57XyKCXGuXDnkyvbhWUa-QSaPVhspjP87mBQk--3dr4PSyfnF6OrJ_6HB1Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9RAEJ4gxggPRFHwBHFNfNNytLvbbR8NgRwKvHgmvG22u9PkCLSXa8_oC7_dnW6LmOg9-Nh2tt3szM58bWe-AXh_hIKbJJVRkTkXiQxNlKMHcpZj7LLc8SSjauSLy3TyTXy-kldrcDzUwlBaZe_7g0_vvHV_Ztyv5ng-m42_EoWeByM86WCwEo_gsfDbl9oYHN79zvNQcfjQQoR7JN5XzoQkr2JWE2d30pXSSCIe-Xt0-hf67KLQ6TPY6uEj-xRm-BzWsNqGJ6Gh5M9t2HxAL_gClg8yglhdMsOaGZEBf2QNpa2To2OmcqzpeuHQEVFYE98_0fYzM28NCdYL5pEt80iROWy71K2KbmfJYBaR80_7jo7hj7qpb7F5CdPTk-nxJOrbLERWSNn6fVKk1HFeudIH97TDbEVhyyxGkxqhOHL_VmFLo4ySZZyXicttriwvj0ycFnwH1qu6wlfArCpSYZCrzKvDL72RovR4wFlM0LrYjCAeVlfbnoKcOmHc6CHX7FqTRjRpRAeNjODD_Zh5IOBYKS0Hpek_zEj7CLFy3LtBw9rvL_ppYiqsl15IiMR7dZVlK2SkosIzkcoR7AbzuJ8rT3KinItf_-fM3sLTyfTiXJ-fXX7Zgw26ErJp9mG9XSzxjcdEbXHQ2fwv6vAI5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+simple%2C+sensitive+and+selective+colorimetric+aptasensor+for+the+detection+of+cancer-derived+exosomes&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Xu%2C+Lizhou&rft.au=Chopdat%2C+Raheemah&rft.au=Li%2C+Danyang&rft.au=Al-Jamal%2C+Khuloud+T.&rft.date=2020-12-01&rft.issn=0956-5663&rft.volume=169&rft.spage=112576&rft_id=info:doi/10.1016%2Fj.bios.2020.112576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bios_2020_112576 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |