Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite
[Display omitted] In this study, magnetic graphene oxide modified zeolite (Cu-Z-GO-M) composites with two different ratios of GO to zeolite (named Cu-Z-GO-M 1:2 and Cu-Z-GO-M 1:1) were synthesized by solid-state dispersion (SSD) method. The properties of zeolite-based composites were characterized b...
Saved in:
Published in | Journal of colloid and interface science Vol. 543; pp. 43 - 51 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
In this study, magnetic graphene oxide modified zeolite (Cu-Z-GO-M) composites with two different ratios of GO to zeolite (named Cu-Z-GO-M 1:2 and Cu-Z-GO-M 1:1) were synthesized by solid-state dispersion (SSD) method. The properties of zeolite-based composites were characterized by SEM, XRD, FTIR, XPS, and magnetization curves. In order to understand the pollutant removal performance of the as-prepared composites, methylene blue (MB) was used as the target pollutant in adsorption experiments. The removal efficiency of MB onto Cu-Z-GO-M composite was enhanced obviously with pH > 9. The adsorption capacities of MB onto Cu-Z-GO-M 1:1 were 82.147, 89.315, 97.346 mg/g at 298, 308, and 318 K, respectively. The removal ability of MB increased with the increase of GO content in modified composites. The adsorption behavior can be well described using a pseudo-second-order kinetic and Freundlich isotherm model. The thermodynamic analysis indicated the MB adsorption by Cu-Z-GO-M was a spontaneous and endothermic reaction. The results showed that the prepared Cu-Z-GO-M composite could be a promising adsorbent with good adsorption capacity and reusability for MB removal from wastewater. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 1095-7103 |
DOI: | 10.1016/j.jcis.2019.02.030 |