Functional Role of miR-155 in the Pathogenesis of Diabetes Mellitus and Its Complications
Substantial evidence indicates that microRNA-155 (miR-155) plays a crucial role in the pathogenesis of diabetes mellitus (DM) and its complications. A number of clinical studies reported low serum levels of miR-155 in patients with type 2 diabetes (T2D). Preclinical studies revealed that miR-155 par...
Saved in:
Published in | Non-coding RNA Vol. 7; no. 3; p. 39 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
07.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Substantial evidence indicates that microRNA-155 (miR-155) plays a crucial role in the pathogenesis of diabetes mellitus (DM) and its complications. A number of clinical studies reported low serum levels of miR-155 in patients with type 2 diabetes (T2D). Preclinical studies revealed that miR-155 partakes in the phenotypic switch of cells within the islets of Langerhans under metabolic stress. Moreover, miR-155 was shown to regulate insulin sensitivity in liver, adipose tissue, and skeletal muscle. Dysregulation of miR-155 expression was also shown to predict the development of nephropathy, neuropathy, and retinopathy in DM. Here, we systematically describe the reports investigating the role of miR-155 in DM and its complications. We also discuss the recent results from in vivo and in vitro models of type 1 diabetes (T1D) and T2D, discussing the differences between clinical and preclinical studies and shedding light on the molecular pathways mediated by miR-155 in different tissues affected by DM. |
---|---|
AbstractList | Substantial evidence indicates that microRNA-155 (miR-155) plays a crucial role in the pathogenesis of diabetes mellitus (DM) and its complications. A number of clinical studies reported low serum levels of miR-155 in patients with type 2 diabetes (T2D). Preclinical studies revealed that miR-155 partakes in the phenotypic switch of cells within the islets of Langerhans under metabolic stress. Moreover, miR-155 was shown to regulate insulin sensitivity in liver, adipose tissue, and skeletal muscle. Dysregulation of miR-155 expression was also shown to predict the development of nephropathy, neuropathy, and retinopathy in DM. Here, we systematically describe the reports investigating the role of miR-155 in DM and its complications. We also discuss the recent results from in vivo and in vitro models of type 1 diabetes (T1D) and T2D, discussing the differences between clinical and preclinical studies and shedding light on the molecular pathways mediated by miR-155 in different tissues affected by DM. Substantial evidence indicates that microRNA-155 (miR-155) plays a crucial role in the pathogenesis of diabetes mellitus (DM) and its complications. A number of clinical studies reported low serum levels of miR-155 in patients with type 2 diabetes (T2D). Preclinical studies revealed that miR-155 partakes in the phenotypic switch of cells within the islets of Langerhans under metabolic stress. Moreover, miR-155 was shown to regulate insulin sensitivity in liver, adipose tissue, and skeletal muscle. Dysregulation of miR-155 expression was also shown to predict the development of nephropathy, neuropathy, and retinopathy in DM. Here, we systematically describe the reports investigating the role of miR-155 in DM and its complications. We also discuss the recent results from in vivo and in vitro models of type 1 diabetes (T1D) and T2D, discussing the differences between clinical and preclinical studies and shedding light on the molecular pathways mediated by miR-155 in different tissues affected by DM. Substantial evidence indicates that microRNA-155 (miR-155) plays a crucial role in the pathogenesis of diabetes mellitus (DM) and its complications. A number of clinical studies reported low serum levels of miR-155 in patients with type 2 diabetes (T2D). Preclinical studies revealed that miR-155 partakes in the phenotypic switch of cells within the islets of Langerhans under metabolic stress. Moreover, miR-155 was shown to regulate insulin sensitivity in liver, adipose tissue, and skeletal muscle. Dysregulation of miR-155 expression was also shown to predict the development of nephropathy, neuropathy, and retinopathy in DM. Here, we systematically describe the reports investigating the role of miR-155 in DM and its complications. We also discuss the recent results from in vivo and in vitro models of type 1 diabetes (T1D) and T2D, discussing the differences between clinical and preclinical studies and shedding light on the molecular pathways mediated by miR-155 in different tissues affected by DM.Substantial evidence indicates that microRNA-155 (miR-155) plays a crucial role in the pathogenesis of diabetes mellitus (DM) and its complications. A number of clinical studies reported low serum levels of miR-155 in patients with type 2 diabetes (T2D). Preclinical studies revealed that miR-155 partakes in the phenotypic switch of cells within the islets of Langerhans under metabolic stress. Moreover, miR-155 was shown to regulate insulin sensitivity in liver, adipose tissue, and skeletal muscle. Dysregulation of miR-155 expression was also shown to predict the development of nephropathy, neuropathy, and retinopathy in DM. Here, we systematically describe the reports investigating the role of miR-155 in DM and its complications. We also discuss the recent results from in vivo and in vitro models of type 1 diabetes (T1D) and T2D, discussing the differences between clinical and preclinical studies and shedding light on the molecular pathways mediated by miR-155 in different tissues affected by DM. |
Author | Santulli, Gaetano Sardu, Celestino Gambardella, Jessica Lombardi, Angela Jankauskas, Stanislovas S. |
AuthorAffiliation | 3 International Translational Research and Medical Education Consortium (ITME), Department of Advanced Biomedical Science, “Federico II” University, 80131 Naples, Italy 2 Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA 1 Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; stanislovas.jankauskas@einsteinmed.org (S.S.J.); jessica.gambardella@einsteinmed.org (J.G.); angela.lombardi@einsteinmed.org (A.L.) 4 Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; celestino.sardu@unicampania.it |
AuthorAffiliation_xml | – name: 4 Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; celestino.sardu@unicampania.it – name: 2 Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA – name: 1 Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; stanislovas.jankauskas@einsteinmed.org (S.S.J.); jessica.gambardella@einsteinmed.org (J.G.); angela.lombardi@einsteinmed.org (A.L.) – name: 3 International Translational Research and Medical Education Consortium (ITME), Department of Advanced Biomedical Science, “Federico II” University, 80131 Naples, Italy |
Author_xml | – sequence: 1 givenname: Stanislovas S. orcidid: 0000-0002-0843-5098 surname: Jankauskas fullname: Jankauskas, Stanislovas S. – sequence: 2 givenname: Jessica surname: Gambardella fullname: Gambardella, Jessica – sequence: 3 givenname: Celestino surname: Sardu fullname: Sardu, Celestino – sequence: 4 givenname: Angela surname: Lombardi fullname: Lombardi, Angela – sequence: 5 givenname: Gaetano orcidid: 0000-0001-7231-375X surname: Santulli fullname: Santulli, Gaetano |
BookMark | eNptkl1rFDEUhoNUbF175w8Y8MYLpyaTr8mNIKvVhYpSFPQqZDInu1myyTrJCP57s91S2uJVQs6Th8N5z3N0ElMEhF4SfEGpwm-jnaKRmGJM1RN01lFCWs7pz5N791N0nvMWY0yYFELgZ-iUsq6XlKsz9Otyjrb4FE1orlOAJrlm569bwnnjY1M20HwzZZPWECH7fCh_8GaAArn5AiH4MufGxLFZldws024fvDUHX36BnjoTMpzfngv04_Lj9-Xn9urrp9Xy_VVrGeelJWDGkRA2WBi6XnRWCenAgOi5kQa4HZSyvJeMDEqMgK0ZHRmIBEGdkozSBVodvWMyW72f_M5Mf3UyXt88pGmtzVS8DaClE7ZXnEpuOHNu7InizCg7UDG6Hg_V9e7o2s_DDkYLsUwmPJA-rES_0ev0R_edoqzmsECvbwVT-j1DLnrns61zMhHSnHVXA-k7Wtuu6KtH6DbNNc1woKRgkmDcVerNkbJTynkCd9cMwfqwAvr-ClS8e4RbX27yqO368P9P_wB1TLX- |
CitedBy_id | crossref_primary_10_1038_s41598_023_46516_y crossref_primary_10_1016_j_intimp_2023_111456 crossref_primary_10_1371_journal_pone_0265221 crossref_primary_10_1016_j_intimp_2023_109775 crossref_primary_10_3389_fcvm_2022_863238 crossref_primary_10_1134_S1990750824600869 crossref_primary_10_3390_cells10082115 crossref_primary_10_3390_biomedicines9081055 crossref_primary_10_4239_wjd_v14_i9_1334 crossref_primary_10_3390_jcm11226849 crossref_primary_10_1007_s13668_024_00549_5 crossref_primary_10_1073_pnas_2206797120 crossref_primary_10_1016_j_metabol_2021_154910 crossref_primary_10_14341_DM13203 crossref_primary_10_1177_23800844241252395 crossref_primary_10_3390_ijms241914482 crossref_primary_10_1007_s13577_023_00867_w crossref_primary_10_1016_j_ijbiomac_2023_123189 crossref_primary_10_1016_j_jdermsci_2022_02_001 crossref_primary_10_1016_j_jnutbio_2024_109714 crossref_primary_10_3390_biomedicines12061285 crossref_primary_10_3390_biom13121743 crossref_primary_10_1016_j_intimp_2024_111785 crossref_primary_10_1089_jir_2024_0059 crossref_primary_10_3390_genes14081571 crossref_primary_10_1038_s41598_025_94595_w crossref_primary_10_3390_ijms26020752 crossref_primary_10_1016_j_heliyon_2024_e36650 crossref_primary_10_1002_prp2_1177 crossref_primary_10_3389_fphar_2022_778776 crossref_primary_10_1007_s12011_024_04186_5 crossref_primary_10_3390_ijms252111763 crossref_primary_10_1007_s13258_023_01403_8 crossref_primary_10_2147_DMSO_S467409 crossref_primary_10_1016_j_yexcr_2025_114507 crossref_primary_10_1080_14656566_2024_2347468 crossref_primary_10_12688_f1000research_144871_1 crossref_primary_10_5812_jjnpp_141691 crossref_primary_10_3389_fmed_2025_1555077 crossref_primary_10_3390_cells11233711 crossref_primary_10_3390_genes13040706 crossref_primary_10_3892_etm_2023_12313 crossref_primary_10_3390_cells11060983 crossref_primary_10_3390_ijms222212165 crossref_primary_10_3390_life14030390 crossref_primary_10_1007_s13577_023_01007_0 crossref_primary_10_3390_genes15040503 crossref_primary_10_3390_ijms241210252 |
Cites_doi | 10.2337/dc12-0421 10.1056/NEJMoa2035389 10.2337/diab.15.12.867 10.1038/leu.2014.351 10.1007/PL00005896 10.1172/JCI79273 10.1007/s125-002-8248-z 10.1155/2019/1905194 10.1056/NEJMoa2034577 10.1016/j.molmet.2017.06.019 10.1167/iovs.13-11937 10.1055/s-0033-1341516 10.2337/db11-1067 10.1084/jem.20080218 10.1016/j.redox.2018.09.025 10.1101/gad.1399806 10.20945/2359-3997000000006 10.1371/journal.pone.0064678 10.1093/eurheartj/ehv599 10.1016/j.bbrc.2020.08.073 10.1016/j.immuni.2009.06.024 10.1016/S0378-1119(01)00612-6 10.1007/s00125-015-3722-5 10.1007/s12035-020-02158-z 10.1016/j.ydbio.2006.08.028 10.1007/s00592-016-0961-y 10.1056/NEJMoa010492 10.1016/j.cell.2011.07.030 10.1016/j.cell.2007.04.040 10.3390/cells8080853 10.2337/dbi20-0024 10.1128/MCB.00107-19 10.1371/journal.pone.0073798 10.1111/jch.14186 10.1016/j.exer.2018.07.003 10.4049/jimmunol.179.8.5082 10.1111/1753-0407.12644 10.1016/j.cytogfr.2011.05.002 10.1152/ajpendo.00512.2019 10.1038/s41385-020-0255-0 10.1371/journal.pone.0008508 10.2337/diabetes.51.7.2170 10.1172/JCI119628 10.1038/nrendo.2017.151 10.2217/epi-2019-0242 10.1159/000479211 10.1016/S0960-9822(02)00809-6 10.1111/cei.13288 10.1093/nar/gkq337 10.1007/s12265-014-9545-9 10.2337/diacare.20.3.396 10.1210/en.2009-1277 10.1056/NEJM200105033441801 10.1056/NEJMoa0706245 10.1007/s00125-003-1263-9 10.1038/sj.onc.1209908 10.1126/science.abi8397 10.1073/pnas.0811073106 10.1016/j.diabres.2009.10.006 10.1371/journal.pone.0004699 10.1080/00325481.2020.1771047 10.4049/jimmunol.1000491 10.1161/CIRCRESAHA.116.306923 10.1111/nep.13451 10.1093/abbs/gmx118 10.1371/journal.pgen.1006308 10.1056/NEJMoa012512 10.7754/Clin.Lab.2019.190209 10.2337/diabetes.54.8.2382 10.1016/j.bbrc.2010.10.042 10.1038/s41598-017-06471-x 10.1016/j.ajg.2019.01.011 10.1016/j.clnu.2019.03.033 10.4049/jimmunol.0803162 10.1016/j.devcel.2006.09.009 10.1172/JCI113339 10.1161/CIRCRESAHA.110.223545 10.1016/j.immuni.2007.10.009 10.1007/s00125-011-2267-5 10.1080/08830180903093796 10.1038/nrneph.2016.48 10.1159/000321365 10.1073/pnas.1116125109 10.1016/j.cellsig.2009.02.014 10.1080/15384101.2018.1482149 10.2337/diacare.20.4.537 10.1002/jcp.24492 10.1101/gr.082701.108 10.1016/S0168-8227(98)00038-2 10.1056/NEJMe2030472 10.1073/pnas.0610731104 10.1161/CIRCRESAHA.117.305784 10.1177/1479164119827611 10.2337/dbi20-0030 10.1016/j.jaut.2005.04.008 10.1016/j.ajpath.2018.06.006 10.1530/EC-19-0446 10.1016/j.bbadis.2009.02.013 10.1038/414799a 10.1186/2045-3701-1-3 10.1016/j.immuni.2008.11.010 10.1111/dom.13382 10.2337/dc20-S002 10.1016/j.nephro.2016.02.005 10.1016/j.cmet.2018.09.011 10.3390/cells10051004 10.1055/s-0029-1211388 10.1681/ASN.2016121280 10.1124/jpet.107.131656 10.1111/j.1742-1241.2007.01547.x 10.3892/etm.2020.9214 10.1016/j.jaut.2018.08.003 10.1002/glia.21233 10.1038/onc.2011.538 10.1016/j.cell.2009.01.002 10.1038/nrg3074 10.2337/db11-1027 10.1016/S0140-6736(16)32064-5 10.1016/j.arcmed.2019.07.002 10.1186/s12967-018-1486-7 10.2337/db17-0313 10.1016/j.gene.2012.12.009 10.4161/rna.7.5.12685 10.1038/nrm2632 10.1038/nrg2843 10.1038/s41574-020-00451-4 10.1016/j.cellsig.2012.07.017 10.1186/s13104-020-05001-9 10.1016/S0140-6736(14)61682-2 10.1172/JCI111542 10.1038/ng.3040 10.1016/j.diabres.2018.03.044 10.2337/diabetes.52.1.102 10.4239/wjd.v12.i1.19 10.1126/science.1141229 10.1016/j.cell.2004.12.035 10.1186/1471-2369-15-142 10.1073/pnas.0610983104 10.1016/S0140-6736(98)07019-6 10.1111/j.1600-0609.2009.01348.x 10.7554/eLife.46012 10.1038/nm.4420 10.1016/j.diabres.2020.108086 10.1074/jbc.M115.646950 10.3892/ol.2017.6345 10.1093/nar/gks1030 10.1016/j.bbrc.2007.10.077 10.1126/science.1139253 10.1016/j.mam.2019.09.004 10.1080/09513590.2020.1843620 10.1128/MCB.17.3.1490 10.1210/jc.2004-1133 10.1016/j.cell.2017.08.035 10.1007/s10753-014-9961-7 10.1056/NEJM199312303292703 10.1210/jc.2002-020735 10.1016/j.cellimm.2012.11.001 10.1210/jc.2016-1374 10.1111/j.1463-1326.2008.00969.x 10.1073/pnas.1114325109 10.1016/j.intimp.2019.03.009 10.1097/01.TP.0000134396.03440.1E 10.1093/nar/gkh023 10.1016/j.cyto.2015.07.007 10.1038/ncomms6190 10.1074/jbc.C600321200 10.1172/JCI105534 10.4049/jimmunol.179.7.4313 10.1073/pnas.0902636106 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/ncrna7030039 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (Proquest) Biological Sciences ProQuest Central Biological Science Database (via ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2311-553X |
ExternalDocumentID | oai_doaj_org_article_7f6c895375a54ffd81954a9cb36df80b PMC8293470 10_3390_ncrna7030039 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO KQ8 LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c455t-1eadd114bceb2862c967feae685a7ae5cb99c58741b96de0cadf1b17e63f97433 |
IEDL.DBID | DOA |
ISSN | 2311-553X |
IngestDate | Wed Aug 27 01:24:03 EDT 2025 Thu Aug 21 18:43:23 EDT 2025 Fri Jul 11 07:13:11 EDT 2025 Fri Jul 25 11:59:15 EDT 2025 Tue Jul 01 01:10:42 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-1eadd114bceb2862c967feae685a7ae5cb99c58741b96de0cadf1b17e63f97433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0843-5098 0000-0001-7231-375X |
OpenAccessLink | https://doaj.org/article/7f6c895375a54ffd81954a9cb36df80b |
PMID | 34287359 |
PQID | 2576471002 |
PQPubID | 2059547 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f6c895375a54ffd81954a9cb36df80b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8293470 proquest_miscellaneous_2553823433 proquest_journals_2576471002 crossref_primary_10_3390_ncrna7030039 crossref_citationtrail_10_3390_ncrna7030039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210707 |
PublicationDateYYYYMMDD | 2021-07-07 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210707 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Non-coding RNA |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tung (ref_150) 2018; 23 Meng (ref_157) 2016; 12 Chao (ref_111) 2019; 71 Sardu (ref_142) 2014; 7 Hocaoglu (ref_54) 2021; 37 Santulli (ref_63) 2015; 125 Rubinsztein (ref_158) 2011; 146 Jankauskas (ref_160) 2018; 17 Carracher (ref_2) 2018; 10 Mayor (ref_10) 2007; 61 Fuchsberger (ref_15) 2016; 536 Gastaldelli (ref_86) 2004; 47 Ferrannini (ref_90) 2005; 90 ref_19 Guay (ref_99) 2019; 29 Chen (ref_107) 2019; 45 Mohr (ref_110) 2019; 197 Yuan (ref_143) 2019; 20 Esteller (ref_23) 2011; 12 Tam (ref_31) 2001; 274 Saisho (ref_83) 2013; 36 Bian (ref_176) 2017; 7 Chen (ref_70) 2017; 6 Tili (ref_134) 2009; 28 Thai (ref_121) 2007; 316 ref_125 Natarajan (ref_25) 2021; 70 Inaishi (ref_85) 2016; 101 Tarassishin (ref_37) 2011; 59 Kohlhaas (ref_112) 2009; 182 Gulei (ref_180) 2019; 70 Zhang (ref_24) 2007; 302 Costantino (ref_165) 2015; 37 Schjenken (ref_113) 2020; 13 Ferrannini (ref_71) 1997; 100 Beltrami (ref_61) 2018; 188 Itoh (ref_156) 2017; 50 ref_27 ref_26 Brandhorst (ref_77) 1995; 103 Kutty (ref_175) 2010; 402 Bai (ref_46) 2020; 20 Sardu (ref_140) 2019; 2019 Mostahfezian (ref_52) 2019; 50 Santulli (ref_94) 2012; 61 Hu (ref_117) 2010; 38 Ha (ref_64) 2020; 319 Vigorito (ref_116) 2007; 27 Pizarro (ref_51) 2018; 62 Lin (ref_162) 2017; 42 Wildin (ref_109) 2005; 25 Nolan (ref_66) 2019; 16 Ying (ref_29) 2017; 171 Hassan (ref_41) 2019; 20 Lu (ref_93) 2012; 31 Friedman (ref_21) 2009; 19 Elton (ref_135) 2013; 532 Pajvani (ref_95) 2015; 58 Escobar (ref_106) 2013; 54 Rodriguez (ref_120) 2007; 316 Yang (ref_53) 2015; 19 Saeedi (ref_5) 2020; 162 Accili (ref_7) 2020; 383 ref_147 Salminen (ref_159) 2009; 21 Baden (ref_178) 2021; 384 (ref_38) 2004; 32 Leng (ref_136) 2011; 22 Flanagan (ref_100) 2014; 46 Zhang (ref_154) 2020; 2020 Imaizumi (ref_161) 2010; 32 Chen (ref_137) 2014; 229 Lin (ref_163) 2014; 38 Haeusler (ref_96) 2014; 5 Esguerra (ref_67) 2018; 20 Yoon (ref_78) 2003; 88 Elgheznawy (ref_55) 2015; 117 Espinosa (ref_48) 2013; 121 Wang (ref_151) 2018; 16 Seltzer (ref_72) 1967; 46 Mao (ref_126) 2011; 1 Kloosterman (ref_22) 2006; 11 Roglic (ref_4) 2010; 87 Li (ref_164) 2020; 22 Santulli (ref_168) 2007; 324 Wilson (ref_145) 2021; 23 ref_173 ref_57 ref_174 Lewis (ref_20) 2005; 120 Fauci (ref_179) 2021; 372 Shah (ref_139) 2016; 118 Antonetti (ref_167) 2021; 17 ref_59 Chaudhuri (ref_130) 2009; 106 Wang (ref_155) 2020; 2020 Elton (ref_36) 2010; 7 Rauhut (ref_32) 2002; 12 Kim (ref_33) 2009; 10 Lu (ref_119) 2009; 30 Wang (ref_128) 2010; 185 Wang (ref_47) 2020; 532 Almgren (ref_14) 2011; 54 Perley (ref_76) 1966; 15 Bartel (ref_18) 2009; 136 Halperin (ref_68) 2012; 61 Masaki (ref_118) 2007; 364 Schulte (ref_131) 2012; 41 Faraoni (ref_138) 2009; 1792 Ciccacci (ref_39) 2020; 12 Tili (ref_123) 2007; 179 ref_166 Pan (ref_12) 1997; 20 Assmann (ref_50) 2017; 54 ref_62 Landgraf (ref_35) 2007; 129 Gambardella (ref_144) 2020; 69 Brauer (ref_172) 2012; 24 Zhou (ref_153) 2021; 12 Mycko (ref_108) 2012; 109 Giacco (ref_141) 2010; 107 Shao (ref_103) 2012; 280 Matsumoto (ref_80) 2004; 78 Gaede (ref_146) 2008; 358 Yang (ref_101) 2007; 282 Assmann (ref_45) 2018; 141 Zhang (ref_114) 2017; 14 Saltiel (ref_97) 2001; 414 Taha (ref_98) 1999; 169 Knowler (ref_9) 2002; 346 Camastra (ref_74) 2005; 54 Zheng (ref_8) 2018; 14 Weigert (ref_13) 2015; 51 Awazawa (ref_28) 2017; 23 Zhuang (ref_171) 2015; 21 Prado (ref_44) 2020; 13 Androulidaki (ref_129) 2009; 31 Hanley (ref_79) 2010; 151 Musilova (ref_132) 2015; 29 Webster (ref_148) 2017; 389 Ferenbach (ref_149) 2016; 12 Holman (ref_87) 1998; 40 Rahier (ref_82) 2008; 10 Yan (ref_170) 2015; 290 Kim (ref_58) 2020; 39 Vasilatou (ref_133) 2010; 84 Krol (ref_34) 2010; 11 Jensen (ref_88) 2002; 51 Butler (ref_81) 2003; 52 Guo (ref_152) 2019; 20 Ward (ref_89) 1984; 74 Wooff (ref_169) 2021; 58 Mazloom (ref_49) 2015; 76 Harris (ref_102) 2007; 179 Wysham (ref_65) 2020; 132 Sakuraba (ref_84) 2002; 45 ref_105 Polina (ref_43) 2019; 8 Zhu (ref_92) 2017; 66 Ceppi (ref_124) 2009; 106 Tam (ref_30) 1997; 17 Lombardi (ref_6) 2018; 94 ref_42 Mazzeo (ref_56) 2018; 176 ref_40 ref_1 Zeng (ref_16) 2006; 25 ref_3 Baker (ref_60) 2017; 28 Georgantas (ref_115) 2007; 104 Lillioja (ref_73) 1993; 329 Koch (ref_127) 2012; 109 Liu (ref_17) 2006; 20 Hu (ref_69) 2001; 345 Polack (ref_177) 2020; 383 Polonsky (ref_75) 1988; 81 Osei (ref_91) 1997; 20 Tuomilehto (ref_11) 2001; 344 Ma (ref_104) 2008; 205 Taganov (ref_122) 2007; 104 |
References_xml | – volume: 36 start-page: 111 year: 2013 ident: ref_83 article-title: Beta-cell mass and turnover in humans: Effects of obesity and aging publication-title: Diabetes Care doi: 10.2337/dc12-0421 – volume: 384 start-page: 403 year: 2021 ident: ref_178 article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – volume: 15 start-page: 867 year: 1966 ident: ref_76 article-title: Plasma insulin responses to glucose and tolbutamide of normal weight and obese diabetic and nondiabetic subjects publication-title: Diabetes doi: 10.2337/diab.15.12.867 – volume: 29 start-page: 1004 year: 2015 ident: ref_132 article-title: MicroRNAs in B-cell lymphomas: How a complex biology gets more complex publication-title: Leukemia doi: 10.1038/leu.2014.351 – volume: 169 start-page: 1 year: 1999 ident: ref_98 article-title: The insulin signaling pathway publication-title: J. Membr. Biol. doi: 10.1007/PL00005896 – volume: 125 start-page: 1968 year: 2015 ident: ref_63 article-title: Calcium release channel RyR2 regulates insulin release and glucose homeostasis publication-title: J. Clin. Investig. doi: 10.1172/JCI79273 – volume: 45 start-page: 85 year: 2002 ident: ref_84 article-title: Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients publication-title: Diabetologia doi: 10.1007/s125-002-8248-z – volume: 2019 start-page: 1 year: 2019 ident: ref_140 article-title: Diabetes Mellitus and Its Cardiovascular Complications: New Insights into an Old Disease publication-title: J. Diabetes Res. doi: 10.1155/2019/1905194 – volume: 383 start-page: 2603 year: 2020 ident: ref_177 article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 6 start-page: 943 year: 2017 ident: ref_70 article-title: Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis publication-title: Mol. Metab. doi: 10.1016/j.molmet.2017.06.019 – volume: 54 start-page: 4017 year: 2013 ident: ref_106 article-title: STAT3 activates miR-155 in Th17 cells and acts in concert to promote experimental autoimmune uveitis publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.13-11937 – volume: 121 start-page: 347 year: 2013 ident: ref_48 article-title: Dysregulated miR-155 expression in peripheral blood mononuclear cells from patients with type 2 diabetes publication-title: Exp. Clin. Endocrinol. Diabetes doi: 10.1055/s-0033-1341516 – volume: 61 start-page: 301 year: 2012 ident: ref_68 article-title: Insulin Augmentation of Glucose-Stimulated Insulin Secretion Is Impaired in Insulin-Resistant Humans publication-title: Diabetes doi: 10.2337/db11-1067 – volume: 205 start-page: 1551 year: 2008 ident: ref_104 article-title: Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3 publication-title: J. Exp. Med. doi: 10.1084/jem.20080218 – volume: 20 start-page: 247 year: 2019 ident: ref_143 article-title: New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis publication-title: Redox Biol. doi: 10.1016/j.redox.2018.09.025 – volume: 20 start-page: 515 year: 2006 ident: ref_17 article-title: Control of translation and mRNA degradation by miRNAs and siRNAs publication-title: Genes Dev. doi: 10.1101/gad.1399806 – volume: 62 start-page: 34 year: 2018 ident: ref_51 article-title: Expression of miR-155, miR-146a, and miR-326 in T1D patients from Chile: Relationship with autoimmunity and inflammatory markers publication-title: Arch. Endocrinol. Metab. doi: 10.20945/2359-3997000000006 – ident: ref_105 doi: 10.1371/journal.pone.0064678 – volume: 37 start-page: 572 year: 2015 ident: ref_165 article-title: MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehv599 – volume: 532 start-page: 308 year: 2020 ident: ref_47 article-title: LncRNA CTBP1-AS2 alleviates high glucose-induced oxidative stress, ECM accumulation, and inflammation in diabetic nephropathy via miR-155-5p/FOXO1 axis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.08.073 – volume: 31 start-page: 220 year: 2009 ident: ref_129 article-title: The Kinase Akt1 Controls Macrophage Response to Lipopolysaccharide by Regulating MicroRNAs publication-title: Immunity doi: 10.1016/j.immuni.2009.06.024 – volume: 274 start-page: 157 year: 2001 ident: ref_31 article-title: Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA publication-title: Gene doi: 10.1016/S0378-1119(01)00612-6 – volume: 58 start-page: 2459 year: 2015 ident: ref_95 article-title: The new biology of diabetes publication-title: Diabetologia doi: 10.1007/s00125-015-3722-5 – volume: 58 start-page: 835 year: 2021 ident: ref_169 article-title: Inhibition of microRNA-155 Protects Retinal Function Through Attenuation of Inflammation in Retinal Degeneration publication-title: Mol. Neurobiol. doi: 10.1007/s12035-020-02158-z – volume: 302 start-page: 1 year: 2007 ident: ref_24 article-title: microRNAs as oncogenes and tumor suppressors publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.08.028 – volume: 54 start-page: 433 year: 2017 ident: ref_50 article-title: Polymorphisms in genes encoding miR-155 and miR-146a are associated with protection to type 1 diabetes mellitus publication-title: Acta Diabetol. doi: 10.1007/s00592-016-0961-y – volume: 345 start-page: 790 year: 2001 ident: ref_69 article-title: Diet, Lifestyle, and the Risk of Type 2 Diabetes Mellitus in Women publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa010492 – volume: 146 start-page: 682 year: 2011 ident: ref_158 article-title: Autophagy and Aging publication-title: Cell doi: 10.1016/j.cell.2011.07.030 – volume: 129 start-page: 1401 year: 2007 ident: ref_35 article-title: A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing publication-title: Cell doi: 10.1016/j.cell.2007.04.040 – ident: ref_27 doi: 10.3390/cells8080853 – volume: 69 start-page: 2054 year: 2020 ident: ref_144 article-title: Metabolic Flexibility of Mitochondria Plays a Key Role in Balancing Glucose and Fatty Acid Metabolism in the Diabetic Heart publication-title: Diabetes doi: 10.2337/dbi20-0024 – ident: ref_166 – ident: ref_173 doi: 10.1128/MCB.00107-19 – ident: ref_62 doi: 10.1371/journal.pone.0073798 – volume: 23 start-page: 831 year: 2021 ident: ref_145 article-title: Chronic kidney disease: Definition, updated epidemiology, staging, and mechanisms of increased cardiovascular risk publication-title: J. Clin. Hypertens. doi: 10.1111/jch.14186 – volume: 536 start-page: 41 year: 2016 ident: ref_15 article-title: The genetic architecture of type 2 diabetes publication-title: Nat. Cell Biol. – volume: 176 start-page: 69 year: 2018 ident: ref_56 article-title: Molecular and functional characterization of circulating extracellular vesicles from diabetic patients with and without retinopathy and healthy subjects publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2018.07.003 – volume: 179 start-page: 5082 year: 2007 ident: ref_123 article-title: Modulation of miR-155 and miR-125b Levels following Lipopolysaccharide/TNF-α Stimulation and Their Possible Roles in Regulating the Response to Endotoxin Shock publication-title: J. Immunol. doi: 10.4049/jimmunol.179.8.5082 – volume: 10 start-page: 353 year: 2018 ident: ref_2 article-title: International Diabetes Federation 2017 publication-title: J. Diabetes doi: 10.1111/1753-0407.12644 – volume: 22 start-page: 141 year: 2011 ident: ref_136 article-title: Role of microRNA-155 in autoimmunity publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2011.05.002 – volume: 319 start-page: E410 year: 2020 ident: ref_64 article-title: Type 2 diabetes: One disease, many pathways publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00512.2019 – volume: 13 start-page: 609 year: 2020 ident: ref_113 article-title: MicroRNA miR-155 is required for expansion of regulatory T cells to mediate robust pregnancy tolerance in mice publication-title: Mucosal Immunol. doi: 10.1038/s41385-020-0255-0 – ident: ref_125 doi: 10.1371/journal.pone.0008508 – volume: 51 start-page: 2170 year: 2002 ident: ref_88 article-title: Beta-cell function is a major contributor to oral glucose tolerance in high-risk relatives of four ethnic groups in the U.S publication-title: Diabetes doi: 10.2337/diabetes.51.7.2170 – volume: 100 start-page: 1166 year: 1997 ident: ref_71 article-title: Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR) publication-title: J. Clin. Investig. doi: 10.1172/JCI119628 – volume: 14 start-page: 88 year: 2018 ident: ref_8 article-title: Global aetiology and epidemiology of type 2 diabetes mellitus and its complications publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2017.151 – volume: 12 start-page: 575 year: 2020 ident: ref_39 article-title: Expression study of candidate miRNAs and evaluation of their potential use as biomarkers of diabetic neuropathy publication-title: Epigenomics doi: 10.2217/epi-2019-0242 – volume: 42 start-page: 1469 year: 2017 ident: ref_162 article-title: Role of MiR-155 Signal Pathway in Regulating Podocyte Injury Induced by TGF-beta1 publication-title: Cell Physiol. Biochem. doi: 10.1159/000479211 – volume: 12 start-page: 735 year: 2002 ident: ref_32 article-title: Identification of Tissue-Specific MicroRNAs from Mouse publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00809-6 – volume: 197 start-page: 24 year: 2019 ident: ref_110 article-title: The role of FOXP3+regulatory T cells in human autoimmune and inflammatory diseases publication-title: Clin. Exp. Immunol. doi: 10.1111/cei.13288 – volume: 38 start-page: 5472 year: 2010 ident: ref_117 article-title: HOXA9 regulates miR-155 in hematopoietic cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq337 – volume: 7 start-page: 362 year: 2014 ident: ref_142 article-title: Impact of Diabetes Mellitus on the Clinical Response to Cardiac Resynchronization Therapy in Elderly People publication-title: J. Cardiovasc. Transl. Res. doi: 10.1007/s12265-014-9545-9 – volume: 20 start-page: 396 year: 1997 ident: ref_91 article-title: Pathogenetic Mechanisms of Impaired Glucose Tolerance and Type II Diabetes in African-Americans: The significance of insulin secretion, insulin sensitivity, and glucose effectiveness publication-title: Diabetes Care doi: 10.2337/diacare.20.3.396 – volume: 151 start-page: 1462 year: 2010 ident: ref_79 article-title: [beta}-Cell mass dynamics and islet cell plasticity in human type 2 diabetes publication-title: Endocrinology doi: 10.1210/en.2009-1277 – volume: 344 start-page: 1343 year: 2001 ident: ref_11 article-title: Prevention of Type 2 Diabetes Mellitus by Changes in Lifestyle among Subjects with Impaired Glucose Tolerance publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200105033441801 – volume: 358 start-page: 580 year: 2008 ident: ref_146 article-title: Effect of a Multifactorial Intervention on Mortality in Type 2 Diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0706245 – volume: 47 start-page: 31 year: 2004 ident: ref_86 article-title: Beta-cell dysfunction and glucose intolerance: Results from the San Antonio metabolism (SAM) study publication-title: Diabetologia doi: 10.1007/s00125-003-1263-9 – volume: 25 start-page: 6156 year: 2006 ident: ref_16 article-title: Principles of micro-RNA production and maturation publication-title: Oncogene doi: 10.1038/sj.onc.1209908 – volume: 372 start-page: 109 year: 2021 ident: ref_179 article-title: The story behind COVID-19 vaccines publication-title: Sciences doi: 10.1126/science.abi8397 – volume: 106 start-page: 2735 year: 2009 ident: ref_124 article-title: MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0811073106 – volume: 87 start-page: 15 year: 2010 ident: ref_4 article-title: Mortality attributable to diabetes: Estimates for the year 2010 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2009.10.006 – ident: ref_57 doi: 10.1371/journal.pone.0004699 – volume: 132 start-page: 676 year: 2020 ident: ref_65 article-title: Beta-cell failure in type 2 diabetes: Mechanisms, markers, and clinical implications publication-title: Postgrad. Med. doi: 10.1080/00325481.2020.1771047 – volume: 185 start-page: 6226 year: 2010 ident: ref_128 article-title: Inducible microRNA-155 Feedback Promotes Type I IFN Signaling in Antiviral Innate Immunity by Targeting Suppressor of Cytokine Signaling 1 publication-title: J. Immunol. doi: 10.4049/jimmunol.1000491 – volume: 118 start-page: 1808 year: 2016 ident: ref_139 article-title: Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.306923 – volume: 23 start-page: 32 year: 2018 ident: ref_150 article-title: Glomerular mesangial cell and podocyte injuries in diabetic nephropathy publication-title: Nephrology doi: 10.1111/nep.13451 – volume: 50 start-page: 82 year: 2017 ident: ref_156 article-title: Smad3–STAT3 crosstalk in pathophysiological contexts publication-title: Acta Biochim. Biophys. Sin. doi: 10.1093/abbs/gmx118 – ident: ref_40 doi: 10.1371/journal.pgen.1006308 – volume: 346 start-page: 393 year: 2002 ident: ref_9 article-title: Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa012512 – ident: ref_42 doi: 10.7754/Clin.Lab.2019.190209 – volume: 54 start-page: 2382 year: 2005 ident: ref_74 article-title: Beta-cell function in morbidly obese subjects during free living: Long-term effects of weight loss publication-title: Diabetes doi: 10.2337/diabetes.54.8.2382 – volume: 402 start-page: 390 year: 2010 ident: ref_175 article-title: Inflammatory cytokines regulate microRNA-155 expression in human retinal pigment epithelial cells by activating JAK/STAT pathway publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.10.042 – volume: 7 start-page: 6015 year: 2017 ident: ref_176 article-title: Combination of ginsenoside Rb1 and Rd protects the retina against bright light-induced degeneration publication-title: Sci. Rep. doi: 10.1038/s41598-017-06471-x – volume: 20 start-page: 1 year: 2019 ident: ref_41 article-title: Circulating microRNA-155 is associated with insulin resistance in chronic hepatitis C patients publication-title: Arab J. Gastroenterol. doi: 10.1016/j.ajg.2019.01.011 – volume: 39 start-page: 910 year: 2020 ident: ref_58 article-title: Differential circulating and visceral fat microRNA expression of non-obese and obese subjects publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2019.03.033 – volume: 182 start-page: 2578 year: 2009 ident: ref_112 article-title: Cutting Edge: The Foxp3 Target miR-155 Contributes to the Development of Regulatory T Cells publication-title: J. Immunol. doi: 10.4049/jimmunol.0803162 – volume: 11 start-page: 441 year: 2006 ident: ref_22 article-title: The diverse functions of microRNAs in animal development and disease publication-title: Dev. Cell. doi: 10.1016/j.devcel.2006.09.009 – volume: 81 start-page: 442 year: 1988 ident: ref_75 article-title: Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects publication-title: J. Clin. Investig. doi: 10.1172/JCI113339 – volume: 107 start-page: 1058 year: 2010 ident: ref_141 article-title: Oxidative stress and diabetic complications publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.110.223545 – volume: 27 start-page: 847 year: 2007 ident: ref_116 article-title: microRNA-155 Regulates the Generation of Immunoglobulin Class-Switched Plasma Cells publication-title: Immun. doi: 10.1016/j.immuni.2007.10.009 – volume: 54 start-page: 2811 year: 2011 ident: ref_14 article-title: Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study publication-title: Diabetologia doi: 10.1007/s00125-011-2267-5 – volume: 19 start-page: 2010 year: 2015 ident: ref_53 article-title: Regulatory T cells in the pathogenesis of type 2 diabetes mellitus retinopathy by miR-155 publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 28 start-page: 264 year: 2009 ident: ref_134 article-title: miR-155: On the Crosstalk Between Inflammation and Cancer publication-title: Int. Rev. Immunol. doi: 10.1080/08830180903093796 – volume: 20 start-page: 372 year: 2019 ident: ref_152 article-title: Dihydromyricetin promotes autophagy and attenuates renal interstitial fibrosis by regulating miR-155-5p/PTEN signaling in diabetic nephropathy publication-title: Bosn. J. Basic Med. Sci. – volume: 12 start-page: 325 year: 2016 ident: ref_157 article-title: TGF-beta: The master regulator of fibrosis publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2016.48 – volume: 32 start-page: 462 year: 2010 ident: ref_161 article-title: IFN-gamma and TNF-alpha synergistically induce microRNA-155 which regulates TAB2/IP-10 expression in human mesangial cells publication-title: Am. J. Nephrol. doi: 10.1159/000321365 – volume: 109 start-page: E1153 year: 2012 ident: ref_127 article-title: Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1116125109 – volume: 21 start-page: 1356 year: 2009 ident: ref_159 article-title: SIRT1: Regulation of longevity via autophagy publication-title: Cell Signal. doi: 10.1016/j.cellsig.2009.02.014 – volume: 17 start-page: 1291 year: 2018 ident: ref_160 article-title: Aged kidney: Can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning publication-title: Cell Cycle doi: 10.1080/15384101.2018.1482149 – volume: 20 start-page: 537 year: 1997 ident: ref_12 article-title: Effects of Diet and Exercise in Preventing NIDDM in People With Impaired Glucose Tolerance: The Da Qing IGT and Diabetes Study publication-title: Diabetes Care doi: 10.2337/diacare.20.4.537 – volume: 229 start-page: 545 year: 2014 ident: ref_137 article-title: The Pivotal Role of microRNA-155 in the Control of Cancer publication-title: J. Cell. Physiol. doi: 10.1002/jcp.24492 – volume: 19 start-page: 92 year: 2009 ident: ref_21 article-title: Most mammalian mRNAs are conserved targets of microRNAs publication-title: Genome Res. doi: 10.1101/gr.082701.108 – volume: 40 start-page: S21 year: 1998 ident: ref_87 article-title: Assessing the potential for α-glucosidase inhibitors in prediabetic states publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/S0168-8227(98)00038-2 – volume: 383 start-page: 2078 year: 2020 ident: ref_7 article-title: Whither Type 1 Diabetes? publication-title: N. Engl. J. Med. doi: 10.1056/NEJMe2030472 – volume: 104 start-page: 1604 year: 2007 ident: ref_122 article-title: MicroRNA-155 is induced during the macrophage inflammatory response publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0610731104 – volume: 117 start-page: 157 year: 2015 ident: ref_55 article-title: Dicer Cleavage by Calpain Determines Platelet microRNA Levels and Function in Diabetes publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.305784 – volume: 16 start-page: 118 year: 2019 ident: ref_66 article-title: Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift publication-title: Diab. Vasc. Dis. Res. doi: 10.1177/1479164119827611 – ident: ref_19 – volume: 70 start-page: 328 year: 2021 ident: ref_25 article-title: Epigenetic Mechanisms in Diabetic Vascular Complications and Metabolic Memory: The 2020 Edwin Bierman Award Lecture publication-title: Diabetes doi: 10.2337/dbi20-0030 – volume: 25 start-page: 56 year: 2005 ident: ref_109 article-title: IPEX and FOXP3: Clinical and research perspectives publication-title: J. Autoimmun. doi: 10.1016/j.jaut.2005.04.008 – volume: 188 start-page: 1982 year: 2018 ident: ref_61 article-title: Association of Elevated Urinary miR-126, miR-155, and miR-29b with Diabetic Kidney Disease publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2018.06.006 – volume: 8 start-page: 1591 year: 2019 ident: ref_43 article-title: Gene polymorphism and plasma levels of miR-155 in diabetic retinopathy publication-title: Endocr. Connect. doi: 10.1530/EC-19-0446 – volume: 1792 start-page: 497 year: 2009 ident: ref_138 article-title: miR-155 gene: A typical multifunctional microRNA publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2009.02.013 – volume: 414 start-page: 799 year: 2001 ident: ref_97 article-title: Insulin signalling and the regulation of glucose and lipid metabolism publication-title: Nature doi: 10.1038/414799a – volume: 1 start-page: 3 year: 2011 ident: ref_126 article-title: in vivo microRNA-155 expression influences antigen-specific T cell-mediated immune responses generated by DNA vaccination publication-title: Cell Biosci. doi: 10.1186/2045-3701-1-3 – volume: 30 start-page: 80 year: 2009 ident: ref_119 article-title: Foxp3-Dependent MicroRNA155 Confers Competitive Fitness to Regulatory T Cells by Targeting SOCS1 Protein publication-title: Immunity doi: 10.1016/j.immuni.2008.11.010 – volume: 20 start-page: 11 year: 2018 ident: ref_67 article-title: MicroRNAs in islet hormone secretion publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13382 – ident: ref_1 doi: 10.2337/dc20-S002 – volume: 12 start-page: S41 year: 2016 ident: ref_149 article-title: Acute kidney injury and chronic kidney disease: From the laboratory to the clinic publication-title: Nephrol. Ther. doi: 10.1016/j.nephro.2016.02.005 – volume: 29 start-page: 348 year: 2019 ident: ref_99 article-title: Lymphocyte-Derived Exosomal MicroRNAs Promote Pancreatic beta Cell Death and May Contribute to Type 1 Diabetes Development publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.09.011 – volume: 2020 start-page: 1 year: 2020 ident: ref_154 article-title: miR-155-5p Implicates in the Pathogenesis of Renal Fibrosis via Targeting SOCS1 and SOCS6 publication-title: Oxidative Med. Cell. Longev. – ident: ref_26 doi: 10.3390/cells10051004 – volume: 103 start-page: 23 year: 1995 ident: ref_77 article-title: Body Mass Index of Pancreatic Donors: A Decisive Factor for Human Islet Isolation publication-title: Exp. Clin. Endocrinol. Diabetes doi: 10.1055/s-0029-1211388 – volume: 28 start-page: 2985 year: 2017 ident: ref_60 article-title: Tissue-Specific MicroRNA Expression Patterns in Four Types of Kidney Disease publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2016121280 – volume: 324 start-page: 894 year: 2007 ident: ref_168 article-title: Studies with an Orally Bioavailable αV Integrin Antagonist in Animal Models of Ocular Vasculopathy: Retinal Neovascularization in Mice and Retinal Vascular Permeability in Diabetic Rats publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.107.131656 – volume: 61 start-page: 1773 year: 2007 ident: ref_10 article-title: International Diabetes Federation consensus on prevention of type 2 diabetes publication-title: Int. J. Clin. Pract. doi: 10.1111/j.1742-1241.2007.01547.x – volume: 20 start-page: 1 year: 2020 ident: ref_46 article-title: Diagnostic value of VDBP and miR-155-5p in diabetic nephropathy and the correlation with urinary microalbumin publication-title: Exp. Ther. Med. doi: 10.3892/etm.2020.9214 – volume: 94 start-page: 7 year: 2018 ident: ref_6 article-title: Interferon alpha: The key trigger of type 1 diabetes publication-title: J. Autoimmun. doi: 10.1016/j.jaut.2018.08.003 – volume: 59 start-page: 1911 year: 2011 ident: ref_37 article-title: Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155* publication-title: Glia doi: 10.1002/glia.21233 – volume: 31 start-page: 3647 year: 2012 ident: ref_93 article-title: Reexpression of oncoprotein MafB in proliferative beta-cells and Men1 insulinomas in mouse publication-title: Oncogene doi: 10.1038/onc.2011.538 – volume: 136 start-page: 215 year: 2009 ident: ref_18 article-title: MicroRNAs: Target Recognition and Regulatory Functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 12 start-page: 861 year: 2011 ident: ref_23 article-title: Non-coding RNAs in human disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3074 – volume: 61 start-page: 692 year: 2012 ident: ref_94 article-title: Age-related impairment in insulin release: The essential role of beta(2)-adrenergic receptor publication-title: Diabetes doi: 10.2337/db11-1027 – volume: 389 start-page: 1238 year: 2017 ident: ref_148 article-title: Chronic Kidney Disease publication-title: Lancet doi: 10.1016/S0140-6736(16)32064-5 – volume: 50 start-page: 79 year: 2019 ident: ref_52 article-title: Expression Pattern of microRNAs, miR-21, miR-155 and miR-338 in Patients with Type 1 Diabetes publication-title: Arch. Med Res. doi: 10.1016/j.arcmed.2019.07.002 – volume: 16 start-page: 146 year: 2018 ident: ref_151 article-title: Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease publication-title: J. Transl. Med. doi: 10.1186/s12967-018-1486-7 – volume: 66 start-page: 3072 year: 2017 ident: ref_92 article-title: Hyperlipidemia-Induced MicroRNA-155-5p Improves beta-Cell Function by Targeting Mafb publication-title: Diabetes doi: 10.2337/db17-0313 – volume: 532 start-page: 1 year: 2013 ident: ref_135 article-title: Regulation of the MIR155 host gene in physiological and pathological processes publication-title: Gene doi: 10.1016/j.gene.2012.12.009 – volume: 7 start-page: 540 year: 2010 ident: ref_36 article-title: Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins publication-title: RNA Biol. doi: 10.4161/rna.7.5.12685 – volume: 10 start-page: 126 year: 2009 ident: ref_33 article-title: Biogenesis of small RNAs in animals publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2632 – volume: 11 start-page: 597 year: 2010 ident: ref_34 article-title: The widespread regulation of microRNA biogenesis, function and decay publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2843 – volume: 17 start-page: 195 year: 2021 ident: ref_167 article-title: Current understanding of the molecular and cellular pathology of diabetic retinopathy publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-020-00451-4 – volume: 45 start-page: 429 year: 2019 ident: ref_107 article-title: Inhibition of miR-155-5p attenuates the valvular damage induced by rheumatic heart disease publication-title: Int. J. Mol. Med. – volume: 24 start-page: 2095 year: 2012 ident: ref_172 article-title: Leukemia-associated mutations in SHIP1 inhibit its enzymatic activity, interaction with the GM-CSF receptor and Grb2, and its ability to inactivate PI3K/AKT signaling publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2012.07.017 – volume: 13 start-page: 1 year: 2020 ident: ref_44 article-title: Downregulation of circulating miR-320a and target gene prediction in patients with diabetic retinopathy publication-title: BMC Res. Notes doi: 10.1186/s13104-020-05001-9 – ident: ref_3 doi: 10.1016/S0140-6736(14)61682-2 – volume: 74 start-page: 1318 year: 1984 ident: ref_89 article-title: Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus publication-title: J. Clin. Investig. doi: 10.1172/JCI111542 – volume: 46 start-page: 812 year: 2014 ident: ref_100 article-title: Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease publication-title: Nat. Genet. doi: 10.1038/ng.3040 – volume: 141 start-page: 35 year: 2018 ident: ref_45 article-title: MicroRNA expression profile in plasma from type 1 diabetic patients: Case-control study and bioinformatic analysis publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2018.03.044 – volume: 52 start-page: 102 year: 2003 ident: ref_81 article-title: Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.52.1.102 – volume: 12 start-page: 19 year: 2021 ident: ref_153 article-title: Metformin regulates inflammation and fibrosis in diabetic kidney disease through TNC/TLR4/NF-kappaB/miR-155-5p inflammatory loop publication-title: World J. Diabetes. doi: 10.4239/wjd.v12.i1.19 – volume: 316 start-page: 604 year: 2007 ident: ref_121 article-title: Regulation of the Germinal Center Response by MicroRNA-155 publication-title: Science doi: 10.1126/science.1141229 – volume: 120 start-page: 15 year: 2005 ident: ref_20 article-title: Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets publication-title: Cell doi: 10.1016/j.cell.2004.12.035 – ident: ref_59 doi: 10.1186/1471-2369-15-142 – volume: 21 start-page: 1173 year: 2015 ident: ref_171 article-title: Down-regulation of microRNA-155 attenuates retinal neovascularization via the PI3K/Akt pathway publication-title: Mol. Vis. – volume: 104 start-page: 2750 year: 2007 ident: ref_115 article-title: CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0610983104 – ident: ref_147 doi: 10.1016/S0140-6736(98)07019-6 – volume: 84 start-page: 1 year: 2010 ident: ref_133 article-title: The role of microRNAs in normal and malignant hematopoiesis publication-title: Eur. J. Haematol. doi: 10.1111/j.1600-0609.2009.01348.x – ident: ref_174 doi: 10.7554/eLife.46012 – volume: 51 start-page: 390 year: 2015 ident: ref_13 article-title: Exercise and diabetes: Relevance and causes for response variability publication-title: Endocrine – volume: 23 start-page: 1466 year: 2017 ident: ref_28 article-title: A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle publication-title: Nat. Med. doi: 10.1038/nm.4420 – volume: 162 start-page: 108086 year: 2020 ident: ref_5 article-title: Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas, 9th edition publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2020.108086 – volume: 290 start-page: 23264 year: 2015 ident: ref_170 article-title: Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.646950 – volume: 14 start-page: 1711 year: 2017 ident: ref_114 article-title: Preliminary study on decreasing the expression of FOXP3 with miR-155 to inhibit diffuse large B-cell lymphoma publication-title: Oncol. Lett. doi: 10.3892/ol.2017.6345 – volume: 41 start-page: 542 year: 2012 ident: ref_131 article-title: Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1030 – volume: 2020 start-page: 1 year: 2020 ident: ref_155 article-title: MiR-155-5p promotes renal interstitial fibrosis in obstructive nephropathy via inhibiting SIRT1 signaling pathway publication-title: J. Recept. Signal Transduct. Res. – volume: 364 start-page: 509 year: 2007 ident: ref_118 article-title: Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.10.077 – volume: 316 start-page: 608 year: 2007 ident: ref_120 article-title: Requirement of bic/microRNA-155 for Normal Immune Function publication-title: Science doi: 10.1126/science.1139253 – volume: 70 start-page: 33 year: 2019 ident: ref_180 article-title: The extensive role of miR-155 in malignant and non-malignant diseases publication-title: Mol. Asp. Med. doi: 10.1016/j.mam.2019.09.004 – volume: 37 start-page: 216 year: 2021 ident: ref_54 article-title: Identification of miR-16-5p and miR-155-5p microRNAs differentially expressed in circulating leukocytes of pregnant women with polycystic ovary syndrome and gestational diabetes publication-title: Gynecol. Endocrinol. doi: 10.1080/09513590.2020.1843620 – volume: 17 start-page: 1490 year: 1997 ident: ref_30 article-title: bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.17.3.1490 – volume: 90 start-page: 493 year: 2005 ident: ref_90 article-title: Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: A new analysis publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2004-1133 – volume: 171 start-page: 372 year: 2017 ident: ref_29 article-title: Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate in vivo and in vitro Insulin Sensitivity publication-title: Cell doi: 10.1016/j.cell.2017.08.035 – volume: 38 start-page: 546 year: 2014 ident: ref_163 article-title: MicroRNA-155 Deficiency Promotes Nephrin Acetylation and Attenuates Renal Damage in Hyperglycemia-Induced Nephropathy publication-title: Inflammation doi: 10.1007/s10753-014-9961-7 – volume: 329 start-page: 1988 year: 1993 ident: ref_73 article-title: Insulin Resistance and Insulin Secretory Dysfunction as Precursors of Non-Insulin-Dependent Diabetes Mellitus: Prospective Studies of Pima Indians publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199312303292703 – volume: 88 start-page: 2300 year: 2003 ident: ref_78 article-title: Elective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2002-020735 – volume: 280 start-page: 16 year: 2012 ident: ref_103 article-title: Th17 cells in type 1 diabetes publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2012.11.001 – volume: 101 start-page: 2874 year: 2016 ident: ref_85 article-title: Effects of Obesity and Diabetes on alpha- and beta-Cell Mass in Surgically Resected Human Pancreas publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2016-1374 – volume: 10 start-page: 32 year: 2008 ident: ref_82 article-title: Pancreatic beta-cell mass in European subjects with type 2 diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/j.1463-1326.2008.00969.x – volume: 109 start-page: E1248 year: 2012 ident: ref_108 article-title: microRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1114325109 – volume: 71 start-page: 267 year: 2019 ident: ref_111 article-title: MiR-155 controls follicular Treg cell-mediated humoral autoimmune intestinal injury by inhibiting CTLA-4 expression publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2019.03.009 – volume: 78 start-page: 880 year: 2004 ident: ref_80 article-title: Improvement in Islet Yield from Obese Donors for Human Islet Transplants publication-title: Transplantation doi: 10.1097/01.TP.0000134396.03440.1E – volume: 32 start-page: D109 year: 2004 ident: ref_38 article-title: The microRNA Registry publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh023 – volume: 76 start-page: 403 year: 2015 ident: ref_49 article-title: Downregulated microRNA-155 expression in peripheral blood mononuclear cells of type 2 diabetic patients is not correlated with increased inflammatory cytokine production publication-title: Cytokine doi: 10.1016/j.cyto.2015.07.007 – volume: 5 start-page: 1 year: 2014 ident: ref_96 article-title: Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors publication-title: Nat. Commun. doi: 10.1038/ncomms6190 – volume: 282 start-page: 9358 year: 2007 ident: ref_101 article-title: STAT3 Regulates Cytokine-mediated Generation of Inflammatory Helper T Cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.C600321200 – volume: 46 start-page: 323 year: 1967 ident: ref_72 article-title: Insulin Secretion in Response to Glycemic Stimulus: Relation of Delayed Initial Release to Carbohydrate intolerance in Mild Diabetes Mellitus publication-title: J. Clin. Investig. doi: 10.1172/JCI105534 – volume: 22 start-page: 4003 year: 2020 ident: ref_164 article-title: miR155 modulates high glucose induced cardiac fibrosis via the Nrf2/HO1 signaling pathway publication-title: Mol. Med. Rep. – volume: 179 start-page: 4313 year: 2007 ident: ref_102 article-title: Cutting Edge: An in vivo Requirement for STAT3 Signaling in TH17 Development and TH17-Dependent Autoimmunity publication-title: J. Immunol. doi: 10.4049/jimmunol.179.7.4313 – volume: 106 start-page: 7113 year: 2009 ident: ref_130 article-title: Inositol phosphatase SHIP1 is a primary target of miR-155 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0902636106 |
SSID | ssj0001476660 |
Score | 2.4403913 |
SecondaryResourceType | review_article |
Snippet | Substantial evidence indicates that microRNA-155 (miR-155) plays a crucial role in the pathogenesis of diabetes mellitus (DM) and its complications. A number... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 39 |
SubjectTerms | Adipose tissue Biosynthesis Diabetes Diabetes mellitus (insulin dependent) Diabetes mellitus (non-insulin dependent) Diabetic neuropathy Diabetic retinopathy epigenetics Gene expression Glucagon Hepatitis C inflammation Insulin Insulin resistance islets Islets of Langerhans MicroRNAs miRNA Nephropathy Obesity Pathogenesis Plasma Polymorphism Retinopathy Review Serum levels Skeletal muscle β-cells |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELVauPRSlY-qoRS5Eu0FWST4KzlVgFhRpCK0AglOkePYsBI4QLIH_j0zWe-yOZTr2lJWnvHMe-PRG0J2lRfSeq6YU9YzwZ1hxgrPtAKy4hTONu_VPs_V6ZU4u5bXseDWxrbKeUzsA3XdWKyR7yMwFihFc_Dn8Ynh1Ch8XY0jND6SVQjBOZCv1aOT84vxW5VFaMDn6azjnQO_3w8WLIRunuJ88KVc1Ev2D3DmsEtyKe2MvpDPES_Sw5mB18gHF9bJxmEArvzwQn_TvoOzL41vkJsRJKlZbY-Om3tHG08fJmMGyZxOAgWoRy8A8DW3GN8mLS7HhpiW_kNhzm7aUhNq-rdr6fFyr_kmuRqdXB6fsjg6gVkhZccycJAaqE5lgTkDabGF0t4Zp3JptHHSVkVhZQ5woipU7VJrap9VmXaKe2AYnH8lK6EJ7huhLgMrpyg7nxfCZtLwWlvAiQZyXpVxl5C9-SGWNuqK43iL-xL4BR55uXzkCfm12P0409P4z74jtMdiD6pg9z80z7dlvFSl9srmheRaGim8r_FNUJjCVlzVPk-rhGzPrVnGq9mWb46UkJ-LZbhU-FJigmumuEfi-yicQ0L0wAsGf2i4EiZ3vTx3DghK6HTr_Y9_J58OsD2mrxRvk5Xueep-AL7pqp3oxK--Qf4y priority: 102 providerName: ProQuest |
Title | Functional Role of miR-155 in the Pathogenesis of Diabetes Mellitus and Its Complications |
URI | https://www.proquest.com/docview/2576471002 https://www.proquest.com/docview/2553823433 https://pubmed.ncbi.nlm.nih.gov/PMC8293470 https://doaj.org/article/7f6c895375a54ffd81954a9cb36df80b |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hcuGCgIII_ZCRgAuKmtRfyXG3dFWQqKoVlcopchwbVmodRLIH_n1nnHSVHBAXTpFiH5KZsec9e_QG4J3yQlrPVeqU9angzqTGCp9qhWTFKeptHtU-L9XFtfhyI28mrb6oJmyQBx4Md6K9skUpuZZGCu8buvcRprQ1V40vspp2X8x5EzIVT1eERlyeDZXuHHn9SbDoGQrvjPqCT3JQlOqf4ct5deQk3ayewdMRJ7LF8H3P4ZELL2B_EZAj3_1hH1is3IxH4vvwfYXJaTjTY-v21rHWs7vNOsUkzjaBIcRjVwj02h-0r206Gh4LYTr2lQQ5-23HTGjY575jZ9Ma85dwvTr_dnaRji0TUiuk7NMcA6NBilNbZMxIVmyptHfGqUIabZy0dVlaWSCMqEvVuMyaxud1rp3iHpkF569gL7TBvQbmcvRuRnLzRSlsLg1vtEV8aDDX1Tl3CXx8MGJlRz1xamtxWyGvIJNXU5Mn8H43-9ego_GXeUvyx24OqV_HFxgT1RgT1b9iIoHDB29W45LsKmJWgrSMThN4uxvGxUQ3JCa4dktzJN2Loh0S0LMomH3QfCRsfkZZ7gKRk9DZm__xBwfw5JSKZ-I58iHs9b-37gjRT18fw-PF8tNyhc_l-eXV-jgG_j2CjQjE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFJ-Q5aAXI6KxCDom4sU0tDtf7cEYQDa7AhuygQRPdTqdwU2gRdqN4Z_yb_S9fizbg964dl7S5s37-L2PvkfIB-m4MI5J30rjfM6s9rXhzlcSghUrcbd5Pe1zKscX_NuluFwjf7p_YbCtsrOJtaHOCoM58j0ExhxH0Qy_3P7ycWsUVle7FRqNWBzb-98QspWfJ1_hfneHw9HR-eHYb7cK-IYLUfkh8C6DKCA1EFQCnjexVM5qKyOhlbbCpHFsRASeNo1lZgOjMxemobKSOQDfmAAFk7_OGYQyA7J-cDQ9mz1kdbiCeCBoOuwZi4O93IBEoFoFuI98xffVKwJ6uLbflbni5kbPybMWn9L9RqA2yJrNX5DN_Rxi85t7-pHWHaN1Kn6TfB-BU2xyiXRWXFtaOHozn_kAHug8pwAt6RkAzOIK7em8xOO2AaekpzgItFqUVOcZnVQlPVztbX9JLh6Fqa_IIC9y-5pQG4JUBTjmPoq5CYVmmTKASzX42DRk1iOfOiYmpp1jjus0rhOIZ5DlySrLPbK7pL5t5nf8g-4A72NJg1O36wfF3VXSKnGinDRRLJgSWnDnMqxBch2blMnMRUHqke3uNpPWFJTJg-B65P3yGJQYKzM6t8UCaQTWY4EPHlE9Keh9UP8kn_-sx4FHgNi4Crb-__J35Mn4_PQkOZlMj9-Qp0Nszamz1NtkUN0t7A5gqyp92wo0JT8eW4f-AvWlPOY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqYS4IEpBuLSwSJQLsmLH-7APCPUVNRSiKKJSOZn1erdEau1SJ0L9a_w6ZvxIkwPcevWOZGt2Ht88PAPwTjoujIukb6VxPo-s9rXhzlcSgxUrabd5Pe1zLE_P-ecLcbEBf7p_YaitsrOJtaHOS0M58j4BY06jaAZ917ZFTI6Hn25--bRBiiqt3TqNRkTO7N1vDN-qj6NjvOv9wWB48u3o1G83DPiGCzH3Q-RjjhFBZjDARGxvEqmc1VbGQitthcmSxIgYvW6WyNwGRucuzEJlZeQQiFMyFM3_psKoKOjB5uHJeDK9z_BwhbFB0HTbR1ES9AuD0kEqFtBu8hU_WK8LWMO46x2aKy5v-BSetFiVHTTCtQUbtngG2wcFxunXd-w9q7tH67T8NnwfooNs8opsWl5ZVjp2PZv6CCTYrGAIM9kEwWZ5SbZ1VtFx24xTsa80FHS-qJgucjaaV-xotc_9OZw_CFNfQK8oC_sSmA1RwgIaeR8n3IRCR7kyiFE1-tssjKwHHzompqadaU6rNa5SjG2I5ekqyz3YX1LfNLM8_kF3SPexpKEJ3PWD8vYybRU6VU6aOBGRElpw53KqR3KdmCySuYuDzIPd7jbT1ixU6b0Qe_B2eYwKTVUaXdhyQTSCarPIBw_UmhSsfdD6STH7WY8GjxG9cRXs_P_lb-AR6k76ZTQ-ewWPB9SlUyesd6E3v13YPYRZ8-x1K88Mfjy0Cv0FUi1BGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Role+of+miR-155+in+the+Pathogenesis+of+Diabetes+Mellitus+and+Its+Complications&rft.jtitle=Non-coding+RNA&rft.au=Jankauskas%2C+Stanislovas+S.&rft.au=Gambardella%2C+Jessica&rft.au=Sardu%2C+Celestino&rft.au=Lombardi%2C+Angela&rft.date=2021-07-07&rft.issn=2311-553X&rft.eissn=2311-553X&rft.volume=7&rft.issue=3&rft.spage=39&rft_id=info:doi/10.3390%2Fncrna7030039&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ncrna7030039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-553X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-553X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-553X&client=summon |