The productive performance of intercropping

Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 120; no. 2; p. e2201886120
Main Authors Li, Chunjie, Stomph, Tjeerd-Jan, Makowski, David, Li, Haigang, Zhang, Chaochun, Zhang, Fusuo, van der Werf, Wopke
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (−4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets.
AbstractList Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (-4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets.
Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (−4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets.
Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (-4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets.Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (-4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets.
Agricultural diversification is useful for agronomic, environmental, and dietary reasons. Here, we confirm, based on a meta-analysis of 226 field experiments, that the simultaneous cultivation of two species in the same plot (intercropping) leads to substantial land savings over single crops when the objective is to produce a diversified set of crop products. While intercropping leads on average to a small yield penalty for grains and calories compared with the most productive single crop species comprised in the mixture, it can provide similar or even higher protein yields, especially with modest N fertilizer application. In addition, it provides further ecological services. Intercropping thus has the potential to diversify crop production and make cropping systems more sustainable. Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (−4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets.
Author Makowski, David
Stomph, Tjeerd-Jan
Zhang, Chaochun
Zhang, Fusuo
Li, Haigang
van der Werf, Wopke
Li, Chunjie
Author_xml – sequence: 1
  givenname: Chunjie
  orcidid: 0000-0002-2761-1085
  surname: Li
  fullname: Li, Chunjie
  organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
– sequence: 2
  givenname: Tjeerd-Jan
  orcidid: 0000-0001-5984-1523
  surname: Stomph
  fullname: Stomph, Tjeerd-Jan
  organization: Centre for Crop Systems Analysis, Wageningen University, 6700 AK, Wageningen, The Netherlands
– sequence: 3
  givenname: David
  orcidid: 0000-0001-6385-3703
  surname: Makowski
  fullname: Makowski, David
  organization: INRAe, AgroParisTech, Université Paris-Saclay, Unit Applied mathematics and computer science, Palaiseau 91120, France
– sequence: 4
  givenname: Haigang
  surname: Li
  fullname: Li, Haigang
  organization: Inner Mongolia Key Lab. of Soil Quality and Nutrient Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China
– sequence: 5
  givenname: Chaochun
  surname: Zhang
  fullname: Zhang, Chaochun
  organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
– sequence: 6
  givenname: Fusuo
  orcidid: 0000-0001-8971-0129
  surname: Zhang
  fullname: Zhang, Fusuo
  organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
– sequence: 7
  givenname: Wopke
  orcidid: 0000-0002-5506-4699
  surname: van der Werf
  fullname: van der Werf, Wopke
  organization: Centre for Crop Systems Analysis, Wageningen University, 6700 AK, Wageningen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36595678$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03921601$$DView record in HAL
BookMark eNp1kUtLJDEUhYM4aPtYu5MGNyNSepOqvDaCiI-Bhtk465BKpexIdVImVQ3--0nROmrDrJKbfOfc5NwDtOuDtwidYLjEwMur3ut0SQhgIRgmsINmGCQuWCVhF80ACC9ERap9dJDSCwBIKmAP7ZeMSsq4mKGLp6Wd9zE0oxncOm9tbENcaW_sPLRz5wcbTQx97_zzEfrR6i7Z4_f1EP25v3u6fSwWvx9-3d4sClNROhS4qaWxkjSUiqai2oAsa8oklBobmSujMde1MCVp6lxybGrONaGkalsGtjxE1xvffqxXtjHWD1F3qo9upeObCtqp7zfeLdVzWCspCSOUZYPzjcFyS_Z4s1DTGZSSYAZ4jTP7871ZDK-jTYNauWRs12lvw5gU4QwEFhXjGT3bQl_CGH2OYqJysiDlZHj69fX_-n9kngG6AXKuKUXbKuMGPbgwfcZ1CoOaZqum2arP2Wbd1Zbuw_p_ir8HUqWH
CitedBy_id crossref_primary_10_3389_fpls_2024_1368509
crossref_primary_10_1016_j_eja_2023_127024
crossref_primary_10_12677_hjfns_2025_141014
crossref_primary_10_3390_agronomy14112472
crossref_primary_10_1002_agj2_21600
crossref_primary_10_1016_j_agsy_2024_104196
crossref_primary_10_1002_sae2_70039
crossref_primary_10_1016_j_rhisph_2024_101007
crossref_primary_10_1094_PDIS_12_23_2615_RE
crossref_primary_10_1002_2688_8319_12349
crossref_primary_10_1016_j_fcr_2024_109560
crossref_primary_10_1038_s41467_024_48876_z
crossref_primary_10_1007_s00374_024_01872_3
crossref_primary_10_1007_s00338_025_02632_x
crossref_primary_10_1007_s11104_024_06903_4
crossref_primary_10_1038_s44264_025_00048_2
crossref_primary_10_1016_j_eja_2023_127036
crossref_primary_10_1007_s11104_024_06775_8
crossref_primary_10_1073_pnas_2305517121
crossref_primary_10_1080_1343943X_2024_2415901
crossref_primary_10_3390_su16073081
crossref_primary_10_1007_s10886_024_01470_5
crossref_primary_10_1007_s40009_024_01533_x
crossref_primary_10_1080_1343943X_2024_2372878
crossref_primary_10_3390_agriculture14081330
crossref_primary_10_1029_2024GB008159
crossref_primary_10_3390_plants13121687
crossref_primary_10_11648_j_ajaf_20241205_17
crossref_primary_10_1016_j_landusepol_2024_107066
crossref_primary_10_1111_pce_15299
crossref_primary_10_3389_fpls_2024_1473786
crossref_primary_10_1007_s12892_025_00279_2
crossref_primary_10_3897_oneeco_9_e131969
crossref_primary_10_1016_j_fcr_2024_109695
crossref_primary_10_1038_s41598_024_69903_5
crossref_primary_10_3389_fpls_2024_1344110
crossref_primary_10_1177_00307270231199796
crossref_primary_10_1111_nph_70037
crossref_primary_10_1017_S0021859624000078
crossref_primary_10_1038_s41559_024_02529_y
crossref_primary_10_3389_fagro_2025_1535871
crossref_primary_10_1002_agj2_21622
crossref_primary_10_3390_agronomy13112803
crossref_primary_10_3390_plants14050681
crossref_primary_10_1139_cjps_2024_0136
crossref_primary_10_3389_fmicb_2024_1473099
crossref_primary_10_3389_fpls_2024_1394413
crossref_primary_10_1080_23311932_2025_2451057
crossref_primary_10_3390_agronomy14010100
crossref_primary_10_3389_fmicb_2024_1425898
crossref_primary_10_1002_ps_8405
crossref_primary_10_1371_journal_pstr_0000066
crossref_primary_10_1007_s13593_024_00968_2
crossref_primary_10_1080_10807039_2024_2386974
crossref_primary_10_12944_CARJ_12_1_14
crossref_primary_10_1007_s11104_024_06987_y
crossref_primary_10_1016_j_agee_2024_109324
crossref_primary_10_1002_fes3_70005
crossref_primary_10_1007_s11104_025_07242_8
crossref_primary_10_1016_j_resenv_2025_100210
crossref_primary_10_3389_fsufs_2025_1527256
crossref_primary_10_1111_tpj_17127
crossref_primary_10_3390_horticulturae10121288
crossref_primary_10_1007_s11104_024_06861_x
crossref_primary_10_3389_fpls_2023_1266704
crossref_primary_10_1016_j_eja_2023_126967
crossref_primary_10_3390_agronomy14071551
crossref_primary_10_1007_s11104_024_07096_6
crossref_primary_10_1038_s41467_024_52449_5
crossref_primary_10_3389_fsufs_2024_1456987
crossref_primary_10_1088_1742_5468_ad9c4e
crossref_primary_10_1155_2023_8861216
crossref_primary_10_3390_agronomy14122801
crossref_primary_10_1007_s10340_023_01629_1
crossref_primary_10_1016_j_indcrop_2024_119868
crossref_primary_10_1016_j_aspen_2023_102188
crossref_primary_10_1071_AN24246
crossref_primary_10_3389_fpls_2024_1470293
crossref_primary_10_3390_agriculture14071162
Cites_doi 10.1579/0044-7447-31.2.132
10.1016/j.rser.2015.02.023
10.1002/agj2.20340
10.1007/s12571-018-0859-3
10.1111/j.1365-2664.2012.02173.x
10.1016/j.agee.2021.107658
10.1016/j.eja.2017.09.009
10.1016/j.agee.2017.03.003
10.1093/jxb/ery288
10.1016/j.eja.2019.125936
10.1111/j.0030-1299.2004.12685.x
10.1111/ele.13336
10.1016/S2095-3119(17)61789-1
10.1016/0378-4290(93)90123-5
10.1038/s41477-020-0680-9
10.1111/j.1365-2745.2009.01521.x
10.1111/pce.13368
10.1002/fes3.270
10.1111/j.1365-2664.2009.01653.x
10.1038/35083573
10.1038/s41477-020-00783-z
10.1016/j.eja.2020.126197
10.1017/CBO9780511623523
10.1038/nplants.2016.112
10.1017/S0014479700010978
10.1007/s11104-009-0082-2
10.1017/S0021859600025910
10.1111/j.0006-341X.2000.00455.x
10.1016/0378-4290(93)90117-6
10.3389/fpls.2022.846720
10.1016/j.fcr.2019.107661
10.1006/bulm.2000.0226
10.3732/ajb.1000364
10.1038/nature19368
10.1007/s13593-014-0277-7
10.1073/pnas.1116437108
10.1126/science.328.5975.169-e
10.1007/s10806-021-09876-x
10.1016/j.scitotenv.2017.10.024
10.1071/CP16211
10.1093/jpe/rtn011
10.1051/agro:2006033
10.1073/pnas.0709069104
10.1007/s10705-007-9126-2
10.1016/j.fcr.2019.107636
10.1016/j.fcr.2015.09.010
10.1111/gcb.12738
10.1126/science.1185383
10.1016/j.fcr.2012.07.014
10.1016/j.eja.2019.125987
10.1007/s10658-019-01711-4
10.1126/sciadv.aba1715
10.2307/1941795
10.1073/pnas.1313490111
10.1016/S0378-4290(01)00176-9
10.1007/s13593-011-0022-4
10.1002/fes3.170
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jan 10, 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2023 the Author(s). Published by PNAS. 2023
Copyright_xml – notice: Copyright National Academy of Sciences Jan 10, 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2023 the Author(s). Published by PNAS. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.1073/pnas.2201886120
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Virology and AIDS Abstracts

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Statistics
EISSN 1091-6490
ExternalDocumentID PMC9926256
oai_HAL_hal_03921601v1
36595678
10_1073_pnas_2201886120
Genre Research Support, Non-U.S. Gov't
Meta-Analysis
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
UMC
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
ID FETCH-LOGICAL-c455t-1db9ce92d558d45ac093b56903a1c9c09ca17ab8c32dbc0971cb77a2524ff60e3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:37:40 EDT 2025
Fri May 09 12:24:25 EDT 2025
Fri Jul 11 00:51:48 EDT 2025
Mon Jun 30 08:16:22 EDT 2025
Thu May 08 07:32:42 EDT 2025
Tue Jul 01 01:03:31 EDT 2025
Thu Apr 24 23:03:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords intercropping
productivity
land-use efficiency
transgressive overyielding
food security
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-1db9ce92d558d45ac093b56903a1c9c09ca17ab8c32dbc0971cb77a2524ff60e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Edited by David Tilman, University of Minnesota College of Biological Sciences, St. Paul, MN; received February 2, 2022; accepted November 5, 2022
ORCID 0000-0002-2761-1085
0000-0001-6385-3703
0000-0002-5506-4699
0000-0001-5984-1523
0000-0001-8971-0129
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9926256
PMID 36595678
PQID 2765800991
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9926256
hal_primary_oai_HAL_hal_03921601v1
proquest_miscellaneous_2760818467
proquest_journals_2765800991
pubmed_primary_36595678
crossref_citationtrail_10_1073_pnas_2201886120
crossref_primary_10_1073_pnas_2201886120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-10
PublicationDateYYYYMMDD 2023-01-10
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2023
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
Hauggaard-Nielsen H. (e_1_3_4_59_2) 2021; 8
e_1_3_4_72_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_53_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
Vandermeer J. H. (e_1_3_4_15_2) 2009
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
De Wit C. T. (e_1_3_4_18_2) 1960
Trenbath B. R. (e_1_3_4_24_2) 1974
Willey R. W. (e_1_3_4_10_2) 1979; 32
Stomph T. (e_1_3_4_67_2) 2020
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
Li C. (e_1_3_4_16_2) 2020
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
Yu Y. (e_1_3_4_29_2) 2016
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
Loomis R. S. (e_1_3_4_45_2) 2011
e_1_3_4_71_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_31_2
e_1_3_4_37_2
van der Werf W. (e_1_3_4_39_2) 2021; 8
Lithourgidis A. (e_1_3_4_14_2) 2011; 5
e_1_3_4_35_2
Annicchiarico P. (e_1_3_4_54_2) 2019
e_1_3_4_56_2
References_xml – ident: e_1_3_4_33_2
  doi: 10.1579/0044-7447-31.2.132
– ident: e_1_3_4_27_2
  doi: 10.1016/j.rser.2015.02.023
– ident: e_1_3_4_44_2
  doi: 10.1002/agj2.20340
– volume-title: Crop Ecology: Productivity and Management in Agricultural Systems
  year: 2011
  ident: e_1_3_4_45_2
– ident: e_1_3_4_47_2
  doi: 10.1007/s12571-018-0859-3
– ident: e_1_3_4_69_2
  doi: 10.1111/j.1365-2664.2012.02173.x
– ident: e_1_3_4_6_2
  doi: 10.1016/j.agee.2021.107658
– ident: e_1_3_4_41_2
  doi: 10.1016/j.eja.2017.09.009
– ident: e_1_3_4_28_2
  doi: 10.1016/j.agee.2017.03.003
– ident: e_1_3_4_57_2
  doi: 10.1093/jxb/ery288
– ident: e_1_3_4_61_2
  doi: 10.1016/j.eja.2019.125936
– ident: e_1_3_4_46_2
  doi: 10.1111/j.0030-1299.2004.12685.x
– ident: e_1_3_4_66_2
  doi: 10.1111/ele.13336
– ident: e_1_3_4_53_2
  doi: 10.1016/S2095-3119(17)61789-1
– ident: e_1_3_4_7_2
  doi: 10.1016/0378-4290(93)90123-5
– ident: e_1_3_4_13_2
  doi: 10.1038/s41477-020-0680-9
– ident: e_1_3_4_48_2
  doi: 10.1111/j.1365-2745.2009.01521.x
– ident: e_1_3_4_34_2
  doi: 10.1111/pce.13368
– start-page: 141
  volume-title: Advances in Agronomy
  year: 2019
  ident: e_1_3_4_54_2
– ident: e_1_3_4_49_2
  doi: 10.1002/fes3.270
– volume: 8
  start-page: 460
  year: 2021
  ident: e_1_3_4_59_2
  article-title: Translating the multi-actor approach to research into practice using a workshop approach focusing on species mixtures
  publication-title: Front Agr. Sci. Eng.
– ident: e_1_3_4_25_2
  doi: 10.1111/j.1365-2664.2009.01653.x
– ident: e_1_3_4_72_2
– ident: e_1_3_4_22_2
  doi: 10.1038/35083573
– ident: e_1_3_4_5_2
  doi: 10.1038/s41477-020-00783-z
– ident: e_1_3_4_60_2
  doi: 10.1016/j.eja.2020.126197
– ident: e_1_3_4_11_2
  doi: 10.1017/CBO9780511623523
– ident: e_1_3_4_37_2
  doi: 10.1038/nplants.2016.112
– ident: e_1_3_4_17_2
  doi: 10.1017/S0014479700010978
– ident: e_1_3_4_36_2
  doi: 10.1007/s11104-009-0082-2
– ident: e_1_3_4_55_2
  doi: 10.1017/S0021859600025910
– ident: e_1_3_4_71_2
  doi: 10.1111/j.0006-341X.2000.00455.x
– start-page: 172
  volume-title: Crop Yields in Intercropping: Meta-Analysis and Virtual Plant Modelling
  year: 2016
  ident: e_1_3_4_29_2
– ident: e_1_3_4_50_2
  doi: 10.1016/0378-4290(93)90117-6
– ident: e_1_3_4_65_2
  doi: 10.3389/fpls.2022.846720
– ident: e_1_3_4_21_2
  doi: 10.1016/j.fcr.2019.107661
– ident: e_1_3_4_56_2
  doi: 10.1006/bulm.2000.0226
– ident: e_1_3_4_31_2
  doi: 10.3732/ajb.1000364
– ident: e_1_3_4_51_2
  doi: 10.1038/nature19368
– volume: 8
  start-page: 481
  year: 2021
  ident: e_1_3_4_39_2
  article-title: Comparing performance of crop species mixtures and pure stands
  publication-title: Front. Agr. Sci. Eng.
– ident: e_1_3_4_64_2
  doi: 10.1007/s13593-014-0277-7
– start-page: 214
  volume-title: Phosphorus Acquisition and Yield Gain in Intercropping: Empirical Studies and Meta-Analysis
  year: 2020
  ident: e_1_3_4_16_2
– ident: e_1_3_4_68_2
– ident: e_1_3_4_2_2
  doi: 10.1073/pnas.1116437108
– ident: e_1_3_4_4_2
  doi: 10.1126/science.328.5975.169-e
– ident: e_1_3_4_62_2
  doi: 10.1007/s10806-021-09876-x
– ident: e_1_3_4_20_2
  doi: 10.1016/j.scitotenv.2017.10.024
– start-page: 177
  volume-title: Advances in Agronomy
  year: 1974
  ident: e_1_3_4_24_2
– ident: e_1_3_4_63_2
  doi: 10.1071/CP16211
– start-page: 1
  volume-title: Advances in Agronomy
  year: 2020
  ident: e_1_3_4_67_2
– ident: e_1_3_4_32_2
  doi: 10.1093/jpe/rtn011
– ident: e_1_3_4_35_2
  doi: 10.1051/agro:2006033
– ident: e_1_3_4_30_2
  doi: 10.1073/pnas.0709069104
– volume-title: On competition. (Verslagen landbouwkundige onderzoekingen 66.8 Pudoc, Centrum voor landbouwpublikaties en landbouwdocumentatie
  year: 1960
  ident: e_1_3_4_18_2
– volume: 5
  start-page: 396
  year: 2011
  ident: e_1_3_4_14_2
  article-title: Annual intercrops: An alternative pathway for sustainable agriculture
  publication-title: Aust. J. Crop. Sci.
– volume-title: The Ecology of Agroecosystems
  year: 2009
  ident: e_1_3_4_15_2
– ident: e_1_3_4_70_2
  doi: 10.1007/s10705-007-9126-2
– ident: e_1_3_4_26_2
  doi: 10.1016/j.fcr.2019.107636
– ident: e_1_3_4_19_2
  doi: 10.1016/j.fcr.2015.09.010
– ident: e_1_3_4_43_2
  doi: 10.1111/gcb.12738
– ident: e_1_3_4_1_2
  doi: 10.1126/science.1185383
– ident: e_1_3_4_9_2
  doi: 10.1016/j.fcr.2012.07.014
– ident: e_1_3_4_23_2
  doi: 10.1016/j.eja.2019.125987
– ident: e_1_3_4_42_2
  doi: 10.1007/s10658-019-01711-4
– ident: e_1_3_4_12_2
  doi: 10.1126/sciadv.aba1715
– ident: e_1_3_4_8_2
  doi: 10.2307/1941795
– ident: e_1_3_4_3_2
  doi: 10.1073/pnas.1313490111
– volume: 32
  start-page: 10
  year: 1979
  ident: e_1_3_4_10_2
  article-title: Intercropping, its importance and research need I. Competition and yield advantage
  publication-title: Field Crops Abstr.
– ident: e_1_3_4_58_2
  doi: 10.1016/S0378-4290(01)00176-9
– ident: e_1_3_4_40_2
  doi: 10.1007/s13593-011-0022-4
– ident: e_1_3_4_52_2
  doi: 10.1002/fes3.170
– ident: e_1_3_4_38_2
SSID ssj0009580
Score 2.6885931
SecondaryResourceType review_article
Snippet Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context,...
Agricultural diversification is useful for agronomic, environmental, and dietary reasons. Here, we confirm, based on a meta-analysis of 226 field experiments,...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2201886120
SubjectTerms Agricultural practices
Agricultural production
Agricultural sciences
Agriculture - methods
Agronomy
Biological Sciences
Calories
Crop diversification
Crop resilience
Crops
Crops, Agricultural
Ecosystem
Ecosystem services
Edible Grain
Environmental impact
Fabaceae
Grain
Intercropping
Legumes
Life Sciences
Proteins
Sole cropping
Statistics
Sustainable agriculture
Sustainable development
Sustainable production
Title The productive performance of intercropping
URI https://www.ncbi.nlm.nih.gov/pubmed/36595678
https://www.proquest.com/docview/2765800991
https://www.proquest.com/docview/2760818467
https://hal.science/hal-03921601
https://pubmed.ncbi.nlm.nih.gov/PMC9926256
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYkNBeEOMzMFBAPAxNKYk_kvixQqBq2qpJdNLeIsd2tg5IozYFib-ec2InabdJwEvU2o4T-Xe53Dl3v0PoPU1xpEIlwTcJi4DmOg1yaAjiGHwHnShGpElOPp3Gk3N6fMEuenqCJrukzkfy9615Jf-DKrQBriZL9h-Q7SaFBvgN-MIREIbjX2NctZStJgCoGiQBWCaIpanQVbnXkzVCz7qX1sqFCEzdnuC4zzCxj_3qKDg6m_b1ik_m7Wf6dXk976Tiaw16pdmhmV1rvVTBcS91p-Lb4pctjz0IoXczTcT8UtgbtNsP2ARfBTYQVbcqEyyOIKZt0c9Op-JwIDx4oCE1BpMjTWM74oYGB5Vjyg6XYjW6fSRAUP1oACWGCzFuKwBtkWa7rh10H4P_gBuNPWRjTkPH85SQj1tX20MP3Pkb1srOlYmVvemIbMfTDgyU2SP00HoW_rgVk310T5eP0b4D0T-0BOMfniATZuP3cuMP5MZfFP6G3DxF518-zz5NAls0I5CUsTqIVM6l5lgxlirKhAw5yVnMQyIiyeGfFFEi8lQSrHJpGMRkniQCM0yLIg41eYZ2y0WpXyAfrDud8khzoijFOhcpUSwq0oInhaacemjkFieTllHeFDb5njWRDQnJzMJm_cJ66LA7oWrJVO4e-g5WuxtlSNAn45PMtIVg0kdxGP2MPHTgwMjsYwlzJGBUG8cHut923aA0zZcwUerFuhljqBzBSPDQ8xa77lIOeg8lG6hu3MtmTzm_aojZuSHfZPHLO-d8hfb6Z-gA7dbLtX4NRm2dv2kE9A-w6p9r
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+productive+performance+of+intercropping&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Chunjie&rft.au=Stomph%2C+Tjeerd-Jan&rft.au=Makowski%2C+David&rft.au=Li%2C+Haigang&rft.date=2023-01-10&rft.eissn=1091-6490&rft.volume=120&rft.issue=2&rft.spage=e2201886120&rft_id=info:doi/10.1073%2Fpnas.2201886120&rft_id=info%3Apmid%2F36595678&rft.externalDocID=36595678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon