The productive performance of intercropping
Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 120; no. 2; p. e2201886120 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
10.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (−4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets. |
---|---|
AbstractList | Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (-4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets. Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (−4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets. Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (-4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets.Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (-4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets. Agricultural diversification is useful for agronomic, environmental, and dietary reasons. Here, we confirm, based on a meta-analysis of 226 field experiments, that the simultaneous cultivation of two species in the same plot (intercropping) leads to substantial land savings over single crops when the objective is to produce a diversified set of crop products. While intercropping leads on average to a small yield penalty for grains and calories compared with the most productive single crop species comprised in the mixture, it can provide similar or even higher protein yields, especially with modest N fertilizer application. In addition, it provides further ecological services. Intercropping thus has the potential to diversify crop production and make cropping systems more sustainable. Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (−4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets. |
Author | Makowski, David Stomph, Tjeerd-Jan Zhang, Chaochun Zhang, Fusuo Li, Haigang van der Werf, Wopke Li, Chunjie |
Author_xml | – sequence: 1 givenname: Chunjie orcidid: 0000-0002-2761-1085 surname: Li fullname: Li, Chunjie organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China – sequence: 2 givenname: Tjeerd-Jan orcidid: 0000-0001-5984-1523 surname: Stomph fullname: Stomph, Tjeerd-Jan organization: Centre for Crop Systems Analysis, Wageningen University, 6700 AK, Wageningen, The Netherlands – sequence: 3 givenname: David orcidid: 0000-0001-6385-3703 surname: Makowski fullname: Makowski, David organization: INRAe, AgroParisTech, Université Paris-Saclay, Unit Applied mathematics and computer science, Palaiseau 91120, France – sequence: 4 givenname: Haigang surname: Li fullname: Li, Haigang organization: Inner Mongolia Key Lab. of Soil Quality and Nutrient Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China – sequence: 5 givenname: Chaochun surname: Zhang fullname: Zhang, Chaochun organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China – sequence: 6 givenname: Fusuo orcidid: 0000-0001-8971-0129 surname: Zhang fullname: Zhang, Fusuo organization: College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China – sequence: 7 givenname: Wopke orcidid: 0000-0002-5506-4699 surname: van der Werf fullname: van der Werf, Wopke organization: Centre for Crop Systems Analysis, Wageningen University, 6700 AK, Wageningen, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36595678$$D View this record in MEDLINE/PubMed https://hal.science/hal-03921601$$DView record in HAL |
BookMark | eNp1kUtLJDEUhYM4aPtYu5MGNyNSepOqvDaCiI-Bhtk465BKpexIdVImVQ3--0nROmrDrJKbfOfc5NwDtOuDtwidYLjEwMur3ut0SQhgIRgmsINmGCQuWCVhF80ACC9ERap9dJDSCwBIKmAP7ZeMSsq4mKGLp6Wd9zE0oxncOm9tbENcaW_sPLRz5wcbTQx97_zzEfrR6i7Z4_f1EP25v3u6fSwWvx9-3d4sClNROhS4qaWxkjSUiqai2oAsa8oklBobmSujMde1MCVp6lxybGrONaGkalsGtjxE1xvffqxXtjHWD1F3qo9upeObCtqp7zfeLdVzWCspCSOUZYPzjcFyS_Z4s1DTGZSSYAZ4jTP7871ZDK-jTYNauWRs12lvw5gU4QwEFhXjGT3bQl_CGH2OYqJysiDlZHj69fX_-n9kngG6AXKuKUXbKuMGPbgwfcZ1CoOaZqum2arP2Wbd1Zbuw_p_ir8HUqWH |
CitedBy_id | crossref_primary_10_3389_fpls_2024_1368509 crossref_primary_10_1016_j_eja_2023_127024 crossref_primary_10_12677_hjfns_2025_141014 crossref_primary_10_3390_agronomy14112472 crossref_primary_10_1002_agj2_21600 crossref_primary_10_1016_j_agsy_2024_104196 crossref_primary_10_1002_sae2_70039 crossref_primary_10_1016_j_rhisph_2024_101007 crossref_primary_10_1094_PDIS_12_23_2615_RE crossref_primary_10_1002_2688_8319_12349 crossref_primary_10_1016_j_fcr_2024_109560 crossref_primary_10_1038_s41467_024_48876_z crossref_primary_10_1007_s00374_024_01872_3 crossref_primary_10_1007_s00338_025_02632_x crossref_primary_10_1007_s11104_024_06903_4 crossref_primary_10_1038_s44264_025_00048_2 crossref_primary_10_1016_j_eja_2023_127036 crossref_primary_10_1007_s11104_024_06775_8 crossref_primary_10_1073_pnas_2305517121 crossref_primary_10_1080_1343943X_2024_2415901 crossref_primary_10_3390_su16073081 crossref_primary_10_1007_s10886_024_01470_5 crossref_primary_10_1007_s40009_024_01533_x crossref_primary_10_1080_1343943X_2024_2372878 crossref_primary_10_3390_agriculture14081330 crossref_primary_10_1029_2024GB008159 crossref_primary_10_3390_plants13121687 crossref_primary_10_11648_j_ajaf_20241205_17 crossref_primary_10_1016_j_landusepol_2024_107066 crossref_primary_10_1111_pce_15299 crossref_primary_10_3389_fpls_2024_1473786 crossref_primary_10_1007_s12892_025_00279_2 crossref_primary_10_3897_oneeco_9_e131969 crossref_primary_10_1016_j_fcr_2024_109695 crossref_primary_10_1038_s41598_024_69903_5 crossref_primary_10_3389_fpls_2024_1344110 crossref_primary_10_1177_00307270231199796 crossref_primary_10_1111_nph_70037 crossref_primary_10_1017_S0021859624000078 crossref_primary_10_1038_s41559_024_02529_y crossref_primary_10_3389_fagro_2025_1535871 crossref_primary_10_1002_agj2_21622 crossref_primary_10_3390_agronomy13112803 crossref_primary_10_3390_plants14050681 crossref_primary_10_1139_cjps_2024_0136 crossref_primary_10_3389_fmicb_2024_1473099 crossref_primary_10_3389_fpls_2024_1394413 crossref_primary_10_1080_23311932_2025_2451057 crossref_primary_10_3390_agronomy14010100 crossref_primary_10_3389_fmicb_2024_1425898 crossref_primary_10_1002_ps_8405 crossref_primary_10_1371_journal_pstr_0000066 crossref_primary_10_1007_s13593_024_00968_2 crossref_primary_10_1080_10807039_2024_2386974 crossref_primary_10_12944_CARJ_12_1_14 crossref_primary_10_1007_s11104_024_06987_y crossref_primary_10_1016_j_agee_2024_109324 crossref_primary_10_1002_fes3_70005 crossref_primary_10_1007_s11104_025_07242_8 crossref_primary_10_1016_j_resenv_2025_100210 crossref_primary_10_3389_fsufs_2025_1527256 crossref_primary_10_1111_tpj_17127 crossref_primary_10_3390_horticulturae10121288 crossref_primary_10_1007_s11104_024_06861_x crossref_primary_10_3389_fpls_2023_1266704 crossref_primary_10_1016_j_eja_2023_126967 crossref_primary_10_3390_agronomy14071551 crossref_primary_10_1007_s11104_024_07096_6 crossref_primary_10_1038_s41467_024_52449_5 crossref_primary_10_3389_fsufs_2024_1456987 crossref_primary_10_1088_1742_5468_ad9c4e crossref_primary_10_1155_2023_8861216 crossref_primary_10_3390_agronomy14122801 crossref_primary_10_1007_s10340_023_01629_1 crossref_primary_10_1016_j_indcrop_2024_119868 crossref_primary_10_1016_j_aspen_2023_102188 crossref_primary_10_1071_AN24246 crossref_primary_10_3389_fpls_2024_1470293 crossref_primary_10_3390_agriculture14071162 |
Cites_doi | 10.1579/0044-7447-31.2.132 10.1016/j.rser.2015.02.023 10.1002/agj2.20340 10.1007/s12571-018-0859-3 10.1111/j.1365-2664.2012.02173.x 10.1016/j.agee.2021.107658 10.1016/j.eja.2017.09.009 10.1016/j.agee.2017.03.003 10.1093/jxb/ery288 10.1016/j.eja.2019.125936 10.1111/j.0030-1299.2004.12685.x 10.1111/ele.13336 10.1016/S2095-3119(17)61789-1 10.1016/0378-4290(93)90123-5 10.1038/s41477-020-0680-9 10.1111/j.1365-2745.2009.01521.x 10.1111/pce.13368 10.1002/fes3.270 10.1111/j.1365-2664.2009.01653.x 10.1038/35083573 10.1038/s41477-020-00783-z 10.1016/j.eja.2020.126197 10.1017/CBO9780511623523 10.1038/nplants.2016.112 10.1017/S0014479700010978 10.1007/s11104-009-0082-2 10.1017/S0021859600025910 10.1111/j.0006-341X.2000.00455.x 10.1016/0378-4290(93)90117-6 10.3389/fpls.2022.846720 10.1016/j.fcr.2019.107661 10.1006/bulm.2000.0226 10.3732/ajb.1000364 10.1038/nature19368 10.1007/s13593-014-0277-7 10.1073/pnas.1116437108 10.1126/science.328.5975.169-e 10.1007/s10806-021-09876-x 10.1016/j.scitotenv.2017.10.024 10.1071/CP16211 10.1093/jpe/rtn011 10.1051/agro:2006033 10.1073/pnas.0709069104 10.1007/s10705-007-9126-2 10.1016/j.fcr.2019.107636 10.1016/j.fcr.2015.09.010 10.1111/gcb.12738 10.1126/science.1185383 10.1016/j.fcr.2012.07.014 10.1016/j.eja.2019.125987 10.1007/s10658-019-01711-4 10.1126/sciadv.aba1715 10.2307/1941795 10.1073/pnas.1313490111 10.1016/S0378-4290(01)00176-9 10.1007/s13593-011-0022-4 10.1002/fes3.170 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jan 10, 2023 Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2023 the Author(s). Published by PNAS. 2023 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jan 10, 2023 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2023 the Author(s). Published by PNAS. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC 5PM |
DOI | 10.1073/pnas.2201886120 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Statistics |
EISSN | 1091-6490 |
ExternalDocumentID | PMC9926256 oai_HAL_hal_03921601v1 36595678 10_1073_pnas_2201886120 |
Genre | Research Support, Non-U.S. Gov't Meta-Analysis Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM UMC 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c455t-1db9ce92d558d45ac093b56903a1c9c09ca17ab8c32dbc0971cb77a2524ff60e3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:37:40 EDT 2025 Fri May 09 12:24:25 EDT 2025 Fri Jul 11 00:51:48 EDT 2025 Mon Jun 30 08:16:22 EDT 2025 Thu May 08 07:32:42 EDT 2025 Tue Jul 01 01:03:31 EDT 2025 Thu Apr 24 23:03:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | intercropping productivity land-use efficiency transgressive overyielding food security |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c455t-1db9ce92d558d45ac093b56903a1c9c09ca17ab8c32dbc0971cb77a2524ff60e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 Edited by David Tilman, University of Minnesota College of Biological Sciences, St. Paul, MN; received February 2, 2022; accepted November 5, 2022 |
ORCID | 0000-0002-2761-1085 0000-0001-6385-3703 0000-0002-5506-4699 0000-0001-5984-1523 0000-0001-8971-0129 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9926256 |
PMID | 36595678 |
PQID | 2765800991 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9926256 hal_primary_oai_HAL_hal_03921601v1 proquest_miscellaneous_2760818467 proquest_journals_2765800991 pubmed_primary_36595678 crossref_citationtrail_10_1073_pnas_2201886120 crossref_primary_10_1073_pnas_2201886120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-10 |
PublicationDateYYYYMMDD | 2023-01-10 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2023 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 Hauggaard-Nielsen H. (e_1_3_4_59_2) 2021; 8 e_1_3_4_72_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_53_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 Vandermeer J. H. (e_1_3_4_15_2) 2009 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 De Wit C. T. (e_1_3_4_18_2) 1960 Trenbath B. R. (e_1_3_4_24_2) 1974 Willey R. W. (e_1_3_4_10_2) 1979; 32 Stomph T. (e_1_3_4_67_2) 2020 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 Li C. (e_1_3_4_16_2) 2020 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 Yu Y. (e_1_3_4_29_2) 2016 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 Loomis R. S. (e_1_3_4_45_2) 2011 e_1_3_4_71_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_31_2 e_1_3_4_37_2 van der Werf W. (e_1_3_4_39_2) 2021; 8 Lithourgidis A. (e_1_3_4_14_2) 2011; 5 e_1_3_4_35_2 Annicchiarico P. (e_1_3_4_54_2) 2019 e_1_3_4_56_2 |
References_xml | – ident: e_1_3_4_33_2 doi: 10.1579/0044-7447-31.2.132 – ident: e_1_3_4_27_2 doi: 10.1016/j.rser.2015.02.023 – ident: e_1_3_4_44_2 doi: 10.1002/agj2.20340 – volume-title: Crop Ecology: Productivity and Management in Agricultural Systems year: 2011 ident: e_1_3_4_45_2 – ident: e_1_3_4_47_2 doi: 10.1007/s12571-018-0859-3 – ident: e_1_3_4_69_2 doi: 10.1111/j.1365-2664.2012.02173.x – ident: e_1_3_4_6_2 doi: 10.1016/j.agee.2021.107658 – ident: e_1_3_4_41_2 doi: 10.1016/j.eja.2017.09.009 – ident: e_1_3_4_28_2 doi: 10.1016/j.agee.2017.03.003 – ident: e_1_3_4_57_2 doi: 10.1093/jxb/ery288 – ident: e_1_3_4_61_2 doi: 10.1016/j.eja.2019.125936 – ident: e_1_3_4_46_2 doi: 10.1111/j.0030-1299.2004.12685.x – ident: e_1_3_4_66_2 doi: 10.1111/ele.13336 – ident: e_1_3_4_53_2 doi: 10.1016/S2095-3119(17)61789-1 – ident: e_1_3_4_7_2 doi: 10.1016/0378-4290(93)90123-5 – ident: e_1_3_4_13_2 doi: 10.1038/s41477-020-0680-9 – ident: e_1_3_4_48_2 doi: 10.1111/j.1365-2745.2009.01521.x – ident: e_1_3_4_34_2 doi: 10.1111/pce.13368 – start-page: 141 volume-title: Advances in Agronomy year: 2019 ident: e_1_3_4_54_2 – ident: e_1_3_4_49_2 doi: 10.1002/fes3.270 – volume: 8 start-page: 460 year: 2021 ident: e_1_3_4_59_2 article-title: Translating the multi-actor approach to research into practice using a workshop approach focusing on species mixtures publication-title: Front Agr. Sci. Eng. – ident: e_1_3_4_25_2 doi: 10.1111/j.1365-2664.2009.01653.x – ident: e_1_3_4_72_2 – ident: e_1_3_4_22_2 doi: 10.1038/35083573 – ident: e_1_3_4_5_2 doi: 10.1038/s41477-020-00783-z – ident: e_1_3_4_60_2 doi: 10.1016/j.eja.2020.126197 – ident: e_1_3_4_11_2 doi: 10.1017/CBO9780511623523 – ident: e_1_3_4_37_2 doi: 10.1038/nplants.2016.112 – ident: e_1_3_4_17_2 doi: 10.1017/S0014479700010978 – ident: e_1_3_4_36_2 doi: 10.1007/s11104-009-0082-2 – ident: e_1_3_4_55_2 doi: 10.1017/S0021859600025910 – ident: e_1_3_4_71_2 doi: 10.1111/j.0006-341X.2000.00455.x – start-page: 172 volume-title: Crop Yields in Intercropping: Meta-Analysis and Virtual Plant Modelling year: 2016 ident: e_1_3_4_29_2 – ident: e_1_3_4_50_2 doi: 10.1016/0378-4290(93)90117-6 – ident: e_1_3_4_65_2 doi: 10.3389/fpls.2022.846720 – ident: e_1_3_4_21_2 doi: 10.1016/j.fcr.2019.107661 – ident: e_1_3_4_56_2 doi: 10.1006/bulm.2000.0226 – ident: e_1_3_4_31_2 doi: 10.3732/ajb.1000364 – ident: e_1_3_4_51_2 doi: 10.1038/nature19368 – volume: 8 start-page: 481 year: 2021 ident: e_1_3_4_39_2 article-title: Comparing performance of crop species mixtures and pure stands publication-title: Front. Agr. Sci. Eng. – ident: e_1_3_4_64_2 doi: 10.1007/s13593-014-0277-7 – start-page: 214 volume-title: Phosphorus Acquisition and Yield Gain in Intercropping: Empirical Studies and Meta-Analysis year: 2020 ident: e_1_3_4_16_2 – ident: e_1_3_4_68_2 – ident: e_1_3_4_2_2 doi: 10.1073/pnas.1116437108 – ident: e_1_3_4_4_2 doi: 10.1126/science.328.5975.169-e – ident: e_1_3_4_62_2 doi: 10.1007/s10806-021-09876-x – ident: e_1_3_4_20_2 doi: 10.1016/j.scitotenv.2017.10.024 – start-page: 177 volume-title: Advances in Agronomy year: 1974 ident: e_1_3_4_24_2 – ident: e_1_3_4_63_2 doi: 10.1071/CP16211 – start-page: 1 volume-title: Advances in Agronomy year: 2020 ident: e_1_3_4_67_2 – ident: e_1_3_4_32_2 doi: 10.1093/jpe/rtn011 – ident: e_1_3_4_35_2 doi: 10.1051/agro:2006033 – ident: e_1_3_4_30_2 doi: 10.1073/pnas.0709069104 – volume-title: On competition. (Verslagen landbouwkundige onderzoekingen 66.8 Pudoc, Centrum voor landbouwpublikaties en landbouwdocumentatie year: 1960 ident: e_1_3_4_18_2 – volume: 5 start-page: 396 year: 2011 ident: e_1_3_4_14_2 article-title: Annual intercrops: An alternative pathway for sustainable agriculture publication-title: Aust. J. Crop. Sci. – volume-title: The Ecology of Agroecosystems year: 2009 ident: e_1_3_4_15_2 – ident: e_1_3_4_70_2 doi: 10.1007/s10705-007-9126-2 – ident: e_1_3_4_26_2 doi: 10.1016/j.fcr.2019.107636 – ident: e_1_3_4_19_2 doi: 10.1016/j.fcr.2015.09.010 – ident: e_1_3_4_43_2 doi: 10.1111/gcb.12738 – ident: e_1_3_4_1_2 doi: 10.1126/science.1185383 – ident: e_1_3_4_9_2 doi: 10.1016/j.fcr.2012.07.014 – ident: e_1_3_4_23_2 doi: 10.1016/j.eja.2019.125987 – ident: e_1_3_4_42_2 doi: 10.1007/s10658-019-01711-4 – ident: e_1_3_4_12_2 doi: 10.1126/sciadv.aba1715 – ident: e_1_3_4_8_2 doi: 10.2307/1941795 – ident: e_1_3_4_3_2 doi: 10.1073/pnas.1313490111 – volume: 32 start-page: 10 year: 1979 ident: e_1_3_4_10_2 article-title: Intercropping, its importance and research need I. Competition and yield advantage publication-title: Field Crops Abstr. – ident: e_1_3_4_58_2 doi: 10.1016/S0378-4290(01)00176-9 – ident: e_1_3_4_40_2 doi: 10.1007/s13593-011-0022-4 – ident: e_1_3_4_52_2 doi: 10.1002/fes3.170 – ident: e_1_3_4_38_2 |
SSID | ssj0009580 |
Score | 2.6885931 |
SecondaryResourceType | review_article |
Snippet | Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context,... Agricultural diversification is useful for agronomic, environmental, and dietary reasons. Here, we confirm, based on a meta-analysis of 226 field experiments,... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2201886120 |
SubjectTerms | Agricultural practices Agricultural production Agricultural sciences Agriculture - methods Agronomy Biological Sciences Calories Crop diversification Crop resilience Crops Crops, Agricultural Ecosystem Ecosystem services Edible Grain Environmental impact Fabaceae Grain Intercropping Legumes Life Sciences Proteins Sole cropping Statistics Sustainable agriculture Sustainable development Sustainable production |
Title | The productive performance of intercropping |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36595678 https://www.proquest.com/docview/2765800991 https://www.proquest.com/docview/2760818467 https://hal.science/hal-03921601 https://pubmed.ncbi.nlm.nih.gov/PMC9926256 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYkNBeEOMzMFBAPAxNKYk_kvixQqBq2qpJdNLeIsd2tg5IozYFib-ec2InabdJwEvU2o4T-Xe53Dl3v0PoPU1xpEIlwTcJi4DmOg1yaAjiGHwHnShGpElOPp3Gk3N6fMEuenqCJrukzkfy9615Jf-DKrQBriZL9h-Q7SaFBvgN-MIREIbjX2NctZStJgCoGiQBWCaIpanQVbnXkzVCz7qX1sqFCEzdnuC4zzCxj_3qKDg6m_b1ik_m7Wf6dXk976Tiaw16pdmhmV1rvVTBcS91p-Lb4pctjz0IoXczTcT8UtgbtNsP2ARfBTYQVbcqEyyOIKZt0c9Op-JwIDx4oCE1BpMjTWM74oYGB5Vjyg6XYjW6fSRAUP1oACWGCzFuKwBtkWa7rh10H4P_gBuNPWRjTkPH85SQj1tX20MP3Pkb1srOlYmVvemIbMfTDgyU2SP00HoW_rgVk310T5eP0b4D0T-0BOMfniATZuP3cuMP5MZfFP6G3DxF518-zz5NAls0I5CUsTqIVM6l5lgxlirKhAw5yVnMQyIiyeGfFFEi8lQSrHJpGMRkniQCM0yLIg41eYZ2y0WpXyAfrDud8khzoijFOhcpUSwq0oInhaacemjkFieTllHeFDb5njWRDQnJzMJm_cJ66LA7oWrJVO4e-g5WuxtlSNAn45PMtIVg0kdxGP2MPHTgwMjsYwlzJGBUG8cHut923aA0zZcwUerFuhljqBzBSPDQ8xa77lIOeg8lG6hu3MtmTzm_aojZuSHfZPHLO-d8hfb6Z-gA7dbLtX4NRm2dv2kE9A-w6p9r |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+productive+performance+of+intercropping&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Chunjie&rft.au=Stomph%2C+Tjeerd-Jan&rft.au=Makowski%2C+David&rft.au=Li%2C+Haigang&rft.date=2023-01-10&rft.eissn=1091-6490&rft.volume=120&rft.issue=2&rft.spage=e2201886120&rft_id=info:doi/10.1073%2Fpnas.2201886120&rft_id=info%3Apmid%2F36595678&rft.externalDocID=36595678 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |