An inferred functional impact map of genetic variants in rice
Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has...
Saved in:
Published in | Molecular plant Vol. 14; no. 9; pp. 1584 - 1599 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
06.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn).
This study quantitatively infers the effects of millions of genetic variants in the coding and regulatory regions of the rice genome and characterizes their functional properties and tissue specificity. This resource can be used to prioritize causal variants and will help to accelerate gene cloning and next-generation breeding in rice. |
---|---|
AbstractList | Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn).Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn). Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn). Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn). This study quantitatively infers the effects of millions of genetic variants in the coding and regulatory regions of the rice genome and characterizes their functional properties and tissue specificity. This resource can be used to prioritize causal variants and will help to accelerate gene cloning and next-generation breeding in rice. Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn). |
Author | Xu, Xingbing Qin, Gang Zhao, Hu Xia, Chunjiao Ming, Luchang Xiong, Lizhong Su, Yangmeng Xie, Weibo Li, Jiacheng Yang, Ling Chen, Ling-Ling Liu, Yinmeng |
Author_xml | – sequence: 1 givenname: Hu surname: Zhao fullname: Zhao, Hu organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China – sequence: 2 givenname: Jiacheng surname: Li fullname: Li, Jiacheng organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China – sequence: 3 givenname: Ling surname: Yang fullname: Yang, Ling organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China – sequence: 4 givenname: Gang surname: Qin fullname: Qin, Gang organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China – sequence: 5 givenname: Chunjiao surname: Xia fullname: Xia, Chunjiao organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China – sequence: 6 givenname: Xingbing surname: Xu fullname: Xu, Xingbing organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China – sequence: 7 givenname: Yangmeng surname: Su fullname: Su, Yangmeng organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China – sequence: 8 givenname: Yinmeng surname: Liu fullname: Liu, Yinmeng organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China – sequence: 9 givenname: Luchang surname: Ming fullname: Ming, Luchang organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China – sequence: 10 givenname: Ling-Ling surname: Chen fullname: Chen, Ling-Ling organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China – sequence: 11 givenname: Lizhong surname: Xiong fullname: Xiong, Lizhong organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China – sequence: 12 givenname: Weibo surname: Xie fullname: Xie, Weibo email: weibo.xie@mail.hzau.edu.cn organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34214659$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtO3UAURUcIFB7JD6SIXNLYzMPzkqBAKAlISDSkHo2Pj9Fc2WMzMxeJv8dXF5oUUJ1TrLWLvU_JYZwjEvKT0YZRpi42zTSPS8MpZw1VDeXygJwwLXltjdKH6690W3Mq-TE5zXlDqaJGiW_kWLSctUraE3J1HasQB0wJ-2rYRihhjn6swrR4KNXkl2oeqieMWAJULz4FH0telSoFwO_kaPBjxh_v94z8-_P78ea2vn_4e3dzfV9DK2WpWSe90R1DBr23vR5aAT3rUOpWMCuYsIYLZgRwhf2gARgo6KzSnUfTWibOyPk-d0nz8xZzcVPIgOPoI87b7LhS1FpDpf0ala0R1mpJV_TXO7rtJuzdksLk06v7aGcFzB6ANOeccHAQit81VJIPo2PU7YZwG7cbwu2GcFS5dYhV5f-pH-mfSpd7CdcuXwImlyFgBOxDQiiun8Nn-hvfdqAs |
CitedBy_id | crossref_primary_10_1016_j_xplc_2023_100558 crossref_primary_10_1016_j_celrep_2024_114965 crossref_primary_10_1016_j_xplc_2024_100999 crossref_primary_10_3389_fpls_2024_1361716 crossref_primary_10_1016_j_cj_2022_10_003 crossref_primary_10_1038_s41422_024_01027_x crossref_primary_10_3390_ijms24021653 crossref_primary_10_1016_j_scienta_2023_112084 crossref_primary_10_1111_nph_19362 crossref_primary_10_1016_j_jhazmat_2025_137252 crossref_primary_10_1007_s00122_023_04531_7 crossref_primary_10_1016_j_rsci_2023_03_015 crossref_primary_10_1016_j_cj_2025_01_008 crossref_primary_10_1007_s10725_024_01230_1 crossref_primary_10_1007_s10142_023_01111_2 crossref_primary_10_1093_nar_gkad840 crossref_primary_10_1016_j_molp_2022_03_009 crossref_primary_10_1186_s13059_022_02801_z crossref_primary_10_3390_plants13091276 crossref_primary_10_1111_pbi_14521 crossref_primary_10_3390_ijms23168947 crossref_primary_10_1186_s13059_024_03372_x crossref_primary_10_3389_fgene_2023_1133600 crossref_primary_10_1038_s41467_024_50787_y crossref_primary_10_1016_j_cj_2024_05_010 crossref_primary_10_3390_agriculture13081623 crossref_primary_10_3390_ijms24087346 crossref_primary_10_1038_s41467_024_53651_1 crossref_primary_10_1007_s11032_024_01486_5 crossref_primary_10_1038_s42003_024_06374_4 crossref_primary_10_1186_s12915_024_01820_5 crossref_primary_10_1038_s41467_023_43077_6 crossref_primary_10_1016_j_scib_2022_08_001 crossref_primary_10_1093_nar_gkae1061 crossref_primary_10_1038_s41467_024_53648_w crossref_primary_10_1038_s42003_024_06465_2 crossref_primary_10_1016_j_jia_2023_12_004 crossref_primary_10_1038_s41598_022_26133_x crossref_primary_10_1111_jipb_13635 crossref_primary_10_1007_s11427_021_2024_0 crossref_primary_10_1111_pce_14889 crossref_primary_10_1016_j_cropd_2024_100090 crossref_primary_10_1093_plphys_kiad539 crossref_primary_10_3390_ijms23126565 crossref_primary_10_1038_s41467_024_46754_2 crossref_primary_10_1016_j_molp_2024_08_006 crossref_primary_10_1186_s12284_022_00604_1 crossref_primary_10_1016_j_jgg_2024_12_007 crossref_primary_10_3389_fpls_2022_995634 crossref_primary_10_1007_s10681_022_02972_7 crossref_primary_10_1111_nph_19704 crossref_primary_10_3389_fpls_2023_1171474 crossref_primary_10_3390_ijms242316762 crossref_primary_10_1007_s00344_024_11389_6 crossref_primary_10_1016_j_jgg_2025_03_005 crossref_primary_10_1016_j_xplc_2022_100412 crossref_primary_10_3389_fpls_2023_1162828 crossref_primary_10_1111_nph_19696 crossref_primary_10_3390_antiox13020234 crossref_primary_10_1016_j_cub_2022_12_035 crossref_primary_10_1111_pbi_14227 crossref_primary_10_3390_cimb44120437 crossref_primary_10_1016_j_csbj_2023_06_012 crossref_primary_10_3390_cells11071144 crossref_primary_10_1111_tpj_16911 crossref_primary_10_3389_fpls_2024_1476829 crossref_primary_10_1016_j_devcel_2024_12_034 crossref_primary_10_1016_j_jgg_2024_03_011 crossref_primary_10_1038_s41467_024_46579_z crossref_primary_10_1270_jsbbs_23093 crossref_primary_10_3390_ijms232112804 crossref_primary_10_1093_plphys_kiae378 crossref_primary_10_1093_plphys_kiae456 crossref_primary_10_1007_s11032_024_01443_2 crossref_primary_10_3389_fpls_2023_1173063 crossref_primary_10_1111_pbi_14150 |
Cites_doi | 10.1016/j.bbrc.2006.04.140 10.1038/ng.2567 10.1093/mp/ssn045 10.1093/gigascience/giab008 10.1038/s42003-020-01403-4 10.1093/jxb/ert464 10.4161/fly.19695 10.1093/biostatistics/kxr054 10.1101/gr.107524.110 10.1038/ng.3007 10.1093/mp/sst135 10.1111/j.1365-313X.2009.04100.x 10.1126/science.1126410 10.1104/pp.105.069005 10.1093/bioinformatics/btu739 10.1093/bioinformatics/bts635 10.1038/s41477-019-0589-3 10.1093/nar/gkw257 10.1016/j.molp.2021.02.003 10.1093/bioinformatics/btr539 10.1038/nmeth0410-248 10.1105/tpc.18.00375 10.1534/genetics.107.079616 10.1038/nprot.2015.123 10.1186/1756-0500-5-615 10.1038/s41586-018-0063-9 10.1038/s41576-019-0122-6 10.1038/s41588-018-0167-z 10.1038/ng.3352 10.1093/nar/gku894 10.1038/s41576-018-0089-8 10.1093/bioinformatics/btr064 10.1270/jsbbs.16058 10.1038/cr.2008.307 10.1186/1939-8433-6-4 10.1038/nrg.2017.52 10.1093/nar/gkw1135 10.3390/ijms20040866 10.1038/ng.352 10.1101/gr.227819.117 10.1093/nar/gky215 10.1038/nrg2969 10.1038/ng.695 10.1038/nature04107 10.1093/nar/gku1039 10.1046/j.1365-313X.2002.01294.x 10.1007/s00122-008-0740-4 10.1534/genetics.106.068072 10.1094/MPMI.2004.17.12.1348 10.1038/nmeth.4197 10.1038/nbt.1754 10.1101/gr.200535.115 10.1073/pnas.1814551116 10.1093/nar/gkh340 10.1038/ng.3331 10.1038/nmeth.3547 10.1038/s41576-018-0016-z 10.1038/nmeth.2688 10.1038/s41588-020-00769-9 10.1371/journal.pgen.1006386 10.1007/s00122-006-0218-1 10.1093/bioinformatics/btq033 10.1146/annurev-biodatasci-022020-021940 10.1038/nature11243 10.1073/pnas.1515919112 10.12688/f1000research.7563.1 10.1093/bioinformatics/btp324 10.2135/cropsci2014.03.0243 10.1093/nar/gkg509 10.1093/nar/gkx177 10.1371/journal.pgen.1007662 10.1186/gb-2008-9-9-r137 10.1105/tpc.19.00023 10.3389/fpls.2017.01538 10.1016/j.molp.2020.12.003 10.1038/nature11532 |
ContentType | Journal Article |
Copyright | 2021 The Author Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 The Author – notice: Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molp.2021.06.025 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1752-9867 |
EndPage | 1599 |
ExternalDocumentID | 34214659 10_1016_j_molp_2021_06_025 S1674205221002604 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --M .2P .I3 0R~ 123 2WC 4.4 457 53G 7-5 70D 8P~ AABVA AACTN AAEDW AAFTH AAIAV AAIKJ AAIYJ AAKOC AALRI AAOAW AATLK AAVLN AAXUO ABGRD ABJNI ABMAC ABNKS ABVKL ABYKQ ABZBJ ACDAQ ACGFS ACPRK ACRLP ADBBV ADEYI ADEZE ADFTL ADOCK ADZTZ AEBSH AEGPL AEKER AENEX AEXQZ AFKWA AFRAH AFTJW AFXIZ AGKEF AGUBO AHMBA AHXPO AIEXJ AIJHB AIKHN AITUG AJOXV AKHUL ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ BKOJK BLXMC CS3 CZ4 DU5 E3Z EBS EE~ EFJIC EFLBG ESX F5P F9B FDB FIRID FYGXN GBLVA H5~ HW0 HZ~ IOX IXB KOM M-Z M41 M49 N9A NU- O9- OAUVE OK1 P2P PQQKQ Q1. RCE RD5 ROL RW1 RXO SPCBC SSA SSZ T5K TR2 W8F X7H ~91 ~G- 1RT AAEDT AAHBH AAMRU AAQFI AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACVFH ADCNI ADVLN AEIPS AEUPX AFPUW AGCQF AGHFR AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP AXJTR BNPGV CITATION CKLRP CW9 EJD H13 O0~ OVD SSH TEORI TGP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c455t-1b5a87b1e1cda9d7f43cd1be5743193139823183c26edf7cc1c6cb967bae84913 |
IEDL.DBID | IXB |
ISSN | 1674-2052 1752-9867 |
IngestDate | Fri Jul 11 02:40:37 EDT 2025 Fri Jul 11 16:02:05 EDT 2025 Thu Apr 03 07:08:56 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Jul 01 01:40:50 EDT 2025 Fri Feb 23 02:43:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | genetic variants deep learning rice chromatin accessibility functional impact map |
Language | English |
License | Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c455t-1b5a87b1e1cda9d7f43cd1be5743193139823183c26edf7cc1c6cb967bae84913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34214659 |
PQID | 2548399750 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2660998059 proquest_miscellaneous_2548399750 pubmed_primary_34214659 crossref_citationtrail_10_1016_j_molp_2021_06_025 crossref_primary_10_1016_j_molp_2021_06_025 elsevier_sciencedirect_doi_10_1016_j_molp_2021_06_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-06 |
PublicationDateYYYYMMDD | 2021-09-06 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular plant |
PublicationTitleAlternate | Mol Plant |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Lee, Gorkin, Baker, Strober, Asoni, McCallion, Beer (bib36) 2015; 47 Ramírez, Ryan, Grüning, Bhardwaj, Kilpert, Richter, Heyne, Dündar, Manke (bib47) 2016; 44 Eraslan, Avsec, Gagneur, Theis (bib15) 2019; 20 Konishi, Izawa, Lin, Ebana, Fukuta, Sasaki, Yano (bib34) 2006; 312 Robinson, Thorvaldsdóttir, Winckler, Guttman, Lander, Getz, Mesirov (bib48) 2011; 29 Cingolani, Platts, Wang le, Coon, Nguyen, Wang, Land, Lu, Ruden (bib8) 2012; 6 Suzek, Wang, Huang, McGarvey, Wu (bib53) 2015; 31 Hansen, Irizarry, Wu (bib21) 2012; 13 Buenrostro, Giresi, Zaba, Chang, Greenleaf (bib5) 2013; 10 Fan, Xing, Mao, Lu, Han, Xu, Li, Zhang (bib16) 2006; 112 Lu, Dai, Li, Wang, Miao, Shi (bib38) 2017; 8 Zhang, Wang, Li, Cui, Shi, Wu, Hu, Wang, Xu, Li (bib71) 2021; 14 Kosugi, Ohashi (bib35) 2002; 30 Ishii, Numaguchi, Miura, Yoshida, Thanh, Htun, Yamasaki, Komeda, Matsumoto, Terauchi (bib25) 2013; 45 Yang, Lu, Zhao, Xie, Ramakrishna, Wang, Du, Liang, Sun, Zhao (bib69) 2018; 30 Adzhubei, Schmidt, Peshkin, Ramensky, Gerasimova, Bork, Kondrashov, Sunyaev (bib1) 2010; 7 McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky, Garimella, Altshuler, Gabriel, Daly (bib42) 2010; 20 Zhang, Chen, Li, Meng, Singh, Jiang, Deng, He, Lemaux (bib73) 2005; 139 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib11) 2013; 29 Xu, Chu, Chen, Li, Wu, Jin, Wang, Huang (bib68) 2018; 14 Zhang, Chen, Xing, Kudrna, Yao, Copetti, Mu, Li, Song, Xie (bib72) 2016; 113 Wang, Xie, Chen, Tang, Yang, Ye, Liu, Lin, Xu, Xiao (bib59) 2010; 61 Fu, Xu, Zhou, Chen, Shen, Li, Zhu, Wang, Hu, Zhu (bib18) 2019; 20 Chen, Gao, Xie, Gong, Lu, Wang, Li, Liu, Zhang, Dong (bib7) 2014; 46 Huang, Wei, Sang, Zhao, Feng, Zhao, Li, Zhu, Lu, Zhang (bib24) 2010; 42 Luo, Hao, Jin, Gao, Lin (bib39) 2008; 1 Wang, Mauleon, Hu, Chebotarov, Tai, Wu, Li, Zheng, Fuentes, Zhang (bib62) 2018; 557 Shen, Yue, McCleary, Ye, Edsall, Kuan, Wagner, Dixon, Lee, Lobanenkov (bib50) 2012; 488 Tang, Zhao, Lu, Yu, Zhang, Zhang, Yang, Zhou, Wang, Ma (bib54) 2021; 14 Washburn, Mejia-Guerra, Ramstein, Kremling, Valluru, Buckler, Wang (bib63) 2019; 116 Zhao, Yao, Ouyang, Yang, Wang, Lian, Xing, Chen, Xie (bib75) 2015; 43 Vergara, Frech, Chen (bib56) 2012; 5 Li, Durbin (bib37) 2009; 25 Fornes, Castro-Mondragon, Khan, van der Lee, Zhang, Richmond, Modi, Correard, Gheorghe, Baranašić (bib17) 2020; 48 Iyer, McCouch (bib26) 2004; 17 Eilbeck, Quinlan, Yandell (bib14) 2017; 18 Wang, Yu, Weng, Xie, Xu, Li, Xiao, Zhang (bib58) 2014; 65 Patro, Duggal, Love, Irizarry, Kingsford (bib45) 2017; 14 Zhao, Sun, Xiao, Cheng, Xu, Tang, Chen, Xu, Xu (bib76) 2016; 66 Andolfatto (bib3) 2005; 437 Huang, Kurata, Wei, Wang, Wang, Zhao, Zhao, Liu, Lu, Li (bib22) 2012; 490 Zeng, Gifford (bib70) 2017; 45 Wang, Tai, Weinan, Wei (bib61) 2018; 46 Vaser, Adusumalli, Leng, Sikic, Ng (bib55) 2016; 11 Sundaram, Gao, Padigepati, McRae, Li, Kosmicki, Fritzilas, Hakenberg, Dutta, Shon (bib52) 2018; 50 Zhou, Troyanskaya (bib77) 2015; 12 Grant, Bailey, Noble (bib20) 2011; 27 Edgar (bib13) 2004; 32 Kelley, Snoek, Rinn (bib32) 2016; 26 Kelley, Reshef, Bileschi, Belanger, McLean, Snoek (bib31) 2018; 28 Mansueto, Fuentes, Borja, Detras, Abriol-Santos, Chebotarov, Sanciangco, Palis, Copetti, Poliakov (bib40) 2017; 45 Kawahara, de la Bastide, Hamilton, Kanamori, McCombie, Ouyang, Schwartz, Tanaka, Wu, Zhou (bib30) 2013; 6 Jain, Nijhawan, Tyagi, Khurana (bib27) 2006; 345 Wang, Li, Liu, Wu, Zhang, Wang, Wang, Chen, Zhang, Gao (bib60) 2015; 47 Wei, Qiu, Yong, Fan, Zhang, Hua, Liu, Wang, Olsen, Han (bib64) 2021; 53 Huang, Qian, Liu, Sun, He, Luo, Xia, Chu, Li, Fu (bib23) 2009; 41 Chen, Xie, He, Yu, Chen, Li, Yu, Yao, Zhang, He (bib6) 2014; 7 Quinlan, Hall (bib46) 2010; 26 Montgomery, Dermitzakis (bib43) 2011; 12 Barshai, Tripto, Orenstein (bib4) 2020; 3 Weng, Gu, Wan, Gao, Guo, Su, Lei, Zhang, Cheng, Guo (bib65) 2008; 18 Wang, Xu, Luo, Li (bib57) 2016; 56 Dale, Pedersen, Quinlan (bib9) 2011; 27 Danecek, Bonfield, Liddle, Marshall, Ohan, Pollard, Whitwham, Keane, McCarthy, Davies (bib10) 2021; 10 Joly-Lopez, Platts, Gulko, Choi, Groen, Zhong, Siepel, Purugganan (bib29) 2020; 6 Duan, Wang, Li, Lin, Zhang, Wang, Zhou, Zhang, Jiang, Wang (bib12) 2019; 31 Wu, Wang, Mi, Shan, Li, Xu, Lin (bib66) 2016; 12 Xie, Wang, Yuan, Yao, Lyu, Zhao, Yang, Li, Zhang, Yuan (bib67) 2015; 112 Klemm, Shipony, Greenleaf (bib33) 2019; 20 Soneson, Love, Robinson (bib51) 2015; 4 Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nusbaum, Myers, Brown, Li (bib74) 2008; 9 Schaid, Chen, Larson (bib49) 2018; 19 Alexandrov, Tai, Wang, Mansueto, Palis, Fuentes, Ulat, Chebotarov, Zhang, Li (bib2) 2015; 43 Mather, Caicedo, Polato, Olsen, McCouch, Purugganan (bib41) 2007; 177 Ng, Henikoff (bib44) 2003; 31 Gao, Innan (bib19) 2008; 179 Jiang, Chu, Piao, Chin, Jin, Lee, Qiao, Han, Piao, Koh (bib28) 2008; 116 Zhu, Liao, Zhou, Xia, Xie (bib78) 2020; 3 Kawahara (10.1016/j.molp.2021.06.025_bib30) 2013; 6 Vaser (10.1016/j.molp.2021.06.025_bib55) 2016; 11 Chen (10.1016/j.molp.2021.06.025_bib6) 2014; 7 Fu (10.1016/j.molp.2021.06.025_bib18) 2019; 20 Mather (10.1016/j.molp.2021.06.025_bib41) 2007; 177 Li (10.1016/j.molp.2021.06.025_bib37) 2009; 25 Eraslan (10.1016/j.molp.2021.06.025_bib15) 2019; 20 Zhang (10.1016/j.molp.2021.06.025_bib72) 2016; 113 Mansueto (10.1016/j.molp.2021.06.025_bib40) 2017; 45 McKenna (10.1016/j.molp.2021.06.025_bib42) 2010; 20 Zhang (10.1016/j.molp.2021.06.025_bib74) 2008; 9 Ishii (10.1016/j.molp.2021.06.025_bib25) 2013; 45 Danecek (10.1016/j.molp.2021.06.025_bib10) 2021; 10 Huang (10.1016/j.molp.2021.06.025_bib22) 2012; 490 Barshai (10.1016/j.molp.2021.06.025_bib4) 2020; 3 Lee (10.1016/j.molp.2021.06.025_bib36) 2015; 47 Wang (10.1016/j.molp.2021.06.025_bib57) 2016; 56 Wu (10.1016/j.molp.2021.06.025_bib66) 2016; 12 Huang (10.1016/j.molp.2021.06.025_bib24) 2010; 42 Lu (10.1016/j.molp.2021.06.025_bib38) 2017; 8 Klemm (10.1016/j.molp.2021.06.025_bib33) 2019; 20 Buenrostro (10.1016/j.molp.2021.06.025_bib5) 2013; 10 Joly-Lopez (10.1016/j.molp.2021.06.025_bib29) 2020; 6 Grant (10.1016/j.molp.2021.06.025_bib20) 2011; 27 Dale (10.1016/j.molp.2021.06.025_bib9) 2011; 27 Wang (10.1016/j.molp.2021.06.025_bib61) 2018; 46 Xie (10.1016/j.molp.2021.06.025_bib67) 2015; 112 Xu (10.1016/j.molp.2021.06.025_bib68) 2018; 14 Wang (10.1016/j.molp.2021.06.025_bib58) 2014; 65 Hansen (10.1016/j.molp.2021.06.025_bib21) 2012; 13 Luo (10.1016/j.molp.2021.06.025_bib39) 2008; 1 Shen (10.1016/j.molp.2021.06.025_bib50) 2012; 488 Iyer (10.1016/j.molp.2021.06.025_bib26) 2004; 17 Zhao (10.1016/j.molp.2021.06.025_bib75) 2015; 43 Wei (10.1016/j.molp.2021.06.025_bib64) 2021; 53 Zhao (10.1016/j.molp.2021.06.025_bib76) 2016; 66 Edgar (10.1016/j.molp.2021.06.025_bib13) 2004; 32 Fan (10.1016/j.molp.2021.06.025_bib16) 2006; 112 Tang (10.1016/j.molp.2021.06.025_bib54) 2021; 14 Zhou (10.1016/j.molp.2021.06.025_bib77) 2015; 12 Wang (10.1016/j.molp.2021.06.025_bib62) 2018; 557 Schaid (10.1016/j.molp.2021.06.025_bib49) 2018; 19 Ramírez (10.1016/j.molp.2021.06.025_bib47) 2016; 44 Zhang (10.1016/j.molp.2021.06.025_bib73) 2005; 139 Wang (10.1016/j.molp.2021.06.025_bib59) 2010; 61 Adzhubei (10.1016/j.molp.2021.06.025_bib1) 2010; 7 Andolfatto (10.1016/j.molp.2021.06.025_bib3) 2005; 437 Jiang (10.1016/j.molp.2021.06.025_bib28) 2008; 116 Vergara (10.1016/j.molp.2021.06.025_bib56) 2012; 5 Chen (10.1016/j.molp.2021.06.025_bib7) 2014; 46 Sundaram (10.1016/j.molp.2021.06.025_bib52) 2018; 50 Montgomery (10.1016/j.molp.2021.06.025_bib43) 2011; 12 Duan (10.1016/j.molp.2021.06.025_bib12) 2019; 31 Kelley (10.1016/j.molp.2021.06.025_bib32) 2016; 26 Yang (10.1016/j.molp.2021.06.025_bib69) 2018; 30 Zhang (10.1016/j.molp.2021.06.025_bib71) 2021; 14 Zhu (10.1016/j.molp.2021.06.025_bib78) 2020; 3 Quinlan (10.1016/j.molp.2021.06.025_bib46) 2010; 26 Dobin (10.1016/j.molp.2021.06.025_bib11) 2013; 29 Fornes (10.1016/j.molp.2021.06.025_bib17) 2020; 48 Weng (10.1016/j.molp.2021.06.025_bib65) 2008; 18 Kelley (10.1016/j.molp.2021.06.025_bib31) 2018; 28 Ng (10.1016/j.molp.2021.06.025_bib44) 2003; 31 Cingolani (10.1016/j.molp.2021.06.025_bib8) 2012; 6 Huang (10.1016/j.molp.2021.06.025_bib23) 2009; 41 Gao (10.1016/j.molp.2021.06.025_bib19) 2008; 179 Patro (10.1016/j.molp.2021.06.025_bib45) 2017; 14 Robinson (10.1016/j.molp.2021.06.025_bib48) 2011; 29 Suzek (10.1016/j.molp.2021.06.025_bib53) 2015; 31 Kosugi (10.1016/j.molp.2021.06.025_bib35) 2002; 30 Zeng (10.1016/j.molp.2021.06.025_bib70) 2017; 45 Eilbeck (10.1016/j.molp.2021.06.025_bib14) 2017; 18 Wang (10.1016/j.molp.2021.06.025_bib60) 2015; 47 Washburn (10.1016/j.molp.2021.06.025_bib63) 2019; 116 Alexandrov (10.1016/j.molp.2021.06.025_bib2) 2015; 43 Jain (10.1016/j.molp.2021.06.025_bib27) 2006; 345 Soneson (10.1016/j.molp.2021.06.025_bib51) 2015; 4 Konishi (10.1016/j.molp.2021.06.025_bib34) 2006; 312 |
References_xml | – volume: 14 start-page: 470 year: 2021 end-page: 487 ident: bib54 article-title: Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in publication-title: Mol. Plant – volume: 14 start-page: 787 year: 2021 end-page: 804 ident: bib71 article-title: The landscape of gene–CDS–haplotype diversity in rice: properties, population organization, footprints of domestication and breeding, and implications for genetic improvement publication-title: Mol. Plant – volume: 11 start-page: 1 year: 2016 end-page: 9 ident: bib55 article-title: SIFT missense predictions for genomes publication-title: Nat. Protoc. – volume: 27 start-page: 3423 year: 2011 end-page: 3424 ident: bib9 article-title: Pybedtools: a flexible Python library for manipulating genomic datasets and annotations publication-title: Bioinformatics – volume: 10 start-page: giab008 year: 2021 ident: bib10 article-title: Twelve years of SAMtools and BCFtools publication-title: Gigascience – volume: 18 start-page: 599 year: 2017 end-page: 612 ident: bib14 article-title: Settling the score: variant prioritization and Mendelian disease publication-title: Nat. Rev. Genet. – volume: 29 start-page: 24 year: 2011 end-page: 26 ident: bib48 article-title: Integrative genomics viewer publication-title: Nat. Biotechnol. – volume: 46 start-page: e69 year: 2018 ident: bib61 article-title: DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants publication-title: Nucleic Acids Res. – volume: 7 start-page: 248 year: 2010 end-page: 249 ident: bib1 article-title: A method and server for predicting damaging missense mutations publication-title: Nat. Methods – volume: 31 start-page: 1026 year: 2019 end-page: 1042 ident: bib12 article-title: regulates plant architecture through modulating the transcriptional activity of publication-title: Plant Cell – volume: 50 start-page: 1161 year: 2018 end-page: 1170 ident: bib52 article-title: Predicting the clinical impact of human mutation with deep neural networks publication-title: Nat. Genet. – volume: 42 start-page: 961 year: 2010 end-page: 967 ident: bib24 article-title: Genome-wide association studies of 14 agronomic traits in rice landraces publication-title: Nat. Genet. – volume: 12 start-page: 277 year: 2011 end-page: 282 ident: bib43 article-title: From expression QTLs to personalized transcriptomics publication-title: Nat. Rev. Genet. – volume: 43 start-page: D1018 year: 2015 end-page: D1022 ident: bib75 article-title: RiceVarMap: a comprehensive database of rice genomic variations publication-title: Nucleic Acids Res. – volume: 437 start-page: 1149 year: 2005 end-page: 1152 ident: bib3 article-title: Adaptive evolution of non-coding DNA in publication-title: Nature – volume: 10 start-page: 1213 year: 2013 end-page: 1218 ident: bib5 article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position publication-title: Nat. Methods – volume: 179 start-page: 965 year: 2008 end-page: 976 ident: bib19 article-title: Nonindependent domestication of the two rice subspecies, publication-title: Genetics – volume: 32 start-page: 1792 year: 2004 end-page: 1797 ident: bib13 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. – volume: 48 start-page: D87 year: 2020 end-page: D92 ident: bib17 article-title: Jaspar 2020: update of the open-access database of transcription factor binding profiles publication-title: Nucleic Acids Res. – volume: 139 start-page: 1107 year: 2005 end-page: 1124 ident: bib73 article-title: Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family publication-title: Plant Physiol. – volume: 4 start-page: 1521 year: 2015 ident: bib51 article-title: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences publication-title: F1000Res – volume: 31 start-page: 926 year: 2015 end-page: 932 ident: bib53 article-title: UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches publication-title: Bioinformatics – volume: 14 start-page: e1007662 year: 2018 ident: bib68 article-title: Rice transcription factor publication-title: PLoS Genet. – volume: 113 start-page: E5163 year: 2016 end-page: E5171 ident: bib72 article-title: Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63 publication-title: Proc. Natl. Acad. Sci. U S A – volume: 14 start-page: 417 year: 2017 end-page: 419 ident: bib45 article-title: Salmon provides fast and bias-aware quantification of transcript expression publication-title: Nat. Methods – volume: 65 start-page: 1069 year: 2014 end-page: 1079 ident: bib58 article-title: An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population publication-title: J. Exp. Bot. – volume: 8 start-page: 1538 year: 2017 ident: bib38 article-title: shapes panicle architecture through regulating pedicel length publication-title: Front. Plant Sci. – volume: 7 start-page: 541 year: 2014 end-page: 553 ident: bib6 article-title: A high-density SNP genotyping array for rice biology and molecular breeding publication-title: Mol. Plant – volume: 112 start-page: 1164 year: 2006 end-page: 1171 ident: bib16 article-title: GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein publication-title: Theor. Appl. Genet. – volume: 13 start-page: 204 year: 2012 end-page: 216 ident: bib21 article-title: Removing technical variability in RNA-seq data using conditional quantile normalization publication-title: Biostatistics – volume: 12 start-page: e1006386 year: 2016 ident: bib66 article-title: The QTL publication-title: PLoS Genet. – volume: 6 start-page: 119 year: 2020 end-page: 130 ident: bib29 article-title: An inferred fitness consequence map of the rice genome publication-title: Nat. Plants – volume: 345 start-page: 646 year: 2006 end-page: 651 ident: bib27 article-title: Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR publication-title: Biochem. Biophys. Res. Commun. – volume: 116 start-page: 1117 year: 2008 end-page: 1127 ident: bib28 article-title: Fine mapping and candidate gene analysis of publication-title: Theor. Appl. Genet. – volume: 557 start-page: 43 year: 2018 end-page: 49 ident: bib62 article-title: Genomic variation in 3,010 diverse accessions of Asian cultivated rice publication-title: Nature – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib11 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 47 start-page: 955 year: 2015 end-page: 961 ident: bib36 article-title: A method to predict the impact of regulatory variants from DNA sequence publication-title: Nat. Genet. – volume: 12 start-page: 931 year: 2015 end-page: 934 ident: bib77 article-title: Predicting effects of noncoding variants with deep learning-based sequence model publication-title: Nat. Methods – volume: 46 start-page: 714 year: 2014 end-page: 721 ident: bib7 article-title: Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism publication-title: Nat. Genet. – volume: 9 start-page: R137 year: 2008 ident: bib74 article-title: Model-based analysis of ChIP-seq (MACS) publication-title: Genome Biol. – volume: 17 start-page: 1348 year: 2004 end-page: 1354 ident: bib26 article-title: The rice bacterial blight resistance gene publication-title: Mol. Plant Microbe Interact. – volume: 1 start-page: 830 year: 2008 end-page: 838 ident: bib39 article-title: Fine mapping of publication-title: Mol. Plant – volume: 6 start-page: 4 year: 2013 ident: bib30 article-title: Improvement of the publication-title: Rice – volume: 26 start-page: 841 year: 2010 end-page: 842 ident: bib46 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics – volume: 41 start-page: 494 year: 2009 end-page: 497 ident: bib23 article-title: Natural variation at the publication-title: Nat. Genet. – volume: 56 start-page: 1157 year: 2016 end-page: 1162 ident: bib57 article-title: Mutation in the non-coding sequence of publication-title: Crop Sci. – volume: 490 start-page: 497 year: 2012 end-page: 501 ident: bib22 article-title: A map of rice genome variation reveals the origin of cultivated rice publication-title: Nature – volume: 20 start-page: 207 year: 2019 end-page: 220 ident: bib33 article-title: Chromatin accessibility and the regulatory epigenome publication-title: Nat. Rev. Genet. – volume: 112 start-page: E5411 year: 2015 end-page: E5419 ident: bib67 article-title: Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection publication-title: Proc. Natl. Acad. Sci. U S A – volume: 44 start-page: W160 year: 2016 end-page: W165 ident: bib47 article-title: deepTools2: a next generation web server for deep-sequencing data analysis publication-title: Nucleic Acids Res. – volume: 18 start-page: 1199 year: 2008 end-page: 1209 ident: bib65 article-title: Isolation and initial characterization of publication-title: Cell Res. – volume: 30 start-page: 337 year: 2002 end-page: 348 ident: bib35 article-title: DNA binding and dimerization specificity and potential targets for the TCP protein family publication-title: Plant J. – volume: 20 start-page: 389 year: 2019 end-page: 403 ident: bib15 article-title: Deep learning: new computational modelling techniques for genomics publication-title: Nat. Rev. Genet. – volume: 31 start-page: 3812 year: 2003 end-page: 3814 ident: bib44 article-title: SIFT: predicting amino acid changes that affect protein function publication-title: Nucleic Acids Res. – volume: 312 start-page: 1392 year: 2006 end-page: 1396 ident: bib34 article-title: An SNP caused loss of seed shattering during rice domestication publication-title: Science – volume: 45 start-page: e99 year: 2017 ident: bib70 article-title: Predicting the impact of non-coding variants on DNA methylation publication-title: Nucleic Acids Res. – volume: 47 start-page: 949 year: 2015 end-page: 954 ident: bib60 article-title: The publication-title: Nat. Genet. – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: bib37 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics – volume: 45 start-page: 462 year: 2013 end-page: 465 ident: bib25 article-title: regulates a closed panicle trait in domesticated rice publication-title: Nat. Genet. – volume: 28 start-page: 739 year: 2018 end-page: 750 ident: bib31 article-title: Sequential regulatory activity prediction across chromosomes with convolutional neural networks publication-title: Genome Res. – volume: 53 start-page: 243 year: 2021 end-page: 253 ident: bib64 article-title: A quantitative genomics map of rice provides genetic insights and guides breeding publication-title: Nat. Genet. – volume: 61 start-page: 752 year: 2010 end-page: 766 ident: bib59 article-title: A dynamic gene expression atlas covering the entire life cycle of rice publication-title: Plant J. – volume: 3 start-page: 315 year: 2020 end-page: 338 ident: bib4 article-title: Identifying regulatory elements via deep learning publication-title: Annu. Rev. Biomed. Data Sci. – volume: 116 start-page: 5542 year: 2019 end-page: 5549 ident: bib63 article-title: Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence publication-title: Proc. Natl. Acad. Sci. U S A – volume: 6 start-page: 80 year: 2012 end-page: 92 ident: bib8 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of publication-title: Fly (Austin) – volume: 5 start-page: 615 year: 2012 ident: bib56 article-title: CooVar: co-occurring variant analyzer publication-title: BMC Res. Notes – volume: 45 start-page: D1075 year: 2017 end-page: D1081 ident: bib40 article-title: Rice SNP-seek database update: new SNPs, indels, and queries publication-title: Nucleic Acids Res. – volume: 30 start-page: 2720 year: 2018 end-page: 2740 ident: bib69 article-title: Genome-wide association studies reveal the genetic basis of ionomic variation in rice publication-title: Plant Cell – volume: 177 start-page: 2223 year: 2007 end-page: 2232 ident: bib41 article-title: The extent of linkage disequilibrium in rice ( publication-title: Genetics – volume: 19 start-page: 491 year: 2018 end-page: 504 ident: bib49 article-title: From genome-wide associations to candidate causal variants by statistical fine-mapping publication-title: Nat. Rev. Genet. – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: bib42 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. – volume: 3 start-page: 675 year: 2020 ident: bib78 article-title: ATAC-seq with unique molecular identifiers improves quantification and footprinting publication-title: Commun. Biol. – volume: 488 start-page: 116 year: 2012 end-page: 120 ident: bib50 article-title: A map of the publication-title: Nature – volume: 66 start-page: 599 year: 2016 end-page: 605 ident: bib76 article-title: Variations in publication-title: Breed Sci. – volume: 43 start-page: D1023 year: 2015 end-page: D1027 ident: bib2 article-title: SNP-Seek database of SNPs derived from 3000 rice genomes publication-title: Nucleic Acids Res. – volume: 20 start-page: 866 year: 2019 ident: bib18 article-title: Enhanced expression of QTL publication-title: Int. J. Mol. Sci. – volume: 27 start-page: 1017 year: 2011 end-page: 1018 ident: bib20 article-title: FIMO: scanning for occurrences of a given motif publication-title: Bioinformatics – volume: 26 start-page: 990 year: 2016 end-page: 999 ident: bib32 article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks publication-title: Genome Res. – volume: 345 start-page: 646 year: 2006 ident: 10.1016/j.molp.2021.06.025_bib27 article-title: Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2006.04.140 – volume: 45 start-page: 462 year: 2013 ident: 10.1016/j.molp.2021.06.025_bib25 article-title: OsLG1 regulates a closed panicle trait in domesticated rice publication-title: Nat. Genet. doi: 10.1038/ng.2567 – volume: 1 start-page: 830 year: 2008 ident: 10.1016/j.molp.2021.06.025_bib39 article-title: Fine mapping of Spr3, a locus for spreading panicle from African cultivated rice (Oryza glaberrima Steud publication-title: Mol. Plant doi: 10.1093/mp/ssn045 – volume: 10 start-page: giab008 year: 2021 ident: 10.1016/j.molp.2021.06.025_bib10 article-title: Twelve years of SAMtools and BCFtools publication-title: Gigascience doi: 10.1093/gigascience/giab008 – volume: 3 start-page: 675 year: 2020 ident: 10.1016/j.molp.2021.06.025_bib78 article-title: ATAC-seq with unique molecular identifiers improves quantification and footprinting publication-title: Commun. Biol. doi: 10.1038/s42003-020-01403-4 – volume: 65 start-page: 1069 year: 2014 ident: 10.1016/j.molp.2021.06.025_bib58 article-title: An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert464 – volume: 6 start-page: 80 year: 2012 ident: 10.1016/j.molp.2021.06.025_bib8 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 publication-title: Fly (Austin) doi: 10.4161/fly.19695 – volume: 13 start-page: 204 year: 2012 ident: 10.1016/j.molp.2021.06.025_bib21 article-title: Removing technical variability in RNA-seq data using conditional quantile normalization publication-title: Biostatistics doi: 10.1093/biostatistics/kxr054 – volume: 20 start-page: 1297 year: 2010 ident: 10.1016/j.molp.2021.06.025_bib42 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. doi: 10.1101/gr.107524.110 – volume: 46 start-page: 714 year: 2014 ident: 10.1016/j.molp.2021.06.025_bib7 article-title: Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism publication-title: Nat. Genet. doi: 10.1038/ng.3007 – volume: 7 start-page: 541 year: 2014 ident: 10.1016/j.molp.2021.06.025_bib6 article-title: A high-density SNP genotyping array for rice biology and molecular breeding publication-title: Mol. Plant doi: 10.1093/mp/sst135 – volume: 61 start-page: 752 year: 2010 ident: 10.1016/j.molp.2021.06.025_bib59 article-title: A dynamic gene expression atlas covering the entire life cycle of rice publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.04100.x – volume: 312 start-page: 1392 year: 2006 ident: 10.1016/j.molp.2021.06.025_bib34 article-title: An SNP caused loss of seed shattering during rice domestication publication-title: Science doi: 10.1126/science.1126410 – volume: 139 start-page: 1107 year: 2005 ident: 10.1016/j.molp.2021.06.025_bib73 article-title: Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family publication-title: Plant Physiol. doi: 10.1104/pp.105.069005 – volume: 31 start-page: 926 year: 2015 ident: 10.1016/j.molp.2021.06.025_bib53 article-title: UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu739 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.molp.2021.06.025_bib11 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 6 start-page: 119 year: 2020 ident: 10.1016/j.molp.2021.06.025_bib29 article-title: An inferred fitness consequence map of the rice genome publication-title: Nat. Plants doi: 10.1038/s41477-019-0589-3 – volume: 44 start-page: W160 year: 2016 ident: 10.1016/j.molp.2021.06.025_bib47 article-title: deepTools2: a next generation web server for deep-sequencing data analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw257 – volume: 14 start-page: 787 year: 2021 ident: 10.1016/j.molp.2021.06.025_bib71 article-title: The landscape of gene–CDS–haplotype diversity in rice: properties, population organization, footprints of domestication and breeding, and implications for genetic improvement publication-title: Mol. Plant doi: 10.1016/j.molp.2021.02.003 – volume: 27 start-page: 3423 year: 2011 ident: 10.1016/j.molp.2021.06.025_bib9 article-title: Pybedtools: a flexible Python library for manipulating genomic datasets and annotations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr539 – volume: 7 start-page: 248 year: 2010 ident: 10.1016/j.molp.2021.06.025_bib1 article-title: A method and server for predicting damaging missense mutations publication-title: Nat. Methods doi: 10.1038/nmeth0410-248 – volume: 48 start-page: D87 year: 2020 ident: 10.1016/j.molp.2021.06.025_bib17 article-title: Jaspar 2020: update of the open-access database of transcription factor binding profiles publication-title: Nucleic Acids Res. – volume: 113 start-page: E5163 year: 2016 ident: 10.1016/j.molp.2021.06.025_bib72 article-title: Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63 publication-title: Proc. Natl. Acad. Sci. U S A – volume: 30 start-page: 2720 year: 2018 ident: 10.1016/j.molp.2021.06.025_bib69 article-title: Genome-wide association studies reveal the genetic basis of ionomic variation in rice publication-title: Plant Cell doi: 10.1105/tpc.18.00375 – volume: 177 start-page: 2223 year: 2007 ident: 10.1016/j.molp.2021.06.025_bib41 article-title: The extent of linkage disequilibrium in rice (Oryza sativa L.) publication-title: Genetics doi: 10.1534/genetics.107.079616 – volume: 11 start-page: 1 year: 2016 ident: 10.1016/j.molp.2021.06.025_bib55 article-title: SIFT missense predictions for genomes publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.123 – volume: 5 start-page: 615 year: 2012 ident: 10.1016/j.molp.2021.06.025_bib56 article-title: CooVar: co-occurring variant analyzer publication-title: BMC Res. Notes doi: 10.1186/1756-0500-5-615 – volume: 557 start-page: 43 year: 2018 ident: 10.1016/j.molp.2021.06.025_bib62 article-title: Genomic variation in 3,010 diverse accessions of Asian cultivated rice publication-title: Nature doi: 10.1038/s41586-018-0063-9 – volume: 20 start-page: 389 year: 2019 ident: 10.1016/j.molp.2021.06.025_bib15 article-title: Deep learning: new computational modelling techniques for genomics publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0122-6 – volume: 50 start-page: 1161 year: 2018 ident: 10.1016/j.molp.2021.06.025_bib52 article-title: Predicting the clinical impact of human mutation with deep neural networks publication-title: Nat. Genet. doi: 10.1038/s41588-018-0167-z – volume: 47 start-page: 949 year: 2015 ident: 10.1016/j.molp.2021.06.025_bib60 article-title: The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality publication-title: Nat. Genet. doi: 10.1038/ng.3352 – volume: 43 start-page: D1018 year: 2015 ident: 10.1016/j.molp.2021.06.025_bib75 article-title: RiceVarMap: a comprehensive database of rice genomic variations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku894 – volume: 20 start-page: 207 year: 2019 ident: 10.1016/j.molp.2021.06.025_bib33 article-title: Chromatin accessibility and the regulatory epigenome publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0089-8 – volume: 27 start-page: 1017 year: 2011 ident: 10.1016/j.molp.2021.06.025_bib20 article-title: FIMO: scanning for occurrences of a given motif publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr064 – volume: 66 start-page: 599 year: 2016 ident: 10.1016/j.molp.2021.06.025_bib76 article-title: Variations in DENSE AND ERECT PANICLE 1 (DEP1) contribute to the diversity of the panicle trait in high-yielding japonica rice varieties in northern China publication-title: Breed Sci. doi: 10.1270/jsbbs.16058 – volume: 18 start-page: 1199 year: 2008 ident: 10.1016/j.molp.2021.06.025_bib65 article-title: Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight publication-title: Cell Res. doi: 10.1038/cr.2008.307 – volume: 6 start-page: 4 year: 2013 ident: 10.1016/j.molp.2021.06.025_bib30 article-title: Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data publication-title: Rice doi: 10.1186/1939-8433-6-4 – volume: 18 start-page: 599 year: 2017 ident: 10.1016/j.molp.2021.06.025_bib14 article-title: Settling the score: variant prioritization and Mendelian disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2017.52 – volume: 45 start-page: D1075 year: 2017 ident: 10.1016/j.molp.2021.06.025_bib40 article-title: Rice SNP-seek database update: new SNPs, indels, and queries publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1135 – volume: 20 start-page: 866 year: 2019 ident: 10.1016/j.molp.2021.06.025_bib18 article-title: Enhanced expression of QTL qLL9/DEP1 facilitates the improvement of leaf morphology and grain yield in rice publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20040866 – volume: 41 start-page: 494 year: 2009 ident: 10.1016/j.molp.2021.06.025_bib23 article-title: Natural variation at the DEP1 locus enhances grain yield in rice publication-title: Nat. Genet. doi: 10.1038/ng.352 – volume: 28 start-page: 739 year: 2018 ident: 10.1016/j.molp.2021.06.025_bib31 article-title: Sequential regulatory activity prediction across chromosomes with convolutional neural networks publication-title: Genome Res. doi: 10.1101/gr.227819.117 – volume: 46 start-page: e69 year: 2018 ident: 10.1016/j.molp.2021.06.025_bib61 article-title: DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky215 – volume: 12 start-page: 277 year: 2011 ident: 10.1016/j.molp.2021.06.025_bib43 article-title: From expression QTLs to personalized transcriptomics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2969 – volume: 42 start-page: 961 year: 2010 ident: 10.1016/j.molp.2021.06.025_bib24 article-title: Genome-wide association studies of 14 agronomic traits in rice landraces publication-title: Nat. Genet. doi: 10.1038/ng.695 – volume: 437 start-page: 1149 year: 2005 ident: 10.1016/j.molp.2021.06.025_bib3 article-title: Adaptive evolution of non-coding DNA in Drosophila publication-title: Nature doi: 10.1038/nature04107 – volume: 43 start-page: D1023 year: 2015 ident: 10.1016/j.molp.2021.06.025_bib2 article-title: SNP-Seek database of SNPs derived from 3000 rice genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1039 – volume: 30 start-page: 337 year: 2002 ident: 10.1016/j.molp.2021.06.025_bib35 article-title: DNA binding and dimerization specificity and potential targets for the TCP protein family publication-title: Plant J. doi: 10.1046/j.1365-313X.2002.01294.x – volume: 116 start-page: 1117 year: 2008 ident: 10.1016/j.molp.2021.06.025_bib28 article-title: Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-008-0740-4 – volume: 179 start-page: 965 year: 2008 ident: 10.1016/j.molp.2021.06.025_bib19 article-title: Nonindependent domestication of the two rice subspecies, Oryza sativa ssp. indica and ssp. japonica, demonstrated by multilocus microsatellites publication-title: Genetics doi: 10.1534/genetics.106.068072 – volume: 17 start-page: 1348 year: 2004 ident: 10.1016/j.molp.2021.06.025_bib26 article-title: The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI.2004.17.12.1348 – volume: 14 start-page: 417 year: 2017 ident: 10.1016/j.molp.2021.06.025_bib45 article-title: Salmon provides fast and bias-aware quantification of transcript expression publication-title: Nat. Methods doi: 10.1038/nmeth.4197 – volume: 29 start-page: 24 year: 2011 ident: 10.1016/j.molp.2021.06.025_bib48 article-title: Integrative genomics viewer publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1754 – volume: 26 start-page: 990 year: 2016 ident: 10.1016/j.molp.2021.06.025_bib32 article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks publication-title: Genome Res. doi: 10.1101/gr.200535.115 – volume: 116 start-page: 5542 year: 2019 ident: 10.1016/j.molp.2021.06.025_bib63 article-title: Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1814551116 – volume: 32 start-page: 1792 year: 2004 ident: 10.1016/j.molp.2021.06.025_bib13 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh340 – volume: 47 start-page: 955 year: 2015 ident: 10.1016/j.molp.2021.06.025_bib36 article-title: A method to predict the impact of regulatory variants from DNA sequence publication-title: Nat. Genet. doi: 10.1038/ng.3331 – volume: 12 start-page: 931 year: 2015 ident: 10.1016/j.molp.2021.06.025_bib77 article-title: Predicting effects of noncoding variants with deep learning-based sequence model publication-title: Nat. Methods doi: 10.1038/nmeth.3547 – volume: 19 start-page: 491 year: 2018 ident: 10.1016/j.molp.2021.06.025_bib49 article-title: From genome-wide associations to candidate causal variants by statistical fine-mapping publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0016-z – volume: 10 start-page: 1213 year: 2013 ident: 10.1016/j.molp.2021.06.025_bib5 article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position publication-title: Nat. Methods doi: 10.1038/nmeth.2688 – volume: 53 start-page: 243 year: 2021 ident: 10.1016/j.molp.2021.06.025_bib64 article-title: A quantitative genomics map of rice provides genetic insights and guides breeding publication-title: Nat. Genet. doi: 10.1038/s41588-020-00769-9 – volume: 12 start-page: e1006386 year: 2016 ident: 10.1016/j.molp.2021.06.025_bib66 article-title: The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006386 – volume: 112 start-page: 1164 year: 2006 ident: 10.1016/j.molp.2021.06.025_bib16 article-title: GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-006-0218-1 – volume: 26 start-page: 841 year: 2010 ident: 10.1016/j.molp.2021.06.025_bib46 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 3 start-page: 315 year: 2020 ident: 10.1016/j.molp.2021.06.025_bib4 article-title: Identifying regulatory elements via deep learning publication-title: Annu. Rev. Biomed. Data Sci. doi: 10.1146/annurev-biodatasci-022020-021940 – volume: 488 start-page: 116 year: 2012 ident: 10.1016/j.molp.2021.06.025_bib50 article-title: A map of the cis-regulatory sequences in the mouse genome publication-title: Nature doi: 10.1038/nature11243 – volume: 112 start-page: E5411 year: 2015 ident: 10.1016/j.molp.2021.06.025_bib67 article-title: Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1515919112 – volume: 4 start-page: 1521 year: 2015 ident: 10.1016/j.molp.2021.06.025_bib51 article-title: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences publication-title: F1000Res doi: 10.12688/f1000research.7563.1 – volume: 25 start-page: 1754 year: 2009 ident: 10.1016/j.molp.2021.06.025_bib37 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 56 start-page: 1157 year: 2016 ident: 10.1016/j.molp.2021.06.025_bib57 article-title: Mutation in the non-coding sequence of Badh2 gene reduces its transcription and translation in fragrant rice ‘Nankai 138’ publication-title: Crop Sci. doi: 10.2135/cropsci2014.03.0243 – volume: 31 start-page: 3812 year: 2003 ident: 10.1016/j.molp.2021.06.025_bib44 article-title: SIFT: predicting amino acid changes that affect protein function publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg509 – volume: 45 start-page: e99 year: 2017 ident: 10.1016/j.molp.2021.06.025_bib70 article-title: Predicting the impact of non-coding variants on DNA methylation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx177 – volume: 14 start-page: e1007662 year: 2018 ident: 10.1016/j.molp.2021.06.025_bib68 article-title: Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007662 – volume: 9 start-page: R137 year: 2008 ident: 10.1016/j.molp.2021.06.025_bib74 article-title: Model-based analysis of ChIP-seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 31 start-page: 1026 year: 2019 ident: 10.1016/j.molp.2021.06.025_bib12 article-title: OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice publication-title: Plant Cell doi: 10.1105/tpc.19.00023 – volume: 8 start-page: 1538 year: 2017 ident: 10.1016/j.molp.2021.06.025_bib38 article-title: OsRAMOSA2 shapes panicle architecture through regulating pedicel length publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01538 – volume: 14 start-page: 470 year: 2021 ident: 10.1016/j.molp.2021.06.025_bib54 article-title: Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus publication-title: Mol. Plant doi: 10.1016/j.molp.2020.12.003 – volume: 490 start-page: 497 year: 2012 ident: 10.1016/j.molp.2021.06.025_bib22 article-title: A map of rice genome variation reveals the origin of cultivated rice publication-title: Nature doi: 10.1038/nature11532 |
SSID | ssj0060863 |
Score | 2.5691667 |
Snippet | Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1584 |
SubjectTerms | amino acids chromatin chromatin accessibility Databases, Nucleic Acid deep learning functional impact map genetic variants Genetic Variation Genome, Plant genomics Genotype Haplotypes INDEL Mutation neural networks Oryza - genetics Oryza sativa Polymorphism, Single Nucleotide rice |
Title | An inferred functional impact map of genetic variants in rice |
URI | https://dx.doi.org/10.1016/j.molp.2021.06.025 https://www.ncbi.nlm.nih.gov/pubmed/34214659 https://www.proquest.com/docview/2548399750 https://www.proquest.com/docview/2660998059 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSxxBEG1EPeQSjEazmkgLuYVhtz9n-qiSZZMQL0bYWzNd3QMrurOsq-C_t2o-FgSzB48zVEFT3VP9evrVK8a-KyuSAkPKxzJkuipl5mIQGTjjoixs1XJz_l7ZyY3-PTXTLXbZ18IQrbLL_W1Ob7J192bYRXO4mM2G18SflyPED6IRxiJNUKWLpohvetFnY4uQvSHZo3FG1l3hTMvxuq_vSLNSikbDk9plv705_Q98NpvQeI997NAjP28H-Iltpfk-272oEeE9HzA8y3MiVy2XKXLasNr_fLythOT35YLXFccVQ4WL_AlPyUSCQRdOykKf2c3457_LSda1R8hAG7PKRDBlkQeRBMTSxbzSCqIIyRAocAqhHV3xFQqkTbHKAQRYCM7moUyFdkIdsu15PU9fGI9VkFFKGEWIOoAoKpXA5RAhGJ2SGjDRx8VDpx1OLSzufE8Su_UUS0-x9MSUk2bAfqx9Fq1yxkZr04fbv5p_j6l9o99ZPzcePwy67SjnqX588HjyRfDnEBFtsLEWEXKBEHPAjtqJXY9Vaep5btzxO0d2wj7QU8NHs1_Z9mr5mL4hgFmFU7Zz_uvP5Oq0WakvsBnusA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7StNBeSvre9KVCb8Vs9LR1bELCpk1yaQJ7E9ZIhoRkvWw3hf77zPgRKLR76NUagRhJo0_WN98AfNZOZo2WlY9VLExTq8KnKAv01idVuabn5pyeudmF-Ta38y04GHNhmFY5xP4-pnfRevgyHbw5XV5eTn8wf17tEX6QnTCWeQAPCQ2UvDuP5_tjOHaE2TuWPVkXbD5kzvQkr5v2mkUrlexEPLle9t9Pp3-hz-4UOtqBpwN8FF_7ET6Drbx4Do_2W4J4v18AXeYFs6tWq5wEn1j9jz7Rp0KKm3op2kbQkuHMRfGLrsnMgqEugqWFXsLF0eH5wawY6iMUaKxdFzLauiqjzBJT7VPZGI1JxmwZFXhN2I7f-CqNyuXUlIgSHUbvyljnynipX8H2ol3kNyBSE1VSCvcSJhNRVo3O6EtMGK3JWU9Ajn4JOIiHcw2L6zCyxK4C-zKwLwNT5ZSdwJf7PsteOmOjtR3dHf5YAIFi-8Z-n8a5CbQz-LmjXuT29megqy-hP0-QaIONcwSRK8KYE3jdT-z9WLXhoufW7_7nyD7C49n56Uk4OT77_haecEtHTnPvYHu9us3vCc2s44dutd4BNNvwQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inferred+functional+impact+map+of+genetic+variants+in+rice&rft.jtitle=Molecular+plant&rft.au=Zhao%2C+Hu&rft.au=Li%2C+Jiacheng&rft.au=Yang%2C+Ling&rft.au=Qin%2C+Gang&rft.date=2021-09-06&rft.pub=Elsevier+Inc&rft.issn=1674-2052&rft.eissn=1752-9867&rft.volume=14&rft.issue=9&rft.spage=1584&rft.epage=1599&rft_id=info:doi/10.1016%2Fj.molp.2021.06.025&rft.externalDocID=S1674205221002604 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2052&client=summon |