An inferred functional impact map of genetic variants in rice

Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 14; no. 9; pp. 1584 - 1599
Main Authors Zhao, Hu, Li, Jiacheng, Yang, Ling, Qin, Gang, Xia, Chunjiao, Xu, Xingbing, Su, Yangmeng, Liu, Yinmeng, Ming, Luchang, Chen, Ling-Ling, Xiong, Lizhong, Xie, Weibo
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 06.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn). This study quantitatively infers the effects of millions of genetic variants in the coding and regulatory regions of the rice genome and characterizes their functional properties and tissue specificity. This resource can be used to prioritize causal variants and will help to accelerate gene cloning and next-generation breeding in rice.
AbstractList Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn).Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn).
Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn).
Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn). This study quantitatively infers the effects of millions of genetic variants in the coding and regulatory regions of the rice genome and characterizes their functional properties and tissue specificity. This resource can be used to prioritize causal variants and will help to accelerate gene cloning and next-generation breeding in rice.
Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn).
Author Xu, Xingbing
Qin, Gang
Zhao, Hu
Xia, Chunjiao
Ming, Luchang
Xiong, Lizhong
Su, Yangmeng
Xie, Weibo
Li, Jiacheng
Yang, Ling
Chen, Ling-Ling
Liu, Yinmeng
Author_xml – sequence: 1
  givenname: Hu
  surname: Zhao
  fullname: Zhao, Hu
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
– sequence: 2
  givenname: Jiacheng
  surname: Li
  fullname: Li, Jiacheng
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
– sequence: 3
  givenname: Ling
  surname: Yang
  fullname: Yang, Ling
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
– sequence: 4
  givenname: Gang
  surname: Qin
  fullname: Qin, Gang
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
– sequence: 5
  givenname: Chunjiao
  surname: Xia
  fullname: Xia, Chunjiao
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
– sequence: 6
  givenname: Xingbing
  surname: Xu
  fullname: Xu, Xingbing
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
– sequence: 7
  givenname: Yangmeng
  surname: Su
  fullname: Su, Yangmeng
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
– sequence: 8
  givenname: Yinmeng
  surname: Liu
  fullname: Liu, Yinmeng
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
– sequence: 9
  givenname: Luchang
  surname: Ming
  fullname: Ming, Luchang
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
– sequence: 10
  givenname: Ling-Ling
  surname: Chen
  fullname: Chen, Ling-Ling
  organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
– sequence: 11
  givenname: Lizhong
  surname: Xiong
  fullname: Xiong, Lizhong
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
– sequence: 12
  givenname: Weibo
  surname: Xie
  fullname: Xie, Weibo
  email: weibo.xie@mail.hzau.edu.cn
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34214659$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtO3UAURUcIFB7JD6SIXNLYzMPzkqBAKAlISDSkHo2Pj9Fc2WMzMxeJv8dXF5oUUJ1TrLWLvU_JYZwjEvKT0YZRpi42zTSPS8MpZw1VDeXygJwwLXltjdKH6690W3Mq-TE5zXlDqaJGiW_kWLSctUraE3J1HasQB0wJ-2rYRihhjn6swrR4KNXkl2oeqieMWAJULz4FH0telSoFwO_kaPBjxh_v94z8-_P78ea2vn_4e3dzfV9DK2WpWSe90R1DBr23vR5aAT3rUOpWMCuYsIYLZgRwhf2gARgo6KzSnUfTWibOyPk-d0nz8xZzcVPIgOPoI87b7LhS1FpDpf0ala0R1mpJV_TXO7rtJuzdksLk06v7aGcFzB6ANOeccHAQit81VJIPo2PU7YZwG7cbwu2GcFS5dYhV5f-pH-mfSpd7CdcuXwImlyFgBOxDQiiun8Nn-hvfdqAs
CitedBy_id crossref_primary_10_1016_j_xplc_2023_100558
crossref_primary_10_1016_j_celrep_2024_114965
crossref_primary_10_1016_j_xplc_2024_100999
crossref_primary_10_3389_fpls_2024_1361716
crossref_primary_10_1016_j_cj_2022_10_003
crossref_primary_10_1038_s41422_024_01027_x
crossref_primary_10_3390_ijms24021653
crossref_primary_10_1016_j_scienta_2023_112084
crossref_primary_10_1111_nph_19362
crossref_primary_10_1016_j_jhazmat_2025_137252
crossref_primary_10_1007_s00122_023_04531_7
crossref_primary_10_1016_j_rsci_2023_03_015
crossref_primary_10_1016_j_cj_2025_01_008
crossref_primary_10_1007_s10725_024_01230_1
crossref_primary_10_1007_s10142_023_01111_2
crossref_primary_10_1093_nar_gkad840
crossref_primary_10_1016_j_molp_2022_03_009
crossref_primary_10_1186_s13059_022_02801_z
crossref_primary_10_3390_plants13091276
crossref_primary_10_1111_pbi_14521
crossref_primary_10_3390_ijms23168947
crossref_primary_10_1186_s13059_024_03372_x
crossref_primary_10_3389_fgene_2023_1133600
crossref_primary_10_1038_s41467_024_50787_y
crossref_primary_10_1016_j_cj_2024_05_010
crossref_primary_10_3390_agriculture13081623
crossref_primary_10_3390_ijms24087346
crossref_primary_10_1038_s41467_024_53651_1
crossref_primary_10_1007_s11032_024_01486_5
crossref_primary_10_1038_s42003_024_06374_4
crossref_primary_10_1186_s12915_024_01820_5
crossref_primary_10_1038_s41467_023_43077_6
crossref_primary_10_1016_j_scib_2022_08_001
crossref_primary_10_1093_nar_gkae1061
crossref_primary_10_1038_s41467_024_53648_w
crossref_primary_10_1038_s42003_024_06465_2
crossref_primary_10_1016_j_jia_2023_12_004
crossref_primary_10_1038_s41598_022_26133_x
crossref_primary_10_1111_jipb_13635
crossref_primary_10_1007_s11427_021_2024_0
crossref_primary_10_1111_pce_14889
crossref_primary_10_1016_j_cropd_2024_100090
crossref_primary_10_1093_plphys_kiad539
crossref_primary_10_3390_ijms23126565
crossref_primary_10_1038_s41467_024_46754_2
crossref_primary_10_1016_j_molp_2024_08_006
crossref_primary_10_1186_s12284_022_00604_1
crossref_primary_10_1016_j_jgg_2024_12_007
crossref_primary_10_3389_fpls_2022_995634
crossref_primary_10_1007_s10681_022_02972_7
crossref_primary_10_1111_nph_19704
crossref_primary_10_3389_fpls_2023_1171474
crossref_primary_10_3390_ijms242316762
crossref_primary_10_1007_s00344_024_11389_6
crossref_primary_10_1016_j_jgg_2025_03_005
crossref_primary_10_1016_j_xplc_2022_100412
crossref_primary_10_3389_fpls_2023_1162828
crossref_primary_10_1111_nph_19696
crossref_primary_10_3390_antiox13020234
crossref_primary_10_1016_j_cub_2022_12_035
crossref_primary_10_1111_pbi_14227
crossref_primary_10_3390_cimb44120437
crossref_primary_10_1016_j_csbj_2023_06_012
crossref_primary_10_3390_cells11071144
crossref_primary_10_1111_tpj_16911
crossref_primary_10_3389_fpls_2024_1476829
crossref_primary_10_1016_j_devcel_2024_12_034
crossref_primary_10_1016_j_jgg_2024_03_011
crossref_primary_10_1038_s41467_024_46579_z
crossref_primary_10_1270_jsbbs_23093
crossref_primary_10_3390_ijms232112804
crossref_primary_10_1093_plphys_kiae378
crossref_primary_10_1093_plphys_kiae456
crossref_primary_10_1007_s11032_024_01443_2
crossref_primary_10_3389_fpls_2023_1173063
crossref_primary_10_1111_pbi_14150
Cites_doi 10.1016/j.bbrc.2006.04.140
10.1038/ng.2567
10.1093/mp/ssn045
10.1093/gigascience/giab008
10.1038/s42003-020-01403-4
10.1093/jxb/ert464
10.4161/fly.19695
10.1093/biostatistics/kxr054
10.1101/gr.107524.110
10.1038/ng.3007
10.1093/mp/sst135
10.1111/j.1365-313X.2009.04100.x
10.1126/science.1126410
10.1104/pp.105.069005
10.1093/bioinformatics/btu739
10.1093/bioinformatics/bts635
10.1038/s41477-019-0589-3
10.1093/nar/gkw257
10.1016/j.molp.2021.02.003
10.1093/bioinformatics/btr539
10.1038/nmeth0410-248
10.1105/tpc.18.00375
10.1534/genetics.107.079616
10.1038/nprot.2015.123
10.1186/1756-0500-5-615
10.1038/s41586-018-0063-9
10.1038/s41576-019-0122-6
10.1038/s41588-018-0167-z
10.1038/ng.3352
10.1093/nar/gku894
10.1038/s41576-018-0089-8
10.1093/bioinformatics/btr064
10.1270/jsbbs.16058
10.1038/cr.2008.307
10.1186/1939-8433-6-4
10.1038/nrg.2017.52
10.1093/nar/gkw1135
10.3390/ijms20040866
10.1038/ng.352
10.1101/gr.227819.117
10.1093/nar/gky215
10.1038/nrg2969
10.1038/ng.695
10.1038/nature04107
10.1093/nar/gku1039
10.1046/j.1365-313X.2002.01294.x
10.1007/s00122-008-0740-4
10.1534/genetics.106.068072
10.1094/MPMI.2004.17.12.1348
10.1038/nmeth.4197
10.1038/nbt.1754
10.1101/gr.200535.115
10.1073/pnas.1814551116
10.1093/nar/gkh340
10.1038/ng.3331
10.1038/nmeth.3547
10.1038/s41576-018-0016-z
10.1038/nmeth.2688
10.1038/s41588-020-00769-9
10.1371/journal.pgen.1006386
10.1007/s00122-006-0218-1
10.1093/bioinformatics/btq033
10.1146/annurev-biodatasci-022020-021940
10.1038/nature11243
10.1073/pnas.1515919112
10.12688/f1000research.7563.1
10.1093/bioinformatics/btp324
10.2135/cropsci2014.03.0243
10.1093/nar/gkg509
10.1093/nar/gkx177
10.1371/journal.pgen.1007662
10.1186/gb-2008-9-9-r137
10.1105/tpc.19.00023
10.3389/fpls.2017.01538
10.1016/j.molp.2020.12.003
10.1038/nature11532
ContentType Journal Article
Copyright 2021 The Author
Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Author
– notice: Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.molp.2021.06.025
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1752-9867
EndPage 1599
ExternalDocumentID 34214659
10_1016_j_molp_2021_06_025
S1674205221002604
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--M
.2P
.I3
0R~
123
2WC
4.4
457
53G
7-5
70D
8P~
AABVA
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAIYJ
AAKOC
AALRI
AAOAW
AATLK
AAVLN
AAXUO
ABGRD
ABJNI
ABMAC
ABNKS
ABVKL
ABYKQ
ABZBJ
ACDAQ
ACGFS
ACPRK
ACRLP
ADBBV
ADEYI
ADEZE
ADFTL
ADOCK
ADZTZ
AEBSH
AEGPL
AEKER
AENEX
AEXQZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGKEF
AGUBO
AHMBA
AHXPO
AIEXJ
AIJHB
AIKHN
AITUG
AJOXV
AKHUL
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
BKOJK
BLXMC
CS3
CZ4
DU5
E3Z
EBS
EE~
EFJIC
EFLBG
ESX
F5P
F9B
FDB
FIRID
FYGXN
GBLVA
H5~
HW0
HZ~
IOX
IXB
KOM
M-Z
M41
M49
N9A
NU-
O9-
OAUVE
OK1
P2P
PQQKQ
Q1.
RCE
RD5
ROL
RW1
RXO
SPCBC
SSA
SSZ
T5K
TR2
W8F
X7H
~91
~G-
1RT
AAEDT
AAHBH
AAMRU
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFPUW
AGCQF
AGHFR
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AXJTR
BNPGV
CITATION
CKLRP
CW9
EJD
H13
O0~
OVD
SSH
TEORI
TGP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c455t-1b5a87b1e1cda9d7f43cd1be5743193139823183c26edf7cc1c6cb967bae84913
IEDL.DBID IXB
ISSN 1674-2052
1752-9867
IngestDate Fri Jul 11 02:40:37 EDT 2025
Fri Jul 11 16:02:05 EDT 2025
Thu Apr 03 07:08:56 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Jul 01 01:40:50 EDT 2025
Fri Feb 23 02:43:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords genetic variants
deep learning
rice
chromatin accessibility
functional impact map
Language English
License Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-1b5a87b1e1cda9d7f43cd1be5743193139823183c26edf7cc1c6cb967bae84913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34214659
PQID 2548399750
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2660998059
proquest_miscellaneous_2548399750
pubmed_primary_34214659
crossref_citationtrail_10_1016_j_molp_2021_06_025
crossref_primary_10_1016_j_molp_2021_06_025
elsevier_sciencedirect_doi_10_1016_j_molp_2021_06_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-06
PublicationDateYYYYMMDD 2021-09-06
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular plant
PublicationTitleAlternate Mol Plant
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lee, Gorkin, Baker, Strober, Asoni, McCallion, Beer (bib36) 2015; 47
Ramírez, Ryan, Grüning, Bhardwaj, Kilpert, Richter, Heyne, Dündar, Manke (bib47) 2016; 44
Eraslan, Avsec, Gagneur, Theis (bib15) 2019; 20
Konishi, Izawa, Lin, Ebana, Fukuta, Sasaki, Yano (bib34) 2006; 312
Robinson, Thorvaldsdóttir, Winckler, Guttman, Lander, Getz, Mesirov (bib48) 2011; 29
Cingolani, Platts, Wang le, Coon, Nguyen, Wang, Land, Lu, Ruden (bib8) 2012; 6
Suzek, Wang, Huang, McGarvey, Wu (bib53) 2015; 31
Hansen, Irizarry, Wu (bib21) 2012; 13
Buenrostro, Giresi, Zaba, Chang, Greenleaf (bib5) 2013; 10
Fan, Xing, Mao, Lu, Han, Xu, Li, Zhang (bib16) 2006; 112
Lu, Dai, Li, Wang, Miao, Shi (bib38) 2017; 8
Zhang, Wang, Li, Cui, Shi, Wu, Hu, Wang, Xu, Li (bib71) 2021; 14
Kosugi, Ohashi (bib35) 2002; 30
Ishii, Numaguchi, Miura, Yoshida, Thanh, Htun, Yamasaki, Komeda, Matsumoto, Terauchi (bib25) 2013; 45
Yang, Lu, Zhao, Xie, Ramakrishna, Wang, Du, Liang, Sun, Zhao (bib69) 2018; 30
Adzhubei, Schmidt, Peshkin, Ramensky, Gerasimova, Bork, Kondrashov, Sunyaev (bib1) 2010; 7
McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky, Garimella, Altshuler, Gabriel, Daly (bib42) 2010; 20
Zhang, Chen, Li, Meng, Singh, Jiang, Deng, He, Lemaux (bib73) 2005; 139
Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib11) 2013; 29
Xu, Chu, Chen, Li, Wu, Jin, Wang, Huang (bib68) 2018; 14
Zhang, Chen, Xing, Kudrna, Yao, Copetti, Mu, Li, Song, Xie (bib72) 2016; 113
Wang, Xie, Chen, Tang, Yang, Ye, Liu, Lin, Xu, Xiao (bib59) 2010; 61
Fu, Xu, Zhou, Chen, Shen, Li, Zhu, Wang, Hu, Zhu (bib18) 2019; 20
Chen, Gao, Xie, Gong, Lu, Wang, Li, Liu, Zhang, Dong (bib7) 2014; 46
Huang, Wei, Sang, Zhao, Feng, Zhao, Li, Zhu, Lu, Zhang (bib24) 2010; 42
Luo, Hao, Jin, Gao, Lin (bib39) 2008; 1
Wang, Mauleon, Hu, Chebotarov, Tai, Wu, Li, Zheng, Fuentes, Zhang (bib62) 2018; 557
Shen, Yue, McCleary, Ye, Edsall, Kuan, Wagner, Dixon, Lee, Lobanenkov (bib50) 2012; 488
Tang, Zhao, Lu, Yu, Zhang, Zhang, Yang, Zhou, Wang, Ma (bib54) 2021; 14
Washburn, Mejia-Guerra, Ramstein, Kremling, Valluru, Buckler, Wang (bib63) 2019; 116
Zhao, Yao, Ouyang, Yang, Wang, Lian, Xing, Chen, Xie (bib75) 2015; 43
Vergara, Frech, Chen (bib56) 2012; 5
Li, Durbin (bib37) 2009; 25
Fornes, Castro-Mondragon, Khan, van der Lee, Zhang, Richmond, Modi, Correard, Gheorghe, Baranašić (bib17) 2020; 48
Iyer, McCouch (bib26) 2004; 17
Eilbeck, Quinlan, Yandell (bib14) 2017; 18
Wang, Yu, Weng, Xie, Xu, Li, Xiao, Zhang (bib58) 2014; 65
Patro, Duggal, Love, Irizarry, Kingsford (bib45) 2017; 14
Zhao, Sun, Xiao, Cheng, Xu, Tang, Chen, Xu, Xu (bib76) 2016; 66
Andolfatto (bib3) 2005; 437
Huang, Kurata, Wei, Wang, Wang, Zhao, Zhao, Liu, Lu, Li (bib22) 2012; 490
Zeng, Gifford (bib70) 2017; 45
Wang, Tai, Weinan, Wei (bib61) 2018; 46
Vaser, Adusumalli, Leng, Sikic, Ng (bib55) 2016; 11
Sundaram, Gao, Padigepati, McRae, Li, Kosmicki, Fritzilas, Hakenberg, Dutta, Shon (bib52) 2018; 50
Zhou, Troyanskaya (bib77) 2015; 12
Grant, Bailey, Noble (bib20) 2011; 27
Edgar (bib13) 2004; 32
Kelley, Snoek, Rinn (bib32) 2016; 26
Kelley, Reshef, Bileschi, Belanger, McLean, Snoek (bib31) 2018; 28
Mansueto, Fuentes, Borja, Detras, Abriol-Santos, Chebotarov, Sanciangco, Palis, Copetti, Poliakov (bib40) 2017; 45
Kawahara, de la Bastide, Hamilton, Kanamori, McCombie, Ouyang, Schwartz, Tanaka, Wu, Zhou (bib30) 2013; 6
Jain, Nijhawan, Tyagi, Khurana (bib27) 2006; 345
Wang, Li, Liu, Wu, Zhang, Wang, Wang, Chen, Zhang, Gao (bib60) 2015; 47
Wei, Qiu, Yong, Fan, Zhang, Hua, Liu, Wang, Olsen, Han (bib64) 2021; 53
Huang, Qian, Liu, Sun, He, Luo, Xia, Chu, Li, Fu (bib23) 2009; 41
Chen, Xie, He, Yu, Chen, Li, Yu, Yao, Zhang, He (bib6) 2014; 7
Quinlan, Hall (bib46) 2010; 26
Montgomery, Dermitzakis (bib43) 2011; 12
Barshai, Tripto, Orenstein (bib4) 2020; 3
Weng, Gu, Wan, Gao, Guo, Su, Lei, Zhang, Cheng, Guo (bib65) 2008; 18
Wang, Xu, Luo, Li (bib57) 2016; 56
Dale, Pedersen, Quinlan (bib9) 2011; 27
Danecek, Bonfield, Liddle, Marshall, Ohan, Pollard, Whitwham, Keane, McCarthy, Davies (bib10) 2021; 10
Joly-Lopez, Platts, Gulko, Choi, Groen, Zhong, Siepel, Purugganan (bib29) 2020; 6
Duan, Wang, Li, Lin, Zhang, Wang, Zhou, Zhang, Jiang, Wang (bib12) 2019; 31
Wu, Wang, Mi, Shan, Li, Xu, Lin (bib66) 2016; 12
Xie, Wang, Yuan, Yao, Lyu, Zhao, Yang, Li, Zhang, Yuan (bib67) 2015; 112
Klemm, Shipony, Greenleaf (bib33) 2019; 20
Soneson, Love, Robinson (bib51) 2015; 4
Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nusbaum, Myers, Brown, Li (bib74) 2008; 9
Schaid, Chen, Larson (bib49) 2018; 19
Alexandrov, Tai, Wang, Mansueto, Palis, Fuentes, Ulat, Chebotarov, Zhang, Li (bib2) 2015; 43
Mather, Caicedo, Polato, Olsen, McCouch, Purugganan (bib41) 2007; 177
Ng, Henikoff (bib44) 2003; 31
Gao, Innan (bib19) 2008; 179
Jiang, Chu, Piao, Chin, Jin, Lee, Qiao, Han, Piao, Koh (bib28) 2008; 116
Zhu, Liao, Zhou, Xia, Xie (bib78) 2020; 3
Kawahara (10.1016/j.molp.2021.06.025_bib30) 2013; 6
Vaser (10.1016/j.molp.2021.06.025_bib55) 2016; 11
Chen (10.1016/j.molp.2021.06.025_bib6) 2014; 7
Fu (10.1016/j.molp.2021.06.025_bib18) 2019; 20
Mather (10.1016/j.molp.2021.06.025_bib41) 2007; 177
Li (10.1016/j.molp.2021.06.025_bib37) 2009; 25
Eraslan (10.1016/j.molp.2021.06.025_bib15) 2019; 20
Zhang (10.1016/j.molp.2021.06.025_bib72) 2016; 113
Mansueto (10.1016/j.molp.2021.06.025_bib40) 2017; 45
McKenna (10.1016/j.molp.2021.06.025_bib42) 2010; 20
Zhang (10.1016/j.molp.2021.06.025_bib74) 2008; 9
Ishii (10.1016/j.molp.2021.06.025_bib25) 2013; 45
Danecek (10.1016/j.molp.2021.06.025_bib10) 2021; 10
Huang (10.1016/j.molp.2021.06.025_bib22) 2012; 490
Barshai (10.1016/j.molp.2021.06.025_bib4) 2020; 3
Lee (10.1016/j.molp.2021.06.025_bib36) 2015; 47
Wang (10.1016/j.molp.2021.06.025_bib57) 2016; 56
Wu (10.1016/j.molp.2021.06.025_bib66) 2016; 12
Huang (10.1016/j.molp.2021.06.025_bib24) 2010; 42
Lu (10.1016/j.molp.2021.06.025_bib38) 2017; 8
Klemm (10.1016/j.molp.2021.06.025_bib33) 2019; 20
Buenrostro (10.1016/j.molp.2021.06.025_bib5) 2013; 10
Joly-Lopez (10.1016/j.molp.2021.06.025_bib29) 2020; 6
Grant (10.1016/j.molp.2021.06.025_bib20) 2011; 27
Dale (10.1016/j.molp.2021.06.025_bib9) 2011; 27
Wang (10.1016/j.molp.2021.06.025_bib61) 2018; 46
Xie (10.1016/j.molp.2021.06.025_bib67) 2015; 112
Xu (10.1016/j.molp.2021.06.025_bib68) 2018; 14
Wang (10.1016/j.molp.2021.06.025_bib58) 2014; 65
Hansen (10.1016/j.molp.2021.06.025_bib21) 2012; 13
Luo (10.1016/j.molp.2021.06.025_bib39) 2008; 1
Shen (10.1016/j.molp.2021.06.025_bib50) 2012; 488
Iyer (10.1016/j.molp.2021.06.025_bib26) 2004; 17
Zhao (10.1016/j.molp.2021.06.025_bib75) 2015; 43
Wei (10.1016/j.molp.2021.06.025_bib64) 2021; 53
Zhao (10.1016/j.molp.2021.06.025_bib76) 2016; 66
Edgar (10.1016/j.molp.2021.06.025_bib13) 2004; 32
Fan (10.1016/j.molp.2021.06.025_bib16) 2006; 112
Tang (10.1016/j.molp.2021.06.025_bib54) 2021; 14
Zhou (10.1016/j.molp.2021.06.025_bib77) 2015; 12
Wang (10.1016/j.molp.2021.06.025_bib62) 2018; 557
Schaid (10.1016/j.molp.2021.06.025_bib49) 2018; 19
Ramírez (10.1016/j.molp.2021.06.025_bib47) 2016; 44
Zhang (10.1016/j.molp.2021.06.025_bib73) 2005; 139
Wang (10.1016/j.molp.2021.06.025_bib59) 2010; 61
Adzhubei (10.1016/j.molp.2021.06.025_bib1) 2010; 7
Andolfatto (10.1016/j.molp.2021.06.025_bib3) 2005; 437
Jiang (10.1016/j.molp.2021.06.025_bib28) 2008; 116
Vergara (10.1016/j.molp.2021.06.025_bib56) 2012; 5
Chen (10.1016/j.molp.2021.06.025_bib7) 2014; 46
Sundaram (10.1016/j.molp.2021.06.025_bib52) 2018; 50
Montgomery (10.1016/j.molp.2021.06.025_bib43) 2011; 12
Duan (10.1016/j.molp.2021.06.025_bib12) 2019; 31
Kelley (10.1016/j.molp.2021.06.025_bib32) 2016; 26
Yang (10.1016/j.molp.2021.06.025_bib69) 2018; 30
Zhang (10.1016/j.molp.2021.06.025_bib71) 2021; 14
Zhu (10.1016/j.molp.2021.06.025_bib78) 2020; 3
Quinlan (10.1016/j.molp.2021.06.025_bib46) 2010; 26
Dobin (10.1016/j.molp.2021.06.025_bib11) 2013; 29
Fornes (10.1016/j.molp.2021.06.025_bib17) 2020; 48
Weng (10.1016/j.molp.2021.06.025_bib65) 2008; 18
Kelley (10.1016/j.molp.2021.06.025_bib31) 2018; 28
Ng (10.1016/j.molp.2021.06.025_bib44) 2003; 31
Cingolani (10.1016/j.molp.2021.06.025_bib8) 2012; 6
Huang (10.1016/j.molp.2021.06.025_bib23) 2009; 41
Gao (10.1016/j.molp.2021.06.025_bib19) 2008; 179
Patro (10.1016/j.molp.2021.06.025_bib45) 2017; 14
Robinson (10.1016/j.molp.2021.06.025_bib48) 2011; 29
Suzek (10.1016/j.molp.2021.06.025_bib53) 2015; 31
Kosugi (10.1016/j.molp.2021.06.025_bib35) 2002; 30
Zeng (10.1016/j.molp.2021.06.025_bib70) 2017; 45
Eilbeck (10.1016/j.molp.2021.06.025_bib14) 2017; 18
Wang (10.1016/j.molp.2021.06.025_bib60) 2015; 47
Washburn (10.1016/j.molp.2021.06.025_bib63) 2019; 116
Alexandrov (10.1016/j.molp.2021.06.025_bib2) 2015; 43
Jain (10.1016/j.molp.2021.06.025_bib27) 2006; 345
Soneson (10.1016/j.molp.2021.06.025_bib51) 2015; 4
Konishi (10.1016/j.molp.2021.06.025_bib34) 2006; 312
References_xml – volume: 14
  start-page: 470
  year: 2021
  end-page: 487
  ident: bib54
  article-title: Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in
  publication-title: Mol. Plant
– volume: 14
  start-page: 787
  year: 2021
  end-page: 804
  ident: bib71
  article-title: The landscape of gene–CDS–haplotype diversity in rice: properties, population organization, footprints of domestication and breeding, and implications for genetic improvement
  publication-title: Mol. Plant
– volume: 11
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib55
  article-title: SIFT missense predictions for genomes
  publication-title: Nat. Protoc.
– volume: 27
  start-page: 3423
  year: 2011
  end-page: 3424
  ident: bib9
  article-title: Pybedtools: a flexible Python library for manipulating genomic datasets and annotations
  publication-title: Bioinformatics
– volume: 10
  start-page: giab008
  year: 2021
  ident: bib10
  article-title: Twelve years of SAMtools and BCFtools
  publication-title: Gigascience
– volume: 18
  start-page: 599
  year: 2017
  end-page: 612
  ident: bib14
  article-title: Settling the score: variant prioritization and Mendelian disease
  publication-title: Nat. Rev. Genet.
– volume: 29
  start-page: 24
  year: 2011
  end-page: 26
  ident: bib48
  article-title: Integrative genomics viewer
  publication-title: Nat. Biotechnol.
– volume: 46
  start-page: e69
  year: 2018
  ident: bib61
  article-title: DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 248
  year: 2010
  end-page: 249
  ident: bib1
  article-title: A method and server for predicting damaging missense mutations
  publication-title: Nat. Methods
– volume: 31
  start-page: 1026
  year: 2019
  end-page: 1042
  ident: bib12
  article-title: regulates plant architecture through modulating the transcriptional activity of
  publication-title: Plant Cell
– volume: 50
  start-page: 1161
  year: 2018
  end-page: 1170
  ident: bib52
  article-title: Predicting the clinical impact of human mutation with deep neural networks
  publication-title: Nat. Genet.
– volume: 42
  start-page: 961
  year: 2010
  end-page: 967
  ident: bib24
  article-title: Genome-wide association studies of 14 agronomic traits in rice landraces
  publication-title: Nat. Genet.
– volume: 12
  start-page: 277
  year: 2011
  end-page: 282
  ident: bib43
  article-title: From expression QTLs to personalized transcriptomics
  publication-title: Nat. Rev. Genet.
– volume: 43
  start-page: D1018
  year: 2015
  end-page: D1022
  ident: bib75
  article-title: RiceVarMap: a comprehensive database of rice genomic variations
  publication-title: Nucleic Acids Res.
– volume: 437
  start-page: 1149
  year: 2005
  end-page: 1152
  ident: bib3
  article-title: Adaptive evolution of non-coding DNA in
  publication-title: Nature
– volume: 10
  start-page: 1213
  year: 2013
  end-page: 1218
  ident: bib5
  article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
  publication-title: Nat. Methods
– volume: 179
  start-page: 965
  year: 2008
  end-page: 976
  ident: bib19
  article-title: Nonindependent domestication of the two rice subspecies,
  publication-title: Genetics
– volume: 32
  start-page: 1792
  year: 2004
  end-page: 1797
  ident: bib13
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res.
– volume: 48
  start-page: D87
  year: 2020
  end-page: D92
  ident: bib17
  article-title: Jaspar 2020: update of the open-access database of transcription factor binding profiles
  publication-title: Nucleic Acids Res.
– volume: 139
  start-page: 1107
  year: 2005
  end-page: 1124
  ident: bib73
  article-title: Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family
  publication-title: Plant Physiol.
– volume: 4
  start-page: 1521
  year: 2015
  ident: bib51
  article-title: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
  publication-title: F1000Res
– volume: 31
  start-page: 926
  year: 2015
  end-page: 932
  ident: bib53
  article-title: UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches
  publication-title: Bioinformatics
– volume: 14
  start-page: e1007662
  year: 2018
  ident: bib68
  article-title: Rice transcription factor
  publication-title: PLoS Genet.
– volume: 113
  start-page: E5163
  year: 2016
  end-page: E5171
  ident: bib72
  article-title: Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 14
  start-page: 417
  year: 2017
  end-page: 419
  ident: bib45
  article-title: Salmon provides fast and bias-aware quantification of transcript expression
  publication-title: Nat. Methods
– volume: 65
  start-page: 1069
  year: 2014
  end-page: 1079
  ident: bib58
  article-title: An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population
  publication-title: J. Exp. Bot.
– volume: 8
  start-page: 1538
  year: 2017
  ident: bib38
  article-title: shapes panicle architecture through regulating pedicel length
  publication-title: Front. Plant Sci.
– volume: 7
  start-page: 541
  year: 2014
  end-page: 553
  ident: bib6
  article-title: A high-density SNP genotyping array for rice biology and molecular breeding
  publication-title: Mol. Plant
– volume: 112
  start-page: 1164
  year: 2006
  end-page: 1171
  ident: bib16
  article-title: GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein
  publication-title: Theor. Appl. Genet.
– volume: 13
  start-page: 204
  year: 2012
  end-page: 216
  ident: bib21
  article-title: Removing technical variability in RNA-seq data using conditional quantile normalization
  publication-title: Biostatistics
– volume: 12
  start-page: e1006386
  year: 2016
  ident: bib66
  article-title: The QTL
  publication-title: PLoS Genet.
– volume: 6
  start-page: 119
  year: 2020
  end-page: 130
  ident: bib29
  article-title: An inferred fitness consequence map of the rice genome
  publication-title: Nat. Plants
– volume: 345
  start-page: 646
  year: 2006
  end-page: 651
  ident: bib27
  article-title: Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 116
  start-page: 1117
  year: 2008
  end-page: 1127
  ident: bib28
  article-title: Fine mapping and candidate gene analysis of
  publication-title: Theor. Appl. Genet.
– volume: 557
  start-page: 43
  year: 2018
  end-page: 49
  ident: bib62
  article-title: Genomic variation in 3,010 diverse accessions of Asian cultivated rice
  publication-title: Nature
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib11
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 47
  start-page: 955
  year: 2015
  end-page: 961
  ident: bib36
  article-title: A method to predict the impact of regulatory variants from DNA sequence
  publication-title: Nat. Genet.
– volume: 12
  start-page: 931
  year: 2015
  end-page: 934
  ident: bib77
  article-title: Predicting effects of noncoding variants with deep learning-based sequence model
  publication-title: Nat. Methods
– volume: 46
  start-page: 714
  year: 2014
  end-page: 721
  ident: bib7
  article-title: Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism
  publication-title: Nat. Genet.
– volume: 9
  start-page: R137
  year: 2008
  ident: bib74
  article-title: Model-based analysis of ChIP-seq (MACS)
  publication-title: Genome Biol.
– volume: 17
  start-page: 1348
  year: 2004
  end-page: 1354
  ident: bib26
  article-title: The rice bacterial blight resistance gene
  publication-title: Mol. Plant Microbe Interact.
– volume: 1
  start-page: 830
  year: 2008
  end-page: 838
  ident: bib39
  article-title: Fine mapping of
  publication-title: Mol. Plant
– volume: 6
  start-page: 4
  year: 2013
  ident: bib30
  article-title: Improvement of the
  publication-title: Rice
– volume: 26
  start-page: 841
  year: 2010
  end-page: 842
  ident: bib46
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
– volume: 41
  start-page: 494
  year: 2009
  end-page: 497
  ident: bib23
  article-title: Natural variation at the
  publication-title: Nat. Genet.
– volume: 56
  start-page: 1157
  year: 2016
  end-page: 1162
  ident: bib57
  article-title: Mutation in the non-coding sequence of
  publication-title: Crop Sci.
– volume: 490
  start-page: 497
  year: 2012
  end-page: 501
  ident: bib22
  article-title: A map of rice genome variation reveals the origin of cultivated rice
  publication-title: Nature
– volume: 20
  start-page: 207
  year: 2019
  end-page: 220
  ident: bib33
  article-title: Chromatin accessibility and the regulatory epigenome
  publication-title: Nat. Rev. Genet.
– volume: 112
  start-page: E5411
  year: 2015
  end-page: E5419
  ident: bib67
  article-title: Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 44
  start-page: W160
  year: 2016
  end-page: W165
  ident: bib47
  article-title: deepTools2: a next generation web server for deep-sequencing data analysis
  publication-title: Nucleic Acids Res.
– volume: 18
  start-page: 1199
  year: 2008
  end-page: 1209
  ident: bib65
  article-title: Isolation and initial characterization of
  publication-title: Cell Res.
– volume: 30
  start-page: 337
  year: 2002
  end-page: 348
  ident: bib35
  article-title: DNA binding and dimerization specificity and potential targets for the TCP protein family
  publication-title: Plant J.
– volume: 20
  start-page: 389
  year: 2019
  end-page: 403
  ident: bib15
  article-title: Deep learning: new computational modelling techniques for genomics
  publication-title: Nat. Rev. Genet.
– volume: 31
  start-page: 3812
  year: 2003
  end-page: 3814
  ident: bib44
  article-title: SIFT: predicting amino acid changes that affect protein function
  publication-title: Nucleic Acids Res.
– volume: 312
  start-page: 1392
  year: 2006
  end-page: 1396
  ident: bib34
  article-title: An SNP caused loss of seed shattering during rice domestication
  publication-title: Science
– volume: 45
  start-page: e99
  year: 2017
  ident: bib70
  article-title: Predicting the impact of non-coding variants on DNA methylation
  publication-title: Nucleic Acids Res.
– volume: 47
  start-page: 949
  year: 2015
  end-page: 954
  ident: bib60
  article-title: The
  publication-title: Nat. Genet.
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: bib37
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
– volume: 45
  start-page: 462
  year: 2013
  end-page: 465
  ident: bib25
  article-title: regulates a closed panicle trait in domesticated rice
  publication-title: Nat. Genet.
– volume: 28
  start-page: 739
  year: 2018
  end-page: 750
  ident: bib31
  article-title: Sequential regulatory activity prediction across chromosomes with convolutional neural networks
  publication-title: Genome Res.
– volume: 53
  start-page: 243
  year: 2021
  end-page: 253
  ident: bib64
  article-title: A quantitative genomics map of rice provides genetic insights and guides breeding
  publication-title: Nat. Genet.
– volume: 61
  start-page: 752
  year: 2010
  end-page: 766
  ident: bib59
  article-title: A dynamic gene expression atlas covering the entire life cycle of rice
  publication-title: Plant J.
– volume: 3
  start-page: 315
  year: 2020
  end-page: 338
  ident: bib4
  article-title: Identifying regulatory elements via deep learning
  publication-title: Annu. Rev. Biomed. Data Sci.
– volume: 116
  start-page: 5542
  year: 2019
  end-page: 5549
  ident: bib63
  article-title: Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 6
  start-page: 80
  year: 2012
  end-page: 92
  ident: bib8
  article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of
  publication-title: Fly (Austin)
– volume: 5
  start-page: 615
  year: 2012
  ident: bib56
  article-title: CooVar: co-occurring variant analyzer
  publication-title: BMC Res. Notes
– volume: 45
  start-page: D1075
  year: 2017
  end-page: D1081
  ident: bib40
  article-title: Rice SNP-seek database update: new SNPs, indels, and queries
  publication-title: Nucleic Acids Res.
– volume: 30
  start-page: 2720
  year: 2018
  end-page: 2740
  ident: bib69
  article-title: Genome-wide association studies reveal the genetic basis of ionomic variation in rice
  publication-title: Plant Cell
– volume: 177
  start-page: 2223
  year: 2007
  end-page: 2232
  ident: bib41
  article-title: The extent of linkage disequilibrium in rice (
  publication-title: Genetics
– volume: 19
  start-page: 491
  year: 2018
  end-page: 504
  ident: bib49
  article-title: From genome-wide associations to candidate causal variants by statistical fine-mapping
  publication-title: Nat. Rev. Genet.
– volume: 20
  start-page: 1297
  year: 2010
  end-page: 1303
  ident: bib42
  article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res.
– volume: 3
  start-page: 675
  year: 2020
  ident: bib78
  article-title: ATAC-seq with unique molecular identifiers improves quantification and footprinting
  publication-title: Commun. Biol.
– volume: 488
  start-page: 116
  year: 2012
  end-page: 120
  ident: bib50
  article-title: A map of the
  publication-title: Nature
– volume: 66
  start-page: 599
  year: 2016
  end-page: 605
  ident: bib76
  article-title: Variations in
  publication-title: Breed Sci.
– volume: 43
  start-page: D1023
  year: 2015
  end-page: D1027
  ident: bib2
  article-title: SNP-Seek database of SNPs derived from 3000 rice genomes
  publication-title: Nucleic Acids Res.
– volume: 20
  start-page: 866
  year: 2019
  ident: bib18
  article-title: Enhanced expression of QTL
  publication-title: Int. J. Mol. Sci.
– volume: 27
  start-page: 1017
  year: 2011
  end-page: 1018
  ident: bib20
  article-title: FIMO: scanning for occurrences of a given motif
  publication-title: Bioinformatics
– volume: 26
  start-page: 990
  year: 2016
  end-page: 999
  ident: bib32
  article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
  publication-title: Genome Res.
– volume: 345
  start-page: 646
  year: 2006
  ident: 10.1016/j.molp.2021.06.025_bib27
  article-title: Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.04.140
– volume: 45
  start-page: 462
  year: 2013
  ident: 10.1016/j.molp.2021.06.025_bib25
  article-title: OsLG1 regulates a closed panicle trait in domesticated rice
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2567
– volume: 1
  start-page: 830
  year: 2008
  ident: 10.1016/j.molp.2021.06.025_bib39
  article-title: Fine mapping of Spr3, a locus for spreading panicle from African cultivated rice (Oryza glaberrima Steud
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssn045
– volume: 10
  start-page: giab008
  year: 2021
  ident: 10.1016/j.molp.2021.06.025_bib10
  article-title: Twelve years of SAMtools and BCFtools
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab008
– volume: 3
  start-page: 675
  year: 2020
  ident: 10.1016/j.molp.2021.06.025_bib78
  article-title: ATAC-seq with unique molecular identifiers improves quantification and footprinting
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01403-4
– volume: 65
  start-page: 1069
  year: 2014
  ident: 10.1016/j.molp.2021.06.025_bib58
  article-title: An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert464
– volume: 6
  start-page: 80
  year: 2012
  ident: 10.1016/j.molp.2021.06.025_bib8
  article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3
  publication-title: Fly (Austin)
  doi: 10.4161/fly.19695
– volume: 13
  start-page: 204
  year: 2012
  ident: 10.1016/j.molp.2021.06.025_bib21
  article-title: Removing technical variability in RNA-seq data using conditional quantile normalization
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxr054
– volume: 20
  start-page: 1297
  year: 2010
  ident: 10.1016/j.molp.2021.06.025_bib42
  article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res.
  doi: 10.1101/gr.107524.110
– volume: 46
  start-page: 714
  year: 2014
  ident: 10.1016/j.molp.2021.06.025_bib7
  article-title: Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3007
– volume: 7
  start-page: 541
  year: 2014
  ident: 10.1016/j.molp.2021.06.025_bib6
  article-title: A high-density SNP genotyping array for rice biology and molecular breeding
  publication-title: Mol. Plant
  doi: 10.1093/mp/sst135
– volume: 61
  start-page: 752
  year: 2010
  ident: 10.1016/j.molp.2021.06.025_bib59
  article-title: A dynamic gene expression atlas covering the entire life cycle of rice
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.04100.x
– volume: 312
  start-page: 1392
  year: 2006
  ident: 10.1016/j.molp.2021.06.025_bib34
  article-title: An SNP caused loss of seed shattering during rice domestication
  publication-title: Science
  doi: 10.1126/science.1126410
– volume: 139
  start-page: 1107
  year: 2005
  ident: 10.1016/j.molp.2021.06.025_bib73
  article-title: Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.069005
– volume: 31
  start-page: 926
  year: 2015
  ident: 10.1016/j.molp.2021.06.025_bib53
  article-title: UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu739
– volume: 29
  start-page: 15
  year: 2013
  ident: 10.1016/j.molp.2021.06.025_bib11
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 6
  start-page: 119
  year: 2020
  ident: 10.1016/j.molp.2021.06.025_bib29
  article-title: An inferred fitness consequence map of the rice genome
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0589-3
– volume: 44
  start-page: W160
  year: 2016
  ident: 10.1016/j.molp.2021.06.025_bib47
  article-title: deepTools2: a next generation web server for deep-sequencing data analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw257
– volume: 14
  start-page: 787
  year: 2021
  ident: 10.1016/j.molp.2021.06.025_bib71
  article-title: The landscape of gene–CDS–haplotype diversity in rice: properties, population organization, footprints of domestication and breeding, and implications for genetic improvement
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2021.02.003
– volume: 27
  start-page: 3423
  year: 2011
  ident: 10.1016/j.molp.2021.06.025_bib9
  article-title: Pybedtools: a flexible Python library for manipulating genomic datasets and annotations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr539
– volume: 7
  start-page: 248
  year: 2010
  ident: 10.1016/j.molp.2021.06.025_bib1
  article-title: A method and server for predicting damaging missense mutations
  publication-title: Nat. Methods
  doi: 10.1038/nmeth0410-248
– volume: 48
  start-page: D87
  year: 2020
  ident: 10.1016/j.molp.2021.06.025_bib17
  article-title: Jaspar 2020: update of the open-access database of transcription factor binding profiles
  publication-title: Nucleic Acids Res.
– volume: 113
  start-page: E5163
  year: 2016
  ident: 10.1016/j.molp.2021.06.025_bib72
  article-title: Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 30
  start-page: 2720
  year: 2018
  ident: 10.1016/j.molp.2021.06.025_bib69
  article-title: Genome-wide association studies reveal the genetic basis of ionomic variation in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00375
– volume: 177
  start-page: 2223
  year: 2007
  ident: 10.1016/j.molp.2021.06.025_bib41
  article-title: The extent of linkage disequilibrium in rice (Oryza sativa L.)
  publication-title: Genetics
  doi: 10.1534/genetics.107.079616
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.molp.2021.06.025_bib55
  article-title: SIFT missense predictions for genomes
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.123
– volume: 5
  start-page: 615
  year: 2012
  ident: 10.1016/j.molp.2021.06.025_bib56
  article-title: CooVar: co-occurring variant analyzer
  publication-title: BMC Res. Notes
  doi: 10.1186/1756-0500-5-615
– volume: 557
  start-page: 43
  year: 2018
  ident: 10.1016/j.molp.2021.06.025_bib62
  article-title: Genomic variation in 3,010 diverse accessions of Asian cultivated rice
  publication-title: Nature
  doi: 10.1038/s41586-018-0063-9
– volume: 20
  start-page: 389
  year: 2019
  ident: 10.1016/j.molp.2021.06.025_bib15
  article-title: Deep learning: new computational modelling techniques for genomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0122-6
– volume: 50
  start-page: 1161
  year: 2018
  ident: 10.1016/j.molp.2021.06.025_bib52
  article-title: Predicting the clinical impact of human mutation with deep neural networks
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0167-z
– volume: 47
  start-page: 949
  year: 2015
  ident: 10.1016/j.molp.2021.06.025_bib60
  article-title: The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3352
– volume: 43
  start-page: D1018
  year: 2015
  ident: 10.1016/j.molp.2021.06.025_bib75
  article-title: RiceVarMap: a comprehensive database of rice genomic variations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku894
– volume: 20
  start-page: 207
  year: 2019
  ident: 10.1016/j.molp.2021.06.025_bib33
  article-title: Chromatin accessibility and the regulatory epigenome
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0089-8
– volume: 27
  start-page: 1017
  year: 2011
  ident: 10.1016/j.molp.2021.06.025_bib20
  article-title: FIMO: scanning for occurrences of a given motif
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr064
– volume: 66
  start-page: 599
  year: 2016
  ident: 10.1016/j.molp.2021.06.025_bib76
  article-title: Variations in DENSE AND ERECT PANICLE 1 (DEP1) contribute to the diversity of the panicle trait in high-yielding japonica rice varieties in northern China
  publication-title: Breed Sci.
  doi: 10.1270/jsbbs.16058
– volume: 18
  start-page: 1199
  year: 2008
  ident: 10.1016/j.molp.2021.06.025_bib65
  article-title: Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight
  publication-title: Cell Res.
  doi: 10.1038/cr.2008.307
– volume: 6
  start-page: 4
  year: 2013
  ident: 10.1016/j.molp.2021.06.025_bib30
  article-title: Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data
  publication-title: Rice
  doi: 10.1186/1939-8433-6-4
– volume: 18
  start-page: 599
  year: 2017
  ident: 10.1016/j.molp.2021.06.025_bib14
  article-title: Settling the score: variant prioritization and Mendelian disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2017.52
– volume: 45
  start-page: D1075
  year: 2017
  ident: 10.1016/j.molp.2021.06.025_bib40
  article-title: Rice SNP-seek database update: new SNPs, indels, and queries
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1135
– volume: 20
  start-page: 866
  year: 2019
  ident: 10.1016/j.molp.2021.06.025_bib18
  article-title: Enhanced expression of QTL qLL9/DEP1 facilitates the improvement of leaf morphology and grain yield in rice
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20040866
– volume: 41
  start-page: 494
  year: 2009
  ident: 10.1016/j.molp.2021.06.025_bib23
  article-title: Natural variation at the DEP1 locus enhances grain yield in rice
  publication-title: Nat. Genet.
  doi: 10.1038/ng.352
– volume: 28
  start-page: 739
  year: 2018
  ident: 10.1016/j.molp.2021.06.025_bib31
  article-title: Sequential regulatory activity prediction across chromosomes with convolutional neural networks
  publication-title: Genome Res.
  doi: 10.1101/gr.227819.117
– volume: 46
  start-page: e69
  year: 2018
  ident: 10.1016/j.molp.2021.06.025_bib61
  article-title: DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky215
– volume: 12
  start-page: 277
  year: 2011
  ident: 10.1016/j.molp.2021.06.025_bib43
  article-title: From expression QTLs to personalized transcriptomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2969
– volume: 42
  start-page: 961
  year: 2010
  ident: 10.1016/j.molp.2021.06.025_bib24
  article-title: Genome-wide association studies of 14 agronomic traits in rice landraces
  publication-title: Nat. Genet.
  doi: 10.1038/ng.695
– volume: 437
  start-page: 1149
  year: 2005
  ident: 10.1016/j.molp.2021.06.025_bib3
  article-title: Adaptive evolution of non-coding DNA in Drosophila
  publication-title: Nature
  doi: 10.1038/nature04107
– volume: 43
  start-page: D1023
  year: 2015
  ident: 10.1016/j.molp.2021.06.025_bib2
  article-title: SNP-Seek database of SNPs derived from 3000 rice genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1039
– volume: 30
  start-page: 337
  year: 2002
  ident: 10.1016/j.molp.2021.06.025_bib35
  article-title: DNA binding and dimerization specificity and potential targets for the TCP protein family
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2002.01294.x
– volume: 116
  start-page: 1117
  year: 2008
  ident: 10.1016/j.molp.2021.06.025_bib28
  article-title: Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-008-0740-4
– volume: 179
  start-page: 965
  year: 2008
  ident: 10.1016/j.molp.2021.06.025_bib19
  article-title: Nonindependent domestication of the two rice subspecies, Oryza sativa ssp. indica and ssp. japonica, demonstrated by multilocus microsatellites
  publication-title: Genetics
  doi: 10.1534/genetics.106.068072
– volume: 17
  start-page: 1348
  year: 2004
  ident: 10.1016/j.molp.2021.06.025_bib26
  article-title: The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI.2004.17.12.1348
– volume: 14
  start-page: 417
  year: 2017
  ident: 10.1016/j.molp.2021.06.025_bib45
  article-title: Salmon provides fast and bias-aware quantification of transcript expression
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4197
– volume: 29
  start-page: 24
  year: 2011
  ident: 10.1016/j.molp.2021.06.025_bib48
  article-title: Integrative genomics viewer
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1754
– volume: 26
  start-page: 990
  year: 2016
  ident: 10.1016/j.molp.2021.06.025_bib32
  article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
  publication-title: Genome Res.
  doi: 10.1101/gr.200535.115
– volume: 116
  start-page: 5542
  year: 2019
  ident: 10.1016/j.molp.2021.06.025_bib63
  article-title: Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1814551116
– volume: 32
  start-page: 1792
  year: 2004
  ident: 10.1016/j.molp.2021.06.025_bib13
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh340
– volume: 47
  start-page: 955
  year: 2015
  ident: 10.1016/j.molp.2021.06.025_bib36
  article-title: A method to predict the impact of regulatory variants from DNA sequence
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3331
– volume: 12
  start-page: 931
  year: 2015
  ident: 10.1016/j.molp.2021.06.025_bib77
  article-title: Predicting effects of noncoding variants with deep learning-based sequence model
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3547
– volume: 19
  start-page: 491
  year: 2018
  ident: 10.1016/j.molp.2021.06.025_bib49
  article-title: From genome-wide associations to candidate causal variants by statistical fine-mapping
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0016-z
– volume: 10
  start-page: 1213
  year: 2013
  ident: 10.1016/j.molp.2021.06.025_bib5
  article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2688
– volume: 53
  start-page: 243
  year: 2021
  ident: 10.1016/j.molp.2021.06.025_bib64
  article-title: A quantitative genomics map of rice provides genetic insights and guides breeding
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-00769-9
– volume: 12
  start-page: e1006386
  year: 2016
  ident: 10.1016/j.molp.2021.06.025_bib66
  article-title: The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006386
– volume: 112
  start-page: 1164
  year: 2006
  ident: 10.1016/j.molp.2021.06.025_bib16
  article-title: GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-006-0218-1
– volume: 26
  start-page: 841
  year: 2010
  ident: 10.1016/j.molp.2021.06.025_bib46
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 3
  start-page: 315
  year: 2020
  ident: 10.1016/j.molp.2021.06.025_bib4
  article-title: Identifying regulatory elements via deep learning
  publication-title: Annu. Rev. Biomed. Data Sci.
  doi: 10.1146/annurev-biodatasci-022020-021940
– volume: 488
  start-page: 116
  year: 2012
  ident: 10.1016/j.molp.2021.06.025_bib50
  article-title: A map of the cis-regulatory sequences in the mouse genome
  publication-title: Nature
  doi: 10.1038/nature11243
– volume: 112
  start-page: E5411
  year: 2015
  ident: 10.1016/j.molp.2021.06.025_bib67
  article-title: Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1515919112
– volume: 4
  start-page: 1521
  year: 2015
  ident: 10.1016/j.molp.2021.06.025_bib51
  article-title: Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
  publication-title: F1000Res
  doi: 10.12688/f1000research.7563.1
– volume: 25
  start-page: 1754
  year: 2009
  ident: 10.1016/j.molp.2021.06.025_bib37
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 56
  start-page: 1157
  year: 2016
  ident: 10.1016/j.molp.2021.06.025_bib57
  article-title: Mutation in the non-coding sequence of Badh2 gene reduces its transcription and translation in fragrant rice ‘Nankai 138’
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2014.03.0243
– volume: 31
  start-page: 3812
  year: 2003
  ident: 10.1016/j.molp.2021.06.025_bib44
  article-title: SIFT: predicting amino acid changes that affect protein function
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg509
– volume: 45
  start-page: e99
  year: 2017
  ident: 10.1016/j.molp.2021.06.025_bib70
  article-title: Predicting the impact of non-coding variants on DNA methylation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx177
– volume: 14
  start-page: e1007662
  year: 2018
  ident: 10.1016/j.molp.2021.06.025_bib68
  article-title: Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007662
– volume: 9
  start-page: R137
  year: 2008
  ident: 10.1016/j.molp.2021.06.025_bib74
  article-title: Model-based analysis of ChIP-seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 31
  start-page: 1026
  year: 2019
  ident: 10.1016/j.molp.2021.06.025_bib12
  article-title: OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00023
– volume: 8
  start-page: 1538
  year: 2017
  ident: 10.1016/j.molp.2021.06.025_bib38
  article-title: OsRAMOSA2 shapes panicle architecture through regulating pedicel length
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01538
– volume: 14
  start-page: 470
  year: 2021
  ident: 10.1016/j.molp.2021.06.025_bib54
  article-title: Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.12.003
– volume: 490
  start-page: 497
  year: 2012
  ident: 10.1016/j.molp.2021.06.025_bib22
  article-title: A map of rice genome variation reveals the origin of cultivated rice
  publication-title: Nature
  doi: 10.1038/nature11532
SSID ssj0060863
Score 2.5691667
Snippet Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1584
SubjectTerms amino acids
chromatin
chromatin accessibility
Databases, Nucleic Acid
deep learning
functional impact map
genetic variants
Genetic Variation
Genome, Plant
genomics
Genotype
Haplotypes
INDEL Mutation
neural networks
Oryza - genetics
Oryza sativa
Polymorphism, Single Nucleotide
rice
Title An inferred functional impact map of genetic variants in rice
URI https://dx.doi.org/10.1016/j.molp.2021.06.025
https://www.ncbi.nlm.nih.gov/pubmed/34214659
https://www.proquest.com/docview/2548399750
https://www.proquest.com/docview/2660998059
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSxxBEG1EPeQSjEazmkgLuYVhtz9n-qiSZZMQL0bYWzNd3QMrurOsq-C_t2o-FgSzB48zVEFT3VP9evrVK8a-KyuSAkPKxzJkuipl5mIQGTjjoixs1XJz_l7ZyY3-PTXTLXbZ18IQrbLL_W1Ob7J192bYRXO4mM2G18SflyPED6IRxiJNUKWLpohvetFnY4uQvSHZo3FG1l3hTMvxuq_vSLNSikbDk9plv705_Q98NpvQeI997NAjP28H-Iltpfk-272oEeE9HzA8y3MiVy2XKXLasNr_fLythOT35YLXFccVQ4WL_AlPyUSCQRdOykKf2c3457_LSda1R8hAG7PKRDBlkQeRBMTSxbzSCqIIyRAocAqhHV3xFQqkTbHKAQRYCM7moUyFdkIdsu15PU9fGI9VkFFKGEWIOoAoKpXA5RAhGJ2SGjDRx8VDpx1OLSzufE8Su_UUS0-x9MSUk2bAfqx9Fq1yxkZr04fbv5p_j6l9o99ZPzcePwy67SjnqX588HjyRfDnEBFtsLEWEXKBEHPAjtqJXY9Vaep5btzxO0d2wj7QU8NHs1_Z9mr5mL4hgFmFU7Zz_uvP5Oq0WakvsBnusA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7StNBeSvre9KVCb8Vs9LR1bELCpk1yaQJ7E9ZIhoRkvWw3hf77zPgRKLR76NUagRhJo0_WN98AfNZOZo2WlY9VLExTq8KnKAv01idVuabn5pyeudmF-Ta38y04GHNhmFY5xP4-pnfRevgyHbw5XV5eTn8wf17tEX6QnTCWeQAPCQ2UvDuP5_tjOHaE2TuWPVkXbD5kzvQkr5v2mkUrlexEPLle9t9Pp3-hz-4UOtqBpwN8FF_7ET6Drbx4Do_2W4J4v18AXeYFs6tWq5wEn1j9jz7Rp0KKm3op2kbQkuHMRfGLrsnMgqEugqWFXsLF0eH5wawY6iMUaKxdFzLauiqjzBJT7VPZGI1JxmwZFXhN2I7f-CqNyuXUlIgSHUbvyljnynipX8H2ol3kNyBSE1VSCvcSJhNRVo3O6EtMGK3JWU9Ajn4JOIiHcw2L6zCyxK4C-zKwLwNT5ZSdwJf7PsteOmOjtR3dHf5YAIFi-8Z-n8a5CbQz-LmjXuT29megqy-hP0-QaIONcwSRK8KYE3jdT-z9WLXhoufW7_7nyD7C49n56Uk4OT77_haecEtHTnPvYHu9us3vCc2s44dutd4BNNvwQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inferred+functional+impact+map+of+genetic+variants+in+rice&rft.jtitle=Molecular+plant&rft.au=Zhao%2C+Hu&rft.au=Li%2C+Jiacheng&rft.au=Yang%2C+Ling&rft.au=Qin%2C+Gang&rft.date=2021-09-06&rft.pub=Elsevier+Inc&rft.issn=1674-2052&rft.eissn=1752-9867&rft.volume=14&rft.issue=9&rft.spage=1584&rft.epage=1599&rft_id=info:doi/10.1016%2Fj.molp.2021.06.025&rft.externalDocID=S1674205221002604
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2052&client=summon