Testing species distribution models across space and time: high latitude butterflies and recent warming

Aim: To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional chan...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 22; no. 12; pp. 1293 - 1303
Main Authors Eskildsen, Anne, le Roux, Peter C., Heikkinen, Risto K., Høye, Toke T., Kissling, W. Daniel, Pöyry, Juha, Wisz, Mary S., Luoto, Miska
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.12.2013
John Wiley & Sons Ltd
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim: To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional changes at expanding range margins can be predicted accurately. Location: Finland Methods: Using 10-km resolution butterfly atlas data from two periods, 1992-99 (ii) and 2002-09 (t₂), with a significant between-period temperature increase, we modelled the effects of climatic warming on butterfly distributions with boosted regression trees (BRTs) and generalized additive models (GAMs). We evaluated model performance by using the split-sample approach with data from t₁ ('non-independent validation'), and then compared model projections based on data from t₁ with species' observed distributions in t₂ ('independent validation'). We compared climate-only SDMs to SDMs including land cover, soil type, or both. Finally, we related model performance to species traits and compared observed and predicted distributional shifts at northern range margins. Results: SDMs showed fair to good model fits when modelling butterfly distributions under climate change. Model performance was lower with independent compared with non-independent validation and improved when land cover and soil type variables were included, compared with climate-only models. SDMs performed less well for highly mobile species and for species with long flight seasons and large ranges. When forecasting changes at northern range margins, correlations between observed and predicted range shifts were predominantly low. Main conclusions: SDMs accurately describe current distributions of most species, yet their performance varies with species traits and the inclusion of land cover and soil type variables. Moreover, their ability to predict range shifts under climate change is limited, especially at the expanding edge. More tests with independent validations are needed to fully understand the predictive potential of SDMs across taxa and biomes.
AbstractList Aim To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional changes at expanding range margins can be predicted accurately. Location Finland Methods Using 10-km resolution butterfly atlas data from two periods, 1992-99 (t1) and 2002-09 (t2), with a significant between-period temperature increase, we modelled the effects of climatic warming on butterfly distributions with boosted regression trees (BRTs) and generalized additive models (GAMs). We evaluated model performance by using the split-sample approach with data from t1 ('non-independent validation'), and then compared model projections based on data from t1 with species' observed distributions in t2 ('independent validation'). We compared climate-only SDMs to SDMs including land cover, soil type, or both. Finally, we related model performance to species traits and compared observed and predicted distributional shifts at northern range margins. Results SDMs showed fair to good model fits when modelling butterfly distributions under climate change. Model performance was lower with independent compared with non-independent validation and improved when land cover and soil type variables were included, compared with climate-only models. SDMs performed less well for highly mobile species and for species with long flight seasons and large ranges. When forecasting changes at northern range margins, correlations between observed and predicted range shifts were predominantly low. Main conclusions SDMs accurately describe current distributions of most species, yet their performance varies with species traits and the inclusion of land cover and soil type variables. Moreover, their ability to predict range shifts under climate change is limited, especially at the expanding edge. More tests with independent validations are needed to fully understand the predictive potential of SDMs across taxa and biomes. [PUBLICATION ABSTRACT]
Aim To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional changes at expanding range margins can be predicted accurately. Location Finland Methods Using 10‐km resolution butterfly atlas data from two periods, 1992–99 (t1) and 2002–09 (t2), with a significant between‐period temperature increase, we modelled the effects of climatic warming on butterfly distributions with boosted regression trees (BRTs) and generalized additive models (GAMs). We evaluated model performance by using the split‐sample approach with data from t1 (‘non‐independent validation’), and then compared model projections based on data from t1 with species' observed distributions in t2 (‘independent validation’). We compared climate‐only SDMs to SDMs including land cover, soil type, or both. Finally, we related model performance to species traits and compared observed and predicted distributional shifts at northern range margins. Results SDMs showed fair to good model fits when modelling butterfly distributions under climate change. Model performance was lower with independent compared with non‐independent validation and improved when land cover and soil type variables were included, compared with climate‐only models. SDMs performed less well for highly mobile species and for species with long flight seasons and large ranges. When forecasting changes at northern range margins, correlations between observed and predicted range shifts were predominantly low. Main conclusions SDMs accurately describe current distributions of most species, yet their performance varies with species traits and the inclusion of land cover and soil type variables. Moreover, their ability to predict range shifts under climate change is limited, especially at the expanding edge. More tests with independent validations are needed to fully understand the predictive potential of SDMs across taxa and biomes.
To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional changes at expanding range margins can be predicted accurately. Location Finland Methods Using 10-km resolution butterfly atlas data from two periods, 1992-99 (t sub(1)) and 2002-09 (t sub(2)), with a significant between-period temperature increase, we modelled the effects of climatic warming on butterfly distributions with boosted regression trees (BRTs) and generalized additive models (GAMs). We evaluated model performance by using the split-sample approach with data from t sub(1) ('non-independent validation'), and then compared model projections based on data from t sub(1) with species' observed distributions in t sub(2) ('independent validation'). We compared climate-only SDMs to SDMs including land cover, soil type, or both. Finally, we related model performance to species traits and compared observed and predicted distributional shifts at northern range margins. Results SDMs showed fair to good model fits when modelling butterfly distributions under climate change. Model performance was lower with independent compared with non-independent validation and improved when land cover and soil type variables were included, compared with climate-only models. SDMs performed less well for highly mobile species and for species with long flight seasons and large ranges. When forecasting changes at northern range margins, correlations between observed and predicted range shifts were predominantly low. Main conclusions SDMs accurately describe current distributions of most species, yet their performance varies with species traits and the inclusion of land cover and soil type variables. Moreover, their ability to predict range shifts under climate change is limited, especially at the expanding edge. More tests with independent validations are needed to fully understand the predictive potential of SDMs across taxa and biomes.
Aim: To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional changes at expanding range margins can be predicted accurately. Location: Finland Methods: Using 10-km resolution butterfly atlas data from two periods, 1992-99 (ii) and 2002-09 (t₂), with a significant between-period temperature increase, we modelled the effects of climatic warming on butterfly distributions with boosted regression trees (BRTs) and generalized additive models (GAMs). We evaluated model performance by using the split-sample approach with data from t₁ ('non-independent validation'), and then compared model projections based on data from t₁ with species' observed distributions in t₂ ('independent validation'). We compared climate-only SDMs to SDMs including land cover, soil type, or both. Finally, we related model performance to species traits and compared observed and predicted distributional shifts at northern range margins. Results: SDMs showed fair to good model fits when modelling butterfly distributions under climate change. Model performance was lower with independent compared with non-independent validation and improved when land cover and soil type variables were included, compared with climate-only models. SDMs performed less well for highly mobile species and for species with long flight seasons and large ranges. When forecasting changes at northern range margins, correlations between observed and predicted range shifts were predominantly low. Main conclusions: SDMs accurately describe current distributions of most species, yet their performance varies with species traits and the inclusion of land cover and soil type variables. Moreover, their ability to predict range shifts under climate change is limited, especially at the expanding edge. More tests with independent validations are needed to fully understand the predictive potential of SDMs across taxa and biomes.
Author Høye, Toke T.
le Roux, Peter C.
Luoto, Miska
Kissling, W. Daniel
Pöyry, Juha
Eskildsen, Anne
Heikkinen, Risto K.
Wisz, Mary S.
Author_xml – sequence: 1
  givenname: Anne
  surname: Eskildsen
  fullname: Eskildsen, Anne
  email: aes@dmu.dk
  organization: Wildlife Ecology Group Department of Bioscience, Aarhus University, Grenåvej 14, DK-8410, Rønde, Denmark
– sequence: 2
  givenname: Peter C.
  surname: le Roux
  fullname: le Roux, Peter C.
  organization: Department of Geosciences and Geography, University of Helsinki, PO Box 65, FI-00014, Finland
– sequence: 3
  givenname: Risto K.
  surname: Heikkinen
  fullname: Heikkinen, Risto K.
  organization: Natural Environment Centre, Finnish Environment Institute, PO Box 140, FIN-00251, Helsinki, Finland
– sequence: 4
  givenname: Toke T.
  surname: Høye
  fullname: Høye, Toke T.
  organization: Wildlife Ecology Group Department of Bioscience, Aarhus University, Grenåvej 14, DK-8410, Rønde, Denmark
– sequence: 5
  givenname: W. Daniel
  surname: Kissling
  fullname: Kissling, W. Daniel
  organization: Ecoinformatics and Biodiversity Group, Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus, Denmark
– sequence: 6
  givenname: Juha
  surname: Pöyry
  fullname: Pöyry, Juha
  organization: Natural Environment Centre, Finnish Environment Institute, PO Box 140, FIN-00251, Helsinki, Finland
– sequence: 7
  givenname: Mary S.
  surname: Wisz
  fullname: Wisz, Mary S.
  organization: Arctic Research Centre, Aarhus University, DK-8000, Aarhus, Denmark
– sequence: 8
  givenname: Miska
  surname: Luoto
  fullname: Luoto, Miska
  organization: Department of Geosciences and Geography, University of Helsinki, PO Box 65, FI-00014, Finland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27909104$$DView record in Pascal Francis
BookMark eNp9kd1rFDEUxYNUsK0--AcIARH0Ydp8z4xvWuoqlPVl_cCXcCdzZ5t1PtYkQ-1_b7Zb96GgeUng_M7h5p4TcjROIxLynLMzns_5GpszLlhZPSLHXBlTVEJWR4e3-P6EnMS4YYxppc0xWa8wJj-uadyi8xhp62MKvpmTn0Y6TC32kYILU4wZAYcUxpYmP-Bbeu3X17SH5NPcIs2WhKHrdyE7JqDDMdEbCEPOf0oed9BHfHZ_n5IvHy5XFx-Lq8-LTxfvrgqntK4KUzVQ1lJzKXQjVCcrIw1UUDKG0PCGNdw41K1pO5RaNsBlaRCxU0pkWcpT8nqfuw3Trzn_zQ4-Oux7GHGao817UJprrU1GXz5AN9McxjxdplQtasEEz9Srewqig74LMDof7Tb4AcKtFWXNas5U5t7subtdBewOCGd2V43N1di7ajJ7_oB1PsFu4ymA7__nuPE93v472i4u3_91vNg7NjFN4eBQQptK13XWi72e-8bfBx3CT2tKWWr7bbmwP4RcVurryi7lHzbIumE
CODEN GEBIFS
CitedBy_id crossref_primary_10_1111_ddi_13498
crossref_primary_10_1007_s11284_015_1292_0
crossref_primary_10_3897_natureconservation_43_58997
crossref_primary_10_1002_ece3_7186
crossref_primary_10_1111_geb_12467
crossref_primary_10_3390_f11030302
crossref_primary_10_1016_j_ecoinf_2024_102656
crossref_primary_10_1111_gcb_16949
crossref_primary_10_1016_j_gecco_2020_e01083
crossref_primary_10_1080_24749508_2024_2433298
crossref_primary_10_1111_geb_13717
crossref_primary_10_1007_s40808_022_01485_5
crossref_primary_10_1016_j_ecoinf_2023_102247
crossref_primary_10_1007_s13157_022_01646_3
crossref_primary_10_1016_j_biocon_2017_05_015
crossref_primary_10_1016_j_gecco_2023_e02696
crossref_primary_10_1016_j_gecco_2021_e01488
crossref_primary_10_1111_ecog_05170
crossref_primary_10_1007_s10980_021_01386_5
crossref_primary_10_1016_j_biocon_2015_05_011
crossref_primary_10_1016_j_gecco_2024_e03305
crossref_primary_10_1111_jbi_12490
crossref_primary_10_1093_aobpla_plac014
crossref_primary_10_1016_j_tree_2018_08_001
crossref_primary_10_1111_geb_12579
crossref_primary_10_1371_journal_pone_0159941
crossref_primary_10_1007_s10531_019_01706_x
crossref_primary_10_1016_j_tree_2017_03_008
crossref_primary_10_1016_j_ecss_2019_106440
crossref_primary_10_1111_rec_13492
crossref_primary_10_1111_csp2_13047
crossref_primary_10_1007_s11356_023_28963_2
crossref_primary_10_18475_cjos_v53i1_a3
crossref_primary_10_1002_ece3_2592
crossref_primary_10_1002_fee_2783
crossref_primary_10_1111_ecog_01557
crossref_primary_10_1007_s00300_018_2370_x
crossref_primary_10_1017_S0959270917000375
crossref_primary_10_1016_j_gecco_2024_e03092
crossref_primary_10_1038_s41559_020_1198_2
crossref_primary_10_1016_j_ecolmodel_2018_02_002
crossref_primary_10_15446_abc_v27n3_93485
crossref_primary_10_1016_j_ecoser_2013_11_004
crossref_primary_10_1016_j_scitotenv_2022_159989
crossref_primary_10_1111_ddi_12460
crossref_primary_10_1111_ddi_13687
crossref_primary_10_1002_eap_1556
crossref_primary_10_1002_ece3_8069
crossref_primary_10_3354_meps11703
crossref_primary_10_1111_ddi_12634
crossref_primary_10_3390_jof10010038
crossref_primary_10_1016_j_gecco_2022_e02120
crossref_primary_10_1093_ee_nvaa081
crossref_primary_10_1002_aqc_3711
crossref_primary_10_1111_1744_7917_12585
crossref_primary_10_7717_peerj_2185
crossref_primary_10_1111_geb_12553
crossref_primary_10_3897_neobiota_58_33118
crossref_primary_10_1016_j_biocon_2014_01_041
crossref_primary_10_1007_s10584_017_2082_1
crossref_primary_10_1111_geb_12545
crossref_primary_10_1007_s13364_018_0384_y
crossref_primary_10_1073_pnas_2218280120
crossref_primary_10_1038_s41597_022_01473_5
crossref_primary_10_1002_ece3_1162
crossref_primary_10_1002_ece3_10481
crossref_primary_10_1002_ece3_7663
crossref_primary_10_1111_ecog_03235
crossref_primary_10_15446_caldasia_v44n3_98785
crossref_primary_10_1016_j_ecolind_2021_107947
crossref_primary_10_1111_faf_12330
crossref_primary_10_1016_j_gecco_2023_e02377
crossref_primary_10_1080_11956860_2021_1888522
crossref_primary_10_1002_jwmg_70007
crossref_primary_10_1038_s41598_017_04871_7
crossref_primary_10_1111_1365_2664_12224
crossref_primary_10_1371_journal_pone_0256918
crossref_primary_10_1002_ece3_10778
crossref_primary_10_3897_rio_3_e14939
crossref_primary_10_1371_journal_pone_0209808
crossref_primary_10_1016_j_actao_2016_03_006
crossref_primary_10_1016_j_cois_2020_06_002
crossref_primary_10_1016_j_foreco_2018_10_007
crossref_primary_10_1038_s41598_019_40766_5
crossref_primary_10_1093_mollus_eyv018
crossref_primary_10_1111_aec_12569
crossref_primary_10_1007_s10722_023_01739_w
crossref_primary_10_1016_j_gecco_2024_e03236
crossref_primary_10_1007_s10531_020_02018_1
crossref_primary_10_1038_s41598_022_07386_y
crossref_primary_10_1670_15_089
crossref_primary_10_1002_ece3_11513
crossref_primary_10_1007_s10750_015_2280_7
crossref_primary_10_1111_ddi_12303
crossref_primary_10_1007_s00267_022_01707_7
crossref_primary_10_1007_s11252_020_01041_y
crossref_primary_10_1038_s41598_024_82164_6
crossref_primary_10_1111_nyas_12484
crossref_primary_10_1111_ecog_01998
crossref_primary_10_3389_fevo_2024_1477480
crossref_primary_10_1111_icad_12814
crossref_primary_10_1038_s41598_020_73262_2
crossref_primary_10_1098_rspb_2014_2903
crossref_primary_10_1134_S1995425518060148
crossref_primary_10_1111_gcb_17059
crossref_primary_10_1016_j_landurbplan_2021_104101
crossref_primary_10_1111_jav_01527
crossref_primary_10_1371_journal_pone_0128295
crossref_primary_10_1371_journal_pone_0269179
crossref_primary_10_1016_j_gecco_2024_e03065
crossref_primary_10_1111_jen_13349
crossref_primary_10_1038_s41467_023_42737_x
crossref_primary_10_1111_jbi_12937
crossref_primary_10_1016_j_jglr_2015_09_008
crossref_primary_10_1002_ecs2_4885
crossref_primary_10_1016_j_biocon_2016_07_018
crossref_primary_10_1111_gcb_13243
crossref_primary_10_1007_s10329_024_01152_6
crossref_primary_10_1890_13_2289_1
crossref_primary_10_1016_j_cois_2016_07_003
Cites_doi 10.1111/j.1600-0587.2009.05832.x
10.1111/j.2006.0906-7590.04596.x
10.1111/j.2041-210X.2010.00036.x
10.1017/S0376892997000088
10.1007/s10531-007-9287-y
10.1111/j.1365-2699.2005.01443.x
10.1111/j.1466-822X.2005.00186.x
10.1111/j.1466-8238.2006.00262.x
10.1890/03-0817
10.2307/3236170
10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
10.1111/j.1466-8238.2007.00345.x
10.2307/2389612
10.1023/A:1024189828387
10.1038/nclimate1347
10.5751/ES-03089-150108
10.2307/1941558
10.1111/j.1461-0248.2011.01620.x
10.1111/j.1466-8238.2007.00298.x
10.2307/2529310
10.1038/35016000
10.1111/j.0030-1299.2004.12958.x
10.1046/j.1466-822X.2003.00042.x
10.1111/j.1365-2664.2006.01214.x
10.1111/j.1442-9993.2009.02044.x
10.1093/oso/9780198526407.001.0001
10.1111/j.1365-2699.2009.02088.x
10.1111/j.1365-2699.2005.01395.x
10.1111/j.2006.0906-7590.04685.x
10.1111/j.1365-2656.2008.01390.x
10.1126/science.1131758
10.1111/j.1365-2486.2005.01000.x
10.1016/S1474-7065(02)00140-7
10.1002/joc.2046
10.1890/08-1304.1
10.1111/j.1365-2486.2006.01256.x
10.1111/j.1600-0587.2011.06999.x
10.1111/j.1365-2699.2012.02737.x
10.1111/j.1600-0587.2011.07147.x
10.1111/j.1365-2486.2008.01789.x
10.1177/0309133306071957
10.1111/j.0906-7590.2004.03740.x
10.1111/j.1466-8238.2007.00373.x
10.1201/9781420010404
10.1038/21181
10.1890/06-0539
10.1007/s10531-009-9584-8
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons Ltd.
2013 John Wiley & Sons Ltd
2014 INIST-CNRS
Copyright © 2013 John Wiley & Sons Ltd
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons Ltd.
– notice: 2013 John Wiley & Sons Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
DOI 10.1111/geb.12078
DatabaseName Istex
CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Entomology Abstracts

Entomology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1466-8238
1466-822X
EndPage 1303
ExternalDocumentID 3120939301
27909104
10_1111_geb_12078
GEB12078
42568599
ark_67375_WNG_Z23N84VT_N
Genre article
GeographicLocations Scandinavia
Europe
Finland
GeographicLocations_xml – name: Finland
GrantInformation_xml – fundername: Nordforsk TFI Network ‘Effect Studies and Adaptation to Climate Change’ (2011–2014)
– fundername: Danish Council for Independent Research | Natural Sciences
  funderid: 11‐106163
– fundername: Greenland Climate Research Centre
  funderid: 6505
– fundername: 15. Juni Fonden
– fundername: Academy of Finland
  funderid: 1140873
GroupedDBID -~X
.3N
.GA
.Y3
0R~
10A
1OC
29I
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABLJU
ABPLY
ABPPZ
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACHIC
ACPOU
ACPRK
ACRPL
ACSCC
ACSTJ
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGUYK
AGYGG
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
G-S
GODZA
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
IHE
IPSME
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
OIG
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
VQP
W99
WIH
WIK
WQJ
WXSBR
XG1
ZZTAW
~KM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AEUQT
AFPWT
DOOOF
EQZMY
ESX
JSODD
WRC
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
ID FETCH-LOGICAL-c4558-68ba79351325b24f38636a8a700eab1b0b16ce5d6dfe353ba1376eeef442b1b33
IEDL.DBID DR2
ISSN 1466-822X
IngestDate Fri Jul 11 01:35:32 EDT 2025
Sun Jul 13 04:49:08 EDT 2025
Mon Jul 21 09:13:25 EDT 2025
Tue Jul 01 01:46:04 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Wed Jan 22 16:17:26 EST 2025
Sun Aug 24 12:10:36 EDT 2025
Sun Jun 29 03:14:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords High latitude
Warming
Insecta
species distribution models
species traits
Biogeography
soil type
Ecology
Expanding range margin
Land use
Dynamical climatology
Climate change
Soils
Spatial distribution
global warming
Geographic distribution
Arthropoda
Global change
Lepidoptera
Finland
Models
Invertebrata
Distribution range
validation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4558-68ba79351325b24f38636a8a700eab1b0b16ce5d6dfe353ba1376eeef442b1b33
Notes Figure S1 Relationships between the accuracy of generalized additive models (GAM) and boosted regression tree (BRT) models validated with independent and non-independent observations, evaluated with area under the curve of a receiver operating characteristic plot (AUC) and true skill statistic (TSS). Figures in the left column are based on climate-only models, while figures in the right column are based on combined climate-soil-land-cover models. Rho (ρ) values for Spearman's rank correlations (P < 0.001 for all), as well as linear regression fits are shown. Dotted lines indicate the 1:1 relationship. A drop in ρ values between climate-only models (left) and combined climate-soil-land-cover models (right) indicates that some species distributions are better predicted when using independent validation in combination with more complex models.
Danish Council for Independent Research | Natural Sciences - No. 11-106163
Academy of Finland - No. 1140873
Greenland Climate Research Centre - No. 6505
ark:/67375/WNG-Z23N84VT-N
ArticleID:GEB12078
istex:076066330986A5D0E439209F9DD62F3FFFAE60D0
Nordforsk TFI Network 'Effect Studies and Adaptation to Climate Change' (2011-2014)
15. Juni Fonden
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/geb.12078
PQID 1449292021
PQPubID 1066347
PageCount 11
ParticipantIDs proquest_miscellaneous_1464515556
proquest_journals_1449292021
pascalfrancis_primary_27909104
crossref_primary_10_1111_geb_12078
crossref_citationtrail_10_1111_geb_12078
wiley_primary_10_1111_geb_12078_GEB12078
jstor_primary_42568599
istex_primary_ark_67375_WNG_Z23N84VT_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2013
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global ecology and biogeography
PublicationTitleAlternate Global Ecology and Biogeography
PublicationYear 2013
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Blackwell
– name: Wiley Subscription Services, Inc
References Sinclair, S.J., White, M.D. & Newell, G.R. (2010) How useful are species distribution models for managing biodiversity under future climates? Ecology and Society, 15, 8.
Kharouba, H.M., Algar, A.C. & Kerr, J.T. (2009) Historically calibrated predictions of butterfly species' range shift using global change as a pseudo-experiment. Ecology, 90, 2213-2222.
Wiens, J.A. (1989) Spatial scaling in ecology. Functional Ecology, 3, 385-397.
Swets, J. (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
Luoto, M. (2007) The role of land cover in bioclimatic models depends on spatial resolution. Global Ecology and Biogeography, 16, 34-42.
Angert, A.L., Crozier, L.G., Rissler, L.J., Gilman, S.E., Tewksbury, J.J. & Chunco, A.J. (2011) Do species' traits predict recent shifts at expanding range edges? Ecology Letters, 14, 677-689.
Fitzpatrick, M.C. & Hargrove, W.W. (2009) The projection of species distribution models and the problem of non-analog climate. Biodiversity and Conservation, 18, 2255-2261.
Pöyry, J., Luoto, M., Heikkinen, R.K., Kuussaari, M. & Saarinen, K. (2009) Species traits explain recent range shifts of Finnish butterflies. Global Change Biology, 15, 732-743.
Venäläinen, A. & Heikinheimo, M. (2002) Meteorological data for agricultural applications. Physics and Chemistry of the Earth, Parts A/B/C, 27, 1045-1050.
Prentice, I.C., Bartlein, P.J. & Thompson, W., III (1991) Vegetation and climate change in Eastern North America since the last glacial maximum. Ecology, 72, 2038-2056.
Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330-342.
Heikkinen, R.K., Marmion, M. & Luoto, M. (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography, 35, 276-288.
Araújo, M.B., Pearson, R.G., Thuiller, W. & Erhard, M. (2005) Validation of species-climate impact models under climate change. Global Change Biology, 11, 1504-1513.
Roberts, D.R. & Hamann, A. (2012) Method selection for species distribution modelling: are temporally or spatially independent evaluations necessary? Ecography, 35, 792-802.
White, P.J.T. & Kerr, J.T. (2007) Human impacts on environment-diversity relationships: evidence for biotic homogenization from butterfly species richness patterns. Global Ecology and Biogeography, 16, 290-299.
Tietäväinen, H. (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. International Journal of Climatology, 30, 2247-2256.
Yee, T.W. & Mitchell, N.D. (1991) Generalized additive models in plant ecology. Journal of Vegetation Science, 2, 587-602.
Luoto, M., Pöyry, J., Heikkinen, R.K. & Saarinen, K. (2005) Uncertainty of bioclimate envelope models based on the geographical distribution of species. Global Ecology and Biogeography, 14, 575-584.
Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272-2281.
Titeux, N., Maes, D., Marmion, M., Luoto, M. & Heikkinen, R.K. (2009) Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe. Journal of Biogeography, 36, 1459-1473.
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W.J., Thomas, J.A. & Warren, M. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583.
Heikkinen, R.K., Luoto, M., Virkkala, R., Pearson, R.G. & Korber, J.-H. (2007) Biotic interactions improve prediction of boreal bird distributions at macro-scales. Global Ecology and Biogeography, 16, 754-763.
Hewitt, G. (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913.
Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813.
Komonen, A., Grapputo, A., Kaitala, V., Kotiaho, J.S. & Päivinen, J. (2004) The role of niche breadth, resource availability and range position on the life history of butterflies. Oikos, 105, 41-54.
White, P. & Kerr, J.T. (2006) Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century. Ecography, 29, 908-918.
Saarinen, K., Lahti, T. & Marttila, O. (2003) Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991-2000. Biodiversity and Conservation, 12, 2147-2159.
Gaston, K.J. (2003) The structure and dynamics of geographic ranges, 1st edn. Oxford University Press, Oxford.
Landis, J.R. & Koch, G.G. (1977) The measurement of observer agreement for categorical data. Biometrics, 33, 159-174.
Pöyry, J., Luoto, M., Heikkinen, R.K. & Saarinen, K. (2008) Species traits are associated with the quality of bioclimatic models. Global Ecology and Biogeography, 17, 403-414.
Luoto, M., Heikkinen, R.K., Pöyry, J. & Saarinen, K. (2006) Determinants of the biogeographical distribution of butterflies in boreal regions. Journal of Biogeography, 33, 1764-1778.
Devictor, V., van Swaay, C., Brereton, T. et al. (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2, 121-124.
Raynaud, X. (2004) Soil characteristics play a key role in modeling nutrient competition in plant communities. Ecology, 85, 2200-2214.
Yates, C.J., Elith, J., Latimer, A.M., Le Maitre, D., Midgley, G.F., Schurr, F.M. & West, A.G. (2010) Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: opportunities and challenges. Austral Ecology, 35, 374-391.
Schurr, F.M., Pagel, J., Cabral, J.S., Groeneveld, J., Bykova, O., O'Hara, R.B., Hartig, F., Kissling, W.D., Linder, H.P., Midgely, G.F., Schröder, B., Singer, A. & Zimmermann, N. (2012) How to understand species' niches and range dynamics: a demographic research agenda for biogeography. Journal of Biogeography, 12, 2146-2162.
Coudun, C., Gegout, J.-C., Piedallu, C. & Rameau, J.-C. (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. Journal of Biogeography, 33, 1750-1763.
Wood, S.N. (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton, FL.
Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
Mitikka, V., Heikkinen, R.K., Luoto, M., Araujo, M.B., Saarinen, K., Poyry, J. & Fronzek, S. (2008) Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models. Biodiversity and Conservation, 17, 623-641.
Heikkinen, R.K., Luoto, M., Araújo, M.B., Virkkala, R., Thuiller, W. & Sykes, M.T. (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30, 751-777.
Araújo, M.B. & Rahbek, C. (2006) How does climate change affect biodiversity? Science, 313, 1396-1397.
Algar, A.C., Kharouba, H.M., Young, E.R. & Kerr, J.T. (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 32, 22-33.
Menéndez, R., Megías, A.G., Hill, J.K., Braschler, B., Willis, S.G., Collingham, Y., Fox, R., Roy, D.B. & Thomas, C.D. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470.
Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371.
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.
Pearson, R.G., Dawson, T.P. & Liu, C. (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography, 27, 285-298.
1989; 3
2004; 85
1991; 2
2006; 30
2004; 105
2010; 15
2010; 35
2006; 12
2004; 27
2006; 33
1997; 24
1991; 72
2008; 17
2006; 273
2006
1994
2005
2008; 77
2003
1988; 240
2011; 14
2006; 313
2012; 35
2012; 12
2007; 16
2003; 12
2002; 27
2009; 36
2012; 2
2009; 32
2010; 1
2006; 43
2000; 405
2009; 90
2006; 29
1977; 33
1999; 399
2005; 11
2010; 30
2009; 15
2009; 18
1988
2005; 14
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
Kattsov V.M. (e_1_2_6_23_1) 2005
Schurr F.M. (e_1_2_6_42_1) 2012; 12
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_40_1
Gaston K.J. (e_1_2_6_16_1) 2003
e_1_2_6_8_1
e_1_2_6_4_1
Hill J.K. (e_1_2_6_22_1) 2003
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813.
– reference: Menéndez, R., Megías, A.G., Hill, J.K., Braschler, B., Willis, S.G., Collingham, Y., Fox, R., Roy, D.B. & Thomas, C.D. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470.
– reference: Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W.J., Thomas, J.A. & Warren, M. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583.
– reference: Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
– reference: Landis, J.R. & Koch, G.G. (1977) The measurement of observer agreement for categorical data. Biometrics, 33, 159-174.
– reference: Raynaud, X. (2004) Soil characteristics play a key role in modeling nutrient competition in plant communities. Ecology, 85, 2200-2214.
– reference: Kharouba, H.M., Algar, A.C. & Kerr, J.T. (2009) Historically calibrated predictions of butterfly species' range shift using global change as a pseudo-experiment. Ecology, 90, 2213-2222.
– reference: Saarinen, K., Lahti, T. & Marttila, O. (2003) Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991-2000. Biodiversity and Conservation, 12, 2147-2159.
– reference: Araújo, M.B., Pearson, R.G., Thuiller, W. & Erhard, M. (2005) Validation of species-climate impact models under climate change. Global Change Biology, 11, 1504-1513.
– reference: Wiens, J.A. (1989) Spatial scaling in ecology. Functional Ecology, 3, 385-397.
– reference: Komonen, A., Grapputo, A., Kaitala, V., Kotiaho, J.S. & Päivinen, J. (2004) The role of niche breadth, resource availability and range position on the life history of butterflies. Oikos, 105, 41-54.
– reference: Roberts, D.R. & Hamann, A. (2012) Method selection for species distribution modelling: are temporally or spatially independent evaluations necessary? Ecography, 35, 792-802.
– reference: Luoto, M. (2007) The role of land cover in bioclimatic models depends on spatial resolution. Global Ecology and Biogeography, 16, 34-42.
– reference: Mitikka, V., Heikkinen, R.K., Luoto, M., Araujo, M.B., Saarinen, K., Poyry, J. & Fronzek, S. (2008) Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models. Biodiversity and Conservation, 17, 623-641.
– reference: Devictor, V., van Swaay, C., Brereton, T. et al. (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2, 121-124.
– reference: Yates, C.J., Elith, J., Latimer, A.M., Le Maitre, D., Midgley, G.F., Schurr, F.M. & West, A.G. (2010) Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: opportunities and challenges. Austral Ecology, 35, 374-391.
– reference: Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371.
– reference: Luoto, M., Heikkinen, R.K., Pöyry, J. & Saarinen, K. (2006) Determinants of the biogeographical distribution of butterflies in boreal regions. Journal of Biogeography, 33, 1764-1778.
– reference: Heikkinen, R.K., Luoto, M., Virkkala, R., Pearson, R.G. & Korber, J.-H. (2007) Biotic interactions improve prediction of boreal bird distributions at macro-scales. Global Ecology and Biogeography, 16, 754-763.
– reference: Heikkinen, R.K., Luoto, M., Araújo, M.B., Virkkala, R., Thuiller, W. & Sykes, M.T. (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30, 751-777.
– reference: Pearson, R.G., Dawson, T.P. & Liu, C. (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography, 27, 285-298.
– reference: Yee, T.W. & Mitchell, N.D. (1991) Generalized additive models in plant ecology. Journal of Vegetation Science, 2, 587-602.
– reference: Araújo, M.B. & Rahbek, C. (2006) How does climate change affect biodiversity? Science, 313, 1396-1397.
– reference: Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.
– reference: Gaston, K.J. (2003) The structure and dynamics of geographic ranges, 1st edn. Oxford University Press, Oxford.
– reference: Schurr, F.M., Pagel, J., Cabral, J.S., Groeneveld, J., Bykova, O., O'Hara, R.B., Hartig, F., Kissling, W.D., Linder, H.P., Midgely, G.F., Schröder, B., Singer, A. & Zimmermann, N. (2012) How to understand species' niches and range dynamics: a demographic research agenda for biogeography. Journal of Biogeography, 12, 2146-2162.
– reference: Venäläinen, A. & Heikinheimo, M. (2002) Meteorological data for agricultural applications. Physics and Chemistry of the Earth, Parts A/B/C, 27, 1045-1050.
– reference: Pöyry, J., Luoto, M., Heikkinen, R.K., Kuussaari, M. & Saarinen, K. (2009) Species traits explain recent range shifts of Finnish butterflies. Global Change Biology, 15, 732-743.
– reference: Swets, J. (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
– reference: Angert, A.L., Crozier, L.G., Rissler, L.J., Gilman, S.E., Tewksbury, J.J. & Chunco, A.J. (2011) Do species' traits predict recent shifts at expanding range edges? Ecology Letters, 14, 677-689.
– reference: Wood, S.N. (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton, FL.
– reference: Coudun, C., Gegout, J.-C., Piedallu, C. & Rameau, J.-C. (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. Journal of Biogeography, 33, 1750-1763.
– reference: Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330-342.
– reference: Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272-2281.
– reference: Pöyry, J., Luoto, M., Heikkinen, R.K. & Saarinen, K. (2008) Species traits are associated with the quality of bioclimatic models. Global Ecology and Biogeography, 17, 403-414.
– reference: Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
– reference: Heikkinen, R.K., Marmion, M. & Luoto, M. (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography, 35, 276-288.
– reference: Hewitt, G. (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913.
– reference: Fitzpatrick, M.C. & Hargrove, W.W. (2009) The projection of species distribution models and the problem of non-analog climate. Biodiversity and Conservation, 18, 2255-2261.
– reference: Luoto, M., Pöyry, J., Heikkinen, R.K. & Saarinen, K. (2005) Uncertainty of bioclimate envelope models based on the geographical distribution of species. Global Ecology and Biogeography, 14, 575-584.
– reference: Prentice, I.C., Bartlein, P.J. & Thompson, W., III (1991) Vegetation and climate change in Eastern North America since the last glacial maximum. Ecology, 72, 2038-2056.
– reference: Algar, A.C., Kharouba, H.M., Young, E.R. & Kerr, J.T. (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 32, 22-33.
– reference: Sinclair, S.J., White, M.D. & Newell, G.R. (2010) How useful are species distribution models for managing biodiversity under future climates? Ecology and Society, 15, 8.
– reference: White, P. & Kerr, J.T. (2006) Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century. Ecography, 29, 908-918.
– reference: Titeux, N., Maes, D., Marmion, M., Luoto, M. & Heikkinen, R.K. (2009) Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe. Journal of Biogeography, 36, 1459-1473.
– reference: White, P.J.T. & Kerr, J.T. (2007) Human impacts on environment-diversity relationships: evidence for biotic homogenization from butterfly species richness patterns. Global Ecology and Biogeography, 16, 290-299.
– reference: Tietäväinen, H. (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. International Journal of Climatology, 30, 2247-2256.
– volume: 16
  start-page: 754
  year: 2007
  end-page: 763
  article-title: Biotic interactions improve prediction of boreal bird distributions at macro‐scales
  publication-title: Global Ecology and Biogeography
– volume: 43
  start-page: 1223
  year: 2006
  end-page: 1232
  article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
  publication-title: Journal of Applied Ecology
– volume: 14
  start-page: 575
  year: 2005
  end-page: 584
  article-title: Uncertainty of bioclimate envelope models based on the geographical distribution of species
  publication-title: Global Ecology and Biogeography
– year: 1994
  article-title: CORINE land cover technical guide
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  article-title: A working guide to boosted regression trees
  publication-title: Journal of Animal Ecology
– volume: 72
  start-page: 2038
  year: 1991
  end-page: 2056
  article-title: Vegetation and climate change in Eastern North America since the last glacial maximum
  publication-title: Ecology
– volume: 12
  start-page: 2272
  year: 2006
  end-page: 2281
  article-title: The ability of climate envelope models to predict the effect of climate change on species distributions
  publication-title: Global Change Biology
– volume: 3
  start-page: 385
  year: 1989
  end-page: 397
  article-title: Spatial scaling in ecology
  publication-title: Functional Ecology
– volume: 405
  start-page: 907
  year: 2000
  end-page: 913
  article-title: The genetic legacy of the Quaternary ice ages
  publication-title: Nature
– volume: 27
  start-page: 285
  year: 2004
  end-page: 298
  article-title: Modelling species distributions in Britain: a hierarchical integration of climate and land‐cover data
  publication-title: Ecography
– volume: 12
  start-page: 2147
  year: 2003
  end-page: 2159
  article-title: Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991–2000
  publication-title: Biodiversity and Conservation
– volume: 105
  start-page: 41
  year: 2004
  end-page: 54
  article-title: The role of niche breadth, resource availability and range position on the life history of butterflies
  publication-title: Oikos
– volume: 29
  start-page: 129
  year: 2006
  end-page: 151
  article-title: Novel methods improve prediction of species' distributions from occurrence data
  publication-title: Ecography
– volume: 35
  start-page: 276
  year: 2012
  end-page: 288
  article-title: Does the interpolation accuracy of species distribution models come at the expense of transferability?
  publication-title: Ecography
– volume: 313
  start-page: 1396
  year: 2006
  end-page: 1397
  article-title: How does climate change affect biodiversity?
  publication-title: Science
– start-page: 149
  year: 2003
  end-page: 167
– volume: 33
  start-page: 1764
  year: 2006
  end-page: 1778
  article-title: Determinants of the biogeographical distribution of butterflies in boreal regions
  publication-title: Journal of Biogeography
– volume: 18
  start-page: 2255
  year: 2009
  end-page: 2261
  article-title: The projection of species distribution models and the problem of non‐analog climate
  publication-title: Biodiversity and Conservation
– volume: 17
  start-page: 623
  year: 2008
  end-page: 641
  article-title: Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models
  publication-title: Biodiversity and Conservation
– volume: 273
  start-page: 1465
  year: 2006
  end-page: 1470
  article-title: Species richness changes lag behind climate change
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 85
  start-page: 2200
  year: 2004
  end-page: 2214
  article-title: Soil characteristics play a key role in modeling nutrient competition in plant communities
  publication-title: Ecology
– volume: 16
  start-page: 290
  year: 2007
  end-page: 299
  article-title: Human impacts on environment–diversity relationships: evidence for biotic homogenization from butterfly species richness patterns
  publication-title: Global Ecology and Biogeography
– volume: 17
  start-page: 403
  year: 2008
  end-page: 414
  article-title: Species traits are associated with the quality of bioclimatic models
  publication-title: Global Ecology and Biogeography
– volume: 240
  start-page: 1285
  year: 1988
  end-page: 1293
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
– volume: 29
  start-page: 908
  year: 2006
  end-page: 918
  article-title: Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century
  publication-title: Ecography
– volume: 15
  start-page: 8
  year: 2010
  article-title: How useful are species distribution models for managing biodiversity under future climates?
  publication-title: Ecology and Society
– volume: 32
  start-page: 22
  year: 2009
  end-page: 33
  article-title: Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods
  publication-title: Ecography
– volume: 14
  start-page: 677
  year: 2011
  end-page: 689
  article-title: Do species' traits predict recent shifts at expanding range edges?
  publication-title: Ecology Letters
– volume: 30
  start-page: 751
  year: 2006
  end-page: 777
  article-title: Methods and uncertainties in bioclimatic envelope modelling under climate change
  publication-title: Progress in Physical Geography
– start-page: 99
  year: 2005
  end-page: 150
– volume: 30
  start-page: 2247
  year: 2010
  end-page: 2256
  article-title: Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data
  publication-title: International Journal of Climatology
– volume: 399
  start-page: 579
  year: 1999
  end-page: 583
  article-title: Poleward shifts in geographical ranges of butterfly species associated with regional warming
  publication-title: Nature
– volume: 24
  start-page: 38
  year: 1997
  end-page: 49
  article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models
  publication-title: Environmental Conservation
– volume: 27
  start-page: 1045
  year: 2002
  end-page: 1050
  article-title: Meteorological data for agricultural applications
  publication-title: Physics and Chemistry of the Earth, Parts A/B/C
– year: 2003
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 1
  start-page: 330
  year: 2010
  end-page: 342
  article-title: The art of modelling range‐shifting species
  publication-title: Methods in Ecology and Evolution
– volume: 11
  start-page: 1504
  year: 2005
  end-page: 1513
  article-title: Validation of species–climate impact models under climate change
  publication-title: Global Change Biology
– volume: 90
  start-page: 2213
  year: 2009
  end-page: 2222
  article-title: Historically calibrated predictions of butterfly species' range shift using global change as a pseudo‐experiment
  publication-title: Ecology
– year: 1988
– volume: 12
  start-page: 361
  year: 2003
  end-page: 371
  article-title: Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?
  publication-title: Global Ecology and Biogeography
– volume: 15
  start-page: 732
  year: 2009
  end-page: 743
  article-title: Species traits explain recent range shifts of Finnish butterflies
  publication-title: Global Change Biology
– volume: 12
  start-page: 2146
  year: 2012
  end-page: 2162
  article-title: How to understand species' niches and range dynamics: a demographic research agenda for biogeography
  publication-title: Journal of Biogeography
– year: 2006
– volume: 33
  start-page: 1750
  year: 2006
  end-page: 1763
  article-title: Soil nutritional factors improve models of plant species distribution: an illustration with (L.) in France
  publication-title: Journal of Biogeography
– volume: 35
  start-page: 374
  year: 2010
  end-page: 391
  article-title: Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: opportunities and challenges
  publication-title: Austral Ecology
– volume: 16
  start-page: 34
  year: 2007
  end-page: 42
  article-title: The role of land cover in bioclimatic models depends on spatial resolution
  publication-title: Global Ecology and Biogeography
– volume: 2
  start-page: 121
  year: 2012
  end-page: 124
  article-title: Differences in the climatic debts of birds and butterflies at a continental scale
  publication-title: Nature Climate Change
– volume: 35
  start-page: 792
  year: 2012
  end-page: 802
  article-title: Method selection for species distribution modelling: are temporally or spatially independent evaluations necessary?
  publication-title: Ecography
– volume: 36
  start-page: 1459
  year: 2009
  end-page: 1473
  article-title: Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe
  publication-title: Journal of Biogeography
– volume: 2
  start-page: 587
  year: 1991
  end-page: 602
  article-title: Generalized additive models in plant ecology
  publication-title: Journal of Vegetation Science
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1600-0587.2009.05832.x
– ident: e_1_2_6_10_1
  doi: 10.1111/j.2006.0906-7590.04596.x
– ident: e_1_2_6_12_1
  doi: 10.1111/j.2041-210X.2010.00036.x
– ident: e_1_2_6_14_1
  doi: 10.1017/S0376892997000088
– ident: e_1_2_6_31_1
  doi: 10.1007/s10531-007-9287-y
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1365-2699.2005.01443.x
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1466-822X.2005.00186.x
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1466-8238.2006.00262.x
– ident: e_1_2_6_38_1
  doi: 10.1890/03-0817
– ident: e_1_2_6_53_1
  doi: 10.2307/3236170
– ident: e_1_2_6_44_1
  doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1466-8238.2007.00345.x
– ident: e_1_2_6_50_1
  doi: 10.2307/2389612
– ident: e_1_2_6_41_1
  doi: 10.1023/A:1024189828387
– ident: e_1_2_6_9_1
  doi: 10.1038/nclimate1347
– ident: e_1_2_6_43_1
  doi: 10.5751/ES-03089-150108
– ident: e_1_2_6_37_1
  doi: 10.2307/1941558
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1461-0248.2011.01620.x
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1466-8238.2007.00298.x
– ident: e_1_2_6_26_1
  doi: 10.2307/2529310
– ident: e_1_2_6_20_1
  doi: 10.1038/35016000
– ident: e_1_2_6_25_1
  doi: 10.1111/j.0030-1299.2004.12958.x
– ident: e_1_2_6_33_1
  doi: 10.1046/j.1466-822X.2003.00042.x
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1365-2664.2006.01214.x
– ident: e_1_2_6_52_1
  doi: 10.1111/j.1442-9993.2009.02044.x
– volume-title: The structure and dynamics of geographic ranges
  year: 2003
  ident: e_1_2_6_16_1
  doi: 10.1093/oso/9780198526407.001.0001
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1365-2699.2009.02088.x
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1365-2699.2005.01395.x
– ident: e_1_2_6_48_1
  doi: 10.1111/j.2006.0906-7590.04685.x
– start-page: 149
  volume-title: Butterflies: ecology and evolution taking flight
  year: 2003
  ident: e_1_2_6_22_1
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1365-2656.2008.01390.x
– ident: e_1_2_6_5_1
  doi: 10.1126/science.1131758
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1365-2486.2005.01000.x
– ident: e_1_2_6_39_1
– ident: e_1_2_6_7_1
– ident: e_1_2_6_47_1
  doi: 10.1016/S1474-7065(02)00140-7
– ident: e_1_2_6_45_1
  doi: 10.1002/joc.2046
– ident: e_1_2_6_24_1
  doi: 10.1890/08-1304.1
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-2486.2006.01256.x
– start-page: 99
  volume-title: Arctic climate impact assessment
  year: 2005
  ident: e_1_2_6_23_1
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1600-0587.2011.06999.x
– volume: 12
  start-page: 2146
  year: 2012
  ident: e_1_2_6_42_1
  article-title: How to understand species' niches and range dynamics: a demographic research agenda for biogeography
  publication-title: Journal of Biogeography
  doi: 10.1111/j.1365-2699.2012.02737.x
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1600-0587.2011.07147.x
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1365-2486.2008.01789.x
– ident: e_1_2_6_17_1
  doi: 10.1177/0309133306071957
– ident: e_1_2_6_13_1
– ident: e_1_2_6_34_1
  doi: 10.1111/j.0906-7590.2004.03740.x
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1466-8238.2007.00373.x
– ident: e_1_2_6_51_1
  doi: 10.1201/9781420010404
– ident: e_1_2_6_32_1
  doi: 10.1038/21181
– ident: e_1_2_6_30_1
  doi: 10.1890/06-0539
– ident: e_1_2_6_15_1
  doi: 10.1007/s10531-009-9584-8
SSID ssj0005456
Score 2.4442203
Snippet Aim: To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test...
Aim To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test...
Aim To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test...
To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1293
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Biogeography
Biological and medical sciences
Butterflies
Climate change
Climate models
Climatology. Bioclimatology. Climate change
Earth, ocean, space
Ecological modeling
Exact sciences and technology
Expanding range margin
External geophysics
Finland
Fundamental and applied biological sciences. Psychology
General aspects
global warming
Insect ecology
Insecta
Invertebrates
Land cover
land use
Lepidoptera
Meteorology
Modeling
soil type
Soils
Species
species distribution models
species traits
Statistical models
Synecology
validation
Title Testing species distribution models across space and time: high latitude butterflies and recent warming
URI https://api.istex.fr/ark:/67375/WNG-Z23N84VT-N/fulltext.pdf
https://www.jstor.org/stable/42568599
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12078
https://www.proquest.com/docview/1449292021
https://www.proquest.com/docview/1464515556
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KRfBFbfUwtZZVRHzJcUl2N4k-2XJtEbwHueohQpjNbu6hJZXmDn_89c5sfrQnFcS3g3zJsXszszO5me8DeJmlSHkB2tDmVOnIOM3J52QZotTGTEzkdMLDyR9m-vRMvl-oxRa87WdhWn6I4YUbe4aP1-zgaJobTr50ZhzFdMJR_OVeLU6IPl5TR3Fm0E4W6ZAOwUXHKsRdPMOdG2fRHd7WH31bIvdIYkPbVLX6FhsJ6M001p9Dxw_ga7-Ctv3kfLxemXH56w9yx_9c4kO43-Wn4l1rUDuw5epduDv13NY_d2E0vR6MI1gXGZpHsJwzXUe9FDy6SdW3sMzI24lpCa-30wj0-0AQLJ3A2gpWtn8jmDJZ-JGatXXCtNLZF_wQxlBIpi8T35G7dpaP4ex4Oj86DTsRh7CUSmWhzgxSDFBU9SoTyyrJdKIxw3QycWgitgddOmW1rVyiEoMRhTznXCVlTJeTZATb9WXtnoAoEVFWGOXOOi6jMDPRxOUJlqlOrXQBvO5_zqLsGM5ZaOOi6Csd2tDCb2gALwbot5bW4zbQK28TAwKvzrkPLlXF59lJ8SVOZpn8NC9mAYy80QxACoQ6U3kewMGGFQ0A8glO1GQA-71ZFV3waKgakzmLiMVRAM-Hy-T2_F8O1u5yzRgtWZ1HaVq1t6G_r6M4mR76D3v_Dn0K92IW_vCNO_uwvbpau2eUfq3Mgfez33HpK04
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VrRBceBQiDKUsCBAXR7G9XttIHICmTWmbA0oh6sXs2pOoanFRnaiU38Rf4T8xs360QSBx6YFbJH9KvDuPndnMfAPwLI40xQU6d_OEMh3pRwnZnMxcLZUxPeOhCrg5eW-oBvvy_TgcL8GPphem4odoL9zYMqy_ZgPnC-lLVj5F0_V8OuLqksodPD-jhK18vb1B0n3u-5v90buBW88UcDMZhrGrYqNJJUNKwkLjy0kQq0DpWEe9Hmrj8eupDMNc5RMMwsBojywQESdS-vSYrz_J4a_wBHFm6t_4cEFWxbFI1cukXDp2xzWPEdcNta-6cPqtsCC_NYWQXJWpSxLMpJqosRDyXg6c7cm3eQt-NntWFbwcdecz082-_0Yn-b9s6m24WYfg4k1lM3dgCYtVuNa39N3nq9DpX_T-Eax2fuVdmI6YkaSYCu5OPcRS5Ew6XM8LE3akUCm03XiC6AyFLnIxO_yCrwSzQgvbNTTPUZhqOvgxfwlj6NShHxNnmguTpvdg_0qW34Hl4qTA-yAyrbWcaC_BHDlT1LHxepgEOotUlEt04GWjP2lWk7jzLJHjtEnmSICpFaADT1vo14q55E-gF1YJW4Q-PeJSvyhMPw230gM_GMby4ygdOtCxWtoCyderOEwSB9YX1LYFkNlzLCodWGv0OK39Y0kJp0x4TprvOfCkfUyejf-u0gWezBmjJA8gChWt2irt39eRbvXf2g8P_h36GK4PRnu76e72cOch3PB5zomtU1qD5dnpHB9RtDkz69bIBXy-agP4BW6piOU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VrUBceBQiXEpZECAujvxYr20kDkCSthQshFIacTG79jqq2rpVnaiUv8Rf4Ucxs360QSBx6YGbJY9i785jZ5yZ7wN4GoUS8wKZ23mMlQ73whh9jme25EIpR7la-DSc_CERW7v83SSYLMGPdhamxofoPriRZ5h4TQ5-kheXnHyqVd_18IRrOip39PkZ1mvVq-0BKveZ542G47dbdkMpYGc8CCJbREqiRQZYgwXK44UfCV_ISIaOo6Vy6e1EpoNc5IX2A19JFx1Qa11w7uFt-vqJ8X6FCycmnojBpwusKkpF6lEmYeOpO2lgjKhtqHvVhcNvhfT4re2DpKZMWaFeippQYyHjvZw3m4NvdAt-tltW97sc9Ocz1c--_4Ym-Z_s6W242STg7HXtMXdgSZercG1owLvPV6E3vJj8Q7Em9FV3YTomPJJyymg2dV9XLCfI4YYtjBlCoYpJs-8oIjPNZJmz2f6RfskIE5qZmaF5rpmqucEP6UdIBs8cfBg7k9SWNL0Hu1ey_B4sl8elvg8sk1LyQrqxzjXViTJSrqNjX2ahCHOuLXjRmk-aNRDuxCRymLalHCowNQq04EknelLjlvxJ6LmxwU5Cnh5Qo18YpHvJZvrF85OIfx6niQU9Y6SdIEZ6EQVxbMHGgtV2Auj0lIlyC9ZbM06b6FhhucljYknzXAsed7cxrtGfVbLUx3OSEZzohwKBqzY2-_d1pJvDN-Zi7d9FH8H1j4NR-n472XkANzwiOTFNSuuwPDud64eYas7UhnFxBl-v2v5_AT2mh5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+species+distribution+models+across+space+and+time%3A+high+latitude+butterflies+and+recent+warming&rft.jtitle=Global+ecology+and+biogeography&rft.au=Eskildsen%2C+Anne&rft.au=Roux%2C+Peter+C&rft.au=Heikkinen%2C+Risto+K&rft.au=Hoye%2C+Toke+T&rft.date=2013-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=22&rft.issue=12&rft.spage=1293&rft_id=info:doi/10.1111%2Fgeb.12078&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3120939301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon