Testing species distribution models across space and time: high latitude butterflies and recent warming
Aim: To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional chan...
Saved in:
Published in | Global ecology and biogeography Vol. 22; no. 12; pp. 1293 - 1303 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.12.2013
John Wiley & Sons Ltd Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim: To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional changes at expanding range margins can be predicted accurately. Location: Finland Methods: Using 10-km resolution butterfly atlas data from two periods, 1992-99 (ii) and 2002-09 (t₂), with a significant between-period temperature increase, we modelled the effects of climatic warming on butterfly distributions with boosted regression trees (BRTs) and generalized additive models (GAMs). We evaluated model performance by using the split-sample approach with data from t₁ ('non-independent validation'), and then compared model projections based on data from t₁ with species' observed distributions in t₂ ('independent validation'). We compared climate-only SDMs to SDMs including land cover, soil type, or both. Finally, we related model performance to species traits and compared observed and predicted distributional shifts at northern range margins. Results: SDMs showed fair to good model fits when modelling butterfly distributions under climate change. Model performance was lower with independent compared with non-independent validation and improved when land cover and soil type variables were included, compared with climate-only models. SDMs performed less well for highly mobile species and for species with long flight seasons and large ranges. When forecasting changes at northern range margins, correlations between observed and predicted range shifts were predominantly low. Main conclusions: SDMs accurately describe current distributions of most species, yet their performance varies with species traits and the inclusion of land cover and soil type variables. Moreover, their ability to predict range shifts under climate change is limited, especially at the expanding edge. More tests with independent validations are needed to fully understand the predictive potential of SDMs across taxa and biomes. |
---|---|
AbstractList | Aim To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional changes at expanding range margins can be predicted accurately. Location Finland Methods Using 10-km resolution butterfly atlas data from two periods, 1992-99 (t1) and 2002-09 (t2), with a significant between-period temperature increase, we modelled the effects of climatic warming on butterfly distributions with boosted regression trees (BRTs) and generalized additive models (GAMs). We evaluated model performance by using the split-sample approach with data from t1 ('non-independent validation'), and then compared model projections based on data from t1 with species' observed distributions in t2 ('independent validation'). We compared climate-only SDMs to SDMs including land cover, soil type, or both. Finally, we related model performance to species traits and compared observed and predicted distributional shifts at northern range margins. Results SDMs showed fair to good model fits when modelling butterfly distributions under climate change. Model performance was lower with independent compared with non-independent validation and improved when land cover and soil type variables were included, compared with climate-only models. SDMs performed less well for highly mobile species and for species with long flight seasons and large ranges. When forecasting changes at northern range margins, correlations between observed and predicted range shifts were predominantly low. Main conclusions SDMs accurately describe current distributions of most species, yet their performance varies with species traits and the inclusion of land cover and soil type variables. Moreover, their ability to predict range shifts under climate change is limited, especially at the expanding edge. More tests with independent validations are needed to fully understand the predictive potential of SDMs across taxa and biomes. [PUBLICATION ABSTRACT] Aim To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional changes at expanding range margins can be predicted accurately. Location Finland Methods Using 10‐km resolution butterfly atlas data from two periods, 1992–99 (t1) and 2002–09 (t2), with a significant between‐period temperature increase, we modelled the effects of climatic warming on butterfly distributions with boosted regression trees (BRTs) and generalized additive models (GAMs). We evaluated model performance by using the split‐sample approach with data from t1 (‘non‐independent validation’), and then compared model projections based on data from t1 with species' observed distributions in t2 (‘independent validation’). We compared climate‐only SDMs to SDMs including land cover, soil type, or both. Finally, we related model performance to species traits and compared observed and predicted distributional shifts at northern range margins. Results SDMs showed fair to good model fits when modelling butterfly distributions under climate change. Model performance was lower with independent compared with non‐independent validation and improved when land cover and soil type variables were included, compared with climate‐only models. SDMs performed less well for highly mobile species and for species with long flight seasons and large ranges. When forecasting changes at northern range margins, correlations between observed and predicted range shifts were predominantly low. Main conclusions SDMs accurately describe current distributions of most species, yet their performance varies with species traits and the inclusion of land cover and soil type variables. Moreover, their ability to predict range shifts under climate change is limited, especially at the expanding edge. More tests with independent validations are needed to fully understand the predictive potential of SDMs across taxa and biomes. To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional changes at expanding range margins can be predicted accurately. Location Finland Methods Using 10-km resolution butterfly atlas data from two periods, 1992-99 (t sub(1)) and 2002-09 (t sub(2)), with a significant between-period temperature increase, we modelled the effects of climatic warming on butterfly distributions with boosted regression trees (BRTs) and generalized additive models (GAMs). We evaluated model performance by using the split-sample approach with data from t sub(1) ('non-independent validation'), and then compared model projections based on data from t sub(1) with species' observed distributions in t sub(2) ('independent validation'). We compared climate-only SDMs to SDMs including land cover, soil type, or both. Finally, we related model performance to species traits and compared observed and predicted distributional shifts at northern range margins. Results SDMs showed fair to good model fits when modelling butterfly distributions under climate change. Model performance was lower with independent compared with non-independent validation and improved when land cover and soil type variables were included, compared with climate-only models. SDMs performed less well for highly mobile species and for species with long flight seasons and large ranges. When forecasting changes at northern range margins, correlations between observed and predicted range shifts were predominantly low. Main conclusions SDMs accurately describe current distributions of most species, yet their performance varies with species traits and the inclusion of land cover and soil type variables. Moreover, their ability to predict range shifts under climate change is limited, especially at the expanding edge. More tests with independent validations are needed to fully understand the predictive potential of SDMs across taxa and biomes. Aim: To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional changes at expanding range margins can be predicted accurately. Location: Finland Methods: Using 10-km resolution butterfly atlas data from two periods, 1992-99 (ii) and 2002-09 (t₂), with a significant between-period temperature increase, we modelled the effects of climatic warming on butterfly distributions with boosted regression trees (BRTs) and generalized additive models (GAMs). We evaluated model performance by using the split-sample approach with data from t₁ ('non-independent validation'), and then compared model projections based on data from t₁ with species' observed distributions in t₂ ('independent validation'). We compared climate-only SDMs to SDMs including land cover, soil type, or both. Finally, we related model performance to species traits and compared observed and predicted distributional shifts at northern range margins. Results: SDMs showed fair to good model fits when modelling butterfly distributions under climate change. Model performance was lower with independent compared with non-independent validation and improved when land cover and soil type variables were included, compared with climate-only models. SDMs performed less well for highly mobile species and for species with long flight seasons and large ranges. When forecasting changes at northern range margins, correlations between observed and predicted range shifts were predominantly low. Main conclusions: SDMs accurately describe current distributions of most species, yet their performance varies with species traits and the inclusion of land cover and soil type variables. Moreover, their ability to predict range shifts under climate change is limited, especially at the expanding edge. More tests with independent validations are needed to fully understand the predictive potential of SDMs across taxa and biomes. |
Author | Høye, Toke T. le Roux, Peter C. Luoto, Miska Kissling, W. Daniel Pöyry, Juha Eskildsen, Anne Heikkinen, Risto K. Wisz, Mary S. |
Author_xml | – sequence: 1 givenname: Anne surname: Eskildsen fullname: Eskildsen, Anne email: aes@dmu.dk organization: Wildlife Ecology Group Department of Bioscience, Aarhus University, Grenåvej 14, DK-8410, Rønde, Denmark – sequence: 2 givenname: Peter C. surname: le Roux fullname: le Roux, Peter C. organization: Department of Geosciences and Geography, University of Helsinki, PO Box 65, FI-00014, Finland – sequence: 3 givenname: Risto K. surname: Heikkinen fullname: Heikkinen, Risto K. organization: Natural Environment Centre, Finnish Environment Institute, PO Box 140, FIN-00251, Helsinki, Finland – sequence: 4 givenname: Toke T. surname: Høye fullname: Høye, Toke T. organization: Wildlife Ecology Group Department of Bioscience, Aarhus University, Grenåvej 14, DK-8410, Rønde, Denmark – sequence: 5 givenname: W. Daniel surname: Kissling fullname: Kissling, W. Daniel organization: Ecoinformatics and Biodiversity Group, Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus, Denmark – sequence: 6 givenname: Juha surname: Pöyry fullname: Pöyry, Juha organization: Natural Environment Centre, Finnish Environment Institute, PO Box 140, FIN-00251, Helsinki, Finland – sequence: 7 givenname: Mary S. surname: Wisz fullname: Wisz, Mary S. organization: Arctic Research Centre, Aarhus University, DK-8000, Aarhus, Denmark – sequence: 8 givenname: Miska surname: Luoto fullname: Luoto, Miska organization: Department of Geosciences and Geography, University of Helsinki, PO Box 65, FI-00014, Finland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27909104$$DView record in Pascal Francis |
BookMark | eNp9kd1rFDEUxYNUsK0--AcIARH0Ydp8z4xvWuoqlPVl_cCXcCdzZ5t1PtYkQ-1_b7Zb96GgeUng_M7h5p4TcjROIxLynLMzns_5GpszLlhZPSLHXBlTVEJWR4e3-P6EnMS4YYxppc0xWa8wJj-uadyi8xhp62MKvpmTn0Y6TC32kYILU4wZAYcUxpYmP-Bbeu3X17SH5NPcIs2WhKHrdyE7JqDDMdEbCEPOf0oed9BHfHZ_n5IvHy5XFx-Lq8-LTxfvrgqntK4KUzVQ1lJzKXQjVCcrIw1UUDKG0PCGNdw41K1pO5RaNsBlaRCxU0pkWcpT8nqfuw3Trzn_zQ4-Oux7GHGao817UJprrU1GXz5AN9McxjxdplQtasEEz9Srewqig74LMDof7Tb4AcKtFWXNas5U5t7subtdBewOCGd2V43N1di7ajJ7_oB1PsFu4ymA7__nuPE93v472i4u3_91vNg7NjFN4eBQQptK13XWi72e-8bfBx3CT2tKWWr7bbmwP4RcVurryi7lHzbIumE |
CODEN | GEBIFS |
CitedBy_id | crossref_primary_10_1111_ddi_13498 crossref_primary_10_1007_s11284_015_1292_0 crossref_primary_10_3897_natureconservation_43_58997 crossref_primary_10_1002_ece3_7186 crossref_primary_10_1111_geb_12467 crossref_primary_10_3390_f11030302 crossref_primary_10_1016_j_ecoinf_2024_102656 crossref_primary_10_1111_gcb_16949 crossref_primary_10_1016_j_gecco_2020_e01083 crossref_primary_10_1080_24749508_2024_2433298 crossref_primary_10_1111_geb_13717 crossref_primary_10_1007_s40808_022_01485_5 crossref_primary_10_1016_j_ecoinf_2023_102247 crossref_primary_10_1007_s13157_022_01646_3 crossref_primary_10_1016_j_biocon_2017_05_015 crossref_primary_10_1016_j_gecco_2023_e02696 crossref_primary_10_1016_j_gecco_2021_e01488 crossref_primary_10_1111_ecog_05170 crossref_primary_10_1007_s10980_021_01386_5 crossref_primary_10_1016_j_biocon_2015_05_011 crossref_primary_10_1016_j_gecco_2024_e03305 crossref_primary_10_1111_jbi_12490 crossref_primary_10_1093_aobpla_plac014 crossref_primary_10_1016_j_tree_2018_08_001 crossref_primary_10_1111_geb_12579 crossref_primary_10_1371_journal_pone_0159941 crossref_primary_10_1007_s10531_019_01706_x crossref_primary_10_1016_j_tree_2017_03_008 crossref_primary_10_1016_j_ecss_2019_106440 crossref_primary_10_1111_rec_13492 crossref_primary_10_1111_csp2_13047 crossref_primary_10_1007_s11356_023_28963_2 crossref_primary_10_18475_cjos_v53i1_a3 crossref_primary_10_1002_ece3_2592 crossref_primary_10_1002_fee_2783 crossref_primary_10_1111_ecog_01557 crossref_primary_10_1007_s00300_018_2370_x crossref_primary_10_1017_S0959270917000375 crossref_primary_10_1016_j_gecco_2024_e03092 crossref_primary_10_1038_s41559_020_1198_2 crossref_primary_10_1016_j_ecolmodel_2018_02_002 crossref_primary_10_15446_abc_v27n3_93485 crossref_primary_10_1016_j_ecoser_2013_11_004 crossref_primary_10_1016_j_scitotenv_2022_159989 crossref_primary_10_1111_ddi_12460 crossref_primary_10_1111_ddi_13687 crossref_primary_10_1002_eap_1556 crossref_primary_10_1002_ece3_8069 crossref_primary_10_3354_meps11703 crossref_primary_10_1111_ddi_12634 crossref_primary_10_3390_jof10010038 crossref_primary_10_1016_j_gecco_2022_e02120 crossref_primary_10_1093_ee_nvaa081 crossref_primary_10_1002_aqc_3711 crossref_primary_10_1111_1744_7917_12585 crossref_primary_10_7717_peerj_2185 crossref_primary_10_1111_geb_12553 crossref_primary_10_3897_neobiota_58_33118 crossref_primary_10_1016_j_biocon_2014_01_041 crossref_primary_10_1007_s10584_017_2082_1 crossref_primary_10_1111_geb_12545 crossref_primary_10_1007_s13364_018_0384_y crossref_primary_10_1073_pnas_2218280120 crossref_primary_10_1038_s41597_022_01473_5 crossref_primary_10_1002_ece3_1162 crossref_primary_10_1002_ece3_10481 crossref_primary_10_1002_ece3_7663 crossref_primary_10_1111_ecog_03235 crossref_primary_10_15446_caldasia_v44n3_98785 crossref_primary_10_1016_j_ecolind_2021_107947 crossref_primary_10_1111_faf_12330 crossref_primary_10_1016_j_gecco_2023_e02377 crossref_primary_10_1080_11956860_2021_1888522 crossref_primary_10_1002_jwmg_70007 crossref_primary_10_1038_s41598_017_04871_7 crossref_primary_10_1111_1365_2664_12224 crossref_primary_10_1371_journal_pone_0256918 crossref_primary_10_1002_ece3_10778 crossref_primary_10_3897_rio_3_e14939 crossref_primary_10_1371_journal_pone_0209808 crossref_primary_10_1016_j_actao_2016_03_006 crossref_primary_10_1016_j_cois_2020_06_002 crossref_primary_10_1016_j_foreco_2018_10_007 crossref_primary_10_1038_s41598_019_40766_5 crossref_primary_10_1093_mollus_eyv018 crossref_primary_10_1111_aec_12569 crossref_primary_10_1007_s10722_023_01739_w crossref_primary_10_1016_j_gecco_2024_e03236 crossref_primary_10_1007_s10531_020_02018_1 crossref_primary_10_1038_s41598_022_07386_y crossref_primary_10_1670_15_089 crossref_primary_10_1002_ece3_11513 crossref_primary_10_1007_s10750_015_2280_7 crossref_primary_10_1111_ddi_12303 crossref_primary_10_1007_s00267_022_01707_7 crossref_primary_10_1007_s11252_020_01041_y crossref_primary_10_1038_s41598_024_82164_6 crossref_primary_10_1111_nyas_12484 crossref_primary_10_1111_ecog_01998 crossref_primary_10_3389_fevo_2024_1477480 crossref_primary_10_1111_icad_12814 crossref_primary_10_1038_s41598_020_73262_2 crossref_primary_10_1098_rspb_2014_2903 crossref_primary_10_1134_S1995425518060148 crossref_primary_10_1111_gcb_17059 crossref_primary_10_1016_j_landurbplan_2021_104101 crossref_primary_10_1111_jav_01527 crossref_primary_10_1371_journal_pone_0128295 crossref_primary_10_1371_journal_pone_0269179 crossref_primary_10_1016_j_gecco_2024_e03065 crossref_primary_10_1111_jen_13349 crossref_primary_10_1038_s41467_023_42737_x crossref_primary_10_1111_jbi_12937 crossref_primary_10_1016_j_jglr_2015_09_008 crossref_primary_10_1002_ecs2_4885 crossref_primary_10_1016_j_biocon_2016_07_018 crossref_primary_10_1111_gcb_13243 crossref_primary_10_1007_s10329_024_01152_6 crossref_primary_10_1890_13_2289_1 crossref_primary_10_1016_j_cois_2016_07_003 |
Cites_doi | 10.1111/j.1600-0587.2009.05832.x 10.1111/j.2006.0906-7590.04596.x 10.1111/j.2041-210X.2010.00036.x 10.1017/S0376892997000088 10.1007/s10531-007-9287-y 10.1111/j.1365-2699.2005.01443.x 10.1111/j.1466-822X.2005.00186.x 10.1111/j.1466-8238.2006.00262.x 10.1890/03-0817 10.2307/3236170 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E 10.1111/j.1466-8238.2007.00345.x 10.2307/2389612 10.1023/A:1024189828387 10.1038/nclimate1347 10.5751/ES-03089-150108 10.2307/1941558 10.1111/j.1461-0248.2011.01620.x 10.1111/j.1466-8238.2007.00298.x 10.2307/2529310 10.1038/35016000 10.1111/j.0030-1299.2004.12958.x 10.1046/j.1466-822X.2003.00042.x 10.1111/j.1365-2664.2006.01214.x 10.1111/j.1442-9993.2009.02044.x 10.1093/oso/9780198526407.001.0001 10.1111/j.1365-2699.2009.02088.x 10.1111/j.1365-2699.2005.01395.x 10.1111/j.2006.0906-7590.04685.x 10.1111/j.1365-2656.2008.01390.x 10.1126/science.1131758 10.1111/j.1365-2486.2005.01000.x 10.1016/S1474-7065(02)00140-7 10.1002/joc.2046 10.1890/08-1304.1 10.1111/j.1365-2486.2006.01256.x 10.1111/j.1600-0587.2011.06999.x 10.1111/j.1365-2699.2012.02737.x 10.1111/j.1600-0587.2011.07147.x 10.1111/j.1365-2486.2008.01789.x 10.1177/0309133306071957 10.1111/j.0906-7590.2004.03740.x 10.1111/j.1466-8238.2007.00373.x 10.1201/9781420010404 10.1038/21181 10.1890/06-0539 10.1007/s10531-009-9584-8 |
ContentType | Journal Article |
Copyright | Copyright © 2013 John Wiley & Sons Ltd. 2013 John Wiley & Sons Ltd 2014 INIST-CNRS Copyright © 2013 John Wiley & Sons Ltd |
Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons Ltd. – notice: 2013 John Wiley & Sons Ltd – notice: 2014 INIST-CNRS – notice: Copyright © 2013 John Wiley & Sons Ltd |
DBID | BSCLL AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K |
DOI | 10.1111/geb.12078 |
DatabaseName | Istex CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Entomology Abstracts Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 1466-822X |
EndPage | 1303 |
ExternalDocumentID | 3120939301 27909104 10_1111_geb_12078 GEB12078 42568599 ark_67375_WNG_Z23N84VT_N |
Genre | article |
GeographicLocations | Scandinavia Europe Finland |
GeographicLocations_xml | – name: Finland |
GrantInformation_xml | – fundername: Nordforsk TFI Network ‘Effect Studies and Adaptation to Climate Change’ (2011–2014) – fundername: Danish Council for Independent Research | Natural Sciences funderid: 11‐106163 – fundername: Greenland Climate Research Centre funderid: 6505 – fundername: 15. Juni Fonden – fundername: Academy of Finland funderid: 1140873 |
GroupedDBID | -~X .3N .GA .Y3 0R~ 10A 1OC 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABSQW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACHIC ACPOU ACPRK ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGUYK AGYGG AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 FEDTE G-S GODZA GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WXSBR XG1 ZZTAW ~KM AAMMB AEFGJ AGXDD AIDQK AIDYY AEUQT AFPWT DOOOF EQZMY ESX JSODD WRC AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K |
ID | FETCH-LOGICAL-c4558-68ba79351325b24f38636a8a700eab1b0b16ce5d6dfe353ba1376eeef442b1b33 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Fri Jul 11 01:35:32 EDT 2025 Sun Jul 13 04:49:08 EDT 2025 Mon Jul 21 09:13:25 EDT 2025 Tue Jul 01 01:46:04 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Wed Jan 22 16:17:26 EST 2025 Sun Aug 24 12:10:36 EDT 2025 Sun Jun 29 03:14:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | High latitude Warming Insecta species distribution models species traits Biogeography soil type Ecology Expanding range margin Land use Dynamical climatology Climate change Soils Spatial distribution global warming Geographic distribution Arthropoda Global change Lepidoptera Finland Models Invertebrata Distribution range validation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4558-68ba79351325b24f38636a8a700eab1b0b16ce5d6dfe353ba1376eeef442b1b33 |
Notes | Figure S1 Relationships between the accuracy of generalized additive models (GAM) and boosted regression tree (BRT) models validated with independent and non-independent observations, evaluated with area under the curve of a receiver operating characteristic plot (AUC) and true skill statistic (TSS). Figures in the left column are based on climate-only models, while figures in the right column are based on combined climate-soil-land-cover models. Rho (ρ) values for Spearman's rank correlations (P < 0.001 for all), as well as linear regression fits are shown. Dotted lines indicate the 1:1 relationship. A drop in ρ values between climate-only models (left) and combined climate-soil-land-cover models (right) indicates that some species distributions are better predicted when using independent validation in combination with more complex models. Danish Council for Independent Research | Natural Sciences - No. 11-106163 Academy of Finland - No. 1140873 Greenland Climate Research Centre - No. 6505 ark:/67375/WNG-Z23N84VT-N ArticleID:GEB12078 istex:076066330986A5D0E439209F9DD62F3FFFAE60D0 Nordforsk TFI Network 'Effect Studies and Adaptation to Climate Change' (2011-2014) 15. Juni Fonden ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/geb.12078 |
PQID | 1449292021 |
PQPubID | 1066347 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1464515556 proquest_journals_1449292021 pascalfrancis_primary_27909104 crossref_primary_10_1111_geb_12078 crossref_citationtrail_10_1111_geb_12078 wiley_primary_10_1111_geb_12078_GEB12078 jstor_primary_42568599 istex_primary_ark_67375_WNG_Z23N84VT_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2013 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: December 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationTitleAlternate | Global Ecology and Biogeography |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons Ltd Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Blackwell – name: Wiley Subscription Services, Inc |
References | Sinclair, S.J., White, M.D. & Newell, G.R. (2010) How useful are species distribution models for managing biodiversity under future climates? Ecology and Society, 15, 8. Kharouba, H.M., Algar, A.C. & Kerr, J.T. (2009) Historically calibrated predictions of butterfly species' range shift using global change as a pseudo-experiment. Ecology, 90, 2213-2222. Wiens, J.A. (1989) Spatial scaling in ecology. Functional Ecology, 3, 385-397. Swets, J. (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293. Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. Luoto, M. (2007) The role of land cover in bioclimatic models depends on spatial resolution. Global Ecology and Biogeography, 16, 34-42. Angert, A.L., Crozier, L.G., Rissler, L.J., Gilman, S.E., Tewksbury, J.J. & Chunco, A.J. (2011) Do species' traits predict recent shifts at expanding range edges? Ecology Letters, 14, 677-689. Fitzpatrick, M.C. & Hargrove, W.W. (2009) The projection of species distribution models and the problem of non-analog climate. Biodiversity and Conservation, 18, 2255-2261. Pöyry, J., Luoto, M., Heikkinen, R.K., Kuussaari, M. & Saarinen, K. (2009) Species traits explain recent range shifts of Finnish butterflies. Global Change Biology, 15, 732-743. Venäläinen, A. & Heikinheimo, M. (2002) Meteorological data for agricultural applications. Physics and Chemistry of the Earth, Parts A/B/C, 27, 1045-1050. Prentice, I.C., Bartlein, P.J. & Thompson, W., III (1991) Vegetation and climate change in Eastern North America since the last glacial maximum. Ecology, 72, 2038-2056. Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330-342. Heikkinen, R.K., Marmion, M. & Luoto, M. (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography, 35, 276-288. Araújo, M.B., Pearson, R.G., Thuiller, W. & Erhard, M. (2005) Validation of species-climate impact models under climate change. Global Change Biology, 11, 1504-1513. Roberts, D.R. & Hamann, A. (2012) Method selection for species distribution modelling: are temporally or spatially independent evaluations necessary? Ecography, 35, 792-802. White, P.J.T. & Kerr, J.T. (2007) Human impacts on environment-diversity relationships: evidence for biotic homogenization from butterfly species richness patterns. Global Ecology and Biogeography, 16, 290-299. Tietäväinen, H. (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. International Journal of Climatology, 30, 2247-2256. Yee, T.W. & Mitchell, N.D. (1991) Generalized additive models in plant ecology. Journal of Vegetation Science, 2, 587-602. Luoto, M., Pöyry, J., Heikkinen, R.K. & Saarinen, K. (2005) Uncertainty of bioclimate envelope models based on the geographical distribution of species. Global Ecology and Biogeography, 14, 575-584. Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272-2281. Titeux, N., Maes, D., Marmion, M., Luoto, M. & Heikkinen, R.K. (2009) Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe. Journal of Biogeography, 36, 1459-1473. Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W.J., Thomas, J.A. & Warren, M. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583. Heikkinen, R.K., Luoto, M., Virkkala, R., Pearson, R.G. & Korber, J.-H. (2007) Biotic interactions improve prediction of boreal bird distributions at macro-scales. Global Ecology and Biogeography, 16, 754-763. Hewitt, G. (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913. Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. Komonen, A., Grapputo, A., Kaitala, V., Kotiaho, J.S. & Päivinen, J. (2004) The role of niche breadth, resource availability and range position on the life history of butterflies. Oikos, 105, 41-54. White, P. & Kerr, J.T. (2006) Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century. Ecography, 29, 908-918. Saarinen, K., Lahti, T. & Marttila, O. (2003) Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991-2000. Biodiversity and Conservation, 12, 2147-2159. Gaston, K.J. (2003) The structure and dynamics of geographic ranges, 1st edn. Oxford University Press, Oxford. Landis, J.R. & Koch, G.G. (1977) The measurement of observer agreement for categorical data. Biometrics, 33, 159-174. Pöyry, J., Luoto, M., Heikkinen, R.K. & Saarinen, K. (2008) Species traits are associated with the quality of bioclimatic models. Global Ecology and Biogeography, 17, 403-414. Luoto, M., Heikkinen, R.K., Pöyry, J. & Saarinen, K. (2006) Determinants of the biogeographical distribution of butterflies in boreal regions. Journal of Biogeography, 33, 1764-1778. Devictor, V., van Swaay, C., Brereton, T. et al. (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2, 121-124. Raynaud, X. (2004) Soil characteristics play a key role in modeling nutrient competition in plant communities. Ecology, 85, 2200-2214. Yates, C.J., Elith, J., Latimer, A.M., Le Maitre, D., Midgley, G.F., Schurr, F.M. & West, A.G. (2010) Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: opportunities and challenges. Austral Ecology, 35, 374-391. Schurr, F.M., Pagel, J., Cabral, J.S., Groeneveld, J., Bykova, O., O'Hara, R.B., Hartig, F., Kissling, W.D., Linder, H.P., Midgely, G.F., Schröder, B., Singer, A. & Zimmermann, N. (2012) How to understand species' niches and range dynamics: a demographic research agenda for biogeography. Journal of Biogeography, 12, 2146-2162. Coudun, C., Gegout, J.-C., Piedallu, C. & Rameau, J.-C. (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. Journal of Biogeography, 33, 1750-1763. Wood, S.N. (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton, FL. Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. Mitikka, V., Heikkinen, R.K., Luoto, M., Araujo, M.B., Saarinen, K., Poyry, J. & Fronzek, S. (2008) Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models. Biodiversity and Conservation, 17, 623-641. Heikkinen, R.K., Luoto, M., Araújo, M.B., Virkkala, R., Thuiller, W. & Sykes, M.T. (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30, 751-777. Araújo, M.B. & Rahbek, C. (2006) How does climate change affect biodiversity? Science, 313, 1396-1397. Algar, A.C., Kharouba, H.M., Young, E.R. & Kerr, J.T. (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 32, 22-33. Menéndez, R., Megías, A.G., Hill, J.K., Braschler, B., Willis, S.G., Collingham, Y., Fox, R., Roy, D.B. & Thomas, C.D. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470. Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371. Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49. Pearson, R.G., Dawson, T.P. & Liu, C. (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography, 27, 285-298. 1989; 3 2004; 85 1991; 2 2006; 30 2004; 105 2010; 15 2010; 35 2006; 12 2004; 27 2006; 33 1997; 24 1991; 72 2008; 17 2006; 273 2006 1994 2005 2008; 77 2003 1988; 240 2011; 14 2006; 313 2012; 35 2012; 12 2007; 16 2003; 12 2002; 27 2009; 36 2012; 2 2009; 32 2010; 1 2006; 43 2000; 405 2009; 90 2006; 29 1977; 33 1999; 399 2005; 11 2010; 30 2009; 15 2009; 18 1988 2005; 14 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 Kattsov V.M. (e_1_2_6_23_1) 2005 Schurr F.M. (e_1_2_6_42_1) 2012; 12 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_40_1 Gaston K.J. (e_1_2_6_16_1) 2003 e_1_2_6_8_1 e_1_2_6_4_1 Hill J.K. (e_1_2_6_22_1) 2003 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. – reference: Menéndez, R., Megías, A.G., Hill, J.K., Braschler, B., Willis, S.G., Collingham, Y., Fox, R., Roy, D.B. & Thomas, C.D. (2006) Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470. – reference: Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W.J., Thomas, J.A. & Warren, M. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583. – reference: Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. – reference: Landis, J.R. & Koch, G.G. (1977) The measurement of observer agreement for categorical data. Biometrics, 33, 159-174. – reference: Raynaud, X. (2004) Soil characteristics play a key role in modeling nutrient competition in plant communities. Ecology, 85, 2200-2214. – reference: Kharouba, H.M., Algar, A.C. & Kerr, J.T. (2009) Historically calibrated predictions of butterfly species' range shift using global change as a pseudo-experiment. Ecology, 90, 2213-2222. – reference: Saarinen, K., Lahti, T. & Marttila, O. (2003) Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991-2000. Biodiversity and Conservation, 12, 2147-2159. – reference: Araújo, M.B., Pearson, R.G., Thuiller, W. & Erhard, M. (2005) Validation of species-climate impact models under climate change. Global Change Biology, 11, 1504-1513. – reference: Wiens, J.A. (1989) Spatial scaling in ecology. Functional Ecology, 3, 385-397. – reference: Komonen, A., Grapputo, A., Kaitala, V., Kotiaho, J.S. & Päivinen, J. (2004) The role of niche breadth, resource availability and range position on the life history of butterflies. Oikos, 105, 41-54. – reference: Roberts, D.R. & Hamann, A. (2012) Method selection for species distribution modelling: are temporally or spatially independent evaluations necessary? Ecography, 35, 792-802. – reference: Luoto, M. (2007) The role of land cover in bioclimatic models depends on spatial resolution. Global Ecology and Biogeography, 16, 34-42. – reference: Mitikka, V., Heikkinen, R.K., Luoto, M., Araujo, M.B., Saarinen, K., Poyry, J. & Fronzek, S. (2008) Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models. Biodiversity and Conservation, 17, 623-641. – reference: Devictor, V., van Swaay, C., Brereton, T. et al. (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2, 121-124. – reference: Yates, C.J., Elith, J., Latimer, A.M., Le Maitre, D., Midgley, G.F., Schurr, F.M. & West, A.G. (2010) Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: opportunities and challenges. Austral Ecology, 35, 374-391. – reference: Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371. – reference: Luoto, M., Heikkinen, R.K., Pöyry, J. & Saarinen, K. (2006) Determinants of the biogeographical distribution of butterflies in boreal regions. Journal of Biogeography, 33, 1764-1778. – reference: Heikkinen, R.K., Luoto, M., Virkkala, R., Pearson, R.G. & Korber, J.-H. (2007) Biotic interactions improve prediction of boreal bird distributions at macro-scales. Global Ecology and Biogeography, 16, 754-763. – reference: Heikkinen, R.K., Luoto, M., Araújo, M.B., Virkkala, R., Thuiller, W. & Sykes, M.T. (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30, 751-777. – reference: Pearson, R.G., Dawson, T.P. & Liu, C. (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography, 27, 285-298. – reference: Yee, T.W. & Mitchell, N.D. (1991) Generalized additive models in plant ecology. Journal of Vegetation Science, 2, 587-602. – reference: Araújo, M.B. & Rahbek, C. (2006) How does climate change affect biodiversity? Science, 313, 1396-1397. – reference: Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49. – reference: Gaston, K.J. (2003) The structure and dynamics of geographic ranges, 1st edn. Oxford University Press, Oxford. – reference: Schurr, F.M., Pagel, J., Cabral, J.S., Groeneveld, J., Bykova, O., O'Hara, R.B., Hartig, F., Kissling, W.D., Linder, H.P., Midgely, G.F., Schröder, B., Singer, A. & Zimmermann, N. (2012) How to understand species' niches and range dynamics: a demographic research agenda for biogeography. Journal of Biogeography, 12, 2146-2162. – reference: Venäläinen, A. & Heikinheimo, M. (2002) Meteorological data for agricultural applications. Physics and Chemistry of the Earth, Parts A/B/C, 27, 1045-1050. – reference: Pöyry, J., Luoto, M., Heikkinen, R.K., Kuussaari, M. & Saarinen, K. (2009) Species traits explain recent range shifts of Finnish butterflies. Global Change Biology, 15, 732-743. – reference: Swets, J. (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293. – reference: Angert, A.L., Crozier, L.G., Rissler, L.J., Gilman, S.E., Tewksbury, J.J. & Chunco, A.J. (2011) Do species' traits predict recent shifts at expanding range edges? Ecology Letters, 14, 677-689. – reference: Wood, S.N. (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton, FL. – reference: Coudun, C., Gegout, J.-C., Piedallu, C. & Rameau, J.-C. (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. Journal of Biogeography, 33, 1750-1763. – reference: Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330-342. – reference: Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272-2281. – reference: Pöyry, J., Luoto, M., Heikkinen, R.K. & Saarinen, K. (2008) Species traits are associated with the quality of bioclimatic models. Global Ecology and Biogeography, 17, 403-414. – reference: Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. – reference: Heikkinen, R.K., Marmion, M. & Luoto, M. (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography, 35, 276-288. – reference: Hewitt, G. (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913. – reference: Fitzpatrick, M.C. & Hargrove, W.W. (2009) The projection of species distribution models and the problem of non-analog climate. Biodiversity and Conservation, 18, 2255-2261. – reference: Luoto, M., Pöyry, J., Heikkinen, R.K. & Saarinen, K. (2005) Uncertainty of bioclimate envelope models based on the geographical distribution of species. Global Ecology and Biogeography, 14, 575-584. – reference: Prentice, I.C., Bartlein, P.J. & Thompson, W., III (1991) Vegetation and climate change in Eastern North America since the last glacial maximum. Ecology, 72, 2038-2056. – reference: Algar, A.C., Kharouba, H.M., Young, E.R. & Kerr, J.T. (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 32, 22-33. – reference: Sinclair, S.J., White, M.D. & Newell, G.R. (2010) How useful are species distribution models for managing biodiversity under future climates? Ecology and Society, 15, 8. – reference: White, P. & Kerr, J.T. (2006) Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century. Ecography, 29, 908-918. – reference: Titeux, N., Maes, D., Marmion, M., Luoto, M. & Heikkinen, R.K. (2009) Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe. Journal of Biogeography, 36, 1459-1473. – reference: White, P.J.T. & Kerr, J.T. (2007) Human impacts on environment-diversity relationships: evidence for biotic homogenization from butterfly species richness patterns. Global Ecology and Biogeography, 16, 290-299. – reference: Tietäväinen, H. (2010) Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. International Journal of Climatology, 30, 2247-2256. – volume: 16 start-page: 754 year: 2007 end-page: 763 article-title: Biotic interactions improve prediction of boreal bird distributions at macro‐scales publication-title: Global Ecology and Biogeography – volume: 43 start-page: 1223 year: 2006 end-page: 1232 article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) publication-title: Journal of Applied Ecology – volume: 14 start-page: 575 year: 2005 end-page: 584 article-title: Uncertainty of bioclimate envelope models based on the geographical distribution of species publication-title: Global Ecology and Biogeography – year: 1994 article-title: CORINE land cover technical guide – volume: 77 start-page: 802 year: 2008 end-page: 813 article-title: A working guide to boosted regression trees publication-title: Journal of Animal Ecology – volume: 72 start-page: 2038 year: 1991 end-page: 2056 article-title: Vegetation and climate change in Eastern North America since the last glacial maximum publication-title: Ecology – volume: 12 start-page: 2272 year: 2006 end-page: 2281 article-title: The ability of climate envelope models to predict the effect of climate change on species distributions publication-title: Global Change Biology – volume: 3 start-page: 385 year: 1989 end-page: 397 article-title: Spatial scaling in ecology publication-title: Functional Ecology – volume: 405 start-page: 907 year: 2000 end-page: 913 article-title: The genetic legacy of the Quaternary ice ages publication-title: Nature – volume: 27 start-page: 285 year: 2004 end-page: 298 article-title: Modelling species distributions in Britain: a hierarchical integration of climate and land‐cover data publication-title: Ecography – volume: 12 start-page: 2147 year: 2003 end-page: 2159 article-title: Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991–2000 publication-title: Biodiversity and Conservation – volume: 105 start-page: 41 year: 2004 end-page: 54 article-title: The role of niche breadth, resource availability and range position on the life history of butterflies publication-title: Oikos – volume: 29 start-page: 129 year: 2006 end-page: 151 article-title: Novel methods improve prediction of species' distributions from occurrence data publication-title: Ecography – volume: 35 start-page: 276 year: 2012 end-page: 288 article-title: Does the interpolation accuracy of species distribution models come at the expense of transferability? publication-title: Ecography – volume: 313 start-page: 1396 year: 2006 end-page: 1397 article-title: How does climate change affect biodiversity? publication-title: Science – start-page: 149 year: 2003 end-page: 167 – volume: 33 start-page: 1764 year: 2006 end-page: 1778 article-title: Determinants of the biogeographical distribution of butterflies in boreal regions publication-title: Journal of Biogeography – volume: 18 start-page: 2255 year: 2009 end-page: 2261 article-title: The projection of species distribution models and the problem of non‐analog climate publication-title: Biodiversity and Conservation – volume: 17 start-page: 623 year: 2008 end-page: 641 article-title: Predicting range expansion of the map butterfly in Northern Europe using bioclimatic models publication-title: Biodiversity and Conservation – volume: 273 start-page: 1465 year: 2006 end-page: 1470 article-title: Species richness changes lag behind climate change publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 85 start-page: 2200 year: 2004 end-page: 2214 article-title: Soil characteristics play a key role in modeling nutrient competition in plant communities publication-title: Ecology – volume: 16 start-page: 290 year: 2007 end-page: 299 article-title: Human impacts on environment–diversity relationships: evidence for biotic homogenization from butterfly species richness patterns publication-title: Global Ecology and Biogeography – volume: 17 start-page: 403 year: 2008 end-page: 414 article-title: Species traits are associated with the quality of bioclimatic models publication-title: Global Ecology and Biogeography – volume: 240 start-page: 1285 year: 1988 end-page: 1293 article-title: Measuring the accuracy of diagnostic systems publication-title: Science – volume: 29 start-page: 908 year: 2006 end-page: 918 article-title: Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century publication-title: Ecography – volume: 15 start-page: 8 year: 2010 article-title: How useful are species distribution models for managing biodiversity under future climates? publication-title: Ecology and Society – volume: 32 start-page: 22 year: 2009 end-page: 33 article-title: Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods publication-title: Ecography – volume: 14 start-page: 677 year: 2011 end-page: 689 article-title: Do species' traits predict recent shifts at expanding range edges? publication-title: Ecology Letters – volume: 30 start-page: 751 year: 2006 end-page: 777 article-title: Methods and uncertainties in bioclimatic envelope modelling under climate change publication-title: Progress in Physical Geography – start-page: 99 year: 2005 end-page: 150 – volume: 30 start-page: 2247 year: 2010 end-page: 2256 article-title: Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data publication-title: International Journal of Climatology – volume: 399 start-page: 579 year: 1999 end-page: 583 article-title: Poleward shifts in geographical ranges of butterfly species associated with regional warming publication-title: Nature – volume: 24 start-page: 38 year: 1997 end-page: 49 article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models publication-title: Environmental Conservation – volume: 27 start-page: 1045 year: 2002 end-page: 1050 article-title: Meteorological data for agricultural applications publication-title: Physics and Chemistry of the Earth, Parts A/B/C – year: 2003 – volume: 33 start-page: 159 year: 1977 end-page: 174 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 1 start-page: 330 year: 2010 end-page: 342 article-title: The art of modelling range‐shifting species publication-title: Methods in Ecology and Evolution – volume: 11 start-page: 1504 year: 2005 end-page: 1513 article-title: Validation of species–climate impact models under climate change publication-title: Global Change Biology – volume: 90 start-page: 2213 year: 2009 end-page: 2222 article-title: Historically calibrated predictions of butterfly species' range shift using global change as a pseudo‐experiment publication-title: Ecology – year: 1988 – volume: 12 start-page: 361 year: 2003 end-page: 371 article-title: Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? publication-title: Global Ecology and Biogeography – volume: 15 start-page: 732 year: 2009 end-page: 743 article-title: Species traits explain recent range shifts of Finnish butterflies publication-title: Global Change Biology – volume: 12 start-page: 2146 year: 2012 end-page: 2162 article-title: How to understand species' niches and range dynamics: a demographic research agenda for biogeography publication-title: Journal of Biogeography – year: 2006 – volume: 33 start-page: 1750 year: 2006 end-page: 1763 article-title: Soil nutritional factors improve models of plant species distribution: an illustration with (L.) in France publication-title: Journal of Biogeography – volume: 35 start-page: 374 year: 2010 end-page: 391 article-title: Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: opportunities and challenges publication-title: Austral Ecology – volume: 16 start-page: 34 year: 2007 end-page: 42 article-title: The role of land cover in bioclimatic models depends on spatial resolution publication-title: Global Ecology and Biogeography – volume: 2 start-page: 121 year: 2012 end-page: 124 article-title: Differences in the climatic debts of birds and butterflies at a continental scale publication-title: Nature Climate Change – volume: 35 start-page: 792 year: 2012 end-page: 802 article-title: Method selection for species distribution modelling: are temporally or spatially independent evaluations necessary? publication-title: Ecography – volume: 36 start-page: 1459 year: 2009 end-page: 1473 article-title: Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe publication-title: Journal of Biogeography – volume: 2 start-page: 587 year: 1991 end-page: 602 article-title: Generalized additive models in plant ecology publication-title: Journal of Vegetation Science – ident: e_1_2_6_2_1 doi: 10.1111/j.1600-0587.2009.05832.x – ident: e_1_2_6_10_1 doi: 10.1111/j.2006.0906-7590.04596.x – ident: e_1_2_6_12_1 doi: 10.1111/j.2041-210X.2010.00036.x – ident: e_1_2_6_14_1 doi: 10.1017/S0376892997000088 – ident: e_1_2_6_31_1 doi: 10.1007/s10531-007-9287-y – ident: e_1_2_6_8_1 doi: 10.1111/j.1365-2699.2005.01443.x – ident: e_1_2_6_28_1 doi: 10.1111/j.1466-822X.2005.00186.x – ident: e_1_2_6_27_1 doi: 10.1111/j.1466-8238.2006.00262.x – ident: e_1_2_6_38_1 doi: 10.1890/03-0817 – ident: e_1_2_6_53_1 doi: 10.2307/3236170 – ident: e_1_2_6_44_1 doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E – ident: e_1_2_6_18_1 doi: 10.1111/j.1466-8238.2007.00345.x – ident: e_1_2_6_50_1 doi: 10.2307/2389612 – ident: e_1_2_6_41_1 doi: 10.1023/A:1024189828387 – ident: e_1_2_6_9_1 doi: 10.1038/nclimate1347 – ident: e_1_2_6_43_1 doi: 10.5751/ES-03089-150108 – ident: e_1_2_6_37_1 doi: 10.2307/1941558 – ident: e_1_2_6_4_1 doi: 10.1111/j.1461-0248.2011.01620.x – ident: e_1_2_6_49_1 doi: 10.1111/j.1466-8238.2007.00298.x – ident: e_1_2_6_26_1 doi: 10.2307/2529310 – ident: e_1_2_6_20_1 doi: 10.1038/35016000 – ident: e_1_2_6_25_1 doi: 10.1111/j.0030-1299.2004.12958.x – ident: e_1_2_6_33_1 doi: 10.1046/j.1466-822X.2003.00042.x – ident: e_1_2_6_3_1 doi: 10.1111/j.1365-2664.2006.01214.x – ident: e_1_2_6_52_1 doi: 10.1111/j.1442-9993.2009.02044.x – volume-title: The structure and dynamics of geographic ranges year: 2003 ident: e_1_2_6_16_1 doi: 10.1093/oso/9780198526407.001.0001 – ident: e_1_2_6_46_1 doi: 10.1111/j.1365-2699.2009.02088.x – ident: e_1_2_6_29_1 doi: 10.1111/j.1365-2699.2005.01395.x – ident: e_1_2_6_48_1 doi: 10.1111/j.2006.0906-7590.04685.x – start-page: 149 volume-title: Butterflies: ecology and evolution taking flight year: 2003 ident: e_1_2_6_22_1 – ident: e_1_2_6_11_1 doi: 10.1111/j.1365-2656.2008.01390.x – ident: e_1_2_6_5_1 doi: 10.1126/science.1131758 – ident: e_1_2_6_6_1 doi: 10.1111/j.1365-2486.2005.01000.x – ident: e_1_2_6_39_1 – ident: e_1_2_6_7_1 – ident: e_1_2_6_47_1 doi: 10.1016/S1474-7065(02)00140-7 – ident: e_1_2_6_45_1 doi: 10.1002/joc.2046 – ident: e_1_2_6_24_1 doi: 10.1890/08-1304.1 – ident: e_1_2_6_21_1 doi: 10.1111/j.1365-2486.2006.01256.x – start-page: 99 volume-title: Arctic climate impact assessment year: 2005 ident: e_1_2_6_23_1 – ident: e_1_2_6_19_1 doi: 10.1111/j.1600-0587.2011.06999.x – volume: 12 start-page: 2146 year: 2012 ident: e_1_2_6_42_1 article-title: How to understand species' niches and range dynamics: a demographic research agenda for biogeography publication-title: Journal of Biogeography doi: 10.1111/j.1365-2699.2012.02737.x – ident: e_1_2_6_40_1 doi: 10.1111/j.1600-0587.2011.07147.x – ident: e_1_2_6_36_1 doi: 10.1111/j.1365-2486.2008.01789.x – ident: e_1_2_6_17_1 doi: 10.1177/0309133306071957 – ident: e_1_2_6_13_1 – ident: e_1_2_6_34_1 doi: 10.1111/j.0906-7590.2004.03740.x – ident: e_1_2_6_35_1 doi: 10.1111/j.1466-8238.2007.00373.x – ident: e_1_2_6_51_1 doi: 10.1201/9781420010404 – ident: e_1_2_6_32_1 doi: 10.1038/21181 – ident: e_1_2_6_30_1 doi: 10.1890/06-0539 – ident: e_1_2_6_15_1 doi: 10.1007/s10531-009-9584-8 |
SSID | ssj0005456 |
Score | 2.4442203 |
Snippet | Aim: To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test... Aim To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test... Aim To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test... To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test... |
SourceID | proquest pascalfrancis crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1293 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Biogeography Biological and medical sciences Butterflies Climate change Climate models Climatology. Bioclimatology. Climate change Earth, ocean, space Ecological modeling Exact sciences and technology Expanding range margin External geophysics Finland Fundamental and applied biological sciences. Psychology General aspects global warming Insect ecology Insecta Invertebrates Land cover land use Lepidoptera Meteorology Modeling soil type Soils Species species distribution models species traits Statistical models Synecology validation |
Title | Testing species distribution models across space and time: high latitude butterflies and recent warming |
URI | https://api.istex.fr/ark:/67375/WNG-Z23N84VT-N/fulltext.pdf https://www.jstor.org/stable/42568599 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12078 https://www.proquest.com/docview/1449292021 https://www.proquest.com/docview/1464515556 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KRfBFbfUwtZZVRHzJcUl2N4k-2XJtEbwHueohQpjNbu6hJZXmDn_89c5sfrQnFcS3g3zJsXszszO5me8DeJmlSHkB2tDmVOnIOM3J52QZotTGTEzkdMLDyR9m-vRMvl-oxRa87WdhWn6I4YUbe4aP1-zgaJobTr50ZhzFdMJR_OVeLU6IPl5TR3Fm0E4W6ZAOwUXHKsRdPMOdG2fRHd7WH31bIvdIYkPbVLX6FhsJ6M001p9Dxw_ga7-Ctv3kfLxemXH56w9yx_9c4kO43-Wn4l1rUDuw5epduDv13NY_d2E0vR6MI1gXGZpHsJwzXUe9FDy6SdW3sMzI24lpCa-30wj0-0AQLJ3A2gpWtn8jmDJZ-JGatXXCtNLZF_wQxlBIpi8T35G7dpaP4ex4Oj86DTsRh7CUSmWhzgxSDFBU9SoTyyrJdKIxw3QycWgitgddOmW1rVyiEoMRhTznXCVlTJeTZATb9WXtnoAoEVFWGOXOOi6jMDPRxOUJlqlOrXQBvO5_zqLsGM5ZaOOi6Csd2tDCb2gALwbot5bW4zbQK28TAwKvzrkPLlXF59lJ8SVOZpn8NC9mAYy80QxACoQ6U3kewMGGFQ0A8glO1GQA-71ZFV3waKgakzmLiMVRAM-Hy-T2_F8O1u5yzRgtWZ1HaVq1t6G_r6M4mR76D3v_Dn0K92IW_vCNO_uwvbpau2eUfq3Mgfez33HpK04 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VrRBceBQiDKUsCBAXR7G9XttIHICmTWmbA0oh6sXs2pOoanFRnaiU38Rf4T8xs360QSBx6YFbJH9KvDuPndnMfAPwLI40xQU6d_OEMh3pRwnZnMxcLZUxPeOhCrg5eW-oBvvy_TgcL8GPphem4odoL9zYMqy_ZgPnC-lLVj5F0_V8OuLqksodPD-jhK18vb1B0n3u-5v90buBW88UcDMZhrGrYqNJJUNKwkLjy0kQq0DpWEe9Hmrj8eupDMNc5RMMwsBojywQESdS-vSYrz_J4a_wBHFm6t_4cEFWxbFI1cukXDp2xzWPEdcNta-6cPqtsCC_NYWQXJWpSxLMpJqosRDyXg6c7cm3eQt-NntWFbwcdecz082-_0Yn-b9s6m24WYfg4k1lM3dgCYtVuNa39N3nq9DpX_T-Eax2fuVdmI6YkaSYCu5OPcRS5Ew6XM8LE3akUCm03XiC6AyFLnIxO_yCrwSzQgvbNTTPUZhqOvgxfwlj6NShHxNnmguTpvdg_0qW34Hl4qTA-yAyrbWcaC_BHDlT1LHxepgEOotUlEt04GWjP2lWk7jzLJHjtEnmSICpFaADT1vo14q55E-gF1YJW4Q-PeJSvyhMPw230gM_GMby4ygdOtCxWtoCyderOEwSB9YX1LYFkNlzLCodWGv0OK39Y0kJp0x4TprvOfCkfUyejf-u0gWezBmjJA8gChWt2irt39eRbvXf2g8P_h36GK4PRnu76e72cOch3PB5zomtU1qD5dnpHB9RtDkz69bIBXy-agP4BW6piOU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VrUBceBQiXEpZECAujvxYr20kDkCSthQshFIacTG79jqq2rpVnaiUv8Rf4Ucxs360QSBx6YGbJY9i785jZ5yZ7wN4GoUS8wKZ23mMlQ73whh9jme25EIpR7la-DSc_CERW7v83SSYLMGPdhamxofoPriRZ5h4TQ5-kheXnHyqVd_18IRrOip39PkZ1mvVq-0BKveZ542G47dbdkMpYGc8CCJbREqiRQZYgwXK44UfCV_ISIaOo6Vy6e1EpoNc5IX2A19JFx1Qa11w7uFt-vqJ8X6FCycmnojBpwusKkpF6lEmYeOpO2lgjKhtqHvVhcNvhfT4re2DpKZMWaFeippQYyHjvZw3m4NvdAt-tltW97sc9Ocz1c--_4Ym-Z_s6W242STg7HXtMXdgSZercG1owLvPV6E3vJj8Q7Em9FV3YTomPJJyymg2dV9XLCfI4YYtjBlCoYpJs-8oIjPNZJmz2f6RfskIE5qZmaF5rpmqucEP6UdIBs8cfBg7k9SWNL0Hu1ey_B4sl8elvg8sk1LyQrqxzjXViTJSrqNjX2ahCHOuLXjRmk-aNRDuxCRymLalHCowNQq04EknelLjlvxJ6LmxwU5Cnh5Qo18YpHvJZvrF85OIfx6niQU9Y6SdIEZ6EQVxbMHGgtV2Auj0lIlyC9ZbM06b6FhhucljYknzXAsed7cxrtGfVbLUx3OSEZzohwKBqzY2-_d1pJvDN-Zi7d9FH8H1j4NR-n472XkANzwiOTFNSuuwPDud64eYas7UhnFxBl-v2v5_AT2mh5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+species+distribution+models+across+space+and+time%3A+high+latitude+butterflies+and+recent+warming&rft.jtitle=Global+ecology+and+biogeography&rft.au=Eskildsen%2C+Anne&rft.au=Roux%2C+Peter+C&rft.au=Heikkinen%2C+Risto+K&rft.au=Hoye%2C+Toke+T&rft.date=2013-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=22&rft.issue=12&rft.spage=1293&rft_id=info:doi/10.1111%2Fgeb.12078&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3120939301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |