Integrative analyses of metabolome and genome‐wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis)
Summary Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unk...
Saved in:
Published in | The New phytologist Vol. 233; no. 1; pp. 373 - 389 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.01.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species.
In this study, by integrating flavor‐associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor‐related metabolites throughout development and ripening of kiwifruit.
Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated.
Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit.
See also the Commentary on this article by Fernie & Alseekh, 233: 8–10. |
---|---|
AbstractList | Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species.
In this study, by integrating flavor‐associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of
Actinidia chinensis
cv Hongyang, we generated a global map of changes in the flavor‐related metabolites throughout development and ripening of kiwifruit.
Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated.
Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit.
See also the Commentary on this article by
Fernie & Alseekh,
233
: 8–10
. Summary Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor‐associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor‐related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit. See also the Commentary on this article by Fernie & Alseekh, 233: 8–10. Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor-associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor-related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit. Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor-associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor-related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit.Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor-associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor-related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit. |
Author | Wang, Ruochen Shu, Peng Li, Zhengguo Pirrello, Julien Xie, Yue Zhang, Junlin Li, Mingzhang Bouzayen, Mondher Du, Kui Zhang, Yang Chen, Kunsong Liu, Mingchun Zhang, Yaoxin Grierson, Don Zhang, Bo Chen, Ya Zhang, Chi Ma, Tao |
Author_xml | – sequence: 1 givenname: Ruochen surname: Wang fullname: Wang, Ruochen organization: Sichuan University – sequence: 2 givenname: Peng surname: Shu fullname: Shu, Peng organization: Sichuan University – sequence: 3 givenname: Chi surname: Zhang fullname: Zhang, Chi organization: Zhejiang University – sequence: 4 givenname: Junlin surname: Zhang fullname: Zhang, Junlin organization: Sichuan University – sequence: 5 givenname: Ya surname: Chen fullname: Chen, Ya organization: Sichuan University – sequence: 6 givenname: Yaoxin surname: Zhang fullname: Zhang, Yaoxin organization: Sichuan University – sequence: 7 givenname: Kui surname: Du fullname: Du, Kui organization: Sichuan Provincial Academy of Natural Resource Sciences – sequence: 8 givenname: Yue surname: Xie fullname: Xie, Yue organization: Sichuan Provincial Academy of Natural Resource Sciences – sequence: 9 givenname: Mingzhang surname: Li fullname: Li, Mingzhang organization: Sichuan Provincial Academy of Natural Resource Sciences – sequence: 10 givenname: Tao orcidid: 0000-0002-7094-6868 surname: Ma fullname: Ma, Tao organization: Sichuan University – sequence: 11 givenname: Yang orcidid: 0000-0002-7793-1108 surname: Zhang fullname: Zhang, Yang organization: Sichuan University – sequence: 12 givenname: Zhengguo orcidid: 0000-0001-7019-2560 surname: Li fullname: Li, Zhengguo organization: Chongqing University – sequence: 13 givenname: Don orcidid: 0000-0002-2238-8072 surname: Grierson fullname: Grierson, Don organization: University of Nottingham – sequence: 14 givenname: Julien surname: Pirrello fullname: Pirrello, Julien organization: INRA – sequence: 15 givenname: Kunsong surname: Chen fullname: Chen, Kunsong organization: Zhejiang University – sequence: 16 givenname: Mondher orcidid: 0000-0001-7630-1449 surname: Bouzayen fullname: Bouzayen, Mondher organization: INRA – sequence: 17 givenname: Bo orcidid: 0000-0001-8181-9111 surname: Zhang fullname: Zhang, Bo email: bozhang@zju.edu.cn organization: Zhejiang University – sequence: 18 givenname: Mingchun orcidid: 0000-0001-8004-1758 surname: Liu fullname: Liu, Mingchun email: mcliu@scu.edu.cn organization: Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34255862$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-03322343$$DView record in HAL |
BookMark | eNqFksFuEzEQhi1URNPCgRdAlri0h7T22ut1jlEFpFIEHEDitnJ2x4lbrx1s70a58Qg8AQ_Hk-BtSpEqAZYlj8bf_PbonxN05LwDhF5SckHzunTbzQWtBJVP0IRyMZtKyqojNCGkkFPBxZdjdBLjDSFkVoriGTpmvChLKYoJ-nHtEqyDSmYArJyy-wgRe407SGrlre_GdIvX4HL489v3nWkBp6BcbILZpvE-wADK4rQZw3VvVfJhjx2knQ-3eO0HCM64NdZWDT5g7UOX3_MOG4dvzc7o0JuEz-ZNMs60RuFmYxy4aOL5c_RUKxvhxf15ij6_ffPpajFdfnh3fTVfThueG5lSWvBZKzSVDWGMUU1kC6qihIOsSEEYaCL4aiU5tIQSJmW1IkxXgkhdMdWwU3R-0N0oW2-D6VTY116ZejFf1mMuyxYF42ygmT07sNvgv_YQU92Z2IC1yoHvY10IJkopueT_R8uSllWVd0ZfP0JvfB-yIaMgKQtOZ7zM1Kt7ql910D589behfxppgo8xgH5AKKnHYanzsNR3w5LZy0dsY9KdM9lfY_9VsTMW9n-Xrt9_XBwqfgFNKdHq |
CitedBy_id | crossref_primary_10_1007_s11103_025_01564_y crossref_primary_10_1016_j_indcrop_2025_120782 crossref_primary_10_1016_j_postharvbio_2024_113380 crossref_primary_10_1111_nph_17740 crossref_primary_10_1016_j_fochms_2025_100250 crossref_primary_10_1016_j_jia_2023_11_025 crossref_primary_10_1016_j_jia_2024_11_027 crossref_primary_10_1007_s11356_023_26478_4 crossref_primary_10_1016_j_indcrop_2024_119390 crossref_primary_10_3390_d14060424 crossref_primary_10_1016_j_jia_2023_11_022 crossref_primary_10_3390_genes13060953 crossref_primary_10_1021_acs_jafc_2c07719 crossref_primary_10_17660_eJHS_2023_016 crossref_primary_10_1016_j_pld_2023_02_001 crossref_primary_10_1093_hr_uhae058 crossref_primary_10_3390_genes14061290 crossref_primary_10_1016_j_foodres_2022_112412 crossref_primary_10_1093_hr_uhae215 crossref_primary_10_3389_fpls_2022_920138 crossref_primary_10_1016_j_plantsci_2024_112084 crossref_primary_10_1016_j_plaphy_2025_109676 crossref_primary_10_1186_s12870_024_05877_w crossref_primary_10_3389_fpls_2021_788377 crossref_primary_10_3390_foods12244394 crossref_primary_10_1093_jxb_erae503 crossref_primary_10_1007_s00299_021_02826_x crossref_primary_10_3389_fpls_2022_924162 crossref_primary_10_1186_s12864_023_09906_0 crossref_primary_10_1016_j_fbio_2024_104393 crossref_primary_10_3389_fpls_2022_1056930 crossref_primary_10_1016_j_postharvbio_2022_112223 crossref_primary_10_1016_j_copbio_2023_102971 crossref_primary_10_1021_acs_jafc_4c07999 crossref_primary_10_1016_j_fochx_2024_101790 crossref_primary_10_1093_plphys_kiae635 crossref_primary_10_3390_horticulturae8060478 crossref_primary_10_1016_j_foodchem_2024_140013 crossref_primary_10_1016_j_plaphy_2023_108097 crossref_primary_10_3390_horticulturae10070772 crossref_primary_10_3390_molecules28227559 crossref_primary_10_1016_j_scienta_2023_111930 crossref_primary_10_3390_plants12244079 crossref_primary_10_1093_plphys_kiac440 crossref_primary_10_3389_fpls_2022_881856 crossref_primary_10_1016_j_plaphy_2022_04_030 crossref_primary_10_1093_lifemeta_loac019 crossref_primary_10_3390_foods12051025 crossref_primary_10_1186_s12863_024_01231_z crossref_primary_10_3389_fpls_2022_1050216 crossref_primary_10_1016_j_xplc_2024_101221 crossref_primary_10_1186_s40538_024_00654_1 crossref_primary_10_1093_hr_uhac252 crossref_primary_10_1016_j_foodres_2022_112314 crossref_primary_10_1016_j_foodchem_2025_143195 crossref_primary_10_1016_j_fbio_2024_104716 crossref_primary_10_3389_fpls_2025_1533263 crossref_primary_10_3390_plants13152156 crossref_primary_10_1038_s41598_024_70600_6 crossref_primary_10_1111_tpj_16354 crossref_primary_10_1016_j_scienta_2022_111503 crossref_primary_10_3390_genes14061282 crossref_primary_10_1016_j_lwt_2023_114809 crossref_primary_10_3390_ijms26052150 crossref_primary_10_1007_s11307_023_01828_3 crossref_primary_10_1111_pce_14936 crossref_primary_10_1016_j_plaphy_2022_08_015 crossref_primary_10_3390_ijms251910398 crossref_primary_10_1016_j_molp_2024_11_002 crossref_primary_10_1021_acs_jafc_4c07770 crossref_primary_10_3390_ijms24065757 crossref_primary_10_1016_j_postharvbio_2022_112203 crossref_primary_10_1016_j_ijbiomac_2024_138833 crossref_primary_10_1016_j_postharvbio_2023_112746 crossref_primary_10_1093_aob_mcae023 crossref_primary_10_3390_plants12193505 crossref_primary_10_1016_j_indcrop_2023_116453 crossref_primary_10_48130_vegres_0024_0011 crossref_primary_10_1080_10408398_2022_2097195 crossref_primary_10_1186_s12864_024_10608_4 crossref_primary_10_1016_j_plaphy_2023_107955 crossref_primary_10_3390_ijms241813700 crossref_primary_10_1093_plphys_kiac316 crossref_primary_10_1111_ppl_13860 crossref_primary_10_1186_s12864_022_08341_x crossref_primary_10_1016_j_cropd_2023_100028 crossref_primary_10_3390_ijms24021299 crossref_primary_10_1111_pbi_14399 crossref_primary_10_1038_s41598_022_26843_2 crossref_primary_10_3389_fpls_2022_985088 crossref_primary_10_1016_j_scienta_2024_113334 crossref_primary_10_1016_j_stress_2024_100591 crossref_primary_10_3390_agronomy12102447 crossref_primary_10_3390_ijms24054816 crossref_primary_10_1016_j_scienta_2023_112362 crossref_primary_10_1093_plphys_kiae567 crossref_primary_10_1111_ijfs_16844 crossref_primary_10_1007_s00425_023_04217_w crossref_primary_10_1093_plphys_kiad064 crossref_primary_10_3390_horticulturae9090971 crossref_primary_10_1016_j_lwt_2024_116105 crossref_primary_10_3389_fpls_2023_1120166 crossref_primary_10_3389_fpls_2022_952698 crossref_primary_10_1016_j_ijbiomac_2025_139897 crossref_primary_10_3390_ijms25168654 crossref_primary_10_3389_fpls_2022_971506 crossref_primary_10_1016_j_scienta_2021_110849 crossref_primary_10_1186_s12870_024_05555_x crossref_primary_10_1016_j_molp_2022_09_007 crossref_primary_10_1016_j_copbio_2022_102872 crossref_primary_10_1093_hr_uhae089 crossref_primary_10_3389_fpls_2022_1006991 crossref_primary_10_1016_j_scienta_2024_113619 crossref_primary_10_1093_hr_uhac102 crossref_primary_10_1093_hr_uhac223 crossref_primary_10_1111_tpj_70082 crossref_primary_10_1093_hr_uhac229 crossref_primary_10_1007_s00299_025_03435_8 crossref_primary_10_1111_nph_19663 crossref_primary_10_3390_horticulturae9040483 crossref_primary_10_1016_j_hpj_2023_12_010 crossref_primary_10_1016_j_hpj_2023_12_014 crossref_primary_10_1016_j_indcrop_2024_118043 crossref_primary_10_1111_pbi_14058 crossref_primary_10_1007_s00217_023_04440_5 crossref_primary_10_1186_s13059_024_03200_2 crossref_primary_10_3390_plants14050688 crossref_primary_10_1016_j_scienta_2024_113196 crossref_primary_10_7717_peerj_13591 crossref_primary_10_1186_s43897_023_00077_w crossref_primary_10_1016_j_indcrop_2025_120685 crossref_primary_10_1016_j_fbio_2025_106275 crossref_primary_10_1021_acs_jafc_2c01672 crossref_primary_10_1016_j_ijbiomac_2025_140288 crossref_primary_10_3390_foods14010094 crossref_primary_10_3390_ijms232113507 crossref_primary_10_1016_j_molp_2022_12_022 crossref_primary_10_1016_j_ijbiomac_2023_124356 crossref_primary_10_1016_j_lwt_2022_114012 crossref_primary_10_1016_j_celrep_2024_114623 crossref_primary_10_1111_pbi_14063 crossref_primary_10_1016_j_psyneuen_2024_107262 crossref_primary_10_1093_plphys_kiad459 crossref_primary_10_1016_j_plaphy_2025_109730 crossref_primary_10_1016_j_cofs_2022_100837 crossref_primary_10_1186_s12870_024_05621_4 crossref_primary_10_1111_nph_18840 crossref_primary_10_1111_nph_20008 crossref_primary_10_3389_fnut_2023_1187842 crossref_primary_10_3390_agronomy13010143 crossref_primary_10_1111_pbi_14070 crossref_primary_10_1093_aob_mcae061 crossref_primary_10_3390_foods13101544 crossref_primary_10_3390_horticulturae9030339 crossref_primary_10_3390_ijms231810217 |
Cites_doi | 10.1038/ncomms3640 10.1104/pp.18.00292 10.1111/j.1365-3040.2003.01161.x 10.1111/nph.16233 10.1074/jbc.M114.558536 10.1104/pp.112.199711 10.1146/annurev-arplant-042809-112301 10.1093/bioinformatics/btr064 10.1016/j.jplph.2010.10.001 10.3389/fpls.2019.00888 10.1016/j.foodqual.2005.04.011 10.1093/bioinformatics/btt656 10.1071/FP08240 10.1016/j.foodchem.2003.12.001 10.1104/pp.18.00427 10.1104/pp.114.254367 10.1186/s12870-020-2314-9 10.1021/jf9000378 10.1016/j.tig.2012.12.003 10.1111/nph.17560 10.1371/journal.pone.0216120 10.3390/plants9030332 10.1016/j.postharvbio.2010.08.010 10.1104/pp.106.088534 10.1038/s41438-018-0111-5 10.1093/nar/gkw982 10.1021/acs.jafc.9b07379 10.1093/jxb/err063 10.1038/s41576-018-0002-5 10.1109/TEM.2019.2914275 10.1111/tpj.13976 10.1021/jf201469c 10.1126/science.aal1556 10.1007/978-1-60761-987-1_18 10.1186/1471-2229-12-190 10.1111/tpj.13989 10.1016/j.foodchem.2014.07.070 10.1016/j.phytochem.2010.01.016 10.1016/j.scienta.2011.01.013 10.1038/nmeth.3317 10.1105/tpc.019158 10.1002/jsfa.2740570208 10.1126/science.1133649 10.1111/pbi.13202 10.1016/S0168-9452(02)00430-2 10.1111/j.1365-313X.2006.02723.x 10.1186/1471-2164-9-351 10.1093/jxb/ert293 10.1073/pnas.1613910113 |
ContentType | Journal Article |
Copyright | 2021 The Authors. © 2021 New Phytologist Foundation 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. Copyright © 2021 New Phytologist Trust Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 The Authors. © 2021 New Phytologist Foundation – notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. – notice: Copyright © 2021 New Phytologist Trust – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC |
DOI | 10.1111/nph.17618 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 389 |
ExternalDocumentID | oai_HAL_hal_03322343v1 34255862 10_1111_nph_17618 NPH17618 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: the Science and Technology Innovation Talent Project of Sichuan province funderid: 2018RZ0144 – fundername: National Natural Science Foundation of China funderid: 31772372 – fundername: National Key R&D Program of China funderid: 2016YFD0400101 – fundername: Fundamental Research Funds for the Central Universities funderid: SCU2020D003 – fundername: Applied Basic Research Category of Science and Technology Program of Sichuan Province funderid: 2020YJ0248; 2021YFYZ0010 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGDZ ABSQW ADXHL AEYWJ AGHNM AGUYK AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC UMC |
ID | FETCH-LOGICAL-c4558-11249d6f18c03331f08dea7104e870203ef064bb84ed0103887b03f7608f73ac3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri May 09 12:23:49 EDT 2025 Fri Jul 11 18:28:43 EDT 2025 Fri Jul 11 02:08:43 EDT 2025 Fri Jul 25 09:52:04 EDT 2025 Thu Apr 03 07:06:02 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Tue Jul 01 02:28:38 EDT 2025 Wed Jan 22 16:26:53 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | regulatory network fruit flavor weighted correlation network analysis (WGCNA) transcriptome metabolome kiwifruit fruit flavor |
Language | English |
License | 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4558-11249d6f18c03331f08dea7104e870203ef064bb84ed0103887b03f7608f73ac3 |
Notes | These authors contributed equally to this work. 233 8–10 See also the Commentary on this article by Fernie & Alseekh . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8181-9111 0000-0002-7094-6868 0000-0002-2238-8072 0000-0001-8004-1758 0000-0001-7019-2560 0000-0001-7630-1449 0000-0002-7793-1108 0000-0003-2338-5444 0000-0003-4102-2671 0000-0003-2091-374X 0000-0002-9018-0492 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.17618 |
PMID | 34255862 |
PQID | 2605241945 |
PQPubID | 2026848 |
PageCount | 18 |
ParticipantIDs | hal_primary_oai_HAL_hal_03322343v1 proquest_miscellaneous_2636588484 proquest_miscellaneous_2551577577 proquest_journals_2605241945 pubmed_primary_34255862 crossref_primary_10_1111_nph_17618 crossref_citationtrail_10_1111_nph_17618 wiley_primary_10_1111_nph_17618_NPH17618 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2013; 29 2013; 4 2010; 57 2020; 20 2004; 27 2019; 10 2011; 62 2013; 64 2019; 14 2017; 45 2008; 9 2011; 59 2012; 12 2017; 355 2010; 61 2020; 18 2018; 177 2011; 168 2009; 57 2018; 5 2011; 128 2010; 913 2019; 68 2018; 178 2020; 9 2016; 113 2021; 232 2011; 27 2003; 164 2010; 71 2014; 289 2004; 87 2015; 12 2011; 696 2015; 169 2006; 17 2015; 167 2008; 14 2020; 225 2004 2006; 314 2018; 19 2009; 36 2006; 46 2006; 142 2020; 68 2018; 95 2014; 30 2012; 159 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 Souleyre E (e_1_2_7_40_1) 2010; 913 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Nishiyama I (e_1_2_7_34_1) 2008; 14 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 34628656 - New Phytol. 2022 Jan;233(1):8-10 |
References_xml | – volume: 4 start-page: 2640 year: 2013 article-title: Draft genome of the kiwifruit publication-title: Nature Communications – start-page: S170 year: 2004 end-page: 180 article-title: Genetic regulation of fruit development and ripening publication-title: The Plant Cell – volume: 12 start-page: 357 year: 2015 end-page: 360 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nature Methods – volume: 29 start-page: 257 year: 2013 end-page: 262 article-title: Genetic challenges of flavor improvement in tomato publication-title: Trends in Genetics: TIG – volume: 225 start-page: 1618 year: 2020 end-page: 1634 article-title: Genome‐wide analysis of coding and non‐coding RNA reveals a conserved miR164‐NAC regulatory pathway for fruit ripening publication-title: New Phytologist – volume: 95 start-page: 648 year: 2018 end-page: 658 article-title: A novel tomato F‐box protein, SlEBF3, is involved in tuning ethylene signaling during plant development and climacteric fruit ripening publication-title: The Plant Journal – volume: 9 start-page: 332 year: 2020 article-title: Characterization of organic acid metabolism and expression of related genes during fruit development of ‘Ganmi 6’ publication-title: Plants – volume: 45 start-page: D1040 year: 2017 end-page: D1045 article-title: PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants publication-title: Nucleic Acids Research – volume: 142 start-page: 1380 year: 2006 end-page: 1396 article-title: Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior publication-title: Plant Physiology – volume: 87 start-page: 325 year: 2004 end-page: 328 article-title: Inositols and carbohydrates in different fresh fruit juices publication-title: Food Chemistry – volume: 167 start-page: 1243 year: 2015 end-page: 1258 article-title: Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE‐INSENSITIVE3‐like transcription factors publication-title: Plant Physiology – volume: 5 start-page: 75 year: 2018 article-title: A NAC transcription factor, NOR‐like1, is a new positive regulator of tomato fruit ripening publication-title: Horticulture Research – volume: 17 start-page: 376 year: 2006 end-page: 386 article-title: Perception of flavour in standardised fruit pulps with additions of acids or sugars publication-title: Food Quality and Preference – volume: 30 start-page: 923 year: 2014 end-page: 930 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics – volume: 68 start-page: 785 year: 2019 end-page: 796 article-title: Organizational search, dynamic capability, and business model innovation publication-title: IEEE Transactions on Engineering Management – volume: 314 start-page: 1298 year: 2006 end-page: 1301 article-title: A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat publication-title: Science – volume: 57 start-page: 2875 year: 2009 end-page: 2881 article-title: Lipoxygenase gene expression in ripening kiwifruit in relation to ethylene and aroma production publication-title: Journal of Agricultural and Food Chemistry – volume: 14 year: 2019 article-title: Copy number variants in kiwifruit ETHYLENE RESPONSE FACTOR/APETALA2 (ERF/AP2)‐like genes show divergence in fruit ripening associated cold and ethylene responses in C‐REPEAT/DRE BINDING FACTOR‐like genes publication-title: PLoS ONE – volume: 68 start-page: 3267 year: 2020 end-page: 3276 article-title: Methyl jasmonate enhances ethylene synthesis in kiwifruit by inducing genes that activate publication-title: Journal of Agricultural and Food Chemistry – volume: 62 start-page: 3821 year: 2011 end-page: 3835 article-title: Dissecting the role of climacteric ethylene in kiwifruit ( ) ripening using a 1‐aminocyclopropane‐1‐carboxylic acid oxidase knockdown line publication-title: Journal of Experimental Botany – volume: 57 start-page: 235 year: 2010 end-page: 251 article-title: Relationships between sensory properties and chemical composition of kiwifruit ( ) publication-title: Journal of the Science of Food and Agriculture – volume: 164 start-page: 459 year: 2003 end-page: 470 article-title: Differential expression within an SPS gene family publication-title: Plant Science – volume: 178 start-page: 850 year: 2018 end-page: 863 article-title: Transcriptome analysis identifies a zinc finger protein regulating starch degradation in kiwifruit publication-title: Plant Physiology – volume: 59 start-page: 8358 year: 2011 end-page: 8365 article-title: Characterization of the bound volatile extract from baby kiwi ( ) publication-title: Journal of Agricultural and Food Chemistry – volume: 12 start-page: 190 year: 2012 article-title: Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene publication-title: BMC Plant Biology – volume: 19 start-page: 347 year: 2018 end-page: 356 article-title: The genetics of fruit flavour preferences publication-title: Nature Reviews. Genetics – volume: 71 start-page: 742 year: 2010 end-page: 750 article-title: (Methylsulfanyl)alkanoate ester biosynthesis in kiwifruit and changes during cold storage publication-title: Phytochemistry – volume: 9 start-page: 351 year: 2008 article-title: Analysis of expressed sequence tags from : applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening publication-title: BMC Genomics – volume: 27 start-page: 423 year: 2004 end-page: 435 article-title: High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit publication-title: Plant, Cell & Environment – volume: 64 start-page: 5049 year: 2013 end-page: 5063 article-title: Metabolic analysis of kiwifruit ( ) berries from extreme genotypes reveals hallmarks for fruit starch metabolism publication-title: Journal of Experimental Botany – volume: 913 start-page: 205 year: 2010 end-page: 211 article-title: Ester biosynthesis in kiwifruit – from genes to enzymes to pathways publication-title: Acta Horticulturae – volume: 232 start-page: 236 year: 2021 end-page: 250 article-title: An ethylene‐hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening publication-title: New Phytologist – volume: 36 start-page: 463 year: 2009 end-page: 470 article-title: Changes in quinic acid metabolism during fruit development in three kiwifruit species publication-title: Functional Plant Biology: FPB – volume: 46 start-page: 601 year: 2006 end-page: 612 article-title: AtNAP, a NAC family transcription factor, has an important role in leaf senescence publication-title: The Plant Journal – volume: 168 start-page: 629 year: 2011 end-page: 638 article-title: Ethylene‐regulated (methylsulfanyl)alkanoate ester biosynthesis is likely to be modulated by precursor availability in genotypes publication-title: Journal of Plant Physiology – volume: 289 start-page: 23846 year: 2014 end-page: 23858 article-title: Molecular characterization of quinate and shikimate metabolism in publication-title: The Journal of Biological Chemistry – volume: 14 start-page: 67 year: 2008 end-page: 73 article-title: Sugar and organic acid composition in the fruit juice of different varieties publication-title: Food Science & Technology International Tokyo – volume: 159 start-page: 1713 year: 2012 end-page: 1729 article-title: Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species‐specific patterns of network regulatory behavior publication-title: Plant Physiology – volume: 355 start-page: 391 year: 2017 end-page: 394 article-title: A chemical genetic roadmap to improved tomato flavor publication-title: Science – volume: 59 start-page: 16 year: 2011 end-page: 24 article-title: Changes in volatile production and sensory quality of kiwifruit during fruit maturation in 'Hayward' and 'Hort16A' publication-title: Postharvest Biology & Technology – volume: 61 start-page: 209 year: 2010 end-page: 234 article-title: Starch: its metabolism, evolution, and biotechnological modification in plants publication-title: Annual Review of Plant Biology – volume: 10 start-page: 888 year: 2019 article-title: Low temperature storage stimulates fruit softening and sugar accumulation without ethylene and aroma volatile production in kiwifruit publication-title: Frontiers in Plant Science – volume: 177 start-page: 1286 year: 2018 end-page: 1302 article-title: The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato publication-title: Plant Physiology – volume: 696 start-page: 291 year: 2011 end-page: 303 article-title: Cytoscape: software for visualization and analysis of biological networks publication-title: Methods in Molecular Biology – volume: 113 start-page: 12580 year: 2016 end-page: 12585 article-title: Chilling‐induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation publication-title: Proceedings of the National Academy of Sciences, USA – volume: 128 start-page: 197 year: 2011 end-page: 205 article-title: Sucrose synthase dominates carbohydrate metabolism and relative growth rate in growing kiwifruit ( , cv Hayward) publication-title: Scientia Horticulturae – volume: 18 start-page: 354 year: 2020 end-page: 363 article-title: Trichome regulator SlMIXTA‐like directly manipulates primary metabolism in tomato fruit publication-title: Plant Biotechnology Journal – volume: 27 start-page: 1017 year: 2011 end-page: 1018 article-title: FIMO: scanning for occurrences of a given motif publication-title: Bioinformatics – volume: 95 start-page: 812 year: 2018 end-page: 822 article-title: Structural and biochemical approaches uncover multiple evolutionary trajectories of plant quinate dehydrogenases publication-title: The Plant Journal – volume: 20 start-page: 103 year: 2020 article-title: Transcriptome co‐expression network analysis identifies key genes and regulators of ripening kiwifruit ester biosynthesis publication-title: BMC Plant Biology – volume: 169 start-page: 5 year: 2015 end-page: 12 article-title: The impact of cold storage and ethylene on volatile ester production and aroma perception in 'Hort16A' kiwifruit publication-title: Food Chemistry – ident: e_1_2_7_19_1 doi: 10.1038/ncomms3640 – ident: e_1_2_7_27_1 doi: 10.1104/pp.18.00292 – ident: e_1_2_7_38_1 doi: 10.1111/j.1365-3040.2003.01161.x – ident: e_1_2_7_44_1 doi: 10.1111/nph.16233 – ident: e_1_2_7_17_1 doi: 10.1074/jbc.M114.558536 – ident: e_1_2_7_35_1 doi: 10.1104/pp.112.199711 – ident: e_1_2_7_47_1 doi: 10.1146/annurev-arplant-042809-112301 – ident: e_1_2_7_11_1 doi: 10.1093/bioinformatics/btr064 – ident: e_1_2_7_14_1 doi: 10.1016/j.jplph.2010.10.001 – volume: 14 start-page: 67 year: 2008 ident: e_1_2_7_34_1 article-title: Sugar and organic acid composition in the fruit juice of different Actinidia varieties publication-title: Food Science & Technology International Tokyo – ident: e_1_2_7_30_1 doi: 10.3389/fpls.2019.00888 – ident: e_1_2_7_29_1 doi: 10.1016/j.foodqual.2005.04.011 – ident: e_1_2_7_26_1 doi: 10.1093/bioinformatics/btt656 – ident: e_1_2_7_28_1 doi: 10.1071/FP08240 – ident: e_1_2_7_39_1 doi: 10.1016/j.foodchem.2003.12.001 – ident: e_1_2_7_48_1 doi: 10.1104/pp.18.00427 – ident: e_1_2_7_33_1 doi: 10.1104/pp.114.254367 – ident: e_1_2_7_49_1 doi: 10.1186/s12870-020-2314-9 – ident: e_1_2_7_51_1 doi: 10.1021/jf9000378 – ident: e_1_2_7_23_1 doi: 10.1016/j.tig.2012.12.003 – ident: e_1_2_7_6_1 doi: 10.1111/nph.17560 – ident: e_1_2_7_13_1 doi: 10.1371/journal.pone.0216120 – ident: e_1_2_7_20_1 doi: 10.3390/plants9030332 – ident: e_1_2_7_43_1 doi: 10.1016/j.postharvbio.2010.08.010 – ident: e_1_2_7_3_1 doi: 10.1104/pp.106.088534 – ident: e_1_2_7_8_1 doi: 10.1038/s41438-018-0111-5 – ident: e_1_2_7_21_1 doi: 10.1093/nar/gkw982 – ident: e_1_2_7_45_1 doi: 10.1021/acs.jafc.9b07379 – ident: e_1_2_7_2_1 doi: 10.1093/jxb/err063 – ident: e_1_2_7_24_1 doi: 10.1038/s41576-018-0002-5 – ident: e_1_2_7_52_1 doi: 10.1109/TEM.2019.2914275 – ident: e_1_2_7_5_1 doi: 10.1111/tpj.13976 – ident: e_1_2_7_9_1 doi: 10.1021/jf201469c – ident: e_1_2_7_41_1 doi: 10.1126/science.aal1556 – ident: e_1_2_7_25_1 doi: 10.1007/978-1-60761-987-1_18 – ident: e_1_2_7_37_1 doi: 10.1186/1471-2229-12-190 – ident: e_1_2_7_12_1 doi: 10.1111/tpj.13989 – ident: e_1_2_7_15_1 doi: 10.1016/j.foodchem.2014.07.070 – ident: e_1_2_7_16_1 doi: 10.1016/j.phytochem.2010.01.016 – ident: e_1_2_7_31_1 doi: 10.1016/j.scienta.2011.01.013 – ident: e_1_2_7_22_1 doi: 10.1038/nmeth.3317 – ident: e_1_2_7_10_1 doi: 10.1105/tpc.019158 – ident: e_1_2_7_36_1 doi: 10.1002/jsfa.2740570208 – ident: e_1_2_7_42_1 doi: 10.1126/science.1133649 – ident: e_1_2_7_46_1 doi: 10.1111/pbi.13202 – ident: e_1_2_7_7_1 doi: 10.1016/S0168-9452(02)00430-2 – ident: e_1_2_7_18_1 doi: 10.1111/j.1365-313X.2006.02723.x – ident: e_1_2_7_4_1 doi: 10.1186/1471-2164-9-351 – ident: e_1_2_7_32_1 doi: 10.1093/jxb/ert293 – ident: e_1_2_7_50_1 doi: 10.1073/pnas.1613910113 – volume: 913 start-page: 205 year: 2010 ident: e_1_2_7_40_1 article-title: Ester biosynthesis in kiwifruit – from genes to enzymes to pathways publication-title: Acta Horticulturae – reference: 34628656 - New Phytol. 2022 Jan;233(1):8-10 |
SSID | ssj0009562 |
Score | 2.674644 |
Snippet | Summary
Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the... Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic... Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic... |
SourceID | hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 373 |
SubjectTerms | Actinidia Actinidia - genetics Actinidia - metabolism Actinidia chinensis Biochemistry, Molecular Biology biosynthesis data collection Datasets flavor Flavors Flavour Fruit - genetics Fruit - metabolism fruit flavor fruiting Fruits Gene Expression Regulation, Plant Genes Genomes Genomics Kiwifruit Life Sciences Metabolism Metabolites Metabolome Organic acids Plant Proteins - metabolism Regulatory mechanisms (biology) regulatory network Ripening Sugar Transcription Transcription factors transcriptome Transcriptome - genetics Transcriptomes Vegetal Biology Volatiles weighted correlation network analysis (WGCNA) |
Title | Integrative analyses of metabolome and genome‐wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17618 https://www.ncbi.nlm.nih.gov/pubmed/34255862 https://www.proquest.com/docview/2605241945 https://www.proquest.com/docview/2551577577 https://www.proquest.com/docview/2636588484 https://hal.inrae.fr/hal-03322343 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKxYELlP9AQQZxKIesnNhxvOK0IKoFQYUQlfaAFDmO3UbdTardbKv2xCPwBDwcT8KM86OWPyGkHKJ4osTJN-PPyfgbQp4pMc61TMehcAkPRcRMmKepDcc6Ms4BaLTXLXi_J6f74u0smW2QF_1amFYfYvjghp7h4zU6uM5XF5y8Oj4cRTAJx4W-mKuFhOhjfEFwV8a9ArMUctapCmEWz3DmpbHoyiFmQv5KMy-zVj_s7N4gn_sbbrNNjkbrJh-Z85-0HP-zR1vkekdH6aTFz02yYatb5OrLGijj2W3y7U0nJgEhkWovX2JXtHZ0YRsAz7xe4OGCotDrwn7_8vW0LCxtcPjzwQjbUSIKrgA8E3Z93ft6eUarNvucHvhSvzB8UjfXJ_WSDospaVnRo_K0dMt12dCdCcTlqgQwU0z-xKz71fM7ZH_39adX07Ar6BAakSQwW8VK14V0kTKMcx45pgqrgeMIC2EjZtw6YEh5roQtsP4EBMCccZdKplzKteF3yWZVV_Y-oYYzIUyslWVGGDhJGhbrODW2kPC644Ds9K82M53aORbdmGf9rAeeduafdkCeDqbHrcTHb40AH0M7inJPJ-8yPAZdAY4l-EkUkO0ePlkXClYZThiBJo1FEpAnQzM4Mf6Z0ZWt12ADvDVJU9j-YiMB5EoJJQJyr4XmcDscIm-ifK89wP7cj2zvw9TvPPh304fkWoyLPvyHp22y2SzX9hFQsSZ_7H3uB329MWY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF61BQku5Z8GCiwIpHJwZHvXa-fAIVCqhKYRQq2Um2uvd1uriV0lTqNw4hF4Ap6AV-EleBJm1j9q-ROXHpBysLyT2Ls7v5uZbwh5HvBOHAm_Y3HtMYs7trRi31dWJ3Kk1sA0kcEt2BuK3gF_N_JGK-RrXQtT4kM0B24oGUZfo4DjgfQ5Kc9Oj9sOROFBlVK5q5YLCNhmr_rbsLsvXHfn7f6bnlX1FLAk9zwImLDZciK0E0ibMeZoO0hUBGaWK-Bc12ZKg5GO44CrBFsggAzGNtO-sAPts0gy-N1VcgU7iCNS__YH9xzEr3BrzGfBxajCMcK8oeZVL1i_1WPMvfzVsb3oJxtDt3ODfKuXqMxvOWnPi7gtP_6EHvm_rOFNsl553LRbisgtsqKy2-Tq6xy84uUd8qVf4WWA1qeRQWhRM5prOlEFyMc4n-DthCKW7UR9__R5kSaKFmjhjb7FcUTBgieAKw2XR9gPLZ8uaVYm2NMj080YPASqx9FZPqVNvShNM3qSLlI9nacF3eqC6clSkFeK-a1YWDB7eZccXMra3CNrWZ6pDUIlszmXbhQoW3IJXxLSdiPXlyoRwF9ui2zVvBTKCtAd-4qMwzqwg90Nze62yLOG9LREMfktETBkM464473uIMR7MBVwIzk7c1pks-bXsNJ2sxBjYvAEO9xrkafNMOgp_PMpylQ-BxpwzT3fh89faAQTWDgd8Ba5X8pC8zoMjIsXmFkbjv7zPMLh-565ePDvpE_Itd7-3iAc9Ie7D8l1F2tczDnbJlkrpnP1CDzPIn5sBJ6Sw8uWjh8k4Yup |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF61BSEu_P8ECiwIpHJwZHvXa-fAIRCihJaoQlTKzdjr3dZqYkeJ0yiceASegBfgVXgKnoSZ9Y9a_sSlB6QcLO849u7Orz3zDSFPA96JI-F3LK49ZnHHllbs-8rqRI7UGpgmMrgFb0dicMDfjL3xBvla18KU-BDNCzeUDKOvUcBniT4l5NnsqO1AEB5UGZW7ar2CeG3xYtiDzX3muv3X718NrKqlgCW550G8hL2WE6GdQNqMMUfbQaIisLJcAeO6NlMabHQcB1wl2AEBRDC2mfaFHWifRZLB_26SC1zYHewT0XvnnkL4FW4N-Sy4GFcwRpg21DzqGeO3eYSpl7_6tWfdZGPn-lfJt3qFyvSW4_ayiNvy40_gkf_JEl4jVyp_m3ZLAblONlR2g1x8mYNPvL5JvgwrtAzQ-TQy-CxqQXNNp6oA6ZjkUzydUESynarvnz6v0kTRAu270bY4jhhYcAdwpOHwELuh5fM1zcr0enpoehmDf0D1JDrJ57SpFqVpRo_TVarny7SgO10wPFkK0koxuxXLChbPb5GDc1mb22QryzN1l1DJbM6lGwXKllzCRULabuT6UiUC2MttkZ2alUJZwbljV5FJWId1sLuh2d0WedKQzkoMk98SAT8244g6PujuhXgOpgJOJGcnTots1-waVrpuEWJEDH5gh3st8rgZBi2Fn56iTOVLoAHH3PN9-P2FRjCBZdMBb5E7pSg0j8PAtHiBmbVh6D_PIxztD8zBvX8nfUQu7ff64d5wtHufXHaxwMW8ZNsmW8V8qR6A21nED424U_LhvIXjB-NWilg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+analyses+of+metabolome+and+genome%E2%80%90wide+transcriptome+reveal+the+regulatory+network+governing+flavor+formation+in+kiwifruit+%28+Actinidia+chinensis+%29&rft.jtitle=The+New+phytologist&rft.au=Wang%2C+Ruochen&rft.au=Shu%2C+Peng&rft.au=Zhang%2C+Chi&rft.au=Zhang%2C+Junlin&rft.date=2022-01-01&rft.pub=Wiley&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111%2Fnph.17618&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03322343v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |