Integrative analyses of metabolome and genome‐wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis)

Summary Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unk...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 233; no. 1; pp. 373 - 389
Main Authors Wang, Ruochen, Shu, Peng, Zhang, Chi, Zhang, Junlin, Chen, Ya, Zhang, Yaoxin, Du, Kui, Xie, Yue, Li, Mingzhang, Ma, Tao, Zhang, Yang, Li, Zhengguo, Grierson, Don, Pirrello, Julien, Chen, Kunsong, Bouzayen, Mondher, Zhang, Bo, Liu, Mingchun
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.01.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor‐associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor‐related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit. See also the Commentary on this article by Fernie & Alseekh, 233: 8–10.
AbstractList Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor‐associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor‐related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit. See also the Commentary on this article by Fernie & Alseekh, 233 : 8–10 .
Summary Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor‐associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor‐related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit. See also the Commentary on this article by Fernie & Alseekh, 233: 8–10.
Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor-associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor-related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit.
Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor-associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor-related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit.Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor-associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor-related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit.
Author Wang, Ruochen
Shu, Peng
Li, Zhengguo
Pirrello, Julien
Xie, Yue
Zhang, Junlin
Li, Mingzhang
Bouzayen, Mondher
Du, Kui
Zhang, Yang
Chen, Kunsong
Liu, Mingchun
Zhang, Yaoxin
Grierson, Don
Zhang, Bo
Chen, Ya
Zhang, Chi
Ma, Tao
Author_xml – sequence: 1
  givenname: Ruochen
  surname: Wang
  fullname: Wang, Ruochen
  organization: Sichuan University
– sequence: 2
  givenname: Peng
  surname: Shu
  fullname: Shu, Peng
  organization: Sichuan University
– sequence: 3
  givenname: Chi
  surname: Zhang
  fullname: Zhang, Chi
  organization: Zhejiang University
– sequence: 4
  givenname: Junlin
  surname: Zhang
  fullname: Zhang, Junlin
  organization: Sichuan University
– sequence: 5
  givenname: Ya
  surname: Chen
  fullname: Chen, Ya
  organization: Sichuan University
– sequence: 6
  givenname: Yaoxin
  surname: Zhang
  fullname: Zhang, Yaoxin
  organization: Sichuan University
– sequence: 7
  givenname: Kui
  surname: Du
  fullname: Du, Kui
  organization: Sichuan Provincial Academy of Natural Resource Sciences
– sequence: 8
  givenname: Yue
  surname: Xie
  fullname: Xie, Yue
  organization: Sichuan Provincial Academy of Natural Resource Sciences
– sequence: 9
  givenname: Mingzhang
  surname: Li
  fullname: Li, Mingzhang
  organization: Sichuan Provincial Academy of Natural Resource Sciences
– sequence: 10
  givenname: Tao
  orcidid: 0000-0002-7094-6868
  surname: Ma
  fullname: Ma, Tao
  organization: Sichuan University
– sequence: 11
  givenname: Yang
  orcidid: 0000-0002-7793-1108
  surname: Zhang
  fullname: Zhang, Yang
  organization: Sichuan University
– sequence: 12
  givenname: Zhengguo
  orcidid: 0000-0001-7019-2560
  surname: Li
  fullname: Li, Zhengguo
  organization: Chongqing University
– sequence: 13
  givenname: Don
  orcidid: 0000-0002-2238-8072
  surname: Grierson
  fullname: Grierson, Don
  organization: University of Nottingham
– sequence: 14
  givenname: Julien
  surname: Pirrello
  fullname: Pirrello, Julien
  organization: INRA
– sequence: 15
  givenname: Kunsong
  surname: Chen
  fullname: Chen, Kunsong
  organization: Zhejiang University
– sequence: 16
  givenname: Mondher
  orcidid: 0000-0001-7630-1449
  surname: Bouzayen
  fullname: Bouzayen, Mondher
  organization: INRA
– sequence: 17
  givenname: Bo
  orcidid: 0000-0001-8181-9111
  surname: Zhang
  fullname: Zhang, Bo
  email: bozhang@zju.edu.cn
  organization: Zhejiang University
– sequence: 18
  givenname: Mingchun
  orcidid: 0000-0001-8004-1758
  surname: Liu
  fullname: Liu, Mingchun
  email: mcliu@scu.edu.cn
  organization: Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34255862$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-03322343$$DView record in HAL
BookMark eNqFksFuEzEQhi1URNPCgRdAlri0h7T22ut1jlEFpFIEHEDitnJ2x4lbrx1s70a58Qg8AQ_Hk-BtSpEqAZYlj8bf_PbonxN05LwDhF5SckHzunTbzQWtBJVP0IRyMZtKyqojNCGkkFPBxZdjdBLjDSFkVoriGTpmvChLKYoJ-nHtEqyDSmYArJyy-wgRe407SGrlre_GdIvX4HL489v3nWkBp6BcbILZpvE-wADK4rQZw3VvVfJhjx2knQ-3eO0HCM64NdZWDT5g7UOX3_MOG4dvzc7o0JuEz-ZNMs60RuFmYxy4aOL5c_RUKxvhxf15ij6_ffPpajFdfnh3fTVfThueG5lSWvBZKzSVDWGMUU1kC6qihIOsSEEYaCL4aiU5tIQSJmW1IkxXgkhdMdWwU3R-0N0oW2-D6VTY116ZejFf1mMuyxYF42ygmT07sNvgv_YQU92Z2IC1yoHvY10IJkopueT_R8uSllWVd0ZfP0JvfB-yIaMgKQtOZ7zM1Kt7ql910D589behfxppgo8xgH5AKKnHYanzsNR3w5LZy0dsY9KdM9lfY_9VsTMW9n-Xrt9_XBwqfgFNKdHq
CitedBy_id crossref_primary_10_1007_s11103_025_01564_y
crossref_primary_10_1016_j_indcrop_2025_120782
crossref_primary_10_1016_j_postharvbio_2024_113380
crossref_primary_10_1111_nph_17740
crossref_primary_10_1016_j_fochms_2025_100250
crossref_primary_10_1016_j_jia_2023_11_025
crossref_primary_10_1016_j_jia_2024_11_027
crossref_primary_10_1007_s11356_023_26478_4
crossref_primary_10_1016_j_indcrop_2024_119390
crossref_primary_10_3390_d14060424
crossref_primary_10_1016_j_jia_2023_11_022
crossref_primary_10_3390_genes13060953
crossref_primary_10_1021_acs_jafc_2c07719
crossref_primary_10_17660_eJHS_2023_016
crossref_primary_10_1016_j_pld_2023_02_001
crossref_primary_10_1093_hr_uhae058
crossref_primary_10_3390_genes14061290
crossref_primary_10_1016_j_foodres_2022_112412
crossref_primary_10_1093_hr_uhae215
crossref_primary_10_3389_fpls_2022_920138
crossref_primary_10_1016_j_plantsci_2024_112084
crossref_primary_10_1016_j_plaphy_2025_109676
crossref_primary_10_1186_s12870_024_05877_w
crossref_primary_10_3389_fpls_2021_788377
crossref_primary_10_3390_foods12244394
crossref_primary_10_1093_jxb_erae503
crossref_primary_10_1007_s00299_021_02826_x
crossref_primary_10_3389_fpls_2022_924162
crossref_primary_10_1186_s12864_023_09906_0
crossref_primary_10_1016_j_fbio_2024_104393
crossref_primary_10_3389_fpls_2022_1056930
crossref_primary_10_1016_j_postharvbio_2022_112223
crossref_primary_10_1016_j_copbio_2023_102971
crossref_primary_10_1021_acs_jafc_4c07999
crossref_primary_10_1016_j_fochx_2024_101790
crossref_primary_10_1093_plphys_kiae635
crossref_primary_10_3390_horticulturae8060478
crossref_primary_10_1016_j_foodchem_2024_140013
crossref_primary_10_1016_j_plaphy_2023_108097
crossref_primary_10_3390_horticulturae10070772
crossref_primary_10_3390_molecules28227559
crossref_primary_10_1016_j_scienta_2023_111930
crossref_primary_10_3390_plants12244079
crossref_primary_10_1093_plphys_kiac440
crossref_primary_10_3389_fpls_2022_881856
crossref_primary_10_1016_j_plaphy_2022_04_030
crossref_primary_10_1093_lifemeta_loac019
crossref_primary_10_3390_foods12051025
crossref_primary_10_1186_s12863_024_01231_z
crossref_primary_10_3389_fpls_2022_1050216
crossref_primary_10_1016_j_xplc_2024_101221
crossref_primary_10_1186_s40538_024_00654_1
crossref_primary_10_1093_hr_uhac252
crossref_primary_10_1016_j_foodres_2022_112314
crossref_primary_10_1016_j_foodchem_2025_143195
crossref_primary_10_1016_j_fbio_2024_104716
crossref_primary_10_3389_fpls_2025_1533263
crossref_primary_10_3390_plants13152156
crossref_primary_10_1038_s41598_024_70600_6
crossref_primary_10_1111_tpj_16354
crossref_primary_10_1016_j_scienta_2022_111503
crossref_primary_10_3390_genes14061282
crossref_primary_10_1016_j_lwt_2023_114809
crossref_primary_10_3390_ijms26052150
crossref_primary_10_1007_s11307_023_01828_3
crossref_primary_10_1111_pce_14936
crossref_primary_10_1016_j_plaphy_2022_08_015
crossref_primary_10_3390_ijms251910398
crossref_primary_10_1016_j_molp_2024_11_002
crossref_primary_10_1021_acs_jafc_4c07770
crossref_primary_10_3390_ijms24065757
crossref_primary_10_1016_j_postharvbio_2022_112203
crossref_primary_10_1016_j_ijbiomac_2024_138833
crossref_primary_10_1016_j_postharvbio_2023_112746
crossref_primary_10_1093_aob_mcae023
crossref_primary_10_3390_plants12193505
crossref_primary_10_1016_j_indcrop_2023_116453
crossref_primary_10_48130_vegres_0024_0011
crossref_primary_10_1080_10408398_2022_2097195
crossref_primary_10_1186_s12864_024_10608_4
crossref_primary_10_1016_j_plaphy_2023_107955
crossref_primary_10_3390_ijms241813700
crossref_primary_10_1093_plphys_kiac316
crossref_primary_10_1111_ppl_13860
crossref_primary_10_1186_s12864_022_08341_x
crossref_primary_10_1016_j_cropd_2023_100028
crossref_primary_10_3390_ijms24021299
crossref_primary_10_1111_pbi_14399
crossref_primary_10_1038_s41598_022_26843_2
crossref_primary_10_3389_fpls_2022_985088
crossref_primary_10_1016_j_scienta_2024_113334
crossref_primary_10_1016_j_stress_2024_100591
crossref_primary_10_3390_agronomy12102447
crossref_primary_10_3390_ijms24054816
crossref_primary_10_1016_j_scienta_2023_112362
crossref_primary_10_1093_plphys_kiae567
crossref_primary_10_1111_ijfs_16844
crossref_primary_10_1007_s00425_023_04217_w
crossref_primary_10_1093_plphys_kiad064
crossref_primary_10_3390_horticulturae9090971
crossref_primary_10_1016_j_lwt_2024_116105
crossref_primary_10_3389_fpls_2023_1120166
crossref_primary_10_3389_fpls_2022_952698
crossref_primary_10_1016_j_ijbiomac_2025_139897
crossref_primary_10_3390_ijms25168654
crossref_primary_10_3389_fpls_2022_971506
crossref_primary_10_1016_j_scienta_2021_110849
crossref_primary_10_1186_s12870_024_05555_x
crossref_primary_10_1016_j_molp_2022_09_007
crossref_primary_10_1016_j_copbio_2022_102872
crossref_primary_10_1093_hr_uhae089
crossref_primary_10_3389_fpls_2022_1006991
crossref_primary_10_1016_j_scienta_2024_113619
crossref_primary_10_1093_hr_uhac102
crossref_primary_10_1093_hr_uhac223
crossref_primary_10_1111_tpj_70082
crossref_primary_10_1093_hr_uhac229
crossref_primary_10_1007_s00299_025_03435_8
crossref_primary_10_1111_nph_19663
crossref_primary_10_3390_horticulturae9040483
crossref_primary_10_1016_j_hpj_2023_12_010
crossref_primary_10_1016_j_hpj_2023_12_014
crossref_primary_10_1016_j_indcrop_2024_118043
crossref_primary_10_1111_pbi_14058
crossref_primary_10_1007_s00217_023_04440_5
crossref_primary_10_1186_s13059_024_03200_2
crossref_primary_10_3390_plants14050688
crossref_primary_10_1016_j_scienta_2024_113196
crossref_primary_10_7717_peerj_13591
crossref_primary_10_1186_s43897_023_00077_w
crossref_primary_10_1016_j_indcrop_2025_120685
crossref_primary_10_1016_j_fbio_2025_106275
crossref_primary_10_1021_acs_jafc_2c01672
crossref_primary_10_1016_j_ijbiomac_2025_140288
crossref_primary_10_3390_foods14010094
crossref_primary_10_3390_ijms232113507
crossref_primary_10_1016_j_molp_2022_12_022
crossref_primary_10_1016_j_ijbiomac_2023_124356
crossref_primary_10_1016_j_lwt_2022_114012
crossref_primary_10_1016_j_celrep_2024_114623
crossref_primary_10_1111_pbi_14063
crossref_primary_10_1016_j_psyneuen_2024_107262
crossref_primary_10_1093_plphys_kiad459
crossref_primary_10_1016_j_plaphy_2025_109730
crossref_primary_10_1016_j_cofs_2022_100837
crossref_primary_10_1186_s12870_024_05621_4
crossref_primary_10_1111_nph_18840
crossref_primary_10_1111_nph_20008
crossref_primary_10_3389_fnut_2023_1187842
crossref_primary_10_3390_agronomy13010143
crossref_primary_10_1111_pbi_14070
crossref_primary_10_1093_aob_mcae061
crossref_primary_10_3390_foods13101544
crossref_primary_10_3390_horticulturae9030339
crossref_primary_10_3390_ijms231810217
Cites_doi 10.1038/ncomms3640
10.1104/pp.18.00292
10.1111/j.1365-3040.2003.01161.x
10.1111/nph.16233
10.1074/jbc.M114.558536
10.1104/pp.112.199711
10.1146/annurev-arplant-042809-112301
10.1093/bioinformatics/btr064
10.1016/j.jplph.2010.10.001
10.3389/fpls.2019.00888
10.1016/j.foodqual.2005.04.011
10.1093/bioinformatics/btt656
10.1071/FP08240
10.1016/j.foodchem.2003.12.001
10.1104/pp.18.00427
10.1104/pp.114.254367
10.1186/s12870-020-2314-9
10.1021/jf9000378
10.1016/j.tig.2012.12.003
10.1111/nph.17560
10.1371/journal.pone.0216120
10.3390/plants9030332
10.1016/j.postharvbio.2010.08.010
10.1104/pp.106.088534
10.1038/s41438-018-0111-5
10.1093/nar/gkw982
10.1021/acs.jafc.9b07379
10.1093/jxb/err063
10.1038/s41576-018-0002-5
10.1109/TEM.2019.2914275
10.1111/tpj.13976
10.1021/jf201469c
10.1126/science.aal1556
10.1007/978-1-60761-987-1_18
10.1186/1471-2229-12-190
10.1111/tpj.13989
10.1016/j.foodchem.2014.07.070
10.1016/j.phytochem.2010.01.016
10.1016/j.scienta.2011.01.013
10.1038/nmeth.3317
10.1105/tpc.019158
10.1002/jsfa.2740570208
10.1126/science.1133649
10.1111/pbi.13202
10.1016/S0168-9452(02)00430-2
10.1111/j.1365-313X.2006.02723.x
10.1186/1471-2164-9-351
10.1093/jxb/ert293
10.1073/pnas.1613910113
ContentType Journal Article
Copyright 2021 The Authors. © 2021 New Phytologist Foundation
2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
Copyright © 2021 New Phytologist Trust
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 The Authors. © 2021 New Phytologist Foundation
– notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
– notice: Copyright © 2021 New Phytologist Trust
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
DOI 10.1111/nph.17618
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef


Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 389
ExternalDocumentID oai_HAL_hal_03322343v1
34255862
10_1111_nph_17618
NPH17618
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: the Science and Technology Innovation Talent Project of Sichuan province
  funderid: 2018RZ0144
– fundername: National Natural Science Foundation of China
  funderid: 31772372
– fundername: National Key R&D Program of China
  funderid: 2016YFD0400101
– fundername: Fundamental Research Funds for the Central Universities
  funderid: SCU2020D003
– fundername: Applied Basic Research Category of Science and Technology Program of Sichuan Province
  funderid: 2020YJ0248; 2021YFYZ0010
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABGDZ
ABSQW
ADXHL
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
UMC
ID FETCH-LOGICAL-c4558-11249d6f18c03331f08dea7104e870203ef064bb84ed0103887b03f7608f73ac3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri May 09 12:23:49 EDT 2025
Fri Jul 11 18:28:43 EDT 2025
Fri Jul 11 02:08:43 EDT 2025
Fri Jul 25 09:52:04 EDT 2025
Thu Apr 03 07:06:02 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Tue Jul 01 02:28:38 EDT 2025
Wed Jan 22 16:26:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords regulatory network
fruit flavor
weighted correlation network analysis (WGCNA)
transcriptome
metabolome
kiwifruit
fruit flavor
Language English
License 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4558-11249d6f18c03331f08dea7104e870203ef064bb84ed0103887b03f7608f73ac3
Notes These authors contributed equally to this work.
233
8–10
See also the Commentary on this article by
Fernie & Alseekh
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8181-9111
0000-0002-7094-6868
0000-0002-2238-8072
0000-0001-8004-1758
0000-0001-7019-2560
0000-0001-7630-1449
0000-0002-7793-1108
0000-0003-2338-5444
0000-0003-4102-2671
0000-0003-2091-374X
0000-0002-9018-0492
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.17618
PMID 34255862
PQID 2605241945
PQPubID 2026848
PageCount 18
ParticipantIDs hal_primary_oai_HAL_hal_03322343v1
proquest_miscellaneous_2636588484
proquest_miscellaneous_2551577577
proquest_journals_2605241945
pubmed_primary_34255862
crossref_primary_10_1111_nph_17618
crossref_citationtrail_10_1111_nph_17618
wiley_primary_10_1111_nph_17618_NPH17618
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2013; 29
2013; 4
2010; 57
2020; 20
2004; 27
2019; 10
2011; 62
2013; 64
2019; 14
2017; 45
2008; 9
2011; 59
2012; 12
2017; 355
2010; 61
2020; 18
2018; 177
2011; 168
2009; 57
2018; 5
2011; 128
2010; 913
2019; 68
2018; 178
2020; 9
2016; 113
2021; 232
2011; 27
2003; 164
2010; 71
2014; 289
2004; 87
2015; 12
2011; 696
2015; 169
2006; 17
2015; 167
2008; 14
2020; 225
2004
2006; 314
2018; 19
2009; 36
2006; 46
2006; 142
2020; 68
2018; 95
2014; 30
2012; 159
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
Souleyre E (e_1_2_7_40_1) 2010; 913
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Nishiyama I (e_1_2_7_34_1) 2008; 14
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
34628656 - New Phytol. 2022 Jan;233(1):8-10
References_xml – volume: 4
  start-page: 2640
  year: 2013
  article-title: Draft genome of the kiwifruit
  publication-title: Nature Communications
– start-page: S170
  year: 2004
  end-page: 180
  article-title: Genetic regulation of fruit development and ripening
  publication-title: The Plant Cell
– volume: 12
  start-page: 357
  year: 2015
  end-page: 360
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nature Methods
– volume: 29
  start-page: 257
  year: 2013
  end-page: 262
  article-title: Genetic challenges of flavor improvement in tomato
  publication-title: Trends in Genetics: TIG
– volume: 225
  start-page: 1618
  year: 2020
  end-page: 1634
  article-title: Genome‐wide analysis of coding and non‐coding RNA reveals a conserved miR164‐NAC regulatory pathway for fruit ripening
  publication-title: New Phytologist
– volume: 95
  start-page: 648
  year: 2018
  end-page: 658
  article-title: A novel tomato F‐box protein, SlEBF3, is involved in tuning ethylene signaling during plant development and climacteric fruit ripening
  publication-title: The Plant Journal
– volume: 9
  start-page: 332
  year: 2020
  article-title: Characterization of organic acid metabolism and expression of related genes during fruit development of ‘Ganmi 6’
  publication-title: Plants
– volume: 45
  start-page: D1040
  year: 2017
  end-page: D1045
  article-title: PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants
  publication-title: Nucleic Acids Research
– volume: 142
  start-page: 1380
  year: 2006
  end-page: 1396
  article-title: Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior
  publication-title: Plant Physiology
– volume: 87
  start-page: 325
  year: 2004
  end-page: 328
  article-title: Inositols and carbohydrates in different fresh fruit juices
  publication-title: Food Chemistry
– volume: 167
  start-page: 1243
  year: 2015
  end-page: 1258
  article-title: Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE‐INSENSITIVE3‐like transcription factors
  publication-title: Plant Physiology
– volume: 5
  start-page: 75
  year: 2018
  article-title: A NAC transcription factor, NOR‐like1, is a new positive regulator of tomato fruit ripening
  publication-title: Horticulture Research
– volume: 17
  start-page: 376
  year: 2006
  end-page: 386
  article-title: Perception of flavour in standardised fruit pulps with additions of acids or sugars
  publication-title: Food Quality and Preference
– volume: 30
  start-page: 923
  year: 2014
  end-page: 930
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
– volume: 68
  start-page: 785
  year: 2019
  end-page: 796
  article-title: Organizational search, dynamic capability, and business model innovation
  publication-title: IEEE Transactions on Engineering Management
– volume: 314
  start-page: 1298
  year: 2006
  end-page: 1301
  article-title: A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat
  publication-title: Science
– volume: 57
  start-page: 2875
  year: 2009
  end-page: 2881
  article-title: Lipoxygenase gene expression in ripening kiwifruit in relation to ethylene and aroma production
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 14
  year: 2019
  article-title: Copy number variants in kiwifruit ETHYLENE RESPONSE FACTOR/APETALA2 (ERF/AP2)‐like genes show divergence in fruit ripening associated cold and ethylene responses in C‐REPEAT/DRE BINDING FACTOR‐like genes
  publication-title: PLoS ONE
– volume: 68
  start-page: 3267
  year: 2020
  end-page: 3276
  article-title: Methyl jasmonate enhances ethylene synthesis in kiwifruit by inducing genes that activate
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 62
  start-page: 3821
  year: 2011
  end-page: 3835
  article-title: Dissecting the role of climacteric ethylene in kiwifruit ( ) ripening using a 1‐aminocyclopropane‐1‐carboxylic acid oxidase knockdown line
  publication-title: Journal of Experimental Botany
– volume: 57
  start-page: 235
  year: 2010
  end-page: 251
  article-title: Relationships between sensory properties and chemical composition of kiwifruit ( )
  publication-title: Journal of the Science of Food and Agriculture
– volume: 164
  start-page: 459
  year: 2003
  end-page: 470
  article-title: Differential expression within an SPS gene family
  publication-title: Plant Science
– volume: 178
  start-page: 850
  year: 2018
  end-page: 863
  article-title: Transcriptome analysis identifies a zinc finger protein regulating starch degradation in kiwifruit
  publication-title: Plant Physiology
– volume: 59
  start-page: 8358
  year: 2011
  end-page: 8365
  article-title: Characterization of the bound volatile extract from baby kiwi ( )
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 12
  start-page: 190
  year: 2012
  article-title: Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene
  publication-title: BMC Plant Biology
– volume: 19
  start-page: 347
  year: 2018
  end-page: 356
  article-title: The genetics of fruit flavour preferences
  publication-title: Nature Reviews. Genetics
– volume: 71
  start-page: 742
  year: 2010
  end-page: 750
  article-title: (Methylsulfanyl)alkanoate ester biosynthesis in kiwifruit and changes during cold storage
  publication-title: Phytochemistry
– volume: 9
  start-page: 351
  year: 2008
  article-title: Analysis of expressed sequence tags from : applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening
  publication-title: BMC Genomics
– volume: 27
  start-page: 423
  year: 2004
  end-page: 435
  article-title: High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit
  publication-title: Plant, Cell & Environment
– volume: 64
  start-page: 5049
  year: 2013
  end-page: 5063
  article-title: Metabolic analysis of kiwifruit ( ) berries from extreme genotypes reveals hallmarks for fruit starch metabolism
  publication-title: Journal of Experimental Botany
– volume: 913
  start-page: 205
  year: 2010
  end-page: 211
  article-title: Ester biosynthesis in kiwifruit – from genes to enzymes to pathways
  publication-title: Acta Horticulturae
– volume: 232
  start-page: 236
  year: 2021
  end-page: 250
  article-title: An ethylene‐hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening
  publication-title: New Phytologist
– volume: 36
  start-page: 463
  year: 2009
  end-page: 470
  article-title: Changes in quinic acid metabolism during fruit development in three kiwifruit species
  publication-title: Functional Plant Biology: FPB
– volume: 46
  start-page: 601
  year: 2006
  end-page: 612
  article-title: AtNAP, a NAC family transcription factor, has an important role in leaf senescence
  publication-title: The Plant Journal
– volume: 168
  start-page: 629
  year: 2011
  end-page: 638
  article-title: Ethylene‐regulated (methylsulfanyl)alkanoate ester biosynthesis is likely to be modulated by precursor availability in genotypes
  publication-title: Journal of Plant Physiology
– volume: 289
  start-page: 23846
  year: 2014
  end-page: 23858
  article-title: Molecular characterization of quinate and shikimate metabolism in
  publication-title: The Journal of Biological Chemistry
– volume: 14
  start-page: 67
  year: 2008
  end-page: 73
  article-title: Sugar and organic acid composition in the fruit juice of different varieties
  publication-title: Food Science & Technology International Tokyo
– volume: 159
  start-page: 1713
  year: 2012
  end-page: 1729
  article-title: Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species‐specific patterns of network regulatory behavior
  publication-title: Plant Physiology
– volume: 355
  start-page: 391
  year: 2017
  end-page: 394
  article-title: A chemical genetic roadmap to improved tomato flavor
  publication-title: Science
– volume: 59
  start-page: 16
  year: 2011
  end-page: 24
  article-title: Changes in volatile production and sensory quality of kiwifruit during fruit maturation in 'Hayward' and 'Hort16A'
  publication-title: Postharvest Biology & Technology
– volume: 61
  start-page: 209
  year: 2010
  end-page: 234
  article-title: Starch: its metabolism, evolution, and biotechnological modification in plants
  publication-title: Annual Review of Plant Biology
– volume: 10
  start-page: 888
  year: 2019
  article-title: Low temperature storage stimulates fruit softening and sugar accumulation without ethylene and aroma volatile production in kiwifruit
  publication-title: Frontiers in Plant Science
– volume: 177
  start-page: 1286
  year: 2018
  end-page: 1302
  article-title: The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato
  publication-title: Plant Physiology
– volume: 696
  start-page: 291
  year: 2011
  end-page: 303
  article-title: Cytoscape: software for visualization and analysis of biological networks
  publication-title: Methods in Molecular Biology
– volume: 113
  start-page: 12580
  year: 2016
  end-page: 12585
  article-title: Chilling‐induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 128
  start-page: 197
  year: 2011
  end-page: 205
  article-title: Sucrose synthase dominates carbohydrate metabolism and relative growth rate in growing kiwifruit ( , cv Hayward)
  publication-title: Scientia Horticulturae
– volume: 18
  start-page: 354
  year: 2020
  end-page: 363
  article-title: Trichome regulator SlMIXTA‐like directly manipulates primary metabolism in tomato fruit
  publication-title: Plant Biotechnology Journal
– volume: 27
  start-page: 1017
  year: 2011
  end-page: 1018
  article-title: FIMO: scanning for occurrences of a given motif
  publication-title: Bioinformatics
– volume: 95
  start-page: 812
  year: 2018
  end-page: 822
  article-title: Structural and biochemical approaches uncover multiple evolutionary trajectories of plant quinate dehydrogenases
  publication-title: The Plant Journal
– volume: 20
  start-page: 103
  year: 2020
  article-title: Transcriptome co‐expression network analysis identifies key genes and regulators of ripening kiwifruit ester biosynthesis
  publication-title: BMC Plant Biology
– volume: 169
  start-page: 5
  year: 2015
  end-page: 12
  article-title: The impact of cold storage and ethylene on volatile ester production and aroma perception in 'Hort16A' kiwifruit
  publication-title: Food Chemistry
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms3640
– ident: e_1_2_7_27_1
  doi: 10.1104/pp.18.00292
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1365-3040.2003.01161.x
– ident: e_1_2_7_44_1
  doi: 10.1111/nph.16233
– ident: e_1_2_7_17_1
  doi: 10.1074/jbc.M114.558536
– ident: e_1_2_7_35_1
  doi: 10.1104/pp.112.199711
– ident: e_1_2_7_47_1
  doi: 10.1146/annurev-arplant-042809-112301
– ident: e_1_2_7_11_1
  doi: 10.1093/bioinformatics/btr064
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jplph.2010.10.001
– volume: 14
  start-page: 67
  year: 2008
  ident: e_1_2_7_34_1
  article-title: Sugar and organic acid composition in the fruit juice of different Actinidia varieties
  publication-title: Food Science & Technology International Tokyo
– ident: e_1_2_7_30_1
  doi: 10.3389/fpls.2019.00888
– ident: e_1_2_7_29_1
  doi: 10.1016/j.foodqual.2005.04.011
– ident: e_1_2_7_26_1
  doi: 10.1093/bioinformatics/btt656
– ident: e_1_2_7_28_1
  doi: 10.1071/FP08240
– ident: e_1_2_7_39_1
  doi: 10.1016/j.foodchem.2003.12.001
– ident: e_1_2_7_48_1
  doi: 10.1104/pp.18.00427
– ident: e_1_2_7_33_1
  doi: 10.1104/pp.114.254367
– ident: e_1_2_7_49_1
  doi: 10.1186/s12870-020-2314-9
– ident: e_1_2_7_51_1
  doi: 10.1021/jf9000378
– ident: e_1_2_7_23_1
  doi: 10.1016/j.tig.2012.12.003
– ident: e_1_2_7_6_1
  doi: 10.1111/nph.17560
– ident: e_1_2_7_13_1
  doi: 10.1371/journal.pone.0216120
– ident: e_1_2_7_20_1
  doi: 10.3390/plants9030332
– ident: e_1_2_7_43_1
  doi: 10.1016/j.postharvbio.2010.08.010
– ident: e_1_2_7_3_1
  doi: 10.1104/pp.106.088534
– ident: e_1_2_7_8_1
  doi: 10.1038/s41438-018-0111-5
– ident: e_1_2_7_21_1
  doi: 10.1093/nar/gkw982
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.jafc.9b07379
– ident: e_1_2_7_2_1
  doi: 10.1093/jxb/err063
– ident: e_1_2_7_24_1
  doi: 10.1038/s41576-018-0002-5
– ident: e_1_2_7_52_1
  doi: 10.1109/TEM.2019.2914275
– ident: e_1_2_7_5_1
  doi: 10.1111/tpj.13976
– ident: e_1_2_7_9_1
  doi: 10.1021/jf201469c
– ident: e_1_2_7_41_1
  doi: 10.1126/science.aal1556
– ident: e_1_2_7_25_1
  doi: 10.1007/978-1-60761-987-1_18
– ident: e_1_2_7_37_1
  doi: 10.1186/1471-2229-12-190
– ident: e_1_2_7_12_1
  doi: 10.1111/tpj.13989
– ident: e_1_2_7_15_1
  doi: 10.1016/j.foodchem.2014.07.070
– ident: e_1_2_7_16_1
  doi: 10.1016/j.phytochem.2010.01.016
– ident: e_1_2_7_31_1
  doi: 10.1016/j.scienta.2011.01.013
– ident: e_1_2_7_22_1
  doi: 10.1038/nmeth.3317
– ident: e_1_2_7_10_1
  doi: 10.1105/tpc.019158
– ident: e_1_2_7_36_1
  doi: 10.1002/jsfa.2740570208
– ident: e_1_2_7_42_1
  doi: 10.1126/science.1133649
– ident: e_1_2_7_46_1
  doi: 10.1111/pbi.13202
– ident: e_1_2_7_7_1
  doi: 10.1016/S0168-9452(02)00430-2
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1365-313X.2006.02723.x
– ident: e_1_2_7_4_1
  doi: 10.1186/1471-2164-9-351
– ident: e_1_2_7_32_1
  doi: 10.1093/jxb/ert293
– ident: e_1_2_7_50_1
  doi: 10.1073/pnas.1613910113
– volume: 913
  start-page: 205
  year: 2010
  ident: e_1_2_7_40_1
  article-title: Ester biosynthesis in kiwifruit – from genes to enzymes to pathways
  publication-title: Acta Horticulturae
– reference: 34628656 - New Phytol. 2022 Jan;233(1):8-10
SSID ssj0009562
Score 2.674644
Snippet Summary Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the...
Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic...
Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 373
SubjectTerms Actinidia
Actinidia - genetics
Actinidia - metabolism
Actinidia chinensis
Biochemistry, Molecular Biology
biosynthesis
data collection
Datasets
flavor
Flavors
Flavour
Fruit - genetics
Fruit - metabolism
fruit flavor
fruiting
Fruits
Gene Expression Regulation, Plant
Genes
Genomes
Genomics
Kiwifruit
Life Sciences
Metabolism
Metabolites
Metabolome
Organic acids
Plant Proteins - metabolism
Regulatory mechanisms (biology)
regulatory network
Ripening
Sugar
Transcription
Transcription factors
transcriptome
Transcriptome - genetics
Transcriptomes
Vegetal Biology
Volatiles
weighted correlation network analysis (WGCNA)
Title Integrative analyses of metabolome and genome‐wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis)
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17618
https://www.ncbi.nlm.nih.gov/pubmed/34255862
https://www.proquest.com/docview/2605241945
https://www.proquest.com/docview/2551577577
https://www.proquest.com/docview/2636588484
https://hal.inrae.fr/hal-03322343
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKxYELlP9AQQZxKIesnNhxvOK0IKoFQYUQlfaAFDmO3UbdTardbKv2xCPwBDwcT8KM86OWPyGkHKJ4osTJN-PPyfgbQp4pMc61TMehcAkPRcRMmKepDcc6Ms4BaLTXLXi_J6f74u0smW2QF_1amFYfYvjghp7h4zU6uM5XF5y8Oj4cRTAJx4W-mKuFhOhjfEFwV8a9ArMUctapCmEWz3DmpbHoyiFmQv5KMy-zVj_s7N4gn_sbbrNNjkbrJh-Z85-0HP-zR1vkekdH6aTFz02yYatb5OrLGijj2W3y7U0nJgEhkWovX2JXtHZ0YRsAz7xe4OGCotDrwn7_8vW0LCxtcPjzwQjbUSIKrgA8E3Z93ft6eUarNvucHvhSvzB8UjfXJ_WSDospaVnRo_K0dMt12dCdCcTlqgQwU0z-xKz71fM7ZH_39adX07Ar6BAakSQwW8VK14V0kTKMcx45pgqrgeMIC2EjZtw6YEh5roQtsP4EBMCccZdKplzKteF3yWZVV_Y-oYYzIUyslWVGGDhJGhbrODW2kPC644Ds9K82M53aORbdmGf9rAeeduafdkCeDqbHrcTHb40AH0M7inJPJ-8yPAZdAY4l-EkUkO0ePlkXClYZThiBJo1FEpAnQzM4Mf6Z0ZWt12ADvDVJU9j-YiMB5EoJJQJyr4XmcDscIm-ifK89wP7cj2zvw9TvPPh304fkWoyLPvyHp22y2SzX9hFQsSZ_7H3uB329MWY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF61BQku5Z8GCiwIpHJwZHvXa-fAIVCqhKYRQq2Um2uvd1uriV0lTqNw4hF4Ap6AV-EleBJm1j9q-ROXHpBysLyT2Ls7v5uZbwh5HvBOHAm_Y3HtMYs7trRi31dWJ3Kk1sA0kcEt2BuK3gF_N_JGK-RrXQtT4kM0B24oGUZfo4DjgfQ5Kc9Oj9sOROFBlVK5q5YLCNhmr_rbsLsvXHfn7f6bnlX1FLAk9zwImLDZciK0E0ibMeZoO0hUBGaWK-Bc12ZKg5GO44CrBFsggAzGNtO-sAPts0gy-N1VcgU7iCNS__YH9xzEr3BrzGfBxajCMcK8oeZVL1i_1WPMvfzVsb3oJxtDt3ODfKuXqMxvOWnPi7gtP_6EHvm_rOFNsl553LRbisgtsqKy2-Tq6xy84uUd8qVf4WWA1qeRQWhRM5prOlEFyMc4n-DthCKW7UR9__R5kSaKFmjhjb7FcUTBgieAKw2XR9gPLZ8uaVYm2NMj080YPASqx9FZPqVNvShNM3qSLlI9nacF3eqC6clSkFeK-a1YWDB7eZccXMra3CNrWZ6pDUIlszmXbhQoW3IJXxLSdiPXlyoRwF9ui2zVvBTKCtAd-4qMwzqwg90Nze62yLOG9LREMfktETBkM464473uIMR7MBVwIzk7c1pks-bXsNJ2sxBjYvAEO9xrkafNMOgp_PMpylQ-BxpwzT3fh89faAQTWDgd8Ba5X8pC8zoMjIsXmFkbjv7zPMLh-565ePDvpE_Itd7-3iAc9Ie7D8l1F2tczDnbJlkrpnP1CDzPIn5sBJ6Sw8uWjh8k4Yup
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF61BSEu_P8ECiwIpHJwZHvXa-fAIRCihJaoQlTKzdjr3dZqYkeJ0yiceASegBfgVXgKnoSZ9Y9a_sSlB6QcLO849u7Orz3zDSFPA96JI-F3LK49ZnHHllbs-8rqRI7UGpgmMrgFb0dicMDfjL3xBvla18KU-BDNCzeUDKOvUcBniT4l5NnsqO1AEB5UGZW7ar2CeG3xYtiDzX3muv3X718NrKqlgCW550G8hL2WE6GdQNqMMUfbQaIisLJcAeO6NlMabHQcB1wl2AEBRDC2mfaFHWifRZLB_26SC1zYHewT0XvnnkL4FW4N-Sy4GFcwRpg21DzqGeO3eYSpl7_6tWfdZGPn-lfJt3qFyvSW4_ayiNvy40_gkf_JEl4jVyp_m3ZLAblONlR2g1x8mYNPvL5JvgwrtAzQ-TQy-CxqQXNNp6oA6ZjkUzydUESynarvnz6v0kTRAu270bY4jhhYcAdwpOHwELuh5fM1zcr0enpoehmDf0D1JDrJ57SpFqVpRo_TVarny7SgO10wPFkK0koxuxXLChbPb5GDc1mb22QryzN1l1DJbM6lGwXKllzCRULabuT6UiUC2MttkZ2alUJZwbljV5FJWId1sLuh2d0WedKQzkoMk98SAT8244g6PujuhXgOpgJOJGcnTots1-waVrpuEWJEDH5gh3st8rgZBi2Fn56iTOVLoAHH3PN9-P2FRjCBZdMBb5E7pSg0j8PAtHiBmbVh6D_PIxztD8zBvX8nfUQu7ff64d5wtHufXHaxwMW8ZNsmW8V8qR6A21nED424U_LhvIXjB-NWilg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+analyses+of+metabolome+and+genome%E2%80%90wide+transcriptome+reveal+the+regulatory+network+governing+flavor+formation+in+kiwifruit+%28+Actinidia+chinensis+%29&rft.jtitle=The+New+phytologist&rft.au=Wang%2C+Ruochen&rft.au=Shu%2C+Peng&rft.au=Zhang%2C+Chi&rft.au=Zhang%2C+Junlin&rft.date=2022-01-01&rft.pub=Wiley&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111%2Fnph.17618&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03322343v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon