Myofiber Architecture of the Human Atria as Revealed by Submillimeter Diffusion Tensor Imaging

BACKGROUND—Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture v...

Full description

Saved in:
Bibliographic Details
Published inCirculation. Arrhythmia and electrophysiology Vol. 9; no. 4; p. e004133
Main Authors Pashakhanloo, Farhad, Herzka, Daniel A., Ashikaga, Hiroshi, Mori, Susumu, Gai, Neville, Bluemke, David A., Trayanova, Natalia A., McVeigh, Elliot R.
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND—Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population. METHODS AND RESULTS—In this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria. CONCLUSIONS—The application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment.
AbstractList BACKGROUNDAccurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population.METHODS AND RESULTSIn this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria.CONCLUSIONSThe application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment.
Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population. In this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria. The application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment.
BACKGROUND—Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population. METHODS AND RESULTS—In this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria. CONCLUSIONS—The application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment.
Author Trayanova, Natalia A.
McVeigh, Elliot R.
Ashikaga, Hiroshi
Bluemke, David A.
Pashakhanloo, Farhad
Herzka, Daniel A.
Mori, Susumu
Gai, Neville
AuthorAffiliation From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
AuthorAffiliation_xml – name: From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
Author_xml – sequence: 1
  givenname: Farhad
  surname: Pashakhanloo
  fullname: Pashakhanloo, Farhad
  organization: From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.)
– sequence: 2
  givenname: Daniel
  surname: Herzka
  middlename: A.
  fullname: Herzka, Daniel A.
– sequence: 3
  givenname: Hiroshi
  surname: Ashikaga
  fullname: Ashikaga, Hiroshi
– sequence: 4
  givenname: Susumu
  surname: Mori
  fullname: Mori, Susumu
– sequence: 5
  givenname: Neville
  surname: Gai
  fullname: Gai, Neville
– sequence: 6
  givenname: David
  surname: Bluemke
  middlename: A.
  fullname: Bluemke, David A.
– sequence: 7
  givenname: Natalia
  surname: Trayanova
  middlename: A.
  fullname: Trayanova, Natalia A.
– sequence: 8
  givenname: Elliot
  surname: McVeigh
  middlename: R.
  fullname: McVeigh, Elliot R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27071829$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1v1DAQhi1URD9_ABfkI5cUT-zEyXG1tHSlIlBpr7UcZ9w1OEmxHar993iV7oUDkkd-D-8z0jyn5GicRiTkPbBLgBo-rTd366vv-3zJmADO35ATaAUUnDXi6JBBtMfkNMafjNXQQP2OHJeSSWjK9oQ8ft1N1nUY6CqYrUto0hyQTpamLdKbedAjXaXgNNWR3uEf1B572u3oj7kbnPduwJThz87aObpppPc4xinQzaCf3Ph0Tt5a7SNevP5n5OH66n59U9x--7JZr24LI6pKFq01aCuNvALO2op1re617HUDApiFrjRWWG5LyZF3tm5siyizAZ5fDwb5Gfm47H0O0-8ZY1KDiwa91yNOc1QgG4AKZNnm6ofXar4Ae_Uc3KDDTh2c5IJcCiZMMQa0yrikUz4uBe28Aqb29tVif5_VYj-T8A95WP4_RizMy-SzyfjLzy8Y1DaLTlvFckWKlhclg5oJxliRh0n-Fy0jlrM
CitedBy_id crossref_primary_10_1093_europace_eux274
crossref_primary_10_1111_jce_14582
crossref_primary_10_1364_BOE_10_000434
crossref_primary_10_3389_fphys_2019_01512
crossref_primary_10_1093_europace_euac283
crossref_primary_10_3390_s25010011
crossref_primary_10_3389_fcvm_2024_1359715
crossref_primary_10_1093_eurheartj_ehad396
crossref_primary_10_1016_j_hrcr_2024_08_028
crossref_primary_10_1007_s10840_023_01533_9
crossref_primary_10_1161_CIRCIMAGING_117_007264
crossref_primary_10_1016_j_ccep_2020_02_004
crossref_primary_10_1016_j_ccep_2020_06_005
crossref_primary_10_1016_j_jacep_2020_09_022
crossref_primary_10_3389_fphys_2022_912947
crossref_primary_10_1016_j_cobme_2017_11_007
crossref_primary_10_2217_fca_2021_0023
crossref_primary_10_1002_wsbm_1477
crossref_primary_10_1016_j_ccep_2020_06_001
crossref_primary_10_1038_s41598_019_45684_0
crossref_primary_10_1007_s10840_024_01845_4
crossref_primary_10_1016_j_hrthm_2024_10_060
crossref_primary_10_1016_j_mbs_2017_01_008
crossref_primary_10_1126_sciadv_abb5067
crossref_primary_10_1016_j_hrthm_2022_05_032
crossref_primary_10_1002_cnm_2931
crossref_primary_10_1016_j_compbiomed_2019_103349
crossref_primary_10_1161_CIRCEP_122_011173
crossref_primary_10_3389_fcvm_2022_942998
crossref_primary_10_1093_europace_euaa392
crossref_primary_10_1111_jce_13885
crossref_primary_10_1038_s41598_020_59372_x
crossref_primary_10_1093_europace_euab001
crossref_primary_10_1016_j_jacep_2024_04_036
crossref_primary_10_1007_s10237_019_01268_5
crossref_primary_10_1152_advan_00072_2022
crossref_primary_10_1002_cnm_3190
crossref_primary_10_1161_CIRCEP_124_012939
crossref_primary_10_1016_j_ebiom_2022_104310
crossref_primary_10_1111_jce_16026
crossref_primary_10_1080_14779072_2023_2273896
crossref_primary_10_1016_j_jocmr_2024_101109
crossref_primary_10_1063_1_5000706
crossref_primary_10_5105_jse_44_167
crossref_primary_10_1016_j_hrcr_2024_11_021
crossref_primary_10_1038_s44161_024_00489_x
crossref_primary_10_1631_jzus_B2000727
crossref_primary_10_3389_fphys_2020_570740
crossref_primary_10_1111_pace_14220
crossref_primary_10_1109_TBME_2022_3223063
crossref_primary_10_1016_j_jacep_2021_02_015
crossref_primary_10_1007_s00366_022_01709_3
crossref_primary_10_1016_j_hrthm_2018_10_021
crossref_primary_10_1016_j_jcp_2022_111084
crossref_primary_10_3390_jcdd9100319
crossref_primary_10_1111_pace_14878
crossref_primary_10_3390_jcm12134240
crossref_primary_10_1016_j_jcct_2017_11_004
crossref_primary_10_1111_jce_14638
crossref_primary_10_35336_VA_2023_2_12
crossref_primary_10_15420_aer_2019_08
crossref_primary_10_3389_fphys_2022_846620
crossref_primary_10_1093_europace_euaa130
crossref_primary_10_3389_fphys_2021_707189
crossref_primary_10_1016_j_jacep_2024_07_002
crossref_primary_10_1093_cvr_cvab138
crossref_primary_10_3389_fphys_2021_673612
crossref_primary_10_1186_s42444_020_00027_3
crossref_primary_10_18501_arrhythmia_2018_011
crossref_primary_10_1016_j_physd_2019_04_001
crossref_primary_10_3389_fphys_2018_01344
crossref_primary_10_1016_j_bpj_2018_01_035
crossref_primary_10_3389_fphys_2018_01221
crossref_primary_10_1186_s12968_016_0317_3
crossref_primary_10_1136_heartjnl_2020_317455
crossref_primary_10_1016_j_cmpb_2024_108202
crossref_primary_10_1080_14779072_2017_1317593
crossref_primary_10_1016_j_jocmr_2024_100995
crossref_primary_10_1016_j_hroo_2024_11_001
crossref_primary_10_1148_radiol_232731
crossref_primary_10_3390_prosthesis5030061
crossref_primary_10_1111_jce_14255
crossref_primary_10_1002_jbio_201900094
crossref_primary_10_1016_j_jacep_2022_01_019
crossref_primary_10_1093_ehjci_jeab221
crossref_primary_10_1152_advan_00029_2023
crossref_primary_10_1093_europace_euad188
crossref_primary_10_1017_S2040174420001233
crossref_primary_10_1161_CIRCEP_121_010253
crossref_primary_10_1016_j_hrthm_2023_10_019
crossref_primary_10_1038_srep36395
crossref_primary_10_3389_fphys_2021_733543
crossref_primary_10_3389_fcvm_2022_1028053
crossref_primary_10_1186_s42444_021_00046_8
crossref_primary_10_1007_s10840_021_01108_6
crossref_primary_10_3389_fphys_2020_572874
crossref_primary_10_1111_pace_14890
crossref_primary_10_1161_JAHA_117_005922
crossref_primary_10_1161_CIRCEP_117_005699
crossref_primary_10_1161_JAHA_121_024521
crossref_primary_10_1186_s12872_022_02881_6
crossref_primary_10_1007_s10840_023_01687_6
crossref_primary_10_1007_s10554_017_1179_y
crossref_primary_10_1016_j_ijcard_2019_01_096
crossref_primary_10_3389_fphys_2020_00068
crossref_primary_10_1038_srep30573
crossref_primary_10_1016_j_hrcr_2024_08_003
crossref_primary_10_1016_j_joa_2017_07_001
crossref_primary_10_1063_1_5003340
crossref_primary_10_1098_rsfs_2023_0038
crossref_primary_10_1161_CIRCEP_117_006131
crossref_primary_10_3389_fcvm_2023_1162197
crossref_primary_10_1016_j_jacep_2020_04_027
crossref_primary_10_3390_biom13050727
crossref_primary_10_1111_jce_16182
crossref_primary_10_3390_jcm13185379
crossref_primary_10_1113_JP279660
crossref_primary_10_1152_physrev_00017_2023
crossref_primary_10_1007_s40256_024_00705_w
crossref_primary_10_1093_europace_euad283
crossref_primary_10_1093_europace_euy234
crossref_primary_10_1038_s41569_018_0104_y
crossref_primary_10_1016_j_ijcard_2018_10_072
crossref_primary_10_3389_fcvm_2021_772665
crossref_primary_10_1038_s41598_023_34098_8
crossref_primary_10_1016_j_hrthm_2017_05_012
crossref_primary_10_1016_j_yjmcc_2020_10_012
crossref_primary_10_1016_j_bioadv_2023_213579
crossref_primary_10_1038_s41598_023_39962_1
crossref_primary_10_1007_s10840_023_01663_0
Cites_doi 10.1161/01.CIR.34.3.412
10.1161/01.RES.50.2.175
10.1148/radiol.2303030315
10.1161/01.RES.0000199396.30688.eb
10.1016/j.neuron.2006.08.012
10.1152/ajpheart.00889.2002
10.1161/01.cir.0000048140.31785.02
10.1152/physrev.00031.2009
10.1161/01.CIR.0000016062.80020.11
10.1161/01.RES.0000022854.95998.5C
10.1016/j.jacc.2012.05.022
10.1002/jmri.22725
10.1152/ajplegacy.1916.41.3.309
10.1093/europace/euu251
10.1016/j.pbiomolbio.2014.08.005
10.1161/01.cir.0000056765.97013.5e
10.1161/CIRCULATIONAHA.113.005421
10.1002/mrm.24488
10.1161/CIRCEP.111.962720
10.1016/S0006-3495(94)80775-1
10.1186/s12968-015-0129-x
10.1098/rsta.2006.1781
10.1161/CIRCEP.107.760447
10.1093/europace/euu256
10.1161/CIRCEP.111.967950
10.2214/AJR.06.1403
10.1161/01.CIR.78.6.1478
10.1002/mrm.21127
10.1109/TMI.2012.2192743
10.1002/mrm.20255
10.1016/j.jelectrocard.2012.08.005
10.1016/j.cmpb.2005.08.004
10.1161/CIRCEP.113.000050
10.1016/S0008-6363(02)00226-2
10.1161/CIRCRESAHA.110.223610
10.1002/mrm.25038
10.1186/1532-429X-11-47
10.1111/j.1540-8167.1999.tb00211.x
10.1161/01.CIR.84.3.1447
10.1136/hrt.73.6.559
10.1002/mrm.20622
10.1002/aja.1000270302
10.1161/01.CIR.0000061951.81767.4E
ContentType Journal Article
Copyright 2016 American Heart Association, Inc.
Copyright_xml – notice: 2016 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCEP.116.004133
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1941-3084
EndPage e004133
ExternalDocumentID 27071829
10_1161_CIRCEP_116_004133
01337493-201604000-00007
Genre Journal Article
Research Support, N.I.H., Intramural
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL126802
– fundername: Intramural NIH HHS
– fundername: NHLBI NIH HHS
  grantid: R01 HL142893
– fundername: NHLBI NIH HHS
  grantid: DP1 HL123271
– fundername: NCCDPHP CDC HHS
  grantid: DP1HL123271
– fundername: NHLBI NIH HHS
  grantid: R01 HL142496
GroupedDBID ---
.XZ
.Z2
18M
53G
5VS
6J9
AAAAV
AAHPQ
AAIQE
AAJCS
AARTV
AASCR
ABASU
ABBUW
ABDIG
ABPXF
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACDDN
ACEWG
ACGFO
ACILI
ACWDW
ACWRI
ACXJB
ACXNZ
ADBBV
ADGGA
ADHPY
ADNKB
AEBDS
AEETU
AFBFQ
AFDTB
AFEXH
AFNMH
AFUWQ
AGINI
AHQNM
AHQVU
AHRYX
AHVBC
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BQLVK
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
EX3
F5P
FCALG
FL-
GNXGY
GQDEL
H13
HLJTE
IKREB
IN~
IPNFZ
KD2
KQ8
KQB
L-C
ODMTH
ODZKP
OHYEH
OK1
OPUJH
OUVQU
OVD
OVDNE
OXXIT
RAH
RIG
RLZ
S4S
TEORI
TR2
TSPGW
V2I
W2D
W3M
W8F
WOW
ZZMQN
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4557-9fcef5ae35130950b9ada7da81410f1b2cf4f3f273e3bf68f9ee71613613d1ce3
ISSN 1941-3149
IngestDate Thu Jul 10 20:19:20 EDT 2025
Mon Jul 21 05:24:08 EDT 2025
Tue Jul 01 01:19:14 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Fri May 16 03:43:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords diffusion magnetic resonance imaging
arrhythmias, cardiac
diffusion tensor imaging
atrial function
atrial myoarchitecture
heart atria
fiber orientation
Language English
License 2016 American Heart Association, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4557-9fcef5ae35130950b9ada7da81410f1b2cf4f3f273e3bf68f9ee71613613d1ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCEP.116.004133
PMID 27071829
PQID 1781151729
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1781151729
pubmed_primary_27071829
crossref_citationtrail_10_1161_CIRCEP_116_004133
crossref_primary_10_1161_CIRCEP_116_004133
wolterskluwer_health_01337493-201604000-00007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-April
2016-04-00
2016-Apr
20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-April
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation. Arrhythmia and electrophysiology
PublicationTitleAlternate Circ Arrhythm Electrophysiol
PublicationYear 2016
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_4_3_2
Krüger MW. (e_1_3_4_45_2) 2013
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
Scollan DF (e_1_3_4_27_2) 1998; 275
Nielsen PM (e_1_3_4_35_2) 1991; 260
e_1_3_4_30_2
e_1_3_4_11_2
Stejskal EO (e_1_3_4_18_2) 1965; 42
e_1_3_4_34_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
Hsu EW (e_1_3_4_28_2) 1998; 274
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
Wang R (e_1_3_4_32_2) 2007; 15
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_11_2
  doi: 10.1161/01.CIR.34.3.412
– ident: e_1_3_4_3_2
  doi: 10.1161/01.RES.50.2.175
– ident: e_1_3_4_17_2
  doi: 10.1148/radiol.2303030315
– ident: e_1_3_4_23_2
  doi: 10.1161/01.RES.0000199396.30688.eb
– ident: e_1_3_4_20_2
  doi: 10.1016/j.neuron.2006.08.012
– ident: e_1_3_4_24_2
  doi: 10.1152/ajpheart.00889.2002
– ident: e_1_3_4_37_2
  doi: 10.1161/01.cir.0000048140.31785.02
– ident: e_1_3_4_2_2
  doi: 10.1152/physrev.00031.2009
– ident: e_1_3_4_6_2
  doi: 10.1161/01.CIR.0000016062.80020.11
– ident: e_1_3_4_9_2
  doi: 10.1161/01.RES.0000022854.95998.5C
– volume-title: Personalized Multi-Scale Modeling of the Atria: Heterogeneities, Fiber Architecture, Hemodialysis and Ablation Therapy
  year: 2013
  ident: e_1_3_4_45_2
– ident: e_1_3_4_39_2
  doi: 10.1016/j.jacc.2012.05.022
– ident: e_1_3_4_29_2
  doi: 10.1002/jmri.22725
– volume: 274
  start-page: H1627
  issue: 5
  year: 1998
  ident: e_1_3_4_28_2
  article-title: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation.
  publication-title: Am J Physiol
– ident: e_1_3_4_34_2
  doi: 10.1152/ajplegacy.1916.41.3.309
– ident: e_1_3_4_46_2
  doi: 10.1093/europace/euu251
– ident: e_1_3_4_40_2
  doi: 10.1016/j.pbiomolbio.2014.08.005
– ident: e_1_3_4_36_2
  doi: 10.1161/01.cir.0000056765.97013.5e
– volume: 260
  start-page: H1365
  issue: 4
  year: 1991
  ident: e_1_3_4_35_2
  article-title: Mathematical model of geometry and fibrous structure of the heart.
  publication-title: Am J Physiol
– ident: e_1_3_4_38_2
  doi: 10.1161/CIRCULATIONAHA.113.005421
– ident: e_1_3_4_48_2
  doi: 10.1002/mrm.24488
– ident: e_1_3_4_13_2
  doi: 10.1161/CIRCEP.111.962720
– ident: e_1_3_4_19_2
  doi: 10.1016/S0006-3495(94)80775-1
– ident: e_1_3_4_30_2
  doi: 10.1186/s12968-015-0129-x
– ident: e_1_3_4_43_2
  doi: 10.1098/rsta.2006.1781
– ident: e_1_3_4_8_2
  doi: 10.1161/CIRCEP.107.760447
– ident: e_1_3_4_42_2
  doi: 10.1093/europace/euu256
– ident: e_1_3_4_15_2
  doi: 10.1161/CIRCEP.111.967950
– ident: e_1_3_4_21_2
  doi: 10.2214/AJR.06.1403
– ident: e_1_3_4_4_2
  doi: 10.1161/01.CIR.78.6.1478
– ident: e_1_3_4_50_2
  doi: 10.1002/mrm.21127
– ident: e_1_3_4_26_2
  doi: 10.1109/TMI.2012.2192743
– volume: 42
  start-page: 288
  year: 1965
  ident: e_1_3_4_18_2
  article-title: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient.
  publication-title: Chem Phys
– ident: e_1_3_4_47_2
  doi: 10.1002/mrm.20255
– volume: 275
  start-page: H2308
  issue: 6
  year: 1998
  ident: e_1_3_4_27_2
  article-title: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging.
  publication-title: Am J Physiol
– ident: e_1_3_4_44_2
  doi: 10.1016/j.jelectrocard.2012.08.005
– ident: e_1_3_4_31_2
  doi: 10.1016/j.cmpb.2005.08.004
– volume: 15
  start-page: 3720
  year: 2007
  ident: e_1_3_4_32_2
  article-title: Diffusion Toolkit: a software package for diffusion imaging data processing and tractography.
  publication-title: Proc Intl Soc Mag Reson Med
– ident: e_1_3_4_7_2
  doi: 10.1161/CIRCEP.113.000050
– ident: e_1_3_4_12_2
  doi: 10.1016/S0008-6363(02)00226-2
– ident: e_1_3_4_41_2
  doi: 10.1161/CIRCRESAHA.110.223610
– ident: e_1_3_4_49_2
  doi: 10.1002/mrm.25038
– ident: e_1_3_4_22_2
  doi: 10.1186/1532-429X-11-47
– ident: e_1_3_4_10_2
  doi: 10.1111/j.1540-8167.1999.tb00211.x
– ident: e_1_3_4_5_2
  doi: 10.1161/01.CIR.84.3.1447
– ident: e_1_3_4_14_2
  doi: 10.1136/hrt.73.6.559
– ident: e_1_3_4_25_2
  doi: 10.1002/mrm.20622
– ident: e_1_3_4_33_2
  doi: 10.1002/aja.1000270302
– ident: e_1_3_4_16_2
  doi: 10.1161/01.CIR.0000061951.81767.4E
SSID ssj0061816
Score 2.5158746
Snippet BACKGROUND—Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and...
Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus...
BACKGROUNDAccurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and...
SourceID proquest
pubmed
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e004133
SubjectTerms Aged
Aged, 80 and over
Diffusion Tensor Imaging - methods
Female
Heart Atria - pathology
Humans
Imaging, Three-Dimensional - methods
Magnetic Resonance Imaging, Cine - methods
Male
Middle Aged
Myofibrils - pathology
Reproducibility of Results
Ventricular Dysfunction, Right - diagnosis
Title Myofiber Architecture of the Human Atria as Revealed by Submillimeter Diffusion Tensor Imaging
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=01337493-201604000-00007
https://www.ncbi.nlm.nih.gov/pubmed/27071829
https://www.proquest.com/docview/1781151729
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7qCqKIeLfeGMEnS2qmuT-WukurVJa1C_tkmExmSOm2kbRRun_DP-w5M0mauqu4Qglp2kzTnC9nvnPmXAh5GwZSCpW6lpumynID6Vqhm2CwQxKlTAlf-ZjgPP3sj0_dj2feWafzsxW1VG6Svri4Mq_kf6QKx0CumCV7Dck2g8IB2Af5whYkDNt_kvF0C6cnGOXeXg6oVv2Ne36IbTmwmcyJ_I6cUPNN0BbYbWi-xFgY0HpKleg0683Aps2L3mSpWxe1eetoXoiq0Vcffq3ItptsafK5elUnHe0j2XPSH_N1xhcZX53n2iF7xIuMpzvva3Gx4Ls0996w36Bvnc0X3Lh8x3OYx7N5A4zcpMZ_KeFGl22fBfNboS5GzUYuA-1vipX2ZeuYbRrG1bo5akHQvVrj-6jxR5OT0eExvutjBTFTW2O_uvZvs14Ti6itIJ_FZgjcj80QN8jNAdge2Bbjw-RTPb37QIl0ylr9F6qlchji_aWr2Cc7lyyYO-TujxyDItYLnRPRYjaz--ReZZLQocHXA9KRq4fk1rQKunhEvtYwo22Y0VxRgBnVMKMaZpSvaQ0zmmzpHsxoAzNqYEYrmD0mp0eHs9HYqtpyWML1vMCKlJDK49LxgP9Enp1EPOVBykMMGVYsGQjlKkcBL5ZOovxQRVKCVc4ceKVMSOcJOVjlK_mM0IQJO8Vu0ZJhoUovYlyAugAGBcQxlEGX2PX9i0VVsx5bp5zHf5Ral7xrTvlmCrb87ctvaqHEoFZxrYyvZF6uY4YZ2B6w-6hLnhppNcMNAuDlIX5i7YkvNqnLMVhVTuBGjoXQx0lS126wg-fXubQX5PbuyXlJDjZFKV8B_90krzUefwFkiKzg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myofiber+Architecture+of+the+Human+Atria+as+Revealed+by+Submillimeter+Diffusion+Tensor+Imaging&rft.jtitle=Circulation.+Arrhythmia+and+electrophysiology&rft.au=Pashakhanloo%2C+Farhad&rft.au=Herzka%2C+Daniel+A.&rft.au=Ashikaga%2C+Hiroshi&rft.au=Mori%2C+Susumu&rft.date=2016-04-01&rft.issn=1941-3149&rft.eissn=1941-3084&rft.volume=9&rft.issue=4&rft_id=info:doi/10.1161%2FCIRCEP.116.004133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_CIRCEP_116_004133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-3149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-3149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-3149&client=summon