Myofiber Architecture of the Human Atria as Revealed by Submillimeter Diffusion Tensor Imaging
BACKGROUND—Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture v...
Saved in:
Published in | Circulation. Arrhythmia and electrophysiology Vol. 9; no. 4; p. e004133 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND—Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population.
METHODS AND RESULTS—In this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria.
CONCLUSIONS—The application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment. |
---|---|
AbstractList | BACKGROUNDAccurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population.METHODS AND RESULTSIn this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria.CONCLUSIONSThe application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment. Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population. In this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria. The application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment. BACKGROUND—Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population. METHODS AND RESULTS—In this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria. CONCLUSIONS—The application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment. |
Author | Trayanova, Natalia A. McVeigh, Elliot R. Ashikaga, Hiroshi Bluemke, David A. Pashakhanloo, Farhad Herzka, Daniel A. Mori, Susumu Gai, Neville |
AuthorAffiliation | From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.) |
AuthorAffiliation_xml | – name: From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.) |
Author_xml | – sequence: 1 givenname: Farhad surname: Pashakhanloo fullname: Pashakhanloo, Farhad organization: From the Departments of Biomedical Engineering (F.P., D.A.H., N.A.T., E.R.M.), Medicine (H.A.), and Radiology (S.M., E.R.M), Johns Hopkins University, Baltimore, MD; Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD (N.G, D.A.B.); and Departments of Bioengineering, Medicine, and Radiology, University of California, San Diego (E.R.M.) – sequence: 2 givenname: Daniel surname: Herzka middlename: A. fullname: Herzka, Daniel A. – sequence: 3 givenname: Hiroshi surname: Ashikaga fullname: Ashikaga, Hiroshi – sequence: 4 givenname: Susumu surname: Mori fullname: Mori, Susumu – sequence: 5 givenname: Neville surname: Gai fullname: Gai, Neville – sequence: 6 givenname: David surname: Bluemke middlename: A. fullname: Bluemke, David A. – sequence: 7 givenname: Natalia surname: Trayanova middlename: A. fullname: Trayanova, Natalia A. – sequence: 8 givenname: Elliot surname: McVeigh middlename: R. fullname: McVeigh, Elliot R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27071829$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1v1DAQhi1URD9_ABfkI5cUT-zEyXG1tHSlIlBpr7UcZ9w1OEmxHar993iV7oUDkkd-D-8z0jyn5GicRiTkPbBLgBo-rTd366vv-3zJmADO35ATaAUUnDXi6JBBtMfkNMafjNXQQP2OHJeSSWjK9oQ8ft1N1nUY6CqYrUto0hyQTpamLdKbedAjXaXgNNWR3uEf1B572u3oj7kbnPduwJThz87aObpppPc4xinQzaCf3Ph0Tt5a7SNevP5n5OH66n59U9x--7JZr24LI6pKFq01aCuNvALO2op1re617HUDApiFrjRWWG5LyZF3tm5siyizAZ5fDwb5Gfm47H0O0-8ZY1KDiwa91yNOc1QgG4AKZNnm6ofXar4Ae_Uc3KDDTh2c5IJcCiZMMQa0yrikUz4uBe28Aqb29tVif5_VYj-T8A95WP4_RizMy-SzyfjLzy8Y1DaLTlvFckWKlhclg5oJxliRh0n-Fy0jlrM |
CitedBy_id | crossref_primary_10_1093_europace_eux274 crossref_primary_10_1111_jce_14582 crossref_primary_10_1364_BOE_10_000434 crossref_primary_10_3389_fphys_2019_01512 crossref_primary_10_1093_europace_euac283 crossref_primary_10_3390_s25010011 crossref_primary_10_3389_fcvm_2024_1359715 crossref_primary_10_1093_eurheartj_ehad396 crossref_primary_10_1016_j_hrcr_2024_08_028 crossref_primary_10_1007_s10840_023_01533_9 crossref_primary_10_1161_CIRCIMAGING_117_007264 crossref_primary_10_1016_j_ccep_2020_02_004 crossref_primary_10_1016_j_ccep_2020_06_005 crossref_primary_10_1016_j_jacep_2020_09_022 crossref_primary_10_3389_fphys_2022_912947 crossref_primary_10_1016_j_cobme_2017_11_007 crossref_primary_10_2217_fca_2021_0023 crossref_primary_10_1002_wsbm_1477 crossref_primary_10_1016_j_ccep_2020_06_001 crossref_primary_10_1038_s41598_019_45684_0 crossref_primary_10_1007_s10840_024_01845_4 crossref_primary_10_1016_j_hrthm_2024_10_060 crossref_primary_10_1016_j_mbs_2017_01_008 crossref_primary_10_1126_sciadv_abb5067 crossref_primary_10_1016_j_hrthm_2022_05_032 crossref_primary_10_1002_cnm_2931 crossref_primary_10_1016_j_compbiomed_2019_103349 crossref_primary_10_1161_CIRCEP_122_011173 crossref_primary_10_3389_fcvm_2022_942998 crossref_primary_10_1093_europace_euaa392 crossref_primary_10_1111_jce_13885 crossref_primary_10_1038_s41598_020_59372_x crossref_primary_10_1093_europace_euab001 crossref_primary_10_1016_j_jacep_2024_04_036 crossref_primary_10_1007_s10237_019_01268_5 crossref_primary_10_1152_advan_00072_2022 crossref_primary_10_1002_cnm_3190 crossref_primary_10_1161_CIRCEP_124_012939 crossref_primary_10_1016_j_ebiom_2022_104310 crossref_primary_10_1111_jce_16026 crossref_primary_10_1080_14779072_2023_2273896 crossref_primary_10_1016_j_jocmr_2024_101109 crossref_primary_10_1063_1_5000706 crossref_primary_10_5105_jse_44_167 crossref_primary_10_1016_j_hrcr_2024_11_021 crossref_primary_10_1038_s44161_024_00489_x crossref_primary_10_1631_jzus_B2000727 crossref_primary_10_3389_fphys_2020_570740 crossref_primary_10_1111_pace_14220 crossref_primary_10_1109_TBME_2022_3223063 crossref_primary_10_1016_j_jacep_2021_02_015 crossref_primary_10_1007_s00366_022_01709_3 crossref_primary_10_1016_j_hrthm_2018_10_021 crossref_primary_10_1016_j_jcp_2022_111084 crossref_primary_10_3390_jcdd9100319 crossref_primary_10_1111_pace_14878 crossref_primary_10_3390_jcm12134240 crossref_primary_10_1016_j_jcct_2017_11_004 crossref_primary_10_1111_jce_14638 crossref_primary_10_35336_VA_2023_2_12 crossref_primary_10_15420_aer_2019_08 crossref_primary_10_3389_fphys_2022_846620 crossref_primary_10_1093_europace_euaa130 crossref_primary_10_3389_fphys_2021_707189 crossref_primary_10_1016_j_jacep_2024_07_002 crossref_primary_10_1093_cvr_cvab138 crossref_primary_10_3389_fphys_2021_673612 crossref_primary_10_1186_s42444_020_00027_3 crossref_primary_10_18501_arrhythmia_2018_011 crossref_primary_10_1016_j_physd_2019_04_001 crossref_primary_10_3389_fphys_2018_01344 crossref_primary_10_1016_j_bpj_2018_01_035 crossref_primary_10_3389_fphys_2018_01221 crossref_primary_10_1186_s12968_016_0317_3 crossref_primary_10_1136_heartjnl_2020_317455 crossref_primary_10_1016_j_cmpb_2024_108202 crossref_primary_10_1080_14779072_2017_1317593 crossref_primary_10_1016_j_jocmr_2024_100995 crossref_primary_10_1016_j_hroo_2024_11_001 crossref_primary_10_1148_radiol_232731 crossref_primary_10_3390_prosthesis5030061 crossref_primary_10_1111_jce_14255 crossref_primary_10_1002_jbio_201900094 crossref_primary_10_1016_j_jacep_2022_01_019 crossref_primary_10_1093_ehjci_jeab221 crossref_primary_10_1152_advan_00029_2023 crossref_primary_10_1093_europace_euad188 crossref_primary_10_1017_S2040174420001233 crossref_primary_10_1161_CIRCEP_121_010253 crossref_primary_10_1016_j_hrthm_2023_10_019 crossref_primary_10_1038_srep36395 crossref_primary_10_3389_fphys_2021_733543 crossref_primary_10_3389_fcvm_2022_1028053 crossref_primary_10_1186_s42444_021_00046_8 crossref_primary_10_1007_s10840_021_01108_6 crossref_primary_10_3389_fphys_2020_572874 crossref_primary_10_1111_pace_14890 crossref_primary_10_1161_JAHA_117_005922 crossref_primary_10_1161_CIRCEP_117_005699 crossref_primary_10_1161_JAHA_121_024521 crossref_primary_10_1186_s12872_022_02881_6 crossref_primary_10_1007_s10840_023_01687_6 crossref_primary_10_1007_s10554_017_1179_y crossref_primary_10_1016_j_ijcard_2019_01_096 crossref_primary_10_3389_fphys_2020_00068 crossref_primary_10_1038_srep30573 crossref_primary_10_1016_j_hrcr_2024_08_003 crossref_primary_10_1016_j_joa_2017_07_001 crossref_primary_10_1063_1_5003340 crossref_primary_10_1098_rsfs_2023_0038 crossref_primary_10_1161_CIRCEP_117_006131 crossref_primary_10_3389_fcvm_2023_1162197 crossref_primary_10_1016_j_jacep_2020_04_027 crossref_primary_10_3390_biom13050727 crossref_primary_10_1111_jce_16182 crossref_primary_10_3390_jcm13185379 crossref_primary_10_1113_JP279660 crossref_primary_10_1152_physrev_00017_2023 crossref_primary_10_1007_s40256_024_00705_w crossref_primary_10_1093_europace_euad283 crossref_primary_10_1093_europace_euy234 crossref_primary_10_1038_s41569_018_0104_y crossref_primary_10_1016_j_ijcard_2018_10_072 crossref_primary_10_3389_fcvm_2021_772665 crossref_primary_10_1038_s41598_023_34098_8 crossref_primary_10_1016_j_hrthm_2017_05_012 crossref_primary_10_1016_j_yjmcc_2020_10_012 crossref_primary_10_1016_j_bioadv_2023_213579 crossref_primary_10_1038_s41598_023_39962_1 crossref_primary_10_1007_s10840_023_01663_0 |
Cites_doi | 10.1161/01.CIR.34.3.412 10.1161/01.RES.50.2.175 10.1148/radiol.2303030315 10.1161/01.RES.0000199396.30688.eb 10.1016/j.neuron.2006.08.012 10.1152/ajpheart.00889.2002 10.1161/01.cir.0000048140.31785.02 10.1152/physrev.00031.2009 10.1161/01.CIR.0000016062.80020.11 10.1161/01.RES.0000022854.95998.5C 10.1016/j.jacc.2012.05.022 10.1002/jmri.22725 10.1152/ajplegacy.1916.41.3.309 10.1093/europace/euu251 10.1016/j.pbiomolbio.2014.08.005 10.1161/01.cir.0000056765.97013.5e 10.1161/CIRCULATIONAHA.113.005421 10.1002/mrm.24488 10.1161/CIRCEP.111.962720 10.1016/S0006-3495(94)80775-1 10.1186/s12968-015-0129-x 10.1098/rsta.2006.1781 10.1161/CIRCEP.107.760447 10.1093/europace/euu256 10.1161/CIRCEP.111.967950 10.2214/AJR.06.1403 10.1161/01.CIR.78.6.1478 10.1002/mrm.21127 10.1109/TMI.2012.2192743 10.1002/mrm.20255 10.1016/j.jelectrocard.2012.08.005 10.1016/j.cmpb.2005.08.004 10.1161/CIRCEP.113.000050 10.1016/S0008-6363(02)00226-2 10.1161/CIRCRESAHA.110.223610 10.1002/mrm.25038 10.1186/1532-429X-11-47 10.1111/j.1540-8167.1999.tb00211.x 10.1161/01.CIR.84.3.1447 10.1136/hrt.73.6.559 10.1002/mrm.20622 10.1002/aja.1000270302 10.1161/01.CIR.0000061951.81767.4E |
ContentType | Journal Article |
Copyright | 2016 American Heart Association, Inc. |
Copyright_xml | – notice: 2016 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/CIRCEP.116.004133 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1941-3084 |
EndPage | e004133 |
ExternalDocumentID | 27071829 10_1161_CIRCEP_116_004133 01337493-201604000-00007 |
Genre | Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL126802 – fundername: Intramural NIH HHS – fundername: NHLBI NIH HHS grantid: R01 HL142893 – fundername: NHLBI NIH HHS grantid: DP1 HL123271 – fundername: NCCDPHP CDC HHS grantid: DP1HL123271 – fundername: NHLBI NIH HHS grantid: R01 HL142496 |
GroupedDBID | --- .XZ .Z2 18M 53G 5VS 6J9 AAAAV AAHPQ AAIQE AAJCS AARTV AASCR ABASU ABBUW ABDIG ABPXF ABVCZ ABXVJ ABXYN ABZAD ABZZY ACDDN ACEWG ACGFO ACILI ACWDW ACWRI ACXJB ACXNZ ADBBV ADGGA ADHPY ADNKB AEBDS AEETU AFBFQ AFDTB AFEXH AFNMH AFUWQ AGINI AHQNM AHQVU AHRYX AHVBC AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BQLVK C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD EX3 F5P FCALG FL- GNXGY GQDEL H13 HLJTE IKREB IN~ IPNFZ KD2 KQ8 KQB L-C ODMTH ODZKP OHYEH OK1 OPUJH OUVQU OVD OVDNE OXXIT RAH RIG RLZ S4S TEORI TR2 TSPGW V2I W2D W3M W8F WOW ZZMQN AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4557-9fcef5ae35130950b9ada7da81410f1b2cf4f3f273e3bf68f9ee71613613d1ce3 |
ISSN | 1941-3149 |
IngestDate | Thu Jul 10 20:19:20 EDT 2025 Mon Jul 21 05:24:08 EDT 2025 Tue Jul 01 01:19:14 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Fri May 16 03:43:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | diffusion magnetic resonance imaging arrhythmias, cardiac diffusion tensor imaging atrial function atrial myoarchitecture heart atria fiber orientation |
Language | English |
License | 2016 American Heart Association, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4557-9fcef5ae35130950b9ada7da81410f1b2cf4f3f273e3bf68f9ee71613613d1ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCEP.116.004133 |
PMID | 27071829 |
PQID | 1781151729 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1781151729 pubmed_primary_27071829 crossref_citationtrail_10_1161_CIRCEP_116_004133 crossref_primary_10_1161_CIRCEP_116_004133 wolterskluwer_health_01337493-201604000-00007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-April 2016-04-00 2016-Apr 20160401 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-April |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Circulation. Arrhythmia and electrophysiology |
PublicationTitleAlternate | Circ Arrhythm Electrophysiol |
PublicationYear | 2016 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_4_3_2 Krüger MW. (e_1_3_4_45_2) 2013 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 Scollan DF (e_1_3_4_27_2) 1998; 275 Nielsen PM (e_1_3_4_35_2) 1991; 260 e_1_3_4_30_2 e_1_3_4_11_2 Stejskal EO (e_1_3_4_18_2) 1965; 42 e_1_3_4_34_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 Hsu EW (e_1_3_4_28_2) 1998; 274 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 Wang R (e_1_3_4_32_2) 2007; 15 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_11_2 doi: 10.1161/01.CIR.34.3.412 – ident: e_1_3_4_3_2 doi: 10.1161/01.RES.50.2.175 – ident: e_1_3_4_17_2 doi: 10.1148/radiol.2303030315 – ident: e_1_3_4_23_2 doi: 10.1161/01.RES.0000199396.30688.eb – ident: e_1_3_4_20_2 doi: 10.1016/j.neuron.2006.08.012 – ident: e_1_3_4_24_2 doi: 10.1152/ajpheart.00889.2002 – ident: e_1_3_4_37_2 doi: 10.1161/01.cir.0000048140.31785.02 – ident: e_1_3_4_2_2 doi: 10.1152/physrev.00031.2009 – ident: e_1_3_4_6_2 doi: 10.1161/01.CIR.0000016062.80020.11 – ident: e_1_3_4_9_2 doi: 10.1161/01.RES.0000022854.95998.5C – volume-title: Personalized Multi-Scale Modeling of the Atria: Heterogeneities, Fiber Architecture, Hemodialysis and Ablation Therapy year: 2013 ident: e_1_3_4_45_2 – ident: e_1_3_4_39_2 doi: 10.1016/j.jacc.2012.05.022 – ident: e_1_3_4_29_2 doi: 10.1002/jmri.22725 – volume: 274 start-page: H1627 issue: 5 year: 1998 ident: e_1_3_4_28_2 article-title: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. publication-title: Am J Physiol – ident: e_1_3_4_34_2 doi: 10.1152/ajplegacy.1916.41.3.309 – ident: e_1_3_4_46_2 doi: 10.1093/europace/euu251 – ident: e_1_3_4_40_2 doi: 10.1016/j.pbiomolbio.2014.08.005 – ident: e_1_3_4_36_2 doi: 10.1161/01.cir.0000056765.97013.5e – volume: 260 start-page: H1365 issue: 4 year: 1991 ident: e_1_3_4_35_2 article-title: Mathematical model of geometry and fibrous structure of the heart. publication-title: Am J Physiol – ident: e_1_3_4_38_2 doi: 10.1161/CIRCULATIONAHA.113.005421 – ident: e_1_3_4_48_2 doi: 10.1002/mrm.24488 – ident: e_1_3_4_13_2 doi: 10.1161/CIRCEP.111.962720 – ident: e_1_3_4_19_2 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_3_4_30_2 doi: 10.1186/s12968-015-0129-x – ident: e_1_3_4_43_2 doi: 10.1098/rsta.2006.1781 – ident: e_1_3_4_8_2 doi: 10.1161/CIRCEP.107.760447 – ident: e_1_3_4_42_2 doi: 10.1093/europace/euu256 – ident: e_1_3_4_15_2 doi: 10.1161/CIRCEP.111.967950 – ident: e_1_3_4_21_2 doi: 10.2214/AJR.06.1403 – ident: e_1_3_4_4_2 doi: 10.1161/01.CIR.78.6.1478 – ident: e_1_3_4_50_2 doi: 10.1002/mrm.21127 – ident: e_1_3_4_26_2 doi: 10.1109/TMI.2012.2192743 – volume: 42 start-page: 288 year: 1965 ident: e_1_3_4_18_2 article-title: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. publication-title: Chem Phys – ident: e_1_3_4_47_2 doi: 10.1002/mrm.20255 – volume: 275 start-page: H2308 issue: 6 year: 1998 ident: e_1_3_4_27_2 article-title: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. publication-title: Am J Physiol – ident: e_1_3_4_44_2 doi: 10.1016/j.jelectrocard.2012.08.005 – ident: e_1_3_4_31_2 doi: 10.1016/j.cmpb.2005.08.004 – volume: 15 start-page: 3720 year: 2007 ident: e_1_3_4_32_2 article-title: Diffusion Toolkit: a software package for diffusion imaging data processing and tractography. publication-title: Proc Intl Soc Mag Reson Med – ident: e_1_3_4_7_2 doi: 10.1161/CIRCEP.113.000050 – ident: e_1_3_4_12_2 doi: 10.1016/S0008-6363(02)00226-2 – ident: e_1_3_4_41_2 doi: 10.1161/CIRCRESAHA.110.223610 – ident: e_1_3_4_49_2 doi: 10.1002/mrm.25038 – ident: e_1_3_4_22_2 doi: 10.1186/1532-429X-11-47 – ident: e_1_3_4_10_2 doi: 10.1111/j.1540-8167.1999.tb00211.x – ident: e_1_3_4_5_2 doi: 10.1161/01.CIR.84.3.1447 – ident: e_1_3_4_14_2 doi: 10.1136/hrt.73.6.559 – ident: e_1_3_4_25_2 doi: 10.1002/mrm.20622 – ident: e_1_3_4_33_2 doi: 10.1002/aja.1000270302 – ident: e_1_3_4_16_2 doi: 10.1161/01.CIR.0000061951.81767.4E |
SSID | ssj0061816 |
Score | 2.5158746 |
Snippet | BACKGROUND—Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and... Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus... BACKGROUNDAccurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e004133 |
SubjectTerms | Aged Aged, 80 and over Diffusion Tensor Imaging - methods Female Heart Atria - pathology Humans Imaging, Three-Dimensional - methods Magnetic Resonance Imaging, Cine - methods Male Middle Aged Myofibrils - pathology Reproducibility of Results Ventricular Dysfunction, Right - diagnosis |
Title | Myofiber Architecture of the Human Atria as Revealed by Submillimeter Diffusion Tensor Imaging |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=01337493-201604000-00007 https://www.ncbi.nlm.nih.gov/pubmed/27071829 https://www.proquest.com/docview/1781151729 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7qCqKIeLfeGMEnS2qmuT-WukurVJa1C_tkmExmSOm2kbRRun_DP-w5M0mauqu4Qglp2kzTnC9nvnPmXAh5GwZSCpW6lpumynID6Vqhm2CwQxKlTAlf-ZjgPP3sj0_dj2feWafzsxW1VG6Svri4Mq_kf6QKx0CumCV7Dck2g8IB2Af5whYkDNt_kvF0C6cnGOXeXg6oVv2Ne36IbTmwmcyJ_I6cUPNN0BbYbWi-xFgY0HpKleg0683Aps2L3mSpWxe1eetoXoiq0Vcffq3ItptsafK5elUnHe0j2XPSH_N1xhcZX53n2iF7xIuMpzvva3Gx4Ls0996w36Bvnc0X3Lh8x3OYx7N5A4zcpMZ_KeFGl22fBfNboS5GzUYuA-1vipX2ZeuYbRrG1bo5akHQvVrj-6jxR5OT0eExvutjBTFTW2O_uvZvs14Ti6itIJ_FZgjcj80QN8jNAdge2Bbjw-RTPb37QIl0ylr9F6qlchji_aWr2Cc7lyyYO-TujxyDItYLnRPRYjaz--ReZZLQocHXA9KRq4fk1rQKunhEvtYwo22Y0VxRgBnVMKMaZpSvaQ0zmmzpHsxoAzNqYEYrmD0mp0eHs9HYqtpyWML1vMCKlJDK49LxgP9Enp1EPOVBykMMGVYsGQjlKkcBL5ZOovxQRVKCVc4ceKVMSOcJOVjlK_mM0IQJO8Vu0ZJhoUovYlyAugAGBcQxlEGX2PX9i0VVsx5bp5zHf5Ral7xrTvlmCrb87ctvaqHEoFZxrYyvZF6uY4YZ2B6w-6hLnhppNcMNAuDlIX5i7YkvNqnLMVhVTuBGjoXQx0lS126wg-fXubQX5PbuyXlJDjZFKV8B_90krzUefwFkiKzg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myofiber+Architecture+of+the+Human+Atria+as+Revealed+by+Submillimeter+Diffusion+Tensor+Imaging&rft.jtitle=Circulation.+Arrhythmia+and+electrophysiology&rft.au=Pashakhanloo%2C+Farhad&rft.au=Herzka%2C+Daniel+A.&rft.au=Ashikaga%2C+Hiroshi&rft.au=Mori%2C+Susumu&rft.date=2016-04-01&rft.issn=1941-3149&rft.eissn=1941-3084&rft.volume=9&rft.issue=4&rft_id=info:doi/10.1161%2FCIRCEP.116.004133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_CIRCEP_116_004133 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-3149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-3149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-3149&client=summon |