A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation

Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue‐level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem tha...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 41; no. 12; pp. 2718 - 2730
Main Authors Mrad, Assaad, Domec, Jean‐Christophe, Huang, Cheng‐Wei, Lens, Frederic, Katul, Gabriel
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2018
Wiley
Subjects
Online AccessGet full text
ISSN0140-7791
1365-3040
1365-3040
DOI10.1111/pce.13415

Cover

Loading…
Abstract Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue‐level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse‐porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young–Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue‐scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit‐scale and vessel‐scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three‐dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions. This work introduces a new open source numerical model of plant xylem. The subject of inquiry is the link between wood anatomy and plant water use, especially vulnerability to embolism under drought. The model successfully reproduces empirical vulnerability curves of Acer terminal branches. The results of this study underscore the importance of stepping up research on the effects of xylem network topology on whole‐plant hydraulics.
AbstractList Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue‐level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse‐porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young–Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue‐scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit‐scale and vessel‐scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three‐dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions.
Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue‐level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse‐porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young–Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue‐scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit‐scale and vessel‐scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three‐dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions. This work introduces a new open source numerical model of plant xylem. The subject of inquiry is the link between wood anatomy and plant water use, especially vulnerability to embolism under drought. The model successfully reproduces empirical vulnerability curves of Acer terminal branches. The results of this study underscore the importance of stepping up research on the effects of xylem network topology on whole‐plant hydraulics.
Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue‐level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse‐porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young–Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue‐scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit‐scale and vessel‐scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three‐dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions. This work introduces a new open source numerical model of plant xylem. The subject of inquiry is the link between wood anatomy and plant water use, especially vulnerability to embolism under drought. The model successfully reproduces empirical vulnerability curves of Acer terminal branches. The results of this study underscore the importance of stepping up research on the effects of xylem network topology on whole‐plant hydraulics.
Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue-level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse-porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young-Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue-scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit-scale and vessel-scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three-dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions.Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue-level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse-porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young-Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue-scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit-scale and vessel-scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three-dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions.
Author Mrad, Assaad
Huang, Cheng‐Wei
Domec, Jean‐Christophe
Katul, Gabriel
Lens, Frederic
Author_xml – sequence: 1
  givenname: Assaad
  orcidid: 0000-0003-4922-4446
  surname: Mrad
  fullname: Mrad, Assaad
  email: mradassaad2@gmail.com
  organization: Duke University
– sequence: 2
  givenname: Jean‐Christophe
  orcidid: 0000-0003-0478-2559
  surname: Domec
  fullname: Domec, Jean‐Christophe
  organization: UMR 1391 INRA-ISPA
– sequence: 3
  givenname: Cheng‐Wei
  surname: Huang
  fullname: Huang, Cheng‐Wei
  organization: University of New Mexico
– sequence: 4
  givenname: Frederic
  orcidid: 0000-0002-5001-0149
  surname: Lens
  fullname: Lens, Frederic
  organization: Leiden University
– sequence: 5
  givenname: Gabriel
  orcidid: 0000-0001-9768-3693
  surname: Katul
  fullname: Katul, Gabriel
  organization: Duke University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30071137$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02623852$$DView record in HAL
BookMark eNqFkUFvEzEQhS1URNPCgT-ALHGBw7bjtb3eHKOoUKRIcICz5fVOFLfedbB3k-6_x2nSIiEQvlgaf_PG894FOetDj4S8ZXDF8rneWrxiXDD5gswYr2TBQcAZmQETUCg1Z-fkIqU7gFxQ81fknAMoxriakfWC9jjsQ7ynXWjRU-_6-0T3IbTU9GYI3USHQB8mjx0dXEoj0s3URjN6Z2mDG7NzYYyZbelu9D1G0zjvhscumx8HM7jQvyYv18YnfHO6L8mPTzffl7fF6uvnL8vFqrBCSlkwC6UUja1rsGauFJRoDCJKmFcVE1YJLhteC9UqVTFreNuKOpO2BFtVnPFL8vGouzFeb6PrTJx0ME7fLlb6UIOyKnkty92B_XBktzH8HDENunPJovemxzAmXbJ6LpkUlfg_CjVXpci2Z_T9H-hd9qfPS2dBLoFxBofZ707U2HTYPn_1KZgMXB8BG0NKEdfanqwconFeM9CH6HWOXj9G_3v1544n0b-xJ_W98zj9G9TfljfHjl_GCLr5
CitedBy_id crossref_primary_10_1111_nph_17384
crossref_primary_10_1111_nph_20037
crossref_primary_10_1016_j_envexpbot_2022_104942
crossref_primary_10_1016_j_bioelechem_2020_107533
crossref_primary_10_1111_nph_17786
crossref_primary_10_1109_JETCAS_2021_3098984
crossref_primary_10_1111_nph_20035
crossref_primary_10_1038_s41467_021_22055_w
crossref_primary_10_3390_agriculture13101867
crossref_primary_10_1093_treephys_tpac110
crossref_primary_10_1111_ppl_13435
crossref_primary_10_1029_2020MS002214
crossref_primary_10_1111_pce_14990
crossref_primary_10_3389_fpls_2020_00246
crossref_primary_10_1111_nph_17629
crossref_primary_10_1007_s00468_019_01829_2
crossref_primary_10_1029_2024RG000858
crossref_primary_10_1111_nph_17429
crossref_primary_10_1111_nph_19608
crossref_primary_10_1093_aob_mcab047
crossref_primary_10_1126_science_add2910
crossref_primary_10_1073_pnas_2100314118
crossref_primary_10_1029_2022WR033402
crossref_primary_10_1016_j_foreco_2020_118179
crossref_primary_10_1111_ppl_13924
crossref_primary_10_1007_s12549_020_00466_9
crossref_primary_10_1007_s00468_019_01891_w
crossref_primary_10_1029_2022JG006971
crossref_primary_10_1016_j_matt_2025_102038
crossref_primary_10_1029_2022MS003494
crossref_primary_10_1093_plphys_kiab045
crossref_primary_10_1016_j_agrformet_2021_108701
crossref_primary_10_1007_s00442_024_05562_7
crossref_primary_10_2139_ssrn_4075802
crossref_primary_10_1111_nph_18731
crossref_primary_10_1186_s13717_024_00486_9
crossref_primary_10_3389_frwa_2022_861590
crossref_primary_10_1016_j_flora_2022_152147
crossref_primary_10_1111_pce_13715
crossref_primary_10_1038_s41467_019_13673_6
crossref_primary_10_1111_nph_17282
crossref_primary_10_1111_pce_14327
crossref_primary_10_1093_treephys_tpad140
crossref_primary_10_1111_pce_13446
crossref_primary_10_1111_pce_13565
crossref_primary_10_1093_aob_mcac053
crossref_primary_10_1111_ppl_13059
crossref_primary_10_1111_ppl_13970
crossref_primary_10_1093_aob_mcae016
crossref_primary_10_1111_nph_16663
crossref_primary_10_3389_fpls_2021_687652
crossref_primary_10_1111_nph_18447
crossref_primary_10_1002_wat2_70015
crossref_primary_10_1093_treephys_tpab018
crossref_primary_10_3389_fpls_2023_1130724
crossref_primary_10_1111_pce_13607
crossref_primary_10_1111_pce_13848
crossref_primary_10_1093_treephys_tpad037
crossref_primary_10_1111_pce_13528
crossref_primary_10_1002_ajb2_1323
crossref_primary_10_1093_treephys_tpz092
crossref_primary_10_1002_ajb2_1450
crossref_primary_10_1038_s41558_020_0781_5
crossref_primary_10_1111_pce_14467
crossref_primary_10_1111_pce_13893
crossref_primary_10_1080_17550874_2022_2053600
crossref_primary_10_1111_nph_16942
crossref_primary_10_1093_jxb_ery361
crossref_primary_10_1016_j_agrformet_2025_110479
Cites_doi 10.1016/j.jtbi.2007.05.033
10.1007/978-3-662-04931-0
10.1111/j.1365-3040.2005.01330.x
10.1093/treephys/tpw055
10.1111/j.1469-8137.2007.02317.x
10.1103/PhysRevE.89.033019
10.1111/j.1365-3040.2009.02094.x
10.1104/pp.103.032334
10.1093/treephys/tpy034
10.1038/s41559-017-0248-x
10.1063/1.4876937
10.1111/pce.12120
10.3732/ajb.1200140
10.1016/j.jtbi.2007.03.036
10.1111/j.1365-3040.1995.tb00352.x
10.1111/nph.14273
10.1088/978-1-6817-4159-8ch5
10.3732/ajb.1500305
10.1111/pce.12862
10.1073/pnas.1525678113
10.1046/j.1365-3040.2003.00978.x
10.1104/pp.15.00223
10.1002/2013WR015236
10.1104/pp.100.1.205
10.1016/S0022-5193(03)00138-3
10.1093/treephys/tpv040
10.3732/ajb.1500532
10.1007/978-90-481-2516-6_16
10.1111/j.1365-3040.1994.tb02021.x
10.1163/22941932-20160128
10.1016/S0098-8472(01)00074-0
10.1093/aob/mcx137
10.3732/ajb.91.3.369
10.1093/jxb/30.4.817
10.3732/ajb.93.7.993
10.1007/978-3-642-19091-9_12
10.1111/j.1365-3040.2010.02127.x
10.1111/j.1365-3040.1992.tb01001.x
10.1111/pce.13121
10.1111/j.1469-8137.2010.03518.x
10.1093/jxb/ert193
10.1007/s004680100095
10.1093/aob/mcu109
10.1063/1.1724469
10.1038/nature11688
10.1017/S0022112082000883
10.1016/j.tplants.2015.01.008
10.1086/368398
10.1104/pp.16.01039
10.1146/annurev.ecolsys.38.091206.095748
10.1093/treephys/tpt050
10.1111/j.1365-3040.2008.01894.x
10.1093/treephys/26.6.689
10.1111/j.1469-8137.2009.02776.x
10.1111/jipb.12041
ContentType Journal Article
Copyright 2018 John Wiley & Sons Ltd
2018 John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 John Wiley & Sons Ltd
– notice: 2018 John Wiley & Sons Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
1XC
DOI 10.1111/pce.13415
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Calcium & Calcified Tissue Abstracts
CrossRef

AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
Environmental Sciences
EISSN 1365-3040
EndPage 2730
ExternalDocumentID oai_HAL_hal_02623852v1
30071137
10_1111_pce_13415
PCE13415
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: NSF‐AGS‐1644382; NSF‐DGE‐1068871; NSF‐EAR‐1344703; NSF‐IOS‐1754893; NSF-DEB-1557176
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
SOI
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c4555-1c0254bc880ca97702eaaeee5096614c7435b3847d7761ca3dd48ca9c20c66313
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Fri May 09 12:26:37 EDT 2025
Fri Jul 11 18:27:24 EDT 2025
Fri Jul 11 16:44:26 EDT 2025
Fri Jul 25 10:23:24 EDT 2025
Wed Feb 19 02:35:52 EST 2025
Thu Apr 24 23:12:37 EDT 2025
Tue Jul 01 04:28:40 EDT 2025
Wed Jan 22 16:56:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Acer
xylem
hydraulics
anatomy
model
vulnerability curve
wood
cavitation
network
Language English
License 2018 John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4555-1c0254bc880ca97702eaaeee5096614c7435b3847d7761ca3dd48ca9c20c66313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4922-4446
0000-0002-5001-0149
0000-0003-0478-2559
0000-0001-9768-3693
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pce.13415
PMID 30071137
PQID 2135013101
PQPubID 37957
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_02623852v1
proquest_miscellaneous_2189515464
proquest_miscellaneous_2083724304
proquest_journals_2135013101
pubmed_primary_30071137
crossref_citationtrail_10_1111_pce_13415
crossref_primary_10_1111_pce_13415
wiley_primary_10_1111_pce_13415_PCE13415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2015; 35
2017; 40
2018; 121
2017; 1
2015; 102
2013; 64
2014; 26
2018; 41
2011; 190
1992; 15
2016; 103
1979; 30
2001; 45
2005; 28
2012; 99
2016; 37
2016; 36
2007; 38
2012; 491
2004; 134
2013; 55
2006; 26
2016; 113
2001; 15
2014; 50
2003; 164
2010; 33
2006; 93
2007; 247
2007; 249
2011
2015; 168
1962; 5
2009; 182
1992; 100
2009
2017; 173
1995; 18
2002
2004; 91
2017; 213
2014; 89
1914
2014; 114
2009; 32
2013; 33
2015; 20
2013; 74
2014; 37
2003; 26
2018
1982; 115
2015
1994; 17
2008; 177
2003; 224
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
McElrone A. J. (e_1_2_6_40_1) 2013; 74
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
Haberlandt G. (e_1_2_6_19_1) 1914
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
30216473 - Plant Cell Environ. 2018 Dec;41(12):2715-2717
References_xml – year: 2009
– volume: 113
  start-page: 5024
  issue: 18
  year: 2016
  end-page: 5029
  article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought induced tree mortality across the globe
  publication-title: Proceedings of the National Academy of Sciences
– volume: 491
  start-page: 752
  issue: 7426
  year: 2012
  end-page: 755
  article-title: Global convergence in the vulnerability of forests to drought
  publication-title: Nature
– volume: 99
  start-page: 1583
  issue: 10
  year: 2012
  end-page: 1591
  article-title: A global analysis of xylem vessel length in woody plants
  publication-title: American Journal of Botany
– volume: 26
  start-page: 52004
  issue: 5
  year: 2014
  article-title: Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia
  publication-title: Physics of Fluids
– year: 1914
– volume: 18
  start-page: 189
  issue: 2
  year: 1995
  end-page: 196
  article-title: The mechanism of water‐stress‐induced embolism in two species of chaparral shrubs
  publication-title: Plant, Cell & Environment
– volume: 45
  start-page: 239
  issue: 3
  year: 2001
  end-page: 262
  article-title: Water transport in trees: Current perspectives, new insights and some controversies
  publication-title: Environmental and Experimental Botany
– volume: 103
  start-page: 184
  issue: 2
  year: 2016
  end-page: 188
  article-title: New frontiers in the three‐dimensional visualization of plant structure and function
  publication-title: American Journal of Botany
– volume: 33
  start-page: 684
  issue: 7
  year: 2013
  end-page: 694
  article-title: The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species
  publication-title: Tree Physiology
– volume: 26
  start-page: 471
  year: 2003
  end-page: 483
  article-title: Relationship between growth rates and xylem hydraulic characteristics in young, mature and old‐growth ponderosa pine trees
  publication-title: Plant, Cell & Environment
– volume: 15
  start-page: 204
  issue: 4
  year: 2001
  end-page: 214
  article-title: Cavitation and water storage capacity in bole xylem segments of mature and young Douglas‐fir trees
  publication-title: Trees
– volume: 32
  start-page: 10
  issue: 1
  year: 2009
  end-page: 21
  article-title: Capacitive effect of cavitation in xylem conduits: Results from a dynamic model
  publication-title: Plant, Cell & Environment
– volume: 41
  start-page: 576
  issue: 3
  year: 2018
  end-page: 588
  article-title: Co‐occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought
  publication-title: Plant, Cell & Environment
– volume: 15
  start-page: 491
  issue: 4
  year: 1992
  end-page: 497
  article-title: A method for inducing xylem emboli in situ: Experiments with a field‐grown tree
  publication-title: Plant, Cell & Environment
– volume: 28
  start-page: 800
  issue: 6
  year: 2005
  end-page: 812
  article-title: Inter‐vessel pitting and cavitation in woody Rosaceae and other vessel led plants: A basis for a safety versus efficiency trade‐off in xylem transport
  publication-title: Plant, Cell & Environment
– volume: 33
  start-page: 431
  issue: 3
  year: 2010
  end-page: 443
  article-title: Single‐vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated
  publication-title: Plant, Cell & Environment
– volume: 102
  start-page: 1561
  issue: 10
  year: 2015
  end-page: 1563
  article-title: On the ascent of sap in the presence of bubbles
  publication-title: American Journal of Botany
– volume: 64
  start-page: 4779
  issue: 15
  year: 2013
  end-page: 4791
  article-title: Methods for measuring plant vulnerability to cavitation: A critical review
  publication-title: Journal of Experimental Botany
– volume: 134
  start-page: 32
  issue: 1
  year: 2004
  end-page: 34
  article-title: On the mechanism of xylem vessel length regulation
  publication-title: Plant Physiology
– start-page: 303
  year: 2011
  end-page: 327
– volume: 17
  start-page: 1233
  issue: 11
  year: 1994
  end-page: 1241
  article-title: Intra‐and inter‐plant variation in xylem cavitation in
  publication-title: Plant, Cell & Environment
– volume: 40
  start-page: 897
  issue: 6
  year: 2017
  end-page: 913
  article-title: Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics
  publication-title: Plant, Cell & Environment
– volume: 100
  start-page: 205
  issue: 1
  year: 1992
  end-page: 209
  article-title: Use of positive pressures to establish vulnerability curves: Further support for the air‐seeding hypothesis and implications for pressure‐volume analysis
  publication-title: Plant Physiology
– volume: 168
  start-page: 804
  issue: 3
  year: 2015
  end-page: 807
  article-title: Extreme aridity pushes trees to their physical limits
  publication-title: Plant Physiology
– volume: 121
  start-page: 129
  issue: 1
  year: 2018
  end-page: 141
  article-title: Traits and trade‐offs in whole‐tree hydraulic architecture along the vertical axis of Eucalyptus grandis
  publication-title: Annals of Botany
– year: 2015
– volume: 74
  year: 2013
  article-title: Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature
  publication-title: Journal of Visualized Experiments: JoVE
– volume: 30
  start-page: 817
  issue: 4
  year: 1979
  end-page: 827
  article-title: Resistance to water flow in xylem vessels
  publication-title: Journal of Experimental Botany
– volume: 182
  start-page: 664
  issue: 3
  year: 2009
  end-page: 674
  article-title: Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of Acer
  publication-title: New Phytologist
– volume: 213
  start-page: 1093
  issue: 3
  year: 2017
  end-page: 1106
  article-title: The effect of plant water storage on water fluxes within the coupled soil‐plant system
  publication-title: New Phytologist
– year: 2018
  article-title: Identifying which conduits are moving water in woody plants: A new HRCT‐based method
  publication-title: Tree Physiology.
– volume: 1
  start-page: 1285
  issue: 9
  year: 2017
  end-page: 1291
  article-title: A multi‐species synthesis of physiological mechanisms in drought induced tree mortality
  publication-title: Nature Ecology and Evolution
– volume: 115
  start-page: 505
  year: 1982
  end-page: 523
  article-title: An infinite‐series solution for the creeping motion through an orifice of finite length
  publication-title: Journal of Fluid Mechanics
– volume: 164
  start-page: S115
  issue: S3
  year: 2003
  end-page: S127
  article-title: Evolution of water transport and xylem structure
  publication-title: International Journal of Plant Sciences
– volume: 33
  start-page: 1059
  issue: 7
  year: 2010
  end-page: 1069
  article-title: The impact of vessel size on vulnerability curves: Data and models for within‐species variability in saplings of aspen, Populus tremuloides Michx
  publication-title: Plant, Cell & Environment
– volume: 26
  start-page: 689
  issue: 6
  year: 2006
  end-page: 701
  article-title: Scaling of angiosperm xylem structure with safety and efficiency
  publication-title: Tree Physiology
– volume: 91
  start-page: 369
  issue: 3
  year: 2004
  end-page: 385
  article-title: Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes
  publication-title: American Journal of Botany
– volume: 5
  start-page: 1033
  issue: 9
  year: 1962
  article-title: End correction for slow viscous flow through long tubes
  publication-title: Physics of Fluids
– start-page: 284
  year: 2002
– volume: 173
  start-page: 1177
  issue: 2
  year: 2017
  end-page: 1196
  article-title: Xylem surfactants introduce a new element to the cohesion‐tension theory
  publication-title: Plant Physiology
– volume: 114
  start-page: 325
  issue: 2
  year: 2014
  end-page: 334
  article-title: Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms
  publication-title: Annals of Botany
– volume: 37
  start-page: 152
  issue: 2
  year: 2016
  end-page: 171
  article-title: Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem
  publication-title: IAWA Journal
– volume: 177
  start-page: 608
  issue: 3
  year: 2008
  end-page: 626
  article-title: Structure and function of bordered pits: New discoveries and impacts on whole‐plant hydraulic function
  publication-title: New Phytologist
– volume: 38
  start-page: 767
  issue: 1
  year: 2007
  end-page: 791
  article-title: Stochastic dynamics of plant‐water interactions
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 93
  start-page: 993
  issue: 7
  year: 2006
  end-page: 1000
  article-title: Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species
  publication-title: American Journal of Botany
– volume: 224
  start-page: 43
  issue: 1
  year: 2003
  end-page: 61
  article-title: The dynamics of gas bubbles in conduits of vascular plants and implications for embolism repair
  publication-title: Journal of Theoretical Biology
– volume: 247
  start-page: 788
  issue: 4
  year: 2007
  end-page: 803
  article-title: The relevance of xylem network structure for plant hydraulic efficiency and safety
  publication-title: Journal of Theoretical Biology
– volume: 37
  start-page: 35
  issue: 1
  year: 2014
  end-page: 44
  article-title: Recalcitrant vulnerability curves: Methods of analysis and the concept of fibre bridges for enhanced cavitation resistance
  publication-title: Plant, Cell and Environment
– volume: 190
  start-page: 709
  issue: 3
  year: 2011
  end-page: 723
  article-title: Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer
  publication-title: New Phytologist
– volume: 50
  start-page: 5170
  issue: 6
  year: 2014
  end-page: 5183
  article-title: A dynamical system perspective on plant hydraulic failure
  publication-title: Water Resources Research
– volume: 249
  start-page: 111
  issue: 1
  year: 2007
  end-page: 123
  article-title: A model of bubble growth leading to xylem conduit embolism
  publication-title: Journal of Theoretical Biology
– volume: 35
  start-page: 744
  issue: 7
  year: 2015
  end-page: 755
  article-title: Patterns of drought‐induced embolism formation and spread in living walnut saplings visualized using X‐ray microtomography
  publication-title: Tree Physiology
– volume: 55
  start-page: 294
  issue: 4
  year: 2013
  end-page: 388
  article-title: The plant vascular system: Evolution, development and functions
  publication-title: Journal of Integrative Plant Biology
– volume: 36
  start-page: 1247
  issue: 10
  year: 2016
  end-page: 1259
  article-title: Single vessel air injection estimates of xylem resistance to cavitation are affected by vessel network characteristics and sample length
  publication-title: Tree Physiology
– volume: 20
  start-page: 199
  issue: 4
  year: 2015
  end-page: 205
  article-title: Nanobubbles: A new paradigm for air‐seeding in xylem
  publication-title: Trends in Plant Science
– volume: 89
  start-page: 3
  year: 2014
  article-title: Gas flow in plant microfluidic networks controlled by capillary valves
  publication-title: Physical Review E ‐ Statistical, Nonlinear, and Soft Matter Physics
– ident: e_1_2_6_22_1
  doi: 10.1016/j.jtbi.2007.05.033
– ident: e_1_2_6_55_1
  doi: 10.1007/978-3-662-04931-0
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1365-3040.2005.01330.x
– ident: e_1_2_6_56_1
  doi: 10.1093/treephys/tpw055
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1469-8137.2007.02317.x
– ident: e_1_2_6_8_1
  doi: 10.1103/PhysRevE.89.033019
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1365-3040.2009.02094.x
– ident: e_1_2_6_42_1
  doi: 10.1104/pp.103.032334
– ident: e_1_2_6_45_1
  doi: 10.1093/treephys/tpy034
– ident: e_1_2_6_2_1
  doi: 10.1038/s41559-017-0248-x
– ident: e_1_2_6_29_1
  doi: 10.1063/1.4876937
– ident: e_1_2_6_6_1
  doi: 10.1111/pce.12120
– ident: e_1_2_6_25_1
  doi: 10.3732/ajb.1200140
– ident: e_1_2_6_37_1
  doi: 10.1016/j.jtbi.2007.03.036
– volume: 74
  year: 2013
  ident: e_1_2_6_40_1
  article-title: Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature
  publication-title: Journal of Visualized Experiments: JoVE
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1365-3040.1995.tb00352.x
– ident: e_1_2_6_23_1
  doi: 10.1111/nph.14273
– ident: e_1_2_6_24_1
  doi: 10.1088/978-1-6817-4159-8ch5
– ident: e_1_2_6_26_1
  doi: 10.3732/ajb.1500305
– ident: e_1_2_6_44_1
  doi: 10.1111/pce.12862
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.1525678113
– ident: e_1_2_6_17_1
  doi: 10.1046/j.1365-3040.2003.00978.x
– ident: e_1_2_6_34_1
  doi: 10.1104/pp.15.00223
– ident: e_1_2_6_39_1
  doi: 10.1002/2013WR015236
– ident: e_1_2_6_15_1
  doi: 10.1104/pp.100.1.205
– ident: e_1_2_6_33_1
  doi: 10.1016/S0022-5193(03)00138-3
– ident: e_1_2_6_32_1
  doi: 10.1093/treephys/tpv040
– ident: e_1_2_6_5_1
  doi: 10.3732/ajb.1500532
– ident: e_1_2_6_4_1
  doi: 10.1007/978-90-481-2516-6_16
– ident: e_1_2_6_52_1
  doi: 10.1111/j.1365-3040.1994.tb02021.x
– ident: e_1_2_6_36_1
  doi: 10.1163/22941932-20160128
– ident: e_1_2_6_41_1
  doi: 10.1016/S0098-8472(01)00074-0
– ident: e_1_2_6_43_1
  doi: 10.1093/aob/mcx137
– ident: e_1_2_6_51_1
  doi: 10.3732/ajb.91.3.369
– ident: e_1_2_6_28_1
  doi: 10.1093/jxb/30.4.817
– ident: e_1_2_6_9_1
  doi: 10.3732/ajb.93.7.993
– ident: e_1_2_6_50_1
  doi: 10.1007/978-3-642-19091-9_12
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1365-3040.2010.02127.x
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1365-3040.1992.tb01001.x
– ident: e_1_2_6_30_1
  doi: 10.1111/pce.13121
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1469-8137.2010.03518.x
– ident: e_1_2_6_14_1
  doi: 10.1093/jxb/ert193
– ident: e_1_2_6_18_1
  doi: 10.1007/s004680100095
– ident: e_1_2_6_54_1
  doi: 10.1093/aob/mcu109
– ident: e_1_2_6_57_1
  doi: 10.1063/1.1724469
– ident: e_1_2_6_11_1
  doi: 10.1038/nature11688
– ident: e_1_2_6_16_1
  doi: 10.1017/S0022112082000883
– ident: e_1_2_6_48_1
  doi: 10.1016/j.tplants.2015.01.008
– ident: e_1_2_6_53_1
  doi: 10.1086/368398
– ident: e_1_2_6_47_1
  doi: 10.1104/pp.16.01039
– ident: e_1_2_6_31_1
  doi: 10.1146/annurev.ecolsys.38.091206.095748
– volume-title: Physiological plant anatomy
  year: 1914
  ident: e_1_2_6_19_1
– ident: e_1_2_6_49_1
  doi: 10.1093/treephys/tpt050
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-3040.2008.01894.x
– ident: e_1_2_6_20_1
  doi: 10.1093/treephys/26.6.689
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1469-8137.2009.02776.x
– ident: e_1_2_6_38_1
  doi: 10.1111/jipb.12041
– reference: 30216473 - Plant Cell Environ. 2018 Dec;41(12):2715-2717
SSID ssj0001479
Score 2.546058
Snippet Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2718
SubjectTerms Acer
Acer - anatomy & histology
Acer - physiology
Acer glabrum
Anatomy
Cavitation
Computational fluid dynamics
Dehydration
Drought
Embolism
Embolisms
Environmental Sciences
equations
Flowering
Flowering plants
Fluid flow
fluid mechanics
Hydraulics
Laplace equation
Life Sciences
Mathematical models
Models, Biological
network
Propagation
Sensitivity analysis
Tissues
Topology
Trees - anatomy & histology
Trees - physiology
vulnerability curve
Water - metabolism
Water flow
wood
Wood - anatomy & histology
wood anatomy
Xylem
Xylem - physiology
Title A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13415
https://www.ncbi.nlm.nih.gov/pubmed/30071137
https://www.proquest.com/docview/2135013101
https://www.proquest.com/docview/2083724304
https://www.proquest.com/docview/2189515464
https://hal.inrae.fr/hal-02623852
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFA5ONtiLOvfD65xkYw976aVpk_ZefLoT5SLbGGOCD4OSnESUXXvl2or1r_ecpK1zm2P4VpoTyK-TfMn58oWx95l0uVWAjuTiNJIqlpEGq6PM2MRmaiycj-h-_pJND-XBkTpaYjvdXZigD9EfuJFn-PmaHFybi1-c_BzckNTI6II5cbUIEH27lY4SMujsEX0xz8eiVRUiFk-f885a9OiEmJB_wsy7qNUvO_ur7EdX4MA2-TmsKzOE69-0HB9YozW20sJRPgnj5xlbcuU6exIeqGzW2eOPcwSPzXN2POFlIIxz_3YO94FfToQdrkvcuJ81vJrzq2bmznjlO5OfNHah69kp8FYLoF6greWX9Yykrj0r1-cCTAyMgBfscH_v--40ap9oiEAqpSIBdJveAM4CoBFKxonT2jlHojK48APiE2VSXAFtnmcCdGqtHKElJDEg1hHpS7Zczku3wThIkIhmVDqOjVTHxjg3UrTjopMkqcyAfeg6q4C2VPSMxqzo9jHYfoVvvwF715ueB9GOvxphj_fpJLM9nXwq6B_uSxHJqORSDNhWNyCK1rkvikRQNBZxMSa_7ZPRLSnWoks3r9EGoW2eyDSW_7ARI8S3SmZo8yoMtr44KWE_keZYaz9k7q9H8XV3z39s_r_pa_YUgd8o0HK22HK1qN0bBFeV2fZedAOmmxzU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61BQQXHqW0CwUM4sAlqzixk12Jy1JaLbCtEGqlXlDkV1XENlstSUX49czYSaC8hLhF8Vjya-zP9udvAJ5lwuVWGnQkF6eRkLGIlLEqyrRNbCbH3Pkb3f2DbHok3hzL4xV40b2FCfoQ_YEbeYafr8nB6UD6By8_N25IcmRyFa5QRG9yy1fvv4tHcRGU9ojAmOdj3uoKEY-nz3ppNVo9JS7kr0DzMm71C8_eLfjQFTnwTT4N60oPzdef1Bz_t0634WaLSNkkDKE7sOLKdbgWYlQ263D15QLxY3MXTiasDJxx5sPnMH_3y4izw1SJe_ezhlUL9qWZuzNW-f5kp41dqnr-0bBWDqBeoq1lF_Wc1K49MdfnMpgYSAEbcLS3e7gzjdooDZERUsqIG3pQrw1OBEYhmowTp5RzjnRlcO03CFGkTnERtHmecaNSa8UILU0SG4Q7PL0Ha-WidFvAjDACAY1Mx7EW8kRr50aSNl10mCSkHsDzrrcK05aKImnMi24rg-1X-PYbwNPe9DzodvzWCLu8Tyel7elkVtA_3JoimJHJBR_Adjciita_PxcJpwtZhMaY_KRPRs-k6xZVukWNNohu80SksfiLDR8hxJUiQ5vNMNr64qQE_3iaY639mPlzPYp3O7v-4_6_mz6G69PD_Vkxe33w9gHcQBw4CiydbVirlrV7iFir0o-8S30DXpcg7Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615SEuPEppFwoYxIFLVnFiJ1lxWtquFihVhajUA1IUP1ZFbLOrJakIv54ZOwmUlxC3KB5Lfo39jf35M8CzRNjUSI2OZMM4EDIUQaFNESTKRCaRI27die7bo2R6Il6fytM1eNHdhfH6EP2GG3mGm6_JwZdm9oOTL7UdkhqZXIcrIgkzirz2333XjuLCC-0RfzFNR7yVFSIaT5_10mK0fkZUyF9x5mXY6tadyS340JXY000-DetKDfXXn8Qc_7NKt-Fmi0fZ2A-gO7Bmy0245l-obDbh6ssFosfmLszGrPSMceYez2Hu5JcRY4cVJUbu5w2rFuxLM7fnrHK9yc4asyrq-UfNWjGAeoW2hl3Uc9K6drRcl0tjoqcEbMHJ5OD93jRo32gItJBSBlzTdXqlcRrQBWLJMLJFYa0lVRlc-TUCFKliXAJNmiZcF7ExIkNLHYUawQ6P78FGuSjtDjAttEA4I-NRqIScKWVtJinkoq0kIdUAnnedleu2VPSOxjzvAhlsv9y13wCe9qZLr9rxWyPs8T6ddLan48Oc_mFgilBGRhd8ALvdgMhb7_6cR5yOYxEYY_KTPhn9kg5bitIuarRBbJtGIg7FX2x4hgBXigRttv1g64sTE_jjcYq1dkPmz_XIj_cO3Mf9fzd9DNeP9yf54aujNw_gBoLAzFN0dmGjWtX2IQKtSj1yDvUN_AAfpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+network+model+links+wood+anatomy+to+xylem+tissue+hydraulic+behaviour+and+vulnerability+to+cavitation&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Mrad%2C+Assaad&rft.au=Domec%2C+Jean%E2%80%90Christophe&rft.au=Huang%2C+Cheng%E2%80%90Wei&rft.au=Lens%2C+Frederic&rft.date=2018-12-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=41&rft.issue=12&rft.spage=2718&rft.epage=2730&rft_id=info:doi/10.1111%2Fpce.13415&rft.externalDBID=10.1111%252Fpce.13415&rft.externalDocID=PCE13415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon