A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation
Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue‐level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem tha...
Saved in:
Published in | Plant, cell and environment Vol. 41; no. 12; pp. 2718 - 2730 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2018
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0140-7791 1365-3040 1365-3040 |
DOI | 10.1111/pce.13415 |
Cover
Loading…
Abstract | Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue‐level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse‐porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young–Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue‐scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit‐scale and vessel‐scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three‐dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions.
This work introduces a new open source numerical model of plant xylem. The subject of inquiry is the link between wood anatomy and plant water use, especially vulnerability to embolism under drought. The model successfully reproduces empirical vulnerability curves of Acer terminal branches. The results of this study underscore the importance of stepping up research on the effects of xylem network topology on whole‐plant hydraulics. |
---|---|
AbstractList | Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue‐level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse‐porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young–Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue‐scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit‐scale and vessel‐scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three‐dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions. Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue‐level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse‐porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young–Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue‐scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit‐scale and vessel‐scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three‐dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions. This work introduces a new open source numerical model of plant xylem. The subject of inquiry is the link between wood anatomy and plant water use, especially vulnerability to embolism under drought. The model successfully reproduces empirical vulnerability curves of Acer terminal branches. The results of this study underscore the importance of stepping up research on the effects of xylem network topology on whole‐plant hydraulics. Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue‐level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse‐porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young–Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue‐scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit‐scale and vessel‐scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three‐dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions. This work introduces a new open source numerical model of plant xylem. The subject of inquiry is the link between wood anatomy and plant water use, especially vulnerability to embolism under drought. The model successfully reproduces empirical vulnerability curves of Acer terminal branches. The results of this study underscore the importance of stepping up research on the effects of xylem network topology on whole‐plant hydraulics. Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue-level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse-porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young-Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue-scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit-scale and vessel-scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three-dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions.Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue-level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse-porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young-Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue-scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit-scale and vessel-scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three-dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions. |
Author | Mrad, Assaad Huang, Cheng‐Wei Domec, Jean‐Christophe Katul, Gabriel Lens, Frederic |
Author_xml | – sequence: 1 givenname: Assaad orcidid: 0000-0003-4922-4446 surname: Mrad fullname: Mrad, Assaad email: mradassaad2@gmail.com organization: Duke University – sequence: 2 givenname: Jean‐Christophe orcidid: 0000-0003-0478-2559 surname: Domec fullname: Domec, Jean‐Christophe organization: UMR 1391 INRA-ISPA – sequence: 3 givenname: Cheng‐Wei surname: Huang fullname: Huang, Cheng‐Wei organization: University of New Mexico – sequence: 4 givenname: Frederic orcidid: 0000-0002-5001-0149 surname: Lens fullname: Lens, Frederic organization: Leiden University – sequence: 5 givenname: Gabriel orcidid: 0000-0001-9768-3693 surname: Katul fullname: Katul, Gabriel organization: Duke University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30071137$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02623852$$DView record in HAL |
BookMark | eNqFkUFvEzEQhS1URNPCgT-ALHGBw7bjtb3eHKOoUKRIcICz5fVOFLfedbB3k-6_x2nSIiEQvlgaf_PG894FOetDj4S8ZXDF8rneWrxiXDD5gswYr2TBQcAZmQETUCg1Z-fkIqU7gFxQ81fknAMoxriakfWC9jjsQ7ynXWjRU-_6-0T3IbTU9GYI3USHQB8mjx0dXEoj0s3URjN6Z2mDG7NzYYyZbelu9D1G0zjvhscumx8HM7jQvyYv18YnfHO6L8mPTzffl7fF6uvnL8vFqrBCSlkwC6UUja1rsGauFJRoDCJKmFcVE1YJLhteC9UqVTFreNuKOpO2BFtVnPFL8vGouzFeb6PrTJx0ME7fLlb6UIOyKnkty92B_XBktzH8HDENunPJovemxzAmXbJ6LpkUlfg_CjVXpci2Z_T9H-hd9qfPS2dBLoFxBofZ707U2HTYPn_1KZgMXB8BG0NKEdfanqwconFeM9CH6HWOXj9G_3v1544n0b-xJ_W98zj9G9TfljfHjl_GCLr5 |
CitedBy_id | crossref_primary_10_1111_nph_17384 crossref_primary_10_1111_nph_20037 crossref_primary_10_1016_j_envexpbot_2022_104942 crossref_primary_10_1016_j_bioelechem_2020_107533 crossref_primary_10_1111_nph_17786 crossref_primary_10_1109_JETCAS_2021_3098984 crossref_primary_10_1111_nph_20035 crossref_primary_10_1038_s41467_021_22055_w crossref_primary_10_3390_agriculture13101867 crossref_primary_10_1093_treephys_tpac110 crossref_primary_10_1111_ppl_13435 crossref_primary_10_1029_2020MS002214 crossref_primary_10_1111_pce_14990 crossref_primary_10_3389_fpls_2020_00246 crossref_primary_10_1111_nph_17629 crossref_primary_10_1007_s00468_019_01829_2 crossref_primary_10_1029_2024RG000858 crossref_primary_10_1111_nph_17429 crossref_primary_10_1111_nph_19608 crossref_primary_10_1093_aob_mcab047 crossref_primary_10_1126_science_add2910 crossref_primary_10_1073_pnas_2100314118 crossref_primary_10_1029_2022WR033402 crossref_primary_10_1016_j_foreco_2020_118179 crossref_primary_10_1111_ppl_13924 crossref_primary_10_1007_s12549_020_00466_9 crossref_primary_10_1007_s00468_019_01891_w crossref_primary_10_1029_2022JG006971 crossref_primary_10_1016_j_matt_2025_102038 crossref_primary_10_1029_2022MS003494 crossref_primary_10_1093_plphys_kiab045 crossref_primary_10_1016_j_agrformet_2021_108701 crossref_primary_10_1007_s00442_024_05562_7 crossref_primary_10_2139_ssrn_4075802 crossref_primary_10_1111_nph_18731 crossref_primary_10_1186_s13717_024_00486_9 crossref_primary_10_3389_frwa_2022_861590 crossref_primary_10_1016_j_flora_2022_152147 crossref_primary_10_1111_pce_13715 crossref_primary_10_1038_s41467_019_13673_6 crossref_primary_10_1111_nph_17282 crossref_primary_10_1111_pce_14327 crossref_primary_10_1093_treephys_tpad140 crossref_primary_10_1111_pce_13446 crossref_primary_10_1111_pce_13565 crossref_primary_10_1093_aob_mcac053 crossref_primary_10_1111_ppl_13059 crossref_primary_10_1111_ppl_13970 crossref_primary_10_1093_aob_mcae016 crossref_primary_10_1111_nph_16663 crossref_primary_10_3389_fpls_2021_687652 crossref_primary_10_1111_nph_18447 crossref_primary_10_1002_wat2_70015 crossref_primary_10_1093_treephys_tpab018 crossref_primary_10_3389_fpls_2023_1130724 crossref_primary_10_1111_pce_13607 crossref_primary_10_1111_pce_13848 crossref_primary_10_1093_treephys_tpad037 crossref_primary_10_1111_pce_13528 crossref_primary_10_1002_ajb2_1323 crossref_primary_10_1093_treephys_tpz092 crossref_primary_10_1002_ajb2_1450 crossref_primary_10_1038_s41558_020_0781_5 crossref_primary_10_1111_pce_14467 crossref_primary_10_1111_pce_13893 crossref_primary_10_1080_17550874_2022_2053600 crossref_primary_10_1111_nph_16942 crossref_primary_10_1093_jxb_ery361 crossref_primary_10_1016_j_agrformet_2025_110479 |
Cites_doi | 10.1016/j.jtbi.2007.05.033 10.1007/978-3-662-04931-0 10.1111/j.1365-3040.2005.01330.x 10.1093/treephys/tpw055 10.1111/j.1469-8137.2007.02317.x 10.1103/PhysRevE.89.033019 10.1111/j.1365-3040.2009.02094.x 10.1104/pp.103.032334 10.1093/treephys/tpy034 10.1038/s41559-017-0248-x 10.1063/1.4876937 10.1111/pce.12120 10.3732/ajb.1200140 10.1016/j.jtbi.2007.03.036 10.1111/j.1365-3040.1995.tb00352.x 10.1111/nph.14273 10.1088/978-1-6817-4159-8ch5 10.3732/ajb.1500305 10.1111/pce.12862 10.1073/pnas.1525678113 10.1046/j.1365-3040.2003.00978.x 10.1104/pp.15.00223 10.1002/2013WR015236 10.1104/pp.100.1.205 10.1016/S0022-5193(03)00138-3 10.1093/treephys/tpv040 10.3732/ajb.1500532 10.1007/978-90-481-2516-6_16 10.1111/j.1365-3040.1994.tb02021.x 10.1163/22941932-20160128 10.1016/S0098-8472(01)00074-0 10.1093/aob/mcx137 10.3732/ajb.91.3.369 10.1093/jxb/30.4.817 10.3732/ajb.93.7.993 10.1007/978-3-642-19091-9_12 10.1111/j.1365-3040.2010.02127.x 10.1111/j.1365-3040.1992.tb01001.x 10.1111/pce.13121 10.1111/j.1469-8137.2010.03518.x 10.1093/jxb/ert193 10.1007/s004680100095 10.1093/aob/mcu109 10.1063/1.1724469 10.1038/nature11688 10.1017/S0022112082000883 10.1016/j.tplants.2015.01.008 10.1086/368398 10.1104/pp.16.01039 10.1146/annurev.ecolsys.38.091206.095748 10.1093/treephys/tpt050 10.1111/j.1365-3040.2008.01894.x 10.1093/treephys/26.6.689 10.1111/j.1469-8137.2009.02776.x 10.1111/jipb.12041 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons Ltd 2018 John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 John Wiley & Sons Ltd – notice: 2018 John Wiley & Sons Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 1XC |
DOI | 10.1111/pce.13415 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts CrossRef AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany Environmental Sciences |
EISSN | 1365-3040 |
EndPage | 2730 |
ExternalDocumentID | oai_HAL_hal_02623852v1 30071137 10_1111_pce_13415 PCE13415 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: NSF‐AGS‐1644382; NSF‐DGE‐1068871; NSF‐EAR‐1344703; NSF‐IOS‐1754893; NSF-DEB-1557176 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST AAMMB AEFGJ AGXDD AIDQK AIDYY C1K SOI 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c4555-1c0254bc880ca97702eaaeee5096614c7435b3847d7761ca3dd48ca9c20c66313 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Fri May 09 12:26:37 EDT 2025 Fri Jul 11 18:27:24 EDT 2025 Fri Jul 11 16:44:26 EDT 2025 Fri Jul 25 10:23:24 EDT 2025 Wed Feb 19 02:35:52 EST 2025 Thu Apr 24 23:12:37 EDT 2025 Tue Jul 01 04:28:40 EDT 2025 Wed Jan 22 16:56:18 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Acer xylem hydraulics anatomy model vulnerability curve wood cavitation network |
Language | English |
License | 2018 John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4555-1c0254bc880ca97702eaaeee5096614c7435b3847d7761ca3dd48ca9c20c66313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4922-4446 0000-0002-5001-0149 0000-0003-0478-2559 0000-0001-9768-3693 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pce.13415 |
PMID | 30071137 |
PQID | 2135013101 |
PQPubID | 37957 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_02623852v1 proquest_miscellaneous_2189515464 proquest_miscellaneous_2083724304 proquest_journals_2135013101 pubmed_primary_30071137 crossref_citationtrail_10_1111_pce_13415 crossref_primary_10_1111_pce_13415 wiley_primary_10_1111_pce_13415_PCE13415 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2015; 35 2017; 40 2018; 121 2017; 1 2015; 102 2013; 64 2014; 26 2018; 41 2011; 190 1992; 15 2016; 103 1979; 30 2001; 45 2005; 28 2012; 99 2016; 37 2016; 36 2007; 38 2012; 491 2004; 134 2013; 55 2006; 26 2016; 113 2001; 15 2014; 50 2003; 164 2010; 33 2006; 93 2007; 247 2007; 249 2011 2015; 168 1962; 5 2009; 182 1992; 100 2009 2017; 173 1995; 18 2002 2004; 91 2017; 213 2014; 89 1914 2014; 114 2009; 32 2013; 33 2015; 20 2013; 74 2014; 37 2003; 26 2018 1982; 115 2015 1994; 17 2008; 177 2003; 224 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 McElrone A. J. (e_1_2_6_40_1) 2013; 74 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 Haberlandt G. (e_1_2_6_19_1) 1914 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 30216473 - Plant Cell Environ. 2018 Dec;41(12):2715-2717 |
References_xml | – year: 2009 – volume: 113 start-page: 5024 issue: 18 year: 2016 end-page: 5029 article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought induced tree mortality across the globe publication-title: Proceedings of the National Academy of Sciences – volume: 491 start-page: 752 issue: 7426 year: 2012 end-page: 755 article-title: Global convergence in the vulnerability of forests to drought publication-title: Nature – volume: 99 start-page: 1583 issue: 10 year: 2012 end-page: 1591 article-title: A global analysis of xylem vessel length in woody plants publication-title: American Journal of Botany – volume: 26 start-page: 52004 issue: 5 year: 2014 article-title: Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia publication-title: Physics of Fluids – year: 1914 – volume: 18 start-page: 189 issue: 2 year: 1995 end-page: 196 article-title: The mechanism of water‐stress‐induced embolism in two species of chaparral shrubs publication-title: Plant, Cell & Environment – volume: 45 start-page: 239 issue: 3 year: 2001 end-page: 262 article-title: Water transport in trees: Current perspectives, new insights and some controversies publication-title: Environmental and Experimental Botany – volume: 103 start-page: 184 issue: 2 year: 2016 end-page: 188 article-title: New frontiers in the three‐dimensional visualization of plant structure and function publication-title: American Journal of Botany – volume: 33 start-page: 684 issue: 7 year: 2013 end-page: 694 article-title: The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species publication-title: Tree Physiology – volume: 26 start-page: 471 year: 2003 end-page: 483 article-title: Relationship between growth rates and xylem hydraulic characteristics in young, mature and old‐growth ponderosa pine trees publication-title: Plant, Cell & Environment – volume: 15 start-page: 204 issue: 4 year: 2001 end-page: 214 article-title: Cavitation and water storage capacity in bole xylem segments of mature and young Douglas‐fir trees publication-title: Trees – volume: 32 start-page: 10 issue: 1 year: 2009 end-page: 21 article-title: Capacitive effect of cavitation in xylem conduits: Results from a dynamic model publication-title: Plant, Cell & Environment – volume: 41 start-page: 576 issue: 3 year: 2018 end-page: 588 article-title: Co‐occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought publication-title: Plant, Cell & Environment – volume: 15 start-page: 491 issue: 4 year: 1992 end-page: 497 article-title: A method for inducing xylem emboli in situ: Experiments with a field‐grown tree publication-title: Plant, Cell & Environment – volume: 28 start-page: 800 issue: 6 year: 2005 end-page: 812 article-title: Inter‐vessel pitting and cavitation in woody Rosaceae and other vessel led plants: A basis for a safety versus efficiency trade‐off in xylem transport publication-title: Plant, Cell & Environment – volume: 33 start-page: 431 issue: 3 year: 2010 end-page: 443 article-title: Single‐vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated publication-title: Plant, Cell & Environment – volume: 102 start-page: 1561 issue: 10 year: 2015 end-page: 1563 article-title: On the ascent of sap in the presence of bubbles publication-title: American Journal of Botany – volume: 64 start-page: 4779 issue: 15 year: 2013 end-page: 4791 article-title: Methods for measuring plant vulnerability to cavitation: A critical review publication-title: Journal of Experimental Botany – volume: 134 start-page: 32 issue: 1 year: 2004 end-page: 34 article-title: On the mechanism of xylem vessel length regulation publication-title: Plant Physiology – start-page: 303 year: 2011 end-page: 327 – volume: 17 start-page: 1233 issue: 11 year: 1994 end-page: 1241 article-title: Intra‐and inter‐plant variation in xylem cavitation in publication-title: Plant, Cell & Environment – volume: 40 start-page: 897 issue: 6 year: 2017 end-page: 913 article-title: Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics publication-title: Plant, Cell & Environment – volume: 100 start-page: 205 issue: 1 year: 1992 end-page: 209 article-title: Use of positive pressures to establish vulnerability curves: Further support for the air‐seeding hypothesis and implications for pressure‐volume analysis publication-title: Plant Physiology – volume: 168 start-page: 804 issue: 3 year: 2015 end-page: 807 article-title: Extreme aridity pushes trees to their physical limits publication-title: Plant Physiology – volume: 121 start-page: 129 issue: 1 year: 2018 end-page: 141 article-title: Traits and trade‐offs in whole‐tree hydraulic architecture along the vertical axis of Eucalyptus grandis publication-title: Annals of Botany – year: 2015 – volume: 74 year: 2013 article-title: Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature publication-title: Journal of Visualized Experiments: JoVE – volume: 30 start-page: 817 issue: 4 year: 1979 end-page: 827 article-title: Resistance to water flow in xylem vessels publication-title: Journal of Experimental Botany – volume: 182 start-page: 664 issue: 3 year: 2009 end-page: 674 article-title: Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of Acer publication-title: New Phytologist – volume: 213 start-page: 1093 issue: 3 year: 2017 end-page: 1106 article-title: The effect of plant water storage on water fluxes within the coupled soil‐plant system publication-title: New Phytologist – year: 2018 article-title: Identifying which conduits are moving water in woody plants: A new HRCT‐based method publication-title: Tree Physiology. – volume: 1 start-page: 1285 issue: 9 year: 2017 end-page: 1291 article-title: A multi‐species synthesis of physiological mechanisms in drought induced tree mortality publication-title: Nature Ecology and Evolution – volume: 115 start-page: 505 year: 1982 end-page: 523 article-title: An infinite‐series solution for the creeping motion through an orifice of finite length publication-title: Journal of Fluid Mechanics – volume: 164 start-page: S115 issue: S3 year: 2003 end-page: S127 article-title: Evolution of water transport and xylem structure publication-title: International Journal of Plant Sciences – volume: 33 start-page: 1059 issue: 7 year: 2010 end-page: 1069 article-title: The impact of vessel size on vulnerability curves: Data and models for within‐species variability in saplings of aspen, Populus tremuloides Michx publication-title: Plant, Cell & Environment – volume: 26 start-page: 689 issue: 6 year: 2006 end-page: 701 article-title: Scaling of angiosperm xylem structure with safety and efficiency publication-title: Tree Physiology – volume: 91 start-page: 369 issue: 3 year: 2004 end-page: 385 article-title: Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes publication-title: American Journal of Botany – volume: 5 start-page: 1033 issue: 9 year: 1962 article-title: End correction for slow viscous flow through long tubes publication-title: Physics of Fluids – start-page: 284 year: 2002 – volume: 173 start-page: 1177 issue: 2 year: 2017 end-page: 1196 article-title: Xylem surfactants introduce a new element to the cohesion‐tension theory publication-title: Plant Physiology – volume: 114 start-page: 325 issue: 2 year: 2014 end-page: 334 article-title: Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms publication-title: Annals of Botany – volume: 37 start-page: 152 issue: 2 year: 2016 end-page: 171 article-title: Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem publication-title: IAWA Journal – volume: 177 start-page: 608 issue: 3 year: 2008 end-page: 626 article-title: Structure and function of bordered pits: New discoveries and impacts on whole‐plant hydraulic function publication-title: New Phytologist – volume: 38 start-page: 767 issue: 1 year: 2007 end-page: 791 article-title: Stochastic dynamics of plant‐water interactions publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 93 start-page: 993 issue: 7 year: 2006 end-page: 1000 article-title: Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species publication-title: American Journal of Botany – volume: 224 start-page: 43 issue: 1 year: 2003 end-page: 61 article-title: The dynamics of gas bubbles in conduits of vascular plants and implications for embolism repair publication-title: Journal of Theoretical Biology – volume: 247 start-page: 788 issue: 4 year: 2007 end-page: 803 article-title: The relevance of xylem network structure for plant hydraulic efficiency and safety publication-title: Journal of Theoretical Biology – volume: 37 start-page: 35 issue: 1 year: 2014 end-page: 44 article-title: Recalcitrant vulnerability curves: Methods of analysis and the concept of fibre bridges for enhanced cavitation resistance publication-title: Plant, Cell and Environment – volume: 190 start-page: 709 issue: 3 year: 2011 end-page: 723 article-title: Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer publication-title: New Phytologist – volume: 50 start-page: 5170 issue: 6 year: 2014 end-page: 5183 article-title: A dynamical system perspective on plant hydraulic failure publication-title: Water Resources Research – volume: 249 start-page: 111 issue: 1 year: 2007 end-page: 123 article-title: A model of bubble growth leading to xylem conduit embolism publication-title: Journal of Theoretical Biology – volume: 35 start-page: 744 issue: 7 year: 2015 end-page: 755 article-title: Patterns of drought‐induced embolism formation and spread in living walnut saplings visualized using X‐ray microtomography publication-title: Tree Physiology – volume: 55 start-page: 294 issue: 4 year: 2013 end-page: 388 article-title: The plant vascular system: Evolution, development and functions publication-title: Journal of Integrative Plant Biology – volume: 36 start-page: 1247 issue: 10 year: 2016 end-page: 1259 article-title: Single vessel air injection estimates of xylem resistance to cavitation are affected by vessel network characteristics and sample length publication-title: Tree Physiology – volume: 20 start-page: 199 issue: 4 year: 2015 end-page: 205 article-title: Nanobubbles: A new paradigm for air‐seeding in xylem publication-title: Trends in Plant Science – volume: 89 start-page: 3 year: 2014 article-title: Gas flow in plant microfluidic networks controlled by capillary valves publication-title: Physical Review E ‐ Statistical, Nonlinear, and Soft Matter Physics – ident: e_1_2_6_22_1 doi: 10.1016/j.jtbi.2007.05.033 – ident: e_1_2_6_55_1 doi: 10.1007/978-3-662-04931-0 – ident: e_1_2_6_58_1 doi: 10.1111/j.1365-3040.2005.01330.x – ident: e_1_2_6_56_1 doi: 10.1093/treephys/tpw055 – ident: e_1_2_6_10_1 doi: 10.1111/j.1469-8137.2007.02317.x – ident: e_1_2_6_8_1 doi: 10.1103/PhysRevE.89.033019 – ident: e_1_2_6_12_1 doi: 10.1111/j.1365-3040.2009.02094.x – ident: e_1_2_6_42_1 doi: 10.1104/pp.103.032334 – ident: e_1_2_6_45_1 doi: 10.1093/treephys/tpy034 – ident: e_1_2_6_2_1 doi: 10.1038/s41559-017-0248-x – ident: e_1_2_6_29_1 doi: 10.1063/1.4876937 – ident: e_1_2_6_6_1 doi: 10.1111/pce.12120 – ident: e_1_2_6_25_1 doi: 10.3732/ajb.1200140 – ident: e_1_2_6_37_1 doi: 10.1016/j.jtbi.2007.03.036 – volume: 74 year: 2013 ident: e_1_2_6_40_1 article-title: Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature publication-title: Journal of Visualized Experiments: JoVE – ident: e_1_2_6_27_1 doi: 10.1111/j.1365-3040.1995.tb00352.x – ident: e_1_2_6_23_1 doi: 10.1111/nph.14273 – ident: e_1_2_6_24_1 doi: 10.1088/978-1-6817-4159-8ch5 – ident: e_1_2_6_26_1 doi: 10.3732/ajb.1500305 – ident: e_1_2_6_44_1 doi: 10.1111/pce.12862 – ident: e_1_2_6_3_1 doi: 10.1073/pnas.1525678113 – ident: e_1_2_6_17_1 doi: 10.1046/j.1365-3040.2003.00978.x – ident: e_1_2_6_34_1 doi: 10.1104/pp.15.00223 – ident: e_1_2_6_39_1 doi: 10.1002/2013WR015236 – ident: e_1_2_6_15_1 doi: 10.1104/pp.100.1.205 – ident: e_1_2_6_33_1 doi: 10.1016/S0022-5193(03)00138-3 – ident: e_1_2_6_32_1 doi: 10.1093/treephys/tpv040 – ident: e_1_2_6_5_1 doi: 10.3732/ajb.1500532 – ident: e_1_2_6_4_1 doi: 10.1007/978-90-481-2516-6_16 – ident: e_1_2_6_52_1 doi: 10.1111/j.1365-3040.1994.tb02021.x – ident: e_1_2_6_36_1 doi: 10.1163/22941932-20160128 – ident: e_1_2_6_41_1 doi: 10.1016/S0098-8472(01)00074-0 – ident: e_1_2_6_43_1 doi: 10.1093/aob/mcx137 – ident: e_1_2_6_51_1 doi: 10.3732/ajb.91.3.369 – ident: e_1_2_6_28_1 doi: 10.1093/jxb/30.4.817 – ident: e_1_2_6_9_1 doi: 10.3732/ajb.93.7.993 – ident: e_1_2_6_50_1 doi: 10.1007/978-3-642-19091-9_12 – ident: e_1_2_6_7_1 doi: 10.1111/j.1365-3040.2010.02127.x – ident: e_1_2_6_46_1 doi: 10.1111/j.1365-3040.1992.tb01001.x – ident: e_1_2_6_30_1 doi: 10.1111/pce.13121 – ident: e_1_2_6_35_1 doi: 10.1111/j.1469-8137.2010.03518.x – ident: e_1_2_6_14_1 doi: 10.1093/jxb/ert193 – ident: e_1_2_6_18_1 doi: 10.1007/s004680100095 – ident: e_1_2_6_54_1 doi: 10.1093/aob/mcu109 – ident: e_1_2_6_57_1 doi: 10.1063/1.1724469 – ident: e_1_2_6_11_1 doi: 10.1038/nature11688 – ident: e_1_2_6_16_1 doi: 10.1017/S0022112082000883 – ident: e_1_2_6_48_1 doi: 10.1016/j.tplants.2015.01.008 – ident: e_1_2_6_53_1 doi: 10.1086/368398 – ident: e_1_2_6_47_1 doi: 10.1104/pp.16.01039 – ident: e_1_2_6_31_1 doi: 10.1146/annurev.ecolsys.38.091206.095748 – volume-title: Physiological plant anatomy year: 1914 ident: e_1_2_6_19_1 – ident: e_1_2_6_49_1 doi: 10.1093/treephys/tpt050 – ident: e_1_2_6_21_1 doi: 10.1111/j.1365-3040.2008.01894.x – ident: e_1_2_6_20_1 doi: 10.1093/treephys/26.6.689 – ident: e_1_2_6_13_1 doi: 10.1111/j.1469-8137.2009.02776.x – ident: e_1_2_6_38_1 doi: 10.1111/jipb.12041 – reference: 30216473 - Plant Cell Environ. 2018 Dec;41(12):2715-2717 |
SSID | ssj0001479 |
Score | 2.546058 |
Snippet | Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and... |
SourceID | hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2718 |
SubjectTerms | Acer Acer - anatomy & histology Acer - physiology Acer glabrum Anatomy Cavitation Computational fluid dynamics Dehydration Drought Embolism Embolisms Environmental Sciences equations Flowering Flowering plants Fluid flow fluid mechanics Hydraulics Laplace equation Life Sciences Mathematical models Models, Biological network Propagation Sensitivity analysis Tissues Topology Trees - anatomy & histology Trees - physiology vulnerability curve Water - metabolism Water flow wood Wood - anatomy & histology wood anatomy Xylem Xylem - physiology |
Title | A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13415 https://www.ncbi.nlm.nih.gov/pubmed/30071137 https://www.proquest.com/docview/2135013101 https://www.proquest.com/docview/2083724304 https://www.proquest.com/docview/2189515464 https://hal.inrae.fr/hal-02623852 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFA5ONtiLOvfD65xkYw976aVpk_ZefLoT5SLbGGOCD4OSnESUXXvl2or1r_ecpK1zm2P4VpoTyK-TfMn58oWx95l0uVWAjuTiNJIqlpEGq6PM2MRmaiycj-h-_pJND-XBkTpaYjvdXZigD9EfuJFn-PmaHFybi1-c_BzckNTI6II5cbUIEH27lY4SMujsEX0xz8eiVRUiFk-f885a9OiEmJB_wsy7qNUvO_ur7EdX4MA2-TmsKzOE69-0HB9YozW20sJRPgnj5xlbcuU6exIeqGzW2eOPcwSPzXN2POFlIIxz_3YO94FfToQdrkvcuJ81vJrzq2bmznjlO5OfNHah69kp8FYLoF6greWX9Yykrj0r1-cCTAyMgBfscH_v--40ap9oiEAqpSIBdJveAM4CoBFKxonT2jlHojK48APiE2VSXAFtnmcCdGqtHKElJDEg1hHpS7Zczku3wThIkIhmVDqOjVTHxjg3UrTjopMkqcyAfeg6q4C2VPSMxqzo9jHYfoVvvwF715ueB9GOvxphj_fpJLM9nXwq6B_uSxHJqORSDNhWNyCK1rkvikRQNBZxMSa_7ZPRLSnWoks3r9EGoW2eyDSW_7ARI8S3SmZo8yoMtr44KWE_keZYaz9k7q9H8XV3z39s_r_pa_YUgd8o0HK22HK1qN0bBFeV2fZedAOmmxzU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61BQQXHqW0CwUM4sAlqzixk12Jy1JaLbCtEGqlXlDkV1XENlstSUX49czYSaC8hLhF8Vjya-zP9udvAJ5lwuVWGnQkF6eRkLGIlLEqyrRNbCbH3Pkb3f2DbHok3hzL4xV40b2FCfoQ_YEbeYafr8nB6UD6By8_N25IcmRyFa5QRG9yy1fvv4tHcRGU9ojAmOdj3uoKEY-nz3ppNVo9JS7kr0DzMm71C8_eLfjQFTnwTT4N60oPzdef1Bz_t0634WaLSNkkDKE7sOLKdbgWYlQ263D15QLxY3MXTiasDJxx5sPnMH_3y4izw1SJe_ezhlUL9qWZuzNW-f5kp41dqnr-0bBWDqBeoq1lF_Wc1K49MdfnMpgYSAEbcLS3e7gzjdooDZERUsqIG3pQrw1OBEYhmowTp5RzjnRlcO03CFGkTnERtHmecaNSa8UILU0SG4Q7PL0Ha-WidFvAjDACAY1Mx7EW8kRr50aSNl10mCSkHsDzrrcK05aKImnMi24rg-1X-PYbwNPe9DzodvzWCLu8Tyel7elkVtA_3JoimJHJBR_Adjciita_PxcJpwtZhMaY_KRPRs-k6xZVukWNNohu80SksfiLDR8hxJUiQ5vNMNr64qQE_3iaY639mPlzPYp3O7v-4_6_mz6G69PD_Vkxe33w9gHcQBw4CiydbVirlrV7iFir0o-8S30DXpcg7Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615SEuPEppFwoYxIFLVnFiJ1lxWtquFihVhajUA1IUP1ZFbLOrJakIv54ZOwmUlxC3KB5Lfo39jf35M8CzRNjUSI2OZMM4EDIUQaFNESTKRCaRI27die7bo2R6Il6fytM1eNHdhfH6EP2GG3mGm6_JwZdm9oOTL7UdkhqZXIcrIgkzirz2333XjuLCC-0RfzFNR7yVFSIaT5_10mK0fkZUyF9x5mXY6tadyS340JXY000-DetKDfXXn8Qc_7NKt-Fmi0fZ2A-gO7Bmy0245l-obDbh6ssFosfmLszGrPSMceYez2Hu5JcRY4cVJUbu5w2rFuxLM7fnrHK9yc4asyrq-UfNWjGAeoW2hl3Uc9K6drRcl0tjoqcEbMHJ5OD93jRo32gItJBSBlzTdXqlcRrQBWLJMLJFYa0lVRlc-TUCFKliXAJNmiZcF7ExIkNLHYUawQ6P78FGuSjtDjAttEA4I-NRqIScKWVtJinkoq0kIdUAnnedleu2VPSOxjzvAhlsv9y13wCe9qZLr9rxWyPs8T6ddLan48Oc_mFgilBGRhd8ALvdgMhb7_6cR5yOYxEYY_KTPhn9kg5bitIuarRBbJtGIg7FX2x4hgBXigRttv1g64sTE_jjcYq1dkPmz_XIj_cO3Mf9fzd9DNeP9yf54aujNw_gBoLAzFN0dmGjWtX2IQKtSj1yDvUN_AAfpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+network+model+links+wood+anatomy+to+xylem+tissue+hydraulic+behaviour+and+vulnerability+to+cavitation&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Mrad%2C+Assaad&rft.au=Domec%2C+Jean%E2%80%90Christophe&rft.au=Huang%2C+Cheng%E2%80%90Wei&rft.au=Lens%2C+Frederic&rft.date=2018-12-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=41&rft.issue=12&rft.spage=2718&rft.epage=2730&rft_id=info:doi/10.1111%2Fpce.13415&rft.externalDBID=10.1111%252Fpce.13415&rft.externalDocID=PCE13415 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |